]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb: Convert language la_print_type field to a method
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
53a47a3e
TT
199static struct value *val_atr (struct type *, LONGEST);
200
d2e4a39e 201static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
14f9c5c9 205
108d56a4 206static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
207 struct type *);
208
0d5cff50 209static int find_struct_field (const char *, struct type *, int,
52ce6436 210 struct type **, int *, int *, int *, int *);
4c4b4cd2 211
d12307c1 212static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 213 struct value **, int, const char *,
2a612529 214 struct type *, int);
4c4b4cd2 215
4c4b4cd2
PH
216static int ada_is_direct_array_type (struct type *);
217
52ce6436
PH
218static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
222 struct expression *,
223 int *, enum noside);
52ce6436
PH
224
225static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
852dff6c
JB
249
250static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
251
252static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
4c4b4cd2
PH
255\f
256
ee01b665
JB
257/* The result of a symbol lookup to be stored in our symbol cache. */
258
259struct cache_entry
260{
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
fe978cb0 264 domain_enum domain;
ee01b665
JB
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273};
274
275/* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284#define HASH_SIZE 1009
285
286struct ada_symbol_cache
287{
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293};
294
295static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 296
4c4b4cd2 297/* Maximum-sized dynamic type. */
14f9c5c9
AS
298static unsigned int varsize_limit;
299
67cb5b2d 300static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
301#ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303#else
14f9c5c9 304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 305#endif
14f9c5c9 306
4c4b4cd2 307/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 308static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 309 = "__gnat_ada_main_program_name";
14f9c5c9 310
4c4b4cd2
PH
311/* Limit on the number of warnings to raise per expression evaluation. */
312static int warning_limit = 2;
313
314/* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316static int warnings_issued = 0;
317
318static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320};
321
322static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324};
325
c6044dd1
JB
326/* Maintenance-related settings for this module. */
327
328static struct cmd_list_element *maint_set_ada_cmdlist;
329static struct cmd_list_element *maint_show_ada_cmdlist;
330
c6044dd1
JB
331/* The "maintenance ada set/show ignore-descriptive-type" value. */
332
491144b5 333static bool ada_ignore_descriptive_types_p = false;
c6044dd1 334
e802dbe0
JB
335 /* Inferior-specific data. */
336
337/* Per-inferior data for this module. */
338
339struct ada_inferior_data
340{
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
f37b313d 345 struct type *tsd_type = nullptr;
3eecfa55
JB
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
f37b313d 350 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
351};
352
353/* Our key to this module's inferior data. */
f37b313d 354static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
355
356/* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364static struct ada_inferior_data *
365get_ada_inferior_data (struct inferior *inf)
366{
367 struct ada_inferior_data *data;
368
f37b313d 369 data = ada_inferior_data.get (inf);
e802dbe0 370 if (data == NULL)
f37b313d 371 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
372
373 return data;
374}
375
376/* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379static void
380ada_inferior_exit (struct inferior *inf)
381{
f37b313d 382 ada_inferior_data.clear (inf);
e802dbe0
JB
383}
384
ee01b665
JB
385
386 /* program-space-specific data. */
387
388/* This module's per-program-space data. */
389struct ada_pspace_data
390{
f37b313d
TT
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
ee01b665 397 /* The Ada symbol cache. */
f37b313d 398 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
399};
400
401/* Key to our per-program-space data. */
f37b313d 402static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
403
404/* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409static struct ada_pspace_data *
410get_ada_pspace_data (struct program_space *pspace)
411{
412 struct ada_pspace_data *data;
413
f37b313d 414 data = ada_pspace_data_handle.get (pspace);
ee01b665 415 if (data == NULL)
f37b313d 416 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
417
418 return data;
419}
420
4c4b4cd2
PH
421 /* Utilities */
422
720d1a40 423/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 424 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450static struct type *
451ada_typedef_target_type (struct type *type)
452{
78134374 453 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456}
457
41d27058
JB
458/* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462static const char *
463ada_unqualified_name (const char *decoded_name)
464{
2b0f535a
JB
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
41d27058
JB
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481}
482
39e7af3e 483/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 484
39e7af3e 485static std::string
41d27058
JB
486add_angle_brackets (const char *str)
487{
39e7af3e 488 return string_printf ("<%s>", str);
41d27058 489}
96d887e8 490
67cb5b2d 491static const char *
4c4b4cd2
PH
492ada_get_gdb_completer_word_break_characters (void)
493{
494 return ada_completer_word_break_characters;
495}
496
e2b7af72
JB
497/* la_watch_location_expression for Ada. */
498
de93309a 499static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
500ada_watch_location_expression (struct type *type, CORE_ADDR addr)
501{
502 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
503 std::string name = type_to_string (type);
504 return gdb::unique_xmalloc_ptr<char>
505 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
506}
507
de93309a
SM
508/* Assuming V points to an array of S objects, make sure that it contains at
509 least M objects, updating V and S as necessary. */
510
511#define GROW_VECT(v, s, m) \
512 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
513
f27cf670 514/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 515 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 516 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 517
de93309a 518static void *
f27cf670 519grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 520{
d2e4a39e
AS
521 if (*size < min_size)
522 {
523 *size *= 2;
524 if (*size < min_size)
4c4b4cd2 525 *size = min_size;
f27cf670 526 vect = xrealloc (vect, *size * element_size);
d2e4a39e 527 }
f27cf670 528 return vect;
14f9c5c9
AS
529}
530
531/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 532 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
533
534static int
ebf56fd3 535field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
536{
537 int len = strlen (target);
5b4ee69b 538
d2e4a39e 539 return
4c4b4cd2
PH
540 (strncmp (field_name, target, len) == 0
541 && (field_name[len] == '\0'
61012eef 542 || (startswith (field_name + len, "___")
76a01679
JB
543 && strcmp (field_name + strlen (field_name) - 6,
544 "___XVN") != 0)));
14f9c5c9
AS
545}
546
547
872c8b51
JB
548/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
549 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
550 and return its index. This function also handles fields whose name
551 have ___ suffixes because the compiler sometimes alters their name
552 by adding such a suffix to represent fields with certain constraints.
553 If the field could not be found, return a negative number if
554 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
555
556int
557ada_get_field_index (const struct type *type, const char *field_name,
558 int maybe_missing)
559{
560 int fieldno;
872c8b51
JB
561 struct type *struct_type = check_typedef ((struct type *) type);
562
1f704f76 563 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 564 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
565 return fieldno;
566
567 if (!maybe_missing)
323e0a4a 568 error (_("Unable to find field %s in struct %s. Aborting"),
7d93a1e0 569 field_name, struct_type->name ());
4c4b4cd2
PH
570
571 return -1;
572}
573
574/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
575
576int
d2e4a39e 577ada_name_prefix_len (const char *name)
14f9c5c9
AS
578{
579 if (name == NULL)
580 return 0;
d2e4a39e 581 else
14f9c5c9 582 {
d2e4a39e 583 const char *p = strstr (name, "___");
5b4ee69b 584
14f9c5c9 585 if (p == NULL)
4c4b4cd2 586 return strlen (name);
14f9c5c9 587 else
4c4b4cd2 588 return p - name;
14f9c5c9
AS
589 }
590}
591
4c4b4cd2
PH
592/* Return non-zero if SUFFIX is a suffix of STR.
593 Return zero if STR is null. */
594
14f9c5c9 595static int
d2e4a39e 596is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
597{
598 int len1, len2;
5b4ee69b 599
14f9c5c9
AS
600 if (str == NULL)
601 return 0;
602 len1 = strlen (str);
603 len2 = strlen (suffix);
4c4b4cd2 604 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
605}
606
4c4b4cd2
PH
607/* The contents of value VAL, treated as a value of type TYPE. The
608 result is an lval in memory if VAL is. */
14f9c5c9 609
d2e4a39e 610static struct value *
4c4b4cd2 611coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 612{
61ee279c 613 type = ada_check_typedef (type);
df407dfe 614 if (value_type (val) == type)
4c4b4cd2 615 return val;
d2e4a39e 616 else
14f9c5c9 617 {
4c4b4cd2
PH
618 struct value *result;
619
620 /* Make sure that the object size is not unreasonable before
621 trying to allocate some memory for it. */
c1b5a1a6 622 ada_ensure_varsize_limit (type);
4c4b4cd2 623
41e8491f
JK
624 if (value_lazy (val)
625 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
626 result = allocate_value_lazy (type);
627 else
628 {
629 result = allocate_value (type);
9a0dc9e3 630 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 631 }
74bcbdf3 632 set_value_component_location (result, val);
9bbda503
AC
633 set_value_bitsize (result, value_bitsize (val));
634 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
635 if (VALUE_LVAL (result) == lval_memory)
636 set_value_address (result, value_address (val));
14f9c5c9
AS
637 return result;
638 }
639}
640
fc1a4b47
AC
641static const gdb_byte *
642cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
643{
644 if (valaddr == NULL)
645 return NULL;
646 else
647 return valaddr + offset;
648}
649
650static CORE_ADDR
ebf56fd3 651cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
652{
653 if (address == 0)
654 return 0;
d2e4a39e 655 else
14f9c5c9
AS
656 return address + offset;
657}
658
4c4b4cd2
PH
659/* Issue a warning (as for the definition of warning in utils.c, but
660 with exactly one argument rather than ...), unless the limit on the
661 number of warnings has passed during the evaluation of the current
662 expression. */
a2249542 663
77109804
AC
664/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
665 provided by "complaint". */
a0b31db1 666static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 667
14f9c5c9 668static void
a2249542 669lim_warning (const char *format, ...)
14f9c5c9 670{
a2249542 671 va_list args;
a2249542 672
5b4ee69b 673 va_start (args, format);
4c4b4cd2
PH
674 warnings_issued += 1;
675 if (warnings_issued <= warning_limit)
a2249542
MK
676 vwarning (format, args);
677
678 va_end (args);
4c4b4cd2
PH
679}
680
714e53ab
PH
681/* Issue an error if the size of an object of type T is unreasonable,
682 i.e. if it would be a bad idea to allocate a value of this type in
683 GDB. */
684
c1b5a1a6
JB
685void
686ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
687{
688 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 689 error (_("object size is larger than varsize-limit"));
714e53ab
PH
690}
691
0963b4bd 692/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 693static LONGEST
c3e5cd34 694max_of_size (int size)
4c4b4cd2 695{
76a01679 696 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 697
76a01679 698 return top_bit | (top_bit - 1);
4c4b4cd2
PH
699}
700
0963b4bd 701/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 702static LONGEST
c3e5cd34 703min_of_size (int size)
4c4b4cd2 704{
c3e5cd34 705 return -max_of_size (size) - 1;
4c4b4cd2
PH
706}
707
0963b4bd 708/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 709static ULONGEST
c3e5cd34 710umax_of_size (int size)
4c4b4cd2 711{
76a01679 712 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 713
76a01679 714 return top_bit | (top_bit - 1);
4c4b4cd2
PH
715}
716
0963b4bd 717/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
718static LONGEST
719max_of_type (struct type *t)
4c4b4cd2 720{
c3e5cd34
PH
721 if (TYPE_UNSIGNED (t))
722 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
723 else
724 return max_of_size (TYPE_LENGTH (t));
725}
726
0963b4bd 727/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
728static LONGEST
729min_of_type (struct type *t)
730{
731 if (TYPE_UNSIGNED (t))
732 return 0;
733 else
734 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
735}
736
737/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
738LONGEST
739ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 740{
b249d2c2 741 type = resolve_dynamic_type (type, {}, 0);
78134374 742 switch (type->code ())
4c4b4cd2
PH
743 {
744 case TYPE_CODE_RANGE:
690cc4eb 745 return TYPE_HIGH_BOUND (type);
4c4b4cd2 746 case TYPE_CODE_ENUM:
1f704f76 747 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
748 case TYPE_CODE_BOOL:
749 return 1;
750 case TYPE_CODE_CHAR:
76a01679 751 case TYPE_CODE_INT:
690cc4eb 752 return max_of_type (type);
4c4b4cd2 753 default:
43bbcdc2 754 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
755 }
756}
757
14e75d8e 758/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
759LONGEST
760ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 761{
b249d2c2 762 type = resolve_dynamic_type (type, {}, 0);
78134374 763 switch (type->code ())
4c4b4cd2
PH
764 {
765 case TYPE_CODE_RANGE:
690cc4eb 766 return TYPE_LOW_BOUND (type);
4c4b4cd2 767 case TYPE_CODE_ENUM:
14e75d8e 768 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
769 case TYPE_CODE_BOOL:
770 return 0;
771 case TYPE_CODE_CHAR:
76a01679 772 case TYPE_CODE_INT:
690cc4eb 773 return min_of_type (type);
4c4b4cd2 774 default:
43bbcdc2 775 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
776 }
777}
778
779/* The identity on non-range types. For range types, the underlying
76a01679 780 non-range scalar type. */
4c4b4cd2
PH
781
782static struct type *
18af8284 783get_base_type (struct type *type)
4c4b4cd2 784{
78134374 785 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 786 {
76a01679
JB
787 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
788 return type;
4c4b4cd2
PH
789 type = TYPE_TARGET_TYPE (type);
790 }
791 return type;
14f9c5c9 792}
41246937
JB
793
794/* Return a decoded version of the given VALUE. This means returning
795 a value whose type is obtained by applying all the GNAT-specific
85102364 796 encodings, making the resulting type a static but standard description
41246937
JB
797 of the initial type. */
798
799struct value *
800ada_get_decoded_value (struct value *value)
801{
802 struct type *type = ada_check_typedef (value_type (value));
803
804 if (ada_is_array_descriptor_type (type)
805 || (ada_is_constrained_packed_array_type (type)
78134374 806 && type->code () != TYPE_CODE_PTR))
41246937 807 {
78134374 808 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
809 value = ada_coerce_to_simple_array_ptr (value);
810 else
811 value = ada_coerce_to_simple_array (value);
812 }
813 else
814 value = ada_to_fixed_value (value);
815
816 return value;
817}
818
819/* Same as ada_get_decoded_value, but with the given TYPE.
820 Because there is no associated actual value for this type,
821 the resulting type might be a best-effort approximation in
822 the case of dynamic types. */
823
824struct type *
825ada_get_decoded_type (struct type *type)
826{
827 type = to_static_fixed_type (type);
828 if (ada_is_constrained_packed_array_type (type))
829 type = ada_coerce_to_simple_array_type (type);
830 return type;
831}
832
4c4b4cd2 833\f
76a01679 834
4c4b4cd2 835 /* Language Selection */
14f9c5c9
AS
836
837/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 838 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 839
de93309a 840static enum language
ccefe4c4 841ada_update_initial_language (enum language lang)
14f9c5c9 842{
cafb3438 843 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 844 return language_ada;
14f9c5c9
AS
845
846 return lang;
847}
96d887e8
PH
848
849/* If the main procedure is written in Ada, then return its name.
850 The result is good until the next call. Return NULL if the main
851 procedure doesn't appear to be in Ada. */
852
853char *
854ada_main_name (void)
855{
3b7344d5 856 struct bound_minimal_symbol msym;
e83e4e24 857 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 858
96d887e8
PH
859 /* For Ada, the name of the main procedure is stored in a specific
860 string constant, generated by the binder. Look for that symbol,
861 extract its address, and then read that string. If we didn't find
862 that string, then most probably the main procedure is not written
863 in Ada. */
864 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
865
3b7344d5 866 if (msym.minsym != NULL)
96d887e8 867 {
f9bc20b9
JB
868 CORE_ADDR main_program_name_addr;
869 int err_code;
870
77e371c0 871 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 872 if (main_program_name_addr == 0)
323e0a4a 873 error (_("Invalid address for Ada main program name."));
96d887e8 874
f9bc20b9
JB
875 target_read_string (main_program_name_addr, &main_program_name,
876 1024, &err_code);
877
878 if (err_code != 0)
879 return NULL;
e83e4e24 880 return main_program_name.get ();
96d887e8
PH
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885}
14f9c5c9 886\f
4c4b4cd2 887 /* Symbols */
d2e4a39e 888
4c4b4cd2
PH
889/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
14f9c5c9 891
d2e4a39e
AS
892const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
14f9c5c9
AS
915};
916
b5ec771e
PA
917/* The "encoded" form of DECODED, according to GNAT conventions. The
918 result is valid until the next call to ada_encode. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return NULL in that case. */
4c4b4cd2 921
b5ec771e
PA
922static char *
923ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 924{
4c4b4cd2
PH
925 static char *encoding_buffer = NULL;
926 static size_t encoding_buffer_size = 0;
d2e4a39e 927 const char *p;
14f9c5c9 928 int k;
d2e4a39e 929
4c4b4cd2 930 if (decoded == NULL)
14f9c5c9
AS
931 return NULL;
932
4c4b4cd2
PH
933 GROW_VECT (encoding_buffer, encoding_buffer_size,
934 2 * strlen (decoded) + 10);
14f9c5c9
AS
935
936 k = 0;
4c4b4cd2 937 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 938 {
cdc7bb92 939 if (*p == '.')
4c4b4cd2
PH
940 {
941 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
942 k += 2;
943 }
14f9c5c9 944 else if (*p == '"')
4c4b4cd2
PH
945 {
946 const struct ada_opname_map *mapping;
947
948 for (mapping = ada_opname_table;
1265e4aa 949 mapping->encoded != NULL
61012eef 950 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
951 ;
952 if (mapping->encoded == NULL)
b5ec771e
PA
953 {
954 if (throw_errors)
955 error (_("invalid Ada operator name: %s"), p);
956 else
957 return NULL;
958 }
4c4b4cd2
PH
959 strcpy (encoding_buffer + k, mapping->encoded);
960 k += strlen (mapping->encoded);
961 break;
962 }
d2e4a39e 963 else
4c4b4cd2
PH
964 {
965 encoding_buffer[k] = *p;
966 k += 1;
967 }
14f9c5c9
AS
968 }
969
4c4b4cd2
PH
970 encoding_buffer[k] = '\0';
971 return encoding_buffer;
14f9c5c9
AS
972}
973
b5ec771e
PA
974/* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977char *
978ada_encode (const char *decoded)
979{
980 return ada_encode_1 (decoded, true);
981}
982
14f9c5c9 983/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
984 quotes, unfolded, but with the quotes stripped away. Result good
985 to next call. */
986
de93309a 987static char *
e0802d59 988ada_fold_name (gdb::string_view name)
14f9c5c9 989{
d2e4a39e 990 static char *fold_buffer = NULL;
14f9c5c9
AS
991 static size_t fold_buffer_size = 0;
992
e0802d59 993 int len = name.size ();
d2e4a39e 994 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
995
996 if (name[0] == '\'')
997 {
e0802d59 998 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 999 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1000 }
1001 else
1002 {
1003 int i;
5b4ee69b 1004
14f9c5c9 1005 for (i = 0; i <= len; i += 1)
4c4b4cd2 1006 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1007 }
1008
1009 return fold_buffer;
1010}
1011
529cad9c
PH
1012/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1013
1014static int
1015is_lower_alphanum (const char c)
1016{
1017 return (isdigit (c) || (isalpha (c) && islower (c)));
1018}
1019
c90092fe
JB
1020/* ENCODED is the linkage name of a symbol and LEN contains its length.
1021 This function saves in LEN the length of that same symbol name but
1022 without either of these suffixes:
29480c32
JB
1023 . .{DIGIT}+
1024 . ${DIGIT}+
1025 . ___{DIGIT}+
1026 . __{DIGIT}+.
c90092fe 1027
29480c32
JB
1028 These are suffixes introduced by the compiler for entities such as
1029 nested subprogram for instance, in order to avoid name clashes.
1030 They do not serve any purpose for the debugger. */
1031
1032static void
1033ada_remove_trailing_digits (const char *encoded, int *len)
1034{
1035 if (*len > 1 && isdigit (encoded[*len - 1]))
1036 {
1037 int i = *len - 2;
5b4ee69b 1038
29480c32
JB
1039 while (i > 0 && isdigit (encoded[i]))
1040 i--;
1041 if (i >= 0 && encoded[i] == '.')
1042 *len = i;
1043 else if (i >= 0 && encoded[i] == '$')
1044 *len = i;
61012eef 1045 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1046 *len = i - 2;
61012eef 1047 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1048 *len = i - 1;
1049 }
1050}
1051
1052/* Remove the suffix introduced by the compiler for protected object
1053 subprograms. */
1054
1055static void
1056ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1057{
1058 /* Remove trailing N. */
1059
1060 /* Protected entry subprograms are broken into two
1061 separate subprograms: The first one is unprotected, and has
1062 a 'N' suffix; the second is the protected version, and has
0963b4bd 1063 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1064 the protection. Since the P subprograms are internally generated,
1065 we leave these names undecoded, giving the user a clue that this
1066 entity is internal. */
1067
1068 if (*len > 1
1069 && encoded[*len - 1] == 'N'
1070 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1071 *len = *len - 1;
1072}
1073
1074/* If ENCODED follows the GNAT entity encoding conventions, then return
1075 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1076 replaced by ENCODED. */
14f9c5c9 1077
f945dedf 1078std::string
4c4b4cd2 1079ada_decode (const char *encoded)
14f9c5c9
AS
1080{
1081 int i, j;
1082 int len0;
d2e4a39e 1083 const char *p;
14f9c5c9 1084 int at_start_name;
f945dedf 1085 std::string decoded;
d2e4a39e 1086
0d81f350
JG
1087 /* With function descriptors on PPC64, the value of a symbol named
1088 ".FN", if it exists, is the entry point of the function "FN". */
1089 if (encoded[0] == '.')
1090 encoded += 1;
1091
29480c32
JB
1092 /* The name of the Ada main procedure starts with "_ada_".
1093 This prefix is not part of the decoded name, so skip this part
1094 if we see this prefix. */
61012eef 1095 if (startswith (encoded, "_ada_"))
4c4b4cd2 1096 encoded += 5;
14f9c5c9 1097
29480c32
JB
1098 /* If the name starts with '_', then it is not a properly encoded
1099 name, so do not attempt to decode it. Similarly, if the name
1100 starts with '<', the name should not be decoded. */
4c4b4cd2 1101 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1102 goto Suppress;
1103
4c4b4cd2 1104 len0 = strlen (encoded);
4c4b4cd2 1105
29480c32
JB
1106 ada_remove_trailing_digits (encoded, &len0);
1107 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1108
4c4b4cd2
PH
1109 /* Remove the ___X.* suffix if present. Do not forget to verify that
1110 the suffix is located before the current "end" of ENCODED. We want
1111 to avoid re-matching parts of ENCODED that have previously been
1112 marked as discarded (by decrementing LEN0). */
1113 p = strstr (encoded, "___");
1114 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1115 {
1116 if (p[3] == 'X')
4c4b4cd2 1117 len0 = p - encoded;
14f9c5c9 1118 else
4c4b4cd2 1119 goto Suppress;
14f9c5c9 1120 }
4c4b4cd2 1121
29480c32
JB
1122 /* Remove any trailing TKB suffix. It tells us that this symbol
1123 is for the body of a task, but that information does not actually
1124 appear in the decoded name. */
1125
61012eef 1126 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1127 len0 -= 3;
76a01679 1128
a10967fa
JB
1129 /* Remove any trailing TB suffix. The TB suffix is slightly different
1130 from the TKB suffix because it is used for non-anonymous task
1131 bodies. */
1132
61012eef 1133 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1134 len0 -= 2;
1135
29480c32
JB
1136 /* Remove trailing "B" suffixes. */
1137 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1138
61012eef 1139 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1140 len0 -= 1;
1141
4c4b4cd2 1142 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1143
f945dedf 1144 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1145
29480c32
JB
1146 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1147
4c4b4cd2 1148 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1149 {
4c4b4cd2
PH
1150 i = len0 - 2;
1151 while ((i >= 0 && isdigit (encoded[i]))
1152 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1153 i -= 1;
1154 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1155 len0 = i - 1;
1156 else if (encoded[i] == '$')
1157 len0 = i;
d2e4a39e 1158 }
14f9c5c9 1159
29480c32
JB
1160 /* The first few characters that are not alphabetic are not part
1161 of any encoding we use, so we can copy them over verbatim. */
1162
4c4b4cd2
PH
1163 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1164 decoded[j] = encoded[i];
14f9c5c9
AS
1165
1166 at_start_name = 1;
1167 while (i < len0)
1168 {
29480c32 1169 /* Is this a symbol function? */
4c4b4cd2
PH
1170 if (at_start_name && encoded[i] == 'O')
1171 {
1172 int k;
5b4ee69b 1173
4c4b4cd2
PH
1174 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1175 {
1176 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1177 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1178 op_len - 1) == 0)
1179 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1180 {
f945dedf 1181 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1182 at_start_name = 0;
1183 i += op_len;
1184 j += strlen (ada_opname_table[k].decoded);
1185 break;
1186 }
1187 }
1188 if (ada_opname_table[k].encoded != NULL)
1189 continue;
1190 }
14f9c5c9
AS
1191 at_start_name = 0;
1192
529cad9c
PH
1193 /* Replace "TK__" with "__", which will eventually be translated
1194 into "." (just below). */
1195
61012eef 1196 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1197 i += 2;
529cad9c 1198
29480c32
JB
1199 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1200 be translated into "." (just below). These are internal names
1201 generated for anonymous blocks inside which our symbol is nested. */
1202
1203 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1204 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1205 && isdigit (encoded [i+4]))
1206 {
1207 int k = i + 5;
1208
1209 while (k < len0 && isdigit (encoded[k]))
1210 k++; /* Skip any extra digit. */
1211
1212 /* Double-check that the "__B_{DIGITS}+" sequence we found
1213 is indeed followed by "__". */
1214 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1215 i = k;
1216 }
1217
529cad9c
PH
1218 /* Remove _E{DIGITS}+[sb] */
1219
1220 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1221 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1222 one implements the actual entry code, and has a suffix following
1223 the convention above; the second one implements the barrier and
1224 uses the same convention as above, except that the 'E' is replaced
1225 by a 'B'.
1226
1227 Just as above, we do not decode the name of barrier functions
1228 to give the user a clue that the code he is debugging has been
1229 internally generated. */
1230
1231 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1232 && isdigit (encoded[i+2]))
1233 {
1234 int k = i + 3;
1235
1236 while (k < len0 && isdigit (encoded[k]))
1237 k++;
1238
1239 if (k < len0
1240 && (encoded[k] == 'b' || encoded[k] == 's'))
1241 {
1242 k++;
1243 /* Just as an extra precaution, make sure that if this
1244 suffix is followed by anything else, it is a '_'.
1245 Otherwise, we matched this sequence by accident. */
1246 if (k == len0
1247 || (k < len0 && encoded[k] == '_'))
1248 i = k;
1249 }
1250 }
1251
1252 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1253 the GNAT front-end in protected object subprograms. */
1254
1255 if (i < len0 + 3
1256 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1257 {
1258 /* Backtrack a bit up until we reach either the begining of
1259 the encoded name, or "__". Make sure that we only find
1260 digits or lowercase characters. */
1261 const char *ptr = encoded + i - 1;
1262
1263 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1264 ptr--;
1265 if (ptr < encoded
1266 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1267 i++;
1268 }
1269
4c4b4cd2
PH
1270 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1271 {
29480c32
JB
1272 /* This is a X[bn]* sequence not separated from the previous
1273 part of the name with a non-alpha-numeric character (in other
1274 words, immediately following an alpha-numeric character), then
1275 verify that it is placed at the end of the encoded name. If
1276 not, then the encoding is not valid and we should abort the
1277 decoding. Otherwise, just skip it, it is used in body-nested
1278 package names. */
4c4b4cd2
PH
1279 do
1280 i += 1;
1281 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1282 if (i < len0)
1283 goto Suppress;
1284 }
cdc7bb92 1285 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1286 {
29480c32 1287 /* Replace '__' by '.'. */
4c4b4cd2
PH
1288 decoded[j] = '.';
1289 at_start_name = 1;
1290 i += 2;
1291 j += 1;
1292 }
14f9c5c9 1293 else
4c4b4cd2 1294 {
29480c32
JB
1295 /* It's a character part of the decoded name, so just copy it
1296 over. */
4c4b4cd2
PH
1297 decoded[j] = encoded[i];
1298 i += 1;
1299 j += 1;
1300 }
14f9c5c9 1301 }
f945dedf 1302 decoded.resize (j);
14f9c5c9 1303
29480c32
JB
1304 /* Decoded names should never contain any uppercase character.
1305 Double-check this, and abort the decoding if we find one. */
1306
f945dedf 1307 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1308 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1309 goto Suppress;
1310
f945dedf 1311 return decoded;
14f9c5c9
AS
1312
1313Suppress:
4c4b4cd2 1314 if (encoded[0] == '<')
f945dedf 1315 decoded = encoded;
14f9c5c9 1316 else
f945dedf 1317 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1318 return decoded;
1319
1320}
1321
1322/* Table for keeping permanent unique copies of decoded names. Once
1323 allocated, names in this table are never released. While this is a
1324 storage leak, it should not be significant unless there are massive
1325 changes in the set of decoded names in successive versions of a
1326 symbol table loaded during a single session. */
1327static struct htab *decoded_names_store;
1328
1329/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1330 in the language-specific part of GSYMBOL, if it has not been
1331 previously computed. Tries to save the decoded name in the same
1332 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1333 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1334 GSYMBOL).
4c4b4cd2
PH
1335 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1336 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1337 when a decoded name is cached in it. */
4c4b4cd2 1338
45e6c716 1339const char *
f85f34ed 1340ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1341{
f85f34ed
TT
1342 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1343 const char **resultp =
615b3f62 1344 &gsymbol->language_specific.demangled_name;
5b4ee69b 1345
f85f34ed 1346 if (!gsymbol->ada_mangled)
4c4b4cd2 1347 {
4d4eaa30 1348 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1349 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1350
f85f34ed 1351 gsymbol->ada_mangled = 1;
5b4ee69b 1352
f85f34ed 1353 if (obstack != NULL)
f945dedf 1354 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1355 else
76a01679 1356 {
f85f34ed
TT
1357 /* Sometimes, we can't find a corresponding objfile, in
1358 which case, we put the result on the heap. Since we only
1359 decode when needed, we hope this usually does not cause a
1360 significant memory leak (FIXME). */
1361
76a01679 1362 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1363 decoded.c_str (), INSERT);
5b4ee69b 1364
76a01679 1365 if (*slot == NULL)
f945dedf 1366 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1367 *resultp = *slot;
1368 }
4c4b4cd2 1369 }
14f9c5c9 1370
4c4b4cd2
PH
1371 return *resultp;
1372}
76a01679 1373
2c0b251b 1374static char *
76a01679 1375ada_la_decode (const char *encoded, int options)
4c4b4cd2 1376{
f945dedf 1377 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1378}
1379
14f9c5c9 1380\f
d2e4a39e 1381
4c4b4cd2 1382 /* Arrays */
14f9c5c9 1383
28c85d6c
JB
1384/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1385 generated by the GNAT compiler to describe the index type used
1386 for each dimension of an array, check whether it follows the latest
1387 known encoding. If not, fix it up to conform to the latest encoding.
1388 Otherwise, do nothing. This function also does nothing if
1389 INDEX_DESC_TYPE is NULL.
1390
85102364 1391 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1392 Initially, the information would be provided through the name of each
1393 field of the structure type only, while the type of these fields was
1394 described as unspecified and irrelevant. The debugger was then expected
1395 to perform a global type lookup using the name of that field in order
1396 to get access to the full index type description. Because these global
1397 lookups can be very expensive, the encoding was later enhanced to make
1398 the global lookup unnecessary by defining the field type as being
1399 the full index type description.
1400
1401 The purpose of this routine is to allow us to support older versions
1402 of the compiler by detecting the use of the older encoding, and by
1403 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1404 we essentially replace each field's meaningless type by the associated
1405 index subtype). */
1406
1407void
1408ada_fixup_array_indexes_type (struct type *index_desc_type)
1409{
1410 int i;
1411
1412 if (index_desc_type == NULL)
1413 return;
1f704f76 1414 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1415
1416 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1417 to check one field only, no need to check them all). If not, return
1418 now.
1419
1420 If our INDEX_DESC_TYPE was generated using the older encoding,
1421 the field type should be a meaningless integer type whose name
1422 is not equal to the field name. */
7d93a1e0
SM
1423 if (TYPE_FIELD_TYPE (index_desc_type, 0)->name () != NULL
1424 && strcmp (TYPE_FIELD_TYPE (index_desc_type, 0)->name (),
28c85d6c
JB
1425 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1426 return;
1427
1428 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1429 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1430 {
0d5cff50 1431 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1432 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1433
1434 if (raw_type)
1435 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1436 }
1437}
1438
4c4b4cd2
PH
1439/* The desc_* routines return primitive portions of array descriptors
1440 (fat pointers). */
14f9c5c9
AS
1441
1442/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1443 level of indirection, if needed. */
1444
d2e4a39e
AS
1445static struct type *
1446desc_base_type (struct type *type)
14f9c5c9
AS
1447{
1448 if (type == NULL)
1449 return NULL;
61ee279c 1450 type = ada_check_typedef (type);
78134374 1451 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1452 type = ada_typedef_target_type (type);
1453
1265e4aa 1454 if (type != NULL
78134374
SM
1455 && (type->code () == TYPE_CODE_PTR
1456 || type->code () == TYPE_CODE_REF))
61ee279c 1457 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1458 else
1459 return type;
1460}
1461
4c4b4cd2
PH
1462/* True iff TYPE indicates a "thin" array pointer type. */
1463
14f9c5c9 1464static int
d2e4a39e 1465is_thin_pntr (struct type *type)
14f9c5c9 1466{
d2e4a39e 1467 return
14f9c5c9
AS
1468 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1469 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1470}
1471
4c4b4cd2
PH
1472/* The descriptor type for thin pointer type TYPE. */
1473
d2e4a39e
AS
1474static struct type *
1475thin_descriptor_type (struct type *type)
14f9c5c9 1476{
d2e4a39e 1477 struct type *base_type = desc_base_type (type);
5b4ee69b 1478
14f9c5c9
AS
1479 if (base_type == NULL)
1480 return NULL;
1481 if (is_suffix (ada_type_name (base_type), "___XVE"))
1482 return base_type;
d2e4a39e 1483 else
14f9c5c9 1484 {
d2e4a39e 1485 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1486
14f9c5c9 1487 if (alt_type == NULL)
4c4b4cd2 1488 return base_type;
14f9c5c9 1489 else
4c4b4cd2 1490 return alt_type;
14f9c5c9
AS
1491 }
1492}
1493
4c4b4cd2
PH
1494/* A pointer to the array data for thin-pointer value VAL. */
1495
d2e4a39e
AS
1496static struct value *
1497thin_data_pntr (struct value *val)
14f9c5c9 1498{
828292f2 1499 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1500 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1501
556bdfd4
UW
1502 data_type = lookup_pointer_type (data_type);
1503
78134374 1504 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1505 return value_cast (data_type, value_copy (val));
d2e4a39e 1506 else
42ae5230 1507 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1508}
1509
4c4b4cd2
PH
1510/* True iff TYPE indicates a "thick" array pointer type. */
1511
14f9c5c9 1512static int
d2e4a39e 1513is_thick_pntr (struct type *type)
14f9c5c9
AS
1514{
1515 type = desc_base_type (type);
78134374 1516 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1517 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1518}
1519
4c4b4cd2
PH
1520/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1521 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1522
d2e4a39e
AS
1523static struct type *
1524desc_bounds_type (struct type *type)
14f9c5c9 1525{
d2e4a39e 1526 struct type *r;
14f9c5c9
AS
1527
1528 type = desc_base_type (type);
1529
1530 if (type == NULL)
1531 return NULL;
1532 else if (is_thin_pntr (type))
1533 {
1534 type = thin_descriptor_type (type);
1535 if (type == NULL)
4c4b4cd2 1536 return NULL;
14f9c5c9
AS
1537 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1538 if (r != NULL)
61ee279c 1539 return ada_check_typedef (r);
14f9c5c9 1540 }
78134374 1541 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1542 {
1543 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1544 if (r != NULL)
61ee279c 1545 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1546 }
1547 return NULL;
1548}
1549
1550/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1551 one, a pointer to its bounds data. Otherwise NULL. */
1552
d2e4a39e
AS
1553static struct value *
1554desc_bounds (struct value *arr)
14f9c5c9 1555{
df407dfe 1556 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1557
d2e4a39e 1558 if (is_thin_pntr (type))
14f9c5c9 1559 {
d2e4a39e 1560 struct type *bounds_type =
4c4b4cd2 1561 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1562 LONGEST addr;
1563
4cdfadb1 1564 if (bounds_type == NULL)
323e0a4a 1565 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1566
1567 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1568 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1569 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1570 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1571 addr = value_as_long (arr);
d2e4a39e 1572 else
42ae5230 1573 addr = value_address (arr);
14f9c5c9 1574
d2e4a39e 1575 return
4c4b4cd2
PH
1576 value_from_longest (lookup_pointer_type (bounds_type),
1577 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1578 }
1579
1580 else if (is_thick_pntr (type))
05e522ef
JB
1581 {
1582 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1583 _("Bad GNAT array descriptor"));
1584 struct type *p_bounds_type = value_type (p_bounds);
1585
1586 if (p_bounds_type
78134374 1587 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1588 {
1589 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1590
1591 if (TYPE_STUB (target_type))
1592 p_bounds = value_cast (lookup_pointer_type
1593 (ada_check_typedef (target_type)),
1594 p_bounds);
1595 }
1596 else
1597 error (_("Bad GNAT array descriptor"));
1598
1599 return p_bounds;
1600 }
14f9c5c9
AS
1601 else
1602 return NULL;
1603}
1604
4c4b4cd2
PH
1605/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1606 position of the field containing the address of the bounds data. */
1607
14f9c5c9 1608static int
d2e4a39e 1609fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1610{
1611 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1612}
1613
1614/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1615 size of the field containing the address of the bounds data. */
1616
14f9c5c9 1617static int
d2e4a39e 1618fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1619{
1620 type = desc_base_type (type);
1621
d2e4a39e 1622 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1623 return TYPE_FIELD_BITSIZE (type, 1);
1624 else
61ee279c 1625 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1626}
1627
4c4b4cd2 1628/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1629 pointer to one, the type of its array data (a array-with-no-bounds type);
1630 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1631 data. */
4c4b4cd2 1632
d2e4a39e 1633static struct type *
556bdfd4 1634desc_data_target_type (struct type *type)
14f9c5c9
AS
1635{
1636 type = desc_base_type (type);
1637
4c4b4cd2 1638 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1639 if (is_thin_pntr (type))
556bdfd4 1640 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1641 else if (is_thick_pntr (type))
556bdfd4
UW
1642 {
1643 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1644
1645 if (data_type
78134374 1646 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1647 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1648 }
1649
1650 return NULL;
14f9c5c9
AS
1651}
1652
1653/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1654 its array data. */
4c4b4cd2 1655
d2e4a39e
AS
1656static struct value *
1657desc_data (struct value *arr)
14f9c5c9 1658{
df407dfe 1659 struct type *type = value_type (arr);
5b4ee69b 1660
14f9c5c9
AS
1661 if (is_thin_pntr (type))
1662 return thin_data_pntr (arr);
1663 else if (is_thick_pntr (type))
d2e4a39e 1664 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1665 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1666 else
1667 return NULL;
1668}
1669
1670
1671/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1672 position of the field containing the address of the data. */
1673
14f9c5c9 1674static int
d2e4a39e 1675fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1676{
1677 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1678}
1679
1680/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1681 size of the field containing the address of the data. */
1682
14f9c5c9 1683static int
d2e4a39e 1684fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1685{
1686 type = desc_base_type (type);
1687
1688 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1689 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1690 else
14f9c5c9
AS
1691 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1692}
1693
4c4b4cd2 1694/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1695 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
d2e4a39e
AS
1698static struct value *
1699desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1700{
250106a7
TT
1701 char bound_name[20];
1702 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1703 which ? 'U' : 'L', i - 1);
1704 return value_struct_elt (&bounds, NULL, bound_name, NULL,
323e0a4a 1705 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1706}
1707
1708/* If BOUNDS is an array-bounds structure type, return the bit position
1709 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1710 bound, if WHICH is 1. The first bound is I=1. */
1711
14f9c5c9 1712static int
d2e4a39e 1713desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1714{
d2e4a39e 1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1716}
1717
1718/* If BOUNDS is an array-bounds structure type, return the bit field size
1719 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1720 bound, if WHICH is 1. The first bound is I=1. */
1721
76a01679 1722static int
d2e4a39e 1723desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1724{
1725 type = desc_base_type (type);
1726
d2e4a39e
AS
1727 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1729 else
1730 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1731}
1732
1733/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1734 Ith bound (numbering from 1). Otherwise, NULL. */
1735
d2e4a39e
AS
1736static struct type *
1737desc_index_type (struct type *type, int i)
14f9c5c9
AS
1738{
1739 type = desc_base_type (type);
1740
78134374 1741 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1742 {
1743 char bound_name[20];
1744 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1745 return lookup_struct_elt_type (type, bound_name, 1);
1746 }
d2e4a39e 1747 else
14f9c5c9
AS
1748 return NULL;
1749}
1750
4c4b4cd2
PH
1751/* The number of index positions in the array-bounds type TYPE.
1752 Return 0 if TYPE is NULL. */
1753
14f9c5c9 1754static int
d2e4a39e 1755desc_arity (struct type *type)
14f9c5c9
AS
1756{
1757 type = desc_base_type (type);
1758
1759 if (type != NULL)
1f704f76 1760 return type->num_fields () / 2;
14f9c5c9
AS
1761 return 0;
1762}
1763
4c4b4cd2
PH
1764/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1765 an array descriptor type (representing an unconstrained array
1766 type). */
1767
76a01679
JB
1768static int
1769ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1770{
1771 if (type == NULL)
1772 return 0;
61ee279c 1773 type = ada_check_typedef (type);
78134374 1774 return (type->code () == TYPE_CODE_ARRAY
76a01679 1775 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1776}
1777
52ce6436 1778/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1779 * to one. */
52ce6436 1780
2c0b251b 1781static int
52ce6436
PH
1782ada_is_array_type (struct type *type)
1783{
78134374
SM
1784 while (type != NULL
1785 && (type->code () == TYPE_CODE_PTR
1786 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1787 type = TYPE_TARGET_TYPE (type);
1788 return ada_is_direct_array_type (type);
1789}
1790
4c4b4cd2 1791/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1792
14f9c5c9 1793int
4c4b4cd2 1794ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1795{
1796 if (type == NULL)
1797 return 0;
61ee279c 1798 type = ada_check_typedef (type);
78134374
SM
1799 return (type->code () == TYPE_CODE_ARRAY
1800 || (type->code () == TYPE_CODE_PTR
1801 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1802 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1803}
1804
4c4b4cd2
PH
1805/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1806
14f9c5c9 1807int
4c4b4cd2 1808ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1809{
556bdfd4 1810 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1811
1812 if (type == NULL)
1813 return 0;
61ee279c 1814 type = ada_check_typedef (type);
556bdfd4 1815 return (data_type != NULL
78134374 1816 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1817 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1818}
1819
1820/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1821 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1822 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1823 is still needed. */
1824
14f9c5c9 1825int
ebf56fd3 1826ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1827{
d2e4a39e 1828 return
14f9c5c9 1829 type != NULL
78134374 1830 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1831 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1832 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1833 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1834}
1835
1836
4c4b4cd2 1837/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1838 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1839 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1840 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1841 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1842 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1843 a descriptor. */
de93309a
SM
1844
1845static struct type *
d2e4a39e 1846ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1847{
ad82864c
JB
1848 if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1850
df407dfe
AC
1851 if (!ada_is_array_descriptor_type (value_type (arr)))
1852 return value_type (arr);
d2e4a39e
AS
1853
1854 if (!bounds)
ad82864c
JB
1855 {
1856 struct type *array_type =
1857 ada_check_typedef (desc_data_target_type (value_type (arr)));
1858
1859 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1860 TYPE_FIELD_BITSIZE (array_type, 0) =
1861 decode_packed_array_bitsize (value_type (arr));
1862
1863 return array_type;
1864 }
14f9c5c9
AS
1865 else
1866 {
d2e4a39e 1867 struct type *elt_type;
14f9c5c9 1868 int arity;
d2e4a39e 1869 struct value *descriptor;
14f9c5c9 1870
df407dfe
AC
1871 elt_type = ada_array_element_type (value_type (arr), -1);
1872 arity = ada_array_arity (value_type (arr));
14f9c5c9 1873
d2e4a39e 1874 if (elt_type == NULL || arity == 0)
df407dfe 1875 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1876
1877 descriptor = desc_bounds (arr);
d2e4a39e 1878 if (value_as_long (descriptor) == 0)
4c4b4cd2 1879 return NULL;
d2e4a39e 1880 while (arity > 0)
4c4b4cd2 1881 {
e9bb382b
UW
1882 struct type *range_type = alloc_type_copy (value_type (arr));
1883 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1884 struct value *low = desc_one_bound (descriptor, arity, 0);
1885 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1886
5b4ee69b 1887 arity -= 1;
0c9c3474
SA
1888 create_static_range_type (range_type, value_type (low),
1889 longest_to_int (value_as_long (low)),
1890 longest_to_int (value_as_long (high)));
4c4b4cd2 1891 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1892
1893 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1894 {
1895 /* We need to store the element packed bitsize, as well as
1896 recompute the array size, because it was previously
1897 computed based on the unpacked element size. */
1898 LONGEST lo = value_as_long (low);
1899 LONGEST hi = value_as_long (high);
1900
1901 TYPE_FIELD_BITSIZE (elt_type, 0) =
1902 decode_packed_array_bitsize (value_type (arr));
1903 /* If the array has no element, then the size is already
1904 zero, and does not need to be recomputed. */
1905 if (lo < hi)
1906 {
1907 int array_bitsize =
1908 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1909
1910 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1911 }
1912 }
4c4b4cd2 1913 }
14f9c5c9
AS
1914
1915 return lookup_pointer_type (elt_type);
1916 }
1917}
1918
1919/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1920 Otherwise, returns either a standard GDB array with bounds set
1921 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1922 GDB array. Returns NULL if ARR is a null fat pointer. */
1923
d2e4a39e
AS
1924struct value *
1925ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1926{
df407dfe 1927 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1928 {
d2e4a39e 1929 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1930
14f9c5c9 1931 if (arrType == NULL)
4c4b4cd2 1932 return NULL;
14f9c5c9
AS
1933 return value_cast (arrType, value_copy (desc_data (arr)));
1934 }
ad82864c
JB
1935 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1937 else
1938 return arr;
1939}
1940
1941/* If ARR does not represent an array, returns ARR unchanged.
1942 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1943 be ARR itself if it already is in the proper form). */
1944
720d1a40 1945struct value *
d2e4a39e 1946ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1947{
df407dfe 1948 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1949 {
d2e4a39e 1950 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1951
14f9c5c9 1952 if (arrVal == NULL)
323e0a4a 1953 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1954 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1955 return value_ind (arrVal);
1956 }
ad82864c
JB
1957 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1958 return decode_constrained_packed_array (arr);
d2e4a39e 1959 else
14f9c5c9
AS
1960 return arr;
1961}
1962
1963/* If TYPE represents a GNAT array type, return it translated to an
1964 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1965 packing). For other types, is the identity. */
1966
d2e4a39e
AS
1967struct type *
1968ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1969{
ad82864c
JB
1970 if (ada_is_constrained_packed_array_type (type))
1971 return decode_constrained_packed_array_type (type);
17280b9f
UW
1972
1973 if (ada_is_array_descriptor_type (type))
556bdfd4 1974 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1975
1976 return type;
14f9c5c9
AS
1977}
1978
4c4b4cd2
PH
1979/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1980
ad82864c
JB
1981static int
1982ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1983{
1984 if (type == NULL)
1985 return 0;
4c4b4cd2 1986 type = desc_base_type (type);
61ee279c 1987 type = ada_check_typedef (type);
d2e4a39e 1988 return
14f9c5c9
AS
1989 ada_type_name (type) != NULL
1990 && strstr (ada_type_name (type), "___XP") != NULL;
1991}
1992
ad82864c
JB
1993/* Non-zero iff TYPE represents a standard GNAT constrained
1994 packed-array type. */
1995
1996int
1997ada_is_constrained_packed_array_type (struct type *type)
1998{
1999 return ada_is_packed_array_type (type)
2000 && !ada_is_array_descriptor_type (type);
2001}
2002
2003/* Non-zero iff TYPE represents an array descriptor for a
2004 unconstrained packed-array type. */
2005
2006static int
2007ada_is_unconstrained_packed_array_type (struct type *type)
2008{
2009 return ada_is_packed_array_type (type)
2010 && ada_is_array_descriptor_type (type);
2011}
2012
2013/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2014 return the size of its elements in bits. */
2015
2016static long
2017decode_packed_array_bitsize (struct type *type)
2018{
0d5cff50
DE
2019 const char *raw_name;
2020 const char *tail;
ad82864c
JB
2021 long bits;
2022
720d1a40
JB
2023 /* Access to arrays implemented as fat pointers are encoded as a typedef
2024 of the fat pointer type. We need the name of the fat pointer type
2025 to do the decoding, so strip the typedef layer. */
78134374 2026 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2027 type = ada_typedef_target_type (type);
2028
2029 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2030 if (!raw_name)
2031 raw_name = ada_type_name (desc_base_type (type));
2032
2033 if (!raw_name)
2034 return 0;
2035
2036 tail = strstr (raw_name, "___XP");
720d1a40 2037 gdb_assert (tail != NULL);
ad82864c
JB
2038
2039 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2040 {
2041 lim_warning
2042 (_("could not understand bit size information on packed array"));
2043 return 0;
2044 }
2045
2046 return bits;
2047}
2048
14f9c5c9
AS
2049/* Given that TYPE is a standard GDB array type with all bounds filled
2050 in, and that the element size of its ultimate scalar constituents
2051 (that is, either its elements, or, if it is an array of arrays, its
2052 elements' elements, etc.) is *ELT_BITS, return an identical type,
2053 but with the bit sizes of its elements (and those of any
2054 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2055 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2056 in bits.
2057
2058 Note that, for arrays whose index type has an XA encoding where
2059 a bound references a record discriminant, getting that discriminant,
2060 and therefore the actual value of that bound, is not possible
2061 because none of the given parameters gives us access to the record.
2062 This function assumes that it is OK in the context where it is being
2063 used to return an array whose bounds are still dynamic and where
2064 the length is arbitrary. */
4c4b4cd2 2065
d2e4a39e 2066static struct type *
ad82864c 2067constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2068{
d2e4a39e
AS
2069 struct type *new_elt_type;
2070 struct type *new_type;
99b1c762
JB
2071 struct type *index_type_desc;
2072 struct type *index_type;
14f9c5c9
AS
2073 LONGEST low_bound, high_bound;
2074
61ee279c 2075 type = ada_check_typedef (type);
78134374 2076 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2077 return type;
2078
99b1c762
JB
2079 index_type_desc = ada_find_parallel_type (type, "___XA");
2080 if (index_type_desc)
2081 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2082 NULL);
2083 else
2084 index_type = TYPE_INDEX_TYPE (type);
2085
e9bb382b 2086 new_type = alloc_type_copy (type);
ad82864c
JB
2087 new_elt_type =
2088 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2089 elt_bits);
99b1c762 2090 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2091 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2092 new_type->set_name (ada_type_name (type));
14f9c5c9 2093
78134374 2094 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2095 && is_dynamic_type (check_typedef (index_type)))
2096 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2097 low_bound = high_bound = 0;
2098 if (high_bound < low_bound)
2099 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2100 else
14f9c5c9
AS
2101 {
2102 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2103 TYPE_LENGTH (new_type) =
4c4b4cd2 2104 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2105 }
2106
876cecd0 2107 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2108 return new_type;
2109}
2110
ad82864c
JB
2111/* The array type encoded by TYPE, where
2112 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2113
d2e4a39e 2114static struct type *
ad82864c 2115decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2116{
0d5cff50 2117 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2118 char *name;
0d5cff50 2119 const char *tail;
d2e4a39e 2120 struct type *shadow_type;
14f9c5c9 2121 long bits;
14f9c5c9 2122
727e3d2e
JB
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return NULL;
2128
2129 name = (char *) alloca (strlen (raw_name) + 1);
2130 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2131 type = desc_base_type (type);
2132
14f9c5c9
AS
2133 memcpy (name, raw_name, tail - raw_name);
2134 name[tail - raw_name] = '\000';
2135
b4ba55a1
JB
2136 shadow_type = ada_find_parallel_type_with_name (type, name);
2137
2138 if (shadow_type == NULL)
14f9c5c9 2139 {
323e0a4a 2140 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2141 return NULL;
2142 }
f168693b 2143 shadow_type = check_typedef (shadow_type);
14f9c5c9 2144
78134374 2145 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2146 {
0963b4bd
MS
2147 lim_warning (_("could not understand bounds "
2148 "information on packed array"));
14f9c5c9
AS
2149 return NULL;
2150 }
d2e4a39e 2151
ad82864c
JB
2152 bits = decode_packed_array_bitsize (type);
2153 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2154}
2155
ad82864c
JB
2156/* Given that ARR is a struct value *indicating a GNAT constrained packed
2157 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2158 standard GDB array type except that the BITSIZEs of the array
2159 target types are set to the number of bits in each element, and the
4c4b4cd2 2160 type length is set appropriately. */
14f9c5c9 2161
d2e4a39e 2162static struct value *
ad82864c 2163decode_constrained_packed_array (struct value *arr)
14f9c5c9 2164{
4c4b4cd2 2165 struct type *type;
14f9c5c9 2166
11aa919a
PMR
2167 /* If our value is a pointer, then dereference it. Likewise if
2168 the value is a reference. Make sure that this operation does not
2169 cause the target type to be fixed, as this would indirectly cause
2170 this array to be decoded. The rest of the routine assumes that
2171 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2172 and "value_ind" routines to perform the dereferencing, as opposed
2173 to using "ada_coerce_ref" or "ada_value_ind". */
2174 arr = coerce_ref (arr);
78134374 2175 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2176 arr = value_ind (arr);
4c4b4cd2 2177
ad82864c 2178 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2179 if (type == NULL)
2180 {
323e0a4a 2181 error (_("can't unpack array"));
14f9c5c9
AS
2182 return NULL;
2183 }
61ee279c 2184
d5a22e77 2185 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2186 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2187 {
2188 /* This is a (right-justified) modular type representing a packed
2189 array with no wrapper. In order to interpret the value through
2190 the (left-justified) packed array type we just built, we must
2191 first left-justify it. */
2192 int bit_size, bit_pos;
2193 ULONGEST mod;
2194
df407dfe 2195 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2196 bit_size = 0;
2197 while (mod > 0)
2198 {
2199 bit_size += 1;
2200 mod >>= 1;
2201 }
df407dfe 2202 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2203 arr = ada_value_primitive_packed_val (arr, NULL,
2204 bit_pos / HOST_CHAR_BIT,
2205 bit_pos % HOST_CHAR_BIT,
2206 bit_size,
2207 type);
2208 }
2209
4c4b4cd2 2210 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2211}
2212
2213
2214/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2215 given in IND. ARR must be a simple array. */
14f9c5c9 2216
d2e4a39e
AS
2217static struct value *
2218value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2219{
2220 int i;
2221 int bits, elt_off, bit_off;
2222 long elt_total_bit_offset;
d2e4a39e
AS
2223 struct type *elt_type;
2224 struct value *v;
14f9c5c9
AS
2225
2226 bits = 0;
2227 elt_total_bit_offset = 0;
df407dfe 2228 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2229 for (i = 0; i < arity; i += 1)
14f9c5c9 2230 {
78134374 2231 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2232 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2233 error
0963b4bd
MS
2234 (_("attempt to do packed indexing of "
2235 "something other than a packed array"));
14f9c5c9 2236 else
4c4b4cd2
PH
2237 {
2238 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2239 LONGEST lowerbound, upperbound;
2240 LONGEST idx;
2241
2242 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2243 {
323e0a4a 2244 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2245 lowerbound = upperbound = 0;
2246 }
2247
3cb382c9 2248 idx = pos_atr (ind[i]);
4c4b4cd2 2249 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2250 lim_warning (_("packed array index %ld out of bounds"),
2251 (long) idx);
4c4b4cd2
PH
2252 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2253 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2254 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2255 }
14f9c5c9
AS
2256 }
2257 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2258 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2259
2260 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2261 bits, elt_type);
14f9c5c9
AS
2262 return v;
2263}
2264
4c4b4cd2 2265/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2266
2267static int
d2e4a39e 2268has_negatives (struct type *type)
14f9c5c9 2269{
78134374 2270 switch (type->code ())
d2e4a39e
AS
2271 {
2272 default:
2273 return 0;
2274 case TYPE_CODE_INT:
2275 return !TYPE_UNSIGNED (type);
2276 case TYPE_CODE_RANGE:
4e962e74 2277 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2278 }
14f9c5c9 2279}
d2e4a39e 2280
f93fca70 2281/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2282 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2283 the unpacked buffer.
