]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ia64-linux-nat.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / ia64-linux-nat.c
CommitLineData
ca557f44
AC
1/* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
42a4f53d 4 Copyright (C) 1999-2019 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
16461d7d
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
16461d7d
KB
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
24#include "gdbcore.h"
4e052eda 25#include "regcache.h"
949df321 26#include "ia64-tdep.h"
10d6c8cd 27#include "linux-nat.h"
16461d7d
KB
28
29#include <signal.h>
5826e159 30#include "nat/gdb_ptrace.h"
0747795c 31#include "common/gdb_wait.h"
16461d7d
KB
32#ifdef HAVE_SYS_REG_H
33#include <sys/reg.h>
34#endif
287a334e 35#include <sys/syscall.h>
16461d7d
KB
36#include <sys/user.h>
37
38#include <asm/ptrace_offsets.h>
39#include <sys/procfs.h>
40
1777feb0 41/* Prototypes for supply_gregset etc. */
c60c0f5f
MS
42#include "gregset.h"
43
bcc0c096
SM
44#include "inf-ptrace.h"
45
f6ac5f3d
PA
46class ia64_linux_nat_target final : public linux_nat_target
47{
48public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
52
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
59
f6ac5f3d
PA
60 /* Override watchpoint routines. */
61
62 /* The IA-64 architecture can step over a watch point (without
63 triggering it again) if the "dd" (data debug fault disable) bit
64 in the processor status word is set.
65
66 This PSR bit is set in
67 ia64_linux_nat_target::stopped_by_watchpoint when the code there
68 has determined that a hardware watchpoint has indeed been hit.
69 The CPU will then be able to execute one instruction without
70 triggering a watchpoint. */
c2a6c5da 71 bool have_steppable_watchpoint () override { return true; }
f6ac5f3d
PA
72
73 int can_use_hw_breakpoint (enum bptype, int, int) override;
57810aa7
PA
74 bool stopped_by_watchpoint () override;
75 bool stopped_data_address (CORE_ADDR *) override;
f6ac5f3d
PA
76 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
77 struct expression *) override;
78 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
135340af
PA
80 /* Override linux_nat_target low methods. */
81 void low_new_thread (struct lwp_info *lp) override;
82 bool low_status_is_event (int status) override;
f6ac5f3d
PA
83};
84
85static ia64_linux_nat_target the_ia64_linux_nat_target;
86
16461d7d
KB
87/* These must match the order of the register names.
88
89 Some sort of lookup table is needed because the offsets associated
90 with the registers are all over the board. */
91
92static int u_offsets[] =
93 {
94 /* general registers */
1777feb0 95 -1, /* gr0 not available; i.e, it's always zero. */
16461d7d
KB
96 PT_R1,
97 PT_R2,
98 PT_R3,
99 PT_R4,
100 PT_R5,
101 PT_R6,
102 PT_R7,
103 PT_R8,
104 PT_R9,
105 PT_R10,
106 PT_R11,
107 PT_R12,
108 PT_R13,
109 PT_R14,
110 PT_R15,
111 PT_R16,
112 PT_R17,
113 PT_R18,
114 PT_R19,
115 PT_R20,
116 PT_R21,
117 PT_R22,
118 PT_R23,
119 PT_R24,
120 PT_R25,
121 PT_R26,
122 PT_R27,
123 PT_R28,
124 PT_R29,
125 PT_R30,
126 PT_R31,
1777feb0 127 /* gr32 through gr127 not directly available via the ptrace interface. */
16461d7d
KB
128 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
129 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 /* Floating point registers */
1777feb0 135 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
16461d7d
KB
136 PT_F2,
137 PT_F3,
138 PT_F4,
139 PT_F5,
140 PT_F6,
141 PT_F7,
142 PT_F8,
143 PT_F9,
144 PT_F10,
145 PT_F11,
146 PT_F12,
147 PT_F13,
148 PT_F14,
149 PT_F15,
150 PT_F16,
151 PT_F17,
152 PT_F18,
153 PT_F19,
154 PT_F20,
155 PT_F21,
156 PT_F22,
157 PT_F23,
158 PT_F24,
159 PT_F25,
160 PT_F26,
