]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-linux-tdep.c
PR31692, objdump fails .debug_info size check
[thirdparty/binutils-gdb.git] / gdb / i386-linux-tdep.c
CommitLineData
871fbe6a 1/* Target-dependent code for GNU/Linux i386.
ca557f44 2
1d506c26 3 Copyright (C) 2000-2024 Free Software Foundation, Inc.
e7ee86a9
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
e7ee86a9
JB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
e7ee86a9 19
ec452525 20#include "extract-store-integer.h"
e7ee86a9
JB
21#include "gdbcore.h"
22#include "frame.h"
23#include "value.h"
4e052eda 24#include "regcache.h"
c131fcee 25#include "regset.h"
6441c4a0 26#include "inferior.h"
0670c0aa 27#include "osabi.h"
38c968cf 28#include "reggroups.h"
82ca8957 29#include "dwarf2/frame.h"
8201327c
MK
30#include "i386-tdep.h"
31#include "i386-linux-tdep.h"
4aa995e1 32#include "linux-tdep.h"
012b3a21 33#include "utils.h"
0670c0aa 34#include "glibc-tdep.h"
871fbe6a 35#include "solib-svr4.h"
982e9687 36#include "symtab.h"
237fc4c9 37#include "arch-utils.h"
a96d9b2e 38#include "xml-syscall.h"
fdb61c6c 39#include "infrun.h"
a96d9b2e 40
c131fcee 41#include "i387-tdep.h"
268a13a5 42#include "gdbsupport/x86-xstate.h"
c131fcee 43
a96d9b2e
SDJ
44/* The syscall's XML filename for i386. */
45#define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
17ea7499 46
d02ed0bb 47#include "record-full.h"
77fcef51 48#include "linux-record.h"
ea03d0d3 49
5f035c07 50#include "arch/i386.h"
f49ff000 51#include "target-descriptions.h"
90884b2b 52
38c968cf
AC
53/* Return non-zero, when the register is in the corresponding register
54 group. Put the LINUX_ORIG_EAX register in the system group. */
55static int
56i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
dbf5d61b 57 const struct reggroup *group)
38c968cf
AC
58{
59 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60 return (group == system_reggroup
61 || group == save_reggroup
62 || group == restore_reggroup);
63 return i386_register_reggroup_p (gdbarch, regnum, group);
64}
65
e7ee86a9
JB
66\f
67/* Recognizing signal handler frames. */
68
ca557f44 69/* GNU/Linux has two flavors of signals. Normal signal handlers, and
e7ee86a9
JB
70 "realtime" (RT) signals. The RT signals can provide additional
71 information to the signal handler if the SA_SIGINFO flag is set
72 when establishing a signal handler using `sigaction'. It is not
ca557f44
AC
73 unlikely that future versions of GNU/Linux will support SA_SIGINFO
74 for normal signals too. */
e7ee86a9
JB
75
76/* When the i386 Linux kernel calls a signal handler and the
77 SA_RESTORER flag isn't set, the return address points to a bit of
78 code on the stack. This function returns whether the PC appears to
79 be within this bit of code.
80
81 The instruction sequence for normal signals is
82 pop %eax
acd5c798 83 mov $0x77, %eax
e7ee86a9
JB
84 int $0x80
85 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
86
87 Checking for the code sequence should be somewhat reliable, because
88 the effect is to call the system call sigreturn. This is unlikely
911bc6ee 89 to occur anywhere other than in a signal trampoline.
e7ee86a9
JB
90
91 It kind of sucks that we have to read memory from the process in
92 order to identify a signal trampoline, but there doesn't seem to be
911bc6ee
MK
93 any other way. Therefore we only do the memory reads if no
94 function name could be identified, which should be the case since
95 the code is on the stack.
e7ee86a9
JB
96
97 Detection of signal trampolines for handlers that set the
98 SA_RESTORER flag is in general not possible. Unfortunately this is
99 what the GNU C Library has been doing for quite some time now.