14f9c5c9 2284
5b639dea
JB
2285 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2286 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2287
f93fca70
JB
2288 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2289 zero otherwise.
14f9c5c9 2290
f93fca70 2291 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2292
f93fca70
JB
2293 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2294
2295static void
2296ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2297 gdb_byte *unpacked, int unpacked_len,
2298 int is_big_endian, int is_signed_type,
2299 int is_scalar)
2300{
a1c95e6b
JB
2301 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2302 int src_idx; /* Index into the source area */
2303 int src_bytes_left; /* Number of source bytes left to process. */
2304 int srcBitsLeft; /* Number of source bits left to move */
2305 int unusedLS; /* Number of bits in next significant
2306 byte of source that are unused */
2307
a1c95e6b
JB
2308 int unpacked_idx; /* Index into the unpacked buffer */
2309 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2310
4c4b4cd2 2311 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2312 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2313 unsigned char sign;
a1c95e6b 2314
4c4b4cd2
PH
2315 /* Transmit bytes from least to most significant; delta is the direction
2316 the indices move. */
f93fca70 2317 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2318
5b639dea
JB
2319 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2320 bits from SRC. .*/
2321 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2322 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2323 bit_size, unpacked_len);
2324
14f9c5c9 2325 srcBitsLeft = bit_size;
086ca51f 2326 src_bytes_left = src_len;
f93fca70 2327 unpacked_bytes_left = unpacked_len;
14f9c5c9 2328 sign = 0;
f93fca70
JB
2329
2330 if (is_big_endian)
14f9c5c9 2331 {
086ca51f 2332 src_idx = src_len - 1;
f93fca70
JB
2333 if (is_signed_type
2334 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2335 sign = ~0;
d2e4a39e
AS
2336
2337 unusedLS =
4c4b4cd2
PH
2338 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2339 % HOST_CHAR_BIT;
14f9c5c9 2340
f93fca70
JB
2341 if (is_scalar)
2342 {
2343 accumSize = 0;
2344 unpacked_idx = unpacked_len - 1;
2345 }
2346 else
2347 {
4c4b4cd2
PH
2348 /* Non-scalar values must be aligned at a byte boundary... */
2349 accumSize =
2350 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2351 /* ... And are placed at the beginning (most-significant) bytes
2352 of the target. */
086ca51f
JB
2353 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2354 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2355 }
14f9c5c9 2356 }
d2e4a39e 2357 else
14f9c5c9
AS
2358 {
2359 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2360
086ca51f 2361 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2362 unusedLS = bit_offset;
2363 accumSize = 0;
2364
f93fca70 2365 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2366 sign = ~0;
14f9c5c9 2367 }
d2e4a39e 2368
14f9c5c9 2369 accum = 0;
086ca51f 2370 while (src_bytes_left > 0)
14f9c5c9
AS
2371 {
2372 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2373 part of the value. */
d2e4a39e 2374 unsigned int unusedMSMask =
4c4b4cd2
PH
2375 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2376 1;
2377 /* Sign-extend bits for this byte. */
14f9c5c9 2378 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2379
d2e4a39e 2380 accum |=
086ca51f 2381 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2382 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2383 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2384 {
db297a65 2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2386 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
4c4b4cd2 2390 }
14f9c5c9
AS
2391 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2392 unusedLS = 0;
086ca51f
JB
2393 src_bytes_left -= 1;
2394 src_idx += delta;
14f9c5c9 2395 }
086ca51f 2396 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2397 {
2398 accum |= sign << accumSize;
db297a65 2399 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2400 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2401 if (accumSize < 0)
2402 accumSize = 0;
14f9c5c9 2403 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2404 unpacked_bytes_left -= 1;
2405 unpacked_idx += delta;
14f9c5c9 2406 }
f93fca70
JB
2407}
2408
2409/* Create a new value of type TYPE from the contents of OBJ starting
2410 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2411 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2412 assigning through the result will set the field fetched from.
2413 VALADDR is ignored unless OBJ is NULL, in which case,
2414 VALADDR+OFFSET must address the start of storage containing the
2415 packed value. The value returned in this case is never an lval.
2416 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2417
2418struct value *
2419ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2420 long offset, int bit_offset, int bit_size,
2421 struct type *type)
2422{
2423 struct value *v;
bfb1c796 2424 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2425 gdb_byte *unpacked;
220475ed 2426 const int is_scalar = is_scalar_type (type);
d5a22e77 2427 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2428 gdb::byte_vector staging;
f93fca70
JB
2429
2430 type = ada_check_typedef (type);
2431
d0a9e810 2432 if (obj == NULL)
bfb1c796 2433 src = valaddr + offset;
d0a9e810 2434 else
bfb1c796 2435 src = value_contents (obj) + offset;
d0a9e810
JB
2436
2437 if (is_dynamic_type (type))
2438 {
2439 /* The length of TYPE might by dynamic, so we need to resolve
2440 TYPE in order to know its actual size, which we then use
2441 to create the contents buffer of the value we return.
2442 The difficulty is that the data containing our object is
2443 packed, and therefore maybe not at a byte boundary. So, what
2444 we do, is unpack the data into a byte-aligned buffer, and then
2445 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2446 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2447 staging.resize (staging_len);
d0a9e810
JB
2448
2449 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2450 staging.data (), staging.size (),
d0a9e810
JB
2451 is_big_endian, has_negatives (type),
2452 is_scalar);
b249d2c2 2453 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2454 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2455 {
2456 /* This happens when the length of the object is dynamic,
2457 and is actually smaller than the space reserved for it.
2458 For instance, in an array of variant records, the bit_size
2459 we're given is the array stride, which is constant and
2460 normally equal to the maximum size of its element.
2461 But, in reality, each element only actually spans a portion
2462 of that stride. */
2463 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2464 }
d0a9e810
JB
2465 }
2466
f93fca70
JB
2467 if (obj == NULL)
2468 {
2469 v = allocate_value (type);
bfb1c796 2470 src = valaddr + offset;
f93fca70
JB
2471 }
2472 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2473 {
0cafa88c 2474 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2475 gdb_byte *buf;
0cafa88c 2476
f93fca70 2477 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2478 buf = (gdb_byte *) alloca (src_len);
2479 read_memory (value_address (v), buf, src_len);
2480 src = buf;
f93fca70
JB
2481 }
2482 else
2483 {
2484 v = allocate_value (type);
bfb1c796 2485 src = value_contents (obj) + offset;
f93fca70
JB
2486 }
2487
2488 if (obj != NULL)
2489 {
2490 long new_offset = offset;
2491
2492 set_value_component_location (v, obj);
2493 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2494 set_value_bitsize (v, bit_size);
2495 if (value_bitpos (v) >= HOST_CHAR_BIT)
2496 {
2497 ++new_offset;
2498 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2499 }
2500 set_value_offset (v, new_offset);
2501
2502 /* Also set the parent value. This is needed when trying to
2503 assign a new value (in inferior memory). */
2504 set_value_parent (v, obj);
2505 }
2506 else
2507 set_value_bitsize (v, bit_size);
bfb1c796 2508 unpacked = value_contents_writeable (v);
f93fca70
JB
2509
2510 if (bit_size == 0)
2511 {
2512 memset (unpacked, 0, TYPE_LENGTH (type));
2513 return v;
2514 }
2515
d5722aa2 2516 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2517 {
d0a9e810
JB
2518 /* Small short-cut: If we've unpacked the data into a buffer
2519 of the same size as TYPE's length, then we can reuse that,
2520 instead of doing the unpacking again. */
d5722aa2 2521 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2522 }
d0a9e810
JB
2523 else
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 unpacked, TYPE_LENGTH (type),
2526 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2527
14f9c5c9
AS
2528 return v;
2529}
d2e4a39e 2530
14f9c5c9
AS
2531/* Store the contents of FROMVAL into the location of TOVAL.
2532 Return a new value with the location of TOVAL and contents of
2533 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2534 floating-point or non-scalar types. */
14f9c5c9 2535
d2e4a39e
AS
2536static struct value *
2537ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2538{
df407dfe
AC
2539 struct type *type = value_type (toval);
2540 int bits = value_bitsize (toval);
14f9c5c9 2541
52ce6436
PH
2542 toval = ada_coerce_ref (toval);
2543 fromval = ada_coerce_ref (fromval);
2544
2545 if (ada_is_direct_array_type (value_type (toval)))
2546 toval = ada_coerce_to_simple_array (toval);
2547 if (ada_is_direct_array_type (value_type (fromval)))
2548 fromval = ada_coerce_to_simple_array (fromval);
2549
88e3b34b 2550 if (!deprecated_value_modifiable (toval))
323e0a4a 2551 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2552
d2e4a39e 2553 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2554 && bits > 0
78134374
SM
2555 && (type->code () == TYPE_CODE_FLT
2556 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2557 {
df407dfe
AC
2558 int len = (value_bitpos (toval)
2559 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2560 int from_size;
224c3ddb 2561 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2562 struct value *val;
42ae5230 2563 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2564
78134374 2565 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2566 fromval = value_cast (type, fromval);
14f9c5c9 2567
52ce6436 2568 read_memory (to_addr, buffer, len);
aced2898
PH
2569 from_size = value_bitsize (fromval);
2570 if (from_size == 0)
2571 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2572
d5a22e77 2573 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2574 ULONGEST from_offset = 0;
2575 if (is_big_endian && is_scalar_type (value_type (fromval)))
2576 from_offset = from_size - bits;
2577 copy_bitwise (buffer, value_bitpos (toval),
2578 value_contents (fromval), from_offset,
2579 bits, is_big_endian);
972daa01 2580 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2581
14f9c5c9 2582 val = value_copy (toval);
0fd88904 2583 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2584 TYPE_LENGTH (type));
04624583 2585 deprecated_set_value_type (val, type);
d2e4a39e 2586
14f9c5c9
AS
2587 return val;
2588 }
2589
2590 return value_assign (toval, fromval);
2591}
2592
2593
7c512744
JB
2594/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2595 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2596 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2597 COMPONENT, and not the inferior's memory. The current contents
2598 of COMPONENT are ignored.
2599
2600 Although not part of the initial design, this function also works
2601 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2602 had a null address, and COMPONENT had an address which is equal to
2603 its offset inside CONTAINER. */
2604
52ce6436
PH
2605static void
2606value_assign_to_component (struct value *container, struct value *component,
2607 struct value *val)
2608{
2609 LONGEST offset_in_container =
42ae5230 2610 (LONGEST) (value_address (component) - value_address (container));
7c512744 2611 int bit_offset_in_container =
52ce6436
PH
2612 value_bitpos (component) - value_bitpos (container);
2613 int bits;
7c512744 2614
52ce6436
PH
2615 val = value_cast (value_type (component), val);
2616
2617 if (value_bitsize (component) == 0)
2618 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2619 else
2620 bits = value_bitsize (component);
2621
d5a22e77 2622 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2623 {
2624 int src_offset;
2625
2626 if (is_scalar_type (check_typedef (value_type (component))))
2627 src_offset
2628 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2629 else
2630 src_offset = 0;
a99bc3d2
JB
2631 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2632 value_bitpos (container) + bit_offset_in_container,
2633 value_contents (val), src_offset, bits, 1);
2a62dfa9 2634 }
52ce6436 2635 else
a99bc3d2
JB
2636 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2637 value_bitpos (container) + bit_offset_in_container,
2638 value_contents (val), 0, bits, 0);
7c512744
JB
2639}
2640
736ade86
XR
2641/* Determine if TYPE is an access to an unconstrained array. */
2642
d91e9ea8 2643bool
736ade86
XR
2644ada_is_access_to_unconstrained_array (struct type *type)
2645{
78134374 2646 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2647 && is_thick_pntr (ada_typedef_target_type (type)));
2648}
2649
4c4b4cd2
PH
2650/* The value of the element of array ARR at the ARITY indices given in IND.
2651 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2652 thereto. */
2653
d2e4a39e
AS
2654struct value *
2655ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2656{
2657 int k;
d2e4a39e
AS
2658 struct value *elt;
2659 struct type *elt_type;
14f9c5c9
AS
2660
2661 elt = ada_coerce_to_simple_array (arr);
2662
df407dfe 2663 elt_type = ada_check_typedef (value_type (elt));
78134374 2664 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2665 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2666 return value_subscript_packed (elt, arity, ind);
2667
2668 for (k = 0; k < arity; k += 1)
2669 {
b9c50e9a
XR
2670 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2671
78134374 2672 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2673 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2674
2497b498 2675 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2676
2677 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2678 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2679 {
2680 /* The element is a typedef to an unconstrained array,
2681 except that the value_subscript call stripped the
2682 typedef layer. The typedef layer is GNAT's way to
2683 specify that the element is, at the source level, an
2684 access to the unconstrained array, rather than the
2685 unconstrained array. So, we need to restore that
2686 typedef layer, which we can do by forcing the element's
2687 type back to its original type. Otherwise, the returned
2688 value is going to be printed as the array, rather
2689 than as an access. Another symptom of the same issue
2690 would be that an expression trying to dereference the
2691 element would also be improperly rejected. */
2692 deprecated_set_value_type (elt, saved_elt_type);
2693 }
2694
2695 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2696 }
b9c50e9a 2697
14f9c5c9
AS
2698 return elt;
2699}
2700
deede10c
JB
2701/* Assuming ARR is a pointer to a GDB array, the value of the element
2702 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2703 Does not read the entire array into memory.
2704
2705 Note: Unlike what one would expect, this function is used instead of
2706 ada_value_subscript for basically all non-packed array types. The reason
2707 for this is that a side effect of doing our own pointer arithmetics instead
2708 of relying on value_subscript is that there is no implicit typedef peeling.
2709 This is important for arrays of array accesses, where it allows us to
2710 preserve the fact that the array's element is an array access, where the
2711 access part os encoded in a typedef layer. */
14f9c5c9 2712
2c0b251b 2713static struct value *
deede10c 2714ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2715{
2716 int k;
919e6dbe 2717 struct value *array_ind = ada_value_ind (arr);
deede10c 2718 struct type *type
919e6dbe
PMR
2719 = check_typedef (value_enclosing_type (array_ind));
2720
78134374 2721 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2722 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2723 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2724
2725 for (k = 0; k < arity; k += 1)
2726 {
2727 LONGEST lwb, upb;
14f9c5c9 2728
78134374 2729 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2730 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2731 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2732 value_copy (arr));
14f9c5c9 2733 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
53a47a3e 2734 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2735 type = TYPE_TARGET_TYPE (type);
2736 }
2737
2738 return value_ind (arr);
2739}
2740
0b5d8877 2741/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2742 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2743 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2744 this array is LOW, as per Ada rules. */
0b5d8877 2745static struct value *
f5938064
JG
2746ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2747 int low, int high)
0b5d8877 2748{
b0dd7688 2749 struct type *type0 = ada_check_typedef (type);
aa715135 2750 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2751 struct type *index_type
aa715135 2752 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2753 struct type *slice_type = create_array_type_with_stride
2754 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2755 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2756 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2757 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2758 LONGEST base_low_pos, low_pos;
2759 CORE_ADDR base;
2760
2761 if (!discrete_position (base_index_type, low, &low_pos)
2762 || !discrete_position (base_index_type, base_low, &base_low_pos))
2763 {
2764 warning (_("unable to get positions in slice, use bounds instead"));
2765 low_pos = low;
2766 base_low_pos = base_low;
2767 }
5b4ee69b 2768
aa715135
JG
2769 base = value_as_address (array_ptr)
2770 + ((low_pos - base_low_pos)
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2772 return value_at_lazy (slice_type, base);
0b5d8877
PH
2773}
2774
2775
2776static struct value *
2777ada_value_slice (struct value *array, int low, int high)
2778{
b0dd7688 2779 struct type *type = ada_check_typedef (value_type (array));
aa715135 2780 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2781 struct type *index_type
2782 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2783 struct type *slice_type = create_array_type_with_stride
2784 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2785 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2786 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2787 LONGEST low_pos, high_pos;
5b4ee69b 2788
aa715135
JG
2789 if (!discrete_position (base_index_type, low, &low_pos)
2790 || !discrete_position (base_index_type, high, &high_pos))
2791 {
2792 warning (_("unable to get positions in slice, use bounds instead"));
2793 low_pos = low;
2794 high_pos = high;
2795 }
2796
2797 return value_cast (slice_type,
2798 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2799}
2800
14f9c5c9
AS
2801/* If type is a record type in the form of a standard GNAT array
2802 descriptor, returns the number of dimensions for type. If arr is a
2803 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2804 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2805
2806int
d2e4a39e 2807ada_array_arity (struct type *type)
14f9c5c9
AS
2808{
2809 int arity;
2810
2811 if (type == NULL)
2812 return 0;
2813
2814 type = desc_base_type (type);
2815
2816 arity = 0;
78134374 2817 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2818 return desc_arity (desc_bounds_type (type));
d2e4a39e 2819 else
78134374 2820 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2821 {
4c4b4cd2 2822 arity += 1;
61ee279c 2823 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2824 }
d2e4a39e 2825
14f9c5c9
AS
2826 return arity;
2827}
2828
2829/* If TYPE is a record type in the form of a standard GNAT array
2830 descriptor or a simple array type, returns the element type for
2831 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2832 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2833
d2e4a39e
AS
2834struct type *
2835ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2836{
2837 type = desc_base_type (type);
2838
78134374 2839 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2840 {
2841 int k;
d2e4a39e 2842 struct type *p_array_type;
14f9c5c9 2843
556bdfd4 2844 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2845
2846 k = ada_array_arity (type);
2847 if (k == 0)
4c4b4cd2 2848 return NULL;
d2e4a39e 2849
4c4b4cd2 2850 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2851 if (nindices >= 0 && k > nindices)
4c4b4cd2 2852 k = nindices;
d2e4a39e 2853 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2854 {
61ee279c 2855 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2856 k -= 1;
2857 }
14f9c5c9
AS
2858 return p_array_type;
2859 }
78134374 2860 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2861 {
78134374 2862 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2863 {
2864 type = TYPE_TARGET_TYPE (type);
2865 nindices -= 1;
2866 }
14f9c5c9
AS
2867 return type;
2868 }
2869
2870 return NULL;
2871}
2872
4c4b4cd2 2873/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2874 Does not examine memory. Throws an error if N is invalid or TYPE
2875 is not an array type. NAME is the name of the Ada attribute being
2876 evaluated ('range, 'first, 'last, or 'length); it is used in building
2877 the error message. */
14f9c5c9 2878
1eea4ebd
UW
2879static struct type *
2880ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2881{
4c4b4cd2
PH
2882 struct type *result_type;
2883
14f9c5c9
AS
2884 type = desc_base_type (type);
2885
1eea4ebd
UW
2886 if (n < 0 || n > ada_array_arity (type))
2887 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2888
4c4b4cd2 2889 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2890 {
2891 int i;
2892
2893 for (i = 1; i < n; i += 1)
4c4b4cd2 2894 type = TYPE_TARGET_TYPE (type);
262452ec 2895 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2896 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2897 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2898 perhaps stabsread.c would make more sense. */
78134374 2899 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2900 result_type = NULL;
14f9c5c9 2901 }
d2e4a39e 2902 else
1eea4ebd
UW
2903 {
2904 result_type = desc_index_type (desc_bounds_type (type), n);
2905 if (result_type == NULL)
2906 error (_("attempt to take bound of something that is not an array"));
2907 }
2908
2909 return result_type;
14f9c5c9
AS
2910}
2911
2912/* Given that arr is an array type, returns the lower bound of the
2913 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2914 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2915 array-descriptor type. It works for other arrays with bounds supplied
2916 by run-time quantities other than discriminants. */
14f9c5c9 2917
abb68b3e 2918static LONGEST
fb5e3d5c 2919ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2920{
8a48ac95 2921 struct type *type, *index_type_desc, *index_type;
1ce677a4 2922 int i;
262452ec
JK
2923
2924 gdb_assert (which == 0 || which == 1);
14f9c5c9 2925
ad82864c
JB
2926 if (ada_is_constrained_packed_array_type (arr_type))
2927 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2928
4c4b4cd2 2929 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2930 return (LONGEST) - which;
14f9c5c9 2931
78134374 2932 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2933 type = TYPE_TARGET_TYPE (arr_type);
2934 else
2935 type = arr_type;
2936
bafffb51
JB
2937 if (TYPE_FIXED_INSTANCE (type))
2938 {
2939 /* The array has already been fixed, so we do not need to
2940 check the parallel ___XA type again. That encoding has
2941 already been applied, so ignore it now. */
2942 index_type_desc = NULL;
2943 }
2944 else
2945 {
2946 index_type_desc = ada_find_parallel_type (type, "___XA");
2947 ada_fixup_array_indexes_type (index_type_desc);
2948 }
2949
262452ec 2950 if (index_type_desc != NULL)
28c85d6c
JB
2951 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2952 NULL);
262452ec 2953 else
8a48ac95
JB
2954 {
2955 struct type *elt_type = check_typedef (type);
2956
2957 for (i = 1; i < n; i++)
2958 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2959
2960 index_type = TYPE_INDEX_TYPE (elt_type);
2961 }
262452ec 2962
43bbcdc2
PH
2963 return
2964 (LONGEST) (which == 0
2965 ? ada_discrete_type_low_bound (index_type)
2966 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2967}
2968
2969/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2970 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2972 supplied by run-time quantities other than discriminants. */
14f9c5c9 2973
1eea4ebd 2974static LONGEST
4dc81987 2975ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2976{
eb479039
JB
2977 struct type *arr_type;
2978
78134374 2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
14f9c5c9 2982
ad82864c
JB
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2985 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2986 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2987 else
1eea4ebd 2988 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2989}
2990
2991/* Given that arr is an array value, returns the length of the
2992 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2993 supplied by run-time quantities other than discriminants.
2994 Does not work for arrays indexed by enumeration types with representation
2995 clauses at the moment. */
14f9c5c9 2996
1eea4ebd 2997static LONGEST
d2e4a39e 2998ada_array_length (struct value *arr, int n)
14f9c5c9 2999{
aa715135
JG
3000 struct type *arr_type, *index_type;
3001 int low, high;
eb479039 3002
78134374 3003 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3004 arr = value_ind (arr);
3005 arr_type = value_enclosing_type (arr);
14f9c5c9 3006
ad82864c
JB
3007 if (ada_is_constrained_packed_array_type (arr_type))
3008 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3009
4c4b4cd2 3010 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3011 {
3012 low = ada_array_bound_from_type (arr_type, n, 0);
3013 high = ada_array_bound_from_type (arr_type, n, 1);
3014 }
14f9c5c9 3015 else
aa715135
JG
3016 {
3017 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3018 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3019 }
3020
f168693b 3021 arr_type = check_typedef (arr_type);
7150d33c 3022 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3023 if (index_type != NULL)
3024 {
3025 struct type *base_type;
78134374 3026 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3027 base_type = TYPE_TARGET_TYPE (index_type);
3028 else
3029 base_type = index_type;
3030
3031 low = pos_atr (value_from_longest (base_type, low));
3032 high = pos_atr (value_from_longest (base_type, high));
3033 }
3034 return high - low + 1;
4c4b4cd2
PH
3035}
3036
bff8c71f
TT
3037/* An array whose type is that of ARR_TYPE (an array type), with
3038 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3039 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3040
3041static struct value *
bff8c71f 3042empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3043{
b0dd7688 3044 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3045 struct type *index_type
3046 = create_static_range_type
bff8c71f
TT
3047 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3048 high < low ? low - 1 : high);
b0dd7688 3049 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3050
0b5d8877 3051 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3052}
14f9c5c9 3053\f
d2e4a39e 3054
4c4b4cd2 3055 /* Name resolution */
14f9c5c9 3056
4c4b4cd2
PH
3057/* The "decoded" name for the user-definable Ada operator corresponding
3058 to OP. */
14f9c5c9 3059
d2e4a39e 3060static const char *
4c4b4cd2 3061ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3062{
3063 int i;
3064
4c4b4cd2 3065 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3066 {
3067 if (ada_opname_table[i].op == op)
4c4b4cd2 3068 return ada_opname_table[i].decoded;
14f9c5c9 3069 }
323e0a4a 3070 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3071}
3072
de93309a
SM
3073/* Returns true (non-zero) iff decoded name N0 should appear before N1
3074 in a listing of choices during disambiguation (see sort_choices, below).
3075 The idea is that overloadings of a subprogram name from the
3076 same package should sort in their source order. We settle for ordering
3077 such symbols by their trailing number (__N or $N). */
14f9c5c9 3078
de93309a
SM
3079static int
3080encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3081{
de93309a
SM
3082 if (N1 == NULL)
3083 return 0;
3084 else if (N0 == NULL)
3085 return 1;
3086 else
3087 {
3088 int k0, k1;
30b15541 3089
de93309a
SM
3090 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3091 ;
3092 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3093 ;
3094 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3095 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3096 {
3097 int n0, n1;
30b15541 3098
de93309a
SM
3099 n0 = k0;
3100 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3101 n0 -= 1;
3102 n1 = k1;
3103 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3104 n1 -= 1;
3105 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3106 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3107 }
3108 return (strcmp (N0, N1) < 0);
3109 }
14f9c5c9
AS
3110}
3111
de93309a
SM
3112/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3113 encoded names. */
14f9c5c9 3114
de93309a
SM
3115static void
3116sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3117{
14f9c5c9 3118 int i;
14f9c5c9 3119
de93309a 3120 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3121 {
de93309a
SM
3122 struct block_symbol sym = syms[i];
3123 int j;
3124
3125 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3126 {
987012b8
CB
3127 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3128 sym.symbol->linkage_name ()))
de93309a
SM
3129 break;
3130 syms[j + 1] = syms[j];
4c4b4cd2 3131 }
de93309a
SM
3132 syms[j + 1] = sym;
3133 }
3134}
14f9c5c9 3135
de93309a
SM
3136/* Whether GDB should display formals and return types for functions in the
3137 overloads selection menu. */
3138static bool print_signatures = true;
4c4b4cd2 3139
de93309a
SM
3140/* Print the signature for SYM on STREAM according to the FLAGS options. For
3141 all but functions, the signature is just the name of the symbol. For
3142 functions, this is the name of the function, the list of types for formals
3143 and the return type (if any). */
4c4b4cd2 3144
de93309a
SM
3145static void
3146ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3147 const struct type_print_options *flags)
3148{
3149 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3150
987012b8 3151 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3152 if (!print_signatures
3153 || type == NULL
78134374 3154 || type->code () != TYPE_CODE_FUNC)
de93309a 3155 return;
4c4b4cd2 3156
1f704f76 3157 if (type->num_fields () > 0)
de93309a
SM
3158 {
3159 int i;
14f9c5c9 3160
de93309a 3161 fprintf_filtered (stream, " (");
1f704f76 3162 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3163 {
3164 if (i > 0)
3165 fprintf_filtered (stream, "; ");
3166 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3167 flags);
3168 }
3169 fprintf_filtered (stream, ")");
3170 }
3171 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3172 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3173 {
3174 fprintf_filtered (stream, " return ");
3175 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3176 }
3177}
14f9c5c9 3178
de93309a
SM
3179/* Read and validate a set of numeric choices from the user in the
3180 range 0 .. N_CHOICES-1. Place the results in increasing
3181 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3182
de93309a
SM
3183 The user types choices as a sequence of numbers on one line
3184 separated by blanks, encoding them as follows:
14f9c5c9 3185
de93309a
SM
3186 + A choice of 0 means to cancel the selection, throwing an error.
3187 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3188 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3189
de93309a 3190 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3191
de93309a
SM
3192 ANNOTATION_SUFFIX, if present, is used to annotate the input
3193 prompts (for use with the -f switch). */
14f9c5c9 3194
de93309a
SM
3195static int
3196get_selections (int *choices, int n_choices, int max_results,
3197 int is_all_choice, const char *annotation_suffix)
3198{
992a7040 3199 const char *args;
de93309a
SM
3200 const char *prompt;
3201 int n_chosen;
3202 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3203
de93309a
SM
3204 prompt = getenv ("PS2");
3205 if (prompt == NULL)
3206 prompt = "> ";
4c4b4cd2 3207
de93309a 3208 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3209
de93309a
SM
3210 if (args == NULL)
3211 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3212
de93309a 3213 n_chosen = 0;
4c4b4cd2 3214
de93309a
SM
3215 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3216 order, as given in args. Choices are validated. */
3217 while (1)
14f9c5c9 3218 {
de93309a
SM
3219 char *args2;
3220 int choice, j;
76a01679 3221
de93309a
SM
3222 args = skip_spaces (args);
3223 if (*args == '\0' && n_chosen == 0)
3224 error_no_arg (_("one or more choice numbers"));
3225 else if (*args == '\0')
3226 break;
76a01679 3227
de93309a
SM
3228 choice = strtol (args, &args2, 10);
3229 if (args == args2 || choice < 0
3230 || choice > n_choices + first_choice - 1)
3231 error (_("Argument must be choice number"));
3232 args = args2;
76a01679 3233
de93309a
SM
3234 if (choice == 0)
3235 error (_("cancelled"));
76a01679 3236
de93309a
SM
3237 if (choice < first_choice)
3238 {
3239 n_chosen = n_choices;
3240 for (j = 0; j < n_choices; j += 1)
3241 choices[j] = j;
3242 break;
76a01679 3243 }
de93309a 3244 choice -= first_choice;
76a01679 3245
de93309a 3246 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3247 {
76a01679 3248 }
4c4b4cd2 3249
de93309a 3250 if (j < 0 || choice != choices[j])
4c4b4cd2 3251 {
de93309a 3252 int k;
4c4b4cd2 3253
de93309a
SM
3254 for (k = n_chosen - 1; k > j; k -= 1)
3255 choices[k + 1] = choices[k];
3256 choices[j + 1] = choice;
3257 n_chosen += 1;
4c4b4cd2 3258 }
14f9c5c9
AS
3259 }
3260
de93309a
SM
3261 if (n_chosen > max_results)
3262 error (_("Select no more than %d of the above"), max_results);
3263
3264 return n_chosen;
14f9c5c9
AS
3265}
3266
de93309a
SM
3267/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3268 by asking the user (if necessary), returning the number selected,
3269 and setting the first elements of SYMS items. Error if no symbols
3270 selected. */
3271
3272/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3273 to be re-integrated one of these days. */
14f9c5c9
AS
3274
3275static int
de93309a 3276user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3277{
de93309a
SM
3278 int i;
3279 int *chosen = XALLOCAVEC (int , nsyms);
3280 int n_chosen;
3281 int first_choice = (max_results == 1) ? 1 : 2;
3282 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3283
de93309a
SM
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3286 if (nsyms <= 1)
3287 return nsyms;
14f9c5c9 3288
de93309a
SM
3289 if (select_mode == multiple_symbols_cancel)
3290 error (_("\
3291canceled because the command is ambiguous\n\
3292See set/show multiple-symbol."));
14f9c5c9 3293
de93309a
SM
3294 /* If select_mode is "all", then return all possible symbols.
3295 Only do that if more than one symbol can be selected, of course.
3296 Otherwise, display the menu as usual. */
3297 if (select_mode == multiple_symbols_all && max_results > 1)
3298 return nsyms;
14f9c5c9 3299
de93309a
SM
3300 printf_filtered (_("[0] cancel\n"));
3301 if (max_results > 1)
3302 printf_filtered (_("[1] all\n"));
14f9c5c9 3303
de93309a 3304 sort_choices (syms, nsyms);
14f9c5c9 3305
de93309a
SM
3306 for (i = 0; i < nsyms; i += 1)
3307 {
3308 if (syms[i].symbol == NULL)
3309 continue;
14f9c5c9 3310
de93309a
SM
3311 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3312 {
3313 struct symtab_and_line sal =
3314 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3315
de93309a
SM
3316 printf_filtered ("[%d] ", i + first_choice);
3317 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3318 &type_print_raw_options);
3319 if (sal.symtab == NULL)
3320 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3321 metadata_style.style ().ptr (), nullptr, sal.line);
3322 else
3323 printf_filtered
3324 (_(" at %ps:%d\n"),
3325 styled_string (file_name_style.style (),
3326 symtab_to_filename_for_display (sal.symtab)),
3327 sal.line);
3328 continue;
3329 }
76a01679
JB
3330 else
3331 {
de93309a
SM
3332 int is_enumeral =
3333 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3334 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3335 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3336 struct symtab *symtab = NULL;
4c4b4cd2 3337
de93309a
SM
3338 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3339 symtab = symbol_symtab (syms[i].symbol);
3340
3341 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3342 {
3343 printf_filtered ("[%d] ", i + first_choice);
3344 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3345 &type_print_raw_options);
3346 printf_filtered (_(" at %s:%d\n"),
3347 symtab_to_filename_for_display (symtab),
3348 SYMBOL_LINE (syms[i].symbol));
3349 }
3350 else if (is_enumeral
7d93a1e0 3351 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
de93309a
SM
3352 {
3353 printf_filtered (("[%d] "), i + first_choice);
3354 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3355 gdb_stdout, -1, 0, &type_print_raw_options);
3356 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3357 syms[i].symbol->print_name ());
de93309a
SM
3358 }
3359 else
3360 {
3361 printf_filtered ("[%d] ", i + first_choice);
3362 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3363 &type_print_raw_options);
3364
3365 if (symtab != NULL)
3366 printf_filtered (is_enumeral
3367 ? _(" in %s (enumeral)\n")
3368 : _(" at %s:?\n"),
3369 symtab_to_filename_for_display (symtab));
3370 else
3371 printf_filtered (is_enumeral
3372 ? _(" (enumeral)\n")
3373 : _(" at ?\n"));
3374 }
76a01679 3375 }
14f9c5c9 3376 }
14f9c5c9 3377
de93309a
SM
3378 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3379 "overload-choice");
14f9c5c9 3380
de93309a
SM
3381 for (i = 0; i < n_chosen; i += 1)
3382 syms[i] = syms[chosen[i]];
14f9c5c9 3383
de93309a
SM
3384 return n_chosen;
3385}
14f9c5c9 3386
de93309a
SM
3387/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3388 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3389 undefined namespace) and converts operators that are
3390 user-defined into appropriate function calls. If CONTEXT_TYPE is
3391 non-null, it provides a preferred result type [at the moment, only
3392 type void has any effect---causing procedures to be preferred over
3393 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3394 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3395
de93309a
SM
3396static void
3397resolve (expression_up *expp, int void_context_p, int parse_completion,
3398 innermost_block_tracker *tracker)
3399{
3400 struct type *context_type = NULL;
3401 int pc = 0;
14f9c5c9 3402
de93309a
SM
3403 if (void_context_p)
3404 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3405
de93309a
SM
3406 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3407}
4c4b4cd2 3408
de93309a
SM
3409/* Resolve the operator of the subexpression beginning at
3410 position *POS of *EXPP. "Resolving" consists of replacing
3411 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3412 with their resolutions, replacing built-in operators with
3413 function calls to user-defined operators, where appropriate, and,
3414 when DEPROCEDURE_P is non-zero, converting function-valued variables
3415 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3416 are as in ada_resolve, above. */
14f9c5c9 3417
de93309a
SM
3418static struct value *
3419resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3420 struct type *context_type, int parse_completion,
3421 innermost_block_tracker *tracker)
14f9c5c9 3422{
de93309a
SM
3423 int pc = *pos;
3424 int i;
3425 struct expression *exp; /* Convenience: == *expp. */
3426 enum exp_opcode op = (*expp)->elts[pc].opcode;
3427 struct value **argvec; /* Vector of operand types (alloca'ed). */
3428 int nargs; /* Number of operands. */
3429 int oplen;
14f9c5c9 3430
de93309a
SM
3431 argvec = NULL;
3432 nargs = 0;
3433 exp = expp->get ();
4c4b4cd2 3434
de93309a
SM
3435 /* Pass one: resolve operands, saving their types and updating *pos,
3436 if needed. */
3437 switch (op)
3438 {
3439 case OP_FUNCALL:
3440 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3441 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3442 *pos += 7;
3443 else
3444 {
3445 *pos += 3;
3446 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3447 }
de93309a
SM
3448 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3449 break;
14f9c5c9 3450
de93309a
SM
3451 case UNOP_ADDR:
3452 *pos += 1;
3453 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3454 break;
3455
3456 case UNOP_QUAL:
3457 *pos += 3;
3458 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3459 parse_completion, tracker);
3460 break;
3461
3462 case OP_ATR_MODULUS:
3463 case OP_ATR_SIZE:
3464 case OP_ATR_TAG:
3465 case OP_ATR_FIRST:
3466 case OP_ATR_LAST:
3467 case OP_ATR_LENGTH:
3468 case OP_ATR_POS:
3469 case OP_ATR_VAL:
3470 case OP_ATR_MIN:
3471 case OP_ATR_MAX:
3472 case TERNOP_IN_RANGE:
3473 case BINOP_IN_BOUNDS:
3474 case UNOP_IN_RANGE:
3475 case OP_AGGREGATE:
3476 case OP_OTHERS:
3477 case OP_CHOICES:
3478 case OP_POSITIONAL:
3479 case OP_DISCRETE_RANGE:
3480 case OP_NAME:
3481 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3482 *pos += oplen;
3483 break;
3484
3485 case BINOP_ASSIGN:
3486 {
3487 struct value *arg1;
3488
3489 *pos += 1;
3490 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3491 if (arg1 == NULL)
3492 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3493 else
3494 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3495 tracker);
3496 break;
3497 }
3498
3499 case UNOP_CAST:
3500 *pos += 3;
3501 nargs = 1;
3502 break;
3503
3504 case BINOP_ADD:
3505 case BINOP_SUB:
3506 case BINOP_MUL:
3507 case BINOP_DIV:
3508 case BINOP_REM:
3509 case BINOP_MOD:
3510 case BINOP_EXP:
3511 case BINOP_CONCAT:
3512 case BINOP_LOGICAL_AND:
3513 case BINOP_LOGICAL_OR:
3514 case BINOP_BITWISE_AND:
3515 case BINOP_BITWISE_IOR:
3516 case BINOP_BITWISE_XOR:
3517
3518 case BINOP_EQUAL:
3519 case BINOP_NOTEQUAL:
3520 case BINOP_LESS:
3521 case BINOP_GTR:
3522 case BINOP_LEQ:
3523 case BINOP_GEQ:
3524
3525 case BINOP_REPEAT:
3526 case BINOP_SUBSCRIPT:
3527 case BINOP_COMMA:
3528 *pos += 1;
3529 nargs = 2;
3530 break;
3531
3532 case UNOP_NEG:
3533 case UNOP_PLUS:
3534 case UNOP_LOGICAL_NOT:
3535 case UNOP_ABS:
3536 case UNOP_IND:
3537 *pos += 1;
3538 nargs = 1;
3539 break;
3540
3541 case OP_LONG:
3542 case OP_FLOAT:
3543 case OP_VAR_VALUE:
3544 case OP_VAR_MSYM_VALUE:
3545 *pos += 4;
3546 break;
3547
3548 case OP_TYPE:
3549 case OP_BOOL:
3550 case OP_LAST:
3551 case OP_INTERNALVAR:
3552 *pos += 3;
3553 break;
3554
3555 case UNOP_MEMVAL:
3556 *pos += 3;
3557 nargs = 1;
3558 break;
3559
3560 case OP_REGISTER:
3561 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3562 break;
3563
3564 case STRUCTOP_STRUCT:
3565 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3566 nargs = 1;
3567 break;
3568
3569 case TERNOP_SLICE:
3570 *pos += 1;
3571 nargs = 3;
3572 break;
3573
3574 case OP_STRING:
3575 break;
3576
3577 default:
3578 error (_("Unexpected operator during name resolution"));
14f9c5c9 3579 }
14f9c5c9 3580
de93309a
SM
3581 argvec = XALLOCAVEC (struct value *, nargs + 1);
3582 for (i = 0; i < nargs; i += 1)
3583 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3584 tracker);
3585 argvec[i] = NULL;
3586 exp = expp->get ();
4c4b4cd2 3587
de93309a
SM
3588 /* Pass two: perform any resolution on principal operator. */
3589 switch (op)
14f9c5c9 3590 {
de93309a
SM
3591 default:
3592 break;
5b4ee69b 3593
de93309a
SM
3594 case OP_VAR_VALUE:
3595 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3596 {
de93309a
SM
3597 std::vector<struct block_symbol> candidates;
3598 int n_candidates;
5b4ee69b 3599
de93309a 3600 n_candidates =
987012b8 3601 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3602 exp->elts[pc + 1].block, VAR_DOMAIN,
3603 &candidates);
d2e4a39e 3604
de93309a
SM
3605 if (n_candidates > 1)
3606 {
3607 /* Types tend to get re-introduced locally, so if there
3608 are any local symbols that are not types, first filter
3609 out all types. */
3610 int j;
3611 for (j = 0; j < n_candidates; j += 1)
3612 switch (SYMBOL_CLASS (candidates[j].symbol))
3613 {
3614 case LOC_REGISTER:
3615 case LOC_ARG:
3616 case LOC_REF_ARG:
3617 case LOC_REGPARM_ADDR:
3618 case LOC_LOCAL:
3619 case LOC_COMPUTED:
3620 goto FoundNonType;
3621 default:
3622 break;
3623 }
3624 FoundNonType:
3625 if (j < n_candidates)
3626 {
3627 j = 0;
3628 while (j < n_candidates)
3629 {
3630 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3631 {
3632 candidates[j] = candidates[n_candidates - 1];
3633 n_candidates -= 1;
3634 }
3635 else
3636 j += 1;
3637 }
3638 }
3639 }
4c4b4cd2 3640
de93309a
SM
3641 if (n_candidates == 0)
3642 error (_("No definition found for %s"),
987012b8 3643 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3644 else if (n_candidates == 1)
3645 i = 0;
3646 else if (deprocedure_p
3647 && !is_nonfunction (candidates.data (), n_candidates))
3648 {
3649 i = ada_resolve_function
3650 (candidates.data (), n_candidates, NULL, 0,
987012b8 3651 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3652 context_type, parse_completion);
3653 if (i < 0)
3654 error (_("Could not find a match for %s"),
987012b8 3655 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3656 }
3657 else
3658 {
3659 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3660 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3661 user_select_syms (candidates.data (), n_candidates, 1);
3662 i = 0;
3663 }
5b4ee69b 3664
de93309a
SM
3665 exp->elts[pc + 1].block = candidates[i].block;
3666 exp->elts[pc + 2].symbol = candidates[i].symbol;
3667 tracker->update (candidates[i]);
3668 }
14f9c5c9 3669
de93309a 3670 if (deprocedure_p
78134374 3671 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3672 == TYPE_CODE_FUNC))
4c4b4cd2 3673 {
de93309a
SM
3674 replace_operator_with_call (expp, pc, 0, 4,
3675 exp->elts[pc + 2].symbol,
3676 exp->elts[pc + 1].block);
3677 exp = expp->get ();
4c4b4cd2 3678 }
de93309a
SM
3679 break;
3680
3681 case OP_FUNCALL:
3682 {
3683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3685 {
3686 std::vector<struct block_symbol> candidates;
3687 int n_candidates;
3688
3689 n_candidates =
987012b8 3690 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3691 exp->elts[pc + 4].block, VAR_DOMAIN,
3692 &candidates);
14f9c5c9 3693
de93309a
SM
3694 if (n_candidates == 1)
3695 i = 0;
3696 else
3697 {
3698 i = ada_resolve_function
3699 (candidates.data (), n_candidates,
3700 argvec, nargs,
987012b8 3701 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3702 context_type, parse_completion);
3703 if (i < 0)
3704 error (_("Could not find a match for %s"),
987012b8 3705 exp->elts[pc + 5].symbol->print_name ());
de93309a 3706 }
d72413e6 3707
de93309a
SM
3708 exp->elts[pc + 4].block = candidates[i].block;
3709 exp->elts[pc + 5].symbol = candidates[i].symbol;
3710 tracker->update (candidates[i]);
3711 }
3712 }
3713 break;
3714 case BINOP_ADD:
3715 case BINOP_SUB:
3716 case BINOP_MUL:
3717 case BINOP_DIV:
3718 case BINOP_REM:
3719 case BINOP_MOD:
3720 case BINOP_CONCAT:
3721 case BINOP_BITWISE_AND:
3722 case BINOP_BITWISE_IOR:
3723 case BINOP_BITWISE_XOR:
3724 case BINOP_EQUAL:
3725 case BINOP_NOTEQUAL:
3726 case BINOP_LESS:
3727 case BINOP_GTR:
3728 case BINOP_LEQ:
3729 case BINOP_GEQ:
3730 case BINOP_EXP:
3731 case UNOP_NEG:
3732 case UNOP_PLUS:
3733 case UNOP_LOGICAL_NOT:
3734 case UNOP_ABS:
3735 if (possible_user_operator_p (op, argvec))
3736 {
3737 std::vector<struct block_symbol> candidates;
3738 int n_candidates;
d72413e6 3739
de93309a
SM
3740 n_candidates =
3741 ada_lookup_symbol_list (ada_decoded_op_name (op),
3742 NULL, VAR_DOMAIN,
3743 &candidates);
d72413e6 3744
de93309a
SM
3745 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3746 nargs, ada_decoded_op_name (op), NULL,
3747 parse_completion);
3748 if (i < 0)
3749 break;
d72413e6 3750
de93309a
SM
3751 replace_operator_with_call (expp, pc, nargs, 1,
3752 candidates[i].symbol,
3753 candidates[i].block);
3754 exp = expp->get ();
3755 }
3756 break;
d72413e6 3757
de93309a
SM
3758 case OP_TYPE:
3759 case OP_REGISTER:
3760 return NULL;
d72413e6 3761 }
d72413e6 3762
de93309a
SM
3763 *pos = pc;
3764 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3765 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3766 exp->elts[pc + 1].objfile,
3767 exp->elts[pc + 2].msymbol);
3768 else
3769 return evaluate_subexp_type (exp, pos);
3770}
14f9c5c9 3771
de93309a
SM
3772/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3773 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3774 a non-pointer. */
3775/* The term "match" here is rather loose. The match is heuristic and
3776 liberal. */
14f9c5c9 3777
de93309a
SM
3778static int
3779ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3780{
de93309a
SM
3781 ftype = ada_check_typedef (ftype);
3782 atype = ada_check_typedef (atype);
14f9c5c9 3783
78134374 3784 if (ftype->code () == TYPE_CODE_REF)
de93309a 3785 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3786 if (atype->code () == TYPE_CODE_REF)
de93309a 3787 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3788
78134374 3789 switch (ftype->code ())
14f9c5c9 3790 {
de93309a 3791 default:
78134374 3792 return ftype->code () == atype->code ();
de93309a 3793 case TYPE_CODE_PTR:
78134374 3794 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3795 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3796 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3797 else
de93309a
SM
3798 return (may_deref
3799 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3800 case TYPE_CODE_INT:
3801 case TYPE_CODE_ENUM:
3802 case TYPE_CODE_RANGE:
78134374 3803 switch (atype->code ())
4c4b4cd2 3804 {
de93309a
SM
3805 case TYPE_CODE_INT:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_RANGE:
3808 return 1;
3809 default:
3810 return 0;
4c4b4cd2 3811 }
d2e4a39e 3812
de93309a 3813 case TYPE_CODE_ARRAY:
78134374 3814 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3815 || ada_is_array_descriptor_type (atype));
14f9c5c9 3816
de93309a
SM
3817 case TYPE_CODE_STRUCT:
3818 if (ada_is_array_descriptor_type (ftype))
78134374 3819 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3820 || ada_is_array_descriptor_type (atype));
3821 else
78134374 3822 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3823 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3824
de93309a
SM
3825 case TYPE_CODE_UNION:
3826 case TYPE_CODE_FLT:
78134374 3827 return (atype->code () == ftype->code ());
de93309a 3828 }
14f9c5c9
AS
3829}
3830
de93309a
SM
3831/* Return non-zero if the formals of FUNC "sufficiently match" the
3832 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3833 may also be an enumeral, in which case it is treated as a 0-
3834 argument function. */
14f9c5c9 3835
de93309a
SM
3836static int
3837ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3838{
3839 int i;
3840 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3841
de93309a 3842 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3843 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3844 return (n_actuals == 0);
78134374 3845 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3846 return 0;
14f9c5c9 3847
1f704f76 3848 if (func_type->num_fields () != n_actuals)
de93309a 3849 return 0;
14f9c5c9 3850
de93309a
SM
3851 for (i = 0; i < n_actuals; i += 1)
3852 {
3853 if (actuals[i] == NULL)
3854 return 0;
3855 else
3856 {
3857 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3858 i));
3859 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3860
de93309a
SM
3861 if (!ada_type_match (ftype, atype, 1))
3862 return 0;
3863 }
3864 }
3865 return 1;
3866}
d2e4a39e 3867
de93309a
SM
3868/* False iff function type FUNC_TYPE definitely does not produce a value
3869 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3870 FUNC_TYPE is not a valid function type with a non-null return type
3871 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3872
de93309a
SM
3873static int
3874return_match (struct type *func_type, struct type *context_type)
3875{
3876 struct type *return_type;
d2e4a39e 3877
de93309a
SM
3878 if (func_type == NULL)
3879 return 1;
14f9c5c9 3880
78134374 3881 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3882 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3883 else
3884 return_type = get_base_type (func_type);
3885 if (return_type == NULL)
3886 return 1;
76a01679 3887
de93309a 3888 context_type = get_base_type (context_type);
14f9c5c9 3889
78134374 3890 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3891 return context_type == NULL || return_type == context_type;
3892 else if (context_type == NULL)
78134374 3893 return return_type->code () != TYPE_CODE_VOID;
de93309a 3894 else
78134374 3895 return return_type->code () == context_type->code ();
de93309a 3896}
14f9c5c9 3897
14f9c5c9 3898
de93309a
SM
3899/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3900 function (if any) that matches the types of the NARGS arguments in
3901 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3902 that returns that type, then eliminate matches that don't. If
3903 CONTEXT_TYPE is void and there is at least one match that does not
3904 return void, eliminate all matches that do.