161 PT_F27,
162 PT_F28,
163 PT_F29,
164 PT_F30,
165 PT_F31,
166 PT_F32,
167 PT_F33,
168 PT_F34,
169 PT_F35,
170 PT_F36,
171 PT_F37,
172 PT_F38,
173 PT_F39,
174 PT_F40,
175 PT_F41,
176 PT_F42,
177 PT_F43,
178 PT_F44,
179 PT_F45,
180 PT_F46,
181 PT_F47,
182 PT_F48,
183 PT_F49,
184 PT_F50,
185 PT_F51,
186 PT_F52,
187 PT_F53,
188 PT_F54,
189 PT_F55,
190 PT_F56,
191 PT_F57,
192 PT_F58,
193 PT_F59,
194 PT_F60,
195 PT_F61,
196 PT_F62,
197 PT_F63,
198 PT_F64,
199 PT_F65,
200 PT_F66,
201 PT_F67,
202 PT_F68,
203 PT_F69,
204 PT_F70,
205 PT_F71,
206 PT_F72,
207 PT_F73,
208 PT_F74,
209 PT_F75,
210 PT_F76,
211 PT_F77,
212 PT_F78,
213 PT_F79,
214 PT_F80,
215 PT_F81,
216 PT_F82,
217 PT_F83,
218 PT_F84,
219 PT_F85,
220 PT_F86,
221 PT_F87,
222 PT_F88,
223 PT_F89,
224 PT_F90,
225 PT_F91,
226 PT_F92,
227 PT_F93,
228 PT_F94,
229 PT_F95,
230 PT_F96,
231 PT_F97,
232 PT_F98,
233 PT_F99,
234 PT_F100,
235 PT_F101,
236 PT_F102,
237 PT_F103,
238 PT_F104,
239 PT_F105,
240 PT_F106,
241 PT_F107,
242 PT_F108,
243 PT_F109,
244 PT_F110,
245 PT_F111,
246 PT_F112,
247 PT_F113,
248 PT_F114,
249 PT_F115,
250 PT_F116,
251 PT_F117,
252 PT_F118,
253 PT_F119,
254 PT_F120,
255 PT_F121,
256 PT_F122,
257 PT_F123,
258 PT_F124,
259 PT_F125,
260 PT_F126,
261 PT_F127,
1777feb0 262 /* Predicate registers - we don't fetch these individually. */
16461d7d
KB
263 -1, -1, -1, -1, -1, -1, -1, -1,
264 -1, -1, -1, -1, -1, -1, -1, -1,
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 /* branch registers */
272 PT_B0,
273 PT_B1,
274 PT_B2,
275 PT_B3,
276 PT_B4,
277 PT_B5,
278 PT_B6,
279 PT_B7,
1777feb0 280 /* Virtual frame pointer and virtual return address pointer. */
16461d7d
KB
281 -1, -1,
282 /* other registers */
283 PT_PR,
284 PT_CR_IIP, /* ip */
285 PT_CR_IPSR, /* psr */
9ac12c35 286 PT_CFM, /* cfm */
1777feb0 287 /* kernel registers not visible via ptrace interface (?) */
16461d7d
KB
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 /* hole */
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 PT_AR_RSC,
292 PT_AR_BSP,
293 PT_AR_BSPSTORE,
294 PT_AR_RNAT,
295 -1,
1777feb0 296 -1, /* Not available: FCR, IA32 floating control register. */
16461d7d
KB
297 -1, -1,
298 -1, /* Not available: EFLAG */
299 -1, /* Not available: CSD */
300 -1, /* Not available: SSD */
301 -1, /* Not available: CFLG */
302 -1, /* Not available: FSR */
303 -1, /* Not available: FIR */
304 -1, /* Not available: FDR */
305 -1,
306 PT_AR_CCV,
307 -1, -1, -1,
308 PT_AR_UNAT,
309 -1, -1, -1,
310 PT_AR_FPSR,
311 -1, -1, -1,
312 -1, /* Not available: ITC */
313 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
314 -1, -1, -1, -1, -1, -1, -1, -1, -1,
315 PT_AR_PFS,
316 PT_AR_LC,
4a6510ba 317 PT_AR_EC,
16461d7d
KB
318 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
319 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1,
325 /* nat bits - not fetched directly; instead we obtain these bits from
1777feb0 326 either rnat or unat or from memory. */
16461d7d
KB
327 -1, -1, -1, -1, -1, -1, -1, -1,
328 -1, -1, -1, -1, -1, -1, -1, -1,
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 };
344
74174d2e 345static CORE_ADDR
2685572f 346ia64_register_addr (struct gdbarch *gdbarch, int regno)
16461d7d
KB
347{
348 CORE_ADDR addr;
349
2685572f 350 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
8a3fe4f8 351 error (_("Invalid register number %d."), regno);
16461d7d
KB
352
353 if (u_offsets[regno] == -1)
354 addr = 0;
355 else
356 addr = (CORE_ADDR) u_offsets[regno];
357
358 return addr;
359}
360
74174d2e 361static int
2685572f 362ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
16461d7d 363{
f57d151a 364 return regno < 0
