]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/avr-tdep.c
PR24435, buffer overflow reading dynamic entries
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
42a4f53d 3 Copyright (C) 1996-2019 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
d55e5aa6 26#include "frame.h"
4de283e4
TT
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391 33#include "inferior.h"
d55e5aa6 34#include "symfile.h"
4de283e4
TT
35#include "arch-utils.h"
36#include "regcache.h"
37#include "dis-asm.h"
38#include "objfiles.h"
39#include <algorithm>
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391 71
8818c391
TR
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
487d9753
PL
74/* Address space flags */
75
76/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
8818c391 84enum
2e5ff58c
TR
85{
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
7d2552b4
TG
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
2e5ff58c
TR
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
4add8633 105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 106
0963b4bd 107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
108 AVR_MAX_PUSHES = 18,
109
0963b4bd 110 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
111 AVR_LAST_PUSHED_REGNUM = 17,
112
4add8633
TR
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
cb86f388 115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
4add8633
TR
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
2e5ff58c 120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 121 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 128 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
0963b4bd 140 details of actually accessing the eeprom. */
2e5ff58c
TR
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 144#if 1
2e5ff58c
TR
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 147#else
2e5ff58c
TR
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 150#endif
2e5ff58c 151};
8818c391 152
4add8633
TR
153/* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165};
166
8818c391
TR
167/* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
4add8633 178struct avr_unwind_cache
2e5ff58c 179{
4add8633
TR
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 189};
8818c391
TR
190
191struct gdbarch_tdep
2e5ff58c 192{
4e99ad69 193 /* Number of bytes stored to the stack by call instructions.
9c97a070 194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 195 int call_length;
7d2552b4
TG
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
2e5ff58c 203};
8818c391 204
0963b4bd 205/* Lookup the name of a register given it's number. */
8818c391 206
fa88f677 207static const char *
d93859e2 208avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 209{
4e99ad69 210 static const char * const register_names[] = {
2e5ff58c
TR
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
215 "SREG", "SP", "PC2",
216 "pc"
8818c391
TR
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223}
224
8818c391
TR
225/* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228static struct type *
866b76ea 229avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 230{
866b76ea 231 if (reg_nr == AVR_PC_REGNUM)
df4df182 232 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 235 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 236 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 237 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
238}
239
0963b4bd 240/* Instruction address checks and convertions. */
8818c391
TR
241
242static CORE_ADDR
243avr_make_iaddr (CORE_ADDR x)
244{
245 return ((x) | AVR_IMEM_START);
246}
247
0963b4bd 248/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
249 devices are already up to 128KBytes of flash space.
250
0963b4bd 251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
252
253static CORE_ADDR
254avr_convert_iaddr_to_raw (CORE_ADDR x)
255{
256 return ((x) & 0xffffffff);
257}
258
0963b4bd 259/* SRAM address checks and convertions. */
8818c391
TR
260
261static CORE_ADDR
262avr_make_saddr (CORE_ADDR x)
263{
ee143e81
TG
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
8818c391
TR
268 return ((x) | AVR_SMEM_START);
269}
270
8818c391
TR
271static CORE_ADDR
272avr_convert_saddr_to_raw (CORE_ADDR x)
273{
274 return ((x) & 0xffffffff);
275}
276
0963b4bd
MS
277/* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
8818c391
TR
279
280/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 281 programs in the mega128. */
8818c391
TR
282
283/* static CORE_ADDR */
284/* avr_make_eaddr (CORE_ADDR x) */
285/* { */
286/* return ((x) | AVR_EMEM_START); */
287/* } */
288
289/* static int */
290/* avr_eaddr_p (CORE_ADDR x) */
291/* { */
292/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293/* } */
294
295/* static CORE_ADDR */
296/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297/* { */
298/* return ((x) & 0xffffffff); */
299/* } */
300
0963b4bd 301/* Convert from address to pointer and vice-versa. */
8818c391
TR
302
303static void
9898f801
UW
304avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 306{
e17a4113
UW
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
487d9753
PL
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
7d0d9d2b 312 /* A data pointer in flash is byte addressed. */
487d9753
PL
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
8818c391 316 /* Is it a code address? */
487d9753
PL
317 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
318 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
8818c391 319 {
7d0d9d2b
PL
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
e17a4113 322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 323 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
e17a4113 328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 329 avr_convert_saddr_to_raw (addr));
8818c391
TR
330 }
331}
332
333static CORE_ADDR
9898f801
UW
334avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
8818c391 336{
e17a4113
UW
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 340
487d9753
PL
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
7d0d9d2b
PL
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
8818c391 347 /* Is it a code address? */
487d9753
PL
348 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
349 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
7d0d9d2b
PL
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
8818c391
TR
356 else
357 return avr_make_saddr (addr);
358}
359
8a1d23b2
TG
360static CORE_ADDR
361avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363{
364 ULONGEST addr = unpack_long (type, buf);
365
366 return avr_make_saddr (addr);
367}
368
8818c391 369static CORE_ADDR
c113ed0c 370avr_read_pc (readable_regcache *regcache)
8818c391 371{
8619218d 372 ULONGEST pc;
c113ed0c
YQ
373
374 regcache->cooked_read (AVR_PC_REGNUM, &pc);
61a1198a 375 return avr_make_iaddr (pc);
8818c391
TR
376}
377
378static void
61a1198a 379avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 380{
61a1198a 381 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
382 avr_convert_iaddr_to_raw (val));
383}
384
05d1431c 385static enum register_status
849d0ba8 386avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
7d2552b4
TG
387 int regnum, gdb_byte *buf)
388{
389 ULONGEST val;
05d1431c 390 enum register_status status;
7d2552b4
TG
391
392 switch (regnum)
393 {
394 case AVR_PSEUDO_PC_REGNUM:
03f50fc8 395 status = regcache->raw_read (AVR_PC_REGNUM, &val);
05d1431c
PA
396 if (status != REG_VALID)
397 return status;
7d2552b4
TG
398 val >>= 1;
399 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 400 return status;
7d2552b4
TG
401 default:
402 internal_error (__FILE__, __LINE__, _("invalid regnum"));
403 }
404}
405
406static void
407avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
408 int regnum, const gdb_byte *buf)
409{
410 ULONGEST val;
411
412 switch (regnum)
413 {
414 case AVR_PSEUDO_PC_REGNUM:
415 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
416 val <<= 1;
417 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
418 break;
419 default:
420 internal_error (__FILE__, __LINE__, _("invalid regnum"));
421 }
8818c391
TR
422}
423
4add8633 424/* Function: avr_scan_prologue
8818c391 425
4add8633 426 This function decodes an AVR function prologue to determine:
8818c391
TR
427 1) the size of the stack frame
428 2) which registers are saved on it
429 3) the offsets of saved regs
4add8633 430 This information is stored in the avr_unwind_cache structure.