14f9c5c9 3905
de93309a
SM
3906 Asks the user if there is more than one match remaining. Returns -1
3907 if there is no such symbol or none is selected. NAME is used
3908 solely for messages. May re-arrange and modify SYMS in
3909 the process; the index returned is for the modified vector. */
14f9c5c9 3910
de93309a
SM
3911static int
3912ada_resolve_function (struct block_symbol syms[],
3913 int nsyms, struct value **args, int nargs,
3914 const char *name, struct type *context_type,
3915 int parse_completion)
3916{
3917 int fallback;
3918 int k;
3919 int m; /* Number of hits */
14f9c5c9 3920
de93309a
SM
3921 m = 0;
3922 /* In the first pass of the loop, we only accept functions matching
3923 context_type. If none are found, we add a second pass of the loop
3924 where every function is accepted. */
3925 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3926 {
3927 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3928 {
de93309a 3929 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3930
de93309a
SM
3931 if (ada_args_match (syms[k].symbol, args, nargs)
3932 && (fallback || return_match (type, context_type)))
3933 {
3934 syms[m] = syms[k];
3935 m += 1;
3936 }
4c4b4cd2 3937 }
14f9c5c9
AS
3938 }
3939
de93309a
SM
3940 /* If we got multiple matches, ask the user which one to use. Don't do this
3941 interactive thing during completion, though, as the purpose of the
3942 completion is providing a list of all possible matches. Prompting the
3943 user to filter it down would be completely unexpected in this case. */
3944 if (m == 0)
3945 return -1;
3946 else if (m > 1 && !parse_completion)
3947 {
3948 printf_filtered (_("Multiple matches for %s\n"), name);
3949 user_select_syms (syms, m, 1);
3950 return 0;
3951 }
3952 return 0;
14f9c5c9
AS
3953}
3954
4c4b4cd2
PH
3955/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3956 on the function identified by SYM and BLOCK, and taking NARGS
3957 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3958
3959static void
e9d9f57e 3960replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 3961 int oplen, struct symbol *sym,
270140bd 3962 const struct block *block)
14f9c5c9
AS
3963{
3964 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3965 symbol, -oplen for operator being replaced). */
d2e4a39e 3966 struct expression *newexp = (struct expression *)
8c1a34e7 3967 xzalloc (sizeof (struct expression)
4c4b4cd2 3968 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 3969 struct expression *exp = expp->get ();
14f9c5c9
AS
3970
3971 newexp->nelts = exp->nelts + 7 - oplen;
3972 newexp->language_defn = exp->language_defn;
3489610d 3973 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3974 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3975 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3976 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3977
3978 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3979 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3980
3981 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3982 newexp->elts[pc + 4].block = block;
3983 newexp->elts[pc + 5].symbol = sym;
3984
e9d9f57e 3985 expp->reset (newexp);
d2e4a39e 3986}
14f9c5c9
AS
3987
3988/* Type-class predicates */
3989
4c4b4cd2
PH
3990/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3991 or FLOAT). */
14f9c5c9
AS
3992
3993static int
d2e4a39e 3994numeric_type_p (struct type *type)
14f9c5c9
AS
3995{
3996 if (type == NULL)
3997 return 0;
d2e4a39e
AS
3998 else
3999 {
78134374 4000 switch (type->code ())
4c4b4cd2
PH
4001 {
4002 case TYPE_CODE_INT:
4003 case TYPE_CODE_FLT:
4004 return 1;
4005 case TYPE_CODE_RANGE:
4006 return (type == TYPE_TARGET_TYPE (type)
4007 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4008 default:
4009 return 0;
4010 }
d2e4a39e 4011 }
14f9c5c9
AS
4012}
4013
4c4b4cd2 4014/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4015
4016static int
d2e4a39e 4017integer_type_p (struct type *type)
14f9c5c9
AS
4018{
4019 if (type == NULL)
4020 return 0;
d2e4a39e
AS
4021 else
4022 {
78134374 4023 switch (type->code ())
4c4b4cd2
PH
4024 {
4025 case TYPE_CODE_INT:
4026 return 1;
4027 case TYPE_CODE_RANGE:
4028 return (type == TYPE_TARGET_TYPE (type)
4029 || integer_type_p (TYPE_TARGET_TYPE (type)));
4030 default:
4031 return 0;
4032 }
d2e4a39e 4033 }
14f9c5c9
AS
4034}
4035
4c4b4cd2 4036/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4037
4038static int
d2e4a39e 4039scalar_type_p (struct type *type)
14f9c5c9
AS
4040{
4041 if (type == NULL)
4042 return 0;
d2e4a39e
AS
4043 else
4044 {
78134374 4045 switch (type->code ())
4c4b4cd2
PH
4046 {
4047 case TYPE_CODE_INT:
4048 case TYPE_CODE_RANGE:
4049 case TYPE_CODE_ENUM:
4050 case TYPE_CODE_FLT:
4051 return 1;
4052 default:
4053 return 0;
4054 }
d2e4a39e 4055 }
14f9c5c9
AS
4056}
4057
4c4b4cd2 4058/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4059
4060static int
d2e4a39e 4061discrete_type_p (struct type *type)
14f9c5c9
AS
4062{
4063 if (type == NULL)
4064 return 0;
d2e4a39e
AS
4065 else
4066 {
78134374 4067 switch (type->code ())
4c4b4cd2
PH
4068 {
4069 case TYPE_CODE_INT:
4070 case TYPE_CODE_RANGE:
4071 case TYPE_CODE_ENUM:
872f0337 4072 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4073 return 1;
4074 default:
4075 return 0;
4076 }
d2e4a39e 4077 }
14f9c5c9
AS
4078}
4079
4c4b4cd2
PH
4080/* Returns non-zero if OP with operands in the vector ARGS could be
4081 a user-defined function. Errs on the side of pre-defined operators
4082 (i.e., result 0). */
14f9c5c9
AS
4083
4084static int
d2e4a39e 4085possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4086{
76a01679 4087 struct type *type0 =
df407dfe 4088 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4089 struct type *type1 =
df407dfe 4090 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4091
4c4b4cd2
PH
4092 if (type0 == NULL)
4093 return 0;
4094
14f9c5c9
AS
4095 switch (op)
4096 {
4097 default:
4098 return 0;
4099
4100 case BINOP_ADD:
4101 case BINOP_SUB:
4102 case BINOP_MUL:
4103 case BINOP_DIV:
d2e4a39e 4104 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4105
4106 case BINOP_REM:
4107 case BINOP_MOD:
4108 case BINOP_BITWISE_AND:
4109 case BINOP_BITWISE_IOR:
4110 case BINOP_BITWISE_XOR:
d2e4a39e 4111 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4112
4113 case BINOP_EQUAL:
4114 case BINOP_NOTEQUAL:
4115 case BINOP_LESS:
4116 case BINOP_GTR:
4117 case BINOP_LEQ:
4118 case BINOP_GEQ:
d2e4a39e 4119 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4120
4121 case BINOP_CONCAT:
ee90b9ab 4122 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4123
4124 case BINOP_EXP:
d2e4a39e 4125 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4126
4127 case UNOP_NEG:
4128 case UNOP_PLUS:
4129 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4130 case UNOP_ABS:
4131 return (!numeric_type_p (type0));
14f9c5c9
AS
4132
4133 }
4134}
4135\f
4c4b4cd2 4136 /* Renaming */
14f9c5c9 4137
aeb5907d
JB
4138/* NOTES:
4139
4140 1. In the following, we assume that a renaming type's name may
4141 have an ___XD suffix. It would be nice if this went away at some
4142 point.
4143 2. We handle both the (old) purely type-based representation of
4144 renamings and the (new) variable-based encoding. At some point,
4145 it is devoutly to be hoped that the former goes away
4146 (FIXME: hilfinger-2007-07-09).
4147 3. Subprogram renamings are not implemented, although the XRS
4148 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4149
4150/* If SYM encodes a renaming,
4151
4152 <renaming> renames <renamed entity>,
4153
4154 sets *LEN to the length of the renamed entity's name,
4155 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4156 the string describing the subcomponent selected from the renamed
0963b4bd 4157 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4158 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4159 are undefined). Otherwise, returns a value indicating the category
4160 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4161 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4162 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4163 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4164 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4165 may be NULL, in which case they are not assigned.
4166
4167 [Currently, however, GCC does not generate subprogram renamings.] */
4168
4169enum ada_renaming_category
4170ada_parse_renaming (struct symbol *sym,
4171 const char **renamed_entity, int *len,
4172 const char **renaming_expr)
4173{
4174 enum ada_renaming_category kind;
4175 const char *info;
4176 const char *suffix;
4177
4178 if (sym == NULL)
4179 return ADA_NOT_RENAMING;
4180 switch (SYMBOL_CLASS (sym))
14f9c5c9 4181 {
aeb5907d
JB
4182 default:
4183 return ADA_NOT_RENAMING;
aeb5907d
JB
4184 case LOC_LOCAL:
4185 case LOC_STATIC:
4186 case LOC_COMPUTED:
4187 case LOC_OPTIMIZED_OUT:
987012b8 4188 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4189 if (info == NULL)
4190 return ADA_NOT_RENAMING;
4191 switch (info[5])
4192 {
4193 case '_':
4194 kind = ADA_OBJECT_RENAMING;
4195 info += 6;
4196 break;
4197 case 'E':
4198 kind = ADA_EXCEPTION_RENAMING;
4199 info += 7;
4200 break;
4201 case 'P':
4202 kind = ADA_PACKAGE_RENAMING;
4203 info += 7;
4204 break;
4205 case 'S':
4206 kind = ADA_SUBPROGRAM_RENAMING;
4207 info += 7;
4208 break;
4209 default:
4210 return ADA_NOT_RENAMING;
4211 }
14f9c5c9 4212 }
4c4b4cd2 4213
de93309a
SM
4214 if (renamed_entity != NULL)
4215 *renamed_entity = info;
4216 suffix = strstr (info, "___XE");
4217 if (suffix == NULL || suffix == info)
4218 return ADA_NOT_RENAMING;
4219 if (len != NULL)
4220 *len = strlen (info) - strlen (suffix);
4221 suffix += 5;
4222 if (renaming_expr != NULL)
4223 *renaming_expr = suffix;
4224 return kind;
4225}
4226
4227/* Compute the value of the given RENAMING_SYM, which is expected to
4228 be a symbol encoding a renaming expression. BLOCK is the block
4229 used to evaluate the renaming. */
4230
4231static struct value *
4232ada_read_renaming_var_value (struct symbol *renaming_sym,
4233 const struct block *block)
4234{
4235 const char *sym_name;
4236
987012b8 4237 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4238 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4239 return evaluate_expression (expr.get ());
4240}
4241\f
4242
4243 /* Evaluation: Function Calls */
4244
4245/* Return an lvalue containing the value VAL. This is the identity on
4246 lvalues, and otherwise has the side-effect of allocating memory
4247 in the inferior where a copy of the value contents is copied. */
4248
4249static struct value *
4250ensure_lval (struct value *val)
4251{
4252 if (VALUE_LVAL (val) == not_lval
4253 || VALUE_LVAL (val) == lval_internalvar)
4254 {
4255 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4256 const CORE_ADDR addr =
4257 value_as_long (value_allocate_space_in_inferior (len));
4258
4259 VALUE_LVAL (val) = lval_memory;
4260 set_value_address (val, addr);
4261 write_memory (addr, value_contents (val), len);
4262 }
4263
4264 return val;
4265}
4266
4267/* Given ARG, a value of type (pointer or reference to a)*
4268 structure/union, extract the component named NAME from the ultimate
4269 target structure/union and return it as a value with its
4270 appropriate type.
4271
4272 The routine searches for NAME among all members of the structure itself
4273 and (recursively) among all members of any wrapper members
4274 (e.g., '_parent').
4275
4276 If NO_ERR, then simply return NULL in case of error, rather than
4277 calling error. */
4278
4279static struct value *
4280ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4281{
4282 struct type *t, *t1;
4283 struct value *v;
4284 int check_tag;
4285
4286 v = NULL;
4287 t1 = t = ada_check_typedef (value_type (arg));
78134374 4288 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4289 {
4290 t1 = TYPE_TARGET_TYPE (t);
4291 if (t1 == NULL)
4292 goto BadValue;
4293 t1 = ada_check_typedef (t1);
78134374 4294 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4295 {
4296 arg = coerce_ref (arg);
4297 t = t1;
4298 }
4299 }
4300
78134374 4301 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4302 {
4303 t1 = TYPE_TARGET_TYPE (t);
4304 if (t1 == NULL)
4305 goto BadValue;
4306 t1 = ada_check_typedef (t1);
78134374 4307 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4308 {
4309 arg = value_ind (arg);
4310 t = t1;
4311 }
4312 else
4313 break;
4314 }
aeb5907d 4315
78134374 4316 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4317 goto BadValue;
52ce6436 4318
de93309a
SM
4319 if (t1 == t)
4320 v = ada_search_struct_field (name, arg, 0, t);
4321 else
4322 {
4323 int bit_offset, bit_size, byte_offset;
4324 struct type *field_type;
4325 CORE_ADDR address;
a5ee536b 4326
78134374 4327 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4328 address = value_address (ada_value_ind (arg));
4329 else
4330 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4331
de93309a
SM
4332 /* Check to see if this is a tagged type. We also need to handle
4333 the case where the type is a reference to a tagged type, but
4334 we have to be careful to exclude pointers to tagged types.
4335 The latter should be shown as usual (as a pointer), whereas
4336 a reference should mostly be transparent to the user. */
14f9c5c9 4337
de93309a 4338 if (ada_is_tagged_type (t1, 0)
78134374 4339 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4340 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4341 {
4342 /* We first try to find the searched field in the current type.
4343 If not found then let's look in the fixed type. */
14f9c5c9 4344
de93309a
SM
4345 if (!find_struct_field (name, t1, 0,
4346 &field_type, &byte_offset, &bit_offset,
4347 &bit_size, NULL))
4348 check_tag = 1;
4349 else
4350 check_tag = 0;
4351 }
4352 else
4353 check_tag = 0;
c3e5cd34 4354
de93309a
SM
4355 /* Convert to fixed type in all cases, so that we have proper
4356 offsets to each field in unconstrained record types. */
4357 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4358 address, NULL, check_tag);
4359
4360 if (find_struct_field (name, t1, 0,
4361 &field_type, &byte_offset, &bit_offset,
4362 &bit_size, NULL))
4363 {
4364 if (bit_size != 0)
4365 {
78134374 4366 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4367 arg = ada_coerce_ref (arg);
4368 else
4369 arg = ada_value_ind (arg);
4370 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4371 bit_offset, bit_size,
4372 field_type);
4373 }
4374 else
4375 v = value_at_lazy (field_type, address + byte_offset);
4376 }
c3e5cd34 4377 }
14f9c5c9 4378
de93309a
SM
4379 if (v != NULL || no_err)
4380 return v;
4381 else
4382 error (_("There is no member named %s."), name);
4383
4384 BadValue:
4385 if (no_err)
4386 return NULL;
4387 else
4388 error (_("Attempt to extract a component of "
4389 "a value that is not a record."));
14f9c5c9
AS
4390}
4391
4392/* Return the value ACTUAL, converted to be an appropriate value for a
4393 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4394 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4395 values not residing in memory, updating it as needed. */
14f9c5c9 4396
a93c0eb6 4397struct value *
40bc484c 4398ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4399{
df407dfe 4400 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4401 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4402 struct type *formal_target =
78134374 4403 formal_type->code () == TYPE_CODE_PTR
61ee279c 4404 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4405 struct type *actual_target =
78134374 4406 actual_type->code () == TYPE_CODE_PTR
61ee279c 4407 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4408
4c4b4cd2 4409 if (ada_is_array_descriptor_type (formal_target)
78134374 4410 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4411 return make_array_descriptor (formal_type, actual);
78134374
SM
4412 else if (formal_type->code () == TYPE_CODE_PTR
4413 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4414 {
a84a8a0d 4415 struct value *result;
5b4ee69b 4416
78134374 4417 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4418 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4419 result = desc_data (actual);
78134374 4420 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4421 {
4422 if (VALUE_LVAL (actual) != lval_memory)
4423 {
4424 struct value *val;
5b4ee69b 4425
df407dfe 4426 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4427 val = allocate_value (actual_type);
990a07ab 4428 memcpy ((char *) value_contents_raw (val),
0fd88904 4429 (char *) value_contents (actual),
4c4b4cd2 4430 TYPE_LENGTH (actual_type));
40bc484c 4431 actual = ensure_lval (val);
4c4b4cd2 4432 }
a84a8a0d 4433 result = value_addr (actual);
4c4b4cd2 4434 }
a84a8a0d
JB
4435 else
4436 return actual;
b1af9e97 4437 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4438 }
78134374 4439 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4440 return ada_value_ind (actual);
8344af1e
JB
4441 else if (ada_is_aligner_type (formal_type))
4442 {
4443 /* We need to turn this parameter into an aligner type
4444 as well. */
4445 struct value *aligner = allocate_value (formal_type);
4446 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4447
4448 value_assign_to_component (aligner, component, actual);
4449 return aligner;
4450 }
14f9c5c9
AS
4451
4452 return actual;
4453}
4454
438c98a1
JB
4455/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4456 type TYPE. This is usually an inefficient no-op except on some targets
4457 (such as AVR) where the representation of a pointer and an address
4458 differs. */
4459
4460static CORE_ADDR
4461value_pointer (struct value *value, struct type *type)
4462{
4463 struct gdbarch *gdbarch = get_type_arch (type);
4464 unsigned len = TYPE_LENGTH (type);
224c3ddb 4465 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4466 CORE_ADDR addr;
4467
4468 addr = value_address (value);
4469 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4470 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4471 return addr;
4472}
4473
14f9c5c9 4474
4c4b4cd2
PH
4475/* Push a descriptor of type TYPE for array value ARR on the stack at
4476 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4477 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4478 to-descriptor type rather than a descriptor type), a struct value *
4479 representing a pointer to this descriptor. */
14f9c5c9 4480
d2e4a39e 4481static struct value *
40bc484c 4482make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4483{
d2e4a39e
AS
4484 struct type *bounds_type = desc_bounds_type (type);
4485 struct type *desc_type = desc_base_type (type);
4486 struct value *descriptor = allocate_value (desc_type);
4487 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4488 int i;
d2e4a39e 4489
0963b4bd
MS
4490 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4491 i > 0; i -= 1)
14f9c5c9 4492 {
19f220c3
JK
4493 modify_field (value_type (bounds), value_contents_writeable (bounds),
4494 ada_array_bound (arr, i, 0),
4495 desc_bound_bitpos (bounds_type, i, 0),
4496 desc_bound_bitsize (bounds_type, i, 0));
4497 modify_field (value_type (bounds), value_contents_writeable (bounds),
4498 ada_array_bound (arr, i, 1),
4499 desc_bound_bitpos (bounds_type, i, 1),
4500 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4501 }
d2e4a39e 4502
40bc484c 4503 bounds = ensure_lval (bounds);
d2e4a39e 4504
19f220c3
JK
4505 modify_field (value_type (descriptor),
4506 value_contents_writeable (descriptor),
4507 value_pointer (ensure_lval (arr),
4508 TYPE_FIELD_TYPE (desc_type, 0)),
4509 fat_pntr_data_bitpos (desc_type),
4510 fat_pntr_data_bitsize (desc_type));
4511
4512 modify_field (value_type (descriptor),
4513 value_contents_writeable (descriptor),
4514 value_pointer (bounds,
4515 TYPE_FIELD_TYPE (desc_type, 1)),
4516 fat_pntr_bounds_bitpos (desc_type),
4517 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4518
40bc484c 4519 descriptor = ensure_lval (descriptor);
14f9c5c9 4520
78134374 4521 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4522 return value_addr (descriptor);
4523 else
4524 return descriptor;
4525}
14f9c5c9 4526\f
3d9434b5
JB
4527 /* Symbol Cache Module */
4528
3d9434b5 4529/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4530 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4531 on the type of entity being printed, the cache can make it as much
4532 as an order of magnitude faster than without it.
4533
4534 The descriptive type DWARF extension has significantly reduced
4535 the need for this cache, at least when DWARF is being used. However,
4536 even in this case, some expensive name-based symbol searches are still
4537 sometimes necessary - to find an XVZ variable, mostly. */
4538
ee01b665 4539/* Initialize the contents of SYM_CACHE. */
3d9434b5 4540
ee01b665
JB
4541static void
4542ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4543{
4544 obstack_init (&sym_cache->cache_space);
4545 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4546}
3d9434b5 4547
ee01b665
JB
4548/* Free the memory used by SYM_CACHE. */
4549
4550static void
4551ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4552{
ee01b665
JB
4553 obstack_free (&sym_cache->cache_space, NULL);
4554 xfree (sym_cache);
4555}
3d9434b5 4556
ee01b665
JB
4557/* Return the symbol cache associated to the given program space PSPACE.
4558 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4559
ee01b665
JB
4560static struct ada_symbol_cache *
4561ada_get_symbol_cache (struct program_space *pspace)
4562{
4563 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4564
66c168ae 4565 if (pspace_data->sym_cache == NULL)
ee01b665 4566 {
66c168ae
JB
4567 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4568 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4569 }
4570
66c168ae 4571 return pspace_data->sym_cache;
ee01b665 4572}
3d9434b5
JB
4573
4574/* Clear all entries from the symbol cache. */
4575
4576static void
4577ada_clear_symbol_cache (void)
4578{
ee01b665
JB
4579 struct ada_symbol_cache *sym_cache
4580 = ada_get_symbol_cache (current_program_space);
4581
4582 obstack_free (&sym_cache->cache_space, NULL);
4583 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4584}
4585
fe978cb0 4586/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4587 Return it if found, or NULL otherwise. */
4588
4589static struct cache_entry **
fe978cb0 4590find_entry (const char *name, domain_enum domain)
3d9434b5 4591{
ee01b665
JB
4592 struct ada_symbol_cache *sym_cache
4593 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4594 int h = msymbol_hash (name) % HASH_SIZE;
4595 struct cache_entry **e;
4596
ee01b665 4597 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4598 {
fe978cb0 4599 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4600 return e;
4601 }
4602 return NULL;
4603}
4604
fe978cb0 4605/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4606 Return 1 if found, 0 otherwise.
4607
4608 If an entry was found and SYM is not NULL, set *SYM to the entry's
4609 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4610
96d887e8 4611static int
fe978cb0 4612lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4613 struct symbol **sym, const struct block **block)
96d887e8 4614{
fe978cb0 4615 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4616
4617 if (e == NULL)
4618 return 0;
4619 if (sym != NULL)
4620 *sym = (*e)->sym;
4621 if (block != NULL)
4622 *block = (*e)->block;
4623 return 1;
96d887e8
PH
4624}
4625
3d9434b5 4626/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4627 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4628
96d887e8 4629static void
fe978cb0 4630cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4631 const struct block *block)
96d887e8 4632{
ee01b665
JB
4633 struct ada_symbol_cache *sym_cache
4634 = ada_get_symbol_cache (current_program_space);
3d9434b5 4635 int h;
3d9434b5
JB
4636 struct cache_entry *e;
4637
1994afbf
DE
4638 /* Symbols for builtin types don't have a block.
4639 For now don't cache such symbols. */
4640 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4641 return;
4642
3d9434b5
JB
4643 /* If the symbol is a local symbol, then do not cache it, as a search
4644 for that symbol depends on the context. To determine whether
4645 the symbol is local or not, we check the block where we found it
4646 against the global and static blocks of its associated symtab. */
4647 if (sym
08be3fe3 4648 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4649 GLOBAL_BLOCK) != block
08be3fe3 4650 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4651 STATIC_BLOCK) != block)
3d9434b5
JB
4652 return;
4653
4654 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4655 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4656 e->next = sym_cache->root[h];
4657 sym_cache->root[h] = e;
2ef5453b 4658 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4659 e->sym = sym;
fe978cb0 4660 e->domain = domain;
3d9434b5 4661 e->block = block;
96d887e8 4662}
4c4b4cd2
PH
4663\f
4664 /* Symbol Lookup */
4665
b5ec771e
PA
4666/* Return the symbol name match type that should be used used when
4667 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4668
4669 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4670 for Ada lookups. */
c0431670 4671
b5ec771e
PA
4672static symbol_name_match_type
4673name_match_type_from_name (const char *lookup_name)
c0431670 4674{
b5ec771e
PA
4675 return (strstr (lookup_name, "__") == NULL
4676 ? symbol_name_match_type::WILD
4677 : symbol_name_match_type::FULL);
c0431670
JB
4678}
4679
4c4b4cd2
PH
4680/* Return the result of a standard (literal, C-like) lookup of NAME in
4681 given DOMAIN, visible from lexical block BLOCK. */
4682
4683static struct symbol *
4684standard_lookup (const char *name, const struct block *block,
4685 domain_enum domain)
4686{
acbd605d 4687 /* Initialize it just to avoid a GCC false warning. */
6640a367 4688 struct block_symbol sym = {};
4c4b4cd2 4689
d12307c1
PMR
4690 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4691 return sym.symbol;
a2cd4f14 4692 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4693 cache_symbol (name, domain, sym.symbol, sym.block);
4694 return sym.symbol;
4c4b4cd2
PH
4695}
4696
4697
4698/* Non-zero iff there is at least one non-function/non-enumeral symbol
4699 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4700 since they contend in overloading in the same way. */
4701static int
d12307c1 4702is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4703{
4704 int i;
4705
4706 for (i = 0; i < n; i += 1)
78134374
SM
4707 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4708 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4709 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4710 return 1;
4711
4712 return 0;
4713}
4714
4715/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4716 struct types. Otherwise, they may not. */
14f9c5c9
AS
4717
4718static int
d2e4a39e 4719equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4720{
d2e4a39e 4721 if (type0 == type1)
14f9c5c9 4722 return 1;
d2e4a39e 4723 if (type0 == NULL || type1 == NULL
78134374 4724 || type0->code () != type1->code ())
14f9c5c9 4725 return 0;
78134374
SM
4726 if ((type0->code () == TYPE_CODE_STRUCT
4727 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4728 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4729 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4730 return 1;
d2e4a39e 4731
14f9c5c9
AS
4732 return 0;
4733}
4734
4735/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4736 no more defined than that of SYM1. */
14f9c5c9
AS
4737
4738static int
d2e4a39e 4739lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4740{
4741 if (sym0 == sym1)
4742 return 1;
176620f1 4743 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4744 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4745 return 0;
4746
d2e4a39e 4747 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4748 {
4749 case LOC_UNDEF:
4750 return 1;
4751 case LOC_TYPEDEF:
4752 {
4c4b4cd2
PH
4753 struct type *type0 = SYMBOL_TYPE (sym0);
4754 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4755 const char *name0 = sym0->linkage_name ();
4756 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4757 int len0 = strlen (name0);
5b4ee69b 4758
4c4b4cd2 4759 return
78134374 4760 type0->code () == type1->code ()
4c4b4cd2
PH
4761 && (equiv_types (type0, type1)
4762 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4763 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4764 }
4765 case LOC_CONST:
4766 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4767 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4768
4769 case LOC_STATIC:
4770 {
987012b8
CB
4771 const char *name0 = sym0->linkage_name ();
4772 const char *name1 = sym1->linkage_name ();
4b610737
TT
4773 return (strcmp (name0, name1) == 0
4774 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4775 }
4776
d2e4a39e
AS
4777 default:
4778 return 0;
14f9c5c9
AS
4779 }
4780}
4781
d12307c1 4782/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4783 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4784
4785static void
76a01679
JB
4786add_defn_to_vec (struct obstack *obstackp,
4787 struct symbol *sym,
f0c5f9b2 4788 const struct block *block)
14f9c5c9
AS
4789{
4790 int i;
d12307c1 4791 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4792
529cad9c
PH
4793 /* Do not try to complete stub types, as the debugger is probably
4794 already scanning all symbols matching a certain name at the
4795 time when this function is called. Trying to replace the stub
4796 type by its associated full type will cause us to restart a scan
4797 which may lead to an infinite recursion. Instead, the client
4798 collecting the matching symbols will end up collecting several
4799 matches, with at least one of them complete. It can then filter
4800 out the stub ones if needed. */
4801
4c4b4cd2
PH
4802 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4803 {
d12307c1 4804 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4805 return;
d12307c1 4806 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4807 {
d12307c1 4808 prevDefns[i].symbol = sym;
4c4b4cd2 4809 prevDefns[i].block = block;
4c4b4cd2 4810 return;
76a01679 4811 }
4c4b4cd2
PH
4812 }
4813
4814 {
d12307c1 4815 struct block_symbol info;
4c4b4cd2 4816
d12307c1 4817 info.symbol = sym;
4c4b4cd2 4818 info.block = block;
d12307c1 4819 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4820 }
4821}
4822
d12307c1
PMR
4823/* Number of block_symbol structures currently collected in current vector in
4824 OBSTACKP. */
4c4b4cd2 4825
76a01679
JB
4826static int
4827num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4828{
d12307c1 4829 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4830}
4831
d12307c1
PMR
4832/* Vector of block_symbol structures currently collected in current vector in
4833 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4834
d12307c1 4835static struct block_symbol *
4c4b4cd2
PH
4836defns_collected (struct obstack *obstackp, int finish)
4837{
4838 if (finish)
224c3ddb 4839 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4840 else
d12307c1 4841 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4842}
4843
7c7b6655
TT
4844/* Return a bound minimal symbol matching NAME according to Ada
4845 decoding rules. Returns an invalid symbol if there is no such
4846 minimal symbol. Names prefixed with "standard__" are handled
4847 specially: "standard__" is first stripped off, and only static and
4848 global symbols are searched. */
4c4b4cd2 4849
7c7b6655 4850struct bound_minimal_symbol
96d887e8 4851ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4852{
7c7b6655 4853 struct bound_minimal_symbol result;
4c4b4cd2 4854
7c7b6655
TT
4855 memset (&result, 0, sizeof (result));
4856
b5ec771e
PA
4857 symbol_name_match_type match_type = name_match_type_from_name (name);
4858 lookup_name_info lookup_name (name, match_type);
4859
4860 symbol_name_matcher_ftype *match_name
4861 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4862
2030c079 4863 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4864 {
7932255d 4865 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4866 {
c9d95fa3 4867 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4868 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4869 {
4870 result.minsym = msymbol;
4871 result.objfile = objfile;
4872 break;
4873 }
4874 }
4875 }
4c4b4cd2 4876
7c7b6655 4877 return result;
96d887e8 4878}
4c4b4cd2 4879
96d887e8
PH
4880/* For all subprograms that statically enclose the subprogram of the
4881 selected frame, add symbols matching identifier NAME in DOMAIN
4882 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4883 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4884 with a wildcard prefix. */
4c4b4cd2 4885
96d887e8
PH
4886static void
4887add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4888 const lookup_name_info &lookup_name,
4889 domain_enum domain)
96d887e8 4890{
96d887e8 4891}
14f9c5c9 4892
96d887e8
PH
4893/* True if TYPE is definitely an artificial type supplied to a symbol
4894 for which no debugging information was given in the symbol file. */
14f9c5c9 4895
96d887e8
PH
4896static int
4897is_nondebugging_type (struct type *type)
4898{
0d5cff50 4899 const char *name = ada_type_name (type);
5b4ee69b 4900
96d887e8
PH
4901 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4902}
4c4b4cd2 4903
8f17729f
JB
4904/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4905 that are deemed "identical" for practical purposes.
4906
4907 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4908 types and that their number of enumerals is identical (in other
1f704f76 4909 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4910
4911static int
4912ada_identical_enum_types_p (struct type *type1, struct type *type2)
4913{
4914 int i;
4915
4916 /* The heuristic we use here is fairly conservative. We consider
4917 that 2 enumerate types are identical if they have the same
4918 number of enumerals and that all enumerals have the same
4919 underlying value and name. */
4920
4921 /* All enums in the type should have an identical underlying value. */
1f704f76 4922 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4923 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4924 return 0;
4925
4926 /* All enumerals should also have the same name (modulo any numerical
4927 suffix). */
1f704f76 4928 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4929 {
0d5cff50
DE
4930 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4931 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4932 int len_1 = strlen (name_1);
4933 int len_2 = strlen (name_2);
4934
4935 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4936 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4937 if (len_1 != len_2
4938 || strncmp (TYPE_FIELD_NAME (type1, i),
4939 TYPE_FIELD_NAME (type2, i),
4940 len_1) != 0)
4941 return 0;
4942 }
4943
4944 return 1;
4945}
4946
4947/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4948 that are deemed "identical" for practical purposes. Sometimes,
4949 enumerals are not strictly identical, but their types are so similar
4950 that they can be considered identical.
4951
4952 For instance, consider the following code:
4953
4954 type Color is (Black, Red, Green, Blue, White);
4955 type RGB_Color is new Color range Red .. Blue;
4956
4957 Type RGB_Color is a subrange of an implicit type which is a copy
4958 of type Color. If we call that implicit type RGB_ColorB ("B" is
4959 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4960 As a result, when an expression references any of the enumeral
4961 by name (Eg. "print green"), the expression is technically
4962 ambiguous and the user should be asked to disambiguate. But
4963 doing so would only hinder the user, since it wouldn't matter
4964 what choice he makes, the outcome would always be the same.
4965 So, for practical purposes, we consider them as the same. */
4966
4967static int
54d343a2 4968symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4969{
4970 int i;
4971
4972 /* Before performing a thorough comparison check of each type,
4973 we perform a series of inexpensive checks. We expect that these
4974 checks will quickly fail in the vast majority of cases, and thus
4975 help prevent the unnecessary use of a more expensive comparison.
4976 Said comparison also expects us to make some of these checks
4977 (see ada_identical_enum_types_p). */
4978
4979 /* Quick check: All symbols should have an enum type. */
54d343a2 4980 for (i = 0; i < syms.size (); i++)
78134374 4981 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4982 return 0;
4983
4984 /* Quick check: They should all have the same value. */
54d343a2 4985 for (i = 1; i < syms.size (); i++)
d12307c1 4986 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4987 return 0;
4988
4989 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4990 for (i = 1; i < syms.size (); i++)
1f704f76
SM
4991 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4992 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4993 return 0;
4994
4995 /* All the sanity checks passed, so we might have a set of
4996 identical enumeration types. Perform a more complete
4997 comparison of the type of each symbol. */
54d343a2 4998 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4999 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5000 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5001 return 0;
5002
5003 return 1;
5004}
5005
54d343a2 5006/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5007 duplicate other symbols in the list (The only case I know of where
5008 this happens is when object files containing stabs-in-ecoff are
5009 linked with files containing ordinary ecoff debugging symbols (or no
5010 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5011 Returns the number of items in the modified list. */
4c4b4cd2 5012
96d887e8 5013static int
54d343a2 5014remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5015{
5016 int i, j;
4c4b4cd2 5017
8f17729f
JB
5018 /* We should never be called with less than 2 symbols, as there
5019 cannot be any extra symbol in that case. But it's easy to
5020 handle, since we have nothing to do in that case. */
54d343a2
TT
5021 if (syms->size () < 2)
5022 return syms->size ();
8f17729f 5023
96d887e8 5024 i = 0;
54d343a2 5025 while (i < syms->size ())
96d887e8 5026 {
a35ddb44 5027 int remove_p = 0;
339c13b6
JB
5028
5029 /* If two symbols have the same name and one of them is a stub type,
5030 the get rid of the stub. */
5031
54d343a2 5032 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5033 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5034 {
54d343a2 5035 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5036 {
5037 if (j != i
54d343a2 5038 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5039 && (*syms)[j].symbol->linkage_name () != NULL
5040 && strcmp ((*syms)[i].symbol->linkage_name (),
5041 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5042 remove_p = 1;
339c13b6
JB
5043 }
5044 }
5045
5046 /* Two symbols with the same name, same class and same address
5047 should be identical. */
5048
987012b8 5049 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5050 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5051 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5052 {
54d343a2 5053 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5054 {
5055 if (i != j
987012b8
CB
5056 && (*syms)[j].symbol->linkage_name () != NULL
5057 && strcmp ((*syms)[i].symbol->linkage_name (),
5058 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5059 && SYMBOL_CLASS ((*syms)[i].symbol)
5060 == SYMBOL_CLASS ((*syms)[j].symbol)
5061 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5062 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5063 remove_p = 1;
4c4b4cd2 5064 }
4c4b4cd2 5065 }
339c13b6 5066
a35ddb44 5067 if (remove_p)
54d343a2 5068 syms->erase (syms->begin () + i);
339c13b6 5069
96d887e8 5070 i += 1;
14f9c5c9 5071 }
8f17729f
JB
5072
5073 /* If all the remaining symbols are identical enumerals, then
5074 just keep the first one and discard the rest.
5075
5076 Unlike what we did previously, we do not discard any entry
5077 unless they are ALL identical. This is because the symbol
5078 comparison is not a strict comparison, but rather a practical
5079 comparison. If all symbols are considered identical, then
5080 we can just go ahead and use the first one and discard the rest.
5081 But if we cannot reduce the list to a single element, we have
5082 to ask the user to disambiguate anyways. And if we have to
5083 present a multiple-choice menu, it's less confusing if the list
5084 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5085 if (symbols_are_identical_enums (*syms))
5086 syms->resize (1);
8f17729f 5087
54d343a2 5088 return syms->size ();
14f9c5c9
AS
5089}
5090
96d887e8
PH
5091/* Given a type that corresponds to a renaming entity, use the type name
5092 to extract the scope (package name or function name, fully qualified,
5093 and following the GNAT encoding convention) where this renaming has been
49d83361 5094 defined. */
4c4b4cd2 5095
49d83361 5096static std::string
96d887e8 5097xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5098{
96d887e8 5099 /* The renaming types adhere to the following convention:
0963b4bd 5100 <scope>__<rename>___<XR extension>.
96d887e8
PH
5101 So, to extract the scope, we search for the "___XR" extension,
5102 and then backtrack until we find the first "__". */
76a01679 5103
7d93a1e0 5104 const char *name = renaming_type->name ();
108d56a4
SM
5105 const char *suffix = strstr (name, "___XR");
5106 const char *last;
14f9c5c9 5107
96d887e8
PH
5108 /* Now, backtrack a bit until we find the first "__". Start looking
5109 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5110
96d887e8
PH
5111 for (last = suffix - 3; last > name; last--)
5112 if (last[0] == '_' && last[1] == '_')
5113 break;
76a01679 5114
96d887e8 5115 /* Make a copy of scope and return it. */
49d83361 5116 return std::string (name, last);
4c4b4cd2
PH
5117}
5118
96d887e8 5119/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5120
96d887e8
PH
5121static int
5122is_package_name (const char *name)
4c4b4cd2 5123{
96d887e8
PH
5124 /* Here, We take advantage of the fact that no symbols are generated
5125 for packages, while symbols are generated for each function.
5126 So the condition for NAME represent a package becomes equivalent
5127 to NAME not existing in our list of symbols. There is only one
5128 small complication with library-level functions (see below). */
4c4b4cd2 5129
96d887e8
PH
5130 /* If it is a function that has not been defined at library level,
5131 then we should be able to look it up in the symbols. */
5132 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5133 return 0;
14f9c5c9 5134
96d887e8
PH
5135 /* Library-level function names start with "_ada_". See if function
5136 "_ada_" followed by NAME can be found. */
14f9c5c9 5137
96d887e8 5138 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5139 functions names cannot contain "__" in them. */
96d887e8
PH
5140 if (strstr (name, "__") != NULL)
5141 return 0;
4c4b4cd2 5142
528e1572 5143 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5144
528e1572 5145 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5146}
14f9c5c9 5147
96d887e8 5148/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5149 not visible from FUNCTION_NAME. */
14f9c5c9 5150
96d887e8 5151static int
0d5cff50 5152old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5153{
aeb5907d
JB
5154 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5155 return 0;
5156
49d83361 5157 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5158
96d887e8 5159 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5160 if (is_package_name (scope.c_str ()))
5161 return 0;
14f9c5c9 5162
96d887e8
PH
5163 /* Check that the rename is in the current function scope by checking
5164 that its name starts with SCOPE. */
76a01679 5165
96d887e8
PH
5166 /* If the function name starts with "_ada_", it means that it is
5167 a library-level function. Strip this prefix before doing the
5168 comparison, as the encoding for the renaming does not contain
5169 this prefix. */
61012eef 5170 if (startswith (function_name, "_ada_"))
96d887e8 5171 function_name += 5;
f26caa11 5172
49d83361 5173 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5174}
5175
aeb5907d
JB
5176/* Remove entries from SYMS that corresponds to a renaming entity that
5177 is not visible from the function associated with CURRENT_BLOCK or
5178 that is superfluous due to the presence of more specific renaming
5179 information. Places surviving symbols in the initial entries of
5180 SYMS and returns the number of surviving symbols.
96d887e8
PH
5181
5182 Rationale:
aeb5907d
JB
5183 First, in cases where an object renaming is implemented as a
5184 reference variable, GNAT may produce both the actual reference
5185 variable and the renaming encoding. In this case, we discard the
5186 latter.
5187
5188 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5189 entity. Unfortunately, STABS currently does not support the definition
5190 of types that are local to a given lexical block, so all renamings types
5191 are emitted at library level. As a consequence, if an application
5192 contains two renaming entities using the same name, and a user tries to
5193 print the value of one of these entities, the result of the ada symbol
5194 lookup will also contain the wrong renaming type.
f26caa11 5195
96d887e8
PH
5196 This function partially covers for this limitation by attempting to
5197 remove from the SYMS list renaming symbols that should be visible
5198 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5199 method with the current information available. The implementation
5200 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5201
5202 - When the user tries to print a rename in a function while there
5203 is another rename entity defined in a package: Normally, the
5204 rename in the function has precedence over the rename in the
5205 package, so the latter should be removed from the list. This is
5206 currently not the case.
5207
5208 - This function will incorrectly remove valid renames if
5209 the CURRENT_BLOCK corresponds to a function which symbol name
5210 has been changed by an "Export" pragma. As a consequence,
5211 the user will be unable to print such rename entities. */
4c4b4cd2 5212
14f9c5c9 5213static int
54d343a2
TT
5214remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5215 const struct block *current_block)
4c4b4cd2
PH
5216{
5217 struct symbol *current_function;
0d5cff50 5218 const char *current_function_name;
4c4b4cd2 5219 int i;
aeb5907d
JB
5220 int is_new_style_renaming;
5221
5222 /* If there is both a renaming foo___XR... encoded as a variable and
5223 a simple variable foo in the same block, discard the latter.
0963b4bd 5224 First, zero out such symbols, then compress. */
aeb5907d 5225 is_new_style_renaming = 0;
54d343a2 5226 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5227 {
54d343a2
TT
5228 struct symbol *sym = (*syms)[i].symbol;
5229 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5230 const char *name;
5231 const char *suffix;
5232
5233 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5234 continue;
987012b8 5235 name = sym->linkage_name ();
aeb5907d
JB
5236 suffix = strstr (name, "___XR");
5237
5238 if (suffix != NULL)
5239 {
5240 int name_len = suffix - name;
5241 int j;
5b4ee69b 5242
aeb5907d 5243 is_new_style_renaming = 1;
54d343a2
TT
5244 for (j = 0; j < syms->size (); j += 1)
5245 if (i != j && (*syms)[j].symbol != NULL
987012b8 5246 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5247 name_len) == 0
54d343a2
TT
5248 && block == (*syms)[j].block)
5249 (*syms)[j].symbol = NULL;
aeb5907d
JB
5250 }
5251 }
5252 if (is_new_style_renaming)
5253 {
5254 int j, k;
5255
54d343a2
TT
5256 for (j = k = 0; j < syms->size (); j += 1)
5257 if ((*syms)[j].symbol != NULL)
aeb5907d 5258 {
54d343a2 5259 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5260 k += 1;
5261 }
5262 return k;
5263 }
4c4b4cd2
PH
5264
5265 /* Extract the function name associated to CURRENT_BLOCK.
5266 Abort if unable to do so. */
76a01679 5267
4c4b4cd2 5268 if (current_block == NULL)
54d343a2 5269 return syms->size ();
76a01679 5270
7f0df278 5271 current_function = block_linkage_function (current_block);
4c4b4cd2 5272 if (current_function == NULL)
54d343a2 5273 return syms->size ();
4c4b4cd2 5274
987012b8 5275 current_function_name = current_function->linkage_name ();
4c4b4cd2 5276 if (current_function_name == NULL)
54d343a2 5277 return syms->size ();
4c4b4cd2
PH
5278
5279 /* Check each of the symbols, and remove it from the list if it is
5280 a type corresponding to a renaming that is out of the scope of
5281 the current block. */
5282
5283 i = 0;
54d343a2 5284 while (i < syms->size ())
4c4b4cd2 5285 {
54d343a2 5286 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5287 == ADA_OBJECT_RENAMING
54d343a2
TT
5288 && old_renaming_is_invisible ((*syms)[i].symbol,
5289 current_function_name))
5290 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5291 else
5292 i += 1;
5293 }
5294
54d343a2 5295 return syms->size ();
4c4b4cd2
PH
5296}
5297
339c13b6
JB
5298/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5299 whose name and domain match NAME and DOMAIN respectively.
5300 If no match was found, then extend the search to "enclosing"
5301 routines (in other words, if we're inside a nested function,
5302 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5303 If WILD_MATCH_P is nonzero, perform the naming matching in
5304 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5305
5306 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5307
5308static void
b5ec771e
PA
5309ada_add_local_symbols (struct obstack *obstackp,
5310 const lookup_name_info &lookup_name,
5311 const struct block *block, domain_enum domain)
339c13b6
JB
5312{
5313 int block_depth = 0;
5314
5315 while (block != NULL)
5316 {
5317 block_depth += 1;
b5ec771e 5318 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5319
5320 /* If we found a non-function match, assume that's the one. */
5321 if (is_nonfunction (defns_collected (obstackp, 0),
5322 num_defns_collected (obstackp)))
5323 return;
5324
5325 block = BLOCK_SUPERBLOCK (block);
5326 }
5327
5328 /* If no luck so far, try to find NAME as a local symbol in some lexically
5329 enclosing subprogram. */
5330 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5331 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5332}
5333
ccefe4c4 5334/* An object of this type is used as the user_data argument when
40658b94 5335 calling the map_matching_symbols method. */
ccefe4c4 5336
40658b94 5337struct match_data
ccefe4c4 5338{
40658b94 5339 struct objfile *objfile;
ccefe4c4 5340 struct obstack *obstackp;
40658b94
PH
5341 struct symbol *arg_sym;
5342 int found_sym;
ccefe4c4
TT
5343};
5344
199b4314
TT
5345/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5346 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5347 containing the obstack that collects the symbol list, the file that SYM
5348 must come from, a flag indicating whether a non-argument symbol has
5349 been found in the current block, and the last argument symbol
5350 passed in SYM within the current block (if any). When SYM is null,
5351 marking the end of a block, the argument symbol is added if no
5352 other has been found. */
ccefe4c4 5353
199b4314
TT
5354static bool
5355aux_add_nonlocal_symbols (struct block_symbol *bsym,
5356 struct match_data *data)
ccefe4c4 5357{
199b4314
TT
5358 const struct block *block = bsym->block;
5359 struct symbol *sym = bsym->symbol;
5360
40658b94
PH
5361 if (sym == NULL)
5362 {
5363 if (!data->found_sym && data->arg_sym != NULL)
5364 add_defn_to_vec (data->obstackp,
5365 fixup_symbol_section (data->arg_sym, data->objfile),
5366 block);
5367 data->found_sym = 0;
5368 data->arg_sym = NULL;
5369 }
5370 else
5371 {
5372 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5373 return true;
40658b94
PH
5374 else if (SYMBOL_IS_ARGUMENT (sym))
5375 data->arg_sym = sym;
5376 else
5377 {
5378 data->found_sym = 1;
5379 add_defn_to_vec (data->obstackp,
5380 fixup_symbol_section (sym, data->objfile),
5381 block);
5382 }
5383 }
199b4314 5384 return true;
40658b94
PH
5385}
5386
b5ec771e
PA
5387/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5388 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5389 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5390
5391static int
5392ada_add_block_renamings (struct obstack *obstackp,
5393 const struct block *block,
b5ec771e
PA
5394 const lookup_name_info &lookup_name,
5395 domain_enum domain)
22cee43f
PMR
5396{
5397 struct using_direct *renaming;
5398 int defns_mark = num_defns_collected (obstackp);
5399
b5ec771e
PA
5400 symbol_name_matcher_ftype *name_match
5401 = ada_get_symbol_name_matcher (lookup_name);
5402
22cee43f
PMR
5403 for (renaming = block_using (block);
5404 renaming != NULL;
5405 renaming = renaming->next)
5406 {
5407 const char *r_name;
22cee43f
PMR
5408
5409 /* Avoid infinite recursions: skip this renaming if we are actually
5410 already traversing it.
5411
5412 Currently, symbol lookup in Ada don't use the namespace machinery from
5413 C++/Fortran support: skip namespace imports that use them. */
5414 if (renaming->searched
5415 || (renaming->import_src != NULL
5416 && renaming->import_src[0] != '\0')
5417 || (renaming->import_dest != NULL
5418 && renaming->import_dest[0] != '\0'))
5419 continue;
5420 renaming->searched = 1;
5421
5422 /* TODO: here, we perform another name-based symbol lookup, which can
5423 pull its own multiple overloads. In theory, we should be able to do
5424 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5425 not a simple name. But in order to do this, we would need to enhance
5426 the DWARF reader to associate a symbol to this renaming, instead of a
5427 name. So, for now, we do something simpler: re-use the C++/Fortran
5428 namespace machinery. */
5429 r_name = (renaming->alias != NULL
5430 ? renaming->alias
5431 : renaming->declaration);
b5ec771e
PA
5432 if (name_match (r_name, lookup_name, NULL))
5433 {
5434 lookup_name_info decl_lookup_name (renaming->declaration,
5435 lookup_name.match_type ());
5436 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5437 1, NULL);
5438 }
22cee43f
PMR
5439 renaming->searched = 0;
5440 }
5441 return num_defns_collected (obstackp) != defns_mark;
5442}
5443
db230ce3
JB
5444/* Implements compare_names, but only applying the comparision using
5445 the given CASING. */
5b4ee69b 5446
40658b94 5447static int
db230ce3
JB
5448compare_names_with_case (const char *string1, const char *string2,
5449 enum case_sensitivity casing)
40658b94
PH
5450{
5451 while (*string1 != '\0' && *string2 != '\0')
5452 {
db230ce3
JB
5453 char c1, c2;
5454
40658b94
PH
5455 if (isspace (*string1) || isspace (*string2))
5456 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5457
5458 if (casing == case_sensitive_off)
5459 {
5460 c1 = tolower (*string1);
5461 c2 = tolower (*string2);
5462 }
5463 else
5464 {
5465 c1 = *string1;
5466 c2 = *string2;
5467 }
5468 if (c1 != c2)
40658b94 5469 break;
db230ce3 5470
40658b94
PH
5471 string1 += 1;
5472 string2 += 1;
5473 }
db230ce3 5474
40658b94
PH
5475 switch (*string1)
5476 {
5477 case '(':
5478 return strcmp_iw_ordered (string1, string2);
5479 case '_':
5480 if (*string2 == '\0')
5481 {
052874e8 5482 if (is_name_suffix (string1))
40658b94
PH
5483 return 0;
5484 else
1a1d5513 5485 return 1;
40658b94 5486 }
dbb8534f 5487 /* FALLTHROUGH */
40658b94
PH
5488 default:
5489 if (*string2 == '(')
5490 return strcmp_iw_ordered (string1, string2);
5491 else
db230ce3
JB
5492 {
5493 if (casing == case_sensitive_off)
5494 return tolower (*string1) - tolower (*string2);
5495 else
5496 return *string1 - *string2;
5497 }
40658b94 5498 }
ccefe4c4
TT
5499}
5500
db230ce3
JB
5501/* Compare STRING1 to STRING2, with results as for strcmp.
5502 Compatible with strcmp_iw_ordered in that...
5503
5504 strcmp_iw_ordered (STRING1, STRING2) <= 0
5505
5506 ... implies...
5507
5508 compare_names (STRING1, STRING2) <= 0
5509
5510 (they may differ as to what symbols compare equal). */
5511
5512static int
5513compare_names (const char *string1, const char *string2)
5514{
5515 int result;
5516
5517 /* Similar to what strcmp_iw_ordered does, we need to perform
5518 a case-insensitive comparison first, and only resort to
5519 a second, case-sensitive, comparison if the first one was
5520 not sufficient to differentiate the two strings. */
5521
5522 result = compare_names_with_case (string1, string2, case_sensitive_off);
5523 if (result == 0)
5524 result = compare_names_with_case (string1, string2, case_sensitive_on);
5525
5526 return result;
5527}
5528
b5ec771e
PA
5529/* Convenience function to get at the Ada encoded lookup name for
5530 LOOKUP_NAME, as a C string. */
5531
5532static const char *
5533ada_lookup_name (const lookup_name_info &lookup_name)
5534{
5535 return lookup_name.ada ().lookup_name ().c_str ();
5536}
5537
339c13b6 5538/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5539 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5540 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5541 symbols otherwise. */
339c13b6
JB
5542
5543static void
b5ec771e
PA
5544add_nonlocal_symbols (struct obstack *obstackp,
5545 const lookup_name_info &lookup_name,
5546 domain_enum domain, int global)
339c13b6 5547{
40658b94 5548 struct match_data data;
339c13b6 5549
6475f2fe 5550 memset (&data, 0, sizeof data);
ccefe4c4 5551 data.obstackp = obstackp;
339c13b6 5552
b5ec771e
PA
5553 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5554
199b4314
TT
5555 auto callback = [&] (struct block_symbol *bsym)
5556 {
5557 return aux_add_nonlocal_symbols (bsym, &data);
5558 };
5559
2030c079 5560 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5561 {
5562 data.objfile = objfile;
5563
b054970d
TT
5564 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5565 domain, global, callback,
5566 (is_wild_match
5567 ? NULL : compare_names));
22cee43f 5568
b669c953 5569 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5570 {
5571 const struct block *global_block
5572 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5573
b5ec771e
PA
5574 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5575 domain))
22cee43f
PMR
5576 data.found_sym = 1;
5577 }
40658b94
PH
5578 }
5579
5580 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5581 {
b5ec771e 5582 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5583 std::string bracket_name = std::string ("<_ada_") + name + '>';
5584 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5585
2030c079 5586 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5587 {
40658b94 5588 data.objfile = objfile;
b054970d 5589 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5590 domain, global, callback,
b5ec771e 5591 compare_names);
40658b94
PH
5592 }
5593 }
339c13b6
JB
5594}
5595
b5ec771e
PA
5596/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5597 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5598 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5599
22cee43f
PMR
5600 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5601 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5602 is the one match returned (no other matches in that or
d9680e73 5603 enclosing blocks is returned). If there are any matches in or
22cee43f 5604 surrounding BLOCK, then these alone are returned.
4eeaa230 5605
b5ec771e
PA
5606 Names prefixed with "standard__" are handled specially:
5607 "standard__" is first stripped off (by the lookup_name
5608 constructor), and only static and global symbols are searched.
14f9c5c9 5609
22cee43f
PMR
5610 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5611 to lookup global symbols. */
5612
5613static void
5614ada_add_all_symbols (struct obstack *obstackp,
5615 const struct block *block,
b5ec771e 5616 const lookup_name_info &lookup_name,
22cee43f
PMR
5617 domain_enum domain,
5618 int full_search,
5619 int *made_global_lookup_p)
14f9c5c9
AS
5620{
5621 struct symbol *sym;
14f9c5c9 5622
22cee43f
PMR
5623 if (made_global_lookup_p)
5624 *made_global_lookup_p = 0;
339c13b6
JB
5625
5626 /* Special case: If the user specifies a symbol name inside package
5627 Standard, do a non-wild matching of the symbol name without
5628 the "standard__" prefix. This was primarily introduced in order
5629 to allow the user to specifically access the standard exceptions
5630 using, for instance, Standard.Constraint_Error when Constraint_Error
5631 is ambiguous (due to the user defining its own Constraint_Error
5632 entity inside its program). */
b5ec771e
PA
5633 if (lookup_name.ada ().standard_p ())
5634 block = NULL;
4c4b4cd2 5635
339c13b6 5636 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5637
4eeaa230
DE
5638 if (block != NULL)
5639 {
5640 if (full_search)
b5ec771e 5641 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5642 else
5643 {
5644 /* In the !full_search case we're are being called by
4009ee92 5645 iterate_over_symbols, and we don't want to search
4eeaa230 5646 superblocks. */
b5ec771e 5647 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5648 }
22cee43f
PMR
5649 if (num_defns_collected (obstackp) > 0 || !full_search)
5650 return;
4eeaa230 5651 }
d2e4a39e 5652
339c13b6
JB
5653 /* No non-global symbols found. Check our cache to see if we have
5654 already performed this search before. If we have, then return
5655 the same result. */
5656
b5ec771e
PA
5657 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5658 domain, &sym, &block))
4c4b4cd2
PH
5659 {
5660 if (sym != NULL)
b5ec771e 5661 add_defn_to_vec (obstackp, sym, block);
22cee43f 5662 return;
4c4b4cd2 5663 }
14f9c5c9 5664
22cee43f
PMR
5665 if (made_global_lookup_p)
5666 *made_global_lookup_p = 1;
b1eedac9 5667
339c13b6
JB
5668 /* Search symbols from all global blocks. */
5669
b5ec771e 5670 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5671
4c4b4cd2 5672 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5673 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5674
22cee43f 5675 if (num_defns_collected (obstackp) == 0)
b5ec771e 5676 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5677}
5678
b5ec771e
PA
5679/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5680 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5681 matches.
54d343a2
TT
5682 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5683 found and the blocks and symbol tables (if any) in which they were
5684 found.
