]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-varobj.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / ada-varobj.c
CommitLineData
181875a4
JB
1/* varobj support for Ada.
2
42a4f53d 3 Copyright (C) 2012-2019 Free Software Foundation, Inc.
181875a4
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
181875a4 21#include "ada-lang.h"
4de283e4 22#include "varobj.h"
181875a4
JB
23#include "language.h"
24#include "valprint.h"
25
26/* Implementation principle used in this unit:
27
28 For our purposes, the meat of the varobj object is made of two
29 elements: The varobj's (struct) value, and the varobj's (struct)
30 type. In most situations, the varobj has a non-NULL value, and
31 the type becomes redundant, as it can be directly derived from
32 the value. In the initial implementation of this unit, most
33 routines would only take a value, and return a value.
34
35 But there are many situations where it is possible for a varobj
36 to have a NULL value. For instance, if the varobj becomes out of
37 scope. Or better yet, when the varobj is the child of another
38 NULL pointer varobj. In that situation, we must rely on the type
39 instead of the value to create the child varobj.
40
41 That's why most functions below work with a (value, type) pair.
42 The value may or may not be NULL. But the type is always expected
43 to be set. When the value is NULL, then we work with the type
44 alone, and keep the value NULL. But when the value is not NULL,
45 then we work using the value, because it provides more information.
46 But we still always set the type as well, even if that type could
47 easily be derived from the value. The reason behind this is that
48 it allows the code to use the type without having to worry about
49 it being set or not. It makes the code clearer. */
50
c4124bf1
YQ
51static int ada_varobj_get_number_of_children (struct value *parent_value,
52 struct type *parent_type);
53
181875a4
JB
54/* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
55 If there is a value (*VALUE_PTR not NULL), then perform the decoding
56 using it, and compute the associated type from the resulting value.
57 Otherwise, compute a static approximation of *TYPE_PTR, leaving
58 *VALUE_PTR unchanged.
59
60 The results are written in place. */
61
62static void
63ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
64{
65 if (*value_ptr)
66 {
67 *value_ptr = ada_get_decoded_value (*value_ptr);
68 *type_ptr = ada_check_typedef (value_type (*value_ptr));
69 }
70 else
71 *type_ptr = ada_get_decoded_type (*type_ptr);
72}
73
74/* Return a string containing an image of the given scalar value.
75 VAL is the numeric value, while TYPE is the value's type.
76 This is useful for plain integers, of course, but even more
2f408ecb 77 so for enumerated types. */
181875a4 78
2f408ecb 79static std::string
181875a4
JB
80ada_varobj_scalar_image (struct type *type, LONGEST val)
81{
d7e74731 82 string_file buf;
181875a4 83
d7e74731
PA
84 ada_print_scalar (type, val, &buf);
85 return std::move (buf.string ());
181875a4
JB
86}
87
88/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
89 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
90 corresponding to the field number FIELDNO. */
91
92static void
93ada_varobj_struct_elt (struct value *parent_value,
94 struct type *parent_type,
95 int fieldno,
96 struct value **child_value,
97 struct type **child_type)
98{
99 struct value *value = NULL;
100 struct type *type = NULL;
101
102 if (parent_value)
103 {
104 value = value_field (parent_value, fieldno);
105 type = value_type (value);
106 }
107 else
108 type = TYPE_FIELD_TYPE (parent_type, fieldno);
109
110 if (child_value)
111 *child_value = value;
112 if (child_type)
113 *child_type = type;
114}
115
116/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
117 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
118 to the dereferenced value. */
119
120static void
121ada_varobj_ind (struct value *parent_value,
122 struct type *parent_type,
123 struct value **child_value,
124 struct type **child_type)
125{
126 struct value *value = NULL;
127 struct type *type = NULL;
128
129 if (ada_is_array_descriptor_type (parent_type))
130 {
131 /* This can only happen when PARENT_VALUE is NULL. Otherwise,
132 ada_get_decoded_value would have transformed our parent_type
133 into a simple array pointer type. */
134 gdb_assert (parent_value == NULL);
135 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
136
137 /* Decode parent_type by the equivalent pointer to (decoded)
138 array. */
139 while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
140 parent_type = TYPE_TARGET_TYPE (parent_type);
141 parent_type = ada_coerce_to_simple_array_type (parent_type);
142 parent_type = lookup_pointer_type (parent_type);
143 }
144
145 /* If parent_value is a null pointer, then only perform static
146 dereferencing. We cannot dereference null pointers. */
147 if (parent_value && value_as_address (parent_value) == 0)
148 parent_value = NULL;
149
150 if (parent_value)
151 {
152 value = ada_value_ind (parent_value);
153 type = value_type (value);
154 }
155 else
156 type = TYPE_TARGET_TYPE (parent_type);