8818c391 431
e3d8b004
TR
432 Some devices lack the sbiw instruction, so on those replace this:
433 sbiw r28, XX
434 with this:
435 subi r28,lo8(XX)
436 sbci r29,hi8(XX)
437
438 A typical AVR function prologue with a frame pointer might look like this:
439 push rXX ; saved regs
440 ...
441 push r28
442 push r29
443 in r28,__SP_L__
444 in r29,__SP_H__
445 sbiw r28,<LOCALS_SIZE>
446 in __tmp_reg__,__SREG__
8818c391 447 cli
e3d8b004 448 out __SP_H__,r29
72fab697
TR
449 out __SREG__,__tmp_reg__
450 out __SP_L__,r28
e3d8b004
TR
451
452 A typical AVR function prologue without a frame pointer might look like
453 this:
454 push rXX ; saved regs
455 ...
456
457 A main function prologue looks like this:
458 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
459 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
460 out __SP_H__,r29
461 out __SP_L__,r28
462
463 A signal handler prologue looks like this:
464 push __zero_reg__
465 push __tmp_reg__
466 in __tmp_reg__, __SREG__
467 push __tmp_reg__
468 clr __zero_reg__
469 push rXX ; save registers r18:r27, r30:r31
470 ...
471 push r28 ; save frame pointer
472 push r29
473 in r28, __SP_L__
474 in r29, __SP_H__
475 sbiw r28, <LOCALS_SIZE>
476 out __SP_H__, r29
477 out __SP_L__, r28
478
479 A interrupt handler prologue looks like this:
480 sei
481 push __zero_reg__
482 push __tmp_reg__
483 in __tmp_reg__, __SREG__
484 push __tmp_reg__
485 clr __zero_reg__
486 push rXX ; save registers r18:r27, r30:r31
487 ...
488 push r28 ; save frame pointer
489 push r29
490 in r28, __SP_L__
491 in r29, __SP_H__
492 sbiw r28, <LOCALS_SIZE>
493 cli
494 out __SP_H__, r29
495 sei
496 out __SP_L__, r28
497
498 A `-mcall-prologues' prologue looks like this (Note that the megas use a
499 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
500 32 bit insn and rjmp is a 16 bit insn):
501 ldi r26,lo8(<LOCALS_SIZE>)
502 ldi r27,hi8(<LOCALS_SIZE>)
503 ldi r30,pm_lo8(.L_foo_body)
504 ldi r31,pm_hi8(.L_foo_body)
505 rjmp __prologue_saves__+RRR
506 .L_foo_body: */
8818c391 507
4add8633
TR
508/* Not really part of a prologue, but still need to scan for it, is when a
509 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
510 registers. In this case, all local variables live in registers, so there
511 may be some register saves. This is what it looks like:
4add8633
TR
512 movw rMM, rNN
513 ...
514
0963b4bd
MS
515 There could be multiple movw's. If the target doesn't have a movw insn, it
516 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
517 types. */
518
519static CORE_ADDR
e17a4113 520avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 521 struct avr_unwind_cache *info)
8818c391 522{
e17a4113 523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
524 int i;
525 unsigned short insn;
2e5ff58c 526 int scan_stage = 0;
3b7344d5 527 struct bound_minimal_symbol msymbol;
8818c391
TR
528 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
529 int vpc = 0;
4e99ad69
TG
530 int len;
531
532 len = pc_end - pc_beg;
533 if (len > AVR_MAX_PROLOGUE_SIZE)
534 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 535
4add8633 536 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
537 reading in the bytes of the prologue. The problem is that the figuring
538 out where the end of the prologue is is a bit difficult. The old code
4add8633 539 tried to do that, but failed quite often. */
4e99ad69 540 read_memory (pc_beg, prologue, len);
8818c391
TR
541
542 /* Scanning main()'s prologue
543 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
544 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
545 out __SP_H__,r29
546 out __SP_L__,r28 */
547
4e99ad69 548 if (len >= 4)
8818c391
TR
549 {
550 CORE_ADDR locals;
4e99ad69 551 static const unsigned char img[] = {
2e5ff58c
TR
552 0xde, 0xbf, /* out __SP_H__,r29 */
553 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
554 };
555
e17a4113 556 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 557 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
558 if ((insn & 0xf0f0) == 0xe0c0)
559 {
560 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 561 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
562 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
563 if ((insn & 0xf0f0) == 0xe0d0)
564 {
565 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
566 if (vpc + 4 + sizeof (img) < len
567 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 568 {
4add8633
TR
569 info->prologue_type = AVR_PROLOGUE_MAIN;
570 info->base = locals;
4e99ad69 571 return pc_beg + 4;
2e5ff58c
TR
572 }
573 }
574 }
8818c391 575 }
2e5ff58c 576
4add8633
TR
577 /* Scanning `-mcall-prologues' prologue
578 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 579
e3d8b004 580 while (1) /* Using a while to avoid many goto's */
8818c391
TR
581 {
582 int loc_size;
583 int body_addr;
584 unsigned num_pushes;
4add8633 585 int pc_offset = 0;
2e5ff58c 586
4e99ad69
TG
587 /* At least the fifth instruction must have been executed to
588 modify frame shape. */
589 if (len < 10)
590 break;
591
e17a4113 592 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 593 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
594 if ((insn & 0xf0f0) != 0xe0a0)
595 break;
8818c391 596 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 597 pc_offset += 2;
2e5ff58c 598
e17a4113 599 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