100 However, as of version 2.1.2, the GNU C Library uses signal
101 trampolines (named __restore and __restore_rt) that are identical
102 to the ones used by the kernel. Therefore, these trampolines are
103 supported too. */
104
acd5c798
MK
105#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
106#define LINUX_SIGTRAMP_OFFSET0 0
107#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
108#define LINUX_SIGTRAMP_OFFSET1 1
109#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
110#define LINUX_SIGTRAMP_OFFSET2 6
e7ee86a9 111
4252dc94 112static const gdb_byte linux_sigtramp_code[] =
e7ee86a9
JB
113{
114 LINUX_SIGTRAMP_INSN0, /* pop %eax */
acd5c798 115 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
e7ee86a9
JB
116 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
117};
118
119#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
120
10458914
DJ
121/* If THIS_FRAME is a sigtramp routine, return the address of the
122 start of the routine. Otherwise, return 0. */
e7ee86a9
JB
123
124static CORE_ADDR
8480a37e 125i386_linux_sigtramp_start (const frame_info_ptr &this_frame)
e7ee86a9 126{
10458914 127 CORE_ADDR pc = get_frame_pc (this_frame);
4252dc94 128 gdb_byte buf[LINUX_SIGTRAMP_LEN];
e7ee86a9
JB
129
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
136
bdec2917 137 if (!safe_frame_unwind_memory (this_frame, pc, buf))
e7ee86a9
JB
138 return 0;
139
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
141 {
142 int adjust;
143
144 switch (buf[0])
145 {
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
148 break;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
151 break;
152 default:
153 return 0;
154 }
155
156 pc -= adjust;
157
bdec2917 158 if (!safe_frame_unwind_memory (this_frame, pc, buf))
e7ee86a9
JB
159 return 0;
160 }
161
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163 return 0;
164
165 return pc;
166}
167
168/* This function does the same for RT signals. Here the instruction
169 sequence is
acd5c798 170 mov $0xad, %eax
e7ee86a9
JB
171 int $0x80
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173
174 The effect is to call the system call rt_sigreturn. */
175
acd5c798
MK
176#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177#define LINUX_RT_SIGTRAMP_OFFSET0 0
178#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179#define LINUX_RT_SIGTRAMP_OFFSET1 5
e7ee86a9 180
4252dc94 181static const gdb_byte linux_rt_sigtramp_code[] =
e7ee86a9 182{
acd5c798 183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
e7ee86a9
JB
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
185};
186
187#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188
10458914
DJ
189/* If THIS_FRAME is an RT sigtramp routine, return the address of the
190 start of the routine. Otherwise, return 0. */
e7ee86a9
JB
191
192static CORE_ADDR
8480a37e 193i386_linux_rt_sigtramp_start (const frame_info_ptr &this_frame)
e7ee86a9 194{
10458914 195 CORE_ADDR pc = get_frame_pc (this_frame);
4252dc94 196 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
e7ee86a9
JB
197
198 /* We only recognize a signal trampoline if PC is at the start of
199 one of the two instructions. We optimize for finding the PC at
200 the start, as will be the case when the trampoline is not the
201 first frame on the stack. We assume that in the case where the
202 PC is not at the start of the instruction sequence, there will be
203 a few trailing readable bytes on the stack. */
204
bdec2917 205 if (!safe_frame_unwind_memory (this_frame, pc, buf))
e7ee86a9
JB
206 return 0;
207
208 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
209 {
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
211 return 0;
212
213 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
214
bdec2917
LM
215 if (!safe_frame_unwind_memory (this_frame, pc,
216 buf))
e7ee86a9
JB
217 return 0;
218 }
219
220 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224}
225
10458914
DJ
226/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
227 routine. */
e7ee86a9 228
8201327c 229static int
8480a37e 230i386_linux_sigtramp_p (const frame_info_ptr &this_frame)
e7ee86a9 231{
10458914 232 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 233 const char *name;
911bc6ee
MK
234
235 find_pc_partial_function (pc, &name, NULL, NULL);
236
ef17e74b
DJ
237 /* If we have NAME, we can optimize the search. The trampolines are
238 named __restore and __restore_rt. However, they aren't dynamically
239 exported from the shared C library, so the trampoline may appear to
240 be part of the preceding function. This should always be sigaction,
241 __sigaction, or __libc_sigaction (all aliases to the same function). */
242 if (name == NULL || strstr (name, "sigaction") != NULL)
10458914
DJ
243 return (i386_linux_sigtramp_start (this_frame) != 0
244 || i386_linux_rt_sigtramp_start (this_frame) != 0);
ef17e74b
DJ
245
246 return (strcmp ("__restore", name) == 0
247 || strcmp ("__restore_rt", name) == 0);
e7ee86a9
JB
248}
249
4a4e5149
DJ
250/* Return one if the PC of THIS_FRAME is in a signal trampoline which
251 may have DWARF-2 CFI. */
12b8a2cb
DJ
252
253static int
254i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
8480a37e 255 const frame_info_ptr &this_frame)