157
158 if (child_value)
159 *child_value = value;
160 if (child_type)
161 *child_type = type;
162}
163
164/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
165 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
166 pair corresponding to the element at ELT_INDEX. */
167
168static void
169ada_varobj_simple_array_elt (struct value *parent_value,
170 struct type *parent_type,
171 int elt_index,
172 struct value **child_value,
173 struct type **child_type)
174{
175 struct value *value = NULL;
176 struct type *type = NULL;
177
178 if (parent_value)
179 {
180 struct value *index_value =
181 value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
182
183 value = ada_value_subscript (parent_value, 1, &index_value);
184 type = value_type (value);
185 }
186 else
187 type = TYPE_TARGET_TYPE (parent_type);
188
189 if (child_value)
190 *child_value = value;
191 if (child_type)
192 *child_type = type;
193}
194
195/* Given the decoded value and decoded type of a variable object,
196 adjust the value and type to those necessary for getting children
197 of the variable object.
198
199 The replacement is performed in place. */
200
201static void
202ada_varobj_adjust_for_child_access (struct value **value,
203 struct type **type)
204{
205 /* Pointers to struct/union types are special: Instead of having
206 one child (the struct), their children are the components of
207 the struct/union type. We handle this situation by dereferencing
208 the (value, type) couple. */
209 if (TYPE_CODE (*type) == TYPE_CODE_PTR
210 && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
211 || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
212 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
213 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
214 ada_varobj_ind (*value, *type, value, type);
f30b8b38
JB
215
216 /* If this is a tagged type, we need to transform it a bit in order
217 to be able to fetch its full view. As always with tagged types,
218 we can only do that if we have a value. */
219 if (*value != NULL && ada_is_tagged_type (*type, 1))
220 {
221 *value = ada_tag_value_at_base_address (*value);
222 *type = value_type (*value);
223 }
181875a4
JB
224}
225
226/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
227 (any type of array, "simple" or not), return the number of children
228 that this array contains. */
229
230static int
231ada_varobj_get_array_number_of_children (struct value *parent_value,
232 struct type *parent_type)
233{
234 LONGEST lo, hi;
181875a4 235
4a0ca9ec
JB
236 if (parent_value == NULL
237 && is_dynamic_type (TYPE_INDEX_TYPE (parent_type)))
238 {
239 /* This happens when listing the children of an object
240 which does not exist in memory (Eg: when requesting
241 the children of a null pointer, which is allowed by
242 varobj). The array index type being dynamic, we cannot
243 determine how many elements this array has. Just assume
244 it has none. */
245 return 0;
246 }
247
181875a4
JB
248 if (!get_array_bounds (parent_type, &lo, &hi))
249 {
250 /* Could not get the array bounds. Pretend this is an empty array. */
251 warning (_("unable to get bounds of array, assuming null array"));
252 return 0;
253 }
254
255 /* Ada allows the upper bound to be less than the lower bound,
256 in order to specify empty arrays... */
257 if (hi < lo)
258 return 0;
259
260 return hi - lo + 1;
261}
262
263/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
264 union, return the number of children this struct contains. */
265
266static int
267ada_varobj_get_struct_number_of_children (struct value *parent_value,
268 struct type *parent_type)
269{
270 int n_children = 0;
271 int i;
272
273 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
274 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
275
276 for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
277 {
278 if (ada_is_ignored_field (parent_type, i))
279 continue;
280
281 if (ada_is_wrapper_field (parent_type, i))
282 {
283 struct value *elt_value;
284 struct type *elt_type;
285
286 ada_varobj_struct_elt (parent_value, parent_type, i,
287 &elt_value, &elt_type);
288 if (ada_is_tagged_type (elt_type, 0))
289 {
290 /* We must not use ada_varobj_get_number_of_children
291 to determine is element's number of children, because
292 this function first calls ada_varobj_decode_var,
293 which "fixes" the element. For tagged types, this
294 includes reading the object's tag to determine its
295 real type, which happens to be the parent_type, and
296 leads to an infinite loop (because the element gets
297 fixed back into the parent). */
298 n_children += ada_varobj_get_struct_number_of_children
299 (elt_value, elt_type);
300 }
301 else
302 n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
303 }
304 else if (ada_is_variant_part (parent_type, i))
305 {
306 /* In normal situations, the variant part of the record should
307 have been "fixed". Or, in other words, it should have been
308 replaced by the branch of the variant part that is relevant
309 for our value. But there are still situations where this
310 can happen, however (Eg. when our parent is a NULL pointer).