600 /* ldi r27,<LOCALS_SIZE> / 256 */
601 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 602 break;
8818c391 603 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 604 pc_offset += 2;
2e5ff58c 605
e17a4113 606 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
607 /* ldi r30,pm_lo8(.L_foo_body) */
608 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 609 break;
8818c391 610 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 611 pc_offset += 2;
8818c391 612
e17a4113 613 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
614 /* ldi r31,pm_hi8(.L_foo_body) */
615 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 616 break;
8818c391 617 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 618 pc_offset += 2;
8818c391 619
8818c391 620 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 621 if (!msymbol.minsym)
2e5ff58c 622 break;
8818c391 623
e17a4113 624 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 625 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
626 if ((insn & 0xf000) == 0xc000)
627 {
628 /* Extract PC relative offset from RJMP */
629 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
630 /* Convert offset to byte addressable mode */
631 i *= 2;
632 /* Destination address */
4e99ad69 633 i += pc_beg + 10;
e3d8b004 634
4e99ad69 635 if (body_addr != (pc_beg + 10)/2)
e3d8b004 636 break;
4add8633
TR
637
638 pc_offset += 2;
e3d8b004 639 }
e3d8b004
TR
640 else if ((insn & 0xfe0e) == 0x940c)
641 {
642 /* Extract absolute PC address from JMP */
643 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
644 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
645 & 0xffff));
e3d8b004
TR
646 /* Convert address to byte addressable mode */
647 i *= 2;
648
4e99ad69 649 if (body_addr != (pc_beg + 12)/2)
e3d8b004 650 break;
4add8633
TR
651
652 pc_offset += 4;
e3d8b004
TR
653 }
654 else
655 break;
2e5ff58c 656
4add8633 657 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 658 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 659 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
660
661 if (num_pushes > AVR_MAX_PUSHES)
4add8633 662 {
edefbb7c 663 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
664 num_pushes);
665 num_pushes = 0;
666 }
2e5ff58c 667
8818c391 668 if (num_pushes)
2e5ff58c
TR
669 {
670 int from;
4add8633
TR
671
672 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 673 if (num_pushes >= 2)
4add8633
TR
674 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
675
2e5ff58c
TR
676 i = 0;
677 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
678 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 679 info->saved_regs [from].addr = ++i;
2e5ff58c 680 }
4add8633
TR
681 info->size = loc_size + num_pushes;
682 info->prologue_type = AVR_PROLOGUE_CALL;
683
4e99ad69 684 return pc_beg + pc_offset;
8818c391
TR
685 }
686
4add8633
TR
687 /* Scan for the beginning of the prologue for an interrupt or signal
688 function. Note that we have to set the prologue type here since the
689 third stage of the prologue may not be present (e.g. no saved registered
690 or changing of the SP register). */
8818c391 691
4add8633 692 if (1)
8818c391 693 {
4e99ad69 694 static const unsigned char img[] = {
2e5ff58c
TR
695 0x78, 0x94, /* sei */
696 0x1f, 0x92, /* push r1 */
697 0x0f, 0x92, /* push r0 */
698 0x0f, 0xb6, /* in r0,0x3f SREG */
699 0x0f, 0x92, /* push r0 */
700 0x11, 0x24 /* clr r1 */
8818c391 701 };
4e99ad69
TG
702 if (len >= sizeof (img)
703 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 704 {
4add8633 705 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 706 vpc += sizeof (img);
4add8633
TR
707 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
708 info->saved_regs[0].addr = 2;
709 info->saved_regs[1].addr = 1;
710 info->size += 3;
2e5ff58c 711 }
4e99ad69
TG
712 else if (len >= sizeof (img) - 2
713 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 714 {
4add8633
TR
715 info->prologue_type = AVR_PROLOGUE_SIG;
716 vpc += sizeof (img) - 2;
717 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
718 info->saved_regs[0].addr = 2;
719 info->saved_regs[1].addr = 1;
243e2c5d 720 info->size += 2;
2e5ff58c 721 }
8818c391
TR
722 }
723
724 /* First stage of the prologue scanning.
4add8633 725 Scan pushes (saved registers) */
8818c391 726
4e99ad69 727 for (; vpc < len; vpc += 2)
8818c391 728 {
e17a4113 729 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
730 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
731 {
0963b4bd 732 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
733 int regno = (insn & 0x1f0) >> 4;
734 info->size++;
735 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
736 scan_stage = 1;
737 }
8818c391 738 else
2e5ff58c 739 break;
8818c391
TR
740 }
741
243e2c5d 742 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 743
1bd0bb72
TG
744 /* Handle static small stack allocation using rcall or push. */
745
746 while (scan_stage == 1 && vpc < len)
747 {
748 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
749 if (insn == 0xd000) /* rcall .+0 */
750 {
751 info->size += gdbarch_tdep (gdbarch)->call_length;
752 vpc += 2;
753 }
7588d2ec 754 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
755 {
756 info->size += 1;
757 vpc += 2;
758 }
759 else
760 break;
761 }
762
8818c391
TR
763 /* Second stage of the prologue scanning.