2685572f 365 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 366 || u_offsets[regno] == -1;
16461d7d
KB
367}
368
74174d2e 369static int
2685572f 370ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
16461d7d
KB
371{
372 /* Rationale behind not permitting stores to bspstore...
373
374 The IA-64 architecture provides bspstore and bsp which refer
375 memory locations in the RSE's backing store. bspstore is the
376 next location which will be written when the RSE needs to write
377 to memory. bsp is the address at which r32 in the current frame
378 would be found if it were written to the backing store.
379
380 The IA-64 architecture provides read-only access to bsp and
381 read/write access to bspstore (but only when the RSE is in
382 the enforced lazy mode). It should be noted that stores
383 to bspstore also affect the value of bsp. Changing bspstore
384 does not affect the number of dirty entries between bspstore
385 and bsp, so changing bspstore by N words will also cause bsp
386 to be changed by (roughly) N as well. (It could be N-1 or N+1
387 depending upon where the NaT collection bits fall.)
388
92362027 389 OTOH, the Linux kernel provides read/write access to bsp (and
16461d7d
KB
390 currently read/write access to bspstore as well). But it
391 is definitely the case that if you change one, the other
392 will change at the same time. It is more useful to gdb to
393 be able to change bsp. So in order to prevent strange and
394 undesirable things from happening when a dummy stack frame
395 is popped (after calling an inferior function), we allow
396 bspstore to be read, but not written. (Note that popping
397 a (generic) dummy stack frame causes all registers that
398 were previously read from the inferior process to be written
399 back.) */
400
f57d151a 401 return regno < 0
2685572f 402 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 403 || u_offsets[regno] == -1
16461d7d
KB
404 || regno == IA64_BSPSTORE_REGNUM;
405}
406
407void
7f7fe91e 408supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
16461d7d
KB
409{
410 int regi;
7f7fe91e 411 const greg_t *regp = (const greg_t *) gregsetp;
16461d7d
KB
412
413 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414 {
73e1c03f 415 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
16461d7d
KB
416 }
417
418 /* FIXME: NAT collection bits are at index 32; gotta deal with these
1777feb0 419 somehow... */
16461d7d 420
73e1c03f 421 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
16461d7d
KB
422
423 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
424 {
73e1c03f 425 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
16461d7d
KB
426 }
427
73e1c03f
SM
428 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
429 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
430 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
431 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
432 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
433 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
434 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
435 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
436 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
437 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
438 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
439 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
440 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
16461d7d
KB
441}
442
443void
7f7fe91e 444fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
16461d7d 445{
76d689a6
KB
446 int regi;
447 greg_t *regp = (greg_t *) gregsetp;
448
449#define COPY_REG(_idx_,_regi_) \
450 if ((regno == -1) || regno == _regi_) \