12b8a2cb 256{
4a4e5149 257 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 258 const char *name;
12b8a2cb
DJ
259
260 find_pc_partial_function (pc, &name, NULL, NULL);
261
262 /* If a vsyscall DSO is in use, the signal trampolines may have these
263 names. */
264 if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 || strcmp (name, "__kernel_rt_sigreturn") == 0))
266 return 1;
267
268 return 0;
269}
270
acd5c798
MK
271/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
272#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
273
10458914
DJ
274/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275 address of the associated sigcontext structure. */
e7ee86a9 276
b7d15bf7 277static CORE_ADDR
8480a37e 278i386_linux_sigcontext_addr (const frame_info_ptr &this_frame)
e7ee86a9 279{
e17a4113
UW
280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e7ee86a9 282 CORE_ADDR pc;
acd5c798 283 CORE_ADDR sp;
4252dc94 284 gdb_byte buf[4];
acd5c798 285
10458914 286 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 287 sp = extract_unsigned_integer (buf, 4, byte_order);
e7ee86a9 288
10458914 289 pc = i386_linux_sigtramp_start (this_frame);
e7ee86a9
JB
290 if (pc)
291 {
acd5c798
MK
292 /* The sigcontext structure lives on the stack, right after
293 the signum argument. We determine the address of the
294 sigcontext structure by looking at the frame's stack
295 pointer. Keep in mind that the first instruction of the
296 sigtramp code is "pop %eax". If the PC is after this
297 instruction, adjust the returned value accordingly. */
10458914 298 if (pc == get_frame_pc (this_frame))
e7ee86a9
JB
299 return sp + 4;
300 return sp;
301 }
302
10458914 303 pc = i386_linux_rt_sigtramp_start (this_frame);
e7ee86a9
JB
304 if (pc)
305 {
acd5c798
MK
306 CORE_ADDR ucontext_addr;
307
308 /* The sigcontext structure is part of the user context. A
309 pointer to the user context is passed as the third argument
310 to the signal handler. */
311 read_memory (sp + 8, buf, 4);
e17a4113 312 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 313 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
e7ee86a9
JB
314 }
315
8a3fe4f8 316 error (_("Couldn't recognize signal trampoline."));
e7ee86a9
JB
317 return 0;
318}
319
6441c4a0
MK
320/* Set the program counter for process PTID to PC. */
321
8201327c 322static void
61a1198a 323i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6441c4a0 324{
61a1198a 325 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
6441c4a0
MK
326
327 /* We must be careful with modifying the program counter. If we
328 just interrupted a system call, the kernel might try to restart
329 it when we resume the inferior. On restarting the system call,
330 the kernel will try backing up the program counter even though it
331 no longer points at the system call. This typically results in a
332 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
333 "orig_eax" pseudo-register.
334
335 Note that "orig_eax" is saved when setting up a dummy call frame.
336 This means that it is properly restored when that frame is
337 popped, and that the interrupted system call will be restarted
338 when we resume the inferior on return from a function call from
339 within GDB. In all other cases the system call will not be
340 restarted. */
61a1198a 341 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
6441c4a0 342}
77fcef51 343
8a2e0e28
HZ
344/* Record all registers but IP register for process-record. */
345
346static int
347i386_all_but_ip_registers_record (struct regcache *regcache)
348{
25ea693b 349 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
8a2e0e28 350 return -1;
25ea693b 351 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
8a2e0e28 352 return -1;
25ea693b 353 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
8a2e0e28 354 return -1;
25ea693b 355 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
8a2e0e28 356 return -1;
25ea693b 357 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
8a2e0e28 358 return -1;
25ea693b 359 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
8a2e0e28 360 return -1;
25ea693b 361 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
8a2e0e28 362 return -1;
25ea693b 363 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
8a2e0e28 364 return -1;
25ea693b 365 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
8a2e0e28
HZ
366 return -1;
367
368 return 0;
369}
13b6d1d4
MS
370
371/* i386_canonicalize_syscall maps from the native i386 Linux set
372 of syscall ids into a canonical set of syscall ids used by
373 process record (a mostly trivial mapping, since the canonical
374 set was originally taken from the i386 set). */
375
376static enum gdb_syscall
377i386_canonicalize_syscall (int syscall)
378{
379 enum { i386_syscall_max = 499 };
380
381 if (syscall <= i386_syscall_max)
aead7601 382 return (enum gdb_syscall) syscall;
13b6d1d4 383 else
f486487f 384 return gdb_sys_no_syscall;
13b6d1d4
MS
385}
386
012b3a21
WT
387/* Value of the sigcode in case of a boundary fault. */
388
3bfdcabb 389#define SIG_CODE_BOUNDARY_FAULT 3
012b3a21 390
77bdfeb2 391/* i386 GNU/Linux implementation of the report_signal_info
012b3a21
WT
392 gdbarch hook. Displays information related to MPX bound