764 Scan:
765 in r28,__SP_L__
766 in r29,__SP_H__ */
767
4e99ad69 768 if (scan_stage == 1 && vpc < len)
8818c391 769 {
4e99ad69 770 static const unsigned char img[] = {
2e5ff58c
TR
771 0xcd, 0xb7, /* in r28,__SP_L__ */
772 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 773 };
2e5ff58c 774
4e99ad69
TG
775 if (vpc + sizeof (img) < len
776 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
777 {
778 vpc += 4;
2e5ff58c
TR
779 scan_stage = 2;
780 }
8818c391
TR
781 }
782
0963b4bd 783 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
784 Scan for:
785 sbiw r28,XX or subi r28,lo8(XX)
72fab697 786 sbci r29,hi8(XX)
8818c391
TR
787 in __tmp_reg__,__SREG__
788 cli
e3d8b004 789 out __SP_H__,r29
8818c391 790 out __SREG__,__tmp_reg__
e3d8b004 791 out __SP_L__,r28 */
8818c391 792
4e99ad69 793 if (scan_stage == 2 && vpc < len)
8818c391
TR
794 {
795 int locals_size = 0;
4e99ad69 796 static const unsigned char img[] = {
2e5ff58c
TR
797 0x0f, 0xb6, /* in r0,0x3f */
798 0xf8, 0x94, /* cli */
e3d8b004 799 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 800 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 801 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 802 };
4e99ad69 803 static const unsigned char img_sig[] = {
e3d8b004
TR
804 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
805 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 806 };
4e99ad69 807 static const unsigned char img_int[] = {
2e5ff58c 808 0xf8, 0x94, /* cli */
e3d8b004 809 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 810 0x78, 0x94, /* sei */
e3d8b004 811 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 812 };
2e5ff58c 813
e17a4113 814 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 815 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
816 {
817 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
818 vpc += 2;
819 }
2e5ff58c
TR
820 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
821 {
822 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 823 vpc += 2;
e17a4113 824 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 825 vpc += 2;
1bd0bb72 826 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 827 }
8818c391 828 else
1bd0bb72 829 return pc_beg + vpc;
4add8633 830
0963b4bd 831 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
832 or signal handler functions, which is why we set the prologue type
833 when we saw the beginning of the prologue previously. */
834
4e99ad69
TG
835 if (vpc + sizeof (img_sig) < len
836 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
837 {
838 vpc += sizeof (img_sig);
839 }
4e99ad69
TG
840 else if (vpc + sizeof (img_int) < len
841 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
842 {
843 vpc += sizeof (img_int);
844 }
4e99ad69
TG
845 if (vpc + sizeof (img) < len
846 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
847 {
848 info->prologue_type = AVR_PROLOGUE_NORMAL;
849 vpc += sizeof (img);
850 }
851
852 info->size += locals_size;
853
4e99ad69 854 /* Fall through. */
8818c391 855 }
4add8633
TR
856
857 /* If we got this far, we could not scan the prologue, so just return the pc
858 of the frame plus an adjustment for argument move insns. */
859
4e99ad69
TG
860 for (; vpc < len; vpc += 2)
861 {
e17a4113 862 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
863 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
864 continue;
865 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
866 continue;
867 else
868 break;
869 }
870
871 return pc_beg + vpc;
8818c391
TR
872}
873
4add8633 874static CORE_ADDR
6093d2eb 875avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
876{
877 CORE_ADDR func_addr, func_end;
8c201e54 878 CORE_ADDR post_prologue_pc;
8818c391 879
4add8633 880 /* See what the symbol table says */
8818c391 881
8c201e54
TG
882 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
883 return pc;
2e5ff58c 884
8c201e54
TG
885 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
886 if (post_prologue_pc != 0)
325fac50 887 return std::max (pc, post_prologue_pc);
8818c391 888
8c201e54
TG
889 {
890 CORE_ADDR prologue_end = pc;
891 struct avr_unwind_cache info = {0};
892 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 893
8c201e54
TG
894 info.saved_regs = saved_regs;
895
896 /* Need to run the prologue scanner to figure out if the function has a
897 prologue and possibly skip over moving arguments passed via registers
898 to other registers. */
899
900 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
901
902 if (info.prologue_type != AVR_PROLOGUE_NONE)
903 return prologue_end;
904 }
2e5ff58c 905
4e99ad69
TG
906 /* Either we didn't find the start of this function (nothing we can do),
907 or there's no line info, or the line after the prologue is after
0963b4bd 908 the end of the function (there probably isn't a prologue). */
2e5ff58c 909
8c201e54 910 return pc;
4add8633 911}
8818c391 912
0963b4bd
MS
913/* Not all avr devices support the BREAK insn. Those that don't should treat
914 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
915 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 916
04180708 917constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
598cc9dc 918
04180708 919typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
8818c391 920
4c8b6ae0
UW
921/* Determine, for architecture GDBARCH, how a return value of TYPE
922 should be returned. If it is supposed to be returned in registers,
923 and READBUF is non-zero, read the appropriate value from REGCACHE,
924 and copy it into READBUF. If WRITEBUF is non-zero, write the value
925 from WRITEBUF into REGCACHE. */
926
63807e1d 927static enum return_value_convention
6a3a010b 928avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
929 struct type *valtype, struct regcache *regcache,
930 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 931{
1bd0bb72
TG
932 int i;
933 /* Single byte are returned in r24.