34a79281 451 regcache->raw_collect (_regi_, regp + _idx_)
76d689a6
KB
452
453 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
454 {
455 COPY_REG (regi - IA64_GR0_REGNUM, regi);
456 }
457
1777feb0 458 /* FIXME: NAT collection bits at index 32? */
76d689a6
KB
459
460 COPY_REG (33, IA64_PR_REGNUM);
461
462 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
463 {
464 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
465 }
466
467 COPY_REG (42, IA64_IP_REGNUM);
468 COPY_REG (43, IA64_CFM_REGNUM);
469 COPY_REG (44, IA64_PSR_REGNUM);
470 COPY_REG (45, IA64_RSC_REGNUM);
471 COPY_REG (46, IA64_BSP_REGNUM);
472 COPY_REG (47, IA64_BSPSTORE_REGNUM);
473 COPY_REG (48, IA64_RNAT_REGNUM);
474 COPY_REG (49, IA64_CCV_REGNUM);
475 COPY_REG (50, IA64_UNAT_REGNUM);
476 COPY_REG (51, IA64_FPSR_REGNUM);
477 COPY_REG (52, IA64_PFS_REGNUM);
478 COPY_REG (53, IA64_LC_REGNUM);
479 COPY_REG (54, IA64_EC_REGNUM);
480}
481
482/* Given a pointer to a floating point register set in /proc format
483 (fpregset_t *), unpack the register contents and supply them as gdb's
1777feb0 484 idea of the current floating point register values. */
76d689a6
KB
485
486void
7f7fe91e 487supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
76d689a6 488{
52f0bd74 489 int regi;
7f7fe91e 490 const char *from;
ca9b8b9c
PA
491 const gdb_byte f_zero[16] = { 0 };
492 const gdb_byte f_one[16] =
493 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
76d689a6 494
ca9b8b9c
PA
495 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
496 did the same. So ignore whatever might be recorded in fpregset_t
497 for fr0/fr1 and always supply their expected values. */
498
499 /* fr0 is always read as zero. */
73e1c03f 500 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
ca9b8b9c 501 /* fr1 is always read as one (1.0). */
73e1c03f 502 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
ca9b8b9c
PA
503
504 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
76d689a6 505 {
7f7fe91e 506 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
73e1c03f 507 regcache->raw_supply (regi, from);
76d689a6
KB
508 }
509}
510
511/* Given a pointer to a floating point register set in /proc format
512 (fpregset_t *), update the register specified by REGNO from gdb's idea
513 of the current floating point register set. If REGNO is -1, update
1777feb0 514 them all. */
76d689a6
KB
515
516void
7f7fe91e
UW
517fill_fpregset (const struct regcache *regcache,
518 fpregset_t *fpregsetp, int regno)
76d689a6
KB
519{
520 int regi;
76d689a6
KB
521
522 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
523 {
524 if ((regno == -1) || (regno == regi))
34a79281 525 regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
76d689a6 526 }
16461d7d 527}
acf7b9e1
KB
528
529#define IA64_PSR_DB (1UL << 24)
530#define IA64_PSR_DD (1UL << 39)
531
532static void
9f0bdab8 533enable_watchpoints_in_psr (ptid_t ptid)
acf7b9e1 534{
9f0bdab8 535 struct regcache *regcache = get_thread_regcache (ptid);
7b86a1b8 536 ULONGEST psr;
acf7b9e1 537
7b86a1b8 538 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1
KB
539 if (!(psr & IA64_PSR_DB))
540 {
541 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
1777feb0 542 watchpoints and breakpoints. */
7b86a1b8 543 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1
KB
544 }
545}
546
9f0bdab8 547static long debug_registers[8];
acf7b9e1
KB
548
549static void
39f77062 550store_debug_register (ptid_t ptid, int idx, long val)
acf7b9e1
KB
551{
552 int tid;
553
e38504b3 554 tid = ptid.lwp ();
acf7b9e1 555 if (tid == 0)
e99b03dc 556 tid = ptid.pid ();
acf7b9e1 557
c5fa4245 558 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
acf7b9e1
KB
559}
560
acf7b9e1 561static void