311 We do not support showing this part of the record for now,
312 so just pretend this field does not exist. */
313 }
314 else
315 n_children++;
316 }
317
318 return n_children;
319}
320
321/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
322 a pointer, return the number of children this pointer has. */
323
324static int
325ada_varobj_get_ptr_number_of_children (struct value *parent_value,
326 struct type *parent_type)
327{
328 struct type *child_type = TYPE_TARGET_TYPE (parent_type);
329
330 /* Pointer to functions and to void do not have a child, since
331 you cannot print what they point to. */
332 if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
333 || TYPE_CODE (child_type) == TYPE_CODE_VOID)
334 return 0;
335
336 /* All other types have 1 child. */
337 return 1;
338}
339
340/* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
341 pair. */
342
c4124bf1 343static int
181875a4
JB
344ada_varobj_get_number_of_children (struct value *parent_value,
345 struct type *parent_type)
346{
347 ada_varobj_decode_var (&parent_value, &parent_type);
348 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
349
350 /* A typedef to an array descriptor in fact represents a pointer
351 to an unconstrained array. These types always have one child
352 (the unconstrained array). */
d91e9ea8 353 if (ada_is_access_to_unconstrained_array (parent_type))
181875a4
JB
354 return 1;
355
356 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
357 return ada_varobj_get_array_number_of_children (parent_value,
358 parent_type);
359
360 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
361 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
362 return ada_varobj_get_struct_number_of_children (parent_value,
363 parent_type);
364
365 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
366 return ada_varobj_get_ptr_number_of_children (parent_value,
367 parent_type);
368
369 /* All other types have no child. */
370 return 0;
371}
372
373/* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
374 whose index is CHILD_INDEX:
375
376 - If CHILD_NAME is not NULL, then a copy of the child's name
377 is saved in *CHILD_NAME. This copy must be deallocated
378 with xfree after use.
379
380 - If CHILD_VALUE is not NULL, then save the child's value
381 in *CHILD_VALUE. Same thing for the child's type with
382 CHILD_TYPE if not NULL.
383
384 - If CHILD_PATH_EXPR is not NULL, then compute the child's
385 path expression. The resulting string must be deallocated
386 after use with xfree.
