]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
[gdb] Handle vfork in thread with follow-fork-mode child
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
9799571e 71#include "common/forward-scope-exit.h"
c906108c
SS
72
73/* Prototypes for local functions */
74
2ea28649 75static void sig_print_info (enum gdb_signal);
c906108c 76
96baa820 77static void sig_print_header (void);
c906108c 78
4ef3f3be 79static int follow_fork (void);
96baa820 80
d83ad864
DB
81static int follow_fork_inferior (int follow_child, int detach_fork);
82
83static void follow_inferior_reset_breakpoints (void);
84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
2c03e5be 89static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
90
91static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
2484c66b
UW
93static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
8550d3b3
YQ
95static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
aff4e175
AB
97static void resume (gdb_signal sig);
98
372316f1
PA
99/* Asynchronous signal handler registered as event loop source for
100 when we have pending events ready to be passed to the core. */
101static struct async_event_handler *infrun_async_inferior_event_token;
102
103/* Stores whether infrun_async was previously enabled or disabled.
104 Starts off as -1, indicating "never enabled/disabled". */
105static int infrun_is_async = -1;
106
107/* See infrun.h. */
108
109void
110infrun_async (int enable)
111{
112 if (infrun_is_async != enable)
113 {
114 infrun_is_async = enable;
115
116 if (debug_infrun)
117 fprintf_unfiltered (gdb_stdlog,
118 "infrun: infrun_async(%d)\n",
119 enable);
120
121 if (enable)
122 mark_async_event_handler (infrun_async_inferior_event_token);
123 else
124 clear_async_event_handler (infrun_async_inferior_event_token);
125 }
126}
127
0b333c5e
PA
128/* See infrun.h. */
129
130void
131mark_infrun_async_event_handler (void)
132{
133 mark_async_event_handler (infrun_async_inferior_event_token);
134}
135
5fbbeb29
CF
136/* When set, stop the 'step' command if we enter a function which has
137 no line number information. The normal behavior is that we step
138 over such function. */
139int step_stop_if_no_debug = 0;
920d2a44
AC
140static void
141show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
145}
5fbbeb29 146
b9f437de
PA
147/* proceed and normal_stop use this to notify the user when the
148 inferior stopped in a different thread than it had been running
149 in. */
96baa820 150
39f77062 151static ptid_t previous_inferior_ptid;
7a292a7a 152
07107ca6
LM
153/* If set (default for legacy reasons), when following a fork, GDB
154 will detach from one of the fork branches, child or parent.
155 Exactly which branch is detached depends on 'set follow-fork-mode'
156 setting. */
157
158static int detach_fork = 1;
6c95b8df 159
237fc4c9
PA
160int debug_displaced = 0;
161static void
162show_debug_displaced (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164{
165 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
166}
167
ccce17b0 168unsigned int debug_infrun = 0;
920d2a44
AC
169static void
170show_debug_infrun (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
174}
527159b7 175
03583c20
UW
176
177/* Support for disabling address space randomization. */
178
179int disable_randomization = 1;
180
181static void
182show_disable_randomization (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 if (target_supports_disable_randomization ())
186 fprintf_filtered (file,
187 _("Disabling randomization of debuggee's "
188 "virtual address space is %s.\n"),
189 value);
190 else
191 fputs_filtered (_("Disabling randomization of debuggee's "
192 "virtual address space is unsupported on\n"
193 "this platform.\n"), file);
194}
195
196static void
eb4c3f4a 197set_disable_randomization (const char *args, int from_tty,
03583c20
UW
198 struct cmd_list_element *c)
199{
200 if (!target_supports_disable_randomization ())
201 error (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform."));
204}
205
d32dc48e
PA
206/* User interface for non-stop mode. */
207
208int non_stop = 0;
209static int non_stop_1 = 0;
210
211static void
eb4c3f4a 212set_non_stop (const char *args, int from_tty,
d32dc48e
PA
213 struct cmd_list_element *c)
214{
215 if (target_has_execution)
216 {
217 non_stop_1 = non_stop;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 non_stop = non_stop_1;
222}
223
224static void
225show_non_stop (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227{
228 fprintf_filtered (file,
229 _("Controlling the inferior in non-stop mode is %s.\n"),
230 value);
231}
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
d914c394
SS
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
eb4c3f4a 241set_observer_mode (const char *args, int from_tty,
d914c394
SS
242 struct cmd_list_element *c)
243{
d914c394
SS
244 if (target_has_execution)
245 {
246 observer_mode_1 = observer_mode;
247 error (_("Cannot change this setting while the inferior is running."));
248 }
249
250 observer_mode = observer_mode_1;
251
252 may_write_registers = !observer_mode;
253 may_write_memory = !observer_mode;
254 may_insert_breakpoints = !observer_mode;
255 may_insert_tracepoints = !observer_mode;
256 /* We can insert fast tracepoints in or out of observer mode,
257 but enable them if we're going into this mode. */
258 if (observer_mode)
259 may_insert_fast_tracepoints = 1;
260 may_stop = !observer_mode;
261 update_target_permissions ();
262
263 /* Going *into* observer mode we must force non-stop, then
264 going out we leave it that way. */
265 if (observer_mode)
266 {
d914c394
SS
267 pagination_enabled = 0;
268 non_stop = non_stop_1 = 1;
269 }
270
271 if (from_tty)
272 printf_filtered (_("Observer mode is now %s.\n"),
273 (observer_mode ? "on" : "off"));
274}
275
276static void
277show_observer_mode (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279{
280 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
281}
282
283/* This updates the value of observer mode based on changes in
284 permissions. Note that we are deliberately ignoring the values of
285 may-write-registers and may-write-memory, since the user may have
286 reason to enable these during a session, for instance to turn on a
287 debugging-related global. */
288
289void
290update_observer_mode (void)
291{
292 int newval;
293
294 newval = (!may_insert_breakpoints
295 && !may_insert_tracepoints
296 && may_insert_fast_tracepoints
297 && !may_stop
298 && non_stop);
299
300 /* Let the user know if things change. */
301 if (newval != observer_mode)
302 printf_filtered (_("Observer mode is now %s.\n"),
303 (newval ? "on" : "off"));
304
305 observer_mode = observer_mode_1 = newval;
306}
c2c6d25f 307
c906108c
SS
308/* Tables of how to react to signals; the user sets them. */
309
adc6a863
PA
310static unsigned char signal_stop[GDB_SIGNAL_LAST];
311static unsigned char signal_print[GDB_SIGNAL_LAST];
312static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 313
ab04a2af
TT
314/* Table of signals that are registered with "catch signal". A
315 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
316 signal" command. */
317static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
adc6a863 322static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
adc6a863 346 target_program_signals (signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
628fe4e4 359int stop_on_solib_events;
f9e14852
GB
360
361/* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364static void
eb4c3f4a
TT
365set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
f9e14852
GB
367{
368 update_solib_breakpoints ();
369}
370
920d2a44
AC
371static void
372show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377}
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
4e1c45ea 389void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
40478521 394static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
d83ad864
DB
412/* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418static int
419follow_fork_inferior (int follow_child, int detach_fork)
420{
421 int has_vforked;
79639e11 422 ptid_t parent_ptid, child_ptid;
d83ad864
DB
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
79639e11
PA
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 431 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440Can not resume the parent process over vfork in the foreground while\n\
441holding the child stopped. Try \"set detach-on-fork\" or \
442\"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
d83ad864
DB
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
00431a78 462 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
463 }
464
f67c0c91 465 if (print_inferior_events)
d83ad864 466 {
8dd06f7a 467 /* Ensure that we have a process ptid. */
e99b03dc 468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 469
223ffa71 470 target_terminal::ours_for_output ();
d83ad864 471 fprintf_filtered (gdb_stdlog,
f67c0c91 472 _("[Detaching after %s from child %s]\n"),
6f259a23 473 has_vforked ? "vfork" : "fork",
a068643d 474 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
d83ad864
DB
480
481 /* Add process to GDB's tables. */
e99b03dc 482 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
5ed8105e 490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 491
79639e11 492 inferior_ptid = child_ptid;
f67c0c91 493 add_thread_silent (inferior_ptid);
2a00d7ce 494 set_current_inferior (child_inf);
d83ad864
DB
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
6f259a23 600 {
f67c0c91 601 if (print_inferior_events)
6f259a23 602 {
8dd06f7a 603 /* Ensure that we have a process ptid. */
e99b03dc 604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 605
223ffa71 606 target_terminal::ours_for_output ();
6f259a23 607 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
608 _("[Detaching after fork from "
609 "parent %s]\n"),
a068643d 610 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
611 }
612
6e1e1966 613 target_detach (parent_inf, 0);
6f259a23 614 }
d83ad864
DB
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
79639e11 622 inferior_ptid = child_ptid;
f67c0c91 623 add_thread_silent (inferior_ptid);
2a00d7ce 624 set_current_inferior (child_inf);
d83ad864
DB
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
564b1e3f 637 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653}
654
e58b0e63
PA
655/* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
6604731b 659static int
4ef3f3be 660follow_fork (void)
c906108c 661{
ea1dd7bc 662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
4e3990f4
DE
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 671 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
8980e177 675 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
00431a78
PA
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
e58b0e63
PA
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
00431a78
PA
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
e58b0e63
PA
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
8358c15c
JK
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
16c381f0
JK
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
186c406b
TT
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 729 thread_fsm = tp->thread_fsm;
e58b0e63
PA
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
16c381f0
JK
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
186c406b 740 delete_exception_resume_breakpoint (tp);
8980e177 741 tp->thread_fsm = NULL;
e58b0e63
PA
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
d83ad864
DB
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
e09875d4 762 tp = find_thread_ptid (parent);
e58b0e63
PA
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
1777feb0 770 /* If we followed the child, switch to it... */
e58b0e63
PA
771 if (follow_child)
772 {
00431a78
PA
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
e58b0e63
PA
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
8358c15c
JK
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
16c381f0
JK
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
186c406b
TT
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
8980e177 788 tp->thread_fsm = thread_fsm;
e58b0e63
PA
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
3e43a32a 798 warning (_("Not resuming: switched threads "
fd7dcb94 799 "before following fork child."));
e58b0e63
PA
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
e58b0e63
PA
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
c906108c 817
e58b0e63 818 return should_resume;
c906108c
SS
819}
820
d83ad864 821static void
6604731b 822follow_inferior_reset_breakpoints (void)
c906108c 823{
4e1c45ea
PA
824 struct thread_info *tp = inferior_thread ();
825
6604731b
DJ
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
6604731b
DJ
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
8358c15c 839 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
6604731b 844
a1aa2221 845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 846 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
186c406b 851
6604731b
DJ
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
c906108c 859}
c906108c 860
6c95b8df
PA
861/* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864static int
865proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867{
868 int pid = * (int *) arg;
869
00431a78
PA
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
6c95b8df 873 && !thread->stop_requested
a493e3e2 874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
a068643d 879 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 880
00431a78 881 switch_to_thread (thread);
70509625 882 clear_proceed_status (0);
64ce06e4 883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
884 }
885
886 return 0;
887}
888
5ed8105e
PA
889/* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892class scoped_restore_exited_inferior
893{
894public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903};
904
6c95b8df
PA
905/* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908static void
909handle_vfork_child_exec_or_exit (int exec)
910{
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
b73715df
TV
918 between the parent and the child. Break the bonds. */
919 inferior *vfork_parent = inf->vfork_parent;
920 inf->vfork_parent->vfork_child = NULL;
921 inf->vfork_parent = NULL;
6c95b8df 922
b73715df
TV
923 /* If the user wanted to detach from the parent, now is the
924 time. */
925 if (vfork_parent->pending_detach)
6c95b8df
PA
926 {
927 struct thread_info *tp;
6c95b8df
PA
928 struct program_space *pspace;
929 struct address_space *aspace;
930
1777feb0 931 /* follow-fork child, detach-on-fork on. */
6c95b8df 932
b73715df 933 vfork_parent->pending_detach = 0;
68c9da30 934
5ed8105e
PA
935 gdb::optional<scoped_restore_exited_inferior>
936 maybe_restore_inferior;
937 gdb::optional<scoped_restore_current_pspace_and_thread>
938 maybe_restore_thread;
939
940 /* If we're handling a child exit, then inferior_ptid points
941 at the inferior's pid, not to a thread. */
f50f4e56 942 if (!exec)
5ed8105e 943 maybe_restore_inferior.emplace ();
f50f4e56 944 else
5ed8105e 945 maybe_restore_thread.emplace ();
6c95b8df
PA
946
947 /* We're letting loose of the parent. */
b73715df 948 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 949 switch_to_thread (tp);
6c95b8df
PA
950
951 /* We're about to detach from the parent, which implicitly
952 removes breakpoints from its address space. There's a
953 catch here: we want to reuse the spaces for the child,
954 but, parent/child are still sharing the pspace at this
955 point, although the exec in reality makes the kernel give
956 the child a fresh set of new pages. The problem here is
957 that the breakpoints module being unaware of this, would
958 likely chose the child process to write to the parent
959 address space. Swapping the child temporarily away from
960 the spaces has the desired effect. Yes, this is "sort
961 of" a hack. */
962
963 pspace = inf->pspace;
964 aspace = inf->aspace;
965 inf->aspace = NULL;
966 inf->pspace = NULL;
967
f67c0c91 968 if (print_inferior_events)
6c95b8df 969 {
a068643d 970 std::string pidstr
b73715df 971 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 972
223ffa71 973 target_terminal::ours_for_output ();
6c95b8df
PA
974
975 if (exec)
6f259a23
DB
976 {
977 fprintf_filtered (gdb_stdlog,
f67c0c91 978 _("[Detaching vfork parent %s "
a068643d 979 "after child exec]\n"), pidstr.c_str ());
6f259a23 980 }
6c95b8df 981 else
6f259a23
DB
982 {
983 fprintf_filtered (gdb_stdlog,
f67c0c91 984 _("[Detaching vfork parent %s "
a068643d 985 "after child exit]\n"), pidstr.c_str ());
6f259a23 986 }
6c95b8df
PA
987 }
988
b73715df 989 target_detach (vfork_parent, 0);
6c95b8df
PA
990
991 /* Put it back. */
992 inf->pspace = pspace;
993 inf->aspace = aspace;
6c95b8df
PA
994 }
995 else if (exec)
996 {
997 /* We're staying attached to the parent, so, really give the
998 child a new address space. */
564b1e3f 999 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1000 inf->aspace = inf->pspace->aspace;
1001 inf->removable = 1;
1002 set_current_program_space (inf->pspace);
1003
b73715df 1004 resume_parent = vfork_parent->pid;
6c95b8df
PA
1005 }
1006 else
1007 {
6c95b8df
PA
1008 struct program_space *pspace;
1009
1010 /* If this is a vfork child exiting, then the pspace and
1011 aspaces were shared with the parent. Since we're
1012 reporting the process exit, we'll be mourning all that is
1013 found in the address space, and switching to null_ptid,
1014 preparing to start a new inferior. But, since we don't
1015 want to clobber the parent's address/program spaces, we
1016 go ahead and create a new one for this exiting
1017 inferior. */
1018
5ed8105e
PA
1019 /* Switch to null_ptid while running clone_program_space, so
1020 that clone_program_space doesn't want to read the
1021 selected frame of a dead process. */
1022 scoped_restore restore_ptid
1023 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1024
1025 /* This inferior is dead, so avoid giving the breakpoints
1026 module the option to write through to it (cloning a
1027 program space resets breakpoints). */
1028 inf->aspace = NULL;
1029 inf->pspace = NULL;
564b1e3f 1030 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1031 set_current_program_space (pspace);
1032 inf->removable = 1;
7dcd53a0 1033 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1034 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1035 inf->pspace = pspace;
1036 inf->aspace = pspace->aspace;
1037
b73715df 1038 resume_parent = vfork_parent->pid;
6c95b8df
PA
1039 }
1040
6c95b8df
PA
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
5ed8105e 1047 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1055 }
1056 }
1057}
1058
eb6c553b 1059/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1060
1061static const char follow_exec_mode_new[] = "new";
1062static const char follow_exec_mode_same[] = "same";
40478521 1063static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1064{
1065 follow_exec_mode_new,
1066 follow_exec_mode_same,
1067 NULL,
1068};
1069
1070static const char *follow_exec_mode_string = follow_exec_mode_same;
1071static void
1072show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c, const char *value)
1074{
1075 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1076}
1077
ecf45d2c 1078/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1079
c906108c 1080static void
ecf45d2c 1081follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1082{
6c95b8df 1083 struct inferior *inf = current_inferior ();
e99b03dc 1084 int pid = ptid.pid ();
94585166 1085 ptid_t process_ptid;
7a292a7a 1086
65d2b333
PW
1087 /* Switch terminal for any messages produced e.g. by
1088 breakpoint_re_set. */
1089 target_terminal::ours_for_output ();
1090
c906108c
SS
1091 /* This is an exec event that we actually wish to pay attention to.