934 Otherwise, the MSB of the return value is always in r25, calculate which
935 register holds the LSB. */
936 int lsb_reg;
937
938 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
939 || TYPE_CODE (valtype) == TYPE_CODE_UNION
940 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
941 && TYPE_LENGTH (valtype) > 8)
942 return RETURN_VALUE_STRUCT_CONVENTION;
943
944 if (TYPE_LENGTH (valtype) <= 2)
945 lsb_reg = 24;
946 else if (TYPE_LENGTH (valtype) <= 4)
947 lsb_reg = 22;
948 else if (TYPE_LENGTH (valtype) <= 8)
949 lsb_reg = 18;
950 else
f3574227 951 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
952
953 if (writebuf != NULL)
954 {
1bd0bb72 955 for (i = 0; i < TYPE_LENGTH (valtype); i++)
b66f5587 956 regcache->cooked_write (lsb_reg + i, writebuf + i);
4c8b6ae0
UW
957 }
958
959 if (readbuf != NULL)
960 {
1bd0bb72 961 for (i = 0; i < TYPE_LENGTH (valtype); i++)
dca08e1f 962 regcache->cooked_read (lsb_reg + i, readbuf + i);
4c8b6ae0
UW
963 }
964
1bd0bb72 965 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
966}
967
968
4add8633
TR
969/* Put here the code to store, into fi->saved_regs, the addresses of
970 the saved registers of frame described by FRAME_INFO. This
971 includes special registers such as pc and fp saved in special ways
972 in the stack frame. sp is even more special: the address we return
0963b4bd 973 for it IS the sp for the next frame. */
8818c391 974
63807e1d 975static struct avr_unwind_cache *
94afd7a6 976avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 977 void **this_prologue_cache)
8818c391 978{
4e99ad69 979 CORE_ADDR start_pc, current_pc;
4add8633
TR
980 ULONGEST prev_sp;
981 ULONGEST this_base;
982 struct avr_unwind_cache *info;
4e99ad69
TG
983 struct gdbarch *gdbarch;
984 struct gdbarch_tdep *tdep;
4add8633
TR
985 int i;
986
4e99ad69 987 if (*this_prologue_cache)
9a3c8263 988 return (struct avr_unwind_cache *) *this_prologue_cache;
4add8633
TR
989
990 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 991 *this_prologue_cache = info;
94afd7a6 992 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
993
994 info->size = 0;
995 info->prologue_type = AVR_PROLOGUE_NONE;
996
4e99ad69
TG
997 start_pc = get_frame_func (this_frame);
998 current_pc = get_frame_pc (this_frame);
999 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
1000 avr_scan_prologue (get_frame_arch (this_frame),
1001 start_pc, current_pc, info);
4add8633 1002
3b85b0f1
TR
1003 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1004 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1005 {
1006 ULONGEST high_base; /* High byte of FP */
1007
1008 /* The SP was moved to the FP. This indicates that a new frame
1009 was created. Get THIS frame's FP value by unwinding it from
1010 the next frame. */
94afd7a6 1011 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1012 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1013 this_base += (high_base << 8);
1014
1015 /* The FP points at the last saved register. Adjust the FP back
1016 to before the first saved register giving the SP. */
1017 prev_sp = this_base + info->size;
1018 }
8818c391 1019 else
4add8633
TR
1020 {
1021 /* Assume that the FP is this frame's SP but with that pushed
1022 stack space added back. */
94afd7a6 1023 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1024 prev_sp = this_base + info->size;
1025 }
1026
1027 /* Add 1 here to adjust for the post-decrement nature of the push
1028 instruction.*/
4e99ad69 1029 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1030 info->base = avr_make_saddr (this_base);
1031
4e99ad69
TG
1032 gdbarch = get_frame_arch (this_frame);
1033
4add8633 1034 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1035 offsets. */
4e99ad69
TG
1036 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1037 if (info->saved_regs[i].addr > 0)
1038 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1039
1040 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1041 the stack and is at the base of the frame. */
4add8633
TR
1042
1043 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1044 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1045
3b85b0f1
TR
1046 /* The previous frame's SP needed to be computed. Save the computed
1047 value. */
4e99ad69
TG
1048 tdep = gdbarch_tdep (gdbarch);
1049 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1050 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1051
4add8633 1052 return info;
8818c391
TR
1053}
1054
1055static CORE_ADDR
4add8633 1056avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1057{
4add8633
TR
1058 ULONGEST pc;
1059
11411de3 1060 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1061
1062 return avr_make_iaddr (pc);
8818c391
TR
1063}
1064
30244cd8
UW
1065static CORE_ADDR
1066avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1067{
1068 ULONGEST sp;
1069
11411de3 1070 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1071
1072 return avr_make_saddr (sp);
1073}
1074
4add8633
TR
1075/* Given a GDB frame, determine the address of the calling function's
1076 frame. This will be used to create a new GDB frame struct. */
8818c391 1077
4add8633 1078static void
94afd7a6 1079avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1080 void **this_prologue_cache,
1081 struct frame_id *this_id)
8818c391 1082{
4add8633 1083 struct avr_unwind_cache *info
94afd7a6 1084 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1085 CORE_ADDR base;
1086 CORE_ADDR func;
1087 struct frame_id id;
1088
1089 /* The FUNC is easy. */
94afd7a6 1090 func = get_frame_func (this_frame);
4add8633 1091
4add8633
TR
1092 /* Hopefully the prologue analysis either correctly determined the
1093 frame's base (which is the SP from the previous frame), or set
1094 that base to "NULL". */
1095 base = info->prev_sp;
1096 if (base == 0)
1097 return;
1098
1099 id = frame_id_build (base, func);
4add8633 1100 (*this_id) = id;
8818c391
TR
1101}
1102
94afd7a6
UW
1103static struct value *
1104avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1105 void **this_prologue_cache, int regnum)
8818c391 1106{
4add8633 1107 struct avr_unwind_cache *info
94afd7a6 1108 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1109
7d2552b4 1110 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1111 {
7d2552b4 1112 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1113 {
94afd7a6
UW
1114 /* Reading the return PC from the PC register is slightly
1115 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1116 but in reality, only two bytes (3 in upcoming mega256) are
1117 stored on the stack.