22cee43f
PMR
5685
5686 When full_search is non-zero, any non-function/non-enumeral
5687 symbol match within the nest of blocks whose innermost member is BLOCK,
5688 is the one match returned (no other matches in that or
5689 enclosing blocks is returned). If there are any matches in or
5690 surrounding BLOCK, then these alone are returned.
5691
5692 Names prefixed with "standard__" are handled specially: "standard__"
5693 is first stripped off, and only static and global symbols are searched. */
5694
5695static int
b5ec771e
PA
5696ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5697 const struct block *block,
22cee43f 5698 domain_enum domain,
54d343a2 5699 std::vector<struct block_symbol> *results,
22cee43f
PMR
5700 int full_search)
5701{
22cee43f
PMR
5702 int syms_from_global_search;
5703 int ndefns;
ec6a20c2 5704 auto_obstack obstack;
22cee43f 5705
ec6a20c2 5706 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5707 domain, full_search, &syms_from_global_search);
14f9c5c9 5708
ec6a20c2
JB
5709 ndefns = num_defns_collected (&obstack);
5710
54d343a2
TT
5711 struct block_symbol *base = defns_collected (&obstack, 1);
5712 for (int i = 0; i < ndefns; ++i)
5713 results->push_back (base[i]);
4c4b4cd2 5714
54d343a2 5715 ndefns = remove_extra_symbols (results);
4c4b4cd2 5716
b1eedac9 5717 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5718 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5719
b1eedac9 5720 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5721 cache_symbol (ada_lookup_name (lookup_name), domain,
5722 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5723
54d343a2 5724 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5725
14f9c5c9
AS
5726 return ndefns;
5727}
5728
b5ec771e 5729/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5730 in global scopes, returning the number of matches, and filling *RESULTS
5731 with (SYM,BLOCK) tuples.
ec6a20c2 5732
4eeaa230
DE
5733 See ada_lookup_symbol_list_worker for further details. */
5734
5735int
b5ec771e 5736ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5737 domain_enum domain,
5738 std::vector<struct block_symbol> *results)
4eeaa230 5739{
b5ec771e
PA
5740 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5741 lookup_name_info lookup_name (name, name_match_type);
5742
5743 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5744}
5745
4e5c77fe
JB
5746/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5747 to 1, but choosing the first symbol found if there are multiple
5748 choices.
5749
5e2336be
JB
5750 The result is stored in *INFO, which must be non-NULL.
5751 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5752
5753void
5754ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5755 domain_enum domain,
d12307c1 5756 struct block_symbol *info)
14f9c5c9 5757{
b5ec771e
PA
5758 /* Since we already have an encoded name, wrap it in '<>' to force a
5759 verbatim match. Otherwise, if the name happens to not look like
5760 an encoded name (because it doesn't include a "__"),
5761 ada_lookup_name_info would re-encode/fold it again, and that
5762 would e.g., incorrectly lowercase object renaming names like
5763 "R28b" -> "r28b". */
5764 std::string verbatim = std::string ("<") + name + '>';
5765
5e2336be 5766 gdb_assert (info != NULL);
65392b3e 5767 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5768}
aeb5907d
JB
5769
5770/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5771 scope and in global scopes, or NULL if none. NAME is folded and
5772 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5773 choosing the first symbol if there are multiple choices. */
4e5c77fe 5774
d12307c1 5775struct block_symbol
aeb5907d 5776ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5777 domain_enum domain)
aeb5907d 5778{
54d343a2 5779 std::vector<struct block_symbol> candidates;
f98fc17b 5780 int n_candidates;
f98fc17b
PA
5781
5782 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5783
5784 if (n_candidates == 0)
54d343a2 5785 return {};
f98fc17b
PA
5786
5787 block_symbol info = candidates[0];
5788 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5789 return info;
4c4b4cd2 5790}
14f9c5c9 5791
d12307c1 5792static struct block_symbol
f606139a
DE
5793ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5794 const char *name,
76a01679 5795 const struct block *block,
21b556f4 5796 const domain_enum domain)
4c4b4cd2 5797{
d12307c1 5798 struct block_symbol sym;
04dccad0 5799
65392b3e 5800 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5801 if (sym.symbol != NULL)
04dccad0
JB
5802 return sym;
5803
5804 /* If we haven't found a match at this point, try the primitive
5805 types. In other languages, this search is performed before
5806 searching for global symbols in order to short-circuit that
5807 global-symbol search if it happens that the name corresponds
5808 to a primitive type. But we cannot do the same in Ada, because
5809 it is perfectly legitimate for a program to declare a type which
5810 has the same name as a standard type. If looking up a type in
5811 that situation, we have traditionally ignored the primitive type
5812 in favor of user-defined types. This is why, unlike most other
5813 languages, we search the primitive types this late and only after
5814 having searched the global symbols without success. */
5815
5816 if (domain == VAR_DOMAIN)
5817 {
5818 struct gdbarch *gdbarch;
5819
5820 if (block == NULL)
5821 gdbarch = target_gdbarch ();
5822 else
5823 gdbarch = block_gdbarch (block);
d12307c1
PMR
5824 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5825 if (sym.symbol != NULL)
04dccad0
JB
5826 return sym;
5827 }
5828
6640a367 5829 return {};
14f9c5c9
AS
5830}
5831
5832
4c4b4cd2
PH
5833/* True iff STR is a possible encoded suffix of a normal Ada name
5834 that is to be ignored for matching purposes. Suffixes of parallel
5835 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5836 are given by any of the regular expressions:
4c4b4cd2 5837
babe1480
JB
5838 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5839 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5840 TKB [subprogram suffix for task bodies]
babe1480 5841 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5842 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5843
5844 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5845 match is performed. This sequence is used to differentiate homonyms,
5846 is an optional part of a valid name suffix. */
4c4b4cd2 5847
14f9c5c9 5848static int
d2e4a39e 5849is_name_suffix (const char *str)
14f9c5c9
AS
5850{
5851 int k;
4c4b4cd2
PH
5852 const char *matching;
5853 const int len = strlen (str);
5854
babe1480
JB
5855 /* Skip optional leading __[0-9]+. */
5856
4c4b4cd2
PH
5857 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5858 {
babe1480
JB
5859 str += 3;
5860 while (isdigit (str[0]))
5861 str += 1;
4c4b4cd2 5862 }
babe1480
JB
5863
5864 /* [.$][0-9]+ */
4c4b4cd2 5865
babe1480 5866 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5867 {
babe1480 5868 matching = str + 1;
4c4b4cd2
PH
5869 while (isdigit (matching[0]))
5870 matching += 1;
5871 if (matching[0] == '\0')
5872 return 1;
5873 }
5874
5875 /* ___[0-9]+ */
babe1480 5876
4c4b4cd2
PH
5877 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5878 {
5879 matching = str + 3;
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
9ac7f98e
JB
5886 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5887
5888 if (strcmp (str, "TKB") == 0)
5889 return 1;
5890
529cad9c
PH
5891#if 0
5892 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5893 with a N at the end. Unfortunately, the compiler uses the same
5894 convention for other internal types it creates. So treating
529cad9c 5895 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5896 some regressions. For instance, consider the case of an enumerated
5897 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5898 name ends with N.
5899 Having a single character like this as a suffix carrying some
0963b4bd 5900 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5901 to be something like "_N" instead. In the meantime, do not do
5902 the following check. */
5903 /* Protected Object Subprograms */
5904 if (len == 1 && str [0] == 'N')
5905 return 1;
5906#endif
5907
5908 /* _E[0-9]+[bs]$ */
5909 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5910 {
5911 matching = str + 3;
5912 while (isdigit (matching[0]))
5913 matching += 1;
5914 if ((matching[0] == 'b' || matching[0] == 's')
5915 && matching [1] == '\0')
5916 return 1;
5917 }
5918
4c4b4cd2
PH
5919 /* ??? We should not modify STR directly, as we are doing below. This
5920 is fine in this case, but may become problematic later if we find
5921 that this alternative did not work, and want to try matching
5922 another one from the begining of STR. Since we modified it, we
5923 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5924 if (str[0] == 'X')
5925 {
5926 str += 1;
d2e4a39e 5927 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5928 {
5929 if (str[0] != 'n' && str[0] != 'b')
5930 return 0;
5931 str += 1;
5932 }
14f9c5c9 5933 }
babe1480 5934
14f9c5c9
AS
5935 if (str[0] == '\000')
5936 return 1;
babe1480 5937
d2e4a39e 5938 if (str[0] == '_')
14f9c5c9
AS
5939 {
5940 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5941 return 0;
d2e4a39e 5942 if (str[2] == '_')
4c4b4cd2 5943 {
61ee279c
PH
5944 if (strcmp (str + 3, "JM") == 0)
5945 return 1;
5946 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5947 the LJM suffix in favor of the JM one. But we will
5948 still accept LJM as a valid suffix for a reasonable
5949 amount of time, just to allow ourselves to debug programs
5950 compiled using an older version of GNAT. */
4c4b4cd2
PH
5951 if (strcmp (str + 3, "LJM") == 0)
5952 return 1;
5953 if (str[3] != 'X')
5954 return 0;
1265e4aa
JB
5955 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5956 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5957 return 1;
5958 if (str[4] == 'R' && str[5] != 'T')
5959 return 1;
5960 return 0;
5961 }
5962 if (!isdigit (str[2]))
5963 return 0;
5964 for (k = 3; str[k] != '\0'; k += 1)
5965 if (!isdigit (str[k]) && str[k] != '_')
5966 return 0;
14f9c5c9
AS
5967 return 1;
5968 }
4c4b4cd2 5969 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5970 {
4c4b4cd2
PH
5971 for (k = 2; str[k] != '\0'; k += 1)
5972 if (!isdigit (str[k]) && str[k] != '_')
5973 return 0;
14f9c5c9
AS
5974 return 1;
5975 }
5976 return 0;
5977}
d2e4a39e 5978
aeb5907d
JB
5979/* Return non-zero if the string starting at NAME and ending before
5980 NAME_END contains no capital letters. */
529cad9c
PH
5981
5982static int
5983is_valid_name_for_wild_match (const char *name0)
5984{
f945dedf 5985 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5986 int i;
5987
5823c3ef
JB
5988 /* If the decoded name starts with an angle bracket, it means that
5989 NAME0 does not follow the GNAT encoding format. It should then
5990 not be allowed as a possible wild match. */
5991 if (decoded_name[0] == '<')
5992 return 0;
5993
529cad9c
PH
5994 for (i=0; decoded_name[i] != '\0'; i++)
5995 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5996 return 0;
5997
5998 return 1;
5999}
6000
73589123
PH
6001/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6002 that could start a simple name. Assumes that *NAMEP points into
6003 the string beginning at NAME0. */
4c4b4cd2 6004
14f9c5c9 6005static int
73589123 6006advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6007{
73589123 6008 const char *name = *namep;
5b4ee69b 6009
5823c3ef 6010 while (1)
14f9c5c9 6011 {
aa27d0b3 6012 int t0, t1;
73589123
PH
6013
6014 t0 = *name;
6015 if (t0 == '_')
6016 {
6017 t1 = name[1];
6018 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6019 {
6020 name += 1;
61012eef 6021 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6022 break;
6023 else
6024 name += 1;
6025 }
aa27d0b3
JB
6026 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6027 || name[2] == target0))
73589123
PH
6028 {
6029 name += 2;
6030 break;
6031 }
6032 else
6033 return 0;
6034 }
6035 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6036 name += 1;
6037 else
5823c3ef 6038 return 0;
73589123
PH
6039 }
6040
6041 *namep = name;
6042 return 1;
6043}
6044
b5ec771e
PA
6045/* Return true iff NAME encodes a name of the form prefix.PATN.
6046 Ignores any informational suffixes of NAME (i.e., for which
6047 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6048 simple name. */
73589123 6049
b5ec771e 6050static bool
73589123
PH
6051wild_match (const char *name, const char *patn)
6052{
22e048c9 6053 const char *p;
73589123
PH
6054 const char *name0 = name;
6055
6056 while (1)
6057 {
6058 const char *match = name;
6059
6060 if (*name == *patn)
6061 {
6062 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6063 if (*p != *name)
6064 break;
6065 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6066 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6067
6068 if (name[-1] == '_')
6069 name -= 1;
6070 }
6071 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6072 return false;
96d887e8 6073 }
96d887e8
PH
6074}
6075
b5ec771e
PA
6076/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6077 any trailing suffixes that encode debugging information or leading
6078 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6079 information that is ignored). */
40658b94 6080
b5ec771e 6081static bool
c4d840bd
PH
6082full_match (const char *sym_name, const char *search_name)
6083{
b5ec771e
PA
6084 size_t search_name_len = strlen (search_name);
6085
6086 if (strncmp (sym_name, search_name, search_name_len) == 0
6087 && is_name_suffix (sym_name + search_name_len))
6088 return true;
6089
6090 if (startswith (sym_name, "_ada_")
6091 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6092 && is_name_suffix (sym_name + search_name_len + 5))
6093 return true;
c4d840bd 6094
b5ec771e
PA
6095 return false;
6096}
c4d840bd 6097
b5ec771e
PA
6098/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6099 *defn_symbols, updating the list of symbols in OBSTACKP (if
6100 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6101
6102static void
6103ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6104 const struct block *block,
6105 const lookup_name_info &lookup_name,
6106 domain_enum domain, struct objfile *objfile)
96d887e8 6107{
8157b174 6108 struct block_iterator iter;
96d887e8
PH
6109 /* A matching argument symbol, if any. */
6110 struct symbol *arg_sym;
6111 /* Set true when we find a matching non-argument symbol. */
6112 int found_sym;
6113 struct symbol *sym;
6114
6115 arg_sym = NULL;
6116 found_sym = 0;
b5ec771e
PA
6117 for (sym = block_iter_match_first (block, lookup_name, &iter);
6118 sym != NULL;
6119 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6120 {
c1b5c1eb 6121 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6122 {
6123 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6124 {
6125 if (SYMBOL_IS_ARGUMENT (sym))
6126 arg_sym = sym;
6127 else
6128 {
6129 found_sym = 1;
6130 add_defn_to_vec (obstackp,
6131 fixup_symbol_section (sym, objfile),
6132 block);
6133 }
6134 }
6135 }
96d887e8
PH
6136 }
6137
22cee43f
PMR
6138 /* Handle renamings. */
6139
b5ec771e 6140 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6141 found_sym = 1;
6142
96d887e8
PH
6143 if (!found_sym && arg_sym != NULL)
6144 {
76a01679
JB
6145 add_defn_to_vec (obstackp,
6146 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6147 block);
96d887e8
PH
6148 }
6149
b5ec771e 6150 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6151 {
6152 arg_sym = NULL;
6153 found_sym = 0;
b5ec771e
PA
6154 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6155 const char *name = ada_lookup_name.c_str ();
6156 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6157
6158 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6159 {
c1b5c1eb 6160 if (symbol_matches_domain (sym->language (),
4186eb54 6161 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6162 {
6163 int cmp;
6164
987012b8 6165 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6166 if (cmp == 0)
6167 {
987012b8 6168 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6169 if (cmp == 0)
987012b8 6170 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6171 name_len);
6172 }
6173
6174 if (cmp == 0
987012b8 6175 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6176 {
2a2d4dc3
AS
6177 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6178 {
6179 if (SYMBOL_IS_ARGUMENT (sym))
6180 arg_sym = sym;
6181 else
6182 {
6183 found_sym = 1;
6184 add_defn_to_vec (obstackp,
6185 fixup_symbol_section (sym, objfile),
6186 block);
6187 }
6188 }
76a01679
JB
6189 }
6190 }
76a01679 6191 }
96d887e8
PH
6192
6193 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6194 They aren't parameters, right? */
6195 if (!found_sym && arg_sym != NULL)
6196 {
6197 add_defn_to_vec (obstackp,
76a01679 6198 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6199 block);
96d887e8
PH
6200 }
6201 }
6202}
6203\f
41d27058
JB
6204
6205 /* Symbol Completion */
6206
b5ec771e 6207/* See symtab.h. */
41d27058 6208
b5ec771e
PA
6209bool
6210ada_lookup_name_info::matches
6211 (const char *sym_name,
6212 symbol_name_match_type match_type,
a207cff2 6213 completion_match_result *comp_match_res) const
41d27058 6214{
b5ec771e
PA
6215 bool match = false;
6216 const char *text = m_encoded_name.c_str ();
6217 size_t text_len = m_encoded_name.size ();
41d27058
JB
6218
6219 /* First, test against the fully qualified name of the symbol. */
6220
6221 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6222 match = true;
41d27058 6223
f945dedf 6224 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6225 if (match && !m_encoded_p)
41d27058
JB
6226 {
6227 /* One needed check before declaring a positive match is to verify
6228 that iff we are doing a verbatim match, the decoded version
6229 of the symbol name starts with '<'. Otherwise, this symbol name
6230 is not a suitable completion. */
41d27058 6231
f945dedf 6232 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6233 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6234 }
6235
b5ec771e 6236 if (match && !m_verbatim_p)
41d27058
JB
6237 {
6238 /* When doing non-verbatim match, another check that needs to
6239 be done is to verify that the potentially matching symbol name
6240 does not include capital letters, because the ada-mode would
6241 not be able to understand these symbol names without the
6242 angle bracket notation. */
6243 const char *tmp;
6244
6245 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6246 if (*tmp != '\0')
b5ec771e 6247 match = false;
41d27058
JB
6248 }
6249
6250 /* Second: Try wild matching... */
6251
b5ec771e 6252 if (!match && m_wild_match_p)
41d27058
JB
6253 {
6254 /* Since we are doing wild matching, this means that TEXT
6255 may represent an unqualified symbol name. We therefore must
6256 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6257 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6258
6259 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6260 match = true;
41d27058
JB
6261 }
6262
b5ec771e 6263 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6264
6265 if (!match)
b5ec771e 6266 return false;
41d27058 6267
a207cff2 6268 if (comp_match_res != NULL)
b5ec771e 6269 {
a207cff2 6270 std::string &match_str = comp_match_res->match.storage ();
41d27058 6271
b5ec771e 6272 if (!m_encoded_p)
a207cff2 6273 match_str = ada_decode (sym_name);
b5ec771e
PA
6274 else
6275 {
6276 if (m_verbatim_p)
6277 match_str = add_angle_brackets (sym_name);
6278 else
6279 match_str = sym_name;
41d27058 6280
b5ec771e 6281 }
a207cff2
PA
6282
6283 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6284 }
6285
b5ec771e 6286 return true;
41d27058
JB
6287}
6288
b5ec771e 6289/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6290 WORD is the entire command on which completion is made. */
41d27058 6291
eb3ff9a5
PA
6292static void
6293ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6294 complete_symbol_mode mode,
b5ec771e
PA
6295 symbol_name_match_type name_match_type,
6296 const char *text, const char *word,
eb3ff9a5 6297 enum type_code code)
41d27058 6298{
41d27058 6299 struct symbol *sym;
3977b71f 6300 const struct block *b, *surrounding_static_block = 0;
8157b174 6301 struct block_iterator iter;
41d27058 6302
2f68a895
TT
6303 gdb_assert (code == TYPE_CODE_UNDEF);
6304
1b026119 6305 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6306
6307 /* First, look at the partial symtab symbols. */
14bc53a8 6308 expand_symtabs_matching (NULL,
b5ec771e
PA
6309 lookup_name,
6310 NULL,
14bc53a8
PA
6311 NULL,
6312 ALL_DOMAIN);
41d27058
JB
6313
6314 /* At this point scan through the misc symbol vectors and add each
6315 symbol you find to the list. Eventually we want to ignore
6316 anything that isn't a text symbol (everything else will be
6317 handled by the psymtab code above). */
6318
2030c079 6319 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6320 {
7932255d 6321 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6322 {
6323 QUIT;
6324
6325 if (completion_skip_symbol (mode, msymbol))
6326 continue;
6327
c1b5c1eb 6328 language symbol_language = msymbol->language ();
5325b9bf
TT
6329
6330 /* Ada minimal symbols won't have their language set to Ada. If
6331 we let completion_list_add_name compare using the
6332 default/C-like matcher, then when completing e.g., symbols in a
6333 package named "pck", we'd match internal Ada symbols like
6334 "pckS", which are invalid in an Ada expression, unless you wrap
6335 them in '<' '>' to request a verbatim match.
6336
6337 Unfortunately, some Ada encoded names successfully demangle as
6338 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6339 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6340 with the wrong language set. Paper over that issue here. */
6341 if (symbol_language == language_auto
6342 || symbol_language == language_cplus)
6343 symbol_language = language_ada;
6344
6345 completion_list_add_name (tracker,
6346 symbol_language,
c9d95fa3 6347 msymbol->linkage_name (),
5325b9bf
TT
6348 lookup_name, text, word);
6349 }
6350 }
41d27058
JB
6351
6352 /* Search upwards from currently selected frame (so that we can
6353 complete on local vars. */
6354
6355 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6356 {
6357 if (!BLOCK_SUPERBLOCK (b))
6358 surrounding_static_block = b; /* For elmin of dups */
6359
6360 ALL_BLOCK_SYMBOLS (b, iter, sym)
6361 {
f9d67a22
PA
6362 if (completion_skip_symbol (mode, sym))
6363 continue;
6364
b5ec771e 6365 completion_list_add_name (tracker,
c1b5c1eb 6366 sym->language (),
987012b8 6367 sym->linkage_name (),
1b026119 6368 lookup_name, text, word);
41d27058
JB
6369 }
6370 }
6371
6372 /* Go through the symtabs and check the externs and statics for
43f3e411 6373 symbols which match. */
41d27058 6374
2030c079 6375 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6376 {
b669c953 6377 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6378 {
6379 QUIT;
6380 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6381 ALL_BLOCK_SYMBOLS (b, iter, sym)
6382 {
6383 if (completion_skip_symbol (mode, sym))
6384 continue;
f9d67a22 6385
d8aeb77f 6386 completion_list_add_name (tracker,
c1b5c1eb 6387 sym->language (),
987012b8 6388 sym->linkage_name (),
d8aeb77f
TT
6389 lookup_name, text, word);
6390 }
6391 }
41d27058 6392 }
41d27058 6393
2030c079 6394 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6395 {
b669c953 6396 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6397 {
6398 QUIT;
6399 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6400 /* Don't do this block twice. */
6401 if (b == surrounding_static_block)
6402 continue;
6403 ALL_BLOCK_SYMBOLS (b, iter, sym)
6404 {
6405 if (completion_skip_symbol (mode, sym))
6406 continue;
f9d67a22 6407
d8aeb77f 6408 completion_list_add_name (tracker,
c1b5c1eb 6409 sym->language (),
987012b8 6410 sym->linkage_name (),
d8aeb77f
TT
6411 lookup_name, text, word);
6412 }
6413 }
41d27058 6414 }
41d27058
JB
6415}
6416
963a6417 6417 /* Field Access */
96d887e8 6418
73fb9985
JB
6419/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6420 for tagged types. */
6421
6422static int
6423ada_is_dispatch_table_ptr_type (struct type *type)
6424{
0d5cff50 6425 const char *name;
73fb9985 6426
78134374 6427 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6428 return 0;
6429
7d93a1e0 6430 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6431 if (name == NULL)
6432 return 0;
6433
6434 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6435}
6436
ac4a2da4
JG
6437/* Return non-zero if TYPE is an interface tag. */
6438
6439static int
6440ada_is_interface_tag (struct type *type)
6441{
7d93a1e0 6442 const char *name = type->name ();
ac4a2da4
JG
6443
6444 if (name == NULL)
6445 return 0;
6446
6447 return (strcmp (name, "ada__tags__interface_tag") == 0);
6448}
6449
963a6417
PH
6450/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6451 to be invisible to users. */
96d887e8 6452
963a6417
PH
6453int
6454ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6455{
1f704f76 6456 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6457 return 1;
ffde82bf 6458
73fb9985
JB
6459 /* Check the name of that field. */
6460 {
6461 const char *name = TYPE_FIELD_NAME (type, field_num);
6462
6463 /* Anonymous field names should not be printed.
6464 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6465 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6466 if (name == NULL)
6467 return 1;
6468
ffde82bf
JB
6469 /* Normally, fields whose name start with an underscore ("_")
6470 are fields that have been internally generated by the compiler,
6471 and thus should not be printed. The "_parent" field is special,
6472 however: This is a field internally generated by the compiler
6473 for tagged types, and it contains the components inherited from
6474 the parent type. This field should not be printed as is, but
6475 should not be ignored either. */
61012eef 6476 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6477 return 1;
6478 }
6479
ac4a2da4
JG
6480 /* If this is the dispatch table of a tagged type or an interface tag,
6481 then ignore. */
73fb9985 6482 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6483 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6484 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6485 return 1;
6486
6487 /* Not a special field, so it should not be ignored. */
6488 return 0;
963a6417 6489}
96d887e8 6490
963a6417 6491/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6492 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6493
963a6417
PH
6494int
6495ada_is_tagged_type (struct type *type, int refok)
6496{
988f6b3d 6497 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6498}
96d887e8 6499
963a6417 6500/* True iff TYPE represents the type of X'Tag */
96d887e8 6501
963a6417
PH
6502int
6503ada_is_tag_type (struct type *type)
6504{
460efde1
JB
6505 type = ada_check_typedef (type);
6506
78134374 6507 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6508 return 0;
6509 else
96d887e8 6510 {
963a6417 6511 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6512
963a6417
PH
6513 return (name != NULL
6514 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6515 }
96d887e8
PH
6516}
6517
963a6417 6518/* The type of the tag on VAL. */
76a01679 6519
de93309a 6520static struct type *
963a6417 6521ada_tag_type (struct value *val)
96d887e8 6522{
988f6b3d 6523 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6524}
96d887e8 6525
b50d69b5
JG
6526/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6527 retired at Ada 05). */
6528
6529static int
6530is_ada95_tag (struct value *tag)
6531{
6532 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6533}
6534
963a6417 6535/* The value of the tag on VAL. */
96d887e8 6536
de93309a 6537static struct value *
963a6417
PH
6538ada_value_tag (struct value *val)
6539{
03ee6b2e 6540 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6541}
6542
963a6417
PH
6543/* The value of the tag on the object of type TYPE whose contents are
6544 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6545 ADDRESS. */
96d887e8 6546
963a6417 6547static struct value *
10a2c479 6548value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6549 const gdb_byte *valaddr,
963a6417 6550 CORE_ADDR address)
96d887e8 6551{
b5385fc0 6552 int tag_byte_offset;
963a6417 6553 struct type *tag_type;
5b4ee69b 6554
963a6417 6555 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6556 NULL, NULL, NULL))
96d887e8 6557 {
fc1a4b47 6558 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6559 ? NULL
6560 : valaddr + tag_byte_offset);
963a6417 6561 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6562
963a6417 6563 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6564 }
963a6417
PH
6565 return NULL;
6566}
96d887e8 6567
963a6417
PH
6568static struct type *
6569type_from_tag (struct value *tag)
6570{
6571 const char *type_name = ada_tag_name (tag);
5b4ee69b 6572
963a6417
PH
6573 if (type_name != NULL)
6574 return ada_find_any_type (ada_encode (type_name));
6575 return NULL;
6576}
96d887e8 6577
b50d69b5
JG
6578/* Given a value OBJ of a tagged type, return a value of this
6579 type at the base address of the object. The base address, as
6580 defined in Ada.Tags, it is the address of the primary tag of
6581 the object, and therefore where the field values of its full
6582 view can be fetched. */
6583
6584struct value *
6585ada_tag_value_at_base_address (struct value *obj)
6586{
b50d69b5
JG
6587 struct value *val;
6588 LONGEST offset_to_top = 0;
6589 struct type *ptr_type, *obj_type;
6590 struct value *tag;
6591 CORE_ADDR base_address;
6592
6593 obj_type = value_type (obj);
6594
6595 /* It is the responsability of the caller to deref pointers. */
6596
78134374 6597 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6598 return obj;
6599
6600 tag = ada_value_tag (obj);
6601 if (!tag)
6602 return obj;
6603
6604 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6605
6606 if (is_ada95_tag (tag))
6607 return obj;
6608
08f49010
XR
6609 ptr_type = language_lookup_primitive_type
6610 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6611 ptr_type = lookup_pointer_type (ptr_type);
6612 val = value_cast (ptr_type, tag);
6613 if (!val)
6614 return obj;
6615
6616 /* It is perfectly possible that an exception be raised while
6617 trying to determine the base address, just like for the tag;
6618 see ada_tag_name for more details. We do not print the error
6619 message for the same reason. */
6620
a70b8144 6621 try
b50d69b5
JG
6622 {
6623 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6624 }
6625
230d2906 6626 catch (const gdb_exception_error &e)
492d29ea
PA
6627 {
6628 return obj;
6629 }
b50d69b5
JG
6630
6631 /* If offset is null, nothing to do. */
6632
6633 if (offset_to_top == 0)
6634 return obj;
6635
6636 /* -1 is a special case in Ada.Tags; however, what should be done
6637 is not quite clear from the documentation. So do nothing for
6638 now. */
6639
6640 if (offset_to_top == -1)
6641 return obj;
6642
08f49010
XR
6643 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6644 from the base address. This was however incompatible with
6645 C++ dispatch table: C++ uses a *negative* value to *add*
6646 to the base address. Ada's convention has therefore been
6647 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6648 use the same convention. Here, we support both cases by
6649 checking the sign of OFFSET_TO_TOP. */
6650
6651 if (offset_to_top > 0)
6652 offset_to_top = -offset_to_top;
6653
6654 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6655 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6656
6657 /* Make sure that we have a proper tag at the new address.
6658 Otherwise, offset_to_top is bogus (which can happen when
6659 the object is not initialized yet). */
6660
6661 if (!tag)
6662 return obj;
6663
6664 obj_type = type_from_tag (tag);
6665
6666 if (!obj_type)
6667 return obj;
6668
6669 return value_from_contents_and_address (obj_type, NULL, base_address);
6670}
6671
1b611343
JB
6672/* Return the "ada__tags__type_specific_data" type. */
6673
6674static struct type *
6675ada_get_tsd_type (struct inferior *inf)
963a6417 6676{
1b611343 6677 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6678
1b611343
JB
6679 if (data->tsd_type == 0)
6680 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6681 return data->tsd_type;
6682}
529cad9c 6683
1b611343
JB
6684/* Return the TSD (type-specific data) associated to the given TAG.
6685 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6686
1b611343 6687 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6688
1b611343
JB
6689static struct value *
6690ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6691{
4c4b4cd2 6692 struct value *val;
1b611343 6693 struct type *type;
5b4ee69b 6694
1b611343
JB
6695 /* First option: The TSD is simply stored as a field of our TAG.
6696 Only older versions of GNAT would use this format, but we have
6697 to test it first, because there are no visible markers for
6698 the current approach except the absence of that field. */
529cad9c 6699
1b611343
JB
6700 val = ada_value_struct_elt (tag, "tsd", 1);
6701 if (val)
6702 return val;
e802dbe0 6703
1b611343
JB
6704 /* Try the second representation for the dispatch table (in which
6705 there is no explicit 'tsd' field in the referent of the tag pointer,
6706 and instead the tsd pointer is stored just before the dispatch
6707 table. */
e802dbe0 6708
1b611343
JB
6709 type = ada_get_tsd_type (current_inferior());
6710 if (type == NULL)
6711 return NULL;
6712 type = lookup_pointer_type (lookup_pointer_type (type));
6713 val = value_cast (type, tag);
6714 if (val == NULL)
6715 return NULL;
6716 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6717}
6718
1b611343
JB
6719/* Given the TSD of a tag (type-specific data), return a string
6720 containing the name of the associated type.
6721
6722 The returned value is good until the next call. May return NULL
6723 if we are unable to determine the tag name. */
6724
6725static char *
6726ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6727{
529cad9c
PH
6728 static char name[1024];
6729 char *p;
1b611343 6730 struct value *val;
529cad9c 6731
1b611343 6732 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6733 if (val == NULL)
1b611343 6734 return NULL;
4c4b4cd2
PH
6735 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6736 for (p = name; *p != '\0'; p += 1)
6737 if (isalpha (*p))
6738 *p = tolower (*p);
1b611343 6739 return name;
4c4b4cd2
PH
6740}
6741
6742/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6743 a C string.
6744
6745 Return NULL if the TAG is not an Ada tag, or if we were unable to
6746 determine the name of that tag. The result is good until the next
6747 call. */
4c4b4cd2
PH
6748
6749const char *
6750ada_tag_name (struct value *tag)
6751{
1b611343 6752 char *name = NULL;
5b4ee69b 6753
df407dfe 6754 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6755 return NULL;
1b611343
JB
6756
6757 /* It is perfectly possible that an exception be raised while trying
6758 to determine the TAG's name, even under normal circumstances:
6759 The associated variable may be uninitialized or corrupted, for
6760 instance. We do not let any exception propagate past this point.
6761 instead we return NULL.
6762
6763 We also do not print the error message either (which often is very
6764 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6765 the caller print a more meaningful message if necessary. */
a70b8144 6766 try
1b611343
JB
6767 {
6768 struct value *tsd = ada_get_tsd_from_tag (tag);
6769
6770 if (tsd != NULL)
6771 name = ada_tag_name_from_tsd (tsd);
6772 }
230d2906 6773 catch (const gdb_exception_error &e)
492d29ea
PA
6774 {
6775 }
1b611343
JB
6776
6777 return name;
4c4b4cd2
PH
6778}
6779
6780/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6781
d2e4a39e 6782struct type *
ebf56fd3 6783ada_parent_type (struct type *type)
14f9c5c9
AS
6784{
6785 int i;
6786
61ee279c 6787 type = ada_check_typedef (type);
14f9c5c9 6788
78134374 6789 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6790 return NULL;
6791
1f704f76 6792 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6793 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6794 {
6795 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6796
6797 /* If the _parent field is a pointer, then dereference it. */
78134374 6798 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6799 parent_type = TYPE_TARGET_TYPE (parent_type);
6800 /* If there is a parallel XVS type, get the actual base type. */
6801 parent_type = ada_get_base_type (parent_type);
6802
6803 return ada_check_typedef (parent_type);
6804 }
14f9c5c9
AS
6805
6806 return NULL;
6807}
6808
4c4b4cd2
PH
6809/* True iff field number FIELD_NUM of structure type TYPE contains the
6810 parent-type (inherited) fields of a derived type. Assumes TYPE is
6811 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6812
6813int
ebf56fd3 6814ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6815{
61ee279c 6816 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6817
4c4b4cd2 6818 return (name != NULL
61012eef
GB
6819 && (startswith (name, "PARENT")
6820 || startswith (name, "_parent")));
14f9c5c9
AS
6821}
6822
4c4b4cd2 6823/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6824 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6825 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6826 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6827 structures. */
14f9c5c9
AS
6828
6829int
ebf56fd3 6830ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6831{
d2e4a39e 6832 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6833
dddc0e16
JB
6834 if (name != NULL && strcmp (name, "RETVAL") == 0)
6835 {
6836 /* This happens in functions with "out" or "in out" parameters
6837 which are passed by copy. For such functions, GNAT describes
6838 the function's return type as being a struct where the return
6839 value is in a field called RETVAL, and where the other "out"
6840 or "in out" parameters are fields of that struct. This is not
6841 a wrapper. */
6842 return 0;
6843 }
6844
d2e4a39e 6845 return (name != NULL
61012eef 6846 && (startswith (name, "PARENT")
4c4b4cd2 6847 || strcmp (name, "REP") == 0
61012eef 6848 || startswith (name, "_parent")
4c4b4cd2 6849 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6850}
6851
4c4b4cd2
PH
6852/* True iff field number FIELD_NUM of structure or union type TYPE
6853 is a variant wrapper. Assumes TYPE is a structure type with at least
6854 FIELD_NUM+1 fields. */
14f9c5c9
AS
6855
6856int
ebf56fd3 6857ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6858{
8ecb59f8
TT
6859 /* Only Ada types are eligible. */
6860 if (!ADA_TYPE_P (type))
6861 return 0;
6862
d2e4a39e 6863 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6864
78134374
SM
6865 return (field_type->code () == TYPE_CODE_UNION
6866 || (is_dynamic_field (type, field_num)
6867 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6868 == TYPE_CODE_UNION)));
14f9c5c9
AS
6869}
6870
6871/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6872 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6873 returns the type of the controlling discriminant for the variant.
6874 May return NULL if the type could not be found. */
14f9c5c9 6875
d2e4a39e 6876struct type *
ebf56fd3 6877ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6878{
a121b7c1 6879 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6880
988f6b3d 6881 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6882}
6883
4c4b4cd2 6884/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6885 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6886 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6887
de93309a 6888static int
ebf56fd3 6889ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6890{
d2e4a39e 6891 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6892
14f9c5c9
AS
6893 return (name != NULL && name[0] == 'O');
6894}
6895
6896/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6897 returns the name of the discriminant controlling the variant.
6898 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6899
a121b7c1 6900const char *
ebf56fd3 6901ada_variant_discrim_name (struct type *type0)
14f9c5c9 6902{
d2e4a39e 6903 static char *result = NULL;
14f9c5c9 6904 static size_t result_len = 0;
d2e4a39e
AS
6905 struct type *type;
6906 const char *name;
6907 const char *discrim_end;
6908 const char *discrim_start;
14f9c5c9 6909
78134374 6910 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6911 type = TYPE_TARGET_TYPE (type0);
6912 else
6913 type = type0;
6914
6915 name = ada_type_name (type);
6916
6917 if (name == NULL || name[0] == '\000')
6918 return "";
6919
6920 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6921 discrim_end -= 1)
6922 {
61012eef 6923 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6924 break;
14f9c5c9
AS
6925 }
6926 if (discrim_end == name)
6927 return "";
6928
d2e4a39e 6929 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6930 discrim_start -= 1)
6931 {
d2e4a39e 6932 if (discrim_start == name + 1)
4c4b4cd2 6933 return "";
76a01679 6934 if ((discrim_start > name + 3
61012eef 6935 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6936 || discrim_start[-1] == '.')
6937 break;
14f9c5c9
AS
6938 }
6939
6940 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6941 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6942 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6943 return result;
6944}
6945
4c4b4cd2
PH
6946/* Scan STR for a subtype-encoded number, beginning at position K.
6947 Put the position of the character just past the number scanned in
6948 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6949 Return 1 if there was a valid number at the given position, and 0
6950 otherwise. A "subtype-encoded" number consists of the absolute value
6951 in decimal, followed by the letter 'm' to indicate a negative number.
6952 Assumes 0m does not occur. */
14f9c5c9
AS
6953
6954int
d2e4a39e 6955ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6956{
6957 ULONGEST RU;
6958
d2e4a39e 6959 if (!isdigit (str[k]))
14f9c5c9
AS
6960 return 0;
6961
4c4b4cd2 6962 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6963 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6964 LONGEST. */
14f9c5c9
AS
6965 RU = 0;
6966 while (isdigit (str[k]))
6967 {
d2e4a39e 6968 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6969 k += 1;
6970 }
6971
d2e4a39e 6972 if (str[k] == 'm')
14f9c5c9
AS
6973 {
6974 if (R != NULL)
4c4b4cd2 6975 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6976 k += 1;
6977 }
6978 else if (R != NULL)
6979 *R = (LONGEST) RU;
6980
4c4b4cd2 6981 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6982 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6983 number representable as a LONGEST (although either would probably work
6984 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6985 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6986
6987 if (new_k != NULL)
6988 *new_k = k;
6989 return 1;
6990}
6991
4c4b4cd2
PH
6992/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6993 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6994 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6995
de93309a 6996static int
ebf56fd3 6997ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6998{
d2e4a39e 6999 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7000 int p;
7001
7002 p = 0;
7003 while (1)
7004 {
d2e4a39e 7005 switch (name[p])
4c4b4cd2
PH
7006 {
7007 case '\0':
7008 return 0;
7009 case 'S':
7010 {
7011 LONGEST W;
5b4ee69b 7012
4c4b4cd2
PH
7013 if (!ada_scan_number (name, p + 1, &W, &p))
7014 return 0;
7015 if (val == W)
7016 return 1;
7017 break;
7018 }
7019 case 'R':
7020 {
7021 LONGEST L, U;
5b4ee69b 7022
4c4b4cd2
PH
7023 if (!ada_scan_number (name, p + 1, &L, &p)
7024 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7025 return 0;
7026 if (val >= L && val <= U)
7027 return 1;
7028 break;
7029 }
7030 case 'O':
7031 return 1;
7032 default:
7033 return 0;
7034 }
7035 }
7036}
7037
0963b4bd 7038/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7039
7040/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7041 ARG_TYPE, extract and return the value of one of its (non-static)
7042 fields. FIELDNO says which field. Differs from value_primitive_field
7043 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7044
5eb68a39 7045struct value *
d2e4a39e 7046ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7047 struct type *arg_type)
14f9c5c9 7048{
14f9c5c9
AS
7049 struct type *type;
7050
61ee279c 7051 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7052 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7053
4504bbde
TT
7054 /* Handle packed fields. It might be that the field is not packed
7055 relative to its containing structure, but the structure itself is
7056 packed; in this case we must take the bit-field path. */
7057 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7058 {
7059 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7060 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7061
0fd88904 7062 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7063 offset + bit_pos / 8,
7064 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7065 }
7066 else
7067 return value_primitive_field (arg1, offset, fieldno, arg_type);
7068}
7069
52ce6436
PH
7070/* Find field with name NAME in object of type TYPE. If found,
7071 set the following for each argument that is non-null:
7072 - *FIELD_TYPE_P to the field's type;
7073 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7074 an object of that type;
7075 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7076 - *BIT_SIZE_P to its size in bits if the field is packed, and
7077 0 otherwise;
7078 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7079 fields up to but not including the desired field, or by the total
7080 number of fields if not found. A NULL value of NAME never
7081 matches; the function just counts visible fields in this case.
7082
828d5846
XR
7083 Notice that we need to handle when a tagged record hierarchy
7084 has some components with the same name, like in this scenario:
7085
7086 type Top_T is tagged record
7087 N : Integer := 1;
7088 U : Integer := 974;
7089 A : Integer := 48;
7090 end record;
7091
7092 type Middle_T is new Top.Top_T with record
7093 N : Character := 'a';
7094 C : Integer := 3;
7095 end record;
7096
7097 type Bottom_T is new Middle.Middle_T with record
7098 N : Float := 4.0;
7099 C : Character := '5';
7100 X : Integer := 6;
7101 A : Character := 'J';
7102 end record;
7103
7104 Let's say we now have a variable declared and initialized as follow:
7105
7106 TC : Top_A := new Bottom_T;
7107
7108 And then we use this variable to call this function
7109
7110 procedure Assign (Obj: in out Top_T; TV : Integer);
7111
7112 as follow:
7113
7114 Assign (Top_T (B), 12);
7115
7116 Now, we're in the debugger, and we're inside that procedure
7117 then and we want to print the value of obj.c:
7118
7119 Usually, the tagged record or one of the parent type owns the
7120 component to print and there's no issue but in this particular
7121 case, what does it mean to ask for Obj.C? Since the actual
7122 type for object is type Bottom_T, it could mean two things: type
7123 component C from the Middle_T view, but also component C from
7124 Bottom_T. So in that "undefined" case, when the component is
7125 not found in the non-resolved type (which includes all the
7126 components of the parent type), then resolve it and see if we
7127 get better luck once expanded.
7128
7129 In the case of homonyms in the derived tagged type, we don't
7130 guaranty anything, and pick the one that's easiest for us
7131 to program.
7132
0963b4bd 7133 Returns 1 if found, 0 otherwise. */
52ce6436 7134
4c4b4cd2 7135static int
0d5cff50 7136find_struct_field (const char *name, struct type *type, int offset,
76a01679 7137 struct type **field_type_p,
52ce6436
PH
7138 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7139 int *index_p)
4c4b4cd2
PH
7140{
7141 int i;
828d5846 7142 int parent_offset = -1;
4c4b4cd2 7143
61ee279c 7144 type = ada_check_typedef (type);
76a01679 7145
52ce6436
PH
7146 if (field_type_p != NULL)
7147 *field_type_p = NULL;
7148 if (byte_offset_p != NULL)
d5d6fca5 7149 *byte_offset_p = 0;
52ce6436
PH
7150 if (bit_offset_p != NULL)
7151 *bit_offset_p = 0;
7152 if (bit_size_p != NULL)
7153 *bit_size_p = 0;
7154
1f704f76 7155 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7156 {
7157 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7158 int fld_offset = offset + bit_pos / 8;
0d5cff50 7159 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7160
4c4b4cd2
PH
7161 if (t_field_name == NULL)
7162 continue;
7163
828d5846
XR
7164 else if (ada_is_parent_field (type, i))
7165 {
7166 /* This is a field pointing us to the parent type of a tagged
7167 type. As hinted in this function's documentation, we give
7168 preference to fields in the current record first, so what
7169 we do here is just record the index of this field before
7170 we skip it. If it turns out we couldn't find our field
7171 in the current record, then we'll get back to it and search
7172 inside it whether the field might exist in the parent. */
7173
7174 parent_offset = i;
7175 continue;
7176 }
7177
52ce6436 7178 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7179 {
7180 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7181
52ce6436
PH
7182 if (field_type_p != NULL)
7183 *field_type_p = TYPE_FIELD_TYPE (type, i);
7184 if (byte_offset_p != NULL)
7185 *byte_offset_p = fld_offset;
7186 if (bit_offset_p != NULL)
7187 *bit_offset_p = bit_pos % 8;
7188 if (bit_size_p != NULL)
7189 *bit_size_p = bit_size;
76a01679
JB
7190 return 1;
7191 }
4c4b4cd2
PH
7192 else if (ada_is_wrapper_field (type, i))
7193 {
52ce6436
PH
7194 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7195 field_type_p, byte_offset_p, bit_offset_p,
7196 bit_size_p, index_p))
76a01679
JB
7197 return 1;
7198 }
4c4b4cd2
PH
7199 else if (ada_is_variant_part (type, i))
7200 {
52ce6436
PH
7201 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7202 fixed type?? */
4c4b4cd2 7203 int j;
52ce6436
PH
7204 struct type *field_type
7205 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7206
1f704f76 7207 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7208 {
76a01679
JB
7209 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7210 fld_offset
7211 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7212 field_type_p, byte_offset_p,
52ce6436 7213 bit_offset_p, bit_size_p, index_p))
76a01679 7214 return 1;
4c4b4cd2
PH
7215 }
7216 }
52ce6436
PH
7217 else if (index_p != NULL)
7218 *index_p += 1;
4c4b4cd2 7219 }
828d5846
XR
7220
7221 /* Field not found so far. If this is a tagged type which
7222 has a parent, try finding that field in the parent now. */
7223
7224 if (parent_offset != -1)
7225 {
7226 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7227 int fld_offset = offset + bit_pos / 8;
7228
7229 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7230 fld_offset, field_type_p, byte_offset_p,
7231 bit_offset_p, bit_size_p, index_p))
7232 return 1;
7233 }
7234
4c4b4cd2
PH
7235 return 0;
7236}
7237
0963b4bd 7238/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7239
52ce6436
PH
7240static int
7241num_visible_fields (struct type *type)
7242{
7243 int n;
5b4ee69b 7244
52ce6436
PH
7245 n = 0;
7246 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7247 return n;
7248}
14f9c5c9 7249
4c4b4cd2 7250/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7251 and search in it assuming it has (class) type TYPE.
7252 If found, return value, else return NULL.
7253
828d5846
XR
7254 Searches recursively through wrapper fields (e.g., '_parent').
7255
7256 In the case of homonyms in the tagged types, please refer to the
7257 long explanation in find_struct_field's function documentation. */
14f9c5c9 7258
4c4b4cd2 7259static struct value *
108d56a4 7260ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7261 struct type *type)
14f9c5c9
AS
7262{
7263 int i;
828d5846 7264 int parent_offset = -1;
14f9c5c9 7265
5b4ee69b 7266 type = ada_check_typedef (type);
1f704f76 7267 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7268 {
0d5cff50 7269 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7270
7271 if (t_field_name == NULL)
4c4b4cd2 7272 continue;
14f9c5c9 7273
828d5846
XR
7274 else if (ada_is_parent_field (type, i))
7275 {
7276 /* This is a field pointing us to the parent type of a tagged
7277 type. As hinted in this function's documentation, we give
7278 preference to fields in the current record first, so what
7279 we do here is just record the index of this field before
7280 we skip it. If it turns out we couldn't find our field
7281 in the current record, then we'll get back to it and search
7282 inside it whether the field might exist in the parent. */
7283
7284 parent_offset = i;
7285 continue;
7286 }
7287
14f9c5c9 7288 else if (field_name_match (t_field_name, name))
4c4b4cd2 7289 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7290
7291 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7292 {
0963b4bd 7293 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7294 ada_search_struct_field (name, arg,
7295 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7296 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7297
4c4b4cd2
PH
7298 if (v != NULL)
7299 return v;
7300 }
14f9c5c9
AS
7301
7302 else if (ada_is_variant_part (type, i))
4c4b4cd2 7303 {
0963b4bd 7304 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7305 int j;
5b4ee69b
MS
7306 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7307 i));
4c4b4cd2
PH
7308 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7309
1f704f76 7310 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7311 {
0963b4bd
MS
7312 struct value *v = ada_search_struct_field /* Force line
7313 break. */
06d5cf63
JB
7314 (name, arg,
7315 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7316 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7317
4c4b4cd2
PH
7318 if (v != NULL)
7319 return v;
7320 }
7321 }
14f9c5c9 7322 }
828d5846
XR
7323
7324 /* Field not found so far. If this is a tagged type which
7325 has a parent, try finding that field in the parent now. */
7326
7327 if (parent_offset != -1)
7328 {
7329 struct value *v = ada_search_struct_field (
7330 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7331 TYPE_FIELD_TYPE (type, parent_offset));
7332
7333 if (v != NULL)
7334 return v;
7335 }
7336
14f9c5c9
AS
7337 return NULL;
7338}
d2e4a39e 7339
52ce6436
PH
7340static struct value *ada_index_struct_field_1 (int *, struct value *,
7341 int, struct type *);
7342
7343
7344/* Return field #INDEX in ARG, where the index is that returned by
7345 * find_struct_field through its INDEX_P argument. Adjust the address
7346 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7347 * If found, return value, else return NULL. */
52ce6436
PH
7348
7349static struct value *
7350ada_index_struct_field (int index, struct value *arg, int offset,
7351 struct type *type)
7352{
7353 return ada_index_struct_field_1 (&index, arg, offset, type);
7354}
7355
7356
7357/* Auxiliary function for ada_index_struct_field. Like
7358 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7359 * *INDEX_P. */
52ce6436
PH
7360
7361static struct value *
7362ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7363 struct type *type)
7364{
7365 int i;
7366 type = ada_check_typedef (type);
7367
1f704f76 7368 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7369 {
7370 if (TYPE_FIELD_NAME (type, i) == NULL)
7371 continue;
7372 else if (ada_is_wrapper_field (type, i))
7373 {
0963b4bd 7374 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7375 ada_index_struct_field_1 (index_p, arg,
7376 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7377 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7378
52ce6436
PH
7379 if (v != NULL)
7380 return v;
7381 }
7382
7383 else if (ada_is_variant_part (type, i))
7384 {
7385 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7386 find_struct_field. */
52ce6436
PH
7387 error (_("Cannot assign this kind of variant record"));
7388 }
7389 else if (*index_p == 0)
7390 return ada_value_primitive_field (arg, offset, i, type);
7391 else
7392 *index_p -= 1;
7393 }
7394 return NULL;
7395}
7396
3b4de39c 7397/* Return a string representation of type TYPE. */
99bbb428 7398
3b4de39c 7399static std::string
99bbb428
PA
7400type_as_string (struct type *type)
7401{
d7e74731 7402 string_file tmp_stream;
99bbb428 7403
d7e74731 7404 type_print (type, "", &tmp_stream, -1);
99bbb428 7405
d7e74731 7406 return std::move (tmp_stream.string ());
99bbb428
PA
7407}
7408
14f9c5c9 7409/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7410 If DISPP is non-null, add its byte displacement from the beginning of a
7411 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7412 work for packed fields).
7413
7414 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7415 followed by "___".
14f9c5c9 7416
0963b4bd 7417 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7418 be a (pointer or reference)+ to a struct or union, and the
7419 ultimate target type will be searched.
14f9c5c9
AS
7420
7421 Looks recursively into variant clauses and parent types.
7422
828d5846
XR
7423 In the case of homonyms in the tagged types, please refer to the
7424 long explanation in find_struct_field's function documentation.
7425
4c4b4cd2
PH
7426 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7427 TYPE is not a type of the right kind. */
14f9c5c9 7428
4c4b4cd2 7429static struct type *
a121b7c1 7430ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7431 int noerr)
14f9c5c9
AS
7432{
7433 int i;
828d5846 7434 int parent_offset = -1;
14f9c5c9
AS
7435
7436 if (name == NULL)
7437 goto BadName;
7438
76a01679 7439 if (refok && type != NULL)
4c4b4cd2
PH
7440 while (1)
7441 {
61ee279c 7442 type = ada_check_typedef (type);
78134374 7443 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7444 break;
7445 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7446 }
14f9c5c9 7447
76a01679 7448 if (type == NULL
78134374
SM
7449 || (type->code () != TYPE_CODE_STRUCT
7450 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7451 {
4c4b4cd2 7452 if (noerr)
76a01679 7453 return NULL;
99bbb428 7454
3b4de39c
PA
7455 error (_("Type %s is not a structure or union type"),
7456 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7457 }
7458
7459 type = to_static_fixed_type (type);
7460
1f704f76 7461 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7462 {
0d5cff50 7463 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7464 struct type *t;
d2e4a39e 7465
14f9c5c9 7466 if (t_field_name == NULL)
4c4b4cd2 7467 continue;
14f9c5c9 7468
828d5846
XR
7469 else if (ada_is_parent_field (type, i))
7470 {
7471 /* This is a field pointing us to the parent type of a tagged
7472 type. As hinted in this function's documentation, we give
7473 preference to fields in the current record first, so what
7474 we do here is just record the index of this field before
7475 we skip it. If it turns out we couldn't find our field
7476 in the current record, then we'll get back to it and search
7477 inside it whether the field might exist in the parent. */
7478
7479 parent_offset = i;
7480 continue;
7481 }
7482
14f9c5c9 7483 else if (field_name_match (t_field_name, name))
988f6b3d 7484 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7485
7486 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7487 {
4c4b4cd2 7488 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7489 0, 1);
4c4b4cd2 7490 if (t != NULL)
988f6b3d 7491 return t;
4c4b4cd2 7492 }
14f9c5c9
AS
7493
7494 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7495 {
7496 int j;
5b4ee69b
MS
7497 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7498 i));
4c4b4cd2 7499
1f704f76 7500 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
4c4b4cd2 7501 {
b1f33ddd
JB
7502 /* FIXME pnh 2008/01/26: We check for a field that is
7503 NOT wrapped in a struct, since the compiler sometimes
7504 generates these for unchecked variant types. Revisit
0963b4bd 7505 if the compiler changes this practice. */
0d5cff50 7506 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7507
b1f33ddd
JB
7508 if (v_field_name != NULL
7509 && field_name_match (v_field_name, name))
460efde1 7510 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7511 else
0963b4bd
MS
7512 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7513 j),
988f6b3d 7514 name, 0, 1);
b1f33ddd 7515
4c4b4cd2 7516 if (t != NULL)
988f6b3d 7517 return t;
4c4b4cd2
PH
7518 }
7519 }
14f9c5c9
AS
7520
7521 }
7522
828d5846
XR
7523 /* Field not found so far. If this is a tagged type which
7524 has a parent, try finding that field in the parent now. */
7525
7526 if (parent_offset != -1)
7527 {
7528 struct type *t;
7529
7530 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7531 name, 0, 1);
7532 if (t != NULL)
7533 return t;
7534 }
7535
14f9c5c9 7536BadName:
d2e4a39e 7537 if (!noerr)
14f9c5c9 7538 {
2b2798cc 7539 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7540
7541 error (_("Type %s has no component named %s"),
3b4de39c 7542 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7543 }
7544
7545 return NULL;
7546}
7547
b1f33ddd
JB
7548/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7549 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7550 represents an unchecked union (that is, the variant part of a
0963b4bd 7551 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7552
7553static int
7554is_unchecked_variant (struct type *var_type, struct type *outer_type)
7555{
a121b7c1 7556 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7557
988f6b3d 7558 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7559}
7560
7561
14f9c5c9 7562/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7563 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7564 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7565
d2e4a39e 7566int
d8af9068 7567ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7568{
7569 int others_clause;
7570 int i;
a121b7c1 7571 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7572 struct value *discrim;
14f9c5c9
AS
7573 LONGEST discrim_val;
7574
012370f6
TT
7575 /* Using plain value_from_contents_and_address here causes problems
7576 because we will end up trying to resolve a type that is currently
7577 being constructed. */
0c281816
JB
7578 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7579 if (discrim == NULL)
14f9c5c9 7580 return -1;
0c281816 7581 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7582
7583 others_clause = -1;
1f704f76 7584 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7585 {
7586 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7587 others_clause = i;
14f9c5c9 7588 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7589 return i;
14f9c5c9
AS
7590 }
7591
7592 return others_clause;
7593}
d2e4a39e 7594\f
14f9c5c9
AS
7595
7596
4c4b4cd2 7597 /* Dynamic-Sized Records */
14f9c5c9
AS
7598
7599/* Strategy: The type ostensibly attached to a value with dynamic size
7600 (i.e., a size that is not statically recorded in the debugging
7601 data) does not accurately reflect the size or layout of the value.