1092 Refresh our symbol table to the newly exec'd program, remove any
1093 momentary bp's, etc.
1094
1095 If there are breakpoints, they aren't really inserted now,
1096 since the exec() transformed our inferior into a fresh set
1097 of instructions.
1098
1099 We want to preserve symbolic breakpoints on the list, since
1100 we have hopes that they can be reset after the new a.out's
1101 symbol table is read.
1102
1103 However, any "raw" breakpoints must be removed from the list
1104 (e.g., the solib bp's), since their address is probably invalid
1105 now.
1106
1107 And, we DON'T want to call delete_breakpoints() here, since
1108 that may write the bp's "shadow contents" (the instruction
1109 value that was overwritten witha TRAP instruction). Since
1777feb0 1110 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1111
1112 mark_breakpoints_out ();
1113
95e50b27
PA
1114 /* The target reports the exec event to the main thread, even if
1115 some other thread does the exec, and even if the main thread was
1116 stopped or already gone. We may still have non-leader threads of
1117 the process on our list. E.g., on targets that don't have thread
1118 exit events (like remote); or on native Linux in non-stop mode if
1119 there were only two threads in the inferior and the non-leader
1120 one is the one that execs (and nothing forces an update of the
1121 thread list up to here). When debugging remotely, it's best to
1122 avoid extra traffic, when possible, so avoid syncing the thread
1123 list with the target, and instead go ahead and delete all threads
1124 of the process but one that reported the event. Note this must
1125 be done before calling update_breakpoints_after_exec, as
1126 otherwise clearing the threads' resources would reference stale
1127 thread breakpoints -- it may have been one of these threads that
1128 stepped across the exec. We could just clear their stepping
1129 states, but as long as we're iterating, might as well delete
1130 them. Deleting them now rather than at the next user-visible
1131 stop provides a nicer sequence of events for user and MI
1132 notifications. */
08036331 1133 for (thread_info *th : all_threads_safe ())
d7e15655 1134 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1135 delete_thread (th);
95e50b27
PA
1136
1137 /* We also need to clear any left over stale state for the
1138 leader/event thread. E.g., if there was any step-resume
1139 breakpoint or similar, it's gone now. We cannot truly
1140 step-to-next statement through an exec(). */
08036331 1141 thread_info *th = inferior_thread ();
8358c15c 1142 th->control.step_resume_breakpoint = NULL;
186c406b 1143 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1144 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1145 th->control.step_range_start = 0;
1146 th->control.step_range_end = 0;
c906108c 1147
95e50b27
PA
1148 /* The user may have had the main thread held stopped in the
1149 previous image (e.g., schedlock on, or non-stop). Release
1150 it now. */
a75724bc
PA
1151 th->stop_requested = 0;
1152
95e50b27
PA
1153 update_breakpoints_after_exec ();
1154
1777feb0 1155 /* What is this a.out's name? */
f2907e49 1156 process_ptid = ptid_t (pid);
6c95b8df 1157 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1158 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1159 exec_file_target);
c906108c
SS
1160
1161 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1162 inferior has essentially been killed & reborn. */
7a292a7a 1163
6ca15a4b 1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
797bc1cb
TT
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
35ed81d4
SM
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
057302ce 1197 exit_inferior_silent (current_inferior ());
17d8546e 1198
94585166 1199 inf->pid = pid;
ecf45d2c 1200 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1201
1202 set_current_inferior (inf);
94585166 1203 set_current_program_space (inf->pspace);
c4c17fb0 1204 add_thread (ptid);
6c95b8df 1205 }
9107fc8d
PA
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
6c95b8df
PA
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
ecf45d2c
SL
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
797bc1cb 1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1225
9107fc8d
PA
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
268a4a75 1234 solib_create_inferior_hook (0);
c906108c 1235
4efc6507
DE
1236 jit_inferior_created_hook ();
1237
c1e56572
JK
1238 breakpoint_re_set ();
1239
c906108c
SS
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1777feb0 1242 to symbol_file_command...). */
c906108c
SS
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1777feb0 1248 matically get reset there in the new process.). */
c906108c
SS
1249}
1250
c2829269
PA
1251/* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258struct thread_info *step_over_queue_head;
1259
6c4cfb24
PA
1260/* Bit flags indicating what the thread needs to step over. */
1261
8d297bbf 1262enum step_over_what_flag
6c4cfb24
PA
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
8d297bbf 1272DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1273
963f9c80 1274/* Info about an instruction that is being stepped over. */
31e77af2
PA
1275
1276struct step_over_info
1277{
963f9c80
PA
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
8b86c959 1282 const address_space *aspace;
31e77af2 1283 CORE_ADDR address;
963f9c80
PA
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
21edc42f
YQ
1288
1289 /* The thread's global number. */
1290 int thread;
31e77af2
PA
1291};
1292
1293/* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317static struct step_over_info step_over_info;
1318
1319/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
31e77af2
PA
1323
1324static void
8b86c959 1325set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1326 int nonsteppable_watchpoint_p,
1327 int thread)
31e77af2
PA
1328{
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
963f9c80 1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1332 step_over_info.thread = thread;
31e77af2
PA
1333}
1334
1335/* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338static void
1339clear_step_over_info (void)
1340{
372316f1
PA
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
31e77af2
PA
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
963f9c80 1346 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1347 step_over_info.thread = -1;
31e77af2
PA
1348}
1349
7f89fd65 1350/* See infrun.h. */
31e77af2
PA
1351
1352int
1353stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355{
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360}
1361
963f9c80
PA
1362/* See infrun.h. */
1363
21edc42f
YQ
1364int
1365thread_is_stepping_over_breakpoint (int thread)
1366{
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369}
1370
1371/* See infrun.h. */
1372
963f9c80
PA
1373int
1374stepping_past_nonsteppable_watchpoint (void)
1375{
1376 return step_over_info.nonsteppable_watchpoint_p;
1377}
1378
6cc83d2a
PA
1379/* Returns true if step-over info is valid. */
1380
1381static int
1382step_over_info_valid_p (void)
1383{
963f9c80
PA
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1386}
1387
c906108c 1388\f
237fc4c9
PA
1389/* Displaced stepping. */
1390
1391/* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
237fc4c9
PA
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
cfba9872
SM
1475/* Default destructor for displaced_step_closure. */
1476
1477displaced_step_closure::~displaced_step_closure () = default;
1478
fc1cf338
PA
1479/* Get the displaced stepping state of process PID. */
1480
39a36629 1481static displaced_step_inferior_state *
00431a78 1482get_displaced_stepping_state (inferior *inf)
fc1cf338 1483{
d20172fc 1484 return &inf->displaced_step_state;
fc1cf338
PA
1485}
1486
372316f1
PA
1487/* Returns true if any inferior has a thread doing a displaced
1488 step. */
1489
39a36629
SM
1490static bool
1491displaced_step_in_progress_any_inferior ()
372316f1 1492{
d20172fc 1493 for (inferior *i : all_inferiors ())
39a36629 1494 {
d20172fc 1495 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1496 return true;
1497 }
372316f1 1498
39a36629 1499 return false;
372316f1
PA
1500}
1501
c0987663
YQ
1502/* Return true if thread represented by PTID is doing a displaced
1503 step. */
1504
1505static int
00431a78 1506displaced_step_in_progress_thread (thread_info *thread)
c0987663 1507{
00431a78 1508 gdb_assert (thread != NULL);
c0987663 1509
d20172fc 1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1511}
1512
8f572e5c
PA
1513/* Return true if process PID has a thread doing a displaced step. */
1514
1515static int
00431a78 1516displaced_step_in_progress (inferior *inf)
8f572e5c 1517{
d20172fc 1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1519}
1520
a42244db
YQ
1521/* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525struct displaced_step_closure*
1526get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527{
d20172fc 1528 displaced_step_inferior_state *displaced
00431a78 1529 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1530
1531 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1532 if (displaced->step_thread != nullptr
00431a78 1533 && displaced->step_copy == addr)
a42244db
YQ
1534 return displaced->step_closure;
1535
1536 return NULL;
1537}
1538
fc1cf338
PA
1539static void
1540infrun_inferior_exit (struct inferior *inf)
1541{
d20172fc 1542 inf->displaced_step_state.reset ();
fc1cf338 1543}
237fc4c9 1544
fff08868
HZ
1545/* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 which of all-stop or non-stop mode is active --- displaced stepping
1551 in non-stop mode; hold-and-step in all-stop mode. */
1552
72d0e2c5 1553static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1554
237fc4c9
PA
1555static void
1556show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559{
72d0e2c5 1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1564 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1565 else
3e43a32a
MS
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1569}
1570
fff08868 1571/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1572 over breakpoints of thread TP. */
fff08868 1573
237fc4c9 1574static int
3fc8eb30 1575use_displaced_stepping (struct thread_info *tp)
237fc4c9 1576{
00431a78 1577 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1578 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1579 displaced_step_inferior_state *displaced_state
1580 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1581
fbea99ea
PA
1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 && target_is_non_stop_p ())
72d0e2c5 1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1585 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1586 && find_record_target () == NULL
d20172fc 1587 && !displaced_state->failed_before);
237fc4c9
PA
1588}
1589
1590/* Clean out any stray displaced stepping state. */
1591static void
fc1cf338 1592displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1593{
1594 /* Indicate that there is no cleanup pending. */
00431a78 1595 displaced->step_thread = nullptr;
237fc4c9 1596
cfba9872 1597 delete displaced->step_closure;
6d45d4b4 1598 displaced->step_closure = NULL;
237fc4c9
PA
1599}
1600
9799571e
TT
1601/* A cleanup that wraps displaced_step_clear. */
1602using displaced_step_clear_cleanup
1603 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1604
1605/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1606void
1607displaced_step_dump_bytes (struct ui_file *file,
1608 const gdb_byte *buf,
1609 size_t len)
1610{
1611 int i;
1612
1613 for (i = 0; i < len; i++)
1614 fprintf_unfiltered (file, "%02x ", buf[i]);
1615 fputs_unfiltered ("\n", file);
1616}
1617
1618/* Prepare to single-step, using displaced stepping.
1619
1620 Note that we cannot use displaced stepping when we have a signal to
1621 deliver. If we have a signal to deliver and an instruction to step
1622 over, then after the step, there will be no indication from the
1623 target whether the thread entered a signal handler or ignored the
1624 signal and stepped over the instruction successfully --- both cases
1625 result in a simple SIGTRAP. In the first case we mustn't do a
1626 fixup, and in the second case we must --- but we can't tell which.
1627 Comments in the code for 'random signals' in handle_inferior_event
1628 explain how we handle this case instead.