1118
1119 Also, note that the value on the stack is an addr to a word
1120 not a byte, so we will need to multiply it by two at some
1121 point.
1122
1123 And to confuse matters even more, the return address stored
1124 on the stack is in big endian byte order, even though most
0963b4bd 1125 everything else about the avr is little endian. Ick! */
94afd7a6 1126 ULONGEST pc;
4e99ad69 1127 int i;
e362b510 1128 gdb_byte buf[3];
4e99ad69
TG
1129 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1131
7d2552b4
TG
1132 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1133 buf, tdep->call_length);
94afd7a6 1134
4e99ad69
TG
1135 /* Extract the PC read from memory as a big-endian. */
1136 pc = 0;
1137 for (i = 0; i < tdep->call_length; i++)
1138 pc = (pc << 8) | buf[i];
94afd7a6 1139
7d2552b4
TG
1140 if (regnum == AVR_PC_REGNUM)
1141 pc <<= 1;
1142
1143 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1144 }
94afd7a6
UW
1145
1146 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1147 }
94afd7a6
UW
1148
1149 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1150}
8818c391 1151
4add8633
TR
1152static const struct frame_unwind avr_frame_unwind = {
1153 NORMAL_FRAME,
8fbca658 1154 default_frame_unwind_stop_reason,
4add8633 1155 avr_frame_this_id,
94afd7a6
UW
1156 avr_frame_prev_register,
1157 NULL,
1158 default_frame_sniffer
4add8633
TR
1159};
1160
8818c391 1161static CORE_ADDR
94afd7a6 1162avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1163{
4add8633 1164 struct avr_unwind_cache *info
94afd7a6 1165 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1166
4add8633
TR
1167 return info->base;
1168}
8818c391 1169
4add8633
TR
1170static const struct frame_base avr_frame_base = {
1171 &avr_frame_unwind,
1172 avr_frame_base_address,
1173 avr_frame_base_address,
1174 avr_frame_base_address
1175};
ced15480 1176
94afd7a6
UW
1177/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1178 frame. The frame ID's base needs to match the TOS value saved by
1179 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1180
4add8633 1181static struct frame_id
94afd7a6 1182avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1183{
1184 ULONGEST base;
8818c391 1185
94afd7a6
UW
1186 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1187 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1188}
1189
4add8633 1190/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1191 order. The below implements a FILO (stack) to do this. */
8818c391 1192
4add8633
TR
1193struct stack_item
1194{
1195 int len;
1196 struct stack_item *prev;
7c543f7b 1197 gdb_byte *data;
4add8633 1198};
8818c391 1199
4add8633 1200static struct stack_item *
0fd88904 1201push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1202{
4add8633 1203 struct stack_item *si;
8d749320 1204 si = XNEW (struct stack_item);
7c543f7b 1205 si->data = (gdb_byte *) xmalloc (len);
4add8633
TR
1206 si->len = len;
1207 si->prev = prev;
1208 memcpy (si->data, contents, len);
1209 return si;
8818c391
TR
1210}
1211
4add8633
TR
1212static struct stack_item *pop_stack_item (struct stack_item *si);
1213static struct stack_item *
1214pop_stack_item (struct stack_item *si)
8818c391 1215{
4add8633
TR
1216 struct stack_item *dead = si;
1217 si = si->prev;
1218 xfree (dead->data);
1219 xfree (dead);
1220 return si;
8818c391
TR
1221}
1222
8818c391
TR
1223/* Setup the function arguments for calling a function in the inferior.
1224
1225 On the AVR architecture, there are 18 registers (R25 to R8) which are
1226 dedicated for passing function arguments. Up to the first 18 arguments
1227 (depending on size) may go into these registers. The rest go on the stack.
1228
4add8633 1229 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1230 arguments, including char, have one free register above them). For example,
4add8633
TR
1231 an int in arg1 and a char in arg2 would be passed as such:
1232
1233 arg1 -> r25:r24
1234 arg2 -> r22
1235
1236 Arguments that are larger than 2 bytes will be split between two or more
1237 registers as available, but will NOT be split between a register and the
0963b4bd 1238 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1239 similar to the d10v). */
1240
1241/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1242 inaccurate.
8818c391
TR
1243
1244 An exceptional case exists for struct arguments (and possibly other
1245 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1246 not a multiple of WORDSIZE bytes. In this case the argument is never split
1247 between the registers and the stack, but instead is copied in its entirety
1248 onto the stack, AND also copied into as many registers as there is room
1249 for. In other words, space in registers permitting, two copies of the same
1250 argument are passed in. As far as I can tell, only the one on the stack is
1251 used, although that may be a function of the level of compiler
1252 optimization. I suspect this is a compiler bug. Arguments of these odd
1253 sizes are left-justified within the word (as opposed to arguments smaller
1254 than WORDSIZE bytes, which are right-justified).