7602 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7603 conventional types that are constructed on the fly. */
14f9c5c9
AS
7604
7605/* There is a subtle and tricky problem here. In general, we cannot
7606 determine the size of dynamic records without its data. However,
7607 the 'struct value' data structure, which GDB uses to represent
7608 quantities in the inferior process (the target), requires the size
7609 of the type at the time of its allocation in order to reserve space
7610 for GDB's internal copy of the data. That's why the
7611 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7612 rather than struct value*s.
14f9c5c9
AS
7613
7614 However, GDB's internal history variables ($1, $2, etc.) are
7615 struct value*s containing internal copies of the data that are not, in
7616 general, the same as the data at their corresponding addresses in
7617 the target. Fortunately, the types we give to these values are all
7618 conventional, fixed-size types (as per the strategy described
7619 above), so that we don't usually have to perform the
7620 'to_fixed_xxx_type' conversions to look at their values.
7621 Unfortunately, there is one exception: if one of the internal
7622 history variables is an array whose elements are unconstrained
7623 records, then we will need to create distinct fixed types for each
7624 element selected. */
7625
7626/* The upshot of all of this is that many routines take a (type, host
7627 address, target address) triple as arguments to represent a value.
7628 The host address, if non-null, is supposed to contain an internal
7629 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7630 target at the target address. */
14f9c5c9
AS
7631
7632/* Assuming that VAL0 represents a pointer value, the result of
7633 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7634 dynamic-sized types. */
14f9c5c9 7635
d2e4a39e
AS
7636struct value *
7637ada_value_ind (struct value *val0)
14f9c5c9 7638{
c48db5ca 7639 struct value *val = value_ind (val0);
5b4ee69b 7640
b50d69b5
JG
7641 if (ada_is_tagged_type (value_type (val), 0))
7642 val = ada_tag_value_at_base_address (val);
7643
4c4b4cd2 7644 return ada_to_fixed_value (val);
14f9c5c9
AS
7645}
7646
7647/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7648 qualifiers on VAL0. */
7649
d2e4a39e
AS
7650static struct value *
7651ada_coerce_ref (struct value *val0)
7652{
78134374 7653 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7654 {
7655 struct value *val = val0;
5b4ee69b 7656
994b9211 7657 val = coerce_ref (val);
b50d69b5
JG
7658
7659 if (ada_is_tagged_type (value_type (val), 0))
7660 val = ada_tag_value_at_base_address (val);
7661
4c4b4cd2 7662 return ada_to_fixed_value (val);
d2e4a39e
AS
7663 }
7664 else
14f9c5c9
AS
7665 return val0;
7666}
7667
4c4b4cd2 7668/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7669
7670static unsigned int
ebf56fd3 7671field_alignment (struct type *type, int f)
14f9c5c9 7672{
d2e4a39e 7673 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7674 int len;
14f9c5c9
AS
7675 int align_offset;
7676
64a1bf19
JB
7677 /* The field name should never be null, unless the debugging information
7678 is somehow malformed. In this case, we assume the field does not
7679 require any alignment. */
7680 if (name == NULL)
7681 return 1;
7682
7683 len = strlen (name);
7684
4c4b4cd2
PH
7685 if (!isdigit (name[len - 1]))
7686 return 1;
14f9c5c9 7687
d2e4a39e 7688 if (isdigit (name[len - 2]))
14f9c5c9
AS
7689 align_offset = len - 2;
7690 else
7691 align_offset = len - 1;
7692
61012eef 7693 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7694 return TARGET_CHAR_BIT;
7695
4c4b4cd2
PH
7696 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7697}
7698
852dff6c 7699/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7700
852dff6c
JB
7701static struct symbol *
7702ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7703{
7704 struct symbol *sym;
7705
7706 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7707 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7708 return sym;
7709
4186eb54
KS
7710 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7711 return sym;
14f9c5c9
AS
7712}
7713
dddfab26
UW
7714/* Find a type named NAME. Ignores ambiguity. This routine will look
7715 solely for types defined by debug info, it will not search the GDB
7716 primitive types. */
4c4b4cd2 7717
852dff6c 7718static struct type *
ebf56fd3 7719ada_find_any_type (const char *name)
14f9c5c9 7720{
852dff6c 7721 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7722
14f9c5c9 7723 if (sym != NULL)
dddfab26 7724 return SYMBOL_TYPE (sym);
14f9c5c9 7725
dddfab26 7726 return NULL;
14f9c5c9
AS
7727}
7728
739593e0
JB
7729/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7730 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7731 symbol, in which case it is returned. Otherwise, this looks for
7732 symbols whose name is that of NAME_SYM suffixed with "___XR".
7733 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7734
c0e70c62
TT
7735static bool
7736ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7737{
987012b8 7738 const char *name = name_sym->linkage_name ();
c0e70c62 7739 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7740}
7741
14f9c5c9 7742/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7743 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7744 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7745 otherwise return 0. */
7746
14f9c5c9 7747int
d2e4a39e 7748ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7749{
7750 if (type1 == NULL)
7751 return 1;
7752 else if (type0 == NULL)
7753 return 0;
78134374 7754 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7755 return 1;
78134374 7756 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7757 return 0;
7d93a1e0 7758 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7759 return 1;
ad82864c 7760 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7761 return 1;
4c4b4cd2
PH
7762 else if (ada_is_array_descriptor_type (type0)
7763 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7764 return 1;
aeb5907d
JB
7765 else
7766 {
7d93a1e0
SM
7767 const char *type0_name = type0->name ();
7768 const char *type1_name = type1->name ();
aeb5907d
JB
7769
7770 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7771 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7772 return 1;
7773 }
14f9c5c9
AS
7774 return 0;
7775}
7776
e86ca25f
TT
7777/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7778 null. */
4c4b4cd2 7779
0d5cff50 7780const char *
d2e4a39e 7781ada_type_name (struct type *type)
14f9c5c9 7782{
d2e4a39e 7783 if (type == NULL)
14f9c5c9 7784 return NULL;
7d93a1e0 7785 return type->name ();
14f9c5c9
AS
7786}
7787
b4ba55a1
JB
7788/* Search the list of "descriptive" types associated to TYPE for a type
7789 whose name is NAME. */
7790
7791static struct type *
7792find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7793{
931e5bc3 7794 struct type *result, *tmp;
b4ba55a1 7795
c6044dd1
JB
7796 if (ada_ignore_descriptive_types_p)
7797 return NULL;
7798
b4ba55a1
JB
7799 /* If there no descriptive-type info, then there is no parallel type
7800 to be found. */
7801 if (!HAVE_GNAT_AUX_INFO (type))
7802 return NULL;
7803
7804 result = TYPE_DESCRIPTIVE_TYPE (type);
7805 while (result != NULL)
7806 {
0d5cff50 7807 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7808
7809 if (result_name == NULL)
7810 {
7811 warning (_("unexpected null name on descriptive type"));
7812 return NULL;
7813 }
7814
7815 /* If the names match, stop. */
7816 if (strcmp (result_name, name) == 0)
7817 break;
7818
7819 /* Otherwise, look at the next item on the list, if any. */
7820 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7821 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7822 else
7823 tmp = NULL;
7824
7825 /* If not found either, try after having resolved the typedef. */
7826 if (tmp != NULL)
7827 result = tmp;
b4ba55a1 7828 else
931e5bc3 7829 {
f168693b 7830 result = check_typedef (result);
931e5bc3
JG
7831 if (HAVE_GNAT_AUX_INFO (result))
7832 result = TYPE_DESCRIPTIVE_TYPE (result);
7833 else
7834 result = NULL;
7835 }
b4ba55a1
JB
7836 }
7837
7838 /* If we didn't find a match, see whether this is a packed array. With
7839 older compilers, the descriptive type information is either absent or
7840 irrelevant when it comes to packed arrays so the above lookup fails.
7841 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7842 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7843 return ada_find_any_type (name);
7844
7845 return result;
7846}
7847
7848/* Find a parallel type to TYPE with the specified NAME, using the
7849 descriptive type taken from the debugging information, if available,
7850 and otherwise using the (slower) name-based method. */
7851
7852static struct type *
7853ada_find_parallel_type_with_name (struct type *type, const char *name)
7854{
7855 struct type *result = NULL;
7856
7857 if (HAVE_GNAT_AUX_INFO (type))
7858 result = find_parallel_type_by_descriptive_type (type, name);
7859 else
7860 result = ada_find_any_type (name);
7861
7862 return result;
7863}
7864
7865/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7866 SUFFIX to the name of TYPE. */
14f9c5c9 7867
d2e4a39e 7868struct type *
ebf56fd3 7869ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7870{
0d5cff50 7871 char *name;
fe978cb0 7872 const char *type_name = ada_type_name (type);
14f9c5c9 7873 int len;
d2e4a39e 7874
fe978cb0 7875 if (type_name == NULL)
14f9c5c9
AS
7876 return NULL;
7877
fe978cb0 7878 len = strlen (type_name);
14f9c5c9 7879
b4ba55a1 7880 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7881
fe978cb0 7882 strcpy (name, type_name);
14f9c5c9
AS
7883 strcpy (name + len, suffix);
7884
b4ba55a1 7885 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7886}
7887
14f9c5c9 7888/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7889 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7890
d2e4a39e
AS
7891static struct type *
7892dynamic_template_type (struct type *type)
14f9c5c9 7893{
61ee279c 7894 type = ada_check_typedef (type);
14f9c5c9 7895
78134374 7896 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7897 || ada_type_name (type) == NULL)
14f9c5c9 7898 return NULL;
d2e4a39e 7899 else
14f9c5c9
AS
7900 {
7901 int len = strlen (ada_type_name (type));
5b4ee69b 7902
4c4b4cd2
PH
7903 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7904 return type;
14f9c5c9 7905 else
4c4b4cd2 7906 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7907 }
7908}
7909
7910/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7911 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7912
d2e4a39e
AS
7913static int
7914is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7915{
7916 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7917
d2e4a39e 7918 return name != NULL
78134374 7919 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
14f9c5c9
AS
7920 && strstr (name, "___XVL") != NULL;
7921}
7922
4c4b4cd2
PH
7923/* The index of the variant field of TYPE, or -1 if TYPE does not
7924 represent a variant record type. */
14f9c5c9 7925
d2e4a39e 7926static int
4c4b4cd2 7927variant_field_index (struct type *type)
14f9c5c9
AS
7928{
7929 int f;
7930
78134374 7931 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7932 return -1;
7933
1f704f76 7934 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7935 {
7936 if (ada_is_variant_part (type, f))
7937 return f;
7938 }
7939 return -1;
14f9c5c9
AS
7940}
7941
4c4b4cd2
PH
7942/* A record type with no fields. */
7943
d2e4a39e 7944static struct type *
fe978cb0 7945empty_record (struct type *templ)
14f9c5c9 7946{
fe978cb0 7947 struct type *type = alloc_type_copy (templ);
5b4ee69b 7948
67607e24 7949 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7950 INIT_NONE_SPECIFIC (type);
d0e39ea2 7951 type->set_name ("<empty>");
14f9c5c9
AS
7952 TYPE_LENGTH (type) = 0;
7953 return type;
7954}
7955
7956/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7957 the value of type TYPE at VALADDR or ADDRESS (see comments at
7958 the beginning of this section) VAL according to GNAT conventions.
7959 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7960 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7961 an outer-level type (i.e., as opposed to a branch of a variant.) A
7962 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7963 of the variant.
14f9c5c9 7964
4c4b4cd2
PH
7965 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7966 length are not statically known are discarded. As a consequence,
7967 VALADDR, ADDRESS and DVAL0 are ignored.
7968
7969 NOTE: Limitations: For now, we assume that dynamic fields and
7970 variants occupy whole numbers of bytes. However, they need not be
7971 byte-aligned. */
7972
7973struct type *
10a2c479 7974ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7975 const gdb_byte *valaddr,
4c4b4cd2
PH
7976 CORE_ADDR address, struct value *dval0,
7977 int keep_dynamic_fields)
14f9c5c9 7978{
d2e4a39e
AS
7979 struct value *mark = value_mark ();
7980 struct value *dval;
7981 struct type *rtype;
14f9c5c9 7982 int nfields, bit_len;
4c4b4cd2 7983 int variant_field;
14f9c5c9 7984 long off;
d94e4f4f 7985 int fld_bit_len;
14f9c5c9
AS
7986 int f;
7987
4c4b4cd2
PH
7988 /* Compute the number of fields in this record type that are going
7989 to be processed: unless keep_dynamic_fields, this includes only
7990 fields whose position and length are static will be processed. */
7991 if (keep_dynamic_fields)
1f704f76 7992 nfields = type->num_fields ();
4c4b4cd2
PH
7993 else
7994 {
7995 nfields = 0;
1f704f76 7996 while (nfields < type->num_fields ()
4c4b4cd2
PH
7997 && !ada_is_variant_part (type, nfields)
7998 && !is_dynamic_field (type, nfields))
7999 nfields++;
8000 }
8001
e9bb382b 8002 rtype = alloc_type_copy (type);
67607e24 8003 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8004 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8005 rtype->set_num_fields (nfields);
3cabb6b0
SM
8006 rtype->set_fields
8007 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 8008 rtype->set_name (ada_type_name (type));
876cecd0 8009 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8010
d2e4a39e
AS
8011 off = 0;
8012 bit_len = 0;
4c4b4cd2
PH
8013 variant_field = -1;
8014
14f9c5c9
AS
8015 for (f = 0; f < nfields; f += 1)
8016 {
a89febbd 8017 off = align_up (off, field_alignment (type, f))
6c038f32 8018 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 8019 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 8020 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8021
d2e4a39e 8022 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8023 {
8024 variant_field = f;
d94e4f4f 8025 fld_bit_len = 0;
4c4b4cd2 8026 }
14f9c5c9 8027 else if (is_dynamic_field (type, f))
4c4b4cd2 8028 {
284614f0
JB
8029 const gdb_byte *field_valaddr = valaddr;
8030 CORE_ADDR field_address = address;
8031 struct type *field_type =
8032 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8033
4c4b4cd2 8034 if (dval0 == NULL)
b5304971
JG
8035 {
8036 /* rtype's length is computed based on the run-time
8037 value of discriminants. If the discriminants are not
8038 initialized, the type size may be completely bogus and
0963b4bd 8039 GDB may fail to allocate a value for it. So check the
b5304971 8040 size first before creating the value. */
c1b5a1a6 8041 ada_ensure_varsize_limit (rtype);
012370f6
TT
8042 /* Using plain value_from_contents_and_address here
8043 causes problems because we will end up trying to
8044 resolve a type that is currently being
8045 constructed. */
8046 dval = value_from_contents_and_address_unresolved (rtype,
8047 valaddr,
8048 address);
9f1f738a 8049 rtype = value_type (dval);
b5304971 8050 }
4c4b4cd2
PH
8051 else
8052 dval = dval0;
8053
284614f0
JB
8054 /* If the type referenced by this field is an aligner type, we need
8055 to unwrap that aligner type, because its size might not be set.
8056 Keeping the aligner type would cause us to compute the wrong
8057 size for this field, impacting the offset of the all the fields
8058 that follow this one. */
8059 if (ada_is_aligner_type (field_type))
8060 {
8061 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8062
8063 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8064 field_address = cond_offset_target (field_address, field_offset);
8065 field_type = ada_aligned_type (field_type);
8066 }
8067
8068 field_valaddr = cond_offset_host (field_valaddr,
8069 off / TARGET_CHAR_BIT);
8070 field_address = cond_offset_target (field_address,
8071 off / TARGET_CHAR_BIT);
8072
8073 /* Get the fixed type of the field. Note that, in this case,
8074 we do not want to get the real type out of the tag: if
8075 the current field is the parent part of a tagged record,
8076 we will get the tag of the object. Clearly wrong: the real
8077 type of the parent is not the real type of the child. We
8078 would end up in an infinite loop. */
8079 field_type = ada_get_base_type (field_type);
8080 field_type = ada_to_fixed_type (field_type, field_valaddr,
8081 field_address, dval, 0);
27f2a97b
JB
8082 /* If the field size is already larger than the maximum
8083 object size, then the record itself will necessarily
8084 be larger than the maximum object size. We need to make
8085 this check now, because the size might be so ridiculously
8086 large (due to an uninitialized variable in the inferior)
8087 that it would cause an overflow when adding it to the
8088 record size. */
c1b5a1a6 8089 ada_ensure_varsize_limit (field_type);
284614f0
JB
8090
8091 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8092 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8093 /* The multiplication can potentially overflow. But because
8094 the field length has been size-checked just above, and
8095 assuming that the maximum size is a reasonable value,
8096 an overflow should not happen in practice. So rather than
8097 adding overflow recovery code to this already complex code,
8098 we just assume that it's not going to happen. */
d94e4f4f 8099 fld_bit_len =
4c4b4cd2
PH
8100 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8101 }
14f9c5c9 8102 else
4c4b4cd2 8103 {
5ded5331
JB
8104 /* Note: If this field's type is a typedef, it is important
8105 to preserve the typedef layer.
8106
8107 Otherwise, we might be transforming a typedef to a fat
8108 pointer (encoding a pointer to an unconstrained array),
8109 into a basic fat pointer (encoding an unconstrained
8110 array). As both types are implemented using the same
8111 structure, the typedef is the only clue which allows us
8112 to distinguish between the two options. Stripping it
8113 would prevent us from printing this field appropriately. */
8114 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8115 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8116 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8117 fld_bit_len =
4c4b4cd2
PH
8118 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8119 else
5ded5331
JB
8120 {
8121 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8122
8123 /* We need to be careful of typedefs when computing
8124 the length of our field. If this is a typedef,
8125 get the length of the target type, not the length
8126 of the typedef. */
78134374 8127 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8128 field_type = ada_typedef_target_type (field_type);
8129
8130 fld_bit_len =
8131 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8132 }
4c4b4cd2 8133 }
14f9c5c9 8134 if (off + fld_bit_len > bit_len)
4c4b4cd2 8135 bit_len = off + fld_bit_len;
d94e4f4f 8136 off += fld_bit_len;
4c4b4cd2 8137 TYPE_LENGTH (rtype) =
a89febbd 8138 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8139 }
4c4b4cd2
PH
8140
8141 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8142 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8143 the record. This can happen in the presence of representation
8144 clauses. */
8145 if (variant_field >= 0)
8146 {
8147 struct type *branch_type;
8148
8149 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8150
8151 if (dval0 == NULL)
9f1f738a 8152 {
012370f6
TT
8153 /* Using plain value_from_contents_and_address here causes
8154 problems because we will end up trying to resolve a type
8155 that is currently being constructed. */
8156 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8157 address);
9f1f738a
SA
8158 rtype = value_type (dval);
8159 }
4c4b4cd2
PH
8160 else
8161 dval = dval0;
8162
8163 branch_type =
8164 to_fixed_variant_branch_type
8165 (TYPE_FIELD_TYPE (type, variant_field),
8166 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8167 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8168 if (branch_type == NULL)
8169 {
1f704f76 8170 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
80fc5e77 8171 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8172 rtype->set_num_fields (rtype->num_fields () - 1);
4c4b4cd2
PH
8173 }
8174 else
8175 {
8176 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8177 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8178 fld_bit_len =
8179 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8180 TARGET_CHAR_BIT;
8181 if (off + fld_bit_len > bit_len)
8182 bit_len = off + fld_bit_len;
8183 TYPE_LENGTH (rtype) =
a89febbd 8184 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
8185 }
8186 }
8187
714e53ab
PH
8188 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8189 should contain the alignment of that record, which should be a strictly
8190 positive value. If null or negative, then something is wrong, most
8191 probably in the debug info. In that case, we don't round up the size
0963b4bd 8192 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8193 the current RTYPE length might be good enough for our purposes. */
8194 if (TYPE_LENGTH (type) <= 0)
8195 {
7d93a1e0 8196 if (rtype->name ())
cc1defb1 8197 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8198 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8199 else
cc1defb1
KS
8200 warning (_("Invalid type size for <unnamed> detected: %s."),
8201 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8202 }
8203 else
8204 {
a89febbd
TT
8205 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8206 TYPE_LENGTH (type));
714e53ab 8207 }
14f9c5c9
AS
8208
8209 value_free_to_mark (mark);
d2e4a39e 8210 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8211 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8212 return rtype;
8213}
8214
4c4b4cd2
PH
8215/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8216 of 1. */
14f9c5c9 8217
d2e4a39e 8218static struct type *
fc1a4b47 8219template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8220 CORE_ADDR address, struct value *dval0)
8221{
8222 return ada_template_to_fixed_record_type_1 (type, valaddr,
8223 address, dval0, 1);
8224}
8225
8226/* An ordinary record type in which ___XVL-convention fields and
8227 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8228 static approximations, containing all possible fields. Uses
8229 no runtime values. Useless for use in values, but that's OK,
8230 since the results are used only for type determinations. Works on both
8231 structs and unions. Representation note: to save space, we memorize
8232 the result of this function in the TYPE_TARGET_TYPE of the
8233 template type. */
8234
8235static struct type *
8236template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8237{
8238 struct type *type;
8239 int nfields;
8240 int f;
8241
9e195661
PMR
8242 /* No need no do anything if the input type is already fixed. */
8243 if (TYPE_FIXED_INSTANCE (type0))
8244 return type0;
8245
8246 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8247 if (TYPE_TARGET_TYPE (type0) != NULL)
8248 return TYPE_TARGET_TYPE (type0);
8249
9e195661 8250 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8251 type = type0;
1f704f76 8252 nfields = type0->num_fields ();
9e195661
PMR
8253
8254 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8255 recompute all over next time. */
8256 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8257
8258 for (f = 0; f < nfields; f += 1)
8259 {
460efde1 8260 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8261 struct type *new_type;
14f9c5c9 8262
4c4b4cd2 8263 if (is_dynamic_field (type0, f))
460efde1
JB
8264 {
8265 field_type = ada_check_typedef (field_type);
8266 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8267 }
14f9c5c9 8268 else
f192137b 8269 new_type = static_unwrap_type (field_type);
9e195661
PMR
8270
8271 if (new_type != field_type)
8272 {
8273 /* Clone TYPE0 only the first time we get a new field type. */
8274 if (type == type0)
8275 {
8276 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8277 type->set_code (type0->code ());
8ecb59f8 8278 INIT_NONE_SPECIFIC (type);
5e33d5f4 8279 type->set_num_fields (nfields);
3cabb6b0
SM
8280
8281 field *fields =
8282 ((struct field *)
8283 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8284 memcpy (fields, type0->fields (),
9e195661 8285 sizeof (struct field) * nfields);
3cabb6b0
SM
8286 type->set_fields (fields);
8287
d0e39ea2 8288 type->set_name (ada_type_name (type0));
9e195661
PMR
8289 TYPE_FIXED_INSTANCE (type) = 1;
8290 TYPE_LENGTH (type) = 0;
8291 }
8292 TYPE_FIELD_TYPE (type, f) = new_type;
8293 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8294 }
14f9c5c9 8295 }
9e195661 8296
14f9c5c9
AS
8297 return type;
8298}
8299
4c4b4cd2 8300/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8301 whose address in memory is ADDRESS, returns a revision of TYPE,
8302 which should be a non-dynamic-sized record, in which the variant
8303 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8304 for discriminant values in DVAL0, which can be NULL if the record
8305 contains the necessary discriminant values. */
8306
d2e4a39e 8307static struct type *
fc1a4b47 8308to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8309 CORE_ADDR address, struct value *dval0)
14f9c5c9 8310{
d2e4a39e 8311 struct value *mark = value_mark ();
4c4b4cd2 8312 struct value *dval;
d2e4a39e 8313 struct type *rtype;
14f9c5c9 8314 struct type *branch_type;
1f704f76 8315 int nfields = type->num_fields ();
4c4b4cd2 8316 int variant_field = variant_field_index (type);
14f9c5c9 8317
4c4b4cd2 8318 if (variant_field == -1)
14f9c5c9
AS
8319 return type;
8320
4c4b4cd2 8321 if (dval0 == NULL)
9f1f738a
SA
8322 {
8323 dval = value_from_contents_and_address (type, valaddr, address);
8324 type = value_type (dval);
8325 }
4c4b4cd2
PH
8326 else
8327 dval = dval0;
8328
e9bb382b 8329 rtype = alloc_type_copy (type);
67607e24 8330 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8331 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8332 rtype->set_num_fields (nfields);
3cabb6b0
SM
8333
8334 field *fields =
d2e4a39e 8335 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8336 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8337 rtype->set_fields (fields);
8338
d0e39ea2 8339 rtype->set_name (ada_type_name (type));
876cecd0 8340 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8341 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8342
4c4b4cd2
PH
8343 branch_type = to_fixed_variant_branch_type
8344 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8345 cond_offset_host (valaddr,
4c4b4cd2
PH
8346 TYPE_FIELD_BITPOS (type, variant_field)
8347 / TARGET_CHAR_BIT),
d2e4a39e 8348 cond_offset_target (address,
4c4b4cd2
PH
8349 TYPE_FIELD_BITPOS (type, variant_field)
8350 / TARGET_CHAR_BIT), dval);
d2e4a39e 8351 if (branch_type == NULL)
14f9c5c9 8352 {
4c4b4cd2 8353 int f;
5b4ee69b 8354
4c4b4cd2 8355 for (f = variant_field + 1; f < nfields; f += 1)
80fc5e77 8356 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8357 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8358 }
8359 else
8360 {
4c4b4cd2
PH
8361 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8362 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8363 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8364 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8365 }
4c4b4cd2 8366 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8367
4c4b4cd2 8368 value_free_to_mark (mark);
14f9c5c9
AS
8369 return rtype;
8370}
8371
8372/* An ordinary record type (with fixed-length fields) that describes
8373 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8374 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8375 should be in DVAL, a record value; it may be NULL if the object
8376 at ADDR itself contains any necessary discriminant values.
8377 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8378 values from the record are needed. Except in the case that DVAL,
8379 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8380 unchecked) is replaced by a particular branch of the variant.
8381
8382 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8383 is questionable and may be removed. It can arise during the
8384 processing of an unconstrained-array-of-record type where all the
8385 variant branches have exactly the same size. This is because in
8386 such cases, the compiler does not bother to use the XVS convention
8387 when encoding the record. I am currently dubious of this
8388 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8389
d2e4a39e 8390static struct type *
fc1a4b47 8391to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8392 CORE_ADDR address, struct value *dval)
14f9c5c9 8393{
d2e4a39e 8394 struct type *templ_type;
14f9c5c9 8395
876cecd0 8396 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8397 return type0;
8398
d2e4a39e 8399 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8400
8401 if (templ_type != NULL)
8402 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8403 else if (variant_field_index (type0) >= 0)
8404 {
8405 if (dval == NULL && valaddr == NULL && address == 0)
8406 return type0;
8407 return to_record_with_fixed_variant_part (type0, valaddr, address,
8408 dval);
8409 }
14f9c5c9
AS
8410 else
8411 {
876cecd0 8412 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8413 return type0;
8414 }
8415
8416}
8417
8418/* An ordinary record type (with fixed-length fields) that describes
8419 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8420 union type. Any necessary discriminants' values should be in DVAL,
8421 a record value. That is, this routine selects the appropriate
8422 branch of the union at ADDR according to the discriminant value
b1f33ddd 8423 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8424 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8425
d2e4a39e 8426static struct type *
fc1a4b47 8427to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8428 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8429{
8430 int which;
d2e4a39e
AS
8431 struct type *templ_type;
8432 struct type *var_type;
14f9c5c9 8433
78134374 8434 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8435 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8436 else
14f9c5c9
AS
8437 var_type = var_type0;
8438
8439 templ_type = ada_find_parallel_type (var_type, "___XVU");
8440
8441 if (templ_type != NULL)
8442 var_type = templ_type;
8443
b1f33ddd
JB
8444 if (is_unchecked_variant (var_type, value_type (dval)))
8445 return var_type0;
d8af9068 8446 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8447
8448 if (which < 0)
e9bb382b 8449 return empty_record (var_type);
14f9c5c9 8450 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8451 return to_fixed_record_type
d2e4a39e
AS
8452 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8453 valaddr, address, dval);
4c4b4cd2 8454 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8455 return
8456 to_fixed_record_type
8457 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8458 else
8459 return TYPE_FIELD_TYPE (var_type, which);
8460}
8461
8908fca5
JB
8462/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8463 ENCODING_TYPE, a type following the GNAT conventions for discrete
8464 type encodings, only carries redundant information. */
8465
8466static int
8467ada_is_redundant_range_encoding (struct type *range_type,
8468 struct type *encoding_type)
8469{
108d56a4 8470 const char *bounds_str;
8908fca5
JB
8471 int n;
8472 LONGEST lo, hi;
8473
78134374 8474 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8475
78134374
SM
8476 if (get_base_type (range_type)->code ()
8477 != get_base_type (encoding_type)->code ())
005e2509
JB
8478 {
8479 /* The compiler probably used a simple base type to describe
8480 the range type instead of the range's actual base type,
8481 expecting us to get the real base type from the encoding
8482 anyway. In this situation, the encoding cannot be ignored
8483 as redundant. */
8484 return 0;
8485 }
8486
8908fca5
JB
8487 if (is_dynamic_type (range_type))
8488 return 0;
8489
7d93a1e0 8490 if (encoding_type->name () == NULL)
8908fca5
JB
8491 return 0;
8492
7d93a1e0 8493 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8494 if (bounds_str == NULL)
8495 return 0;
8496
8497 n = 8; /* Skip "___XDLU_". */
8498 if (!ada_scan_number (bounds_str, n, &lo, &n))
8499 return 0;
8500 if (TYPE_LOW_BOUND (range_type) != lo)
8501 return 0;
8502
8503 n += 2; /* Skip the "__" separator between the two bounds. */
8504 if (!ada_scan_number (bounds_str, n, &hi, &n))
8505 return 0;
8506 if (TYPE_HIGH_BOUND (range_type) != hi)
8507 return 0;
8508
8509 return 1;
8510}
8511
8512/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8513 a type following the GNAT encoding for describing array type
8514 indices, only carries redundant information. */
8515
8516static int
8517ada_is_redundant_index_type_desc (struct type *array_type,
8518 struct type *desc_type)
8519{
8520 struct type *this_layer = check_typedef (array_type);
8521 int i;
8522
1f704f76 8523 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5
JB
8524 {
8525 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8526 TYPE_FIELD_TYPE (desc_type, i)))
8527 return 0;
8528 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8529 }
8530
8531 return 1;
8532}
8533
14f9c5c9
AS
8534/* Assuming that TYPE0 is an array type describing the type of a value
8535 at ADDR, and that DVAL describes a record containing any
8536 discriminants used in TYPE0, returns a type for the value that
8537 contains no dynamic components (that is, no components whose sizes
8538 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8539 true, gives an error message if the resulting type's size is over
4c4b4cd2 8540 varsize_limit. */
14f9c5c9 8541
d2e4a39e
AS
8542static struct type *
8543to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8544 int ignore_too_big)
14f9c5c9 8545{
d2e4a39e
AS
8546 struct type *index_type_desc;
8547 struct type *result;
ad82864c 8548 int constrained_packed_array_p;
931e5bc3 8549 static const char *xa_suffix = "___XA";
14f9c5c9 8550
b0dd7688 8551 type0 = ada_check_typedef (type0);
284614f0 8552 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8553 return type0;
14f9c5c9 8554
ad82864c
JB
8555 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8556 if (constrained_packed_array_p)
8557 type0 = decode_constrained_packed_array_type (type0);
284614f0 8558
931e5bc3
JG
8559 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8560
8561 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8562 encoding suffixed with 'P' may still be generated. If so,
8563 it should be used to find the XA type. */
8564
8565 if (index_type_desc == NULL)
8566 {
1da0522e 8567 const char *type_name = ada_type_name (type0);
931e5bc3 8568
1da0522e 8569 if (type_name != NULL)
931e5bc3 8570 {
1da0522e 8571 const int len = strlen (type_name);
931e5bc3
JG
8572 char *name = (char *) alloca (len + strlen (xa_suffix));
8573
1da0522e 8574 if (type_name[len - 1] == 'P')
931e5bc3 8575 {
1da0522e 8576 strcpy (name, type_name);
931e5bc3
JG
8577 strcpy (name + len - 1, xa_suffix);
8578 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8579 }
8580 }
8581 }
8582
28c85d6c 8583 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8584 if (index_type_desc != NULL
8585 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8586 {
8587 /* Ignore this ___XA parallel type, as it does not bring any
8588 useful information. This allows us to avoid creating fixed
8589 versions of the array's index types, which would be identical
8590 to the original ones. This, in turn, can also help avoid
8591 the creation of fixed versions of the array itself. */
8592 index_type_desc = NULL;
8593 }
8594
14f9c5c9
AS
8595 if (index_type_desc == NULL)
8596 {
61ee279c 8597 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8598
14f9c5c9 8599 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8600 depend on the contents of the array in properly constructed
8601 debugging data. */
529cad9c
PH
8602 /* Create a fixed version of the array element type.
8603 We're not providing the address of an element here,
e1d5a0d2 8604 and thus the actual object value cannot be inspected to do
529cad9c
PH
8605 the conversion. This should not be a problem, since arrays of
8606 unconstrained objects are not allowed. In particular, all
8607 the elements of an array of a tagged type should all be of
8608 the same type specified in the debugging info. No need to
8609 consult the object tag. */
1ed6ede0 8610 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8611
284614f0
JB
8612 /* Make sure we always create a new array type when dealing with
8613 packed array types, since we're going to fix-up the array
8614 type length and element bitsize a little further down. */
ad82864c 8615 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8616 result = type0;
14f9c5c9 8617 else
e9bb382b 8618 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8619 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8620 }
8621 else
8622 {
8623 int i;
8624 struct type *elt_type0;
8625
8626 elt_type0 = type0;
1f704f76 8627 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
4c4b4cd2 8628 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8629
8630 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8631 depend on the contents of the array in properly constructed
8632 debugging data. */
529cad9c
PH
8633 /* Create a fixed version of the array element type.
8634 We're not providing the address of an element here,
e1d5a0d2 8635 and thus the actual object value cannot be inspected to do
529cad9c
PH
8636 the conversion. This should not be a problem, since arrays of
8637 unconstrained objects are not allowed. In particular, all
8638 the elements of an array of a tagged type should all be of
8639 the same type specified in the debugging info. No need to
8640 consult the object tag. */
1ed6ede0
JB
8641 result =
8642 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8643
8644 elt_type0 = type0;
1f704f76 8645 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8646 {
8647 struct type *range_type =
28c85d6c 8648 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8649
e9bb382b 8650 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8651 result, range_type);
1ce677a4 8652 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8653 }
d2e4a39e 8654 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8655 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8656 }
8657
2e6fda7d
JB
8658 /* We want to preserve the type name. This can be useful when
8659 trying to get the type name of a value that has already been
8660 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8661 result->set_name (type0->name ());
2e6fda7d 8662
ad82864c 8663 if (constrained_packed_array_p)
284614f0
JB
8664 {
8665 /* So far, the resulting type has been created as if the original
8666 type was a regular (non-packed) array type. As a result, the
8667 bitsize of the array elements needs to be set again, and the array
8668 length needs to be recomputed based on that bitsize. */
8669 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8670 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8671
8672 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8673 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8674 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8675 TYPE_LENGTH (result)++;
8676 }
8677
876cecd0 8678 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8679 return result;
d2e4a39e 8680}
14f9c5c9
AS
8681
8682
8683/* A standard type (containing no dynamically sized components)
8684 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8685 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8686 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8687 ADDRESS or in VALADDR contains these discriminants.
8688
1ed6ede0
JB
8689 If CHECK_TAG is not null, in the case of tagged types, this function
8690 attempts to locate the object's tag and use it to compute the actual
8691 type. However, when ADDRESS is null, we cannot use it to determine the
8692 location of the tag, and therefore compute the tagged type's actual type.
8693 So we return the tagged type without consulting the tag. */
529cad9c 8694
f192137b
JB
8695static struct type *
8696ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8697 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8698{
61ee279c 8699 type = ada_check_typedef (type);
8ecb59f8
TT
8700
8701 /* Only un-fixed types need to be handled here. */
8702 if (!HAVE_GNAT_AUX_INFO (type))
8703 return type;
8704
78134374 8705 switch (type->code ())
d2e4a39e
AS
8706 {
8707 default:
14f9c5c9 8708 return type;
d2e4a39e 8709 case TYPE_CODE_STRUCT:
4c4b4cd2 8710 {
76a01679 8711 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8712 struct type *fixed_record_type =
8713 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8714
529cad9c
PH
8715 /* If STATIC_TYPE is a tagged type and we know the object's address,
8716 then we can determine its tag, and compute the object's actual
0963b4bd 8717 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8718 type (the parent part of the record may have dynamic fields
8719 and the way the location of _tag is expressed may depend on
8720 them). */
529cad9c 8721
1ed6ede0 8722 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8723 {
b50d69b5
JG
8724 struct value *tag =
8725 value_tag_from_contents_and_address
8726 (fixed_record_type,
8727 valaddr,
8728 address);
8729 struct type *real_type = type_from_tag (tag);
8730 struct value *obj =
8731 value_from_contents_and_address (fixed_record_type,
8732 valaddr,
8733 address);
9f1f738a 8734 fixed_record_type = value_type (obj);
76a01679 8735 if (real_type != NULL)
b50d69b5
JG
8736 return to_fixed_record_type
8737 (real_type, NULL,
8738 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8739 }
4af88198
JB
8740
8741 /* Check to see if there is a parallel ___XVZ variable.
8742 If there is, then it provides the actual size of our type. */
8743 else if (ada_type_name (fixed_record_type) != NULL)
8744 {
0d5cff50 8745 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8746 char *xvz_name
8747 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8748 bool xvz_found = false;
4af88198
JB
8749 LONGEST size;
8750
88c15c34 8751 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8752 try
eccab96d
JB
8753 {
8754 xvz_found = get_int_var_value (xvz_name, size);
8755 }
230d2906 8756 catch (const gdb_exception_error &except)
eccab96d
JB
8757 {
8758 /* We found the variable, but somehow failed to read
8759 its value. Rethrow the same error, but with a little
8760 bit more information, to help the user understand
8761 what went wrong (Eg: the variable might have been
8762 optimized out). */
8763 throw_error (except.error,
8764 _("unable to read value of %s (%s)"),
3d6e9d23 8765 xvz_name, except.what ());
eccab96d 8766 }
eccab96d
JB
8767
8768 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8769 {
8770 fixed_record_type = copy_type (fixed_record_type);
8771 TYPE_LENGTH (fixed_record_type) = size;
8772
8773 /* The FIXED_RECORD_TYPE may have be a stub. We have
8774 observed this when the debugging info is STABS, and
8775 apparently it is something that is hard to fix.
8776
8777 In practice, we don't need the actual type definition
8778 at all, because the presence of the XVZ variable allows us
8779 to assume that there must be a XVS type as well, which we
8780 should be able to use later, when we need the actual type
8781 definition.
8782
8783 In the meantime, pretend that the "fixed" type we are
8784 returning is NOT a stub, because this can cause trouble
8785 when using this type to create new types targeting it.
8786 Indeed, the associated creation routines often check
8787 whether the target type is a stub and will try to replace
0963b4bd 8788 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8789 might cause the new type to have the wrong size too.
8790 Consider the case of an array, for instance, where the size
8791 of the array is computed from the number of elements in
8792 our array multiplied by the size of its element. */
8793 TYPE_STUB (fixed_record_type) = 0;
8794 }
8795 }
1ed6ede0 8796 return fixed_record_type;
4c4b4cd2 8797 }
d2e4a39e 8798 case TYPE_CODE_ARRAY:
4c4b4cd2 8799 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8800 case TYPE_CODE_UNION:
8801 if (dval == NULL)
4c4b4cd2 8802 return type;
d2e4a39e 8803 else
4c4b4cd2 8804 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8805 }
14f9c5c9
AS
8806}
8807
f192137b
JB
8808/* The same as ada_to_fixed_type_1, except that it preserves the type
8809 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8810
8811 The typedef layer needs be preserved in order to differentiate between
8812 arrays and array pointers when both types are implemented using the same
8813 fat pointer. In the array pointer case, the pointer is encoded as
8814 a typedef of the pointer type. For instance, considering:
8815
8816 type String_Access is access String;
8817 S1 : String_Access := null;
8818
8819 To the debugger, S1 is defined as a typedef of type String. But
8820 to the user, it is a pointer. So if the user tries to print S1,
8821 we should not dereference the array, but print the array address
8822 instead.
8823
8824 If we didn't preserve the typedef layer, we would lose the fact that
8825 the type is to be presented as a pointer (needs de-reference before
8826 being printed). And we would also use the source-level type name. */
f192137b
JB
8827
8828struct type *
8829ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8830 CORE_ADDR address, struct value *dval, int check_tag)
8831
8832{
8833 struct type *fixed_type =
8834 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8835
96dbd2c1
JB
8836 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8837 then preserve the typedef layer.
8838
8839 Implementation note: We can only check the main-type portion of
8840 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8841 from TYPE now returns a type that has the same instance flags
8842 as TYPE. For instance, if TYPE is a "typedef const", and its
8843 target type is a "struct", then the typedef elimination will return
8844 a "const" version of the target type. See check_typedef for more
8845 details about how the typedef layer elimination is done.
8846
8847 brobecker/2010-11-19: It seems to me that the only case where it is
8848 useful to preserve the typedef layer is when dealing with fat pointers.
8849 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8850 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8851 because we call check_typedef/ada_check_typedef pretty much everywhere.
8852 */
78134374 8853 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8854 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8855 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8856 return type;
8857
8858 return fixed_type;
8859}
8860
14f9c5c9 8861/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8862 TYPE0, but based on no runtime data. */
14f9c5c9 8863
d2e4a39e
AS
8864static struct type *
8865to_static_fixed_type (struct type *type0)
14f9c5c9 8866{
d2e4a39e 8867 struct type *type;
14f9c5c9
AS
8868
8869 if (type0 == NULL)
8870 return NULL;
8871
876cecd0 8872 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8873 return type0;
8874
61ee279c 8875 type0 = ada_check_typedef (type0);
d2e4a39e 8876
78134374 8877 switch (type0->code ())
14f9c5c9
AS
8878 {
8879 default:
8880 return type0;
8881 case TYPE_CODE_STRUCT:
8882 type = dynamic_template_type (type0);
d2e4a39e 8883 if (type != NULL)
4c4b4cd2
PH
8884 return template_to_static_fixed_type (type);
8885 else
8886 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8887 case TYPE_CODE_UNION:
8888 type = ada_find_parallel_type (type0, "___XVU");
8889 if (type != NULL)
4c4b4cd2
PH
8890 return template_to_static_fixed_type (type);
8891 else
8892 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8893 }
8894}
8895
4c4b4cd2
PH
8896/* A static approximation of TYPE with all type wrappers removed. */
8897
d2e4a39e
AS
8898static struct type *
8899static_unwrap_type (struct type *type)
14f9c5c9
AS
8900{
8901 if (ada_is_aligner_type (type))
8902 {
61ee279c 8903 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8904 if (ada_type_name (type1) == NULL)
d0e39ea2 8905 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8906
8907 return static_unwrap_type (type1);
8908 }
d2e4a39e 8909 else
14f9c5c9 8910 {
d2e4a39e 8911 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8912
d2e4a39e 8913 if (raw_real_type == type)
4c4b4cd2 8914 return type;
14f9c5c9 8915 else
4c4b4cd2 8916 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8917 }
8918}
8919
8920/* In some cases, incomplete and private types require
4c4b4cd2 8921 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8922 type Foo;
8923 type FooP is access Foo;
8924 V: FooP;
8925 type Foo is array ...;
4c4b4cd2 8926 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8927 cross-references to such types, we instead substitute for FooP a
8928 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8929 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8930
8931/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8932 exists, otherwise TYPE. */
8933
d2e4a39e 8934struct type *
61ee279c 8935ada_check_typedef (struct type *type)
14f9c5c9 8936{
727e3d2e
JB
8937 if (type == NULL)
8938 return NULL;
8939
736ade86
XR
8940 /* If our type is an access to an unconstrained array, which is encoded
8941 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8942 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8943 what allows us to distinguish between fat pointers that represent
8944 array types, and fat pointers that represent array access types
8945 (in both cases, the compiler implements them as fat pointers). */
736ade86 8946 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8947 return type;
8948
f168693b 8949 type = check_typedef (type);
78134374 8950 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 8951 || !TYPE_STUB (type)
7d93a1e0 8952 || type->name () == NULL)
14f9c5c9 8953 return type;
d2e4a39e 8954 else
14f9c5c9 8955 {
7d93a1e0 8956 const char *name = type->name ();
d2e4a39e 8957 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8958
05e522ef
JB
8959 if (type1 == NULL)
8960 return type;
8961
8962 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8963 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8964 types, only for the typedef-to-array types). If that's the case,
8965 strip the typedef layer. */
78134374 8966 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8967 type1 = ada_check_typedef (type1);
8968
8969 return type1;
14f9c5c9
AS
8970 }
8971}
8972
8973/* A value representing the data at VALADDR/ADDRESS as described by
8974 type TYPE0, but with a standard (static-sized) type that correctly
8975 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8976 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8977 creation of struct values]. */
14f9c5c9 8978
4c4b4cd2
PH
8979static struct value *
8980ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8981 struct value *val0)
14f9c5c9 8982{
1ed6ede0 8983 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8984
14f9c5c9
AS
8985 if (type == type0 && val0 != NULL)
8986 return val0;
cc0e770c
JB
8987
8988 if (VALUE_LVAL (val0) != lval_memory)
8989 {
8990 /* Our value does not live in memory; it could be a convenience
8991 variable, for instance. Create a not_lval value using val0's
8992 contents. */
8993 return value_from_contents (type, value_contents (val0));
8994 }
8995
8996 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8997}
8998
8999/* A value representing VAL, but with a standard (static-sized) type
9000 that correctly describes it. Does not necessarily create a new
9001 value. */
9002
0c3acc09 9003struct value *
4c4b4cd2
PH
9004ada_to_fixed_value (struct value *val)
9005{
c48db5ca 9006 val = unwrap_value (val);
d8ce9127 9007 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9008 return val;
14f9c5c9 9009}
d2e4a39e 9010\f
14f9c5c9 9011
14f9c5c9
AS
9012/* Attributes */
9013
4c4b4cd2
PH
9014/* Table mapping attribute numbers to names.
9015 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9016
d2e4a39e 9017static const char *attribute_names[] = {
14f9c5c9
AS
9018 "<?>",
9019
d2e4a39e 9020 "first",
14f9c5c9
AS
9021 "last",
9022 "length",
9023 "image",
14f9c5c9
AS
9024 "max",
9025 "min",
4c4b4cd2
PH
9026 "modulus",
9027 "pos",
9028 "size",
9029 "tag",
14f9c5c9 9030 "val",
14f9c5c9
AS
9031 0
9032};
9033
de93309a 9034static const char *
4c4b4cd2 9035ada_attribute_name (enum exp_opcode n)
14f9c5c9 9036{
4c4b4cd2
PH
9037 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9038 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9039 else
9040 return attribute_names[0];
9041}
9042
4c4b4cd2 9043/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9044
4c4b4cd2
PH
9045static LONGEST
9046pos_atr (struct value *arg)
14f9c5c9 9047{
24209737
PH
9048 struct value *val = coerce_ref (arg);
9049 struct type *type = value_type (val);
aa715135 9050 LONGEST result;
14f9c5c9 9051
d2e4a39e 9052 if (!discrete_type_p (type))
323e0a4a 9053 error (_("'POS only defined on discrete types"));
14f9c5c9 9054
aa715135
JG
9055 if (!discrete_position (type, value_as_long (val), &result))
9056 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9057
aa715135 9058 return result;
4c4b4cd2
PH
9059}
9060
9061static struct value *
3cb382c9 9062value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9063{
3cb382c9 9064 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9065}
9066
4c4b4cd2 9067/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9068
d2e4a39e 9069static struct value *
53a47a3e 9070val_atr (struct type *type, LONGEST val)
14f9c5c9 9071{
53a47a3e 9072 gdb_assert (discrete_type_p (type));
0bc2354b
TT
9073 if (type->code () == TYPE_CODE_RANGE)
9074 type = TYPE_TARGET_TYPE (type);
78134374 9075 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 9076 {
53a47a3e 9077 if (val < 0 || val >= type->num_fields ())
323e0a4a 9078 error (_("argument to 'VAL out of range"));
53a47a3e 9079 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 9080 }
53a47a3e
TT
9081 return value_from_longest (type, val);
9082}
9083
9084static struct value *
9085value_val_atr (struct type *type, struct value *arg)
9086{
9087 if (!discrete_type_p (type))
9088 error (_("'VAL only defined on discrete types"));
9089 if (!integer_type_p (value_type (arg)))
9090 error (_("'VAL requires integral argument"));
9091
9092 return val_atr (type, value_as_long (arg));
14f9c5c9 9093}
14f9c5c9 9094\f
d2e4a39e 9095
4c4b4cd2 9096 /* Evaluation */
14f9c5c9 9097
4c4b4cd2
PH
9098/* True if TYPE appears to be an Ada character type.
9099 [At the moment, this is true only for Character and Wide_Character;
9100 It is a heuristic test that could stand improvement]. */
14f9c5c9 9101
fc913e53 9102bool
d2e4a39e 9103ada_is_character_type (struct type *type)
14f9c5c9 9104{
7b9f71f2
JB
9105 const char *name;
9106
9107 /* If the type code says it's a character, then assume it really is,
9108 and don't check any further. */
78134374 9109 if (type->code () == TYPE_CODE_CHAR)
fc913e53 9110 return true;
7b9f71f2
JB
9111
9112 /* Otherwise, assume it's a character type iff it is a discrete type
9113 with a known character type name. */
9114 name = ada_type_name (type);
9115 return (name != NULL
78134374
SM
9116 && (type->code () == TYPE_CODE_INT
9117 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
9118 && (strcmp (name, "character") == 0
9119 || strcmp (name, "wide_character") == 0
5a517ebd 9120 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9121 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9122}
9123
4c4b4cd2 9124/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9125
fc913e53 9126bool
ebf56fd3 9127ada_is_string_type (struct type *type)
14f9c5c9 9128{
61ee279c 9129 type = ada_check_typedef (type);
d2e4a39e 9130 if (type != NULL
78134374 9131 && type->code () != TYPE_CODE_PTR
76a01679
JB
9132 && (ada_is_simple_array_type (type)
9133 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9134 && ada_array_arity (type) == 1)
9135 {
9136 struct type *elttype = ada_array_element_type (type, 1);
9137
9138 return ada_is_character_type (elttype);
9139 }
d2e4a39e 9140 else
fc913e53 9141 return false;
14f9c5c9
AS
9142}
9143
5bf03f13
JB
9144/* The compiler sometimes provides a parallel XVS type for a given
9145 PAD type. Normally, it is safe to follow the PAD type directly,
9146 but older versions of the compiler have a bug that causes the offset
9147 of its "F" field to be wrong. Following that field in that case
9148 would lead to incorrect results, but this can be worked around
9149 by ignoring the PAD type and using the associated XVS type instead.
9150
9151 Set to True if the debugger should trust the contents of PAD types.
9152 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9153static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9154
9155/* True if TYPE is a struct type introduced by the compiler to force the
9156 alignment of a value. Such types have a single field with a
4c4b4cd2 9157 distinctive name. */
14f9c5c9
AS
9158
9159int
ebf56fd3 9160ada_is_aligner_type (struct type *type)
14f9c5c9 9161{
61ee279c 9162 type = ada_check_typedef (type);
714e53ab 9163
5bf03f13 9164 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9165 return 0;
9166
78134374 9167 return (type->code () == TYPE_CODE_STRUCT
1f704f76 9168 && type->num_fields () == 1
4c4b4cd2 9169 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9170}
9171
9172/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9173 the parallel type. */
14f9c5c9 9174
d2e4a39e
AS
9175struct type *
9176ada_get_base_type (struct type *raw_type)
14f9c5c9 9177{
d2e4a39e
AS
9178 struct type *real_type_namer;
9179 struct type *raw_real_type;
14f9c5c9 9180
78134374 9181 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9182 return raw_type;
9183
284614f0
JB
9184 if (ada_is_aligner_type (raw_type))
9185 /* The encoding specifies that we should always use the aligner type.
9186 So, even if this aligner type has an associated XVS type, we should
9187 simply ignore it.