387
388 Computing the child's path expression requires the PARENT_PATH_EXPR
389 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
390 CHILD_PATH_EXPR is NULL.
391
392 PARENT_NAME is the name of the parent, and should never be NULL. */
393
394static void ada_varobj_describe_child (struct value *parent_value,
395 struct type *parent_type,
396 const char *parent_name,
397 const char *parent_path_expr,
398 int child_index,
2f408ecb 399 std::string *child_name,
181875a4
JB
400 struct value **child_value,
401 struct type **child_type,
2f408ecb 402 std::string *child_path_expr);
181875a4
JB
403
404/* Same as ada_varobj_describe_child, but limited to struct/union
405 objects. */
406
407static void
408ada_varobj_describe_struct_child (struct value *parent_value,
409 struct type *parent_type,
410 const char *parent_name,
411 const char *parent_path_expr,
412 int child_index,
2f408ecb 413 std::string *child_name,
181875a4
JB
414 struct value **child_value,
415 struct type **child_type,
2f408ecb 416 std::string *child_path_expr)
181875a4
JB
417{
418 int fieldno;
419 int childno = 0;
420
2963898f
XR
421 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
422 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
181875a4
JB
423
424 for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
425 {
426 if (ada_is_ignored_field (parent_type, fieldno))
427 continue;
428
429 if (ada_is_wrapper_field (parent_type, fieldno))
430 {
431 struct value *elt_value;
432 struct type *elt_type;
433 int elt_n_children;
434
435 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
436 &elt_value, &elt_type);
437 if (ada_is_tagged_type (elt_type, 0))
438 {
439 /* Same as in ada_varobj_get_struct_number_of_children:
440 For tagged types, we must be careful to not call
441 ada_varobj_get_number_of_children, to prevent our
442 element from being fixed back into the parent. */
443 elt_n_children = ada_varobj_get_struct_number_of_children
444 (elt_value, elt_type);
445 }
446 else
447 elt_n_children =
448 ada_varobj_get_number_of_children (elt_value, elt_type);
449
450 /* Is the child we're looking for one of the children
451 of this wrapper field? */
452 if (child_index - childno < elt_n_children)
453 {
454 if (ada_is_tagged_type (elt_type, 0))
455 {
456 /* Same as in ada_varobj_get_struct_number_of_children:
457 For tagged types, we must be careful to not call
458 ada_varobj_describe_child, to prevent our element
459 from being fixed back into the parent. */
460 ada_varobj_describe_struct_child
461 (elt_value, elt_type, parent_name, parent_path_expr,
462 child_index - childno, child_name, child_value,
463 child_type, child_path_expr);
464 }
465 else
466 ada_varobj_describe_child (elt_value, elt_type,
467 parent_name, parent_path_expr,
468 child_index - childno,
469 child_name, child_value,
470 child_type, child_path_expr);
471 return;
472 }
473
474 /* The child we're looking for is beyond this wrapper
475 field, so skip all its children. */
476 childno += elt_n_children;
477 continue;
478 }
479 else if (ada_is_variant_part (parent_type, fieldno))
480 {
481 /* In normal situations, the variant part of the record should
482 have been "fixed". Or, in other words, it should have been
483 replaced by the branch of the variant part that is relevant
484 for our value. But there are still situations where this
485 can happen, however (Eg. when our parent is a NULL pointer).
486 We do not support showing this part of the record for now,
487 so just pretend this field does not exist. */
488 continue;
489 }
490
491 if (childno == child_index)
492 {
493 if (child_name)
494 {
495 /* The name of the child is none other than the field's
496 name, except that we need to strip suffixes from it.
497 For instance, fields with alignment constraints will
498 have an __XVA suffix added to them. */
499 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
500 int child_name_len = ada_name_prefix_len (field_name);
501
2f408ecb 502 *child_name = string_printf ("%.*s", child_name_len, field_name);
181875a4
JB
503 }
504
505 if (child_value && parent_value)
506 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
507 child_value, NULL);
508
509 if (child_type)
510 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
511 NULL, child_type);
512
513 if (child_path_expr)
514 {
515 /* The name of the child is none other than the field's
516 name, except that we need to strip suffixes from it.
517 For instance, fields with alignment constraints will
518 have an __XVA suffix added to them. */
519 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
520 int child_name_len = ada_name_prefix_len (field_name);
521
522 *child_path_expr =
2f408ecb
PA
523 string_printf ("(%s).%.*s", parent_path_expr,
524 child_name_len, field_name);
181875a4
JB
525 }
526
527 return;
528 }
529
530 childno++;
531 }
532
533 /* Something went wrong. Either we miscounted the number of
534 children, or CHILD_INDEX was too high. But we should never
535 reach here. We don't have enough information to recover
536 nicely, so just raise an assertion failure. */
537 gdb_assert_not_reached ("unexpected code path");
538}
539
540/* Same as ada_varobj_describe_child, but limited to pointer objects.