393 violations. */
394void
77bdfeb2
JB
395i386_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout,
396 enum gdb_signal siggnal)
012b3a21 397{
166616ce
SM
398 /* -Wmaybe-uninitialized */
399 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
012b3a21
WT
400 int is_upper;
401 long sig_code = 0;
402
77bdfeb2 403 if (!i386_mpx_enabled () || siggnal != GDB_SIGNAL_SEGV)
012b3a21
WT
404 return;
405
a70b8144 406 try
012b3a21
WT
407 {
408 /* Sigcode evaluates if the actual segfault is a boundary violation. */
409 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
410
411 lower_bound
dda83cd7 412 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
012b3a21 413 upper_bound
dda83cd7 414 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
012b3a21 415 access
dda83cd7 416 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
012b3a21 417 }
b1ffd112 418 catch (const gdb_exception_error &exception)
012b3a21
WT
419 {
420 return;
421 }
012b3a21
WT
422
423 /* If this is not a boundary violation just return. */
3bfdcabb 424 if (sig_code != SIG_CODE_BOUNDARY_FAULT)
012b3a21
WT
425 return;
426
427 is_upper = (access > upper_bound ? 1 : 0);
428
112e8700 429 uiout->text ("\n");
012b3a21 430 if (is_upper)
112e8700 431 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
012b3a21 432 else
112e8700 433 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
012b3a21 434
112e8700 435 uiout->text (_(" while accessing address "));
ca8d69be 436 uiout->field_core_addr ("bound-access", gdbarch, access);
012b3a21 437
112e8700 438 uiout->text (_("\nBounds: [lower = "));
ca8d69be 439 uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
012b3a21 440
112e8700 441 uiout->text (_(", upper = "));
ca8d69be 442 uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
012b3a21 443
112e8700 444 uiout->text (_("]"));
012b3a21
WT
445}
446
77fcef51
HZ
447/* Parse the arguments of current system call instruction and record
448 the values of the registers and memory that will be changed into
449 "record_arch_list". This instruction is "int 0x80" (Linux
450 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
451
452 Return -1 if something wrong. */
453
8a2e0e28
HZ
454static struct linux_record_tdep i386_linux_record_tdep;
455
77fcef51 456static int
ffdf6de5 457i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
77fcef51
HZ
458{
459 int ret;
13b6d1d4
MS
460 LONGEST syscall_native;
461 enum gdb_syscall syscall_gdb;
462
463 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
77fcef51 464
13b6d1d4 465 syscall_gdb = i386_canonicalize_syscall (syscall_native);
2c543fc4 466
13b6d1d4 467 if (syscall_gdb < 0)
2c543fc4 468 {
6cb06a8c
TT
469 gdb_printf (gdb_stderr,
470 _("Process record and replay target doesn't "
471 "support syscall number %s\n"),
472 plongest (syscall_native));
2c543fc4
HZ
473 return -1;
474 }
77fcef51 475
8a2e0e28
HZ
476 if (syscall_gdb == gdb_sys_sigreturn
477 || syscall_gdb == gdb_sys_rt_sigreturn)
478 {
479 if (i386_all_but_ip_registers_record (regcache))
480 return -1;
481 return 0;
482 }
483
13b6d1d4 484 ret = record_linux_system_call (syscall_gdb, regcache,
77fcef51
HZ
485 &i386_linux_record_tdep);
486 if (ret)
487 return ret;
488
489 /* Record the return value of the system call. */
25ea693b 490 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
77fcef51
HZ
491 return -1;
492
493 return 0;
494}
8a2e0e28
HZ
495
496#define I386_LINUX_xstate 270
497#define I386_LINUX_frame_size 732
498
70221824 499static int
8a2e0e28 500i386_linux_record_signal (struct gdbarch *gdbarch,
dda83cd7
SM
501 struct regcache *regcache,
502 enum gdb_signal signal)
8a2e0e28
HZ
503{
504 ULONGEST esp;
505
506 if (i386_all_but_ip_registers_record (regcache))
507 return -1;
508
25ea693b 509 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
8a2e0e28
HZ
510 return -1;
511
512 /* Record the change in the stack. */
513 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
514 /* This is for xstate.
515 sp -= sizeof (struct _fpstate); */
516 esp -= I386_LINUX_xstate;
517 /* This is for frame_size.
518 sp -= sizeof (struct rt_sigframe); */
519 esp -= I386_LINUX_frame_size;
25ea693b
MM
520 if (record_full_arch_list_add_mem (esp,
521 I386_LINUX_xstate + I386_LINUX_frame_size))
8a2e0e28
HZ
522 return -1;
523
25ea693b 524 if (record_full_arch_list_add_end ())
8a2e0e28
HZ
525 return -1;
526
527 return 0;
528}
6441c4a0 529\f
8201327c 530
9a7f938f
JK
531/* Core of the implementation for gdbarch get_syscall_number. Get pending
532 syscall number from REGCACHE. If there is no pending syscall -1 will be
533 returned. Pending syscall means ptrace has stepped into the syscall but
534 another ptrace call will step out. PC is right after the int $0x80
535 / syscall / sysenter instruction in both cases, PC does not change during
536 the second ptrace step. */
537
a96d9b2e 538static LONGEST
9a7f938f 539i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
a96d9b2e 540{
ac7936df 541 struct gdbarch *gdbarch = regcache->arch ();
a96d9b2e
SDJ
542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
543 /* The content of a register. */
544 gdb_byte buf[4];
545 /* The result. */
546 LONGEST ret;
547
548 /* Getting the system call number from the register.