9188
9189 According to the compiler gurus, an XVS type parallel to an aligner
9190 type may exist because of a stabs limitation. In stabs, aligner
9191 types are empty because the field has a variable-sized type, and
9192 thus cannot actually be used as an aligner type. As a result,
9193 we need the associated parallel XVS type to decode the type.
9194 Since the policy in the compiler is to not change the internal
9195 representation based on the debugging info format, we sometimes
9196 end up having a redundant XVS type parallel to the aligner type. */
9197 return raw_type;
9198
14f9c5c9 9199 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9200 if (real_type_namer == NULL
78134374 9201 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9202 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9203 return raw_type;
9204
78134374 9205 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
f80d3ff2
JB
9206 {
9207 /* This is an older encoding form where the base type needs to be
85102364 9208 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9209 more efficient. */
9210 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9211 if (raw_real_type == NULL)
9212 return raw_type;
9213 else
9214 return raw_real_type;
9215 }
9216
9217 /* The field in our XVS type is a reference to the base type. */
9218 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9219}
14f9c5c9 9220
4c4b4cd2 9221/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9222
d2e4a39e
AS
9223struct type *
9224ada_aligned_type (struct type *type)
14f9c5c9
AS
9225{
9226 if (ada_is_aligner_type (type))
9227 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9228 else
9229 return ada_get_base_type (type);
9230}
9231
9232
9233/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9234 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9235
fc1a4b47
AC
9236const gdb_byte *
9237ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9238{
d2e4a39e 9239 if (ada_is_aligner_type (type))
14f9c5c9 9240 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9241 valaddr +
9242 TYPE_FIELD_BITPOS (type,
9243 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9244 else
9245 return valaddr;
9246}
9247
4c4b4cd2
PH
9248
9249
14f9c5c9 9250/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9251 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9252const char *
9253ada_enum_name (const char *name)
14f9c5c9 9254{
4c4b4cd2
PH
9255 static char *result;
9256 static size_t result_len = 0;
e6a959d6 9257 const char *tmp;
14f9c5c9 9258
4c4b4cd2
PH
9259 /* First, unqualify the enumeration name:
9260 1. Search for the last '.' character. If we find one, then skip
177b42fe 9261 all the preceding characters, the unqualified name starts
76a01679 9262 right after that dot.
4c4b4cd2 9263 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9264 translates dots into "__". Search forward for double underscores,
9265 but stop searching when we hit an overloading suffix, which is
9266 of the form "__" followed by digits. */
4c4b4cd2 9267
c3e5cd34
PH
9268 tmp = strrchr (name, '.');
9269 if (tmp != NULL)
4c4b4cd2
PH
9270 name = tmp + 1;
9271 else
14f9c5c9 9272 {
4c4b4cd2
PH
9273 while ((tmp = strstr (name, "__")) != NULL)
9274 {
9275 if (isdigit (tmp[2]))
9276 break;
9277 else
9278 name = tmp + 2;
9279 }
14f9c5c9
AS
9280 }
9281
9282 if (name[0] == 'Q')
9283 {
14f9c5c9 9284 int v;
5b4ee69b 9285
14f9c5c9 9286 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9287 {
9288 if (sscanf (name + 2, "%x", &v) != 1)
9289 return name;
9290 }
272560b5
TT
9291 else if (((name[1] >= '0' && name[1] <= '9')
9292 || (name[1] >= 'a' && name[1] <= 'z'))
9293 && name[2] == '\0')
9294 {
9295 GROW_VECT (result, result_len, 4);
9296 xsnprintf (result, result_len, "'%c'", name[1]);
9297 return result;
9298 }
14f9c5c9 9299 else
4c4b4cd2 9300 return name;
14f9c5c9 9301
4c4b4cd2 9302 GROW_VECT (result, result_len, 16);
14f9c5c9 9303 if (isascii (v) && isprint (v))
88c15c34 9304 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9305 else if (name[1] == 'U')
88c15c34 9306 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9307 else
88c15c34 9308 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9309
9310 return result;
9311 }
d2e4a39e 9312 else
4c4b4cd2 9313 {
c3e5cd34
PH
9314 tmp = strstr (name, "__");
9315 if (tmp == NULL)
9316 tmp = strstr (name, "$");
9317 if (tmp != NULL)
4c4b4cd2
PH
9318 {
9319 GROW_VECT (result, result_len, tmp - name + 1);
9320 strncpy (result, name, tmp - name);
9321 result[tmp - name] = '\0';
9322 return result;
9323 }
9324
9325 return name;
9326 }
14f9c5c9
AS
9327}
9328
14f9c5c9
AS
9329/* Evaluate the subexpression of EXP starting at *POS as for
9330 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9331 expression. */
14f9c5c9 9332
d2e4a39e
AS
9333static struct value *
9334evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9335{
4b27a620 9336 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9337}
9338
9339/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9340 value it wraps. */
14f9c5c9 9341
d2e4a39e
AS
9342static struct value *
9343unwrap_value (struct value *val)
14f9c5c9 9344{
df407dfe 9345 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9346
14f9c5c9
AS
9347 if (ada_is_aligner_type (type))
9348 {
de4d072f 9349 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9350 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9351
14f9c5c9 9352 if (ada_type_name (val_type) == NULL)
d0e39ea2 9353 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9354
9355 return unwrap_value (v);
9356 }
d2e4a39e 9357 else
14f9c5c9 9358 {
d2e4a39e 9359 struct type *raw_real_type =
61ee279c 9360 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9361
5bf03f13
JB
9362 /* If there is no parallel XVS or XVE type, then the value is
9363 already unwrapped. Return it without further modification. */
9364 if ((type == raw_real_type)
9365 && ada_find_parallel_type (type, "___XVE") == NULL)
9366 return val;
14f9c5c9 9367
d2e4a39e 9368 return
4c4b4cd2
PH
9369 coerce_unspec_val_to_type
9370 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9371 value_address (val),
1ed6ede0 9372 NULL, 1));
14f9c5c9
AS
9373 }
9374}
d2e4a39e
AS
9375
9376static struct value *
50eff16b 9377cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9378{
50eff16b
UW
9379 struct value *scale = ada_scaling_factor (value_type (arg));
9380 arg = value_cast (value_type (scale), arg);
14f9c5c9 9381
50eff16b
UW
9382 arg = value_binop (arg, scale, BINOP_MUL);
9383 return value_cast (type, arg);
14f9c5c9
AS
9384}
9385
d2e4a39e 9386static struct value *
50eff16b 9387cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9388{
50eff16b
UW
9389 if (type == value_type (arg))
9390 return arg;
5b4ee69b 9391
50eff16b 9392 struct value *scale = ada_scaling_factor (type);
b2188a06 9393 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9394 arg = cast_from_fixed (value_type (scale), arg);
9395 else
9396 arg = value_cast (value_type (scale), arg);
9397
9398 arg = value_binop (arg, scale, BINOP_DIV);
9399 return value_cast (type, arg);
14f9c5c9
AS
9400}
9401
d99dcf51
JB
9402/* Given two array types T1 and T2, return nonzero iff both arrays
9403 contain the same number of elements. */
9404
9405static int
9406ada_same_array_size_p (struct type *t1, struct type *t2)
9407{
9408 LONGEST lo1, hi1, lo2, hi2;
9409
9410 /* Get the array bounds in order to verify that the size of
9411 the two arrays match. */
9412 if (!get_array_bounds (t1, &lo1, &hi1)
9413 || !get_array_bounds (t2, &lo2, &hi2))
9414 error (_("unable to determine array bounds"));
9415
9416 /* To make things easier for size comparison, normalize a bit
9417 the case of empty arrays by making sure that the difference
9418 between upper bound and lower bound is always -1. */
9419 if (lo1 > hi1)
9420 hi1 = lo1 - 1;
9421 if (lo2 > hi2)
9422 hi2 = lo2 - 1;
9423
9424 return (hi1 - lo1 == hi2 - lo2);
9425}
9426
9427/* Assuming that VAL is an array of integrals, and TYPE represents
9428 an array with the same number of elements, but with wider integral
9429 elements, return an array "casted" to TYPE. In practice, this
9430 means that the returned array is built by casting each element
9431 of the original array into TYPE's (wider) element type. */
9432
9433static struct value *
9434ada_promote_array_of_integrals (struct type *type, struct value *val)
9435{
9436 struct type *elt_type = TYPE_TARGET_TYPE (type);
9437 LONGEST lo, hi;
9438 struct value *res;
9439 LONGEST i;
9440
9441 /* Verify that both val and type are arrays of scalars, and
9442 that the size of val's elements is smaller than the size
9443 of type's element. */
78134374 9444 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9445 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9446 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9447 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9448 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9449 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9450
9451 if (!get_array_bounds (type, &lo, &hi))
9452 error (_("unable to determine array bounds"));
9453
9454 res = allocate_value (type);
9455
9456 /* Promote each array element. */
9457 for (i = 0; i < hi - lo + 1; i++)
9458 {
9459 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9460
9461 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9462 value_contents_all (elt), TYPE_LENGTH (elt_type));
9463 }
9464
9465 return res;
9466}
9467
4c4b4cd2
PH
9468/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9469 return the converted value. */
9470
d2e4a39e
AS
9471static struct value *
9472coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9473{
df407dfe 9474 struct type *type2 = value_type (val);
5b4ee69b 9475
14f9c5c9
AS
9476 if (type == type2)
9477 return val;
9478
61ee279c
PH
9479 type2 = ada_check_typedef (type2);
9480 type = ada_check_typedef (type);
14f9c5c9 9481
78134374
SM
9482 if (type2->code () == TYPE_CODE_PTR
9483 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9484 {
9485 val = ada_value_ind (val);
df407dfe 9486 type2 = value_type (val);
14f9c5c9
AS
9487 }
9488
78134374
SM
9489 if (type2->code () == TYPE_CODE_ARRAY
9490 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9491 {
d99dcf51
JB
9492 if (!ada_same_array_size_p (type, type2))
9493 error (_("cannot assign arrays of different length"));
9494
9495 if (is_integral_type (TYPE_TARGET_TYPE (type))
9496 && is_integral_type (TYPE_TARGET_TYPE (type2))
9497 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9498 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9499 {
9500 /* Allow implicit promotion of the array elements to
9501 a wider type. */
9502 return ada_promote_array_of_integrals (type, val);
9503 }
9504
9505 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9506 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9507 error (_("Incompatible types in assignment"));
04624583 9508 deprecated_set_value_type (val, type);
14f9c5c9 9509 }
d2e4a39e 9510 return val;
14f9c5c9
AS
9511}
9512
4c4b4cd2
PH
9513static struct value *
9514ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9515{
9516 struct value *val;
9517 struct type *type1, *type2;
9518 LONGEST v, v1, v2;
9519
994b9211
AC
9520 arg1 = coerce_ref (arg1);
9521 arg2 = coerce_ref (arg2);
18af8284
JB
9522 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9523 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9524
78134374
SM
9525 if (type1->code () != TYPE_CODE_INT
9526 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9527 return value_binop (arg1, arg2, op);
9528
76a01679 9529 switch (op)
4c4b4cd2
PH
9530 {
9531 case BINOP_MOD:
9532 case BINOP_DIV:
9533 case BINOP_REM:
9534 break;
9535 default:
9536 return value_binop (arg1, arg2, op);
9537 }
9538
9539 v2 = value_as_long (arg2);
9540 if (v2 == 0)
323e0a4a 9541 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9542
9543 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9544 return value_binop (arg1, arg2, op);
9545
9546 v1 = value_as_long (arg1);
9547 switch (op)
9548 {
9549 case BINOP_DIV:
9550 v = v1 / v2;
76a01679
JB
9551 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9552 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9553 break;
9554 case BINOP_REM:
9555 v = v1 % v2;
76a01679
JB
9556 if (v * v1 < 0)
9557 v -= v2;
4c4b4cd2
PH
9558 break;
9559 default:
9560 /* Should not reach this point. */
9561 v = 0;
9562 }
9563
9564 val = allocate_value (type1);
990a07ab 9565 store_unsigned_integer (value_contents_raw (val),
e17a4113 9566 TYPE_LENGTH (value_type (val)),
34877895 9567 type_byte_order (type1), v);
4c4b4cd2
PH
9568 return val;
9569}
9570
9571static int
9572ada_value_equal (struct value *arg1, struct value *arg2)
9573{
df407dfe
AC
9574 if (ada_is_direct_array_type (value_type (arg1))
9575 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9576 {
79e8fcaa
JB
9577 struct type *arg1_type, *arg2_type;
9578
f58b38bf
JB
9579 /* Automatically dereference any array reference before
9580 we attempt to perform the comparison. */
9581 arg1 = ada_coerce_ref (arg1);
9582 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9583
4c4b4cd2
PH
9584 arg1 = ada_coerce_to_simple_array (arg1);
9585 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9586
9587 arg1_type = ada_check_typedef (value_type (arg1));
9588 arg2_type = ada_check_typedef (value_type (arg2));
9589
78134374
SM
9590 if (arg1_type->code () != TYPE_CODE_ARRAY
9591 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9592 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9593 /* FIXME: The following works only for types whose
76a01679
JB
9594 representations use all bits (no padding or undefined bits)
9595 and do not have user-defined equality. */
79e8fcaa
JB
9596 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9597 && memcmp (value_contents (arg1), value_contents (arg2),
9598 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9599 }
9600 return value_equal (arg1, arg2);
9601}
9602
52ce6436
PH
9603/* Total number of component associations in the aggregate starting at
9604 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9605 OP_AGGREGATE. */
52ce6436
PH
9606
9607static int
9608num_component_specs (struct expression *exp, int pc)
9609{
9610 int n, m, i;
5b4ee69b 9611
52ce6436
PH
9612 m = exp->elts[pc + 1].longconst;
9613 pc += 3;
9614 n = 0;
9615 for (i = 0; i < m; i += 1)
9616 {
9617 switch (exp->elts[pc].opcode)
9618 {
9619 default:
9620 n += 1;
9621 break;
9622 case OP_CHOICES:
9623 n += exp->elts[pc + 1].longconst;
9624 break;
9625 }
9626 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9627 }
9628 return n;
9629}
9630
9631/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9632 component of LHS (a simple array or a record), updating *POS past
9633 the expression, assuming that LHS is contained in CONTAINER. Does
9634 not modify the inferior's memory, nor does it modify LHS (unless
9635 LHS == CONTAINER). */
9636
9637static void
9638assign_component (struct value *container, struct value *lhs, LONGEST index,
9639 struct expression *exp, int *pos)
9640{
9641 struct value *mark = value_mark ();
9642 struct value *elt;
0e2da9f0 9643 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9644
78134374 9645 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9646 {
22601c15
UW
9647 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9648 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9649
52ce6436
PH
9650 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9651 }
9652 else
9653 {
9654 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9655 elt = ada_to_fixed_value (elt);
52ce6436
PH
9656 }
9657
9658 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9659 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9660 else
9661 value_assign_to_component (container, elt,
9662 ada_evaluate_subexp (NULL, exp, pos,
9663 EVAL_NORMAL));
9664
9665 value_free_to_mark (mark);
9666}
9667
9668/* Assuming that LHS represents an lvalue having a record or array
9669 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9670 of that aggregate's value to LHS, advancing *POS past the
9671 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9672 lvalue containing LHS (possibly LHS itself). Does not modify
9673 the inferior's memory, nor does it modify the contents of
0963b4bd 9674 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9675
9676static struct value *
9677assign_aggregate (struct value *container,
9678 struct value *lhs, struct expression *exp,
9679 int *pos, enum noside noside)
9680{
9681 struct type *lhs_type;
9682 int n = exp->elts[*pos+1].longconst;
9683 LONGEST low_index, high_index;
9684 int num_specs;
9685 LONGEST *indices;
9686 int max_indices, num_indices;
52ce6436 9687 int i;
52ce6436
PH
9688
9689 *pos += 3;
9690 if (noside != EVAL_NORMAL)
9691 {
52ce6436
PH
9692 for (i = 0; i < n; i += 1)
9693 ada_evaluate_subexp (NULL, exp, pos, noside);
9694 return container;
9695 }
9696
9697 container = ada_coerce_ref (container);
9698 if (ada_is_direct_array_type (value_type (container)))
9699 container = ada_coerce_to_simple_array (container);
9700 lhs = ada_coerce_ref (lhs);
9701 if (!deprecated_value_modifiable (lhs))
9702 error (_("Left operand of assignment is not a modifiable lvalue."));
9703
0e2da9f0 9704 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9705 if (ada_is_direct_array_type (lhs_type))
9706 {
9707 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9708 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9709 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9710 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9711 }
78134374 9712 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9713 {
9714 low_index = 0;
9715 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9716 }
9717 else
9718 error (_("Left-hand side must be array or record."));
9719
9720 num_specs = num_component_specs (exp, *pos - 3);
9721 max_indices = 4 * num_specs + 4;
8d749320 9722 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9723 indices[0] = indices[1] = low_index - 1;
9724 indices[2] = indices[3] = high_index + 1;
9725 num_indices = 4;
9726
9727 for (i = 0; i < n; i += 1)
9728 {
9729 switch (exp->elts[*pos].opcode)
9730 {
1fbf5ada
JB
9731 case OP_CHOICES:
9732 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9733 &num_indices, max_indices,
9734 low_index, high_index);
9735 break;
9736 case OP_POSITIONAL:
9737 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9738 &num_indices, max_indices,
9739 low_index, high_index);
1fbf5ada
JB
9740 break;
9741 case OP_OTHERS:
9742 if (i != n-1)
9743 error (_("Misplaced 'others' clause"));
9744 aggregate_assign_others (container, lhs, exp, pos, indices,
9745 num_indices, low_index, high_index);
9746 break;
9747 default:
9748 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9749 }
9750 }
9751
9752 return container;
9753}
9754
9755/* Assign into the component of LHS indexed by the OP_POSITIONAL
9756 construct at *POS, updating *POS past the construct, given that
9757 the positions are relative to lower bound LOW, where HIGH is the
9758 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9759 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9760 assign_aggregate. */
52ce6436
PH
9761static void
9762aggregate_assign_positional (struct value *container,
9763 struct value *lhs, struct expression *exp,
9764 int *pos, LONGEST *indices, int *num_indices,
9765 int max_indices, LONGEST low, LONGEST high)
9766{
9767 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9768
9769 if (ind - 1 == high)
e1d5a0d2 9770 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9771 if (ind <= high)
9772 {
9773 add_component_interval (ind, ind, indices, num_indices, max_indices);
9774 *pos += 3;
9775 assign_component (container, lhs, ind, exp, pos);
9776 }
9777 else
9778 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9779}
9780
9781/* Assign into the components of LHS indexed by the OP_CHOICES
9782 construct at *POS, updating *POS past the construct, given that
9783 the allowable indices are LOW..HIGH. Record the indices assigned
9784 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9785 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9786static void
9787aggregate_assign_from_choices (struct value *container,
9788 struct value *lhs, struct expression *exp,
9789 int *pos, LONGEST *indices, int *num_indices,
9790 int max_indices, LONGEST low, LONGEST high)
9791{
9792 int j;
9793 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9794 int choice_pos, expr_pc;
9795 int is_array = ada_is_direct_array_type (value_type (lhs));
9796
9797 choice_pos = *pos += 3;
9798
9799 for (j = 0; j < n_choices; j += 1)
9800 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9801 expr_pc = *pos;
9802 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9803
9804 for (j = 0; j < n_choices; j += 1)
9805 {
9806 LONGEST lower, upper;
9807 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9808
52ce6436
PH
9809 if (op == OP_DISCRETE_RANGE)
9810 {
9811 choice_pos += 1;
9812 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9813 EVAL_NORMAL));
9814 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9815 EVAL_NORMAL));
9816 }
9817 else if (is_array)
9818 {
9819 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9820 EVAL_NORMAL));
9821 upper = lower;
9822 }
9823 else
9824 {
9825 int ind;
0d5cff50 9826 const char *name;
5b4ee69b 9827
52ce6436
PH
9828 switch (op)
9829 {
9830 case OP_NAME:
9831 name = &exp->elts[choice_pos + 2].string;
9832 break;
9833 case OP_VAR_VALUE:
987012b8 9834 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9835 break;
9836 default:
9837 error (_("Invalid record component association."));
9838 }
9839 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9840 ind = 0;
9841 if (! find_struct_field (name, value_type (lhs), 0,
9842 NULL, NULL, NULL, NULL, &ind))
9843 error (_("Unknown component name: %s."), name);
9844 lower = upper = ind;
9845 }
9846
9847 if (lower <= upper && (lower < low || upper > high))
9848 error (_("Index in component association out of bounds."));
9849
9850 add_component_interval (lower, upper, indices, num_indices,
9851 max_indices);
9852 while (lower <= upper)
9853 {
9854 int pos1;
5b4ee69b 9855
52ce6436
PH
9856 pos1 = expr_pc;
9857 assign_component (container, lhs, lower, exp, &pos1);
9858 lower += 1;
9859 }
9860 }
9861}
9862
9863/* Assign the value of the expression in the OP_OTHERS construct in
9864 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9865 have not been previously assigned. The index intervals already assigned
9866 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9867 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9868static void
9869aggregate_assign_others (struct value *container,
9870 struct value *lhs, struct expression *exp,
9871 int *pos, LONGEST *indices, int num_indices,
9872 LONGEST low, LONGEST high)
9873{
9874 int i;
5ce64950 9875 int expr_pc = *pos + 1;
52ce6436
PH
9876
9877 for (i = 0; i < num_indices - 2; i += 2)
9878 {
9879 LONGEST ind;
5b4ee69b 9880
52ce6436
PH
9881 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9882 {
5ce64950 9883 int localpos;
5b4ee69b 9884
5ce64950
MS
9885 localpos = expr_pc;
9886 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9887 }
9888 }
9889 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9890}
9891
9892/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9893 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9894 modifying *SIZE as needed. It is an error if *SIZE exceeds
9895 MAX_SIZE. The resulting intervals do not overlap. */
9896static void
9897add_component_interval (LONGEST low, LONGEST high,
9898 LONGEST* indices, int *size, int max_size)
9899{
9900 int i, j;
5b4ee69b 9901
52ce6436
PH
9902 for (i = 0; i < *size; i += 2) {
9903 if (high >= indices[i] && low <= indices[i + 1])
9904 {
9905 int kh;
5b4ee69b 9906
52ce6436
PH
9907 for (kh = i + 2; kh < *size; kh += 2)
9908 if (high < indices[kh])
9909 break;
9910 if (low < indices[i])
9911 indices[i] = low;
9912 indices[i + 1] = indices[kh - 1];
9913 if (high > indices[i + 1])
9914 indices[i + 1] = high;
9915 memcpy (indices + i + 2, indices + kh, *size - kh);
9916 *size -= kh - i - 2;
9917 return;
9918 }
9919 else if (high < indices[i])
9920 break;
9921 }
9922
9923 if (*size == max_size)
9924 error (_("Internal error: miscounted aggregate components."));
9925 *size += 2;
9926 for (j = *size-1; j >= i+2; j -= 1)
9927 indices[j] = indices[j - 2];
9928 indices[i] = low;
9929 indices[i + 1] = high;
9930}
9931
6e48bd2c
JB
9932/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9933 is different. */
9934
9935static struct value *
b7e22850 9936ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9937{
9938 if (type == ada_check_typedef (value_type (arg2)))
9939 return arg2;
9940
b2188a06 9941 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 9942 return cast_to_fixed (type, arg2);
6e48bd2c 9943
b2188a06 9944 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 9945 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9946
9947 return value_cast (type, arg2);
9948}
9949
284614f0
JB
9950/* Evaluating Ada expressions, and printing their result.
9951 ------------------------------------------------------
9952
21649b50
JB
9953 1. Introduction:
9954 ----------------
9955
284614f0
JB
9956 We usually evaluate an Ada expression in order to print its value.
9957 We also evaluate an expression in order to print its type, which
9958 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9959 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9960 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9961 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9962 similar.
9963
9964 Evaluating expressions is a little more complicated for Ada entities
9965 than it is for entities in languages such as C. The main reason for
9966 this is that Ada provides types whose definition might be dynamic.
9967 One example of such types is variant records. Or another example
9968 would be an array whose bounds can only be known at run time.
9969
9970 The following description is a general guide as to what should be
9971 done (and what should NOT be done) in order to evaluate an expression
9972 involving such types, and when. This does not cover how the semantic
9973 information is encoded by GNAT as this is covered separatly. For the
9974 document used as the reference for the GNAT encoding, see exp_dbug.ads
9975 in the GNAT sources.
9976
9977 Ideally, we should embed each part of this description next to its
9978 associated code. Unfortunately, the amount of code is so vast right
9979 now that it's hard to see whether the code handling a particular
9980 situation might be duplicated or not. One day, when the code is
9981 cleaned up, this guide might become redundant with the comments
9982 inserted in the code, and we might want to remove it.
9983
21649b50
JB
9984 2. ``Fixing'' an Entity, the Simple Case:
9985 -----------------------------------------
9986
284614f0
JB
9987 When evaluating Ada expressions, the tricky issue is that they may
9988 reference entities whose type contents and size are not statically
9989 known. Consider for instance a variant record:
9990
9991 type Rec (Empty : Boolean := True) is record
9992 case Empty is
9993 when True => null;
9994 when False => Value : Integer;
9995 end case;
9996 end record;
9997 Yes : Rec := (Empty => False, Value => 1);
9998 No : Rec := (empty => True);
9999
10000 The size and contents of that record depends on the value of the
10001 descriminant (Rec.Empty). At this point, neither the debugging
10002 information nor the associated type structure in GDB are able to
10003 express such dynamic types. So what the debugger does is to create
10004 "fixed" versions of the type that applies to the specific object.
30baf67b 10005 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10006 which means creating its associated fixed type.
10007
10008 Example: when printing the value of variable "Yes" above, its fixed
10009 type would look like this:
10010
10011 type Rec is record
10012 Empty : Boolean;
10013 Value : Integer;
10014 end record;
10015
10016 On the other hand, if we printed the value of "No", its fixed type
10017 would become:
10018
10019 type Rec is record
10020 Empty : Boolean;
10021 end record;
10022
10023 Things become a little more complicated when trying to fix an entity
10024 with a dynamic type that directly contains another dynamic type,
10025 such as an array of variant records, for instance. There are
10026 two possible cases: Arrays, and records.
10027
21649b50
JB
10028 3. ``Fixing'' Arrays:
10029 ---------------------
10030
10031 The type structure in GDB describes an array in terms of its bounds,
10032 and the type of its elements. By design, all elements in the array
10033 have the same type and we cannot represent an array of variant elements
10034 using the current type structure in GDB. When fixing an array,
10035 we cannot fix the array element, as we would potentially need one
10036 fixed type per element of the array. As a result, the best we can do
10037 when fixing an array is to produce an array whose bounds and size
10038 are correct (allowing us to read it from memory), but without having
10039 touched its element type. Fixing each element will be done later,
10040 when (if) necessary.
10041
10042 Arrays are a little simpler to handle than records, because the same
10043 amount of memory is allocated for each element of the array, even if
1b536f04 10044 the amount of space actually used by each element differs from element
21649b50 10045 to element. Consider for instance the following array of type Rec:
284614f0
JB
10046
10047 type Rec_Array is array (1 .. 2) of Rec;
10048
1b536f04
JB
10049 The actual amount of memory occupied by each element might be different
10050 from element to element, depending on the value of their discriminant.
21649b50 10051 But the amount of space reserved for each element in the array remains
1b536f04 10052 fixed regardless. So we simply need to compute that size using
21649b50
JB
10053 the debugging information available, from which we can then determine
10054 the array size (we multiply the number of elements of the array by
10055 the size of each element).
10056
10057 The simplest case is when we have an array of a constrained element
10058 type. For instance, consider the following type declarations:
10059
10060 type Bounded_String (Max_Size : Integer) is
10061 Length : Integer;
10062 Buffer : String (1 .. Max_Size);
10063 end record;
10064 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10065
10066 In this case, the compiler describes the array as an array of
10067 variable-size elements (identified by its XVS suffix) for which
10068 the size can be read in the parallel XVZ variable.
10069
10070 In the case of an array of an unconstrained element type, the compiler
10071 wraps the array element inside a private PAD type. This type should not
10072 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10073 that we also use the adjective "aligner" in our code to designate
10074 these wrapper types.
10075
1b536f04 10076 In some cases, the size allocated for each element is statically
21649b50
JB
10077 known. In that case, the PAD type already has the correct size,
10078 and the array element should remain unfixed.
10079
10080 But there are cases when this size is not statically known.
10081 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10082
10083 type Dynamic is array (1 .. Five) of Integer;
10084 type Wrapper (Has_Length : Boolean := False) is record
10085 Data : Dynamic;
10086 case Has_Length is
10087 when True => Length : Integer;
10088 when False => null;
10089 end case;
10090 end record;
10091 type Wrapper_Array is array (1 .. 2) of Wrapper;
10092
10093 Hello : Wrapper_Array := (others => (Has_Length => True,
10094 Data => (others => 17),
10095 Length => 1));
10096
10097
10098 The debugging info would describe variable Hello as being an
10099 array of a PAD type. The size of that PAD type is not statically
10100 known, but can be determined using a parallel XVZ variable.
10101 In that case, a copy of the PAD type with the correct size should
10102 be used for the fixed array.
10103
21649b50
JB
10104 3. ``Fixing'' record type objects:
10105 ----------------------------------
10106
10107 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10108 record types. In this case, in order to compute the associated
10109 fixed type, we need to determine the size and offset of each of
10110 its components. This, in turn, requires us to compute the fixed
10111 type of each of these components.
10112
10113 Consider for instance the example:
10114
10115 type Bounded_String (Max_Size : Natural) is record
10116 Str : String (1 .. Max_Size);
10117 Length : Natural;
10118 end record;
10119 My_String : Bounded_String (Max_Size => 10);
10120
10121 In that case, the position of field "Length" depends on the size
10122 of field Str, which itself depends on the value of the Max_Size
21649b50 10123 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10124 we need to fix the type of field Str. Therefore, fixing a variant
10125 record requires us to fix each of its components.
10126
10127 However, if a component does not have a dynamic size, the component
10128 should not be fixed. In particular, fields that use a PAD type
10129 should not fixed. Here is an example where this might happen
10130 (assuming type Rec above):
10131
10132 type Container (Big : Boolean) is record
10133 First : Rec;
10134 After : Integer;
10135 case Big is
10136 when True => Another : Integer;
10137 when False => null;
10138 end case;
10139 end record;
10140 My_Container : Container := (Big => False,
10141 First => (Empty => True),
10142 After => 42);
10143
10144 In that example, the compiler creates a PAD type for component First,
10145 whose size is constant, and then positions the component After just
10146 right after it. The offset of component After is therefore constant
10147 in this case.
10148
10149 The debugger computes the position of each field based on an algorithm
10150 that uses, among other things, the actual position and size of the field
21649b50
JB
10151 preceding it. Let's now imagine that the user is trying to print
10152 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10153 end up computing the offset of field After based on the size of the
10154 fixed version of field First. And since in our example First has
10155 only one actual field, the size of the fixed type is actually smaller
10156 than the amount of space allocated to that field, and thus we would
10157 compute the wrong offset of field After.
10158
21649b50
JB
10159 To make things more complicated, we need to watch out for dynamic
10160 components of variant records (identified by the ___XVL suffix in
10161 the component name). Even if the target type is a PAD type, the size
10162 of that type might not be statically known. So the PAD type needs
10163 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10164 we might end up with the wrong size for our component. This can be
10165 observed with the following type declarations:
284614f0
JB
10166
10167 type Octal is new Integer range 0 .. 7;
10168 type Octal_Array is array (Positive range <>) of Octal;
10169 pragma Pack (Octal_Array);
10170
10171 type Octal_Buffer (Size : Positive) is record
10172 Buffer : Octal_Array (1 .. Size);
10173 Length : Integer;
10174 end record;
10175
10176 In that case, Buffer is a PAD type whose size is unset and needs
10177 to be computed by fixing the unwrapped type.
10178
21649b50
JB
10179 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10180 ----------------------------------------------------------
10181
10182 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10183 thus far, be actually fixed?
10184
10185 The answer is: Only when referencing that element. For instance
10186 when selecting one component of a record, this specific component
10187 should be fixed at that point in time. Or when printing the value
10188 of a record, each component should be fixed before its value gets
10189 printed. Similarly for arrays, the element of the array should be
10190 fixed when printing each element of the array, or when extracting
10191 one element out of that array. On the other hand, fixing should
10192 not be performed on the elements when taking a slice of an array!
10193
31432a67 10194 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10195 size of each field is that we end up also miscomputing the size
10196 of the containing type. This can have adverse results when computing
10197 the value of an entity. GDB fetches the value of an entity based
10198 on the size of its type, and thus a wrong size causes GDB to fetch
10199 the wrong amount of memory. In the case where the computed size is
10200 too small, GDB fetches too little data to print the value of our
31432a67 10201 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10202 past the buffer containing the data =:-o. */
10203
ced9779b
JB
10204/* Evaluate a subexpression of EXP, at index *POS, and return a value
10205 for that subexpression cast to TO_TYPE. Advance *POS over the
10206 subexpression. */
10207
10208static value *
10209ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10210 enum noside noside, struct type *to_type)
10211{
10212 int pc = *pos;
10213
10214 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10215 || exp->elts[pc].opcode == OP_VAR_VALUE)
10216 {
10217 (*pos) += 4;
10218
10219 value *val;
10220 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10221 {
10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10223 return value_zero (to_type, not_lval);
10224
10225 val = evaluate_var_msym_value (noside,
10226 exp->elts[pc + 1].objfile,
10227 exp->elts[pc + 2].msymbol);
10228 }
10229 else
10230 val = evaluate_var_value (noside,
10231 exp->elts[pc + 1].block,
10232 exp->elts[pc + 2].symbol);
10233
10234 if (noside == EVAL_SKIP)
10235 return eval_skip_value (exp);
10236
10237 val = ada_value_cast (to_type, val);
10238
10239 /* Follow the Ada language semantics that do not allow taking
10240 an address of the result of a cast (view conversion in Ada). */
10241 if (VALUE_LVAL (val) == lval_memory)
10242 {
10243 if (value_lazy (val))
10244 value_fetch_lazy (val);
10245 VALUE_LVAL (val) = not_lval;
10246 }
10247 return val;
10248 }
10249
10250 value *val = evaluate_subexp (to_type, exp, pos, noside);
10251 if (noside == EVAL_SKIP)
10252 return eval_skip_value (exp);
10253 return ada_value_cast (to_type, val);
10254}
10255
284614f0
JB
10256/* Implement the evaluate_exp routine in the exp_descriptor structure
10257 for the Ada language. */
10258
52ce6436 10259static struct value *
ebf56fd3 10260ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10261 int *pos, enum noside noside)
14f9c5c9
AS
10262{
10263 enum exp_opcode op;
b5385fc0 10264 int tem;
14f9c5c9 10265 int pc;
5ec18f2b 10266 int preeval_pos;
14f9c5c9
AS
10267 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10268 struct type *type;
52ce6436 10269 int nargs, oplen;
d2e4a39e 10270 struct value **argvec;
14f9c5c9 10271
d2e4a39e
AS
10272 pc = *pos;
10273 *pos += 1;
14f9c5c9
AS
10274 op = exp->elts[pc].opcode;
10275
d2e4a39e 10276 switch (op)
14f9c5c9
AS
10277 {
10278 default:
10279 *pos -= 1;
6e48bd2c 10280 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10281
10282 if (noside == EVAL_NORMAL)
10283 arg1 = unwrap_value (arg1);
6e48bd2c 10284
edd079d9 10285 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10286 then we need to perform the conversion manually, because
10287 evaluate_subexp_standard doesn't do it. This conversion is
10288 necessary in Ada because the different kinds of float/fixed
10289 types in Ada have different representations.
10290
10291 Similarly, we need to perform the conversion from OP_LONG
10292 ourselves. */
edd079d9 10293 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10294 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10295
10296 return arg1;
4c4b4cd2
PH
10297
10298 case OP_STRING:
10299 {
76a01679 10300 struct value *result;
5b4ee69b 10301
76a01679
JB
10302 *pos -= 1;
10303 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10304 /* The result type will have code OP_STRING, bashed there from
10305 OP_ARRAY. Bash it back. */
78134374 10306 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10307 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10308 return result;
4c4b4cd2 10309 }
14f9c5c9
AS
10310
10311 case UNOP_CAST:
10312 (*pos) += 2;
10313 type = exp->elts[pc + 1].type;
ced9779b 10314 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10315
4c4b4cd2
PH
10316 case UNOP_QUAL:
10317 (*pos) += 2;
10318 type = exp->elts[pc + 1].type;
10319 return ada_evaluate_subexp (type, exp, pos, noside);
10320
14f9c5c9
AS
10321 case BINOP_ASSIGN:
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10323 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10324 {
10325 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10326 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10327 return arg1;
10328 return ada_value_assign (arg1, arg1);
10329 }
003f3813
JB
10330 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10331 except if the lhs of our assignment is a convenience variable.
10332 In the case of assigning to a convenience variable, the lhs
10333 should be exactly the result of the evaluation of the rhs. */
10334 type = value_type (arg1);
10335 if (VALUE_LVAL (arg1) == lval_internalvar)
10336 type = NULL;
10337 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10338 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10339 return arg1;
f411722c
TT
10340 if (VALUE_LVAL (arg1) == lval_internalvar)
10341 {
10342 /* Nothing. */
10343 }
b2188a06 10344 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10345 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10346 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10347 error
323e0a4a 10348 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10349 else
df407dfe 10350 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10351 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10352
10353 case BINOP_ADD:
10354 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10355 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10356 if (noside == EVAL_SKIP)
4c4b4cd2 10357 goto nosideret;
78134374 10358 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10359 return (value_from_longest
10360 (value_type (arg1),
10361 value_as_long (arg1) + value_as_long (arg2)));
78134374 10362 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10363 return (value_from_longest
10364 (value_type (arg2),
10365 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10366 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10367 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10368 && value_type (arg1) != value_type (arg2))
323e0a4a 10369 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10370 /* Do the addition, and cast the result to the type of the first
10371 argument. We cannot cast the result to a reference type, so if
10372 ARG1 is a reference type, find its underlying type. */
10373 type = value_type (arg1);
78134374 10374 while (type->code () == TYPE_CODE_REF)
b7789565 10375 type = TYPE_TARGET_TYPE (type);
f44316fa 10376 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10377 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10378
10379 case BINOP_SUB:
10380 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10381 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10382 if (noside == EVAL_SKIP)
4c4b4cd2 10383 goto nosideret;
78134374 10384 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10385 return (value_from_longest
10386 (value_type (arg1),
10387 value_as_long (arg1) - value_as_long (arg2)));
78134374 10388 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10389 return (value_from_longest
10390 (value_type (arg2),
10391 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10392 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10393 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10394 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10395 error (_("Operands of fixed-point subtraction "
10396 "must have the same type"));
b7789565
JB
10397 /* Do the substraction, and cast the result to the type of the first
10398 argument. We cannot cast the result to a reference type, so if
10399 ARG1 is a reference type, find its underlying type. */
10400 type = value_type (arg1);
78134374 10401 while (type->code () == TYPE_CODE_REF)
b7789565 10402 type = TYPE_TARGET_TYPE (type);
f44316fa 10403 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10404 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10405
10406 case BINOP_MUL:
10407 case BINOP_DIV:
e1578042
JB
10408 case BINOP_REM:
10409 case BINOP_MOD:
14f9c5c9
AS
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 if (noside == EVAL_SKIP)
4c4b4cd2 10413 goto nosideret;
e1578042 10414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10415 {
10416 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10417 return value_zero (value_type (arg1), not_lval);
10418 }
14f9c5c9 10419 else
4c4b4cd2 10420 {
a53b7a21 10421 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10422 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10423 arg1 = cast_from_fixed (type, arg1);
b2188a06 10424 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10425 arg2 = cast_from_fixed (type, arg2);
f44316fa 10426 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10427 return ada_value_binop (arg1, arg2, op);
10428 }
10429
4c4b4cd2
PH
10430 case BINOP_EQUAL:
10431 case BINOP_NOTEQUAL:
14f9c5c9 10432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10433 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10434 if (noside == EVAL_SKIP)
76a01679 10435 goto nosideret;
4c4b4cd2 10436 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10437 tem = 0;
4c4b4cd2 10438 else
f44316fa
UW
10439 {
10440 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10441 tem = ada_value_equal (arg1, arg2);
10442 }
4c4b4cd2 10443 if (op == BINOP_NOTEQUAL)
76a01679 10444 tem = !tem;
fbb06eb1
UW
10445 type = language_bool_type (exp->language_defn, exp->gdbarch);
10446 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10447
10448 case UNOP_NEG:
10449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10450 if (noside == EVAL_SKIP)
10451 goto nosideret;
b2188a06 10452 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10453 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10454 else
f44316fa
UW
10455 {
10456 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10457 return value_neg (arg1);
10458 }
4c4b4cd2 10459
2330c6c6
JB
10460 case BINOP_LOGICAL_AND:
10461 case BINOP_LOGICAL_OR:
10462 case UNOP_LOGICAL_NOT:
000d5124
JB
10463 {
10464 struct value *val;
10465
10466 *pos -= 1;
10467 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10468 type = language_bool_type (exp->language_defn, exp->gdbarch);
10469 return value_cast (type, val);
000d5124 10470 }
2330c6c6
JB
10471
10472 case BINOP_BITWISE_AND:
10473 case BINOP_BITWISE_IOR:
10474 case BINOP_BITWISE_XOR:
000d5124
JB
10475 {
10476 struct value *val;
10477
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10479 *pos = pc;
10480 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10481
10482 return value_cast (value_type (arg1), val);
10483 }
2330c6c6 10484
14f9c5c9
AS
10485 case OP_VAR_VALUE:
10486 *pos -= 1;
6799def4 10487
14f9c5c9 10488 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10489 {
10490 *pos += 4;
10491 goto nosideret;
10492 }
da5c522f
JB
10493
10494 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10495 /* Only encountered when an unresolved symbol occurs in a
10496 context other than a function call, in which case, it is
52ce6436 10497 invalid. */
323e0a4a 10498 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10499 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10500
10501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10502 {
0c1f74cf 10503 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10504 /* Check to see if this is a tagged type. We also need to handle
10505 the case where the type is a reference to a tagged type, but
10506 we have to be careful to exclude pointers to tagged types.
10507 The latter should be shown as usual (as a pointer), whereas
10508 a reference should mostly be transparent to the user. */
10509 if (ada_is_tagged_type (type, 0)
78134374 10510 || (type->code () == TYPE_CODE_REF
31dbc1c5 10511 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10512 {
10513 /* Tagged types are a little special in the fact that the real
10514 type is dynamic and can only be determined by inspecting the
10515 object's tag. This means that we need to get the object's
10516 value first (EVAL_NORMAL) and then extract the actual object
10517 type from its tag.
10518
10519 Note that we cannot skip the final step where we extract
10520 the object type from its tag, because the EVAL_NORMAL phase
10521 results in dynamic components being resolved into fixed ones.
10522 This can cause problems when trying to print the type
10523 description of tagged types whose parent has a dynamic size:
10524 We use the type name of the "_parent" component in order
10525 to print the name of the ancestor type in the type description.
10526 If that component had a dynamic size, the resolution into
10527 a fixed type would result in the loss of that type name,
10528 thus preventing us from printing the name of the ancestor
10529 type in the type description. */
10530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10531
78134374 10532 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10533 {
10534 struct type *actual_type;
10535
10536 actual_type = type_from_tag (ada_value_tag (arg1));
10537 if (actual_type == NULL)
10538 /* If, for some reason, we were unable to determine
10539 the actual type from the tag, then use the static
10540 approximation that we just computed as a fallback.
10541 This can happen if the debugging information is
10542 incomplete, for instance. */
10543 actual_type = type;
10544 return value_zero (actual_type, not_lval);
10545 }
10546 else
10547 {
10548 /* In the case of a ref, ada_coerce_ref takes care
10549 of determining the actual type. But the evaluation
10550 should return a ref as it should be valid to ask
10551 for its address; so rebuild a ref after coerce. */
10552 arg1 = ada_coerce_ref (arg1);
a65cfae5 10553 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10554 }
10555 }
0c1f74cf 10556
84754697
JB
10557 /* Records and unions for which GNAT encodings have been
10558 generated need to be statically fixed as well.
10559 Otherwise, non-static fixing produces a type where
10560 all dynamic properties are removed, which prevents "ptype"
10561 from being able to completely describe the type.
10562 For instance, a case statement in a variant record would be
10563 replaced by the relevant components based on the actual
10564 value of the discriminants. */
78134374 10565 if ((type->code () == TYPE_CODE_STRUCT
84754697 10566 && dynamic_template_type (type) != NULL)
78134374 10567 || (type->code () == TYPE_CODE_UNION
84754697
JB
10568 && ada_find_parallel_type (type, "___XVU") != NULL))
10569 {
10570 *pos += 4;
10571 return value_zero (to_static_fixed_type (type), not_lval);
10572 }
4c4b4cd2 10573 }
da5c522f
JB
10574
10575 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10576 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10577
10578 case OP_FUNCALL:
10579 (*pos) += 2;
10580
10581 /* Allocate arg vector, including space for the function to be
10582 called in argvec[0] and a terminating NULL. */
10583 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10584 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10585
10586 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10587 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10588 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10589 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10590 else
10591 {
10592 for (tem = 0; tem <= nargs; tem += 1)
10593 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10594 argvec[tem] = 0;
10595
10596 if (noside == EVAL_SKIP)
10597 goto nosideret;
10598 }
10599
ad82864c
JB
10600 if (ada_is_constrained_packed_array_type
10601 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10602 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10603 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10604 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10605 /* This is a packed array that has already been fixed, and
10606 therefore already coerced to a simple array. Nothing further
10607 to do. */
10608 ;
78134374 10609 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10610 {
10611 /* Make sure we dereference references so that all the code below
10612 feels like it's really handling the referenced value. Wrapping
10613 types (for alignment) may be there, so make sure we strip them as
10614 well. */
10615 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10616 }
78134374 10617 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10618 && VALUE_LVAL (argvec[0]) == lval_memory)
10619 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10620
df407dfe 10621 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10622
10623 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10624 them. So, if this is an array typedef (encoding use for array
10625 access types encoded as fat pointers), strip it now. */
78134374 10626 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10627 type = ada_typedef_target_type (type);
10628
78134374 10629 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10630 {
78134374 10631 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10632 {
10633 case TYPE_CODE_FUNC:
61ee279c 10634 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10635 break;
10636 case TYPE_CODE_ARRAY:
10637 break;
10638 case TYPE_CODE_STRUCT:
10639 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10640 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10641 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10642 break;
10643 default:
323e0a4a 10644 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10645 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10646 break;
10647 }
10648 }
10649
78134374 10650 switch (type->code ())
4c4b4cd2
PH
10651 {
10652 case TYPE_CODE_FUNC:
10653 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10654 {
7022349d
PA
10655 if (TYPE_TARGET_TYPE (type) == NULL)
10656 error_call_unknown_return_type (NULL);
10657 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10658 }
e71585ff
PA
10659 return call_function_by_hand (argvec[0], NULL,
10660 gdb::make_array_view (argvec + 1,
10661 nargs));
c8ea1972
PH
10662 case TYPE_CODE_INTERNAL_FUNCTION:
10663 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10664 /* We don't know anything about what the internal
10665 function might return, but we have to return
10666 something. */
10667 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10668 not_lval);
10669 else
10670 return call_internal_function (exp->gdbarch, exp->language_defn,
10671 argvec[0], nargs, argvec + 1);
10672
4c4b4cd2
PH
10673 case TYPE_CODE_STRUCT:
10674 {
10675 int arity;
10676
4c4b4cd2
PH
10677 arity = ada_array_arity (type);
10678 type = ada_array_element_type (type, nargs);
10679 if (type == NULL)
323e0a4a 10680 error (_("cannot subscript or call a record"));
4c4b4cd2 10681 if (arity != nargs)
323e0a4a 10682 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10683 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10684 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10685 return
10686 unwrap_value (ada_value_subscript
10687 (argvec[0], nargs, argvec + 1));
10688 }
10689 case TYPE_CODE_ARRAY:
10690 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10691 {
10692 type = ada_array_element_type (type, nargs);
10693 if (type == NULL)
323e0a4a 10694 error (_("element type of array unknown"));
4c4b4cd2 10695 else
0a07e705 10696 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10697 }
10698 return
10699 unwrap_value (ada_value_subscript
10700 (ada_coerce_to_simple_array (argvec[0]),
10701 nargs, argvec + 1));
10702 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10704 {
deede10c 10705 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10706 type = ada_array_element_type (type, nargs);
10707 if (type == NULL)
323e0a4a 10708 error (_("element type of array unknown"));
4c4b4cd2 10709 else
0a07e705 10710 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10711 }
10712 return
deede10c
JB
10713 unwrap_value (ada_value_ptr_subscript (argvec[0],
10714 nargs, argvec + 1));
4c4b4cd2
PH
10715
10716 default:
e1d5a0d2
PH
10717 error (_("Attempt to index or call something other than an "
10718 "array or function"));
4c4b4cd2
PH
10719 }
10720
10721 case TERNOP_SLICE:
10722 {
10723 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 struct value *low_bound_val =
10725 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10726 struct value *high_bound_val =
10727 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 LONGEST low_bound;
10729 LONGEST high_bound;
5b4ee69b 10730
994b9211
AC
10731 low_bound_val = coerce_ref (low_bound_val);
10732 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10733 low_bound = value_as_long (low_bound_val);
10734 high_bound = value_as_long (high_bound_val);
963a6417 10735
4c4b4cd2
PH
10736 if (noside == EVAL_SKIP)
10737 goto nosideret;
10738
4c4b4cd2
PH
10739 /* If this is a reference to an aligner type, then remove all
10740 the aligners. */
78134374 10741 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10742 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10743 TYPE_TARGET_TYPE (value_type (array)) =
10744 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10745
ad82864c 10746 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10747 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10748
10749 /* If this is a reference to an array or an array lvalue,
10750 convert to a pointer. */
78134374
SM
10751 if (value_type (array)->code () == TYPE_CODE_REF
10752 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10753 && VALUE_LVAL (array) == lval_memory))
10754 array = value_addr (array);
10755
1265e4aa 10756 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10757 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10758 (value_type (array))))
bff8c71f
TT
10759 return empty_array (ada_type_of_array (array, 0), low_bound,
10760 high_bound);
4c4b4cd2
PH
10761
10762 array = ada_coerce_to_simple_array_ptr (array);
10763
714e53ab
PH
10764 /* If we have more than one level of pointer indirection,
10765 dereference the value until we get only one level. */
78134374
SM
10766 while (value_type (array)->code () == TYPE_CODE_PTR
10767 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10768 == TYPE_CODE_PTR))
10769 array = value_ind (array);
10770
10771 /* Make sure we really do have an array type before going further,
10772 to avoid a SEGV when trying to get the index type or the target
10773 type later down the road if the debug info generated by
10774 the compiler is incorrect or incomplete. */
df407dfe 10775 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10776 error (_("cannot take slice of non-array"));
714e53ab 10777
78134374 10778 if (ada_check_typedef (value_type (array))->code ()
828292f2 10779 == TYPE_CODE_PTR)
4c4b4cd2 10780 {
828292f2
JB
10781 struct type *type0 = ada_check_typedef (value_type (array));
10782
0b5d8877 10783 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10784 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10785 else
10786 {
10787 struct type *arr_type0 =
828292f2 10788 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10789
f5938064
JG
10790 return ada_value_slice_from_ptr (array, arr_type0,
10791 longest_to_int (low_bound),
10792 longest_to_int (high_bound));
4c4b4cd2
PH
10793 }
10794 }
10795 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10796 return array;
10797 else if (high_bound < low_bound)
bff8c71f 10798 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10799 else
529cad9c
PH
10800 return ada_value_slice (array, longest_to_int (low_bound),
10801 longest_to_int (high_bound));
4c4b4cd2 10802 }
14f9c5c9 10803
4c4b4cd2
PH
10804 case UNOP_IN_RANGE:
10805 (*pos) += 2;
10806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10807 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10808
14f9c5c9 10809 if (noside == EVAL_SKIP)
4c4b4cd2 10810 goto nosideret;
14f9c5c9 10811
78134374 10812 switch (type->code ())
4c4b4cd2
PH
10813 {
10814 default:
e1d5a0d2
PH
10815 lim_warning (_("Membership test incompletely implemented; "
10816 "always returns true"));
fbb06eb1
UW
10817 type = language_bool_type (exp->language_defn, exp->gdbarch);
10818 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10819
10820 case TYPE_CODE_RANGE:
030b4912
UW
10821 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10822 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10823 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10824 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10825 type = language_bool_type (exp->language_defn, exp->gdbarch);
10826 return
10827 value_from_longest (type,
4c4b4cd2
PH
10828 (value_less (arg1, arg3)
10829 || value_equal (arg1, arg3))
10830 && (value_less (arg2, arg1)
10831 || value_equal (arg2, arg1)));
10832 }
10833
10834 case BINOP_IN_BOUNDS:
14f9c5c9 10835 (*pos) += 2;
4c4b4cd2
PH
10836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10838
4c4b4cd2
PH
10839 if (noside == EVAL_SKIP)
10840 goto nosideret;
14f9c5c9 10841
4c4b4cd2 10842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10843 {
10844 type = language_bool_type (exp->language_defn, exp->gdbarch);
10845 return value_zero (type, not_lval);
10846 }
14f9c5c9 10847
4c4b4cd2 10848 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10849
1eea4ebd
UW
10850 type = ada_index_type (value_type (arg2), tem, "range");
10851 if (!type)
10852 type = value_type (arg1);
14f9c5c9 10853
1eea4ebd
UW
10854 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10855 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10856
f44316fa
UW
10857 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10858 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10859 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10860 return
fbb06eb1 10861 value_from_longest (type,
4c4b4cd2
PH
10862 (value_less (arg1, arg3)
10863 || value_equal (arg1, arg3))
10864 && (value_less (arg2, arg1)
10865 || value_equal (arg2, arg1)));
10866
10867 case TERNOP_IN_RANGE:
10868 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10869 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10871
10872 if (noside == EVAL_SKIP)
10873 goto nosideret;
10874
f44316fa
UW
10875 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10876 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10877 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10878 return
fbb06eb1 10879 value_from_longest (type,
4c4b4cd2
PH
10880 (value_less (arg1, arg3)
10881 || value_equal (arg1, arg3))
10882 && (value_less (arg2, arg1)
10883 || value_equal (arg2, arg1)));
10884
10885 case OP_ATR_FIRST:
10886 case OP_ATR_LAST:
10887 case OP_ATR_LENGTH:
10888 {
76a01679 10889 struct type *type_arg;
5b4ee69b 10890
76a01679
JB
10891 if (exp->elts[*pos].opcode == OP_TYPE)
10892 {
10893 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10894 arg1 = NULL;
5bc23cb3 10895 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10896 }
10897 else
10898 {
10899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10900 type_arg = NULL;
10901 }
10902
10903 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10904 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10905 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10906 *pos += 4;
10907
10908 if (noside == EVAL_SKIP)
10909 goto nosideret;
680e1bee
TT
10910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911 {
10912 if (type_arg == NULL)
10913 type_arg = value_type (arg1);
76a01679 10914
680e1bee
TT
10915 if (ada_is_constrained_packed_array_type (type_arg))
10916 type_arg = decode_constrained_packed_array_type (type_arg);
10917
10918 if (!discrete_type_p (type_arg))
10919 {
10920 switch (op)
10921 {
10922 default: /* Should never happen. */
10923 error (_("unexpected attribute encountered"));
10924 case OP_ATR_FIRST:
10925 case OP_ATR_LAST:
10926 type_arg = ada_index_type (type_arg, tem,
10927 ada_attribute_name (op));
10928 break;
10929 case OP_ATR_LENGTH:
10930 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10931 break;
10932 }
10933 }
10934
10935 return value_zero (type_arg, not_lval);
10936 }
10937 else if (type_arg == NULL)
76a01679
JB
10938 {
10939 arg1 = ada_coerce_ref (arg1);
10940
ad82864c 10941 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10942 arg1 = ada_coerce_to_simple_array (arg1);
10943
aa4fb036 10944 if (op == OP_ATR_LENGTH)
1eea4ebd 10945 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10946 else
10947 {
10948 type = ada_index_type (value_type (arg1), tem,
10949 ada_attribute_name (op));
10950 if (type == NULL)
10951 type = builtin_type (exp->gdbarch)->builtin_int;
10952 }
76a01679 10953
76a01679
JB
10954 switch (op)
10955 {
10956 default: /* Should never happen. */
323e0a4a 10957 error (_("unexpected attribute encountered"));
76a01679 10958 case OP_ATR_FIRST:
1eea4ebd
UW
10959 return value_from_longest
10960 (type, ada_array_bound (arg1, tem, 0));
76a01679 10961 case OP_ATR_LAST:
1eea4ebd
UW
10962 return value_from_longest
10963 (type, ada_array_bound (arg1, tem, 1));
76a01679 10964 case OP_ATR_LENGTH:
1eea4ebd
UW
10965 return value_from_longest
10966 (type, ada_array_length (arg1, tem));
76a01679
JB
10967 }
10968 }
10969 else if (discrete_type_p (type_arg))
10970 {
10971 struct type *range_type;
0d5cff50 10972 const char *name = ada_type_name (type_arg);
5b4ee69b 10973
76a01679 10974 range_type = NULL;
78134374 10975 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 10976 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10977 if (range_type == NULL)
10978 range_type = type_arg;
10979 switch (op)
10980 {
10981 default:
323e0a4a 10982 error (_("unexpected attribute encountered"));
76a01679 10983 case OP_ATR_FIRST:
690cc4eb 10984 return value_from_longest
43bbcdc2 10985 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10986 case OP_ATR_LAST:
690cc4eb 10987 return value_from_longest
43bbcdc2 10988 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10989 case OP_ATR_LENGTH:
323e0a4a 10990 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10991 }
10992 }
78134374 10993 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 10994 error (_("unimplemented type attribute"));
76a01679
JB
10995 else
10996 {
10997 LONGEST low, high;
10998
ad82864c
JB
10999 if (ada_is_constrained_packed_array_type (type_arg))
11000 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11001
aa4fb036 11002 if (op == OP_ATR_LENGTH)
1eea4ebd 11003 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11004 else
11005 {
11006 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11007 if (type == NULL)
11008 type = builtin_type (exp->gdbarch)->builtin_int;
11009 }
1eea4ebd 11010
76a01679
JB
11011 switch (op)
11012 {
11013 default:
323e0a4a 11014 error (_("unexpected attribute encountered"));
76a01679 11015 case OP_ATR_FIRST:
1eea4ebd 11016 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11017 return value_from_longest (type, low);
11018 case OP_ATR_LAST:
1eea4ebd 11019 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11020 return value_from_longest (type, high);
11021 case OP_ATR_LENGTH:
1eea4ebd
UW
11022 low = ada_array_bound_from_type (type_arg, tem, 0);
11023 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11024 return value_from_longest (type, high - low + 1);
11025 }
11026 }
14f9c5c9
AS
11027 }
11028
4c4b4cd2
PH
11029 case OP_ATR_TAG:
11030 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11031 if (noside == EVAL_SKIP)
76a01679 11032 goto nosideret;
4c4b4cd2
PH
11033
11034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11035 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11036
11037 return ada_value_tag (arg1);
11038
11039 case OP_ATR_MIN:
11040 case OP_ATR_MAX:
11041 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11043 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11044 if (noside == EVAL_SKIP)
76a01679 11045 goto nosideret;
d2e4a39e 11046 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11047 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11048 else
f44316fa
UW
11049 {
11050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11051 return value_binop (arg1, arg2,
11052 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11053 }
14f9c5c9 11054
4c4b4cd2
PH
11055 case OP_ATR_MODULUS:
11056 {
31dedfee 11057 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11058
5b4ee69b 11059 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11060 if (noside == EVAL_SKIP)
11061 goto nosideret;
4c4b4cd2 11062
76a01679 11063 if (!ada_is_modular_type (type_arg))
323e0a4a 11064 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11065
76a01679
JB
11066 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11067 ada_modulus (type_arg));
4c4b4cd2
PH
11068 }
11069
11070
11071 case OP_ATR_POS:
11072 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11074 if (noside == EVAL_SKIP)
76a01679 11075 goto nosideret;
3cb382c9
UW
11076 type = builtin_type (exp->gdbarch)->builtin_int;
11077 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11078 return value_zero (type, not_lval);
14f9c5c9 11079 else
3cb382c9 11080 return value_pos_atr (type, arg1);
14f9c5c9 11081
4c4b4cd2
PH
11082 case OP_ATR_SIZE:
11083 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11084 type = value_type (arg1);
11085
11086 /* If the argument is a reference, then dereference its type, since
11087 the user is really asking for the size of the actual object,
11088 not the size of the pointer. */
78134374 11089 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
11090 type = TYPE_TARGET_TYPE (type);
11091
4c4b4cd2 11092 if (noside == EVAL_SKIP)
76a01679 11093 goto nosideret;
4c4b4cd2 11094 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11095 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11096 else
22601c15 11097 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11098 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11099
11100 case OP_ATR_VAL:
11101 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11102 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11103 type = exp->elts[pc + 2].type;
14f9c5c9 11104 if (noside == EVAL_SKIP)
76a01679 11105 goto nosideret;
4c4b4cd2 11106 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11107 return value_zero (type, not_lval);
4c4b4cd2 11108 else
76a01679 11109 return value_val_atr (type, arg1);
4c4b4cd2
PH
11110
11111 case BINOP_EXP:
11112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 if (noside == EVAL_SKIP)
11115 goto nosideret;
11116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11117 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11118 else
f44316fa
UW
11119 {
11120 /* For integer exponentiation operations,
11121 only promote the first argument. */
11122 if (is_integral_type (value_type (arg2)))
11123 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11124 else
11125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11126
11127 return value_binop (arg1, arg2, op);
11128 }
4c4b4cd2
PH
11129
11130 case UNOP_PLUS:
11131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132 if (noside == EVAL_SKIP)
11133 goto nosideret;
11134 else
11135 return arg1;
11136
11137 case UNOP_ABS:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
f44316fa 11141 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11142 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11143 return value_neg (arg1);
14f9c5c9 11144 else
4c4b4cd2 11145 return arg1;
14f9c5c9
AS
11146
11147 case UNOP_IND:
5ec18f2b 11148 preeval_pos = *pos;
6b0d7253 11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11150 if (noside == EVAL_SKIP)
4c4b4cd2 11151 goto nosideret;
df407dfe 11152 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11154 {
11155 if (ada_is_array_descriptor_type (type))
11156 /* GDB allows dereferencing GNAT array descriptors. */
11157 {
11158 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11159
4c4b4cd2 11160 if (arrType == NULL)
323e0a4a 11161 error (_("Attempt to dereference null array pointer."));
00a4c844 11162 return value_at_lazy (arrType, 0);
4c4b4cd2 11163 }
78134374
SM
11164 else if (type->code () == TYPE_CODE_PTR
11165 || type->code () == TYPE_CODE_REF
4c4b4cd2 11166 /* In C you can dereference an array to get the 1st elt. */
78134374 11167 || type->code () == TYPE_CODE_ARRAY)
714e53ab 11168 {
5ec18f2b
JG
11169 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11170 only be determined by inspecting the object's tag.