1629
1630 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1631 stepped now; 0 if displaced stepping this thread got queued; or -1
1632 if this instruction can't be displaced stepped. */
1633
237fc4c9 1634static int
00431a78 1635displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1636{
00431a78 1637 regcache *regcache = get_thread_regcache (tp);
ac7936df 1638 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1639 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1640 CORE_ADDR original, copy;
1641 ULONGEST len;
1642 struct displaced_step_closure *closure;
9e529e1d 1643 int status;
237fc4c9
PA
1644
1645 /* We should never reach this function if the architecture does not
1646 support displaced stepping. */
1647 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1648
c2829269
PA
1649 /* Nor if the thread isn't meant to step over a breakpoint. */
1650 gdb_assert (tp->control.trap_expected);
1651
c1e36e3e
PA
1652 /* Disable range stepping while executing in the scratch pad. We
1653 want a single-step even if executing the displaced instruction in
1654 the scratch buffer lands within the stepping range (e.g., a
1655 jump/branch). */
1656 tp->control.may_range_step = 0;
1657
fc1cf338
PA
1658 /* We have to displaced step one thread at a time, as we only have
1659 access to a single scratch space per inferior. */
237fc4c9 1660
d20172fc
SM
1661 displaced_step_inferior_state *displaced
1662 = get_displaced_stepping_state (tp->inf);
fc1cf338 1663
00431a78 1664 if (displaced->step_thread != nullptr)
237fc4c9
PA
1665 {
1666 /* Already waiting for a displaced step to finish. Defer this
1667 request and place in queue. */
237fc4c9
PA
1668
1669 if (debug_displaced)
1670 fprintf_unfiltered (gdb_stdlog,
c2829269 1671 "displaced: deferring step of %s\n",
a068643d 1672 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1673
c2829269 1674 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1675 return 0;
1676 }
1677 else
1678 {
1679 if (debug_displaced)
1680 fprintf_unfiltered (gdb_stdlog,
1681 "displaced: stepping %s now\n",
a068643d 1682 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1683 }
1684
fc1cf338 1685 displaced_step_clear (displaced);
237fc4c9 1686
00431a78
PA
1687 scoped_restore_current_thread restore_thread;
1688
1689 switch_to_thread (tp);
ad53cd71 1690
515630c5 1691 original = regcache_read_pc (regcache);
237fc4c9
PA
1692
1693 copy = gdbarch_displaced_step_location (gdbarch);
1694 len = gdbarch_max_insn_length (gdbarch);
1695
d35ae833
PA
1696 if (breakpoint_in_range_p (aspace, copy, len))
1697 {
1698 /* There's a breakpoint set in the scratch pad location range
1699 (which is usually around the entry point). We'd either
1700 install it before resuming, which would overwrite/corrupt the
1701 scratch pad, or if it was already inserted, this displaced
1702 step would overwrite it. The latter is OK in the sense that
1703 we already assume that no thread is going to execute the code
1704 in the scratch pad range (after initial startup) anyway, but
1705 the former is unacceptable. Simply punt and fallback to
1706 stepping over this breakpoint in-line. */
1707 if (debug_displaced)
1708 {
1709 fprintf_unfiltered (gdb_stdlog,
1710 "displaced: breakpoint set in scratch pad. "
1711 "Stepping over breakpoint in-line instead.\n");
1712 }
1713
d35ae833
PA
1714 return -1;
1715 }
1716
237fc4c9 1717 /* Save the original contents of the copy area. */
d20172fc
SM
1718 displaced->step_saved_copy.resize (len);
1719 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1720 if (status != 0)
1721 throw_error (MEMORY_ERROR,
1722 _("Error accessing memory address %s (%s) for "
1723 "displaced-stepping scratch space."),
1724 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1725 if (debug_displaced)
1726 {
5af949e3
UW
1727 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1728 paddress (gdbarch, copy));
fc1cf338 1729 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1730 displaced->step_saved_copy.data (),
fc1cf338 1731 len);
237fc4c9
PA
1732 };
1733
1734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1735 original, copy, regcache);
7f03bd92
PA
1736 if (closure == NULL)
1737 {
1738 /* The architecture doesn't know how or want to displaced step
1739 this instruction or instruction sequence. Fallback to
1740 stepping over the breakpoint in-line. */
7f03bd92
PA
1741 return -1;
1742 }
237fc4c9 1743
9f5a595d
UW
1744 /* Save the information we need to fix things up if the step
1745 succeeds. */
00431a78 1746 displaced->step_thread = tp;
fc1cf338
PA
1747 displaced->step_gdbarch = gdbarch;
1748 displaced->step_closure = closure;
1749 displaced->step_original = original;
1750 displaced->step_copy = copy;
9f5a595d 1751
9799571e
TT
1752 {
1753 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1754
9799571e
TT
1755 /* Resume execution at the copy. */
1756 regcache_write_pc (regcache, copy);
237fc4c9 1757
9799571e
TT
1758 cleanup.release ();
1759 }
ad53cd71 1760
237fc4c9 1761 if (debug_displaced)
5af949e3
UW
1762 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1763 paddress (gdbarch, copy));
237fc4c9 1764
237fc4c9
PA
1765 return 1;
1766}
1767
3fc8eb30
PA
1768/* Wrapper for displaced_step_prepare_throw that disabled further
1769 attempts at displaced stepping if we get a memory error. */
1770
1771static int
00431a78 1772displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1773{
1774 int prepared = -1;
1775
a70b8144 1776 try
3fc8eb30 1777 {
00431a78 1778 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1779 }
230d2906 1780 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1781 {
1782 struct displaced_step_inferior_state *displaced_state;
1783
16b41842
PA
1784 if (ex.error != MEMORY_ERROR
1785 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1786 throw;
3fc8eb30
PA
1787
1788 if (debug_infrun)
1789 {
1790 fprintf_unfiltered (gdb_stdlog,
1791 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1792 ex.what ());
3fc8eb30
PA
1793 }
1794
1795 /* Be verbose if "set displaced-stepping" is "on", silent if
1796 "auto". */
1797 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1798 {
fd7dcb94 1799 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1800 ex.what ());
3fc8eb30
PA
1801 }
1802
1803 /* Disable further displaced stepping attempts. */
1804 displaced_state
00431a78 1805 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1806 displaced_state->failed_before = 1;
1807 }
3fc8eb30
PA
1808
1809 return prepared;
1810}
1811
237fc4c9 1812static void
3e43a32a
MS
1813write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1814 const gdb_byte *myaddr, int len)
237fc4c9 1815{
2989a365 1816 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1817
237fc4c9
PA
1818 inferior_ptid = ptid;
1819 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1820}
1821
e2d96639
YQ
1822/* Restore the contents of the copy area for thread PTID. */
1823
1824static void
1825displaced_step_restore (struct displaced_step_inferior_state *displaced,
1826 ptid_t ptid)
1827{
1828 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1829
1830 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1831 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1834 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1835 paddress (displaced->step_gdbarch,
1836 displaced->step_copy));
1837}
1838
372316f1
PA
1839/* If we displaced stepped an instruction successfully, adjust
1840 registers and memory to yield the same effect the instruction would
1841 have had if we had executed it at its original address, and return
1842 1. If the instruction didn't complete, relocate the PC and return
1843 -1. If the thread wasn't displaced stepping, return 0. */
1844
1845static int
00431a78 1846displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1847{
fc1cf338 1848 struct displaced_step_inferior_state *displaced
00431a78 1849 = get_displaced_stepping_state (event_thread->inf);
372316f1 1850 int ret;
fc1cf338 1851
00431a78
PA
1852 /* Was this event for the thread we displaced? */
1853 if (displaced->step_thread != event_thread)
372316f1 1854 return 0;
237fc4c9 1855
9799571e 1856 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1857
00431a78 1858 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1859
cb71640d
PA
1860 /* Fixup may need to read memory/registers. Switch to the thread
1861 that we're fixing up. Also, target_stopped_by_watchpoint checks
1862 the current thread. */
00431a78 1863 switch_to_thread (event_thread);
cb71640d 1864
237fc4c9 1865 /* Did the instruction complete successfully? */
cb71640d
PA
1866 if (signal == GDB_SIGNAL_TRAP
1867 && !(target_stopped_by_watchpoint ()
1868 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1869 || target_have_steppable_watchpoint)))
237fc4c9
PA
1870 {
1871 /* Fix up the resulting state. */
fc1cf338
PA
1872 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1873 displaced->step_closure,
1874 displaced->step_original,
1875 displaced->step_copy,
00431a78 1876 get_thread_regcache (displaced->step_thread));
372316f1 1877 ret = 1;
237fc4c9
PA
1878 }
1879 else
1880 {
1881 /* Since the instruction didn't complete, all we can do is
1882 relocate the PC. */
00431a78 1883 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1884 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1885
fc1cf338 1886 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1887 regcache_write_pc (regcache, pc);
372316f1 1888 ret = -1;
237fc4c9
PA
1889 }
1890
372316f1 1891 return ret;
c2829269 1892}
1c5cfe86 1893
4d9d9d04
PA
1894/* Data to be passed around while handling an event. This data is
1895 discarded between events. */
1896struct execution_control_state
1897{
1898 ptid_t ptid;
1899 /* The thread that got the event, if this was a thread event; NULL
1900 otherwise. */
1901 struct thread_info *event_thread;
1902
1903 struct target_waitstatus ws;
1904 int stop_func_filled_in;
1905 CORE_ADDR stop_func_start;
1906 CORE_ADDR stop_func_end;
1907 const char *stop_func_name;
1908 int wait_some_more;
1909
1910 /* True if the event thread hit the single-step breakpoint of
1911 another thread. Thus the event doesn't cause a stop, the thread
1912 needs to be single-stepped past the single-step breakpoint before
1913 we can switch back to the original stepping thread. */
1914 int hit_singlestep_breakpoint;
1915};
1916
1917/* Clear ECS and set it to point at TP. */
c2829269
PA
1918
1919static void
4d9d9d04
PA
1920reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1921{
1922 memset (ecs, 0, sizeof (*ecs));
1923 ecs->event_thread = tp;
1924 ecs->ptid = tp->ptid;
1925}
1926
1927static void keep_going_pass_signal (struct execution_control_state *ecs);
1928static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1929static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1930static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1931
1932/* Are there any pending step-over requests? If so, run all we can
1933 now and return true. Otherwise, return false. */
1934
1935static int
c2829269
PA
1936start_step_over (void)
1937{
1938 struct thread_info *tp, *next;
1939
372316f1
PA
1940 /* Don't start a new step-over if we already have an in-line
1941 step-over operation ongoing. */
1942 if (step_over_info_valid_p ())
1943 return 0;
1944
c2829269 1945 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1946 {
4d9d9d04
PA
1947 struct execution_control_state ecss;
1948 struct execution_control_state *ecs = &ecss;
8d297bbf 1949 step_over_what step_what;
372316f1 1950 int must_be_in_line;
c2829269 1951
c65d6b55
PA
1952 gdb_assert (!tp->stop_requested);
1953
c2829269 1954 next = thread_step_over_chain_next (tp);
237fc4c9 1955
c2829269
PA
1956 /* If this inferior already has a displaced step in process,
1957 don't start a new one. */
00431a78 1958 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1959 continue;
1960
372316f1
PA
1961 step_what = thread_still_needs_step_over (tp);
1962 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1963 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1964 && !use_displaced_stepping (tp)));
372316f1
PA
1965
1966 /* We currently stop all threads of all processes to step-over
1967 in-line. If we need to start a new in-line step-over, let
1968 any pending displaced steps finish first. */
1969 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1970 return 0;
1971
c2829269
PA
1972 thread_step_over_chain_remove (tp);
1973
1974 if (step_over_queue_head == NULL)
1975 {
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "infrun: step-over queue now empty\n");
1979 }
1980
372316f1
PA
1981 if (tp->control.trap_expected
1982 || tp->resumed
1983 || tp->executing)
ad53cd71 1984 {
4d9d9d04
PA
1985 internal_error (__FILE__, __LINE__,
1986 "[%s] has inconsistent state: "
372316f1 1987 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1988 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1989 tp->control.trap_expected,
372316f1 1990 tp->resumed,
4d9d9d04 1991 tp->executing);
ad53cd71 1992 }
1c5cfe86 1993
4d9d9d04
PA
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: resuming [%s] for step-over\n",
a068643d 1997 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1998
1999 /* keep_going_pass_signal skips the step-over if the breakpoint
2000 is no longer inserted. In all-stop, we want to keep looking
2001 for a thread that needs a step-over instead of resuming TP,
2002 because we wouldn't be able to resume anything else until the
2003 target stops again. In non-stop, the resume always resumes
2004 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2005 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2006 continue;
8550d3b3 2007
00431a78 2008 switch_to_thread (tp);
4d9d9d04
PA
2009 reset_ecs (ecs, tp);
2010 keep_going_pass_signal (ecs);
1c5cfe86 2011
4d9d9d04
PA
2012 if (!ecs->wait_some_more)
2013 error (_("Command aborted."));
1c5cfe86 2014
372316f1
PA
2015 gdb_assert (tp->resumed);
2016
2017 /* If we started a new in-line step-over, we're done. */
2018 if (step_over_info_valid_p ())
2019 {
2020 gdb_assert (tp->control.trap_expected);
2021 return 1;
2022 }
2023
fbea99ea 2024 if (!target_is_non_stop_p ())
4d9d9d04
PA
2025 {
2026 /* On all-stop, shouldn't have resumed unless we needed a
2027 step over. */
2028 gdb_assert (tp->control.trap_expected
2029 || tp->step_after_step_resume_breakpoint);
2030
2031 /* With remote targets (at least), in all-stop, we can't
2032 issue any further remote commands until the program stops
2033 again. */
2034 return 1;
1c5cfe86 2035 }
c2829269 2036
4d9d9d04
PA
2037 /* Either the thread no longer needed a step-over, or a new
2038 displaced stepping sequence started. Even in the latter
2039 case, continue looking. Maybe we can also start another
2040 displaced step on a thread of other process. */
237fc4c9 2041 }
4d9d9d04
PA
2042
2043 return 0;
237fc4c9
PA
2044}
2045
5231c1fd
PA
2046/* Update global variables holding ptids to hold NEW_PTID if they were
2047 holding OLD_PTID. */
2048static void
2049infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2050{
d7e15655 2051 if (inferior_ptid == old_ptid)
5231c1fd 2052 inferior_ptid = new_ptid;
5231c1fd
PA
2053}
2054
237fc4c9 2055\f
c906108c 2056
53904c9e
AC
2057static const char schedlock_off[] = "off";
2058static const char schedlock_on[] = "on";
2059static const char schedlock_step[] = "step";
f2665db5 2060static const char schedlock_replay[] = "replay";
40478521 2061static const char *const scheduler_enums[] = {
ef346e04
AC
2062 schedlock_off,
2063 schedlock_on,
2064 schedlock_step,
f2665db5 2065 schedlock_replay,
ef346e04
AC
2066 NULL
2067};
f2665db5 2068static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2069static void
2070show_scheduler_mode (struct ui_file *file, int from_tty,
2071 struct cmd_list_element *c, const char *value)
2072{
3e43a32a
MS
2073 fprintf_filtered (file,
2074 _("Mode for locking scheduler "
2075 "during execution is \"%s\".\n"),
920d2a44
AC
2076 value);
2077}
c906108c
SS
2078
2079static void
eb4c3f4a 2080set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2081{
eefe576e
AC
2082 if (!target_can_lock_scheduler)
2083 {
2084 scheduler_mode = schedlock_off;
2085 error (_("Target '%s' cannot support this command."), target_shortname);
2086 }
c906108c
SS
2087}
2088
d4db2f36
PA
2089/* True if execution commands resume all threads of all processes by
2090 default; otherwise, resume only threads of the current inferior
2091 process. */
2092int sched_multi = 0;
2093
2facfe5c
DD
2094/* Try to setup for software single stepping over the specified location.