541
542 Note that CHILD_INDEX is unused in this situation, but still provided
543 for consistency of interface with other routines describing an object's
544 child. */
545
546static void
547ada_varobj_describe_ptr_child (struct value *parent_value,
548 struct type *parent_type,
549 const char *parent_name,
550 const char *parent_path_expr,
551 int child_index,
2f408ecb 552 std::string *child_name,
181875a4
JB
553 struct value **child_value,
554 struct type **child_type,
2f408ecb 555 std::string *child_path_expr)
181875a4
JB
556{
557 if (child_name)
2f408ecb 558 *child_name = string_printf ("%s.all", parent_name);
181875a4
JB
559
560 if (child_value && parent_value)
561 ada_varobj_ind (parent_value, parent_type, child_value, NULL);
562
563 if (child_type)
564 ada_varobj_ind (parent_value, parent_type, NULL, child_type);
565
566 if (child_path_expr)
2f408ecb 567 *child_path_expr = string_printf ("(%s).all", parent_path_expr);
181875a4
JB
568}
569
570/* Same as ada_varobj_describe_child, limited to simple array objects
571 (TYPE_CODE_ARRAY only).
572
573 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
574 This is done by ada_varobj_describe_child before calling us. */
575
576static void
577ada_varobj_describe_simple_array_child (struct value *parent_value,
578 struct type *parent_type,
579 const char *parent_name,
580 const char *parent_path_expr,
581 int child_index,
2f408ecb 582 std::string *child_name,
181875a4
JB
583 struct value **child_value,
584 struct type **child_type,
2f408ecb 585 std::string *child_path_expr)
181875a4 586{
181875a4
JB
587 struct type *index_type;
588 int real_index;
589
590 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
591
4d072ce4 592 index_type = TYPE_INDEX_TYPE (parent_type);
181875a4
JB
593 real_index = child_index + ada_discrete_type_low_bound (index_type);
594
595 if (child_name)
596 *child_name = ada_varobj_scalar_image (index_type, real_index);
597
598 if (child_value && parent_value)
599 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
600 child_value, NULL);
601
602 if (child_type)
603 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
604 NULL, child_type);
605
606 if (child_path_expr)
607 {
2f408ecb 608 std::string index_img = ada_varobj_scalar_image (index_type, real_index);
181875a4
JB
609
610 /* Enumeration litterals by themselves are potentially ambiguous.
611 For instance, consider the following package spec:
612
613 package Pck is
614 type Color is (Red, Green, Blue, White);
615 type Blood_Cells is (White, Red);
616 end Pck;
617
618 In this case, the litteral "red" for instance, or even
619 the fully-qualified litteral "pck.red" cannot be resolved
620 by itself. Type qualification is needed to determine which
621 enumeration litterals should be used.
622
623 The following variable will be used to contain the name
624 of the array index type when such type qualification is
625 needed. */
626 const char *index_type_name = NULL;
627
628 /* If the index type is a range type, find the base type. */
629 while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
630 index_type = TYPE_TARGET_TYPE (index_type);
631
632 if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
633 || TYPE_CODE (index_type) == TYPE_CODE_BOOL)
634 {
635 index_type_name = ada_type_name (index_type);
636 if (index_type_name)
637 index_type_name = ada_decode (index_type_name);
638 }
639
640 if (index_type_name != NULL)
641 *child_path_expr =
2f408ecb
PA
642 string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
643 ada_name_prefix_len (index_type_name),
644 index_type_name, index_img.c_str ());
181875a4
JB
645 else
646 *child_path_expr =
2f408ecb 647 string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
181875a4
JB
648 }
649}
650
651/* See description at declaration above. */
652
653static void
654ada_varobj_describe_child (struct value *parent_value,
655 struct type *parent_type,
656 const char *parent_name,
657 const char *parent_path_expr,
658 int child_index,
2f408ecb 659 std::string *child_name,
181875a4
JB
660 struct value **child_value,
661 struct type **child_type,
2f408ecb 662 std::string *child_path_expr)
181875a4
JB
663{
664 /* We cannot compute the child's path expression without