1777feb0
MS
562store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
563 long *dbr_mask)
acf7b9e1
KB
564{
565 if (dbr_addr)
39f77062 566 store_debug_register (ptid, 2 * idx, *dbr_addr);
acf7b9e1 567 if (dbr_mask)
39f77062 568 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
acf7b9e1
KB
569}
570
571static int
572is_power_of_2 (int val)
573{
574 int i, onecount;
575
576 onecount = 0;
577 for (i = 0; i < 8 * sizeof (val); i++)
578 if (val & (1 << i))
579 onecount++;
580
581 return onecount <= 1;
582}
583
f6ac5f3d
PA
584int
585ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
586 enum target_hw_bp_type type,
587 struct expression *cond)
acf7b9e1 588{
9f0bdab8 589 struct lwp_info *lp;
acf7b9e1
KB
590 int idx;
591 long dbr_addr, dbr_mask;
592 int max_watchpoints = 4;
593
594 if (len <= 0 || !is_power_of_2 (len))
595 return -1;
596
597 for (idx = 0; idx < max_watchpoints; idx++)
598 {
9f0bdab8 599 dbr_mask = debug_registers[idx * 2 + 1];
acf7b9e1
KB
600 if ((dbr_mask & (0x3UL << 62)) == 0)
601 {
1777feb0 602 /* Exit loop if both r and w bits clear. */
acf7b9e1
KB
603 break;
604 }
605 }
606
607 if (idx == max_watchpoints)
608 return -1;
609
610 dbr_addr = (long) addr;
611 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
612 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
f486487f 613 switch (type)
acf7b9e1
KB
614 {
615 case hw_write:
616 dbr_mask |= (1L << 62); /* Set w bit */
617 break;
618 case hw_read:
619 dbr_mask |= (1L << 63); /* Set r bit */
620 break;
621 case hw_access:
622 dbr_mask |= (3L << 62); /* Set both r and w bits */
623 break;
624 default:
625 return -1;
626 }
627
9f0bdab8
DJ
628 debug_registers[2 * idx] = dbr_addr;
629 debug_registers[2 * idx + 1] = dbr_mask;
4c38200f 630 ALL_LWPS (lp)
9f0bdab8 631 {
4c38200f
PA
632 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
633 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8 634 }
acf7b9e1
KB
635
636 return 0;
637}
638
f6ac5f3d
PA
639int
640ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
641 enum target_hw_bp_type type,
642 struct expression *cond)
acf7b9e1
KB
643{
644 int idx;
645 long dbr_addr, dbr_mask;
646 int max_watchpoints = 4;
647
648 if (len <= 0 || !is_power_of_2 (len))
649 return -1;
650
651 for (idx = 0; idx < max_watchpoints; idx++)
652 {
9f0bdab8
DJ
653 dbr_addr = debug_registers[2 * idx];
654 dbr_mask = debug_registers[2 * idx + 1];
acf7b9e1
KB
655 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
656 {
9f0bdab8 657 struct lwp_info *lp;
9f0bdab8
DJ
658
659 debug_registers[2 * idx] = 0;
660 debug_registers[2 * idx + 1] = 0;
acf7b9e1
KB
661 dbr_addr = 0;
662 dbr_mask = 0;
9f0bdab8 663
4c38200f
PA
664 ALL_LWPS (lp)
665 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
9f0bdab8 666
acf7b9e1
KB
667 return 0;
668 }
669 }
670 return -1;
671}
672
c2a6c5da
TT
673void
674ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
9f0bdab8
DJ
675{
676 int i, any;
677
678 any = 0;
679 for (i = 0; i < 8; i++)
680 {
681 if (debug_registers[i] != 0)
682 any = 1;
7b50312a 683 store_debug_register (lp->ptid, i, debug_registers[i]);
9f0bdab8
DJ
684 }
685
686 if (any)
7b50312a 687 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8
DJ
688}
689
57810aa7 690bool
f6ac5f3d 691ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
acf7b9e1
KB
692{
693 CORE_ADDR psr;
f865ee35 694 siginfo_t siginfo;
594f7785 695 struct regcache *regcache = get_current_regcache ();
acf7b9e1 696
f865ee35 697 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
57810aa7 698 return false;
acf7b9e1 699
f865ee35
JK
700 if (siginfo.si_signo != SIGTRAP
701 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
57810aa7 702 return false;