2095 Return 1 if target_resume() should use hardware single step.
2096
2097 GDBARCH the current gdbarch.
2098 PC the location to step over. */
2099
2100static int
2101maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2102{
2103 int hw_step = 1;
2104
f02253f1 2105 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2106 && gdbarch_software_single_step_p (gdbarch))
2107 hw_step = !insert_single_step_breakpoints (gdbarch);
2108
2facfe5c
DD
2109 return hw_step;
2110}
c906108c 2111
f3263aa4
PA
2112/* See infrun.h. */
2113
09cee04b
PA
2114ptid_t
2115user_visible_resume_ptid (int step)
2116{
f3263aa4 2117 ptid_t resume_ptid;
09cee04b 2118
09cee04b
PA
2119 if (non_stop)
2120 {
2121 /* With non-stop mode on, threads are always handled
2122 individually. */
2123 resume_ptid = inferior_ptid;
2124 }
2125 else if ((scheduler_mode == schedlock_on)
03d46957 2126 || (scheduler_mode == schedlock_step && step))
09cee04b 2127 {
f3263aa4
PA
2128 /* User-settable 'scheduler' mode requires solo thread
2129 resume. */
09cee04b
PA
2130 resume_ptid = inferior_ptid;
2131 }
f2665db5
MM
2132 else if ((scheduler_mode == schedlock_replay)
2133 && target_record_will_replay (minus_one_ptid, execution_direction))
2134 {
2135 /* User-settable 'scheduler' mode requires solo thread resume in replay
2136 mode. */
2137 resume_ptid = inferior_ptid;
2138 }
f3263aa4
PA
2139 else if (!sched_multi && target_supports_multi_process ())
2140 {
2141 /* Resume all threads of the current process (and none of other
2142 processes). */
e99b03dc 2143 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2144 }
2145 else
2146 {
2147 /* Resume all threads of all processes. */
2148 resume_ptid = RESUME_ALL;
2149 }
09cee04b
PA
2150
2151 return resume_ptid;
2152}
2153
fbea99ea
PA
2154/* Return a ptid representing the set of threads that we will resume,
2155 in the perspective of the target, assuming run control handling
2156 does not require leaving some threads stopped (e.g., stepping past
2157 breakpoint). USER_STEP indicates whether we're about to start the
2158 target for a stepping command. */
2159
2160static ptid_t
2161internal_resume_ptid (int user_step)
2162{
2163 /* In non-stop, we always control threads individually. Note that
2164 the target may always work in non-stop mode even with "set
2165 non-stop off", in which case user_visible_resume_ptid could
2166 return a wildcard ptid. */
2167 if (target_is_non_stop_p ())
2168 return inferior_ptid;
2169 else
2170 return user_visible_resume_ptid (user_step);
2171}
2172
64ce06e4
PA
2173/* Wrapper for target_resume, that handles infrun-specific
2174 bookkeeping. */
2175
2176static void
2177do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2178{
2179 struct thread_info *tp = inferior_thread ();
2180
c65d6b55
PA
2181 gdb_assert (!tp->stop_requested);
2182
64ce06e4 2183 /* Install inferior's terminal modes. */
223ffa71 2184 target_terminal::inferior ();
64ce06e4
PA
2185
2186 /* Avoid confusing the next resume, if the next stop/resume
2187 happens to apply to another thread. */
2188 tp->suspend.stop_signal = GDB_SIGNAL_0;
2189
8f572e5c
PA
2190 /* Advise target which signals may be handled silently.
2191
2192 If we have removed breakpoints because we are stepping over one
2193 in-line (in any thread), we need to receive all signals to avoid
2194 accidentally skipping a breakpoint during execution of a signal
2195 handler.
2196
2197 Likewise if we're displaced stepping, otherwise a trap for a
2198 breakpoint in a signal handler might be confused with the
2199 displaced step finishing. We don't make the displaced_step_fixup
2200 step distinguish the cases instead, because:
2201
2202 - a backtrace while stopped in the signal handler would show the
2203 scratch pad as frame older than the signal handler, instead of
2204 the real mainline code.
2205
2206 - when the thread is later resumed, the signal handler would
2207 return to the scratch pad area, which would no longer be
2208 valid. */
2209 if (step_over_info_valid_p ()
00431a78 2210 || displaced_step_in_progress (tp->inf))
adc6a863 2211 target_pass_signals ({});
64ce06e4 2212 else
adc6a863 2213 target_pass_signals (signal_pass);
64ce06e4
PA
2214
2215 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2216
2217 target_commit_resume ();
64ce06e4
PA
2218}
2219
d930703d 2220/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2221 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2222 call 'resume', which handles exceptions. */
c906108c 2223
71d378ae
PA
2224static void
2225resume_1 (enum gdb_signal sig)
c906108c 2226{
515630c5 2227 struct regcache *regcache = get_current_regcache ();
ac7936df 2228 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2229 struct thread_info *tp = inferior_thread ();
515630c5 2230 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2231 const address_space *aspace = regcache->aspace ();
b0f16a3e 2232 ptid_t resume_ptid;
856e7dd6
PA
2233 /* This represents the user's step vs continue request. When
2234 deciding whether "set scheduler-locking step" applies, it's the
2235 user's intention that counts. */
2236 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2237 /* This represents what we'll actually request the target to do.
2238 This can decay from a step to a continue, if e.g., we need to
2239 implement single-stepping with breakpoints (software
2240 single-step). */
6b403daa 2241 int step;
c7e8a53c 2242
c65d6b55 2243 gdb_assert (!tp->stop_requested);
c2829269
PA
2244 gdb_assert (!thread_is_in_step_over_chain (tp));
2245
372316f1
PA
2246 if (tp->suspend.waitstatus_pending_p)
2247 {
2248 if (debug_infrun)
2249 {
23fdd69e
SM
2250 std::string statstr
2251 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2252
372316f1 2253 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2254 "infrun: resume: thread %s has pending wait "
2255 "status %s (currently_stepping=%d).\n",
a068643d
TT
2256 target_pid_to_str (tp->ptid).c_str (),
2257 statstr.c_str (),
372316f1 2258 currently_stepping (tp));
372316f1
PA
2259 }
2260
2261 tp->resumed = 1;
2262
2263 /* FIXME: What should we do if we are supposed to resume this
2264 thread with a signal? Maybe we should maintain a queue of
2265 pending signals to deliver. */
2266 if (sig != GDB_SIGNAL_0)
2267 {
fd7dcb94 2268 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2269 gdb_signal_to_name (sig),
2270 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2271 }
2272
2273 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2274
2275 if (target_can_async_p ())
9516f85a
AB
2276 {
2277 target_async (1);
2278 /* Tell the event loop we have an event to process. */
2279 mark_async_event_handler (infrun_async_inferior_event_token);
2280 }
372316f1
PA
2281 return;
2282 }
2283
2284 tp->stepped_breakpoint = 0;
2285
6b403daa
PA
2286 /* Depends on stepped_breakpoint. */
2287 step = currently_stepping (tp);
2288
74609e71
YQ
2289 if (current_inferior ()->waiting_for_vfork_done)
2290 {
48f9886d
PA
2291 /* Don't try to single-step a vfork parent that is waiting for
2292 the child to get out of the shared memory region (by exec'ing
2293 or exiting). This is particularly important on software
2294 single-step archs, as the child process would trip on the
2295 software single step breakpoint inserted for the parent
2296 process. Since the parent will not actually execute any
2297 instruction until the child is out of the shared region (such
2298 are vfork's semantics), it is safe to simply continue it.
2299 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2300 the parent, and tell it to `keep_going', which automatically
2301 re-sets it stepping. */
74609e71
YQ
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: resume : clear step\n");
a09dd441 2305 step = 0;
74609e71
YQ
2306 }
2307
527159b7 2308 if (debug_infrun)
237fc4c9 2309 fprintf_unfiltered (gdb_stdlog,
c9737c08 2310 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2311 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
a068643d 2314 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2315 paddress (gdbarch, pc));
c906108c 2316
c2c6d25f
JM
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2322 {
af48d08f
PA
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "infrun: resume: skipping permanent breakpoint, "
2342 "deliver signal first\n");
2343
2344 clear_step_over_info ();
2345 tp->control.trap_expected = 0;
2346
2347 if (tp->control.step_resume_breakpoint == NULL)
2348 {
2349 /* Set a "high-priority" step-resume, as we don't want
2350 user breakpoints at PC to trigger (again) when this
2351 hits. */
2352 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2353 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2354
2355 tp->step_after_step_resume_breakpoint = step;
2356 }
2357
2358 insert_breakpoints ();
2359 }
2360 else
2361 {
2362 /* There's no signal to pass, we can go ahead and skip the
2363 permanent breakpoint manually. */
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog,
2366 "infrun: resume: skipping permanent breakpoint\n");
2367 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2368 /* Update pc to reflect the new address from which we will
2369 execute instructions. */
2370 pc = regcache_read_pc (regcache);
2371
2372 if (step)
2373 {
2374 /* We've already advanced the PC, so the stepping part
2375 is done. Now we need to arrange for a trap to be
2376 reported to handle_inferior_event. Set a breakpoint
2377 at the current PC, and run to it. Don't update
2378 prev_pc, because if we end in
44a1ee51
PA
2379 switch_back_to_stepped_thread, we want the "expected
2380 thread advanced also" branch to be taken. IOW, we
2381 don't want this thread to step further from PC
af48d08f 2382 (overstep). */
1ac806b8 2383 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2384 insert_single_step_breakpoint (gdbarch, aspace, pc);
2385 insert_breakpoints ();
2386
fbea99ea 2387 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2388 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2389 tp->resumed = 1;
af48d08f
PA
2390 return;
2391 }
2392 }
6d350bb5 2393 }
c2c6d25f 2394
c1e36e3e
PA
2395 /* If we have a breakpoint to step over, make sure to do a single
2396 step only. Same if we have software watchpoints. */
2397 if (tp->control.trap_expected || bpstat_should_step ())
2398 tp->control.may_range_step = 0;
2399
237fc4c9
PA
2400 /* If enabled, step over breakpoints by executing a copy of the
2401 instruction at a different address.
2402
2403 We can't use displaced stepping when we have a signal to deliver;
2404 the comments for displaced_step_prepare explain why. The
2405 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2406 signals' explain what we do instead.
2407
2408 We can't use displaced stepping when we are waiting for vfork_done
2409 event, displaced stepping breaks the vfork child similarly as single
2410 step software breakpoint. */
3fc8eb30
PA
2411 if (tp->control.trap_expected
2412 && use_displaced_stepping (tp)
cb71640d 2413 && !step_over_info_valid_p ()
a493e3e2 2414 && sig == GDB_SIGNAL_0
74609e71 2415 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2416 {
00431a78 2417 int prepared = displaced_step_prepare (tp);
fc1cf338 2418
3fc8eb30 2419 if (prepared == 0)
d56b7306 2420 {
4d9d9d04
PA
2421 if (debug_infrun)
2422 fprintf_unfiltered (gdb_stdlog,
2423 "Got placed in step-over queue\n");
2424
2425 tp->control.trap_expected = 0;
d56b7306
VP
2426 return;
2427 }
3fc8eb30
PA
2428 else if (prepared < 0)
2429 {
2430 /* Fallback to stepping over the breakpoint in-line. */
2431
2432 if (target_is_non_stop_p ())
2433 stop_all_threads ();
2434
a01bda52 2435 set_step_over_info (regcache->aspace (),
21edc42f 2436 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2437
2438 step = maybe_software_singlestep (gdbarch, pc);
2439
2440 insert_breakpoints ();
2441 }
2442 else if (prepared > 0)
2443 {
2444 struct displaced_step_inferior_state *displaced;
99e40580 2445
3fc8eb30
PA
2446 /* Update pc to reflect the new address from which we will
2447 execute instructions due to displaced stepping. */
00431a78 2448 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2449
00431a78 2450 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2451 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2452 displaced->step_closure);
2453 }
237fc4c9
PA
2454 }
2455
2facfe5c 2456 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2457 else if (step)
2facfe5c 2458 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2459
30852783
UW
2460 /* Currently, our software single-step implementation leads to different
2461 results than hardware single-stepping in one situation: when stepping
2462 into delivering a signal which has an associated signal handler,
2463 hardware single-step will stop at the first instruction of the handler,
2464 while software single-step will simply skip execution of the handler.