1255
1256 If the function is to return an aggregate type such as a struct, the caller
1257 must allocate space into which the callee will copy the return value. In
1258 this case, a pointer to the return value location is passed into the callee
1259 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1260 registers R0 to R2. */
8818c391
TR
1261
1262static CORE_ADDR
7d9b040b 1263avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1264 struct regcache *regcache, CORE_ADDR bp_addr,
1265 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1266 function_call_return_method return_method,
1267 CORE_ADDR struct_addr)
8818c391 1268{
4add8633 1269 int i;
e362b510 1270 gdb_byte buf[3];
6d1915d4 1271 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1272 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1273 int regnum = AVR_ARGN_REGNUM;
1274 struct stack_item *si = NULL;
8818c391 1275
cf84fa6b 1276 if (return_method == return_method_struct)
8818c391 1277 {
fd6d6815
TG
1278 regcache_cooked_write_unsigned
1279 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1280 regcache_cooked_write_unsigned
1281 (regcache, regnum--, struct_addr & 0xff);
1282 /* SP being post decremented, we need to reserve one byte so that the
1283 return address won't overwrite the result (or vice-versa). */
1284 if (sp == struct_addr)
1285 sp--;
8818c391
TR
1286 }
1287
4add8633 1288 for (i = 0; i < nargs; i++)
8818c391 1289 {
4add8633
TR
1290 int last_regnum;
1291 int j;
1292 struct value *arg = args[i];
4991999e 1293 struct type *type = check_typedef (value_type (arg));
0fd88904 1294 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1295 int len = TYPE_LENGTH (type);
1296
cb86f388
DC
1297 /* Calculate the potential last register needed.
1298 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1299 shall be used. So, last needed register will be regnum-1(24). */
1300 last_regnum = regnum - (len + (len & 1)) + 1;
4add8633 1301
0963b4bd
MS
1302 /* If there are registers available, use them. Once we start putting
1303 stuff on the stack, all subsequent args go on stack. */
cb86f388 1304 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
4add8633 1305 {
0963b4bd 1306 /* Skip a register for odd length args. */
4add8633
TR
1307 if (len & 1)
1308 regnum--;
1309
cb86f388
DC
1310 /* Write MSB of argument into register and subsequent bytes in
1311 decreasing register numbers. */
6d1915d4
TG
1312 for (j = 0; j < len; j++)
1313 regcache_cooked_write_unsigned
cb86f388 1314 (regcache, regnum--, contents[len - j - 1]);
4add8633 1315 }
0963b4bd 1316 /* No registers available, push the args onto the stack. */
4add8633
TR
1317 else
1318 {
0963b4bd 1319 /* From here on, we don't care about regnum. */
4add8633
TR
1320 si = push_stack_item (si, contents, len);
1321 }
8818c391 1322 }
909cd28e 1323
0963b4bd 1324 /* Push args onto the stack. */
4add8633
TR
1325 while (si)
1326 {
1327 sp -= si->len;
0963b4bd 1328 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1329 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1330 si = pop_stack_item (si);
1331 }
3605c34a 1332
4add8633
TR
1333 /* Set the return address. For the avr, the return address is the BP_ADDR.
1334 Need to push the return address onto the stack noting that it needs to be
1335 in big-endian order on the stack. */
6d1915d4
TG
1336 for (i = 1; i <= call_length; i++)
1337 {
1338 buf[call_length - i] = return_pc & 0xff;
1339 return_pc >>= 8;
1340 }
3605c34a 1341
6d1915d4 1342 sp -= call_length;
0963b4bd 1343 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1344 write_memory (sp + 1, buf, call_length);
3605c34a 1345
0963b4bd 1346 /* Finally, update the SP register. */
4add8633
TR
1347 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1348 avr_convert_saddr_to_raw (sp));
3605c34a 1349
6d1915d4
TG
1350 /* Return SP value for the dummy frame, where the return address hasn't been
1351 pushed. */
1352 return sp + call_length;
3605c34a
TR
1353}
1354
53f6a2c9
TG
1355/* Unfortunately dwarf2 register for SP is 32. */
1356
1357static int
1358avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1359{
1360 if (reg >= 0 && reg < 32)
1361 return reg;
1362 if (reg == 32)
1363 return AVR_SP_REGNUM;
53f6a2c9
TG
1364 return -1;
1365}
1366
487d9753
PL
1367/* Implementation of `address_class_type_flags' gdbarch method.
1368
1369 This method maps DW_AT_address_class attributes to a
1370 type_instance_flag_value. */
1371
1372static int
1373avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1374{
1375 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1376 __flash qualifier. Note that this attribute is only valid with
1377 pointer types and therefore the flag is set to the pointer type and
1378 not its target type. */
1379 if (dwarf2_addr_class == 1 && byte_size == 2)
1380 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1381 return 0;
1382}
1383
1384/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1385
1386 Convert a type_instance_flag_value to an address space qualifier. */
1387
1388static const char*
1389avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1390{
1391 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1392 return "flash";
1393 else
1394 return NULL;
1395}
1396
1397/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1398
1399 Convert an address space qualifier to a type_instance_flag_value. */
1400
1401static int
1402avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1403 const char* name,
1404 int *type_flags_ptr)
1405{
1406 if (strcmp (name, "flash") == 0)
1407 {
1408 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1409 return 1;
1410 }
1411 else
1412 return 0;
1413}
1414
0963b4bd 1415/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1416
1417static struct gdbarch *
2e5ff58c
TR
1418avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1419{
2e5ff58c
TR
1420 struct gdbarch *gdbarch;
1421 struct gdbarch_tdep *tdep;
4e99ad69
TG
1422 struct gdbarch_list *best_arch;
1423 int call_length;
8818c391 1424
4e99ad69 1425 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1426 switch (info.bfd_arch_info->mach)
1427 {
1428 case bfd_mach_avr1:
9c97a070 1429 case bfd_mach_avrxmega1:
8818c391 1430 case bfd_mach_avr2:
9c97a070 1431 case bfd_mach_avrxmega2:
8818c391 1432 case bfd_mach_avr3:
9c97a070 1433 case bfd_mach_avrxmega3:
8818c391 1434 case bfd_mach_avr4:
9c97a070 1435 case bfd_mach_avrxmega4:
8818c391 1436 case bfd_mach_avr5:
9c97a070 1437 case bfd_mach_avrxmega5:
4e99ad69
TG
1438 default:
1439 call_length = 2;
1440 break;
1441 case bfd_mach_avr6:
9c97a070
PL
1442 case bfd_mach_avrxmega6:
1443 case bfd_mach_avrxmega7:
4e99ad69 1444 call_length = 3;
8818c391
TR
1445 break;
1446 }
1447
4e99ad69
TG
1448 /* If there is already a candidate, use it. */
1449 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1450 best_arch != NULL;
1451 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1452 {