549 When dealing with x86 architecture, this information
550 is stored at %eax register. */
dca08e1f 551 regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
a96d9b2e 552
2a50938a 553 ret = extract_signed_integer (buf, byte_order);
a96d9b2e
SDJ
554
555 return ret;
556}
557
9a7f938f
JK
558/* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
559 compatible with gdbarch get_syscall_number method prototype. */
560
561static LONGEST
562i386_linux_get_syscall_number (struct gdbarch *gdbarch,
00431a78 563 thread_info *thread)
9a7f938f 564{
00431a78 565 struct regcache *regcache = get_thread_regcache (thread);
9a7f938f
JK
566
567 return i386_linux_get_syscall_number_from_regcache (regcache);
568}
569
e9f1aad5
MK
570/* The register sets used in GNU/Linux ELF core-dumps are identical to
571 the register sets in `struct user' that are used for a.out
572 core-dumps. These are also used by ptrace(2). The corresponding
573 types are `elf_gregset_t' for the general-purpose registers (with
574 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
575 for the floating-point registers.
576
577 Those types used to be available under the names `gregset_t' and
578 `fpregset_t' too, and GDB used those names in the past. But those
579 names are now used for the register sets used in the `mcontext_t'
580 type, which have a different size and layout. */
581
582/* Mapping between the general-purpose registers in `struct user'
583 format and GDB's register cache layout. */
584
585/* From <sys/reg.h>. */
be0d2954 586int i386_linux_gregset_reg_offset[] =
e9f1aad5
MK
587{
588 6 * 4, /* %eax */
589 1 * 4, /* %ecx */
590 2 * 4, /* %edx */
591 0 * 4, /* %ebx */
592 15 * 4, /* %esp */
593 5 * 4, /* %ebp */
594 3 * 4, /* %esi */
595 4 * 4, /* %edi */
596 12 * 4, /* %eip */
597 14 * 4, /* %eflags */
598 13 * 4, /* %cs */
599 16 * 4, /* %ss */
600 7 * 4, /* %ds */
601 8 * 4, /* %es */
602 9 * 4, /* %fs */
603 10 * 4, /* %gs */
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1, -1, -1, -1, -1, -1, -1, -1,
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1,
c131fcee 608 -1, -1, -1, -1, -1, -1, -1, -1,
01f9f808
MS
609 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
610 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
611 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
612 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
51547df6 613 -1, /* PKRU register */
01f9f808 614 11 * 4, /* "orig_eax" */
e9f1aad5
MK
615};
616
617/* Mapping between the general-purpose registers in `struct
618 sigcontext' format and GDB's register cache layout. */
619
a3386186 620/* From <asm/sigcontext.h>. */
bb489b3c 621static int i386_linux_sc_reg_offset[] =
a3386186
MK
622{
623 11 * 4, /* %eax */
624 10 * 4, /* %ecx */
625 9 * 4, /* %edx */
626 8 * 4, /* %ebx */
627 7 * 4, /* %esp */
628 6 * 4, /* %ebp */
629 5 * 4, /* %esi */
630 4 * 4, /* %edi */
631 14 * 4, /* %eip */
632 16 * 4, /* %eflags */
633 15 * 4, /* %cs */
634 18 * 4, /* %ss */
635 3 * 4, /* %ds */
636 2 * 4, /* %es */
637 1 * 4, /* %fs */
638 0 * 4 /* %gs */
639};
640
b42405a1 641/* See i386-linux-tdep.h. */
c131fcee
L
642
643uint64_t
b42405a1 644i386_linux_core_read_xsave_info (bfd *abfd, x86_xsave_layout &layout)
c131fcee
L
645{
646 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
b42405a1
JB
647 if (xstate == nullptr)
648 return 0;
c131fcee 649
b42405a1
JB
650 /* Check extended state size. */
651 size_t size = bfd_section_size (xstate);
652 if (size < X86_XSTATE_AVX_SIZE)
653 return 0;
c131fcee 654
b42405a1
JB
655 char contents[8];
656 if (! bfd_get_section_contents (abfd, xstate, contents,
657 I386_LINUX_XSAVE_XCR0_OFFSET, 8))
658 {
659 warning (_("Couldn't read `xcr0' bytes from "
660 "`.reg-xstate' section in core file."));
661 return 0;
c131fcee 662 }
b42405a1
JB
663
664 uint64_t xcr0 = bfd_get_64 (abfd, contents);
665
666 if (!i387_guess_xsave_layout (xcr0, size, layout))
667 return 0;
c131fcee
L
668
669 return xcr0;
670}
671
35b4818d 672/* See i386-linux-tdep.h. */
90884b2b 673
b42405a1
JB
674bool
675i386_linux_core_read_x86_xsave_layout (struct gdbarch *gdbarch,
676 x86_xsave_layout &layout)
677{
6fdf95ae
SM
678 return i386_linux_core_read_xsave_info (current_program_space->core_bfd (),
679 layout) != 0;
b42405a1
JB
680}
681
69324a74 682/* See i386-linux-tdep.h. */
b42405a1 683
69324a74
AB
684const struct target_desc *
685i386_linux_read_description (uint64_t xcr0)
90884b2b 686{
69324a74
AB
687 if (xcr0 == 0)
688 return NULL;
689
690 static struct target_desc *i386_linux_tdescs \
691 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
692 struct target_desc **tdesc;
693
694 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
695 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
696 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
697 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
698 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
699 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
700
701 if (*tdesc == NULL)
702 *tdesc = i386_create_target_description (xcr0, true, false);
703
704 return *tdesc;
35b4818d
YQ
705}
706
707/* Get Linux/x86 target description from core dump. */
708
709static const struct target_desc *
710i386_linux_core_read_description (struct gdbarch *gdbarch,
711 struct target_ops *target,
712 bfd *abfd)
713{
714 /* Linux/i386. */
b42405a1
JB
715 x86_xsave_layout layout;
716 uint64_t xcr0 = i386_linux_core_read_xsave_info (abfd, layout);
69324a74 717 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
35b4818d 718
c1738907
AB
719 if (tdesc != NULL)
720 return tdesc;
721
722 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