2465
2466 For now, this difference in behavior is accepted since there is no
2467 easy way to actually implement single-stepping into a signal handler
2468 without kernel support.
2469
2470 However, there is one scenario where this difference leads to follow-on
2471 problems: if we're stepping off a breakpoint by removing all breakpoints
2472 and then single-stepping. In this case, the software single-step
2473 behavior means that even if there is a *breakpoint* in the signal
2474 handler, GDB still would not stop.
2475
2476 Fortunately, we can at least fix this particular issue. We detect
2477 here the case where we are about to deliver a signal while software
2478 single-stepping with breakpoints removed. In this situation, we
2479 revert the decisions to remove all breakpoints and insert single-
2480 step breakpoints, and instead we install a step-resume breakpoint
2481 at the current address, deliver the signal without stepping, and
2482 once we arrive back at the step-resume breakpoint, actually step
2483 over the breakpoint we originally wanted to step over. */
34b7e8a6 2484 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2485 && sig != GDB_SIGNAL_0
2486 && step_over_info_valid_p ())
30852783
UW
2487 {
2488 /* If we have nested signals or a pending signal is delivered
2489 immediately after a handler returns, might might already have
2490 a step-resume breakpoint set on the earlier handler. We cannot
2491 set another step-resume breakpoint; just continue on until the
2492 original breakpoint is hit. */
2493 if (tp->control.step_resume_breakpoint == NULL)
2494 {
2c03e5be 2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2496 tp->step_after_step_resume_breakpoint = 1;
2497 }
2498
34b7e8a6 2499 delete_single_step_breakpoints (tp);
30852783 2500
31e77af2 2501 clear_step_over_info ();
30852783 2502 tp->control.trap_expected = 0;
31e77af2
PA
2503
2504 insert_breakpoints ();
30852783
UW
2505 }
2506
b0f16a3e
SM
2507 /* If STEP is set, it's a request to use hardware stepping
2508 facilities. But in that case, we should never
2509 use singlestep breakpoint. */
34b7e8a6 2510 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2511
fbea99ea 2512 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2513 if (tp->control.trap_expected)
b0f16a3e
SM
2514 {
2515 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2516 hit, either by single-stepping the thread with the breakpoint
2517 removed, or by displaced stepping, with the breakpoint inserted.
2518 In the former case, we need to single-step only this thread,
2519 and keep others stopped, as they can miss this breakpoint if
2520 allowed to run. That's not really a problem for displaced
2521 stepping, but, we still keep other threads stopped, in case
2522 another thread is also stopped for a breakpoint waiting for
2523 its turn in the displaced stepping queue. */
b0f16a3e
SM
2524 resume_ptid = inferior_ptid;
2525 }
fbea99ea
PA
2526 else
2527 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2528
7f5ef605
PA
2529 if (execution_direction != EXEC_REVERSE
2530 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2531 {
372316f1
PA
2532 /* There are two cases where we currently need to step a
2533 breakpoint instruction when we have a signal to deliver:
2534
2535 - See handle_signal_stop where we handle random signals that
2536 could take out us out of the stepping range. Normally, in
2537 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2538 signal handler with a breakpoint at PC, but there are cases
2539 where we should _always_ single-step, even if we have a
2540 step-resume breakpoint, like when a software watchpoint is
2541 set. Assuming single-stepping and delivering a signal at the
2542 same time would takes us to the signal handler, then we could
2543 have removed the breakpoint at PC to step over it. However,
2544 some hardware step targets (like e.g., Mac OS) can't step
2545 into signal handlers, and for those, we need to leave the
2546 breakpoint at PC inserted, as otherwise if the handler
2547 recurses and executes PC again, it'll miss the breakpoint.
2548 So we leave the breakpoint inserted anyway, but we need to
2549 record that we tried to step a breakpoint instruction, so
372316f1
PA
2550 that adjust_pc_after_break doesn't end up confused.
2551
2552 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2553 in one thread after another thread that was stepping had been
2554 momentarily paused for a step-over. When we re-resume the
2555 stepping thread, it may be resumed from that address with a
2556 breakpoint that hasn't trapped yet. Seen with
2557 gdb.threads/non-stop-fair-events.exp, on targets that don't
2558 do displaced stepping. */
2559
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2563 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2564
2565 tp->stepped_breakpoint = 1;
2566
b0f16a3e
SM
2567 /* Most targets can step a breakpoint instruction, thus
2568 executing it normally. But if this one cannot, just
2569 continue and we will hit it anyway. */
7f5ef605 2570 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2571 step = 0;
2572 }
ef5cf84e 2573
b0f16a3e 2574 if (debug_displaced
cb71640d 2575 && tp->control.trap_expected
3fc8eb30 2576 && use_displaced_stepping (tp)
cb71640d 2577 && !step_over_info_valid_p ())
b0f16a3e 2578 {
00431a78 2579 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2580 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2581 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2582 gdb_byte buf[4];
2583
2584 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2585 paddress (resume_gdbarch, actual_pc));
2586 read_memory (actual_pc, buf, sizeof (buf));
2587 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2588 }
237fc4c9 2589
b0f16a3e
SM
2590 if (tp->control.may_range_step)
2591 {
2592 /* If we're resuming a thread with the PC out of the step
2593 range, then we're doing some nested/finer run control
2594 operation, like stepping the thread out of the dynamic
2595 linker or the displaced stepping scratch pad. We
2596 shouldn't have allowed a range step then. */
2597 gdb_assert (pc_in_thread_step_range (pc, tp));
2598 }
c1e36e3e 2599
64ce06e4 2600 do_target_resume (resume_ptid, step, sig);
372316f1 2601 tp->resumed = 1;
c906108c 2602}
71d378ae
PA
2603
2604/* Resume the inferior. SIG is the signal to give the inferior
2605 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2606 rolls back state on error. */
2607
aff4e175 2608static void
71d378ae
PA
2609resume (gdb_signal sig)
2610{
a70b8144 2611 try
71d378ae
PA
2612 {
2613 resume_1 (sig);
2614 }
230d2906 2615 catch (const gdb_exception &ex)
71d378ae
PA
2616 {
2617 /* If resuming is being aborted for any reason, delete any
2618 single-step breakpoint resume_1 may have created, to avoid
2619 confusing the following resumption, and to avoid leaving
2620 single-step breakpoints perturbing other threads, in case
2621 we're running in non-stop mode. */
2622 if (inferior_ptid != null_ptid)
2623 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2624 throw;
71d378ae 2625 }
71d378ae
PA
2626}
2627
c906108c 2628\f
237fc4c9 2629/* Proceeding. */
c906108c 2630
4c2f2a79
PA
2631/* See infrun.h. */
2632
2633/* Counter that tracks number of user visible stops. This can be used
2634 to tell whether a command has proceeded the inferior past the
2635 current location. This allows e.g., inferior function calls in
2636 breakpoint commands to not interrupt the command list. When the
2637 call finishes successfully, the inferior is standing at the same
2638 breakpoint as if nothing happened (and so we don't call
2639 normal_stop). */
2640static ULONGEST current_stop_id;
2641
2642/* See infrun.h. */
2643
2644ULONGEST
2645get_stop_id (void)
2646{
2647 return current_stop_id;
2648}
2649
2650/* Called when we report a user visible stop. */
2651
2652static void
2653new_stop_id (void)
2654{
2655 current_stop_id++;
2656}
2657
c906108c
SS
2658/* Clear out all variables saying what to do when inferior is continued.
2659 First do this, then set the ones you want, then call `proceed'. */
2660
a7212384
UW
2661static void
2662clear_proceed_status_thread (struct thread_info *tp)
c906108c 2663{
a7212384
UW
2664 if (debug_infrun)
2665 fprintf_unfiltered (gdb_stdlog,
2666 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2667 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2668
372316f1
PA
2669 /* If we're starting a new sequence, then the previous finished
2670 single-step is no longer relevant. */
2671 if (tp->suspend.waitstatus_pending_p)
2672 {
2673 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2674 {
2675 if (debug_infrun)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "infrun: clear_proceed_status: pending "
2678 "event of %s was a finished step. "
2679 "Discarding.\n",
a068643d 2680 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2681
2682 tp->suspend.waitstatus_pending_p = 0;
2683 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2684 }
2685 else if (debug_infrun)
2686 {
23fdd69e
SM
2687 std::string statstr
2688 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2689
372316f1
PA
2690 fprintf_unfiltered (gdb_stdlog,
2691 "infrun: clear_proceed_status_thread: thread %s "
2692 "has pending wait status %s "
2693 "(currently_stepping=%d).\n",
a068643d
TT
2694 target_pid_to_str (tp->ptid).c_str (),
2695 statstr.c_str (),
372316f1 2696 currently_stepping (tp));
372316f1
PA
2697 }
2698 }
2699
70509625
PA
2700 /* If this signal should not be seen by program, give it zero.
2701 Used for debugging signals. */
2702 if (!signal_pass_state (tp->suspend.stop_signal))
2703 tp->suspend.stop_signal = GDB_SIGNAL_0;
2704
46e3ed7f 2705 delete tp->thread_fsm;
243a9253
PA
2706 tp->thread_fsm = NULL;
2707
16c381f0
JK
2708 tp->control.trap_expected = 0;
2709 tp->control.step_range_start = 0;
2710 tp->control.step_range_end = 0;
c1e36e3e 2711 tp->control.may_range_step = 0;
16c381f0
JK
2712 tp->control.step_frame_id = null_frame_id;
2713 tp->control.step_stack_frame_id = null_frame_id;
2714 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2715 tp->control.step_start_function = NULL;
a7212384 2716 tp->stop_requested = 0;
4e1c45ea 2717
16c381f0 2718 tp->control.stop_step = 0;
32400beb 2719
16c381f0 2720 tp->control.proceed_to_finish = 0;
414c69f7 2721
856e7dd6 2722 tp->control.stepping_command = 0;
17b2616c 2723
a7212384 2724 /* Discard any remaining commands or status from previous stop. */
16c381f0 2725 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2726}
32400beb 2727
a7212384 2728void
70509625 2729clear_proceed_status (int step)
a7212384 2730{
f2665db5
MM
2731 /* With scheduler-locking replay, stop replaying other threads if we're
2732 not replaying the user-visible resume ptid.
2733
2734 This is a convenience feature to not require the user to explicitly
2735 stop replaying the other threads. We're assuming that the user's
2736 intent is to resume tracing the recorded process. */
2737 if (!non_stop && scheduler_mode == schedlock_replay
2738 && target_record_is_replaying (minus_one_ptid)
2739 && !target_record_will_replay (user_visible_resume_ptid (step),
2740 execution_direction))
2741 target_record_stop_replaying ();
2742
08036331 2743 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2744 {
08036331 2745 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2746
2747 /* In all-stop mode, delete the per-thread status of all threads
2748 we're about to resume, implicitly and explicitly. */
08036331
PA
2749 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2750 clear_proceed_status_thread (tp);
6c95b8df
PA
2751 }
2752
d7e15655 2753 if (inferior_ptid != null_ptid)
a7212384
UW
2754 {
2755 struct inferior *inferior;
2756
2757 if (non_stop)
2758 {
6c95b8df
PA
2759 /* If in non-stop mode, only delete the per-thread status of
2760 the current thread. */
a7212384
UW
2761 clear_proceed_status_thread (inferior_thread ());
2762 }
6c95b8df 2763
d6b48e9c 2764 inferior = current_inferior ();
16c381f0 2765 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2766 }
2767
76727919 2768 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2769}
2770
99619bea
PA
2771/* Returns true if TP is still stopped at a breakpoint that needs
2772 stepping-over in order to make progress. If the breakpoint is gone
2773 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2774
2775static int
6c4cfb24 2776thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2777{
2778 if (tp->stepping_over_breakpoint)
2779 {
00431a78 2780 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2781
a01bda52 2782 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2783 regcache_read_pc (regcache))
2784 == ordinary_breakpoint_here)
99619bea
PA
2785 return 1;
2786
2787 tp->stepping_over_breakpoint = 0;
2788 }
2789
2790 return 0;
2791}
2792
6c4cfb24
PA
2793/* Check whether thread TP still needs to start a step-over in order
2794 to make progress when resumed. Returns an bitwise or of enum
2795 step_over_what bits, indicating what needs to be stepped over. */
2796
8d297bbf 2797static step_over_what
6c4cfb24
PA
2798thread_still_needs_step_over (struct thread_info *tp)
2799{
8d297bbf 2800 step_over_what what = 0;
6c4cfb24
PA
2801
2802 if (thread_still_needs_step_over_bp (tp))
2803 what |= STEP_OVER_BREAKPOINT;
2804
2805 if (tp->stepping_over_watchpoint
2806 && !target_have_steppable_watchpoint)
2807 what |= STEP_OVER_WATCHPOINT;
2808
2809 return what;
2810}
2811
483805cf
PA
2812/* Returns true if scheduler locking applies. STEP indicates whether
2813 we're about to do a step/next-like command to a thread. */
2814
2815static int
856e7dd6 2816schedlock_applies (struct thread_info *tp)
483805cf
PA
2817{
2818 return (scheduler_mode == schedlock_on
2819 || (scheduler_mode == schedlock_step
f2665db5
MM
2820 && tp->control.stepping_command)
2821 || (scheduler_mode == schedlock_replay
2822 && target_record_will_replay (minus_one_ptid,
2823 execution_direction)));
483805cf
PA
2824}
2825
c906108c
SS
2826/* Basic routine for continuing the program in various fashions.