1453 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1454 return best_arch->gdbarch;
1455 }
1456
0963b4bd 1457 /* None found, create a new architecture from the information provided. */
cdd238da 1458 tdep = XCNEW (struct gdbarch_tdep);
4e99ad69
TG
1459 gdbarch = gdbarch_alloc (&info, tdep);
1460
1461 tdep->call_length = call_length;
1462
7d2552b4
TG
1463 /* Create a type for PC. We can't use builtin types here, as they may not
1464 be defined. */
77b7c781
UW
1465 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1466 "void");
7d2552b4 1467 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
88dfca6c
UW
1468 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1469 tdep->func_void_type);
7d2552b4 1470
8818c391
TR
1471 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1472 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1473 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1474 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1475 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476 set_gdbarch_addr_bit (gdbarch, 32);
8818c391 1477
53375380
PA
1478 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1479 set_gdbarch_wchar_signed (gdbarch, 1);
1480
8818c391
TR
1481 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1482 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1483 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1484
8da61cc4
DJ
1485 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1486 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1487 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1488
1489 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1490 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1491
1492 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1493
1494 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1495 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1496
1497 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1498 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1499
7d2552b4
TG
1500 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1501 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1502 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1503
4c8b6ae0 1504 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391 1505
4add8633 1506 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1507
53f6a2c9
TG
1508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1509
8818c391
TR
1510 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1511 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1512 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1513
8818c391 1514 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1516
04180708
YQ
1517 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1518 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
8818c391 1519
94afd7a6 1520 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1521 frame_base_set_default (gdbarch, &avr_frame_base);
1522
94afd7a6 1523 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1524
1525 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1526 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1527
487d9753
PL
1528 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1529 set_gdbarch_address_class_name_to_type_flags
1530 (gdbarch, avr_address_class_name_to_type_flags);
1531 set_gdbarch_address_class_type_flags_to_name
1532 (gdbarch, avr_address_class_type_flags_to_name);
1533
8818c391
TR
1534 return gdbarch;
1535}
1536
1537/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1538 registers. If args parameter is not NULL, then the user has requested info
8818c391 1539 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1540 now]. The query string should be one of these forms:
8818c391
TR
1541
1542 "Ravr.io_reg" -> reply is "NN" number of io registers
1543
1544 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1545 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1546 where, <NAME> is a string, and VV is the hex value of the register.
1547
0963b4bd 1548 All io registers are 8-bit. */
8818c391
TR
1549
1550static void
1d12d88f 1551avr_io_reg_read_command (const char *args, int from_tty)
8818c391 1552{
2e5ff58c 1553 char query[400];
2e5ff58c
TR
1554 unsigned int nreg = 0;
1555 unsigned int val;
8818c391 1556
0963b4bd 1557 /* Find out how many io registers the target has. */
9018be22 1558 gdb::optional<gdb::byte_vector> buf
8b88a78e 1559 = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, "avr.io_reg");
8818c391 1560
9018be22 1561 if (!buf)
8818c391 1562 {
2e5ff58c 1563 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1564 _("ERR: info io_registers NOT supported "
1565 "by current target\n"));
8818c391
TR
1566 return;
1567 }
1568
9018be22
SM
1569 const char *bufstr = (const char *) buf->data ();
1570
001f13d8 1571 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1572 {
2e5ff58c 1573 fprintf_unfiltered (gdb_stderr,
edefbb7c 1574 _("Error fetching number of io registers\n"));
8818c391
TR
1575 return;
1576 }
1577
2e5ff58c 1578 reinitialize_more_filter ();
8818c391 1579
edefbb7c 1580 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1581
1582 /* only fetch up to 8 registers at a time to keep the buffer small */
9018be22 1583 int step = 8;
8818c391 1584
9018be22 1585 for (int i = 0; i < nreg; i += step)
8818c391 1586 {
91ccbfc1 1587 /* how many registers this round? */
9018be22 1588 int j = step;
91ccbfc1
TR
1589 if ((i+j) >= nreg)
1590 j = nreg - i; /* last block is less than 8 registers */
8818c391 1591
2e5ff58c 1592 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8b88a78e 1593 buf = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, query);
9018be22
SM
1594
1595 if (!buf)
1596 {
1597 fprintf_unfiltered (gdb_stderr,
1598 _("ERR: error reading avr.io_reg:%x,%x\n"),
1599 i, j);
1600 return;
1601 }
8818c391 1602
9018be22
SM
1603 const char *p = (const char *) buf->data ();
1604 for (int k = i; k < (i + j); k++)
2e5ff58c
TR
1605 {
1606 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1607 {
1608 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1609 while ((*p != ';') && (*p != '\0'))
1610 p++;
1611 p++; /* skip over ';' */
1612 if (*p == '\0')
1613 break;
1614 }
1615 }
8818c391
TR
1616 }
1617}
1618
1619void
1620_initialize_avr_tdep (void)
1621{
1622 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1623
1624 /* Add a new command to allow the user to query the avr remote target for
1625 the values of the io space registers in a saner way than just using
0963b4bd 1626 `x/NNNb ADDR`. */
8818c391
TR
1627
1628 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1629 io_registers' to signify it is not available on other platforms. */
8818c391 1630
5f515954
AB
1631 add_info ("io_registers", avr_io_reg_read_command,
1632 _("query remote avr target for io space register values"));
8818c391 1633}