665 the parent's path expression. This is a pre-condition
666 for calling this function. */
667 if (child_path_expr)
668 gdb_assert (parent_path_expr != NULL);
669
670 ada_varobj_decode_var (&parent_value, &parent_type);
671 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
672
673 if (child_name)
2f408ecb 674 *child_name = std::string ();
181875a4
JB
675 if (child_value)
676 *child_value = NULL;
677 if (child_type)
678 *child_type = NULL;
679 if (child_path_expr)
2f408ecb 680 *child_path_expr = std::string ();
181875a4 681
d91e9ea8 682 if (ada_is_access_to_unconstrained_array (parent_type))
181875a4
JB
683 {
684 ada_varobj_describe_ptr_child (parent_value, parent_type,
685 parent_name, parent_path_expr,
686 child_index, child_name,
687 child_value, child_type,
688 child_path_expr);
689 return;
690 }
691
692 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
693 {
694 ada_varobj_describe_simple_array_child
695 (parent_value, parent_type, parent_name, parent_path_expr,
696 child_index, child_name, child_value, child_type,
697 child_path_expr);
698 return;
699 }
700
2963898f
XR
701 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
702 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
181875a4
JB
703 {
704 ada_varobj_describe_struct_child (parent_value, parent_type,
705 parent_name, parent_path_expr,
706 child_index, child_name,
707 child_value, child_type,
708 child_path_expr);
709 return;
710 }
711
712 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
713 {
714 ada_varobj_describe_ptr_child (parent_value, parent_type,
715 parent_name, parent_path_expr,
716 child_index, child_name,
717 child_value, child_type,
718 child_path_expr);
719 return;
720 }
721
722 /* It should never happen. But rather than crash, report dummy names
723 and return a NULL child_value. */
724 if (child_name)
2f408ecb 725 *child_name = "???";
181875a4
JB
726}
727
728/* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
2f408ecb 729 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
181875a4 730
2f408ecb 731static std::string
181875a4
JB
732ada_varobj_get_name_of_child (struct value *parent_value,
733 struct type *parent_type,
734 const char *parent_name, int child_index)
735{
2f408ecb 736 std::string child_name;
181875a4
JB
737
738 ada_varobj_describe_child (parent_value, parent_type, parent_name,
739 NULL, child_index, &child_name, NULL,
740 NULL, NULL);
741 return child_name;
742}
743
744/* Return the path expression of the child number CHILD_INDEX of
745 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
746 of the parent, and PARENT_PATH_EXPR is the parent's path expression.
2f408ecb 747 Both must be non-NULL. */
181875a4 748
2f408ecb 749static std::string
181875a4
JB
750ada_varobj_get_path_expr_of_child (struct value *parent_value,
751 struct type *parent_type,
752 const char *parent_name,
753 const char *parent_path_expr,
754 int child_index)
755{
2f408ecb 756 std::string child_path_expr;
181875a4
JB
757
758 ada_varobj_describe_child (parent_value, parent_type, parent_name,
759 parent_path_expr, child_index, NULL,
760 NULL, NULL, &child_path_expr);
761
762 return child_path_expr;
763}
764
765/* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
766 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
767
c4124bf1 768static struct value *
181875a4
JB
769ada_varobj_get_value_of_child (struct value *parent_value,
770 struct type *parent_type,
771 const char *parent_name, int child_index)
772{
773 struct value *child_value;
774
775 ada_varobj_describe_child (parent_value, parent_type, parent_name,
776 NULL, child_index, NULL, &child_value,
777 NULL, NULL);
778
779 return child_value;
780}
781
782/* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
783 PARENT_TYPE) pair. */
784
c4124bf1 785static struct type *
181875a4
JB
786ada_varobj_get_type_of_child (struct value *parent_value,
787 struct type *parent_type,
788 int child_index)
789{
790 struct type *child_type;
791
792 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
793 child_index, NULL, NULL, &child_type, NULL);
794
795 return child_type;
796}
797
798/* Return a string that contains the image of the given VALUE, using
799 the print options OPTS as the options for formatting the result.