11171 This means that we need to evaluate completely the
11172 expression in order to get its type. */
11173
78134374
SM
11174 if ((type->code () == TYPE_CODE_REF
11175 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11176 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11177 {
11178 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11179 EVAL_NORMAL);
11180 type = value_type (ada_value_ind (arg1));
11181 }
11182 else
11183 {
11184 type = to_static_fixed_type
11185 (ada_aligned_type
11186 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11187 }
c1b5a1a6 11188 ada_ensure_varsize_limit (type);
714e53ab
PH
11189 return value_zero (type, lval_memory);
11190 }
78134374 11191 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11192 {
11193 /* GDB allows dereferencing an int. */
11194 if (expect_type == NULL)
11195 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11196 lval_memory);
11197 else
11198 {
11199 expect_type =
11200 to_static_fixed_type (ada_aligned_type (expect_type));
11201 return value_zero (expect_type, lval_memory);
11202 }
11203 }
4c4b4cd2 11204 else
323e0a4a 11205 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11206 }
0963b4bd 11207 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11208 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11209
78134374 11210 if (type->code () == TYPE_CODE_INT)
96967637
JB
11211 /* GDB allows dereferencing an int. If we were given
11212 the expect_type, then use that as the target type.
11213 Otherwise, assume that the target type is an int. */
11214 {
11215 if (expect_type != NULL)
11216 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11217 arg1));
11218 else
11219 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11220 (CORE_ADDR) value_as_address (arg1));
11221 }
6b0d7253 11222
4c4b4cd2
PH
11223 if (ada_is_array_descriptor_type (type))
11224 /* GDB allows dereferencing GNAT array descriptors. */
11225 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11226 else
4c4b4cd2 11227 return ada_value_ind (arg1);
14f9c5c9
AS
11228
11229 case STRUCTOP_STRUCT:
11230 tem = longest_to_int (exp->elts[pc + 1].longconst);
11231 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11232 preeval_pos = *pos;
14f9c5c9
AS
11233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11234 if (noside == EVAL_SKIP)
4c4b4cd2 11235 goto nosideret;
14f9c5c9 11236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11237 {
df407dfe 11238 struct type *type1 = value_type (arg1);
5b4ee69b 11239
76a01679
JB
11240 if (ada_is_tagged_type (type1, 1))
11241 {
11242 type = ada_lookup_struct_elt_type (type1,
11243 &exp->elts[pc + 2].string,
988f6b3d 11244 1, 1);
5ec18f2b
JG
11245
11246 /* If the field is not found, check if it exists in the
11247 extension of this object's type. This means that we
11248 need to evaluate completely the expression. */
11249
76a01679 11250 if (type == NULL)
5ec18f2b
JG
11251 {
11252 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11253 EVAL_NORMAL);
11254 arg1 = ada_value_struct_elt (arg1,
11255 &exp->elts[pc + 2].string,
11256 0);
11257 arg1 = unwrap_value (arg1);
11258 type = value_type (ada_to_fixed_value (arg1));
11259 }
76a01679
JB
11260 }
11261 else
11262 type =
11263 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11264 0);
76a01679
JB
11265
11266 return value_zero (ada_aligned_type (type), lval_memory);
11267 }
14f9c5c9 11268 else
a579cd9a
MW
11269 {
11270 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11271 arg1 = unwrap_value (arg1);
11272 return ada_to_fixed_value (arg1);
11273 }
284614f0 11274
14f9c5c9 11275 case OP_TYPE:
4c4b4cd2
PH
11276 /* The value is not supposed to be used. This is here to make it
11277 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11278 (*pos) += 2;
11279 if (noside == EVAL_SKIP)
4c4b4cd2 11280 goto nosideret;
14f9c5c9 11281 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11282 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11283 else
323e0a4a 11284 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11285
11286 case OP_AGGREGATE:
11287 case OP_CHOICES:
11288 case OP_OTHERS:
11289 case OP_DISCRETE_RANGE:
11290 case OP_POSITIONAL:
11291 case OP_NAME:
11292 if (noside == EVAL_NORMAL)
11293 switch (op)
11294 {
11295 case OP_NAME:
11296 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11297 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11298 case OP_AGGREGATE:
11299 error (_("Aggregates only allowed on the right of an assignment"));
11300 default:
0963b4bd
MS
11301 internal_error (__FILE__, __LINE__,
11302 _("aggregate apparently mangled"));
52ce6436
PH
11303 }
11304
11305 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11306 *pos += oplen - 1;
11307 for (tem = 0; tem < nargs; tem += 1)
11308 ada_evaluate_subexp (NULL, exp, pos, noside);
11309 goto nosideret;
14f9c5c9
AS
11310 }
11311
11312nosideret:
ced9779b 11313 return eval_skip_value (exp);
14f9c5c9 11314}
14f9c5c9 11315\f
d2e4a39e 11316
4c4b4cd2 11317 /* Fixed point */
14f9c5c9
AS
11318
11319/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11320 type name that encodes the 'small and 'delta information.
4c4b4cd2 11321 Otherwise, return NULL. */
14f9c5c9 11322
d2e4a39e 11323static const char *
b2188a06 11324gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11325{
d2e4a39e 11326 const char *name = ada_type_name (type);
78134374 11327 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11328
d2e4a39e
AS
11329 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11330 {
14f9c5c9 11331 const char *tail = strstr (name, "___XF_");
5b4ee69b 11332
14f9c5c9 11333 if (tail == NULL)
4c4b4cd2 11334 return NULL;
d2e4a39e 11335 else
4c4b4cd2 11336 return tail + 5;
14f9c5c9
AS
11337 }
11338 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11339 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11340 else
11341 return NULL;
11342}
11343
4c4b4cd2 11344/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11345
11346int
b2188a06 11347ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11348{
b2188a06 11349 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11350}
11351
4c4b4cd2
PH
11352/* Return non-zero iff TYPE represents a System.Address type. */
11353
11354int
11355ada_is_system_address_type (struct type *type)
11356{
7d93a1e0 11357 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11358}
11359
14f9c5c9 11360/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11361 type, return the target floating-point type to be used to represent
11362 of this type during internal computation. */
11363
11364static struct type *
11365ada_scaling_type (struct type *type)
11366{
11367 return builtin_type (get_type_arch (type))->builtin_long_double;
11368}
11369
11370/* Assuming that TYPE is the representation of an Ada fixed-point
11371 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11372 delta cannot be determined. */
14f9c5c9 11373
50eff16b 11374struct value *
b2188a06 11375gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11376{
b2188a06 11377 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11378 struct type *scale_type = ada_scaling_type (type);
11379
11380 long long num, den;
11381
11382 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11383 return nullptr;
d2e4a39e 11384 else
50eff16b
UW
11385 return value_binop (value_from_longest (scale_type, num),
11386 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11387}
11388
b2188a06
JB
11389/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11390 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11391
50eff16b
UW
11392struct value *
11393ada_scaling_factor (struct type *type)
14f9c5c9 11394{
b2188a06 11395 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11396 struct type *scale_type = ada_scaling_type (type);
11397
11398 long long num0, den0, num1, den1;
14f9c5c9 11399 int n;
d2e4a39e 11400
50eff16b 11401 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11402 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11403
11404 if (n < 2)
50eff16b 11405 return value_from_longest (scale_type, 1);
14f9c5c9 11406 else if (n == 4)
50eff16b
UW
11407 return value_binop (value_from_longest (scale_type, num1),
11408 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11409 else
50eff16b
UW
11410 return value_binop (value_from_longest (scale_type, num0),
11411 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11412}
11413
14f9c5c9 11414\f
d2e4a39e 11415
4c4b4cd2 11416 /* Range types */
14f9c5c9
AS
11417
11418/* Scan STR beginning at position K for a discriminant name, and
11419 return the value of that discriminant field of DVAL in *PX. If
11420 PNEW_K is not null, put the position of the character beyond the
11421 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11422 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11423
11424static int
108d56a4 11425scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11426 int *pnew_k)
14f9c5c9
AS
11427{
11428 static char *bound_buffer = NULL;
11429 static size_t bound_buffer_len = 0;
5da1a4d3 11430 const char *pstart, *pend, *bound;
d2e4a39e 11431 struct value *bound_val;
14f9c5c9
AS
11432
11433 if (dval == NULL || str == NULL || str[k] == '\0')
11434 return 0;
11435
5da1a4d3
SM
11436 pstart = str + k;
11437 pend = strstr (pstart, "__");
14f9c5c9
AS
11438 if (pend == NULL)
11439 {
5da1a4d3 11440 bound = pstart;
14f9c5c9
AS
11441 k += strlen (bound);
11442 }
d2e4a39e 11443 else
14f9c5c9 11444 {
5da1a4d3
SM
11445 int len = pend - pstart;
11446
11447 /* Strip __ and beyond. */
11448 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11449 strncpy (bound_buffer, pstart, len);
11450 bound_buffer[len] = '\0';
11451
14f9c5c9 11452 bound = bound_buffer;
d2e4a39e 11453 k = pend - str;
14f9c5c9 11454 }
d2e4a39e 11455
df407dfe 11456 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11457 if (bound_val == NULL)
11458 return 0;
11459
11460 *px = value_as_long (bound_val);
11461 if (pnew_k != NULL)
11462 *pnew_k = k;
11463 return 1;
11464}
11465
11466/* Value of variable named NAME in the current environment. If
11467 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11468 otherwise causes an error with message ERR_MSG. */
11469
d2e4a39e 11470static struct value *
edb0c9cb 11471get_var_value (const char *name, const char *err_msg)
14f9c5c9 11472{
b5ec771e 11473 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11474
54d343a2 11475 std::vector<struct block_symbol> syms;
b5ec771e
PA
11476 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11477 get_selected_block (0),
11478 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11479
11480 if (nsyms != 1)
11481 {
11482 if (err_msg == NULL)
4c4b4cd2 11483 return 0;
14f9c5c9 11484 else
8a3fe4f8 11485 error (("%s"), err_msg);
14f9c5c9
AS
11486 }
11487
54d343a2 11488 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11489}
d2e4a39e 11490
edb0c9cb
PA
11491/* Value of integer variable named NAME in the current environment.
11492 If no such variable is found, returns false. Otherwise, sets VALUE
11493 to the variable's value and returns true. */
4c4b4cd2 11494
edb0c9cb
PA
11495bool
11496get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11497{
4c4b4cd2 11498 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11499
14f9c5c9 11500 if (var_val == 0)
edb0c9cb
PA
11501 return false;
11502
11503 value = value_as_long (var_val);
11504 return true;
14f9c5c9 11505}
d2e4a39e 11506
14f9c5c9
AS
11507
11508/* Return a range type whose base type is that of the range type named
11509 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11510 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11511 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11512 corresponding range type from debug information; fall back to using it
11513 if symbol lookup fails. If a new type must be created, allocate it
11514 like ORIG_TYPE was. The bounds information, in general, is encoded
11515 in NAME, the base type given in the named range type. */
14f9c5c9 11516
d2e4a39e 11517static struct type *
28c85d6c 11518to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11519{
0d5cff50 11520 const char *name;
14f9c5c9 11521 struct type *base_type;
108d56a4 11522 const char *subtype_info;
14f9c5c9 11523
28c85d6c 11524 gdb_assert (raw_type != NULL);
7d93a1e0 11525 gdb_assert (raw_type->name () != NULL);
dddfab26 11526
78134374 11527 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11528 base_type = TYPE_TARGET_TYPE (raw_type);
11529 else
11530 base_type = raw_type;
11531
7d93a1e0 11532 name = raw_type->name ();
14f9c5c9
AS
11533 subtype_info = strstr (name, "___XD");
11534 if (subtype_info == NULL)
690cc4eb 11535 {
43bbcdc2
PH
11536 LONGEST L = ada_discrete_type_low_bound (raw_type);
11537 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11538
690cc4eb
PH
11539 if (L < INT_MIN || U > INT_MAX)
11540 return raw_type;
11541 else
0c9c3474
SA
11542 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11543 L, U);
690cc4eb 11544 }
14f9c5c9
AS
11545 else
11546 {
11547 static char *name_buf = NULL;
11548 static size_t name_len = 0;
11549 int prefix_len = subtype_info - name;
11550 LONGEST L, U;
11551 struct type *type;
108d56a4 11552 const char *bounds_str;
14f9c5c9
AS
11553 int n;
11554
11555 GROW_VECT (name_buf, name_len, prefix_len + 5);
11556 strncpy (name_buf, name, prefix_len);
11557 name_buf[prefix_len] = '\0';
11558
11559 subtype_info += 5;
11560 bounds_str = strchr (subtype_info, '_');
11561 n = 1;
11562
d2e4a39e 11563 if (*subtype_info == 'L')
4c4b4cd2
PH
11564 {
11565 if (!ada_scan_number (bounds_str, n, &L, &n)
11566 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11567 return raw_type;
11568 if (bounds_str[n] == '_')
11569 n += 2;
0963b4bd 11570 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11571 n += 1;
11572 subtype_info += 1;
11573 }
d2e4a39e 11574 else
4c4b4cd2 11575 {
4c4b4cd2 11576 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11577 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11578 {
323e0a4a 11579 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11580 L = 1;
11581 }
11582 }
14f9c5c9 11583
d2e4a39e 11584 if (*subtype_info == 'U')
4c4b4cd2
PH
11585 {
11586 if (!ada_scan_number (bounds_str, n, &U, &n)
11587 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11588 return raw_type;
11589 }
d2e4a39e 11590 else
4c4b4cd2 11591 {
4c4b4cd2 11592 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11593 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11594 {
323e0a4a 11595 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11596 U = L;
11597 }
11598 }
14f9c5c9 11599
0c9c3474
SA
11600 type = create_static_range_type (alloc_type_copy (raw_type),
11601 base_type, L, U);
f5a91472
JB
11602 /* create_static_range_type alters the resulting type's length
11603 to match the size of the base_type, which is not what we want.
11604 Set it back to the original range type's length. */
11605 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11606 type->set_name (name);
14f9c5c9
AS
11607 return type;
11608 }
11609}
11610
4c4b4cd2
PH
11611/* True iff NAME is the name of a range type. */
11612
14f9c5c9 11613int
d2e4a39e 11614ada_is_range_type_name (const char *name)
14f9c5c9
AS
11615{
11616 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11617}
14f9c5c9 11618\f
d2e4a39e 11619
4c4b4cd2
PH
11620 /* Modular types */
11621
11622/* True iff TYPE is an Ada modular type. */
14f9c5c9 11623
14f9c5c9 11624int
d2e4a39e 11625ada_is_modular_type (struct type *type)
14f9c5c9 11626{
18af8284 11627 struct type *subranged_type = get_base_type (type);
14f9c5c9 11628
78134374
SM
11629 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11630 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11631 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11632}
11633
4c4b4cd2
PH
11634/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11635
61ee279c 11636ULONGEST
0056e4d5 11637ada_modulus (struct type *type)
14f9c5c9 11638{
43bbcdc2 11639 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11640}
d2e4a39e 11641\f
f7f9143b
JB
11642
11643/* Ada exception catchpoint support:
11644 ---------------------------------
11645
11646 We support 3 kinds of exception catchpoints:
11647 . catchpoints on Ada exceptions
11648 . catchpoints on unhandled Ada exceptions
11649 . catchpoints on failed assertions
11650
11651 Exceptions raised during failed assertions, or unhandled exceptions
11652 could perfectly be caught with the general catchpoint on Ada exceptions.
11653 However, we can easily differentiate these two special cases, and having
11654 the option to distinguish these two cases from the rest can be useful
11655 to zero-in on certain situations.
11656
11657 Exception catchpoints are a specialized form of breakpoint,
11658 since they rely on inserting breakpoints inside known routines
11659 of the GNAT runtime. The implementation therefore uses a standard
11660 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11661 of breakpoint_ops.
11662
0259addd
JB
11663 Support in the runtime for exception catchpoints have been changed
11664 a few times already, and these changes affect the implementation
11665 of these catchpoints. In order to be able to support several
11666 variants of the runtime, we use a sniffer that will determine
28010a5d 11667 the runtime variant used by the program being debugged. */
f7f9143b 11668
82eacd52
JB
11669/* Ada's standard exceptions.
11670
11671 The Ada 83 standard also defined Numeric_Error. But there so many
11672 situations where it was unclear from the Ada 83 Reference Manual
11673 (RM) whether Constraint_Error or Numeric_Error should be raised,
11674 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11675 Interpretation saying that anytime the RM says that Numeric_Error
11676 should be raised, the implementation may raise Constraint_Error.
11677 Ada 95 went one step further and pretty much removed Numeric_Error
11678 from the list of standard exceptions (it made it a renaming of
11679 Constraint_Error, to help preserve compatibility when compiling
11680 an Ada83 compiler). As such, we do not include Numeric_Error from
11681 this list of standard exceptions. */
3d0b0fa3 11682
a121b7c1 11683static const char *standard_exc[] = {
3d0b0fa3
JB
11684 "constraint_error",
11685 "program_error",
11686 "storage_error",
11687 "tasking_error"
11688};
11689
0259addd
JB
11690typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11691
11692/* A structure that describes how to support exception catchpoints
11693 for a given executable. */
11694
11695struct exception_support_info
11696{
11697 /* The name of the symbol to break on in order to insert
11698 a catchpoint on exceptions. */
11699 const char *catch_exception_sym;
11700
11701 /* The name of the symbol to break on in order to insert
11702 a catchpoint on unhandled exceptions. */
11703 const char *catch_exception_unhandled_sym;
11704
11705 /* The name of the symbol to break on in order to insert
11706 a catchpoint on failed assertions. */
11707 const char *catch_assert_sym;
11708
9f757bf7
XR
11709 /* The name of the symbol to break on in order to insert
11710 a catchpoint on exception handling. */
11711 const char *catch_handlers_sym;
11712
0259addd
JB
11713 /* Assuming that the inferior just triggered an unhandled exception
11714 catchpoint, this function is responsible for returning the address
11715 in inferior memory where the name of that exception is stored.
11716 Return zero if the address could not be computed. */
11717 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11718};
11719
11720static CORE_ADDR ada_unhandled_exception_name_addr (void);
11721static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11722
11723/* The following exception support info structure describes how to
11724 implement exception catchpoints with the latest version of the
ca683e3a 11725 Ada runtime (as of 2019-08-??). */
0259addd
JB
11726
11727static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11728{
11729 "__gnat_debug_raise_exception", /* catch_exception_sym */
11730 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11731 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11732 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11733 ada_unhandled_exception_name_addr
11734};
11735
11736/* The following exception support info structure describes how to
11737 implement exception catchpoints with an earlier version of the
11738 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11739
11740static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11741{
11742 "__gnat_debug_raise_exception", /* catch_exception_sym */
11743 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11744 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11745 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11746 ada_unhandled_exception_name_addr
11747};
11748
11749/* The following exception support info structure describes how to
11750 implement exception catchpoints with a slightly older version
11751 of the Ada runtime. */
11752
11753static const struct exception_support_info exception_support_info_fallback =
11754{
11755 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11756 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11757 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11758 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11759 ada_unhandled_exception_name_addr_from_raise
11760};
11761
f17011e0
JB
11762/* Return nonzero if we can detect the exception support routines
11763 described in EINFO.
11764
11765 This function errors out if an abnormal situation is detected
11766 (for instance, if we find the exception support routines, but
11767 that support is found to be incomplete). */
11768
11769static int
11770ada_has_this_exception_support (const struct exception_support_info *einfo)
11771{
11772 struct symbol *sym;
11773
11774 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11775 that should be compiled with debugging information. As a result, we
11776 expect to find that symbol in the symtabs. */
11777
11778 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11779 if (sym == NULL)
a6af7abe
JB
11780 {
11781 /* Perhaps we did not find our symbol because the Ada runtime was
11782 compiled without debugging info, or simply stripped of it.
11783 It happens on some GNU/Linux distributions for instance, where
11784 users have to install a separate debug package in order to get
11785 the runtime's debugging info. In that situation, let the user
11786 know why we cannot insert an Ada exception catchpoint.
11787
11788 Note: Just for the purpose of inserting our Ada exception
11789 catchpoint, we could rely purely on the associated minimal symbol.
11790 But we would be operating in degraded mode anyway, since we are
11791 still lacking the debugging info needed later on to extract
11792 the name of the exception being raised (this name is printed in
11793 the catchpoint message, and is also used when trying to catch
11794 a specific exception). We do not handle this case for now. */
3b7344d5 11795 struct bound_minimal_symbol msym
1c8e84b0
JB
11796 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11797
3b7344d5 11798 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11799 error (_("Your Ada runtime appears to be missing some debugging "
11800 "information.\nCannot insert Ada exception catchpoint "
11801 "in this configuration."));
11802
11803 return 0;
11804 }
f17011e0
JB
11805
11806 /* Make sure that the symbol we found corresponds to a function. */
11807
11808 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11809 {
11810 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11811 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11812 return 0;
11813 }
11814
11815 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11816 if (sym == NULL)
11817 {
11818 struct bound_minimal_symbol msym
11819 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11820
11821 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11822 error (_("Your Ada runtime appears to be missing some debugging "
11823 "information.\nCannot insert Ada exception catchpoint "
11824 "in this configuration."));
11825
11826 return 0;
11827 }
11828
11829 /* Make sure that the symbol we found corresponds to a function. */
11830
11831 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11832 {
11833 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11834 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11835 return 0;
11836 }
f17011e0
JB
11837
11838 return 1;
11839}
11840
0259addd
JB
11841/* Inspect the Ada runtime and determine which exception info structure
11842 should be used to provide support for exception catchpoints.
11843
3eecfa55
JB
11844 This function will always set the per-inferior exception_info,
11845 or raise an error. */
0259addd
JB
11846
11847static void
11848ada_exception_support_info_sniffer (void)
11849{
3eecfa55 11850 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11851
11852 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11853 if (data->exception_info != NULL)
0259addd
JB
11854 return;
11855
11856 /* Check the latest (default) exception support info. */
f17011e0 11857 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11858 {
3eecfa55 11859 data->exception_info = &default_exception_support_info;
0259addd
JB
11860 return;
11861 }
11862
ca683e3a
AO
11863 /* Try the v0 exception suport info. */
11864 if (ada_has_this_exception_support (&exception_support_info_v0))
11865 {
11866 data->exception_info = &exception_support_info_v0;
11867 return;
11868 }
11869
0259addd 11870 /* Try our fallback exception suport info. */
f17011e0 11871 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11872 {
3eecfa55 11873 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11874 return;
11875 }
11876
11877 /* Sometimes, it is normal for us to not be able to find the routine
11878 we are looking for. This happens when the program is linked with
11879 the shared version of the GNAT runtime, and the program has not been
11880 started yet. Inform the user of these two possible causes if
11881 applicable. */
11882
ccefe4c4 11883 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11884 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11885
11886 /* If the symbol does not exist, then check that the program is
11887 already started, to make sure that shared libraries have been
11888 loaded. If it is not started, this may mean that the symbol is
11889 in a shared library. */
11890
e99b03dc 11891 if (inferior_ptid.pid () == 0)
0259addd
JB
11892 error (_("Unable to insert catchpoint. Try to start the program first."));
11893
11894 /* At this point, we know that we are debugging an Ada program and
11895 that the inferior has been started, but we still are not able to
0963b4bd 11896 find the run-time symbols. That can mean that we are in
0259addd
JB
11897 configurable run time mode, or that a-except as been optimized
11898 out by the linker... In any case, at this point it is not worth
11899 supporting this feature. */
11900
7dda8cff 11901 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11902}
11903
f7f9143b
JB
11904/* True iff FRAME is very likely to be that of a function that is
11905 part of the runtime system. This is all very heuristic, but is
11906 intended to be used as advice as to what frames are uninteresting
11907 to most users. */
11908
11909static int
11910is_known_support_routine (struct frame_info *frame)
11911{
692465f1 11912 enum language func_lang;
f7f9143b 11913 int i;
f35a17b5 11914 const char *fullname;
f7f9143b 11915
4ed6b5be
JB
11916 /* If this code does not have any debugging information (no symtab),
11917 This cannot be any user code. */
f7f9143b 11918
51abb421 11919 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11920 if (sal.symtab == NULL)
11921 return 1;
11922
4ed6b5be
JB
11923 /* If there is a symtab, but the associated source file cannot be
11924 located, then assume this is not user code: Selecting a frame
11925 for which we cannot display the code would not be very helpful
11926 for the user. This should also take care of case such as VxWorks
11927 where the kernel has some debugging info provided for a few units. */
f7f9143b 11928
f35a17b5
JK
11929 fullname = symtab_to_fullname (sal.symtab);
11930 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11931 return 1;
11932
85102364 11933 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11934 We also check the name of the objfile against the name of some
11935 known system libraries that sometimes come with debugging info
11936 too. */
11937
f7f9143b
JB
11938 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11939 {
11940 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11941 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11942 return 1;
eb822aa6
DE
11943 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11944 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11945 return 1;
f7f9143b
JB
11946 }
11947
4ed6b5be 11948 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11949
c6dc63a1
TT
11950 gdb::unique_xmalloc_ptr<char> func_name
11951 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11952 if (func_name == NULL)
11953 return 1;
11954
11955 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11956 {
11957 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11958 if (re_exec (func_name.get ()))
11959 return 1;
f7f9143b
JB
11960 }
11961
11962 return 0;
11963}
11964
11965/* Find the first frame that contains debugging information and that is not
11966 part of the Ada run-time, starting from FI and moving upward. */
11967
0ef643c8 11968void
f7f9143b
JB
11969ada_find_printable_frame (struct frame_info *fi)
11970{
11971 for (; fi != NULL; fi = get_prev_frame (fi))
11972 {
11973 if (!is_known_support_routine (fi))
11974 {
11975 select_frame (fi);
11976 break;
11977 }
11978 }
11979
11980}
11981
11982/* Assuming that the inferior just triggered an unhandled exception
11983 catchpoint, return the address in inferior memory where the name
11984 of the exception is stored.
11985
11986 Return zero if the address could not be computed. */
11987
11988static CORE_ADDR
11989ada_unhandled_exception_name_addr (void)
0259addd
JB
11990{
11991 return parse_and_eval_address ("e.full_name");
11992}
11993
11994/* Same as ada_unhandled_exception_name_addr, except that this function
11995 should be used when the inferior uses an older version of the runtime,
11996 where the exception name needs to be extracted from a specific frame
11997 several frames up in the callstack. */
11998
11999static CORE_ADDR
12000ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12001{
12002 int frame_level;
12003 struct frame_info *fi;
3eecfa55 12004 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12005
12006 /* To determine the name of this exception, we need to select
12007 the frame corresponding to RAISE_SYM_NAME. This frame is
12008 at least 3 levels up, so we simply skip the first 3 frames
12009 without checking the name of their associated function. */
12010 fi = get_current_frame ();
12011 for (frame_level = 0; frame_level < 3; frame_level += 1)
12012 if (fi != NULL)
12013 fi = get_prev_frame (fi);
12014
12015 while (fi != NULL)
12016 {
692465f1
JB
12017 enum language func_lang;
12018
c6dc63a1
TT
12019 gdb::unique_xmalloc_ptr<char> func_name
12020 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12021 if (func_name != NULL)
12022 {
c6dc63a1 12023 if (strcmp (func_name.get (),
55b87a52
KS
12024 data->exception_info->catch_exception_sym) == 0)
12025 break; /* We found the frame we were looking for... */
55b87a52 12026 }
fb44b1a7 12027 fi = get_prev_frame (fi);
f7f9143b
JB
12028 }
12029
12030 if (fi == NULL)
12031 return 0;
12032
12033 select_frame (fi);
12034 return parse_and_eval_address ("id.full_name");
12035}
12036
12037/* Assuming the inferior just triggered an Ada exception catchpoint
12038 (of any type), return the address in inferior memory where the name
12039 of the exception is stored, if applicable.
12040
45db7c09
PA
12041 Assumes the selected frame is the current frame.
12042
f7f9143b
JB
12043 Return zero if the address could not be computed, or if not relevant. */
12044
12045static CORE_ADDR
761269c8 12046ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12047 struct breakpoint *b)
12048{
3eecfa55
JB
12049 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12050
f7f9143b
JB
12051 switch (ex)
12052 {
761269c8 12053 case ada_catch_exception:
f7f9143b
JB
12054 return (parse_and_eval_address ("e.full_name"));
12055 break;
12056
761269c8 12057 case ada_catch_exception_unhandled:
3eecfa55 12058 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12059 break;
9f757bf7
XR
12060
12061 case ada_catch_handlers:
12062 return 0; /* The runtimes does not provide access to the exception
12063 name. */
12064 break;
12065
761269c8 12066 case ada_catch_assert:
f7f9143b
JB
12067 return 0; /* Exception name is not relevant in this case. */
12068 break;
12069
12070 default:
12071 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12072 break;
12073 }
12074
12075 return 0; /* Should never be reached. */
12076}
12077
e547c119
JB
12078/* Assuming the inferior is stopped at an exception catchpoint,
12079 return the message which was associated to the exception, if
12080 available. Return NULL if the message could not be retrieved.
12081
e547c119
JB
12082 Note: The exception message can be associated to an exception
12083 either through the use of the Raise_Exception function, or
12084 more simply (Ada 2005 and later), via:
12085
12086 raise Exception_Name with "exception message";
12087
12088 */
12089
6f46ac85 12090static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12091ada_exception_message_1 (void)
12092{
12093 struct value *e_msg_val;
e547c119 12094 int e_msg_len;
e547c119
JB
12095
12096 /* For runtimes that support this feature, the exception message
12097 is passed as an unbounded string argument called "message". */
12098 e_msg_val = parse_and_eval ("message");
12099 if (e_msg_val == NULL)
12100 return NULL; /* Exception message not supported. */
12101
12102 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12103 gdb_assert (e_msg_val != NULL);
12104 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12105
12106 /* If the message string is empty, then treat it as if there was
12107 no exception message. */
12108 if (e_msg_len <= 0)
12109 return NULL;
12110
6f46ac85
TT
12111 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12112 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12113 e_msg.get ()[e_msg_len] = '\0';
e547c119 12114
e547c119
JB
12115 return e_msg;
12116}
12117
12118/* Same as ada_exception_message_1, except that all exceptions are
12119 contained here (returning NULL instead). */
12120
6f46ac85 12121static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12122ada_exception_message (void)
12123{
6f46ac85 12124 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12125
a70b8144 12126 try
e547c119
JB
12127 {
12128 e_msg = ada_exception_message_1 ();
12129 }
230d2906 12130 catch (const gdb_exception_error &e)
e547c119 12131 {
6f46ac85 12132 e_msg.reset (nullptr);
e547c119 12133 }
e547c119
JB
12134
12135 return e_msg;
12136}
12137
f7f9143b
JB
12138/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12139 any error that ada_exception_name_addr_1 might cause to be thrown.
12140 When an error is intercepted, a warning with the error message is printed,
12141 and zero is returned. */
12142
12143static CORE_ADDR
761269c8 12144ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12145 struct breakpoint *b)
12146{
f7f9143b
JB
12147 CORE_ADDR result = 0;
12148
a70b8144 12149 try
f7f9143b
JB
12150 {
12151 result = ada_exception_name_addr_1 (ex, b);
12152 }
12153
230d2906 12154 catch (const gdb_exception_error &e)
f7f9143b 12155 {
3d6e9d23 12156 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12157 return 0;
12158 }
12159
12160 return result;
12161}
12162
cb7de75e 12163static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12164 (const char *excep_string,
12165 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12166
12167/* Ada catchpoints.
12168
12169 In the case of catchpoints on Ada exceptions, the catchpoint will
12170 stop the target on every exception the program throws. When a user
12171 specifies the name of a specific exception, we translate this
12172 request into a condition expression (in text form), and then parse
12173 it into an expression stored in each of the catchpoint's locations.
12174 We then use this condition to check whether the exception that was
12175 raised is the one the user is interested in. If not, then the
12176 target is resumed again. We store the name of the requested
12177 exception, in order to be able to re-set the condition expression
12178 when symbols change. */
12179
12180/* An instance of this type is used to represent an Ada catchpoint
5625a286 12181 breakpoint location. */
28010a5d 12182
5625a286 12183class ada_catchpoint_location : public bp_location
28010a5d 12184{
5625a286 12185public:
5f486660 12186 ada_catchpoint_location (breakpoint *owner)
f06f1252 12187 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12188 {}
28010a5d
PA
12189
12190 /* The condition that checks whether the exception that was raised
12191 is the specific exception the user specified on catchpoint
12192 creation. */
4d01a485 12193 expression_up excep_cond_expr;
28010a5d
PA
12194};
12195
c1fc2657 12196/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12197
c1fc2657 12198struct ada_catchpoint : public breakpoint
28010a5d 12199{
37f6a7f4
TT
12200 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12201 : m_kind (kind)
12202 {
12203 }
12204
28010a5d 12205 /* The name of the specific exception the user specified. */
bc18fbb5 12206 std::string excep_string;
37f6a7f4
TT
12207
12208 /* What kind of catchpoint this is. */
12209 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12210};
12211
12212/* Parse the exception condition string in the context of each of the
12213 catchpoint's locations, and store them for later evaluation. */
12214
12215static void
9f757bf7
XR
12216create_excep_cond_exprs (struct ada_catchpoint *c,
12217 enum ada_exception_catchpoint_kind ex)
28010a5d 12218{
fccf9de1
TT
12219 struct bp_location *bl;
12220
28010a5d 12221 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12222 if (c->excep_string.empty ())
28010a5d
PA
12223 return;
12224
12225 /* Same if there are no locations... */
c1fc2657 12226 if (c->loc == NULL)
28010a5d
PA
12227 return;
12228
fccf9de1
TT
12229 /* Compute the condition expression in text form, from the specific
12230 expection we want to catch. */
12231 std::string cond_string
12232 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12233
fccf9de1
TT
12234 /* Iterate over all the catchpoint's locations, and parse an
12235 expression for each. */
12236 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12237 {
12238 struct ada_catchpoint_location *ada_loc
fccf9de1 12239 = (struct ada_catchpoint_location *) bl;
4d01a485 12240 expression_up exp;
28010a5d 12241
fccf9de1 12242 if (!bl->shlib_disabled)
28010a5d 12243 {
bbc13ae3 12244 const char *s;
28010a5d 12245
cb7de75e 12246 s = cond_string.c_str ();
a70b8144 12247 try
28010a5d 12248 {
fccf9de1
TT
12249 exp = parse_exp_1 (&s, bl->address,
12250 block_for_pc (bl->address),
036e657b 12251 0);
28010a5d 12252 }
230d2906 12253 catch (const gdb_exception_error &e)
849f2b52
JB
12254 {
12255 warning (_("failed to reevaluate internal exception condition "
12256 "for catchpoint %d: %s"),
3d6e9d23 12257 c->number, e.what ());
849f2b52 12258 }
28010a5d
PA
12259 }
12260
b22e99fd 12261 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12262 }
28010a5d
PA
12263}
12264
28010a5d
PA
12265/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12266 structure for all exception catchpoint kinds. */
12267
12268static struct bp_location *
37f6a7f4 12269allocate_location_exception (struct breakpoint *self)
28010a5d 12270{
5f486660 12271 return new ada_catchpoint_location (self);
28010a5d
PA
12272}
12273
12274/* Implement the RE_SET method in the breakpoint_ops structure for all
12275 exception catchpoint kinds. */
12276
12277static void
37f6a7f4 12278re_set_exception (struct breakpoint *b)
28010a5d
PA
12279{
12280 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12281
12282 /* Call the base class's method. This updates the catchpoint's
12283 locations. */
2060206e 12284 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12285
12286 /* Reparse the exception conditional expressions. One for each
12287 location. */
37f6a7f4 12288 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12289}
12290
12291/* Returns true if we should stop for this breakpoint hit. If the
12292 user specified a specific exception, we only want to cause a stop
12293 if the program thrown that exception. */
12294
12295static int
12296should_stop_exception (const struct bp_location *bl)
12297{
12298 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12299 const struct ada_catchpoint_location *ada_loc
12300 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12301 int stop;
12302
37f6a7f4
TT
12303 struct internalvar *var = lookup_internalvar ("_ada_exception");
12304 if (c->m_kind == ada_catch_assert)
12305 clear_internalvar (var);
12306 else
12307 {
12308 try
12309 {
12310 const char *expr;
12311
12312 if (c->m_kind == ada_catch_handlers)
12313 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12314 ".all.occurrence.id");
12315 else
12316 expr = "e";
12317
12318 struct value *exc = parse_and_eval (expr);
12319 set_internalvar (var, exc);
12320 }
12321 catch (const gdb_exception_error &ex)
12322 {
12323 clear_internalvar (var);
12324 }
12325 }
12326
28010a5d 12327 /* With no specific exception, should always stop. */
bc18fbb5 12328 if (c->excep_string.empty ())
28010a5d
PA
12329 return 1;
12330
12331 if (ada_loc->excep_cond_expr == NULL)
12332 {
12333 /* We will have a NULL expression if back when we were creating
12334 the expressions, this location's had failed to parse. */
12335 return 1;
12336 }
12337
12338 stop = 1;
a70b8144 12339 try
28010a5d
PA
12340 {
12341 struct value *mark;
12342
12343 mark = value_mark ();
4d01a485 12344 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12345 value_free_to_mark (mark);
12346 }
230d2906 12347 catch (const gdb_exception &ex)
492d29ea
PA
12348 {
12349 exception_fprintf (gdb_stderr, ex,
12350 _("Error in testing exception condition:\n"));
12351 }
492d29ea 12352
28010a5d
PA
12353 return stop;
12354}
12355
12356/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12357 for all exception catchpoint kinds. */
12358
12359static void
37f6a7f4 12360check_status_exception (bpstat bs)
28010a5d
PA
12361{
12362 bs->stop = should_stop_exception (bs->bp_location_at);
12363}
12364
f7f9143b
JB
12365/* Implement the PRINT_IT method in the breakpoint_ops structure
12366 for all exception catchpoint kinds. */
12367
12368static enum print_stop_action
37f6a7f4 12369print_it_exception (bpstat bs)
f7f9143b 12370{
79a45e25 12371 struct ui_out *uiout = current_uiout;
348d480f
PA
12372 struct breakpoint *b = bs->breakpoint_at;
12373
956a9fb9 12374 annotate_catchpoint (b->number);
f7f9143b 12375
112e8700 12376 if (uiout->is_mi_like_p ())
f7f9143b 12377 {
112e8700 12378 uiout->field_string ("reason",
956a9fb9 12379 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12380 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12381 }
12382
112e8700
SM
12383 uiout->text (b->disposition == disp_del
12384 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12385 uiout->field_signed ("bkptno", b->number);
112e8700 12386 uiout->text (", ");
f7f9143b 12387
45db7c09
PA
12388 /* ada_exception_name_addr relies on the selected frame being the
12389 current frame. Need to do this here because this function may be
12390 called more than once when printing a stop, and below, we'll
12391 select the first frame past the Ada run-time (see
12392 ada_find_printable_frame). */
12393 select_frame (get_current_frame ());
12394
37f6a7f4
TT
12395 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12396 switch (c->m_kind)
f7f9143b 12397 {
761269c8
JB
12398 case ada_catch_exception:
12399 case ada_catch_exception_unhandled:
9f757bf7 12400 case ada_catch_handlers:
956a9fb9 12401 {
37f6a7f4 12402 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12403 char exception_name[256];
12404
12405 if (addr != 0)
12406 {
c714b426
PA
12407 read_memory (addr, (gdb_byte *) exception_name,
12408 sizeof (exception_name) - 1);
956a9fb9
JB
12409 exception_name [sizeof (exception_name) - 1] = '\0';
12410 }
12411 else
12412 {
12413 /* For some reason, we were unable to read the exception
12414 name. This could happen if the Runtime was compiled
12415 without debugging info, for instance. In that case,
12416 just replace the exception name by the generic string
12417 "exception" - it will read as "an exception" in the
12418 notification we are about to print. */
967cff16 12419 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12420 }
12421 /* In the case of unhandled exception breakpoints, we print
12422 the exception name as "unhandled EXCEPTION_NAME", to make
12423 it clearer to the user which kind of catchpoint just got
12424 hit. We used ui_out_text to make sure that this extra
12425 info does not pollute the exception name in the MI case. */
37f6a7f4 12426 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12427 uiout->text ("unhandled ");
12428 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12429 }
12430 break;
761269c8 12431 case ada_catch_assert:
956a9fb9
JB
12432 /* In this case, the name of the exception is not really
12433 important. Just print "failed assertion" to make it clearer
12434 that his program just hit an assertion-failure catchpoint.
12435 We used ui_out_text because this info does not belong in
12436 the MI output. */
112e8700 12437 uiout->text ("failed assertion");
956a9fb9 12438 break;
f7f9143b 12439 }
e547c119 12440
6f46ac85 12441 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12442 if (exception_message != NULL)
12443 {
e547c119 12444 uiout->text (" (");
6f46ac85 12445 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12446 uiout->text (")");
e547c119
JB
12447 }
12448
112e8700 12449 uiout->text (" at ");
956a9fb9 12450 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12451
12452 return PRINT_SRC_AND_LOC;
12453}
12454
12455/* Implement the PRINT_ONE method in the breakpoint_ops structure
12456 for all exception catchpoint kinds. */
12457
12458static void
37f6a7f4 12459print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12460{
79a45e25 12461 struct ui_out *uiout = current_uiout;
28010a5d 12462 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12463 struct value_print_options opts;
12464
12465 get_user_print_options (&opts);
f06f1252 12466
79a45b7d 12467 if (opts.addressprint)
f06f1252 12468 uiout->field_skip ("addr");
f7f9143b
JB
12469
12470 annotate_field (5);
37f6a7f4 12471 switch (c->m_kind)
f7f9143b 12472 {
761269c8 12473 case ada_catch_exception:
bc18fbb5 12474 if (!c->excep_string.empty ())
f7f9143b 12475 {
bc18fbb5
TT
12476 std::string msg = string_printf (_("`%s' Ada exception"),
12477 c->excep_string.c_str ());
28010a5d 12478
112e8700 12479 uiout->field_string ("what", msg);
f7f9143b
JB
12480 }
12481 else
112e8700 12482 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12483
12484 break;
12485
761269c8 12486 case ada_catch_exception_unhandled:
112e8700 12487 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12488 break;
12489
9f757bf7 12490 case ada_catch_handlers:
bc18fbb5 12491 if (!c->excep_string.empty ())
9f757bf7
XR
12492 {
12493 uiout->field_fmt ("what",
12494 _("`%s' Ada exception handlers"),
bc18fbb5 12495 c->excep_string.c_str ());
9f757bf7
XR
12496 }
12497 else
12498 uiout->field_string ("what", "all Ada exceptions handlers");
12499 break;
12500
761269c8 12501 case ada_catch_assert:
112e8700 12502 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12503 break;
12504
12505 default:
12506 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12507 break;
12508 }
12509}
12510
12511/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12512 for all exception catchpoint kinds. */
12513
12514static void
37f6a7f4 12515print_mention_exception (struct breakpoint *b)
f7f9143b 12516{
28010a5d 12517 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12518 struct ui_out *uiout = current_uiout;
28010a5d 12519
112e8700 12520 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12521 : _("Catchpoint "));
381befee 12522 uiout->field_signed ("bkptno", b->number);
112e8700 12523 uiout->text (": ");
00eb2c4a 12524
37f6a7f4 12525 switch (c->m_kind)
f7f9143b 12526 {
761269c8 12527 case ada_catch_exception:
bc18fbb5 12528 if (!c->excep_string.empty ())
00eb2c4a 12529 {
862d101a 12530 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12531 c->excep_string.c_str ());
862d101a 12532 uiout->text (info.c_str ());
00eb2c4a 12533 }
f7f9143b 12534 else
112e8700 12535 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12536 break;
12537
761269c8 12538 case ada_catch_exception_unhandled:
112e8700 12539 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12540 break;
9f757bf7
XR
12541
12542 case ada_catch_handlers:
bc18fbb5 12543 if (!c->excep_string.empty ())
9f757bf7
XR
12544 {
12545 std::string info
12546 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12547 c->excep_string.c_str ());
9f757bf7
XR
12548 uiout->text (info.c_str ());
12549 }
12550 else
12551 uiout->text (_("all Ada exceptions handlers"));
12552 break;
12553
761269c8 12554 case ada_catch_assert:
112e8700 12555 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12556 break;
12557
12558 default:
12559 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12560 break;
12561 }
12562}
12563
6149aea9
PA
12564/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567static void
37f6a7f4 12568print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12569{
28010a5d
PA
12570 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12571
37f6a7f4 12572 switch (c->m_kind)
6149aea9 12573 {
761269c8 12574 case ada_catch_exception:
6149aea9 12575 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12576 if (!c->excep_string.empty ())
12577 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12578 break;
12579
761269c8 12580 case ada_catch_exception_unhandled:
78076abc 12581 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12582 break;
12583
9f757bf7
XR
12584 case ada_catch_handlers:
12585 fprintf_filtered (fp, "catch handlers");
12586 break;
12587
761269c8 12588 case ada_catch_assert:
6149aea9
PA
12589 fprintf_filtered (fp, "catch assert");
12590 break;
12591
12592 default:
12593 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12594 }
d9b3f62e 12595 print_recreate_thread (b, fp);
6149aea9
PA
12596}
12597
37f6a7f4 12598/* Virtual tables for various breakpoint types. */
2060206e 12599static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12600static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12601static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12602static struct breakpoint_ops catch_handlers_breakpoint_ops;
12603
f06f1252
TT
12604/* See ada-lang.h. */
12605
12606bool
12607is_ada_exception_catchpoint (breakpoint *bp)
12608{
12609 return (bp->ops == &catch_exception_breakpoint_ops
12610 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12611 || bp->ops == &catch_assert_breakpoint_ops
12612 || bp->ops == &catch_handlers_breakpoint_ops);
12613}
12614
f7f9143b
JB
12615/* Split the arguments specified in a "catch exception" command.
12616 Set EX to the appropriate catchpoint type.
28010a5d 12617 Set EXCEP_STRING to the name of the specific exception if
5845583d 12618 specified by the user.
9f757bf7
XR
12619 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12620 "catch handlers" command. False otherwise.