acf7b9e1 703
7b86a1b8 704 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1 705 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
1777feb0 706 for the next instruction. */
7b86a1b8 707 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1 708
f865ee35 709 *addr_p = (CORE_ADDR) siginfo.si_addr;
57810aa7 710 return true;
4aa7a7f5
JJ
711}
712
57810aa7 713bool
f6ac5f3d 714ia64_linux_nat_target::stopped_by_watchpoint ()
4aa7a7f5
JJ
715{
716 CORE_ADDR addr;
f6ac5f3d 717 return stopped_data_address (&addr);
74174d2e
UW
718}
719
c2a6c5da
TT
720int
721ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
722 int cnt, int othertype)
74174d2e
UW
723{
724 return 1;
725}
726
727
728/* Fetch register REGNUM from the inferior. */
729
730static void
56be3814 731ia64_linux_fetch_register (struct regcache *regcache, int regnum)
74174d2e 732{
ac7936df 733 struct gdbarch *gdbarch = regcache->arch ();
74174d2e
UW
734 CORE_ADDR addr;
735 size_t size;
736 PTRACE_TYPE_RET *buf;
bcc0c096
SM
737 pid_t pid;
738 int i;
74174d2e 739
5a75128f
JB
740 /* r0 cannot be fetched but is always zero. */
741 if (regnum == IA64_GR0_REGNUM)
742 {
743 const gdb_byte zero[8] = { 0 };
744
745 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
73e1c03f 746 regcache->raw_supply (regnum, zero);
5a75128f
JB
747 return;
748 }
749
ca9b8b9c
PA
750 /* fr0 cannot be fetched but is always zero. */
751 if (regnum == IA64_FR0_REGNUM)
752 {
753 const gdb_byte f_zero[16] = { 0 };
754
755 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
73e1c03f 756 regcache->raw_supply (regnum, f_zero);
ca9b8b9c
PA
757 return;
758 }
759
760 /* fr1 cannot be fetched but is always one (1.0). */
761 if (regnum == IA64_FR1_REGNUM)
762 {
763 const gdb_byte f_one[16] =
764 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
765
766 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
73e1c03f 767 regcache->raw_supply (regnum, f_one);
ca9b8b9c
PA
768 return;
769 }
770
2685572f 771 if (ia64_cannot_fetch_register (gdbarch, regnum))
74174d2e 772 {
73e1c03f 773 regcache->raw_supply (regnum, NULL);
74174d2e
UW
774 return;
775 }
776
222312d3 777 pid = get_ptrace_pid (regcache->ptid ());
74174d2e
UW
778
779 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 780 addr = ia64_register_addr (gdbarch, regnum);
088568da 781 size = register_size (gdbarch, regnum);
74174d2e
UW
782
783 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 784 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
785
786 /* Read the register contents from the inferior a chunk at a time. */
787 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
788 {
789 errno = 0;
790 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
791 if (errno != 0)
792 error (_("Couldn't read register %s (#%d): %s."),
088568da 793 gdbarch_register_name (gdbarch, regnum),
c9f4d572 794 regnum, safe_strerror (errno));
74174d2e
UW
795
796 addr += sizeof (PTRACE_TYPE_RET);
797 }
73e1c03f 798 regcache->raw_supply (regnum, buf);
74174d2e
UW
799}
800
801/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
802 for all registers. */
803
f6ac5f3d
PA
804void
805ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
74174d2e
UW
806{
807 if (regnum == -1)
088568da 808 for (regnum = 0;
ac7936df 809 regnum < gdbarch_num_regs (regcache->arch ());
088568da 810 regnum++)
56be3814 811 ia64_linux_fetch_register (regcache, regnum);
74174d2e 812 else
56be3814 813 ia64_linux_fetch_register (regcache, regnum);
74174d2e
UW
814}
815
816/* Store register REGNUM into the inferior. */
817
818static void
56be3814 819ia64_linux_store_register (const struct regcache *regcache, int regnum)
74174d2e 820{
ac7936df 821 struct gdbarch *gdbarch = regcache->arch ();