723 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
724 else
725 return i386_linux_read_description (X86_XSTATE_X87_MASK);
90884b2b
L
726}
727
8f0435f7
AA
728/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
729
730static void
731i386_linux_supply_xstateregset (const struct regset *regset,
732 struct regcache *regcache, int regnum,
733 const void *xstateregs, size_t len)
734{
735 i387_supply_xsave (regcache, regnum, xstateregs);
736}
737
190b495d
WT
738struct type *
739x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
740{
741 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
742}
743
8f0435f7
AA
744/* Similar to i386_collect_fpregset, but use XSAVE extended state. */
745
746static void
747i386_linux_collect_xstateregset (const struct regset *regset,
748 const struct regcache *regcache,
749 int regnum, void *xstateregs, size_t len)
750{
751 i387_collect_xsave (regcache, regnum, xstateregs, 1);
752}
753
754/* Register set definitions. */
755
756static const struct regset i386_linux_xstateregset =
757 {
758 NULL,
759 i386_linux_supply_xstateregset,
760 i386_linux_collect_xstateregset
761 };
762
5aa82d05
AA
763/* Iterate over core file register note sections. */
764
765static void
766i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
767 iterate_over_regset_sections_cb *cb,
768 void *cb_data,
769 const struct regcache *regcache)
770{
08106042 771 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5aa82d05 772
a616bb94 773 cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
5aa82d05 774
b42405a1
JB
775 if (tdep->xsave_layout.sizeof_xsave != 0)
776 cb (".reg-xstate", tdep->xsave_layout.sizeof_xsave,
777 tdep->xsave_layout.sizeof_xsave, &i386_linux_xstateregset,
a616bb94 778 "XSAVE extended state", cb_data);
5aa82d05 779 else if (tdep->xcr0 & X86_XSTATE_SSE)
a616bb94 780 cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
8f0435f7 781 cb_data);
5aa82d05 782 else
a616bb94 783 cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
5aa82d05
AA
784}
785
9a7f938f
JK
786/* Linux kernel shows PC value after the 'int $0x80' instruction even if
787 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
788 finish the syscall but PC will not change.
789
790 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
791 i386_displaced_step_fixup would keep PC at the displaced pad location.
792 As PC is pointing to the 'ret' instruction before the step
793 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
794 and PC should not be adjusted. In reality it finished syscall instead and
795 PC should get relocated back to its vDSO address. Hide the 'ret'
796 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
797
1152d984
SM
798 It is not fully correct as the bytes in struct
799 displaced_step_copy_insn_closure will not match the inferior code. But we
800 would need some new flag in displaced_step_copy_insn_closure otherwise to
801 keep the state that syscall is finishing for the later
802 i386_displaced_step_fixup execution as the syscall execution is already no
803 longer detectable there. The new flag field would mean i386-linux-tdep.c
804 needs to wrap all the displacement methods of i386-tdep.c which does not seem
805 worth it. The same effect is achieved by patching that 'nop' instruction
806 there instead. */
807
808static displaced_step_copy_insn_closure_up
9a7f938f
JK
809i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
810 CORE_ADDR from, CORE_ADDR to,
811 struct regcache *regs)
812{
1152d984 813 displaced_step_copy_insn_closure_up closure_
cfba9872 814 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
9a7f938f
JK
815
816 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
817 {
c2508e90 818 /* The closure returned by i386_displaced_step_copy_insn is simply a
cfba9872 819 buffer with a copy of the instruction. */
1152d984
SM
820 i386_displaced_step_copy_insn_closure *closure
821 = (i386_displaced_step_copy_insn_closure *) closure_.get ();
9a7f938f
JK
822
823 /* Fake nop. */
cfba9872 824 closure->buf[0] = 0x90;
9a7f938f
JK
825 }
826
cfba9872 827 return closure_;
9a7f938f
JK
828}
829
8201327c
MK
830static void
831i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
832{
08106042 833 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
90884b2b 834 const struct target_desc *tdesc = info.target_desc;
0dba2a6c 835 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
90884b2b
L
836 const struct tdesc_feature *feature;
837 int valid_p;
838
839 gdb_assert (tdesc_data);
8201327c 840
480af54c 841 linux_init_abi (info, gdbarch, 1);
a5ee0f0c 842
8201327c
MK
843 /* GNU/Linux uses ELF. */
844 i386_elf_init_abi (info, gdbarch);
845
90884b2b
L
846 /* Reserve a number for orig_eax. */
847 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
848
849 if (! tdesc_has_registers (tdesc))
35b4818d 850 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
90884b2b
L
851 tdep->tdesc = tdesc;
852
853 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
854 if (feature == NULL)
855 return;
8201327c 856
90884b2b
L
857 valid_p = tdesc_numbered_register (feature, tdesc_data,
858 I386_LINUX_ORIG_EAX_REGNUM,
859 "orig_eax");
860 if (!valid_p)
861 return;
862
863 /* Add the %orig_eax register used for syscall restarting. */
8201327c 864 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
90884b2b
L
865
866 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
8201327c 867
e9f1aad5
MK
868 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
869 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
870 tdep->sizeof_gregset = 17 * 4;
871
8201327c
MK
872 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
873