2827
2828 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2829 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2830 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2831
2832 You should call clear_proceed_status before calling proceed. */
2833
2834void
64ce06e4 2835proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2836{
e58b0e63
PA
2837 struct regcache *regcache;
2838 struct gdbarch *gdbarch;
e58b0e63 2839 CORE_ADDR pc;
4d9d9d04
PA
2840 ptid_t resume_ptid;
2841 struct execution_control_state ecss;
2842 struct execution_control_state *ecs = &ecss;
4d9d9d04 2843 int started;
c906108c 2844
e58b0e63
PA
2845 /* If we're stopped at a fork/vfork, follow the branch set by the
2846 "set follow-fork-mode" command; otherwise, we'll just proceed
2847 resuming the current thread. */
2848 if (!follow_fork ())
2849 {
2850 /* The target for some reason decided not to resume. */
2851 normal_stop ();
f148b27e
PA
2852 if (target_can_async_p ())
2853 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2854 return;
2855 }
2856
842951eb
PA
2857 /* We'll update this if & when we switch to a new thread. */
2858 previous_inferior_ptid = inferior_ptid;
2859
e58b0e63 2860 regcache = get_current_regcache ();
ac7936df 2861 gdbarch = regcache->arch ();
8b86c959
YQ
2862 const address_space *aspace = regcache->aspace ();
2863
e58b0e63 2864 pc = regcache_read_pc (regcache);
08036331 2865 thread_info *cur_thr = inferior_thread ();
e58b0e63 2866
99619bea 2867 /* Fill in with reasonable starting values. */
08036331 2868 init_thread_stepping_state (cur_thr);
99619bea 2869
08036331 2870 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2871
2acceee2 2872 if (addr == (CORE_ADDR) -1)
c906108c 2873 {
08036331 2874 if (pc == cur_thr->suspend.stop_pc
af48d08f 2875 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2876 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2877 /* There is a breakpoint at the address we will resume at,
2878 step one instruction before inserting breakpoints so that
2879 we do not stop right away (and report a second hit at this
b2175913
MS
2880 breakpoint).
2881
2882 Note, we don't do this in reverse, because we won't
2883 actually be executing the breakpoint insn anyway.
2884 We'll be (un-)executing the previous instruction. */
08036331 2885 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2886 else if (gdbarch_single_step_through_delay_p (gdbarch)
2887 && gdbarch_single_step_through_delay (gdbarch,
2888 get_current_frame ()))
3352ef37
AC
2889 /* We stepped onto an instruction that needs to be stepped
2890 again before re-inserting the breakpoint, do so. */
08036331 2891 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2892 }
2893 else
2894 {
515630c5 2895 regcache_write_pc (regcache, addr);
c906108c
SS
2896 }
2897
70509625 2898 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2899 cur_thr->suspend.stop_signal = siggnal;
70509625 2900
08036331 2901 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2902
2903 /* If an exception is thrown from this point on, make sure to
2904 propagate GDB's knowledge of the executing state to the
2905 frontend/user running state. */
731f534f 2906 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2907
2908 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2909 threads (e.g., we might need to set threads stepping over
2910 breakpoints first), from the user/frontend's point of view, all
2911 threads in RESUME_PTID are now running. Unless we're calling an
2912 inferior function, as in that case we pretend the inferior
2913 doesn't run at all. */
08036331 2914 if (!cur_thr->control.in_infcall)
4d9d9d04 2915 set_running (resume_ptid, 1);
17b2616c 2916
527159b7 2917 if (debug_infrun)
8a9de0e4 2918 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2919 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2920 paddress (gdbarch, addr),
64ce06e4 2921 gdb_signal_to_symbol_string (siggnal));
527159b7 2922
4d9d9d04
PA
2923 annotate_starting ();
2924
2925 /* Make sure that output from GDB appears before output from the
2926 inferior. */
2927 gdb_flush (gdb_stdout);
2928
d930703d
PA
2929 /* Since we've marked the inferior running, give it the terminal. A
2930 QUIT/Ctrl-C from here on is forwarded to the target (which can
2931 still detect attempts to unblock a stuck connection with repeated
2932 Ctrl-C from within target_pass_ctrlc). */
2933 target_terminal::inferior ();
2934
4d9d9d04
PA
2935 /* In a multi-threaded task we may select another thread and
2936 then continue or step.
2937
2938 But if a thread that we're resuming had stopped at a breakpoint,
2939 it will immediately cause another breakpoint stop without any
2940 execution (i.e. it will report a breakpoint hit incorrectly). So
2941 we must step over it first.
2942
2943 Look for threads other than the current (TP) that reported a
2944 breakpoint hit and haven't been resumed yet since. */
2945
2946 /* If scheduler locking applies, we can avoid iterating over all
2947 threads. */
08036331 2948 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2949 {
08036331
PA
2950 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2951 {
4d9d9d04
PA
2952 /* Ignore the current thread here. It's handled
2953 afterwards. */
08036331 2954 if (tp == cur_thr)
4d9d9d04 2955 continue;
c906108c 2956
4d9d9d04
PA
2957 if (!thread_still_needs_step_over (tp))
2958 continue;
2959
2960 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2961
99619bea
PA
2962 if (debug_infrun)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "infrun: need to step-over [%s] first\n",
a068643d 2965 target_pid_to_str (tp->ptid).c_str ());
99619bea 2966
4d9d9d04 2967 thread_step_over_chain_enqueue (tp);
2adfaa28 2968 }
30852783
UW
2969 }
2970
4d9d9d04
PA
2971 /* Enqueue the current thread last, so that we move all other
2972 threads over their breakpoints first. */
08036331
PA
2973 if (cur_thr->stepping_over_breakpoint)
2974 thread_step_over_chain_enqueue (cur_thr);
30852783 2975
4d9d9d04
PA
2976 /* If the thread isn't started, we'll still need to set its prev_pc,
2977 so that switch_back_to_stepped_thread knows the thread hasn't
2978 advanced. Must do this before resuming any thread, as in
2979 all-stop/remote, once we resume we can't send any other packet
2980 until the target stops again. */
08036331 2981 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2982
a9bc57b9
TT
2983 {
2984 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2985
a9bc57b9 2986 started = start_step_over ();
c906108c 2987
a9bc57b9
TT
2988 if (step_over_info_valid_p ())
2989 {
2990 /* Either this thread started a new in-line step over, or some
2991 other thread was already doing one. In either case, don't
2992 resume anything else until the step-over is finished. */
2993 }
2994 else if (started && !target_is_non_stop_p ())
2995 {
2996 /* A new displaced stepping sequence was started. In all-stop,
2997 we can't talk to the target anymore until it next stops. */
2998 }
2999 else if (!non_stop && target_is_non_stop_p ())
3000 {
3001 /* In all-stop, but the target is always in non-stop mode.
3002 Start all other threads that are implicitly resumed too. */
08036331 3003 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3004 {
fbea99ea
PA
3005 if (tp->resumed)
3006 {
3007 if (debug_infrun)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "infrun: proceed: [%s] resumed\n",
a068643d 3010 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3011 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3012 continue;
3013 }
3014
3015 if (thread_is_in_step_over_chain (tp))
3016 {
3017 if (debug_infrun)
3018 fprintf_unfiltered (gdb_stdlog,
3019 "infrun: proceed: [%s] needs step-over\n",
a068643d 3020 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3021 continue;
3022 }
3023
3024 if (debug_infrun)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "infrun: proceed: resuming %s\n",
a068643d 3027 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3028
3029 reset_ecs (ecs, tp);
00431a78 3030 switch_to_thread (tp);
fbea99ea
PA
3031 keep_going_pass_signal (ecs);
3032 if (!ecs->wait_some_more)
fd7dcb94 3033 error (_("Command aborted."));
fbea99ea 3034 }
a9bc57b9 3035 }
08036331 3036 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3037 {
3038 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3039 reset_ecs (ecs, cur_thr);
3040 switch_to_thread (cur_thr);
a9bc57b9
TT
3041 keep_going_pass_signal (ecs);
3042 if (!ecs->wait_some_more)
3043 error (_("Command aborted."));
3044 }
3045 }
c906108c 3046
85ad3aaf
PA
3047 target_commit_resume ();
3048
731f534f 3049 finish_state.release ();
c906108c 3050
0b333c5e
PA
3051 /* Tell the event loop to wait for it to stop. If the target
3052 supports asynchronous execution, it'll do this from within
3053 target_resume. */
362646f5 3054 if (!target_can_async_p ())
0b333c5e 3055 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3056}
c906108c
SS
3057\f
3058
3059/* Start remote-debugging of a machine over a serial link. */
96baa820 3060
c906108c 3061void
8621d6a9 3062start_remote (int from_tty)
c906108c 3063{
d6b48e9c 3064 struct inferior *inferior;
d6b48e9c
PA
3065
3066 inferior = current_inferior ();
16c381f0 3067 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3068
1777feb0 3069 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3070 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3071 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3072 nothing is returned (instead of just blocking). Because of this,
3073 targets expecting an immediate response need to, internally, set
3074 things up so that the target_wait() is forced to eventually
1777feb0 3075 timeout. */
6426a772
JM
3076 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3077 differentiate to its caller what the state of the target is after
3078 the initial open has been performed. Here we're assuming that
3079 the target has stopped. It should be possible to eventually have
3080 target_open() return to the caller an indication that the target
3081 is currently running and GDB state should be set to the same as
1777feb0 3082 for an async run. */
e4c8541f 3083 wait_for_inferior ();
8621d6a9
DJ
3084
3085 /* Now that the inferior has stopped, do any bookkeeping like
3086 loading shared libraries. We want to do this before normal_stop,
3087 so that the displayed frame is up to date. */
8b88a78e 3088 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3089
6426a772 3090 normal_stop ();
c906108c
SS
3091}
3092
3093/* Initialize static vars when a new inferior begins. */
3094
3095void
96baa820 3096init_wait_for_inferior (void)
c906108c
SS
3097{
3098 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3099
c906108c
SS
3100 breakpoint_init_inferior (inf_starting);
3101
70509625 3102 clear_proceed_status (0);
9f976b41 3103
ca005067 3104 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3105
842951eb 3106 previous_inferior_ptid = inferior_ptid;
c906108c 3107}
237fc4c9 3108
c906108c 3109\f
488f131b 3110
ec9499be 3111static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3112
568d6575
UW
3113static void handle_step_into_function (struct gdbarch *gdbarch,
3114 struct execution_control_state *ecs);
3115static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs);
4f5d7f63 3117static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3118static void check_exception_resume (struct execution_control_state *,
28106bc2 3119 struct frame_info *);
611c83ae 3120
bdc36728 3121static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3122static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3123static void keep_going (struct execution_control_state *ecs);
94c57d6a 3124static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3125static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3126
252fbfc8
PA
3127/* This function is attached as a "thread_stop_requested" observer.
3128 Cleanup local state that assumed the PTID was to be resumed, and
3129 report the stop to the frontend. */
3130
2c0b251b 3131static void
252fbfc8
PA
3132infrun_thread_stop_requested (ptid_t ptid)
3133{
c65d6b55
PA
3134 /* PTID was requested to stop. If the thread was already stopped,
3135 but the user/frontend doesn't know about that yet (e.g., the
3136 thread had been temporarily paused for some step-over), set up
3137 for reporting the stop now. */
08036331
PA
3138 for (thread_info *tp : all_threads (ptid))
3139 {
3140 if (tp->state != THREAD_RUNNING)
3141 continue;
3142 if (tp->executing)
3143 continue;
c65d6b55 3144
08036331
PA
3145 /* Remove matching threads from the step-over queue, so
3146 start_step_over doesn't try to resume them
3147 automatically. */
3148 if (thread_is_in_step_over_chain (tp))
3149 thread_step_over_chain_remove (tp);
c65d6b55 3150
08036331
PA
3151 /* If the thread is stopped, but the user/frontend doesn't
3152 know about that yet, queue a pending event, as if the
3153 thread had just stopped now. Unless the thread already had
3154 a pending event. */
3155 if (!tp->suspend.waitstatus_pending_p)
3156 {
3157 tp->suspend.waitstatus_pending_p = 1;
3158 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3159 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3160 }
c65d6b55 3161
08036331
PA
3162 /* Clear the inline-frame state, since we're re-processing the
3163 stop. */
3164 clear_inline_frame_state (tp->ptid);
c65d6b55 3165
08036331
PA
3166 /* If this thread was paused because some other thread was
3167 doing an inline-step over, let that finish first. Once
3168 that happens, we'll restart all threads and consume pending
3169 stop events then. */
3170 if (step_over_info_valid_p ())
3171 continue;
3172
3173 /* Otherwise we can process the (new) pending event now. Set
3174 it so this pending event is considered by
3175 do_target_wait. */
3176 tp->resumed = 1;
3177 }
252fbfc8
PA
3178}
3179
a07daef3
PA
3180static void
3181infrun_thread_thread_exit (struct thread_info *tp, int silent)
3182{
d7e15655 3183 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3184 nullify_last_target_wait_ptid ();
3185}
3186
0cbcdb96
PA
3187/* Delete the step resume, single-step and longjmp/exception resume
3188 breakpoints of TP. */
4e1c45ea 3189
0cbcdb96
PA
3190static void
3191delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3192{
0cbcdb96
PA
3193 delete_step_resume_breakpoint (tp);
3194 delete_exception_resume_breakpoint (tp);
34b7e8a6 3195 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3196}
3197
0cbcdb96
PA
3198/* If the target still has execution, call FUNC for each thread that
3199 just stopped. In all-stop, that's all the non-exited threads; in
3200 non-stop, that's the current thread, only. */
3201
3202typedef void (*for_each_just_stopped_thread_callback_func)
3203 (struct thread_info *tp);
4e1c45ea
PA
3204
3205static void
0cbcdb96 3206for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3207{
d7e15655 3208 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3209 return;
3210
fbea99ea 3211 if (target_is_non_stop_p ())
4e1c45ea 3212 {
0cbcdb96
PA
3213 /* If in non-stop mode, only the current thread stopped. */
3214 func (inferior_thread ());
4e1c45ea
PA
3215 }
3216 else
0cbcdb96 3217 {
0cbcdb96 3218 /* In all-stop mode, all threads have stopped. */
08036331
PA
3219 for (thread_info *tp : all_non_exited_threads ())
3220 func (tp);
0cbcdb96
PA
3221 }
3222}
3223
3224/* Delete the step resume and longjmp/exception resume breakpoints of
3225 the threads that just stopped. */
3226
3227static void
3228delete_just_stopped_threads_infrun_breakpoints (void)
3229{
3230 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3231}
3232
3233/* Delete the single-step breakpoints of the threads that just
3234 stopped. */
7c16b83e 3235
34b7e8a6
PA
3236static void
3237delete_just_stopped_threads_single_step_breakpoints (void)
3238{
3239 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3240}
3241
221e1a37 3242/* See infrun.h. */
223698f8 3243
221e1a37 3244void
223698f8
DE
3245print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3246 const struct target_waitstatus *ws)
3247{
23fdd69e 3248 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3249 string_file stb;
223698f8
DE
3250
3251 /* The text is split over several lines because it was getting too long.