800
801 The resulting string must be deallocated after use with xfree. */
802
2f408ecb 803static std::string
181875a4
JB
804ada_varobj_get_value_image (struct value *value,
805 struct value_print_options *opts)
806{
d7e74731 807 string_file buffer;
181875a4 808
d7e74731
PA
809 common_val_print (value, &buffer, 0, opts, current_language);
810 return std::move (buffer.string ());
181875a4
JB
811}
812
813/* Assuming that the (VALUE, TYPE) pair designates an array varobj,
814 return a string that is suitable for use in the "value" field of
815 the varobj output. Most of the time, this is the number of elements
816 in the array inside square brackets, but there are situations where
817 it's useful to add more info.
818
819 OPTS are the print options used when formatting the result.
820
821 The result should be deallocated after use using xfree. */
822
2f408ecb 823static std::string
181875a4
JB
824ada_varobj_get_value_of_array_variable (struct value *value,
825 struct type *type,
826 struct value_print_options *opts)
827{
181875a4
JB
828 const int numchild = ada_varobj_get_array_number_of_children (value, type);
829
830 /* If we have a string, provide its contents in the "value" field.
831 Otherwise, the only other way to inspect the contents of the string
832 is by looking at the value of each element, as in any other array,
833 which is not very convenient... */
834 if (value
835 && ada_is_string_type (type)
836 && (opts->format == 0 || opts->format == 's'))
837 {
2f408ecb
PA
838 std::string str = ada_varobj_get_value_image (value, opts);
839 return string_printf ("[%d] %s", numchild, str.c_str ());
181875a4
JB
840 }
841 else
2f408ecb 842 return string_printf ("[%d]", numchild);
181875a4
JB
843}
844
845/* Return a string representation of the (VALUE, TYPE) pair, using
846 the given print options OPTS as our formatting options. */
847
2f408ecb 848static std::string
181875a4
JB
849ada_varobj_get_value_of_variable (struct value *value,
850 struct type *type,
851 struct value_print_options *opts)
852{
181875a4
JB
853 ada_varobj_decode_var (&value, &type);
854
855 switch (TYPE_CODE (type))
856 {
857 case TYPE_CODE_STRUCT:
858 case TYPE_CODE_UNION:
2f408ecb 859 return "{...}";
181875a4 860 case TYPE_CODE_ARRAY:
2f408ecb 861 return ada_varobj_get_value_of_array_variable (value, type, opts);
181875a4
JB
862 default:
863 if (!value)
2f408ecb 864 return "";
181875a4 865 else
2f408ecb 866 return ada_varobj_get_value_image (value, opts);
181875a4 867 }
181875a4
JB
868}
869
99ad9427 870/* Ada specific callbacks for VAROBJs. */
181875a4 871
99ad9427 872static int
b09e2c59 873ada_number_of_children (const struct varobj *var)
99ad9427 874{
b4d61099 875 return ada_varobj_get_number_of_children (var->value.get (), var->type);
99ad9427
YQ
876}
877
2f408ecb 878static std::string
b09e2c59 879ada_name_of_variable (const struct varobj *parent)
99ad9427
YQ
880{
881 return c_varobj_ops.name_of_variable (parent);
882}
883
2f408ecb 884static std::string
c1cc6152 885ada_name_of_child (const struct varobj *parent, int index)
99ad9427 886{
b4d61099 887 return ada_varobj_get_name_of_child (parent->value.get (), parent->type,
2f408ecb 888 parent->name.c_str (), index);
99ad9427
YQ
889}
890
2f408ecb 891static std::string
b09e2c59 892ada_path_expr_of_child (const struct varobj *child)
99ad9427 893{
c1cc6152 894 const struct varobj *parent = child->parent;
99ad9427
YQ
895 const char *parent_path_expr = varobj_get_path_expr (parent);
896
b4d61099 897 return ada_varobj_get_path_expr_of_child (parent->value.get (),
99ad9427 898 parent->type,
2f408ecb 899 parent->name.c_str (),
99ad9427
YQ
900 parent_path_expr,
901 child->index);