911bc6ee 874 tdep->sigtramp_p = i386_linux_sigtramp_p;
b7d15bf7 875 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
a3386186 876 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
bb489b3c 877 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
8201327c 878
c131fcee 879 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
b42405a1
JB
880 set_gdbarch_core_read_x86_xsave_layout
881 (gdbarch, i386_linux_core_read_x86_xsave_layout);
c131fcee 882
a6b808b4 883 set_gdbarch_process_record (gdbarch, i386_process_record);
8a2e0e28 884 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
a6b808b4 885
77fcef51 886 /* Initialize the i386_linux_record_tdep. */
5e31abdf
HZ
887 /* These values are the size of the type that will be used in a system
888 call. They are obtained from Linux Kernel source. */
2c543fc4
HZ
889 i386_linux_record_tdep.size_pointer
890 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
5e31abdf
HZ
891 i386_linux_record_tdep.size__old_kernel_stat = 32;
892 i386_linux_record_tdep.size_tms = 16;
893 i386_linux_record_tdep.size_loff_t = 8;
894 i386_linux_record_tdep.size_flock = 16;
895 i386_linux_record_tdep.size_oldold_utsname = 45;
896 i386_linux_record_tdep.size_ustat = 20;
7571f7f2
MK
897 i386_linux_record_tdep.size_old_sigaction = 16;
898 i386_linux_record_tdep.size_old_sigset_t = 4;
5e31abdf
HZ
899 i386_linux_record_tdep.size_rlimit = 8;
900 i386_linux_record_tdep.size_rusage = 72;
901 i386_linux_record_tdep.size_timeval = 8;
902 i386_linux_record_tdep.size_timezone = 8;
903 i386_linux_record_tdep.size_old_gid_t = 2;
904 i386_linux_record_tdep.size_old_uid_t = 2;
905 i386_linux_record_tdep.size_fd_set = 128;
72aded86 906 i386_linux_record_tdep.size_old_dirent = 268;
5e31abdf
HZ
907 i386_linux_record_tdep.size_statfs = 64;
908 i386_linux_record_tdep.size_statfs64 = 84;
909 i386_linux_record_tdep.size_sockaddr = 16;
2c543fc4
HZ
910 i386_linux_record_tdep.size_int
911 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
912 i386_linux_record_tdep.size_long
913 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
914 i386_linux_record_tdep.size_ulong
915 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
5e31abdf
HZ
916 i386_linux_record_tdep.size_msghdr = 28;
917 i386_linux_record_tdep.size_itimerval = 16;
918 i386_linux_record_tdep.size_stat = 88;
919 i386_linux_record_tdep.size_old_utsname = 325;
920 i386_linux_record_tdep.size_sysinfo = 64;
921 i386_linux_record_tdep.size_msqid_ds = 88;
922 i386_linux_record_tdep.size_shmid_ds = 84;
923 i386_linux_record_tdep.size_new_utsname = 390;
924 i386_linux_record_tdep.size_timex = 128;
925 i386_linux_record_tdep.size_mem_dqinfo = 24;
926 i386_linux_record_tdep.size_if_dqblk = 68;
927 i386_linux_record_tdep.size_fs_quota_stat = 68;
928 i386_linux_record_tdep.size_timespec = 8;
929 i386_linux_record_tdep.size_pollfd = 8;
930 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
931 i386_linux_record_tdep.size_knfsd_fh = 132;
932 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
7571f7f2 933 i386_linux_record_tdep.size_sigaction = 20;
5e31abdf
HZ
934 i386_linux_record_tdep.size_sigset_t = 8;
935 i386_linux_record_tdep.size_siginfo_t = 128;
936 i386_linux_record_tdep.size_cap_user_data_t = 12;
937 i386_linux_record_tdep.size_stack_t = 12;
938 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
939 i386_linux_record_tdep.size_stat64 = 96;
d625f9a9
MK
940 i386_linux_record_tdep.size_gid_t = 4;
941 i386_linux_record_tdep.size_uid_t = 4;
5e31abdf
HZ
942 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
943 i386_linux_record_tdep.size_flock64 = 24;
944 i386_linux_record_tdep.size_user_desc = 16;
945 i386_linux_record_tdep.size_io_event = 32;
946 i386_linux_record_tdep.size_iocb = 64;
947 i386_linux_record_tdep.size_epoll_event = 12;
2c543fc4
HZ
948 i386_linux_record_tdep.size_itimerspec
949 = i386_linux_record_tdep.size_timespec * 2;
5e31abdf 950 i386_linux_record_tdep.size_mq_attr = 32;
5e31abdf
HZ
951 i386_linux_record_tdep.size_termios = 36;
952 i386_linux_record_tdep.size_termios2 = 44;
953 i386_linux_record_tdep.size_pid_t = 4;
954 i386_linux_record_tdep.size_winsize = 8;
955 i386_linux_record_tdep.size_serial_struct = 60;
956 i386_linux_record_tdep.size_serial_icounter_struct = 80;
957 i386_linux_record_tdep.size_hayes_esp_config = 12;
2c543fc4
HZ
958 i386_linux_record_tdep.size_size_t = 4;
959 i386_linux_record_tdep.size_iovec = 8;
b80d067f 960 i386_linux_record_tdep.size_time_t = 4;
5e31abdf
HZ
961
962 /* These values are the second argument of system call "sys_ioctl".
963 They are obtained from Linux Kernel source. */
964 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
965 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
966 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
967 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
968 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
969 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
970 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
971 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
972 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
973 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
974 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
975 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
976 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
977 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
978 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
979 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
980 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
981 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