3252 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3253 output as a unit; we want only one timestamp printed if debug_timestamp
3254 is set. */
3255
d7e74731 3256 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3257 waiton_ptid.pid (),
e38504b3 3258 waiton_ptid.lwp (),
cc6bcb54 3259 waiton_ptid.tid ());
e99b03dc 3260 if (waiton_ptid.pid () != -1)
a068643d 3261 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3262 stb.printf (", status) =\n");
3263 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3264 result_ptid.pid (),
e38504b3 3265 result_ptid.lwp (),
cc6bcb54 3266 result_ptid.tid (),
a068643d 3267 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3268 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3269
3270 /* This uses %s in part to handle %'s in the text, but also to avoid
3271 a gcc error: the format attribute requires a string literal. */
d7e74731 3272 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3273}
3274
372316f1
PA
3275/* Select a thread at random, out of those which are resumed and have
3276 had events. */
3277
3278static struct thread_info *
3279random_pending_event_thread (ptid_t waiton_ptid)
3280{
372316f1 3281 int num_events = 0;
08036331
PA
3282
3283 auto has_event = [] (thread_info *tp)
3284 {
3285 return (tp->resumed
3286 && tp->suspend.waitstatus_pending_p);
3287 };
372316f1
PA
3288
3289 /* First see how many events we have. Count only resumed threads
3290 that have an event pending. */
08036331
PA
3291 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3292 if (has_event (tp))
372316f1
PA
3293 num_events++;
3294
3295 if (num_events == 0)
3296 return NULL;
3297
3298 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3299 int random_selector = (int) ((num_events * (double) rand ())
3300 / (RAND_MAX + 1.0));
372316f1
PA
3301
3302 if (debug_infrun && num_events > 1)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "infrun: Found %d events, selecting #%d\n",
3305 num_events, random_selector);
3306
3307 /* Select the Nth thread that has had an event. */
08036331
PA
3308 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3309 if (has_event (tp))
372316f1 3310 if (random_selector-- == 0)
08036331 3311 return tp;
372316f1 3312
08036331 3313 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3314}
3315
3316/* Wrapper for target_wait that first checks whether threads have
3317 pending statuses to report before actually asking the target for
3318 more events. */
3319
3320static ptid_t
3321do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3322{
3323 ptid_t event_ptid;
3324 struct thread_info *tp;
3325
3326 /* First check if there is a resumed thread with a wait status
3327 pending. */
d7e15655 3328 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3329 {
3330 tp = random_pending_event_thread (ptid);
3331 }
3332 else
3333 {
3334 if (debug_infrun)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "infrun: Waiting for specific thread %s.\n",
a068643d 3337 target_pid_to_str (ptid).c_str ());
372316f1
PA
3338
3339 /* We have a specific thread to check. */
3340 tp = find_thread_ptid (ptid);
3341 gdb_assert (tp != NULL);
3342 if (!tp->suspend.waitstatus_pending_p)
3343 tp = NULL;
3344 }
3345
3346 if (tp != NULL
3347 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3348 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3349 {
00431a78 3350 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3351 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3352 CORE_ADDR pc;
3353 int discard = 0;
3354
3355 pc = regcache_read_pc (regcache);
3356
3357 if (pc != tp->suspend.stop_pc)
3358 {
3359 if (debug_infrun)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3362 target_pid_to_str (tp->ptid).c_str (),
defd2172 3363 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3364 paddress (gdbarch, pc));
3365 discard = 1;
3366 }
a01bda52 3367 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3368 {
3369 if (debug_infrun)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3372 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3373 paddress (gdbarch, pc));
3374
3375 discard = 1;
3376 }
3377
3378 if (discard)
3379 {
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "infrun: pending event of %s cancelled.\n",
a068643d 3383 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3384
3385 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3386 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3387 }
3388 }
3389
3390 if (tp != NULL)
3391 {
3392 if (debug_infrun)
3393 {
23fdd69e
SM
3394 std::string statstr
3395 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3396
372316f1
PA
3397 fprintf_unfiltered (gdb_stdlog,
3398 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3399 statstr.c_str (),
a068643d 3400 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3401 }
3402
3403 /* Now that we've selected our final event LWP, un-adjust its PC
3404 if it was a software breakpoint (and the target doesn't
3405 always adjust the PC itself). */
3406 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3407 && !target_supports_stopped_by_sw_breakpoint ())
3408 {
3409 struct regcache *regcache;
3410 struct gdbarch *gdbarch;
3411 int decr_pc;
3412
00431a78 3413 regcache = get_thread_regcache (tp);
ac7936df 3414 gdbarch = regcache->arch ();
372316f1
PA
3415
3416 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3417 if (decr_pc != 0)
3418 {
3419 CORE_ADDR pc;
3420
3421 pc = regcache_read_pc (regcache);
3422 regcache_write_pc (regcache, pc + decr_pc);
3423 }
3424 }
3425
3426 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3427 *status = tp->suspend.waitstatus;
3428 tp->suspend.waitstatus_pending_p = 0;
3429
3430 /* Wake up the event loop again, until all pending events are
3431 processed. */
3432 if (target_is_async_p ())
3433 mark_async_event_handler (infrun_async_inferior_event_token);
3434 return tp->ptid;
3435 }
3436
3437 /* But if we don't find one, we'll have to wait. */
3438
3439 if (deprecated_target_wait_hook)
3440 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3441 else
3442 event_ptid = target_wait (ptid, status, options);
3443
3444 return event_ptid;
3445}
3446
24291992
PA
3447/* Prepare and stabilize the inferior for detaching it. E.g.,
3448 detaching while a thread is displaced stepping is a recipe for
3449 crashing it, as nothing would readjust the PC out of the scratch
3450 pad. */
3451
3452void
3453prepare_for_detach (void)
3454{
3455 struct inferior *inf = current_inferior ();
f2907e49 3456 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3457
00431a78 3458 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3459
3460 /* Is any thread of this process displaced stepping? If not,
3461 there's nothing else to do. */
d20172fc 3462 if (displaced->step_thread == nullptr)
24291992
PA
3463 return;
3464
3465 if (debug_infrun)
3466 fprintf_unfiltered (gdb_stdlog,
3467 "displaced-stepping in-process while detaching");
3468
9bcb1f16 3469 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3470
00431a78 3471 while (displaced->step_thread != nullptr)
24291992 3472 {
24291992
PA
3473 struct execution_control_state ecss;
3474 struct execution_control_state *ecs;
3475
3476 ecs = &ecss;
3477 memset (ecs, 0, sizeof (*ecs));
3478
3479 overlay_cache_invalid = 1;
f15cb84a
YQ
3480 /* Flush target cache before starting to handle each event.
3481 Target was running and cache could be stale. This is just a
3482 heuristic. Running threads may modify target memory, but we
3483 don't get any event. */
3484 target_dcache_invalidate ();
24291992 3485
372316f1 3486 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3487
3488 if (debug_infrun)
3489 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3490
3491 /* If an error happens while handling the event, propagate GDB's
3492 knowledge of the executing state to the frontend/user running
3493 state. */
731f534f 3494 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3495
3496 /* Now figure out what to do with the result of the result. */
3497 handle_inferior_event (ecs);
3498
3499 /* No error, don't finish the state yet. */
731f534f 3500 finish_state.release ();
24291992
PA
3501
3502 /* Breakpoints and watchpoints are not installed on the target
3503 at this point, and signals are passed directly to the
3504 inferior, so this must mean the process is gone. */
3505 if (!ecs->wait_some_more)
3506 {
9bcb1f16 3507 restore_detaching.release ();
24291992
PA
3508 error (_("Program exited while detaching"));
3509 }
3510 }
3511
9bcb1f16 3512 restore_detaching.release ();
24291992
PA
3513}
3514
cd0fc7c3 3515/* Wait for control to return from inferior to debugger.
ae123ec6 3516
cd0fc7c3
SS
3517 If inferior gets a signal, we may decide to start it up again
3518 instead of returning. That is why there is a loop in this function.
3519 When this function actually returns it means the inferior
3520 should be left stopped and GDB should read more commands. */
3521
3522void
e4c8541f 3523wait_for_inferior (void)
cd0fc7c3 3524{
527159b7 3525 if (debug_infrun)
ae123ec6 3526 fprintf_unfiltered
e4c8541f 3527 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3528
4c41382a 3529 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3530
e6f5c25b
PA
3531 /* If an error happens while handling the event, propagate GDB's
3532 knowledge of the executing state to the frontend/user running
3533 state. */
731f534f 3534 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3535
c906108c
SS
3536 while (1)
3537 {
ae25568b
PA
3538 struct execution_control_state ecss;
3539 struct execution_control_state *ecs = &ecss;
963f9c80 3540 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3541
ae25568b
PA
3542 memset (ecs, 0, sizeof (*ecs));
3543
ec9499be 3544 overlay_cache_invalid = 1;
ec9499be 3545
f15cb84a
YQ
3546 /* Flush target cache before starting to handle each event.
3547 Target was running and cache could be stale. This is just a
3548 heuristic. Running threads may modify target memory, but we
3549 don't get any event. */
3550 target_dcache_invalidate ();
3551
372316f1 3552 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3553
f00150c9 3554 if (debug_infrun)
223698f8 3555 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3556
cd0fc7c3
SS
3557 /* Now figure out what to do with the result of the result. */
3558 handle_inferior_event (ecs);
c906108c 3559
cd0fc7c3
SS
3560 if (!ecs->wait_some_more)
3561 break;
3562 }
4e1c45ea 3563
e6f5c25b 3564 /* No error, don't finish the state yet. */
731f534f 3565 finish_state.release ();
cd0fc7c3 3566}
c906108c 3567
d3d4baed
PA
3568/* Cleanup that reinstalls the readline callback handler, if the
3569 target is running in the background. If while handling the target
3570 event something triggered a secondary prompt, like e.g., a
3571 pagination prompt, we'll have removed the callback handler (see
3572 gdb_readline_wrapper_line). Need to do this as we go back to the
3573 event loop, ready to process further input. Note this has no
3574 effect if the handler hasn't actually been removed, because calling
3575 rl_callback_handler_install resets the line buffer, thus losing
3576 input. */
3577
3578static void
d238133d 3579reinstall_readline_callback_handler_cleanup ()
d3d4baed 3580{
3b12939d
PA
3581 struct ui *ui = current_ui;
3582
3583 if (!ui->async)
6c400b59
PA
3584 {
3585 /* We're not going back to the top level event loop yet. Don't
3586 install the readline callback, as it'd prep the terminal,
3587 readline-style (raw, noecho) (e.g., --batch). We'll install
3588 it the next time the prompt is displayed, when we're ready
3589 for input. */
3590 return;
3591 }
3592
3b12939d 3593 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3594 gdb_rl_callback_handler_reinstall ();
3595}
3596
243a9253
PA
3597/* Clean up the FSMs of threads that are now stopped. In non-stop,
3598 that's just the event thread. In all-stop, that's all threads. */
3599
3600static void
3601clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3602{
08036331
PA
3603 if (ecs->event_thread != NULL
3604 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3605 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3606
3607 if (!non_stop)
3608 {
08036331 3609 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3610 {
3611 if (thr->thread_fsm == NULL)
3612 continue;
3613 if (thr == ecs->event_thread)
3614 continue;
3615
00431a78 3616 switch_to_thread (thr);
46e3ed7f 3617 thr->thread_fsm->clean_up (thr);
243a9253
PA
3618 }
3619
3620 if (ecs->event_thread != NULL)
00431a78 3621 switch_to_thread (ecs->event_thread);
243a9253
PA
3622 }
3623}
3624
3b12939d
PA
3625/* Helper for all_uis_check_sync_execution_done that works on the
3626 current UI. */
3627
3628static void
3629check_curr_ui_sync_execution_done (void)
3630{
3631 struct ui *ui = current_ui;
3632
3633 if (ui->prompt_state == PROMPT_NEEDED
3634 && ui->async
3635 && !gdb_in_secondary_prompt_p (ui))
3636 {
223ffa71 3637 target_terminal::ours ();
76727919 3638 gdb::observers::sync_execution_done.notify ();
3eb7562a 3639 ui_register_input_event_handler (ui);
3b12939d
PA
3640 }
3641}
3642
3643/* See infrun.h. */
3644
3645void
3646all_uis_check_sync_execution_done (void)
3647{
0e454242 3648 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3649 {
3650 check_curr_ui_sync_execution_done ();
3651 }
3652}
3653
a8836c93
PA
3654/* See infrun.h. */
3655
3656void
3657all_uis_on_sync_execution_starting (void)
3658{
0e454242 3659 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3660 {
3661 if (current_ui->prompt_state == PROMPT_NEEDED)
3662 async_disable_stdin ();
3663 }
3664}
3665
1777feb0 3666/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3667 event loop whenever a change of state is detected on the file
1777feb0
MS
3668 descriptor corresponding to the target. It can be called more than
3669 once to complete a single execution command. In such cases we need
3670 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3671 that this function is called for a single execution command, then
3672 report to the user that the inferior has stopped, and do the
1777feb0 3673 necessary cleanups. */
43ff13b4
JM
3674
3675void
fba45db2 3676fetch_inferior_event (void *client_data)
43ff13b4 3677{
0d1e5fa7 3678 struct execution_control_state ecss;
a474d7c2 3679 struct execution_control_state *ecs = &ecss;
0f641c01 3680 int cmd_done = 0;
963f9c80 3681 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3682
0d1e5fa7
PA
3683 memset (ecs, 0, sizeof (*ecs));
3684
c61db772
PA
3685 /* Events are always processed with the main UI as current UI. This
3686 way, warnings, debug output, etc. are always consistently sent to
3687 the main console. */
4b6749b9 3688 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3689
d3d4baed 3690 /* End up with readline processing input, if necessary. */
d238133d
TT
3691 {
3692 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3693
3694 /* We're handling a live event, so make sure we're doing live
3695 debugging. If we're looking at traceframes while the target is
3696 running, we're going to need to get back to that mode after
3697 handling the event. */
3698 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3699 if (non_stop)
3700 {
3701 maybe_restore_traceframe.emplace ();
3702 set_current_traceframe (-1);
3703 }
43ff13b4 3704
d238133d
TT
3705 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3706
3707 if (non_stop)
3708 /* In non-stop mode, the user/frontend should not notice a thread
3709 switch due to internal events. Make sure we reverse to the
3710 user selected thread and frame after handling the event and
3711 running any breakpoint commands. */
3712 maybe_restore_thread.emplace ();
3713
3714 overlay_cache_invalid = 1;
3715 /* Flush target cache before starting to handle each event. Target
3716 was running and cache could be stale. This is just a heuristic.