902}
903
904static struct value *
c1cc6152 905ada_value_of_child (const struct varobj *parent, int index)
99ad9427 906{
b4d61099 907 return ada_varobj_get_value_of_child (parent->value.get (), parent->type,
2f408ecb 908 parent->name.c_str (), index);
99ad9427
YQ
909}
910
911static struct type *
c1cc6152 912ada_type_of_child (const struct varobj *parent, int index)
99ad9427 913{
b4d61099 914 return ada_varobj_get_type_of_child (parent->value.get (), parent->type,
99ad9427
YQ
915 index);
916}
917
2f408ecb 918static std::string
b09e2c59
SM
919ada_value_of_variable (const struct varobj *var,
920 enum varobj_display_formats format)
99ad9427
YQ
921{
922 struct value_print_options opts;
923
924 varobj_formatted_print_options (&opts, format);
925
b4d61099
TT
926 return ada_varobj_get_value_of_variable (var->value.get (), var->type,
927 &opts);
99ad9427
YQ
928}
929
930/* Implement the "value_is_changeable_p" routine for Ada. */
931
4c37490d 932static bool
b09e2c59 933ada_value_is_changeable_p (const struct varobj *var)
99ad9427 934{
b4d61099
TT
935 struct type *type = (var->value != nullptr
936 ? value_type (var->value.get ()) : var->type);
99ad9427 937
aff29d1c
JB
938 if (TYPE_CODE (type) == TYPE_CODE_REF)
939 type = TYPE_TARGET_TYPE (type);
940
d91e9ea8 941 if (ada_is_access_to_unconstrained_array (type))
99ad9427
YQ
942 {
943 /* This is in reality a pointer to an unconstrained array.
944 its value is changeable. */
4c37490d 945 return true;
99ad9427
YQ
946 }
947
948 if (ada_is_string_type (type))
949 {
950 /* We display the contents of the string in the array's
951 "value" field. The contents can change, so consider
952 that the array is changeable. */
4c37490d 953 return true;
99ad9427
YQ
954 }
955
956 return varobj_default_value_is_changeable_p (var);
957}
958
959/* Implement the "value_has_mutated" routine for Ada. */
960
4c37490d 961static bool
b09e2c59 962ada_value_has_mutated (const struct varobj *var, struct value *new_val,
99ad9427
YQ
963 struct type *new_type)
964{
99ad9427
YQ
965 int from = -1;
966 int to = -1;
967
968 /* If the number of fields have changed, then for sure the type
969 has mutated. */
970 if (ada_varobj_get_number_of_children (new_val, new_type)
971 != var->num_children)
4c37490d 972 return true;
99ad9427
YQ
973
974 /* If the number of fields have remained the same, then we need
975 to check the name of each field. If they remain the same,
976 then chances are the type hasn't mutated. This is technically
977 an incomplete test, as the child's type might have changed
978 despite the fact that the name remains the same. But we'll
979 handle this situation by saying that the child has mutated,
980 not this value.
981
982 If only part (or none!) of the children have been fetched,
983 then only check the ones we fetched. It does not matter
984 to the frontend whether a child that it has not fetched yet
985 has mutated or not. So just assume it hasn't. */
986
987 varobj_restrict_range (var->children, &from, &to);
ddf0ea08 988 for (int i = from; i < to; i++)
2f408ecb
PA
989 if (ada_varobj_get_name_of_child (new_val, new_type,
990 var->name.c_str (), i)
ddf0ea08 991 != var->children[i]->name)
4c37490d 992 return true;
99ad9427 993
4c37490d 994 return false;
99ad9427
YQ
995}
996
997/* varobj operations for ada. */
998
999const struct lang_varobj_ops ada_varobj_ops =
1000{
1001 ada_number_of_children,
1002 ada_name_of_variable,
1003 ada_name_of_child,
1004 ada_path_expr_of_child,
1005 ada_value_of_child,
1006 ada_type_of_child,
1007 ada_value_of_variable,
1008 ada_value_is_changeable_p,
9a9a7608
AB
1009 ada_value_has_mutated,
1010 varobj_default_is_path_expr_parent
99ad9427 1011};