74174d2e
UW
822 CORE_ADDR addr;
823 size_t size;
824 PTRACE_TYPE_RET *buf;
bcc0c096
SM
825 pid_t pid;
826 int i;
74174d2e 827
2685572f 828 if (ia64_cannot_store_register (gdbarch, regnum))
74174d2e
UW
829 return;
830
222312d3 831 pid = get_ptrace_pid (regcache->ptid ());
74174d2e
UW
832
833 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 834 addr = ia64_register_addr (gdbarch, regnum);
088568da 835 size = register_size (gdbarch, regnum);
74174d2e
UW
836
837 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 838 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
839
840 /* Write the register contents into the inferior a chunk at a time. */
34a79281 841 regcache->raw_collect (regnum, buf);
74174d2e
UW
842 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
843 {
844 errno = 0;
845 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
846 if (errno != 0)
847 error (_("Couldn't write register %s (#%d): %s."),
088568da 848 gdbarch_register_name (gdbarch, regnum),
c9f4d572 849 regnum, safe_strerror (errno));
74174d2e
UW
850
851 addr += sizeof (PTRACE_TYPE_RET);
852 }
acf7b9e1 853}
287a334e 854
74174d2e
UW
855/* Store register REGNUM back into the inferior. If REGNUM is -1, do
856 this for all registers. */
857
f6ac5f3d
PA
858void
859ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
74174d2e
UW
860{
861 if (regnum == -1)
088568da 862 for (regnum = 0;
ac7936df 863 regnum < gdbarch_num_regs (regcache->arch ());
088568da 864 regnum++)
56be3814 865 ia64_linux_store_register (regcache, regnum);
74174d2e 866 else
56be3814 867 ia64_linux_store_register (regcache, regnum);
74174d2e
UW
868}
869
f6ac5f3d 870/* Implement the xfer_partial target_ops method. */
74174d2e 871
f6ac5f3d
PA
872enum target_xfer_status
873ia64_linux_nat_target::xfer_partial (enum target_object object,
874 const char *annex,
875 gdb_byte *readbuf, const gdb_byte *writebuf,
876 ULONGEST offset, ULONGEST len,
877 ULONGEST *xfered_len)
10d6c8cd 878{
475109d8
JB
879 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
880 {
d16461ae
PA
881 static long gate_table_size;
882 gdb_byte *tmp_buf;
883 long res;
884
885 /* Probe for the table size once. */
886 if (gate_table_size == 0)
887 gate_table_size = syscall (__NR_getunwind, NULL, 0);
888 if (gate_table_size < 0)
475109d8 889 return TARGET_XFER_E_IO;
d16461ae
PA
890
891 if (offset >= gate_table_size)
475109d8 892 return TARGET_XFER_EOF;
d16461ae 893
bfb0d950 894 tmp_buf = (gdb_byte *) alloca (gate_table_size);
d16461ae
PA
895 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
896 if (res < 0)
897 return TARGET_XFER_E_IO;
898 gdb_assert (res == gate_table_size);
899
900 if (offset + len > gate_table_size)
901 len = gate_table_size - offset;
902
903 memcpy (readbuf, tmp_buf + offset, len);
904 *xfered_len = len;
905 return TARGET_XFER_OK;
475109d8 906 }
10d6c8cd 907
f6ac5f3d
PA
908 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
909 offset, len, xfered_len);
10d6c8cd
DJ
910}
911
26ab7092
JK
912/* For break.b instruction ia64 CPU forgets the immediate value and generates
913 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
914 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
915 difference for the signals here. */
916
135340af
PA
917bool
918ia64_linux_nat_target::low_status_is_event (int status)
26ab7092
JK
919{
920 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
921 || WSTOPSIG (status) == SIGILL);
922}
923
10d6c8cd
DJ
924void
925_initialize_ia64_linux_nat (void)
287a334e 926{
10d6c8cd 927 /* Register the target. */
f6ac5f3d 928 linux_target = &the_ia64_linux_nat_target;
d9f719f1 929 add_inf_child_target (&the_ia64_linux_nat_target);
287a334e 930}