982 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
983 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
984 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
985 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
986 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
987 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
988 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
989 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
990 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
991 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
992 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
993 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
994 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
995 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
996 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
997 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
998 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
999 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1000 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1001 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1002 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1003 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1004 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1005 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1006 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1007 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1008 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1009 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1010 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1011 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1012 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1013 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1014 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1015 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1016 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1017 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1018 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1019 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1020 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1021 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1022 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1023 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1024 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1025 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1026 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1027 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1028 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1029
1030 /* These values are the second argument of system call "sys_fcntl"
1031 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1032 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1033 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1034 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1035 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
50ef67b3 1036
77fcef51
HZ
1037 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1038 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1039 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1040 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1041 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
2c543fc4 1042 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
77fcef51 1043
ffdf6de5
JK
1044 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1045 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1046 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
77fcef51 1047
85102364 1048 /* N_FUN symbols in shared libraries have 0 for their values and need
1777feb0 1049 to be relocated. */
203c3895
UW
1050 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1051
871fbe6a 1052 /* GNU/Linux uses SVR4-style shared libraries. */
982e9687 1053 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
871fbe6a 1054 set_solib_svr4_fetch_link_map_offsets
c0154a4a 1055 (gdbarch, linux_ilp32_fetch_link_map_offsets);
871fbe6a
MK
1056
1057 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
bb41a796 1058 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
12b8a2cb
DJ
1059
1060 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
b2756930
KB
1061
1062 /* Enable TLS support. */
1063 set_gdbarch_fetch_tls_load_module_address (gdbarch,
dda83cd7 1064 svr4_fetch_objfile_link_map);
237fc4c9 1065
5aa82d05
AA
1066 /* Core file support. */
1067 set_gdbarch_iterate_over_regset_sections
1068 (gdbarch, i386_linux_iterate_over_regset_sections);
90884b2b
L
1069 set_gdbarch_core_read_description (gdbarch,
1070 i386_linux_core_read_description);
1071
237fc4c9
PA
1072 /* Displaced stepping. */
1073 set_gdbarch_displaced_step_copy_insn (gdbarch,
dda83cd7 1074 i386_linux_displaced_step_copy_insn);
237fc4c9 1075 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
4aa995e1 1076
a96d9b2e 1077 /* Functions for 'catch syscall'. */
458c8db8 1078 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
a96d9b2e 1079 set_gdbarch_get_syscall_number (gdbarch,
dda83cd7 1080 i386_linux_get_syscall_number);
190b495d
WT
1081
1082 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
77bdfeb2 1083 set_gdbarch_report_signal_info (gdbarch, i386_linux_report_signal_info);
8201327c
MK
1084}
1085
6c265988 1086void _initialize_i386_linux_tdep ();
8201327c 1087void
6c265988 1088_initialize_i386_linux_tdep ()
8201327c 1089{
05816f70 1090 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
8201327c
MK
1091 i386_linux_init_abi);
1092}