5845583d
JB
12621 If a condition is found at the end of the arguments, the condition
12622 expression is stored in COND_STRING (memory must be deallocated
12623 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12624
12625static void
a121b7c1 12626catch_ada_exception_command_split (const char *args,
9f757bf7 12627 bool is_catch_handlers_cmd,
761269c8 12628 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12629 std::string *excep_string,
12630 std::string *cond_string)
f7f9143b 12631{
bc18fbb5 12632 std::string exception_name;
f7f9143b 12633
bc18fbb5
TT
12634 exception_name = extract_arg (&args);
12635 if (exception_name == "if")
5845583d
JB
12636 {
12637 /* This is not an exception name; this is the start of a condition
12638 expression for a catchpoint on all exceptions. So, "un-get"
12639 this token, and set exception_name to NULL. */
bc18fbb5 12640 exception_name.clear ();
5845583d
JB
12641 args -= 2;
12642 }
f7f9143b 12643
5845583d 12644 /* Check to see if we have a condition. */
f7f9143b 12645
f1735a53 12646 args = skip_spaces (args);
61012eef 12647 if (startswith (args, "if")
5845583d
JB
12648 && (isspace (args[2]) || args[2] == '\0'))
12649 {
12650 args += 2;
f1735a53 12651 args = skip_spaces (args);
5845583d
JB
12652
12653 if (args[0] == '\0')
12654 error (_("Condition missing after `if' keyword"));
bc18fbb5 12655 *cond_string = args;
5845583d
JB
12656
12657 args += strlen (args);
12658 }
12659
12660 /* Check that we do not have any more arguments. Anything else
12661 is unexpected. */
f7f9143b
JB
12662
12663 if (args[0] != '\0')
12664 error (_("Junk at end of expression"));
12665
9f757bf7
XR
12666 if (is_catch_handlers_cmd)
12667 {
12668 /* Catch handling of exceptions. */
12669 *ex = ada_catch_handlers;
12670 *excep_string = exception_name;
12671 }
bc18fbb5 12672 else if (exception_name.empty ())
f7f9143b
JB
12673 {
12674 /* Catch all exceptions. */
761269c8 12675 *ex = ada_catch_exception;
bc18fbb5 12676 excep_string->clear ();
f7f9143b 12677 }
bc18fbb5 12678 else if (exception_name == "unhandled")
f7f9143b
JB
12679 {
12680 /* Catch unhandled exceptions. */
761269c8 12681 *ex = ada_catch_exception_unhandled;
bc18fbb5 12682 excep_string->clear ();
f7f9143b
JB
12683 }
12684 else
12685 {
12686 /* Catch a specific exception. */
761269c8 12687 *ex = ada_catch_exception;
28010a5d 12688 *excep_string = exception_name;
f7f9143b
JB
12689 }
12690}
12691
12692/* Return the name of the symbol on which we should break in order to
12693 implement a catchpoint of the EX kind. */
12694
12695static const char *
761269c8 12696ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12697{
3eecfa55
JB
12698 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12699
12700 gdb_assert (data->exception_info != NULL);
0259addd 12701
f7f9143b
JB
12702 switch (ex)
12703 {
761269c8 12704 case ada_catch_exception:
3eecfa55 12705 return (data->exception_info->catch_exception_sym);
f7f9143b 12706 break;
761269c8 12707 case ada_catch_exception_unhandled:
3eecfa55 12708 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12709 break;
761269c8 12710 case ada_catch_assert:
3eecfa55 12711 return (data->exception_info->catch_assert_sym);
f7f9143b 12712 break;
9f757bf7
XR
12713 case ada_catch_handlers:
12714 return (data->exception_info->catch_handlers_sym);
12715 break;
f7f9143b
JB
12716 default:
12717 internal_error (__FILE__, __LINE__,
12718 _("unexpected catchpoint kind (%d)"), ex);
12719 }
12720}
12721
12722/* Return the breakpoint ops "virtual table" used for catchpoints
12723 of the EX kind. */
12724
c0a91b2b 12725static const struct breakpoint_ops *
761269c8 12726ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12727{
12728 switch (ex)
12729 {
761269c8 12730 case ada_catch_exception:
f7f9143b
JB
12731 return (&catch_exception_breakpoint_ops);
12732 break;
761269c8 12733 case ada_catch_exception_unhandled:
f7f9143b
JB
12734 return (&catch_exception_unhandled_breakpoint_ops);
12735 break;
761269c8 12736 case ada_catch_assert:
f7f9143b
JB
12737 return (&catch_assert_breakpoint_ops);
12738 break;
9f757bf7
XR
12739 case ada_catch_handlers:
12740 return (&catch_handlers_breakpoint_ops);
12741 break;
f7f9143b
JB
12742 default:
12743 internal_error (__FILE__, __LINE__,
12744 _("unexpected catchpoint kind (%d)"), ex);
12745 }
12746}
12747
12748/* Return the condition that will be used to match the current exception
12749 being raised with the exception that the user wants to catch. This
12750 assumes that this condition is used when the inferior just triggered
12751 an exception catchpoint.
cb7de75e 12752 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12753
cb7de75e 12754static std::string
9f757bf7
XR
12755ada_exception_catchpoint_cond_string (const char *excep_string,
12756 enum ada_exception_catchpoint_kind ex)
f7f9143b 12757{
3d0b0fa3 12758 int i;
fccf9de1 12759 bool is_standard_exc = false;
cb7de75e 12760 std::string result;
9f757bf7
XR
12761
12762 if (ex == ada_catch_handlers)
12763 {
12764 /* For exception handlers catchpoints, the condition string does
12765 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12766 result = ("long_integer (GNAT_GCC_exception_Access"
12767 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12768 }
12769 else
fccf9de1 12770 result = "long_integer (e)";
3d0b0fa3 12771
0963b4bd 12772 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12773 runtime units that have been compiled without debugging info; if
28010a5d 12774 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12775 exception (e.g. "constraint_error") then, during the evaluation
12776 of the condition expression, the symbol lookup on this name would
0963b4bd 12777 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12778 may then be set only on user-defined exceptions which have the
12779 same not-fully-qualified name (e.g. my_package.constraint_error).
12780
12781 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12782 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12783 exception constraint_error" is rewritten into "catch exception
12784 standard.constraint_error".
12785
85102364 12786 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12787 the inferior program, then the only way to specify this exception as a
12788 breakpoint condition is to use its fully-qualified named:
fccf9de1 12789 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12790
12791 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12792 {
28010a5d 12793 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12794 {
fccf9de1 12795 is_standard_exc = true;
9f757bf7 12796 break;
3d0b0fa3
JB
12797 }
12798 }
9f757bf7 12799
fccf9de1
TT
12800 result += " = ";
12801
12802 if (is_standard_exc)
12803 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12804 else
12805 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12806
9f757bf7 12807 return result;
f7f9143b
JB
12808}
12809
12810/* Return the symtab_and_line that should be used to insert an exception
12811 catchpoint of the TYPE kind.
12812
28010a5d
PA
12813 ADDR_STRING returns the name of the function where the real
12814 breakpoint that implements the catchpoints is set, depending on the
12815 type of catchpoint we need to create. */
f7f9143b
JB
12816
12817static struct symtab_and_line
bc18fbb5 12818ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12819 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12820{
12821 const char *sym_name;
12822 struct symbol *sym;
f7f9143b 12823
0259addd
JB
12824 /* First, find out which exception support info to use. */
12825 ada_exception_support_info_sniffer ();
12826
12827 /* Then lookup the function on which we will break in order to catch
f7f9143b 12828 the Ada exceptions requested by the user. */
f7f9143b
JB
12829 sym_name = ada_exception_sym_name (ex);
12830 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12831
57aff202
JB
12832 if (sym == NULL)
12833 error (_("Catchpoint symbol not found: %s"), sym_name);
12834
12835 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12836 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12837
12838 /* Set ADDR_STRING. */
cc12f4a8 12839 *addr_string = sym_name;
f7f9143b 12840
f7f9143b 12841 /* Set OPS. */
4b9eee8c 12842 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12843
f17011e0 12844 return find_function_start_sal (sym, 1);
f7f9143b
JB
12845}
12846
b4a5b78b 12847/* Create an Ada exception catchpoint.
f7f9143b 12848
b4a5b78b 12849 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12850
bc18fbb5 12851 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12852 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12853 of the exception to which this catchpoint applies.
2df4d1d5 12854
bc18fbb5 12855 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12856
b4a5b78b
JB
12857 TEMPFLAG, if nonzero, means that the underlying breakpoint
12858 should be temporary.
28010a5d 12859
b4a5b78b 12860 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12861
349774ef 12862void
28010a5d 12863create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12864 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12865 const std::string &excep_string,
56ecd069 12866 const std::string &cond_string,
28010a5d 12867 int tempflag,
349774ef 12868 int disabled,
28010a5d
PA
12869 int from_tty)
12870{
cc12f4a8 12871 std::string addr_string;
b4a5b78b 12872 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12873 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12874
37f6a7f4 12875 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12876 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12877 ops, tempflag, disabled, from_tty);
28010a5d 12878 c->excep_string = excep_string;
9f757bf7 12879 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12880 if (!cond_string.empty ())
12881 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12882 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12883}
12884
9ac4176b
PA
12885/* Implement the "catch exception" command. */
12886
12887static void
eb4c3f4a 12888catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12889 struct cmd_list_element *command)
12890{
a121b7c1 12891 const char *arg = arg_entry;
9ac4176b
PA
12892 struct gdbarch *gdbarch = get_current_arch ();
12893 int tempflag;
761269c8 12894 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12895 std::string excep_string;
56ecd069 12896 std::string cond_string;
9ac4176b
PA
12897
12898 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12899
12900 if (!arg)
12901 arg = "";
9f757bf7 12902 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12903 &cond_string);
9f757bf7
XR
12904 create_ada_exception_catchpoint (gdbarch, ex_kind,
12905 excep_string, cond_string,
12906 tempflag, 1 /* enabled */,
12907 from_tty);
12908}
12909
12910/* Implement the "catch handlers" command. */
12911
12912static void
12913catch_ada_handlers_command (const char *arg_entry, int from_tty,
12914 struct cmd_list_element *command)
12915{
12916 const char *arg = arg_entry;
12917 struct gdbarch *gdbarch = get_current_arch ();
12918 int tempflag;
12919 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12920 std::string excep_string;
56ecd069 12921 std::string cond_string;
9f757bf7
XR
12922
12923 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12924
12925 if (!arg)
12926 arg = "";
12927 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12928 &cond_string);
b4a5b78b
JB
12929 create_ada_exception_catchpoint (gdbarch, ex_kind,
12930 excep_string, cond_string,
349774ef
JB
12931 tempflag, 1 /* enabled */,
12932 from_tty);
9ac4176b
PA
12933}
12934
71bed2db
TT
12935/* Completion function for the Ada "catch" commands. */
12936
12937static void
12938catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12939 const char *text, const char *word)
12940{
12941 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12942
12943 for (const ada_exc_info &info : exceptions)
12944 {
12945 if (startswith (info.name, word))
b02f78f9 12946 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12947 }
12948}
12949
b4a5b78b 12950/* Split the arguments specified in a "catch assert" command.
5845583d 12951
b4a5b78b
JB
12952 ARGS contains the command's arguments (or the empty string if
12953 no arguments were passed).
5845583d
JB
12954
12955 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12956 (the memory needs to be deallocated after use). */
5845583d 12957
b4a5b78b 12958static void
56ecd069 12959catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12960{
f1735a53 12961 args = skip_spaces (args);
f7f9143b 12962
5845583d 12963 /* Check whether a condition was provided. */
61012eef 12964 if (startswith (args, "if")
5845583d 12965 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12966 {
5845583d 12967 args += 2;
f1735a53 12968 args = skip_spaces (args);
5845583d
JB
12969 if (args[0] == '\0')
12970 error (_("condition missing after `if' keyword"));
56ecd069 12971 cond_string.assign (args);
f7f9143b
JB
12972 }
12973
5845583d
JB
12974 /* Otherwise, there should be no other argument at the end of
12975 the command. */
12976 else if (args[0] != '\0')
12977 error (_("Junk at end of arguments."));
f7f9143b
JB
12978}
12979
9ac4176b
PA
12980/* Implement the "catch assert" command. */
12981
12982static void
eb4c3f4a 12983catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12984 struct cmd_list_element *command)
12985{
a121b7c1 12986 const char *arg = arg_entry;
9ac4176b
PA
12987 struct gdbarch *gdbarch = get_current_arch ();
12988 int tempflag;
56ecd069 12989 std::string cond_string;
9ac4176b
PA
12990
12991 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12992
12993 if (!arg)
12994 arg = "";
56ecd069 12995 catch_ada_assert_command_split (arg, cond_string);
761269c8 12996 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12997 "", cond_string,
349774ef
JB
12998 tempflag, 1 /* enabled */,
12999 from_tty);
9ac4176b 13000}
778865d3
JB
13001
13002/* Return non-zero if the symbol SYM is an Ada exception object. */
13003
13004static int
13005ada_is_exception_sym (struct symbol *sym)
13006{
7d93a1e0 13007 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
13008
13009 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13010 && SYMBOL_CLASS (sym) != LOC_BLOCK
13011 && SYMBOL_CLASS (sym) != LOC_CONST
13012 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13013 && type_name != NULL && strcmp (type_name, "exception") == 0);
13014}
13015
13016/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13017 Ada exception object. This matches all exceptions except the ones
13018 defined by the Ada language. */
13019
13020static int
13021ada_is_non_standard_exception_sym (struct symbol *sym)
13022{
13023 int i;
13024
13025 if (!ada_is_exception_sym (sym))
13026 return 0;
13027
13028 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13029 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13030 return 0; /* A standard exception. */
13031
13032 /* Numeric_Error is also a standard exception, so exclude it.
13033 See the STANDARD_EXC description for more details as to why
13034 this exception is not listed in that array. */
987012b8 13035 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13036 return 0;
13037
13038 return 1;
13039}
13040
ab816a27 13041/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13042 objects.
13043
13044 The comparison is determined first by exception name, and then
13045 by exception address. */
13046
ab816a27 13047bool
cc536b21 13048ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13049{
778865d3
JB
13050 int result;
13051
ab816a27
TT
13052 result = strcmp (name, other.name);
13053 if (result < 0)
13054 return true;
13055 if (result == 0 && addr < other.addr)
13056 return true;
13057 return false;
13058}
778865d3 13059
ab816a27 13060bool
cc536b21 13061ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13062{
13063 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13064}
13065
13066/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13067 routine, but keeping the first SKIP elements untouched.
13068
13069 All duplicates are also removed. */
13070
13071static void
ab816a27 13072sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13073 int skip)
13074{
ab816a27
TT
13075 std::sort (exceptions->begin () + skip, exceptions->end ());
13076 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13077 exceptions->end ());
778865d3
JB
13078}
13079
778865d3
JB
13080/* Add all exceptions defined by the Ada standard whose name match
13081 a regular expression.
13082
13083 If PREG is not NULL, then this regexp_t object is used to
13084 perform the symbol name matching. Otherwise, no name-based
13085 filtering is performed.
13086
13087 EXCEPTIONS is a vector of exceptions to which matching exceptions
13088 gets pushed. */
13089
13090static void
2d7cc5c7 13091ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13092 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13093{
13094 int i;
13095
13096 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13097 {
13098 if (preg == NULL
2d7cc5c7 13099 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13100 {
13101 struct bound_minimal_symbol msymbol
13102 = ada_lookup_simple_minsym (standard_exc[i]);
13103
13104 if (msymbol.minsym != NULL)
13105 {
13106 struct ada_exc_info info
77e371c0 13107 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13108
ab816a27 13109 exceptions->push_back (info);
778865d3
JB
13110 }
13111 }
13112 }
13113}
13114
13115/* Add all Ada exceptions defined locally and accessible from the given
13116 FRAME.
13117
13118 If PREG is not NULL, then this regexp_t object is used to
13119 perform the symbol name matching. Otherwise, no name-based
13120 filtering is performed.
13121
13122 EXCEPTIONS is a vector of exceptions to which matching exceptions
13123 gets pushed. */
13124
13125static void
2d7cc5c7
PA
13126ada_add_exceptions_from_frame (compiled_regex *preg,
13127 struct frame_info *frame,
ab816a27 13128 std::vector<ada_exc_info> *exceptions)
778865d3 13129{
3977b71f 13130 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13131
13132 while (block != 0)
13133 {
13134 struct block_iterator iter;
13135 struct symbol *sym;
13136
13137 ALL_BLOCK_SYMBOLS (block, iter, sym)
13138 {
13139 switch (SYMBOL_CLASS (sym))
13140 {
13141 case LOC_TYPEDEF:
13142 case LOC_BLOCK:
13143 case LOC_CONST:
13144 break;
13145 default:
13146 if (ada_is_exception_sym (sym))
13147 {
987012b8 13148 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13149 SYMBOL_VALUE_ADDRESS (sym)};
13150
ab816a27 13151 exceptions->push_back (info);
778865d3
JB
13152 }
13153 }
13154 }
13155 if (BLOCK_FUNCTION (block) != NULL)
13156 break;
13157 block = BLOCK_SUPERBLOCK (block);
13158 }
13159}
13160
14bc53a8
PA
13161/* Return true if NAME matches PREG or if PREG is NULL. */
13162
13163static bool
2d7cc5c7 13164name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13165{
13166 return (preg == NULL
f945dedf 13167 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13168}
13169
778865d3
JB
13170/* Add all exceptions defined globally whose name name match
13171 a regular expression, excluding standard exceptions.
13172
13173 The reason we exclude standard exceptions is that they need
13174 to be handled separately: Standard exceptions are defined inside
13175 a runtime unit which is normally not compiled with debugging info,
13176 and thus usually do not show up in our symbol search. However,
13177 if the unit was in fact built with debugging info, we need to
13178 exclude them because they would duplicate the entry we found
13179 during the special loop that specifically searches for those
13180 standard exceptions.
13181
13182 If PREG is not NULL, then this regexp_t object is used to
13183 perform the symbol name matching. Otherwise, no name-based
13184 filtering is performed.
13185
13186 EXCEPTIONS is a vector of exceptions to which matching exceptions
13187 gets pushed. */
13188
13189static void
2d7cc5c7 13190ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13191 std::vector<ada_exc_info> *exceptions)
778865d3 13192{
14bc53a8
PA
13193 /* In Ada, the symbol "search name" is a linkage name, whereas the
13194 regular expression used to do the matching refers to the natural
13195 name. So match against the decoded name. */
13196 expand_symtabs_matching (NULL,
b5ec771e 13197 lookup_name_info::match_any (),
14bc53a8
PA
13198 [&] (const char *search_name)
13199 {
f945dedf
CB
13200 std::string decoded = ada_decode (search_name);
13201 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13202 },
13203 NULL,
13204 VARIABLES_DOMAIN);
778865d3 13205
2030c079 13206 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13207 {
b669c953 13208 for (compunit_symtab *s : objfile->compunits ())
778865d3 13209 {
d8aeb77f
TT
13210 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13211 int i;
778865d3 13212
d8aeb77f
TT
13213 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13214 {
582942f4 13215 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13216 struct block_iterator iter;
13217 struct symbol *sym;
778865d3 13218
d8aeb77f
TT
13219 ALL_BLOCK_SYMBOLS (b, iter, sym)
13220 if (ada_is_non_standard_exception_sym (sym)
987012b8 13221 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13222 {
13223 struct ada_exc_info info
987012b8 13224 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13225
13226 exceptions->push_back (info);
13227 }
13228 }
778865d3
JB
13229 }
13230 }
13231}
13232
13233/* Implements ada_exceptions_list with the regular expression passed
13234 as a regex_t, rather than a string.
13235
13236 If not NULL, PREG is used to filter out exceptions whose names
13237 do not match. Otherwise, all exceptions are listed. */
13238
ab816a27 13239static std::vector<ada_exc_info>
2d7cc5c7 13240ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13241{
ab816a27 13242 std::vector<ada_exc_info> result;
778865d3
JB
13243 int prev_len;
13244
13245 /* First, list the known standard exceptions. These exceptions
13246 need to be handled separately, as they are usually defined in
13247 runtime units that have been compiled without debugging info. */
13248
13249 ada_add_standard_exceptions (preg, &result);
13250
13251 /* Next, find all exceptions whose scope is local and accessible
13252 from the currently selected frame. */
13253
13254 if (has_stack_frames ())
13255 {
ab816a27 13256 prev_len = result.size ();
778865d3
JB
13257 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13258 &result);
ab816a27 13259 if (result.size () > prev_len)
778865d3
JB
13260 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13261 }
13262
13263 /* Add all exceptions whose scope is global. */
13264
ab816a27 13265 prev_len = result.size ();
778865d3 13266 ada_add_global_exceptions (preg, &result);
ab816a27 13267 if (result.size () > prev_len)
778865d3
JB
13268 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13269
778865d3
JB
13270 return result;
13271}
13272
13273/* Return a vector of ada_exc_info.
13274
13275 If REGEXP is NULL, all exceptions are included in the result.
13276 Otherwise, it should contain a valid regular expression,
13277 and only the exceptions whose names match that regular expression
13278 are included in the result.
13279
13280 The exceptions are sorted in the following order:
13281 - Standard exceptions (defined by the Ada language), in
13282 alphabetical order;
13283 - Exceptions only visible from the current frame, in
13284 alphabetical order;
13285 - Exceptions whose scope is global, in alphabetical order. */
13286
ab816a27 13287std::vector<ada_exc_info>
778865d3
JB
13288ada_exceptions_list (const char *regexp)
13289{
2d7cc5c7
PA
13290 if (regexp == NULL)
13291 return ada_exceptions_list_1 (NULL);
778865d3 13292
2d7cc5c7
PA
13293 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13294 return ada_exceptions_list_1 (&reg);
778865d3
JB
13295}
13296
13297/* Implement the "info exceptions" command. */
13298
13299static void
1d12d88f 13300info_exceptions_command (const char *regexp, int from_tty)
778865d3 13301{
778865d3 13302 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13303
ab816a27 13304 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13305
13306 if (regexp != NULL)
13307 printf_filtered
13308 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13309 else
13310 printf_filtered (_("All defined Ada exceptions:\n"));
13311
ab816a27
TT
13312 for (const ada_exc_info &info : exceptions)
13313 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13314}
13315
4c4b4cd2
PH
13316 /* Operators */
13317/* Information about operators given special treatment in functions
13318 below. */
13319/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13320
13321#define ADA_OPERATORS \
13322 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13323 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13324 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13325 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13326 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13327 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13328 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13329 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13330 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13331 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13332 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13333 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13334 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13335 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13336 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13337 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13338 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13339 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13340 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13341
13342static void
554794dc
SDJ
13343ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13344 int *argsp)
4c4b4cd2
PH
13345{
13346 switch (exp->elts[pc - 1].opcode)
13347 {
76a01679 13348 default:
4c4b4cd2
PH
13349 operator_length_standard (exp, pc, oplenp, argsp);
13350 break;
13351
13352#define OP_DEFN(op, len, args, binop) \
13353 case op: *oplenp = len; *argsp = args; break;
13354 ADA_OPERATORS;
13355#undef OP_DEFN
52ce6436
PH
13356
13357 case OP_AGGREGATE:
13358 *oplenp = 3;
13359 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13360 break;
13361
13362 case OP_CHOICES:
13363 *oplenp = 3;
13364 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13365 break;
4c4b4cd2
PH
13366 }
13367}
13368
c0201579
JK
13369/* Implementation of the exp_descriptor method operator_check. */
13370
13371static int
13372ada_operator_check (struct expression *exp, int pos,
13373 int (*objfile_func) (struct objfile *objfile, void *data),
13374 void *data)
13375{
13376 const union exp_element *const elts = exp->elts;
13377 struct type *type = NULL;
13378
13379 switch (elts[pos].opcode)
13380 {
13381 case UNOP_IN_RANGE:
13382 case UNOP_QUAL:
13383 type = elts[pos + 1].type;
13384 break;
13385
13386 default:
13387 return operator_check_standard (exp, pos, objfile_func, data);
13388 }
13389
13390 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13391
13392 if (type && TYPE_OBJFILE (type)
13393 && (*objfile_func) (TYPE_OBJFILE (type), data))
13394 return 1;
13395
13396 return 0;
13397}
13398
a121b7c1 13399static const char *
4c4b4cd2
PH
13400ada_op_name (enum exp_opcode opcode)
13401{
13402 switch (opcode)
13403 {
76a01679 13404 default:
4c4b4cd2 13405 return op_name_standard (opcode);
52ce6436 13406
4c4b4cd2
PH
13407#define OP_DEFN(op, len, args, binop) case op: return #op;
13408 ADA_OPERATORS;
13409#undef OP_DEFN
52ce6436
PH
13410
13411 case OP_AGGREGATE:
13412 return "OP_AGGREGATE";
13413 case OP_CHOICES:
13414 return "OP_CHOICES";
13415 case OP_NAME:
13416 return "OP_NAME";
4c4b4cd2
PH
13417 }
13418}
13419
13420/* As for operator_length, but assumes PC is pointing at the first
13421 element of the operator, and gives meaningful results only for the
52ce6436 13422 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13423
13424static void
76a01679
JB
13425ada_forward_operator_length (struct expression *exp, int pc,
13426 int *oplenp, int *argsp)
4c4b4cd2 13427{
76a01679 13428 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13429 {
13430 default:
13431 *oplenp = *argsp = 0;
13432 break;
52ce6436 13433
4c4b4cd2
PH
13434#define OP_DEFN(op, len, args, binop) \
13435 case op: *oplenp = len; *argsp = args; break;
13436 ADA_OPERATORS;
13437#undef OP_DEFN
52ce6436
PH
13438
13439 case OP_AGGREGATE:
13440 *oplenp = 3;
13441 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13442 break;
13443
13444 case OP_CHOICES:
13445 *oplenp = 3;
13446 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13447 break;
13448
13449 case OP_STRING:
13450 case OP_NAME:
13451 {
13452 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13453
52ce6436
PH
13454 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13455 *argsp = 0;
13456 break;
13457 }
4c4b4cd2
PH
13458 }
13459}
13460
13461static int
13462ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13463{
13464 enum exp_opcode op = exp->elts[elt].opcode;
13465 int oplen, nargs;
13466 int pc = elt;
13467 int i;
76a01679 13468
4c4b4cd2
PH
13469 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13470
76a01679 13471 switch (op)
4c4b4cd2 13472 {
76a01679 13473 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13474 case OP_ATR_FIRST:
13475 case OP_ATR_LAST:
13476 case OP_ATR_LENGTH:
13477 case OP_ATR_IMAGE:
13478 case OP_ATR_MAX:
13479 case OP_ATR_MIN:
13480 case OP_ATR_MODULUS:
13481 case OP_ATR_POS:
13482 case OP_ATR_SIZE:
13483 case OP_ATR_TAG:
13484 case OP_ATR_VAL:
13485 break;
13486
13487 case UNOP_IN_RANGE:
13488 case UNOP_QUAL:
323e0a4a
AC
13489 /* XXX: gdb_sprint_host_address, type_sprint */
13490 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13491 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13492 fprintf_filtered (stream, " (");
13493 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13494 fprintf_filtered (stream, ")");
13495 break;
13496 case BINOP_IN_BOUNDS:
52ce6436
PH
13497 fprintf_filtered (stream, " (%d)",
13498 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13499 break;
13500 case TERNOP_IN_RANGE:
13501 break;
13502
52ce6436
PH
13503 case OP_AGGREGATE:
13504 case OP_OTHERS:
13505 case OP_DISCRETE_RANGE:
13506 case OP_POSITIONAL:
13507 case OP_CHOICES:
13508 break;
13509
13510 case OP_NAME:
13511 case OP_STRING:
13512 {
13513 char *name = &exp->elts[elt + 2].string;
13514 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13515
52ce6436
PH
13516 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13517 break;
13518 }
13519
4c4b4cd2
PH
13520 default:
13521 return dump_subexp_body_standard (exp, stream, elt);
13522 }
13523
13524 elt += oplen;
13525 for (i = 0; i < nargs; i += 1)
13526 elt = dump_subexp (exp, stream, elt);
13527
13528 return elt;
13529}
13530
13531/* The Ada extension of print_subexp (q.v.). */
13532
76a01679
JB
13533static void
13534ada_print_subexp (struct expression *exp, int *pos,
13535 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13536{
52ce6436 13537 int oplen, nargs, i;
4c4b4cd2
PH
13538 int pc = *pos;
13539 enum exp_opcode op = exp->elts[pc].opcode;
13540
13541 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13542
52ce6436 13543 *pos += oplen;
4c4b4cd2
PH
13544 switch (op)
13545 {
13546 default:
52ce6436 13547 *pos -= oplen;
4c4b4cd2
PH
13548 print_subexp_standard (exp, pos, stream, prec);
13549 return;
13550
13551 case OP_VAR_VALUE:
987012b8 13552 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13553 return;
13554
13555 case BINOP_IN_BOUNDS:
323e0a4a 13556 /* XXX: sprint_subexp */
4c4b4cd2 13557 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13558 fputs_filtered (" in ", stream);
4c4b4cd2 13559 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13560 fputs_filtered ("'range", stream);
4c4b4cd2 13561 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13562 fprintf_filtered (stream, "(%ld)",
13563 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13564 return;
13565
13566 case TERNOP_IN_RANGE:
4c4b4cd2 13567 if (prec >= PREC_EQUAL)
76a01679 13568 fputs_filtered ("(", stream);
323e0a4a 13569 /* XXX: sprint_subexp */
4c4b4cd2 13570 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13571 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13572 print_subexp (exp, pos, stream, PREC_EQUAL);
13573 fputs_filtered (" .. ", stream);
13574 print_subexp (exp, pos, stream, PREC_EQUAL);
13575 if (prec >= PREC_EQUAL)
76a01679
JB
13576 fputs_filtered (")", stream);
13577 return;
4c4b4cd2
PH
13578
13579 case OP_ATR_FIRST:
13580 case OP_ATR_LAST:
13581 case OP_ATR_LENGTH:
13582 case OP_ATR_IMAGE:
13583 case OP_ATR_MAX:
13584 case OP_ATR_MIN:
13585 case OP_ATR_MODULUS:
13586 case OP_ATR_POS:
13587 case OP_ATR_SIZE:
13588 case OP_ATR_TAG:
13589 case OP_ATR_VAL:
4c4b4cd2 13590 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13591 {
78134374 13592 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13593 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13594 &type_print_raw_options);
76a01679
JB
13595 *pos += 3;
13596 }
4c4b4cd2 13597 else
76a01679 13598 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13599 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13600 if (nargs > 1)
76a01679
JB
13601 {
13602 int tem;
5b4ee69b 13603
76a01679
JB
13604 for (tem = 1; tem < nargs; tem += 1)
13605 {
13606 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13607 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13608 }
13609 fputs_filtered (")", stream);
13610 }
4c4b4cd2 13611 return;
14f9c5c9 13612
4c4b4cd2 13613 case UNOP_QUAL:
4c4b4cd2
PH
13614 type_print (exp->elts[pc + 1].type, "", stream, 0);
13615 fputs_filtered ("'(", stream);
13616 print_subexp (exp, pos, stream, PREC_PREFIX);
13617 fputs_filtered (")", stream);
13618 return;
14f9c5c9 13619
4c4b4cd2 13620 case UNOP_IN_RANGE:
323e0a4a 13621 /* XXX: sprint_subexp */
4c4b4cd2 13622 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13623 fputs_filtered (" in ", stream);
79d43c61
TT
13624 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13625 &type_print_raw_options);
4c4b4cd2 13626 return;
52ce6436
PH
13627
13628 case OP_DISCRETE_RANGE:
13629 print_subexp (exp, pos, stream, PREC_SUFFIX);
13630 fputs_filtered ("..", stream);
13631 print_subexp (exp, pos, stream, PREC_SUFFIX);
13632 return;
13633
13634 case OP_OTHERS:
13635 fputs_filtered ("others => ", stream);
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 return;
13638
13639 case OP_CHOICES:
13640 for (i = 0; i < nargs-1; i += 1)
13641 {
13642 if (i > 0)
13643 fputs_filtered ("|", stream);
13644 print_subexp (exp, pos, stream, PREC_SUFFIX);
13645 }
13646 fputs_filtered (" => ", stream);
13647 print_subexp (exp, pos, stream, PREC_SUFFIX);
13648 return;
13649
13650 case OP_POSITIONAL:
13651 print_subexp (exp, pos, stream, PREC_SUFFIX);
13652 return;
13653
13654 case OP_AGGREGATE:
13655 fputs_filtered ("(", stream);
13656 for (i = 0; i < nargs; i += 1)
13657 {
13658 if (i > 0)
13659 fputs_filtered (", ", stream);
13660 print_subexp (exp, pos, stream, PREC_SUFFIX);
13661 }
13662 fputs_filtered (")", stream);
13663 return;
4c4b4cd2
PH
13664 }
13665}
14f9c5c9
AS
13666
13667/* Table mapping opcodes into strings for printing operators
13668 and precedences of the operators. */
13669
d2e4a39e
AS
13670static const struct op_print ada_op_print_tab[] = {
13671 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13672 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13673 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13674 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13675 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13676 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13677 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13678 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13679 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13680 {">=", BINOP_GEQ, PREC_ORDER, 0},
13681 {">", BINOP_GTR, PREC_ORDER, 0},
13682 {"<", BINOP_LESS, PREC_ORDER, 0},
13683 {">>", BINOP_RSH, PREC_SHIFT, 0},
13684 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13685 {"+", BINOP_ADD, PREC_ADD, 0},
13686 {"-", BINOP_SUB, PREC_ADD, 0},
13687 {"&", BINOP_CONCAT, PREC_ADD, 0},
13688 {"*", BINOP_MUL, PREC_MUL, 0},
13689 {"/", BINOP_DIV, PREC_MUL, 0},
13690 {"rem", BINOP_REM, PREC_MUL, 0},
13691 {"mod", BINOP_MOD, PREC_MUL, 0},
13692 {"**", BINOP_EXP, PREC_REPEAT, 0},
13693 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13694 {"-", UNOP_NEG, PREC_PREFIX, 0},
13695 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13696 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13697 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13698 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13699 {".all", UNOP_IND, PREC_SUFFIX, 1},
13700 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13701 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13702 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13703};
13704\f
72d5681a
PH
13705enum ada_primitive_types {
13706 ada_primitive_type_int,
13707 ada_primitive_type_long,
13708 ada_primitive_type_short,
13709 ada_primitive_type_char,
13710 ada_primitive_type_float,
13711 ada_primitive_type_double,
13712 ada_primitive_type_void,
13713 ada_primitive_type_long_long,
13714 ada_primitive_type_long_double,
13715 ada_primitive_type_natural,
13716 ada_primitive_type_positive,
13717 ada_primitive_type_system_address,
08f49010 13718 ada_primitive_type_storage_offset,
72d5681a
PH
13719 nr_ada_primitive_types
13720};
6c038f32 13721
6c038f32
PH
13722\f
13723 /* Language vector */
13724
13725/* Not really used, but needed in the ada_language_defn. */
13726
13727static void
6c7a06a3 13728emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13729{
6c7a06a3 13730 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13731}
13732
13733static int
410a0ff2 13734parse (struct parser_state *ps)
6c038f32
PH
13735{
13736 warnings_issued = 0;
410a0ff2 13737 return ada_parse (ps);
6c038f32
PH
13738}
13739
13740static const struct exp_descriptor ada_exp_descriptor = {
13741 ada_print_subexp,
13742 ada_operator_length,
c0201579 13743 ada_operator_check,
6c038f32
PH
13744 ada_op_name,
13745 ada_dump_subexp_body,
13746 ada_evaluate_subexp
13747};
13748
b5ec771e
PA
13749/* symbol_name_matcher_ftype adapter for wild_match. */
13750
13751static bool
13752do_wild_match (const char *symbol_search_name,
13753 const lookup_name_info &lookup_name,
a207cff2 13754 completion_match_result *comp_match_res)
b5ec771e
PA
13755{
13756 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13757}
13758
13759/* symbol_name_matcher_ftype adapter for full_match. */
13760
13761static bool
13762do_full_match (const char *symbol_search_name,
13763 const lookup_name_info &lookup_name,
a207cff2 13764 completion_match_result *comp_match_res)
b5ec771e
PA
13765{
13766 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13767}
13768
a2cd4f14
JB
13769/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13770
13771static bool
13772do_exact_match (const char *symbol_search_name,
13773 const lookup_name_info &lookup_name,
13774 completion_match_result *comp_match_res)
13775{
13776 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13777}
13778
b5ec771e
PA
13779/* Build the Ada lookup name for LOOKUP_NAME. */
13780
13781ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13782{
e0802d59 13783 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13784
13785 if (user_name[0] == '<')
13786 {
13787 if (user_name.back () == '>')
e0802d59
TT
13788 m_encoded_name
13789 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13790 else
e0802d59
TT
13791 m_encoded_name
13792 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13793 m_encoded_p = true;
13794 m_verbatim_p = true;
13795 m_wild_match_p = false;
13796 m_standard_p = false;
13797 }
13798 else
13799 {
13800 m_verbatim_p = false;
13801
e0802d59 13802 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13803
13804 if (!m_encoded_p)
13805 {
e0802d59 13806 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13807 const char *encoded = ada_encode_1 (folded, false);
13808 if (encoded != NULL)
13809 m_encoded_name = encoded;
13810 else
e0802d59 13811 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13812 }
13813 else
e0802d59 13814 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13815
13816 /* Handle the 'package Standard' special case. See description
13817 of m_standard_p. */
13818 if (startswith (m_encoded_name.c_str (), "standard__"))
13819 {
13820 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13821 m_standard_p = true;
13822 }
13823 else
13824 m_standard_p = false;
74ccd7f5 13825
b5ec771e
PA
13826 /* If the name contains a ".", then the user is entering a fully
13827 qualified entity name, and the match must not be done in wild
13828 mode. Similarly, if the user wants to complete what looks
13829 like an encoded name, the match must not be done in wild
13830 mode. Also, in the standard__ special case always do
13831 non-wild matching. */
13832 m_wild_match_p
13833 = (lookup_name.match_type () != symbol_name_match_type::FULL
13834 && !m_encoded_p
13835 && !m_standard_p
13836 && user_name.find ('.') == std::string::npos);
13837 }
13838}
13839
13840/* symbol_name_matcher_ftype method for Ada. This only handles
13841 completion mode. */
13842
13843static bool
13844ada_symbol_name_matches (const char *symbol_search_name,
13845 const lookup_name_info &lookup_name,
a207cff2 13846 completion_match_result *comp_match_res)
74ccd7f5 13847{
b5ec771e
PA
13848 return lookup_name.ada ().matches (symbol_search_name,
13849 lookup_name.match_type (),
a207cff2 13850 comp_match_res);
b5ec771e
PA
13851}
13852
de63c46b
PA
13853/* A name matcher that matches the symbol name exactly, with
13854 strcmp. */
13855
13856static bool
13857literal_symbol_name_matcher (const char *symbol_search_name,
13858 const lookup_name_info &lookup_name,
13859 completion_match_result *comp_match_res)
13860{
e0802d59 13861 gdb::string_view name_view = lookup_name.name ();
de63c46b 13862
e0802d59
TT
13863 if (lookup_name.completion_mode ()
13864 ? (strncmp (symbol_search_name, name_view.data (),
13865 name_view.size ()) == 0)
13866 : symbol_search_name == name_view)
de63c46b
PA
13867 {
13868 if (comp_match_res != NULL)
13869 comp_match_res->set_match (symbol_search_name);
13870 return true;
13871 }
13872 else
13873 return false;
13874}
13875
b5ec771e
PA
13876/* Implement the "la_get_symbol_name_matcher" language_defn method for
13877 Ada. */
13878
13879static symbol_name_matcher_ftype *
13880ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13881{
de63c46b
PA
13882 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13883 return literal_symbol_name_matcher;
13884
b5ec771e
PA
13885 if (lookup_name.completion_mode ())
13886 return ada_symbol_name_matches;
74ccd7f5 13887 else
b5ec771e
PA
13888 {
13889 if (lookup_name.ada ().wild_match_p ())
13890 return do_wild_match;
a2cd4f14
JB
13891 else if (lookup_name.ada ().verbatim_p ())
13892 return do_exact_match;
b5ec771e
PA
13893 else
13894 return do_full_match;
13895 }
74ccd7f5
JB
13896}
13897
56618e20
TT
13898static const char *ada_extensions[] =
13899{
13900 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13901};
13902
0874fd07
AB
13903/* Constant data that describes the Ada language. */
13904
13905extern const struct language_data ada_language_data =
13906{
6c038f32 13907 "ada", /* Language name */
6abde28f 13908 "Ada",
6c038f32 13909 language_ada,
6c038f32 13910 range_check_off,
6c038f32
PH
13911 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13912 that's not quite what this means. */
6c038f32 13913 array_row_major,
9a044a89 13914 macro_expansion_no,
56618e20 13915 ada_extensions,
6c038f32
PH
13916 &ada_exp_descriptor,
13917 parse,
6c038f32
PH
13918 resolve,
13919 ada_printchar, /* Print a character constant */
13920 ada_printstr, /* Function to print string constant */
13921 emit_char, /* Function to print single char (not used) */
be942545 13922 ada_print_typedef, /* Print a typedef using appropriate syntax */
26792ee0 13923 ada_value_print_inner, /* la_value_print_inner */
6c038f32
PH
13924 ada_value_print, /* Print a top-level value */
13925 NULL, /* Language specific skip_trampoline */
2b2d9e11 13926 NULL, /* name_of_this */
59cc4834 13927 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32 13928 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
6c038f32 13929 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13930 NULL, /* Language specific
13931 class_name_from_physname */
6c038f32
PH
13932 ada_op_print_tab, /* expression operators for printing */
13933 0, /* c-style arrays */
13934 1, /* String lower bound */
6c038f32 13935 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 13936 ada_collect_symbol_completion_matches,
e2b7af72 13937 ada_watch_location_expression,
b5ec771e 13938 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
a53b64ea 13939 &ada_varobj_ops,
bb2ec1b3 13940 NULL,
4be290b2 13941 ada_is_string_type,
721b08c6 13942 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
13943};
13944
0874fd07
AB
13945/* Class representing the Ada language. */
13946
13947class ada_language : public language_defn
13948{
13949public:
13950 ada_language ()
13951 : language_defn (language_ada, ada_language_data)
13952 { /* Nothing. */ }
5bd40f2a
AB
13953
13954 /* Print an array element index using the Ada syntax. */
13955
13956 void print_array_index (struct type *index_type,
13957 LONGEST index,
13958 struct ui_file *stream,
13959 const value_print_options *options) const override
13960 {
13961 struct value *index_value = val_atr (index_type, index);
13962
13963 LA_VALUE_PRINT (index_value, stream, options);
13964 fprintf_filtered (stream, " => ");
13965 }
15e5fd35
AB
13966
13967 /* Implement the "read_var_value" language_defn method for Ada. */
13968
13969 struct value *read_var_value (struct symbol *var,
13970 const struct block *var_block,
13971 struct frame_info *frame) const override
13972 {
13973 /* The only case where default_read_var_value is not sufficient
13974 is when VAR is a renaming... */
13975 if (frame != nullptr)
13976 {
13977 const struct block *frame_block = get_frame_block (frame, NULL);
13978 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13979 return ada_read_renaming_var_value (var, frame_block);
13980 }
13981
13982 /* This is a typical case where we expect the default_read_var_value
13983 function to work. */
13984 return language_defn::read_var_value (var, var_block, frame);
13985 }
1fb314aa
AB
13986
13987 /* See language.h. */
13988 void language_arch_info (struct gdbarch *gdbarch,
13989 struct language_arch_info *lai) const override
13990 {
13991 const struct builtin_type *builtin = builtin_type (gdbarch);
13992
13993 lai->primitive_type_vector
13994 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13995 struct type *);
13996
13997 lai->primitive_type_vector [ada_primitive_type_int]
13998 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13999 0, "integer");
14000 lai->primitive_type_vector [ada_primitive_type_long]
14001 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14002 0, "long_integer");
14003 lai->primitive_type_vector [ada_primitive_type_short]
14004 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14005 0, "short_integer");
14006 lai->string_char_type
14007 = lai->primitive_type_vector [ada_primitive_type_char]
14008 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14009 lai->primitive_type_vector [ada_primitive_type_float]
14010 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14011 "float", gdbarch_float_format (gdbarch));
14012 lai->primitive_type_vector [ada_primitive_type_double]
14013 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14014 "long_float", gdbarch_double_format (gdbarch));
14015 lai->primitive_type_vector [ada_primitive_type_long_long]
14016 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14017 0, "long_long_integer");
14018 lai->primitive_type_vector [ada_primitive_type_long_double]
14019 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14020 "long_long_float", gdbarch_long_double_format (gdbarch));
14021 lai->primitive_type_vector [ada_primitive_type_natural]
14022 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14023 0, "natural");
14024 lai->primitive_type_vector [ada_primitive_type_positive]
14025 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14026 0, "positive");
14027 lai->primitive_type_vector [ada_primitive_type_void]
14028 = builtin->builtin_void;
14029
14030 lai->primitive_type_vector [ada_primitive_type_system_address]
14031 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14032 "void"));
14033 lai->primitive_type_vector [ada_primitive_type_system_address]
14034 ->set_name ("system__address");
14035
14036 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14037 type. This is a signed integral type whose size is the same as
14038 the size of addresses. */
14039 {
14040 unsigned int addr_length = TYPE_LENGTH
14041 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14042
14043 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14044 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14045 "storage_offset");
14046 }
14047
14048 lai->bool_type_symbol = NULL;
14049 lai->bool_type_default = builtin->builtin_bool;
14050 }
4009ee92
AB
14051
14052 /* See language.h. */
14053
14054 bool iterate_over_symbols
14055 (const struct block *block, const lookup_name_info &name,
14056 domain_enum domain,
14057 gdb::function_view<symbol_found_callback_ftype> callback) const override
14058 {
14059 std::vector<struct block_symbol> results;
14060
14061 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
14062 for (block_symbol &sym : results)
14063 {
14064 if (!callback (&sym))
14065 return false;
14066 }
14067
14068 return true;
14069 }
6f827019
AB
14070
14071 /* See language.h. */
14072 bool sniff_from_mangled_name (const char *mangled,
14073 char **out) const override
14074 {
14075 std::string demangled = ada_decode (mangled);
14076
14077 *out = NULL;
14078
14079 if (demangled != mangled && demangled[0] != '<')
14080 {
14081 /* Set the gsymbol language to Ada, but still return 0.
14082 Two reasons for that:
14083
14084 1. For Ada, we prefer computing the symbol's decoded name
14085 on the fly rather than pre-compute it, in order to save
14086 memory (Ada projects are typically very large).
14087
14088 2. There are some areas in the definition of the GNAT
14089 encoding where, with a bit of bad luck, we might be able
14090 to decode a non-Ada symbol, generating an incorrect
14091 demangled name (Eg: names ending with "TB" for instance
14092 are identified as task bodies and so stripped from
14093 the decoded name returned).
14094
14095 Returning true, here, but not setting *DEMANGLED, helps us get
14096 a little bit of the best of both worlds. Because we're last,
14097 we should not affect any of the other languages that were
14098 able to demangle the symbol before us; we get to correctly
14099 tag Ada symbols as such; and even if we incorrectly tagged a
14100 non-Ada symbol, which should be rare, any routing through the
14101 Ada language should be transparent (Ada tries to behave much
14102 like C/C++ with non-Ada symbols). */
14103 return true;
14104 }
14105
14106 return false;
14107 }
fbfb0a46
AB
14108
14109 /* See language.h. */
14110
14111 void print_type (struct type *type, const char *varstring,
14112 struct ui_file *stream, int show, int level,
14113 const struct type_print_options *flags) const override
14114 {
14115 ada_print_type (type, varstring, stream, show, level, flags);
14116 }
0874fd07
AB
14117};
14118
14119/* Single instance of the Ada language class. */
14120
14121static ada_language ada_language_defn;
14122
5bf03f13
JB
14123/* Command-list for the "set/show ada" prefix command. */
14124static struct cmd_list_element *set_ada_list;
14125static struct cmd_list_element *show_ada_list;
14126
2060206e
PA
14127static void
14128initialize_ada_catchpoint_ops (void)
14129{
14130 struct breakpoint_ops *ops;
14131
14132 initialize_breakpoint_ops ();
14133
14134 ops = &catch_exception_breakpoint_ops;
14135 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14136 ops->allocate_location = allocate_location_exception;
14137 ops->re_set = re_set_exception;
14138 ops->check_status = check_status_exception;
14139 ops->print_it = print_it_exception;
14140 ops->print_one = print_one_exception;
14141 ops->print_mention = print_mention_exception;
14142 ops->print_recreate = print_recreate_exception;
2060206e
PA
14143
14144 ops = &catch_exception_unhandled_breakpoint_ops;
14145 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14146 ops->allocate_location = allocate_location_exception;
14147 ops->re_set = re_set_exception;
14148 ops->check_status = check_status_exception;
14149 ops->print_it = print_it_exception;
14150 ops->print_one = print_one_exception;
14151 ops->print_mention = print_mention_exception;
14152 ops->print_recreate = print_recreate_exception;
2060206e
PA
14153
14154 ops = &catch_assert_breakpoint_ops;
14155 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14156 ops->allocate_location = allocate_location_exception;
14157 ops->re_set = re_set_exception;
14158 ops->check_status = check_status_exception;
14159 ops->print_it = print_it_exception;
14160 ops->print_one = print_one_exception;
14161 ops->print_mention = print_mention_exception;
14162 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14163
14164 ops = &catch_handlers_breakpoint_ops;
14165 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14166 ops->allocate_location = allocate_location_exception;
14167 ops->re_set = re_set_exception;
14168 ops->check_status = check_status_exception;
14169 ops->print_it = print_it_exception;
14170 ops->print_one = print_one_exception;
14171 ops->print_mention = print_mention_exception;
14172 ops->print_recreate = print_recreate_exception;
2060206e
PA
14173}
14174
3d9434b5
JB
14175/* This module's 'new_objfile' observer. */
14176
14177static void
14178ada_new_objfile_observer (struct objfile *objfile)
14179{
14180 ada_clear_symbol_cache ();
14181}
14182
14183/* This module's 'free_objfile' observer. */
14184
14185static void
14186ada_free_objfile_observer (struct objfile *objfile)
14187{
14188 ada_clear_symbol_cache ();
14189}
14190
6c265988 14191void _initialize_ada_language ();
d2e4a39e 14192void
6c265988 14193_initialize_ada_language ()
14f9c5c9 14194{
2060206e
PA
14195 initialize_ada_catchpoint_ops ();
14196
0743fc83
TT
14197 add_basic_prefix_cmd ("ada", no_class,
14198 _("Prefix command for changing Ada-specific settings."),
14199 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14200
0743fc83
TT
14201 add_show_prefix_cmd ("ada", no_class,
14202 _("Generic command for showing Ada-specific settings."),
14203 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14204
14205 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14206 &trust_pad_over_xvs, _("\
590042fc
PW
14207Enable or disable an optimization trusting PAD types over XVS types."), _("\
14208Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14209 _("\
14210This is related to the encoding used by the GNAT compiler. The debugger\n\
14211should normally trust the contents of PAD types, but certain older versions\n\
14212of GNAT have a bug that sometimes causes the information in the PAD type\n\
14213to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14214work around this bug. It is always safe to turn this option \"off\", but\n\
14215this incurs a slight performance penalty, so it is recommended to NOT change\n\
14216this option to \"off\" unless necessary."),
14217 NULL, NULL, &set_ada_list, &show_ada_list);
14218
d72413e6
PMR
14219 add_setshow_boolean_cmd ("print-signatures", class_vars,
14220 &print_signatures, _("\
14221Enable or disable the output of formal and return types for functions in the \
590042fc 14222overloads selection menu."), _("\
d72413e6 14223Show whether the output of formal and return types for functions in the \
590042fc 14224overloads selection menu is activated."),
d72413e6
PMR
14225 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14226
9ac4176b
PA
14227 add_catch_command ("exception", _("\
14228Catch Ada exceptions, when raised.\n\
9bf7038b 14229Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14230Without any argument, stop when any Ada exception is raised.\n\
14231If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14232being raised does not have a handler (and will therefore lead to the task's\n\
14233termination).\n\
14234Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14235raised is the same as ARG.\n\
14236CONDITION is a boolean expression that is evaluated to see whether the\n\
14237exception should cause a stop."),
9ac4176b 14238 catch_ada_exception_command,
71bed2db 14239 catch_ada_completer,
9ac4176b
PA
14240 CATCH_PERMANENT,
14241 CATCH_TEMPORARY);
9f757bf7
XR
14242
14243 add_catch_command ("handlers", _("\
14244Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14245Usage: catch handlers [ARG] [if CONDITION]\n\
14246Without any argument, stop when any Ada exception is handled.\n\
14247With an argument, catch only exceptions with the given name.\n\
14248CONDITION is a boolean expression that is evaluated to see whether the\n\
14249exception should cause a stop."),
9f757bf7 14250 catch_ada_handlers_command,
71bed2db 14251 catch_ada_completer,
9f757bf7
XR
14252 CATCH_PERMANENT,
14253 CATCH_TEMPORARY);
9ac4176b
PA
14254 add_catch_command ("assert", _("\
14255Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14256Usage: catch assert [if CONDITION]\n\
14257CONDITION is a boolean expression that is evaluated to see whether the\n\
14258exception should cause a stop."),
9ac4176b
PA
14259 catch_assert_command,
14260 NULL,
14261 CATCH_PERMANENT,
14262 CATCH_TEMPORARY);
14263
6c038f32 14264 varsize_limit = 65536;
3fcded8f
JB
14265 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14266 &varsize_limit, _("\
14267Set the maximum number of bytes allowed in a variable-size object."), _("\
14268Show the maximum number of bytes allowed in a variable-size object."), _("\
14269Attempts to access an object whose size is not a compile-time constant\n\
14270and exceeds this limit will cause an error."),
14271 NULL, NULL, &setlist, &showlist);
6c038f32 14272
778865d3
JB
14273 add_info ("exceptions", info_exceptions_command,
14274 _("\
14275List all Ada exception names.\n\
9bf7038b 14276Usage: info exceptions [REGEXP]\n\
778865d3
JB
14277If a regular expression is passed as an argument, only those matching\n\
14278the regular expression are listed."));
14279
0743fc83
TT
14280 add_basic_prefix_cmd ("ada", class_maintenance,
14281 _("Set Ada maintenance-related variables."),
14282 &maint_set_ada_cmdlist, "maintenance set ada ",
14283 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14284
0743fc83
TT
14285 add_show_prefix_cmd ("ada", class_maintenance,
14286 _("Show Ada maintenance-related variables."),
14287 &maint_show_ada_cmdlist, "maintenance show ada ",
14288 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14289
14290 add_setshow_boolean_cmd
14291 ("ignore-descriptive-types", class_maintenance,
14292 &ada_ignore_descriptive_types_p,
14293 _("Set whether descriptive types generated by GNAT should be ignored."),
14294 _("Show whether descriptive types generated by GNAT should be ignored."),
14295 _("\
14296When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14297DWARF attribute."),
14298 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14299
459a2e4c
TT
14300 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14301 NULL, xcalloc, xfree);
6b69afc4 14302
3d9434b5 14303 /* The ada-lang observers. */
76727919
TT
14304 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14305 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14306 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14307}