3717 Running threads may modify target memory, but we don't get any
3718 event. */
3719 target_dcache_invalidate ();
3720
3721 scoped_restore save_exec_dir
3722 = make_scoped_restore (&execution_direction,
3723 target_execution_direction ());
3724
3725 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3726 target_can_async_p () ? TARGET_WNOHANG : 0);
3727
3728 if (debug_infrun)
3729 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3730
3731 /* If an error happens while handling the event, propagate GDB's
3732 knowledge of the executing state to the frontend/user running
3733 state. */
3734 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3735 scoped_finish_thread_state finish_state (finish_ptid);
3736
979a0d13 3737 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3738 still for the thread which has thrown the exception. */
3739 auto defer_bpstat_clear
3740 = make_scope_exit (bpstat_clear_actions);
3741 auto defer_delete_threads
3742 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3743
3744 /* Now figure out what to do with the result of the result. */
3745 handle_inferior_event (ecs);
3746
3747 if (!ecs->wait_some_more)
3748 {
3749 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3750 int should_stop = 1;
3751 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3752
d238133d 3753 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3754
d238133d
TT
3755 if (thr != NULL)
3756 {
3757 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3758
d238133d 3759 if (thread_fsm != NULL)
46e3ed7f 3760 should_stop = thread_fsm->should_stop (thr);
d238133d 3761 }
243a9253 3762
d238133d
TT
3763 if (!should_stop)
3764 {
3765 keep_going (ecs);
3766 }
3767 else
3768 {
46e3ed7f 3769 bool should_notify_stop = true;
d238133d 3770 int proceeded = 0;
1840d81a 3771
d238133d 3772 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3773
d238133d 3774 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3775 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3776
d238133d
TT
3777 if (should_notify_stop)
3778 {
3779 /* We may not find an inferior if this was a process exit. */
3780 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3781 proceeded = normal_stop ();
3782 }
243a9253 3783
d238133d
TT
3784 if (!proceeded)
3785 {
3786 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3787 cmd_done = 1;
3788 }
3789 }
3790 }
4f8d22e3 3791
d238133d
TT
3792 defer_delete_threads.release ();
3793 defer_bpstat_clear.release ();
29f49a6a 3794
d238133d
TT
3795 /* No error, don't finish the thread states yet. */
3796 finish_state.release ();
731f534f 3797
d238133d
TT
3798 /* This scope is used to ensure that readline callbacks are
3799 reinstalled here. */
3800 }
4f8d22e3 3801
3b12939d
PA
3802 /* If a UI was in sync execution mode, and now isn't, restore its
3803 prompt (a synchronous execution command has finished, and we're
3804 ready for input). */
3805 all_uis_check_sync_execution_done ();
0f641c01
PA
3806
3807 if (cmd_done
0f641c01 3808 && exec_done_display_p
00431a78
PA
3809 && (inferior_ptid == null_ptid
3810 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3811 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3812}
3813
edb3359d
DJ
3814/* Record the frame and location we're currently stepping through. */
3815void
3816set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3817{
3818 struct thread_info *tp = inferior_thread ();
3819
16c381f0
JK
3820 tp->control.step_frame_id = get_frame_id (frame);
3821 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3822
3823 tp->current_symtab = sal.symtab;
3824 tp->current_line = sal.line;
3825}
3826
0d1e5fa7
PA
3827/* Clear context switchable stepping state. */
3828
3829void
4e1c45ea 3830init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3831{
7f5ef605 3832 tss->stepped_breakpoint = 0;
0d1e5fa7 3833 tss->stepping_over_breakpoint = 0;
963f9c80 3834 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3835 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3836}
3837
c32c64b7
DE
3838/* Set the cached copy of the last ptid/waitstatus. */
3839
6efcd9a8 3840void
c32c64b7
DE
3841set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3842{
3843 target_last_wait_ptid = ptid;
3844 target_last_waitstatus = status;
3845}
3846
e02bc4cc 3847/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3848 target_wait()/deprecated_target_wait_hook(). The data is actually
3849 cached by handle_inferior_event(), which gets called immediately
3850 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3851
3852void
488f131b 3853get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3854{
39f77062 3855 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3856 *status = target_last_waitstatus;
3857}
3858
ac264b3b
MS
3859void
3860nullify_last_target_wait_ptid (void)
3861{
3862 target_last_wait_ptid = minus_one_ptid;
3863}
3864
dcf4fbde 3865/* Switch thread contexts. */
dd80620e
MS
3866
3867static void
00431a78 3868context_switch (execution_control_state *ecs)
dd80620e 3869{
00431a78
PA
3870 if (debug_infrun
3871 && ecs->ptid != inferior_ptid
3872 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3873 {
3874 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3875 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3876 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3877 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3878 }
3879
00431a78 3880 switch_to_thread (ecs->event_thread);
dd80620e
MS
3881}
3882
d8dd4d5f
PA
3883/* If the target can't tell whether we've hit breakpoints
3884 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3885 check whether that could have been caused by a breakpoint. If so,
3886 adjust the PC, per gdbarch_decr_pc_after_break. */
3887
4fa8626c 3888static void
d8dd4d5f
PA
3889adjust_pc_after_break (struct thread_info *thread,
3890 struct target_waitstatus *ws)
4fa8626c 3891{
24a73cce
UW
3892 struct regcache *regcache;
3893 struct gdbarch *gdbarch;
118e6252 3894 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3895
4fa8626c
DJ
3896 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3897 we aren't, just return.
9709f61c
DJ
3898
3899 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3900 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3901 implemented by software breakpoints should be handled through the normal
3902 breakpoint layer.
8fb3e588 3903
4fa8626c
DJ
3904 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3905 different signals (SIGILL or SIGEMT for instance), but it is less
3906 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3907 gdbarch_decr_pc_after_break. I don't know any specific target that
3908 generates these signals at breakpoints (the code has been in GDB since at
3909 least 1992) so I can not guess how to handle them here.
8fb3e588 3910
e6cf7916
UW
3911 In earlier versions of GDB, a target with
3912 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3913 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3914 target with both of these set in GDB history, and it seems unlikely to be
3915 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3916
d8dd4d5f 3917 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3918 return;
3919
d8dd4d5f 3920 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3921 return;
3922
4058b839
PA
3923 /* In reverse execution, when a breakpoint is hit, the instruction
3924 under it has already been de-executed. The reported PC always
3925 points at the breakpoint address, so adjusting it further would
3926 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3927 architecture:
3928
3929 B1 0x08000000 : INSN1
3930 B2 0x08000001 : INSN2
3931 0x08000002 : INSN3
3932 PC -> 0x08000003 : INSN4
3933
3934 Say you're stopped at 0x08000003 as above. Reverse continuing
3935 from that point should hit B2 as below. Reading the PC when the
3936 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3937 been de-executed already.
3938
3939 B1 0x08000000 : INSN1
3940 B2 PC -> 0x08000001 : INSN2
3941 0x08000002 : INSN3
3942 0x08000003 : INSN4
3943
3944 We can't apply the same logic as for forward execution, because
3945 we would wrongly adjust the PC to 0x08000000, since there's a
3946 breakpoint at PC - 1. We'd then report a hit on B1, although
3947 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3948 behaviour. */
3949 if (execution_direction == EXEC_REVERSE)
3950 return;
3951
1cf4d951
PA
3952 /* If the target can tell whether the thread hit a SW breakpoint,
3953 trust it. Targets that can tell also adjust the PC
3954 themselves. */
3955 if (target_supports_stopped_by_sw_breakpoint ())
3956 return;
3957
3958 /* Note that relying on whether a breakpoint is planted in memory to
3959 determine this can fail. E.g,. the breakpoint could have been
3960 removed since. Or the thread could have been told to step an
3961 instruction the size of a breakpoint instruction, and only
3962 _after_ was a breakpoint inserted at its address. */
3963
24a73cce
UW
3964 /* If this target does not decrement the PC after breakpoints, then
3965 we have nothing to do. */
00431a78 3966 regcache = get_thread_regcache (thread);
ac7936df 3967 gdbarch = regcache->arch ();
118e6252 3968
527a273a 3969 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3970 if (decr_pc == 0)
24a73cce
UW
3971 return;
3972
8b86c959 3973 const address_space *aspace = regcache->aspace ();
6c95b8df 3974
8aad930b
AC
3975 /* Find the location where (if we've hit a breakpoint) the
3976 breakpoint would be. */
118e6252 3977 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3978
1cf4d951
PA
3979 /* If the target can't tell whether a software breakpoint triggered,
3980 fallback to figuring it out based on breakpoints we think were
3981 inserted in the target, and on whether the thread was stepped or
3982 continued. */
3983
1c5cfe86
PA
3984 /* Check whether there actually is a software breakpoint inserted at
3985 that location.
3986
3987 If in non-stop mode, a race condition is possible where we've
3988 removed a breakpoint, but stop events for that breakpoint were
3989 already queued and arrive later. To suppress those spurious
3990 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3991 and retire them after a number of stop events are reported. Note
3992 this is an heuristic and can thus get confused. The real fix is
3993 to get the "stopped by SW BP and needs adjustment" info out of
3994 the target/kernel (and thus never reach here; see above). */
6c95b8df 3995 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3996 || (target_is_non_stop_p ()
3997 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3998 {
07036511 3999 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4000
8213266a 4001 if (record_full_is_used ())
07036511
TT
4002 restore_operation_disable.emplace
4003 (record_full_gdb_operation_disable_set ());
96429cc8 4004
1c0fdd0e
UW
4005 /* When using hardware single-step, a SIGTRAP is reported for both
4006 a completed single-step and a software breakpoint. Need to
4007 differentiate between the two, as the latter needs adjusting
4008 but the former does not.
4009
4010 The SIGTRAP can be due to a completed hardware single-step only if
4011 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4012 - this thread is currently being stepped
4013
4014 If any of these events did not occur, we must have stopped due
4015 to hitting a software breakpoint, and have to back up to the
4016 breakpoint address.
4017
4018 As a special case, we could have hardware single-stepped a
4019 software breakpoint. In this case (prev_pc == breakpoint_pc),
4020 we also need to back up to the breakpoint address. */
4021
d8dd4d5f
PA
4022 if (thread_has_single_step_breakpoints_set (thread)
4023 || !currently_stepping (thread)
4024 || (thread->stepped_breakpoint
4025 && thread->prev_pc == breakpoint_pc))
515630c5 4026 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4027 }
4fa8626c
DJ
4028}
4029
edb3359d
DJ
4030static int
4031stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4032{
4033 for (frame = get_prev_frame (frame);
4034 frame != NULL;
4035 frame = get_prev_frame (frame))
4036 {
4037 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4038 return 1;
4039 if (get_frame_type (frame) != INLINE_FRAME)
4040 break;
4041 }
4042
4043 return 0;
4044}
4045
c65d6b55
PA
4046/* If the event thread has the stop requested flag set, pretend it
4047 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4048 target_stop). */
4049
4050static bool
4051handle_stop_requested (struct execution_control_state *ecs)
4052{
4053 if (ecs->event_thread->stop_requested)
4054 {
4055 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4056 ecs->ws.value.sig = GDB_SIGNAL_0;
4057 handle_signal_stop (ecs);
4058 return true;
4059 }
4060 return false;
4061}
4062
a96d9b2e
SDJ
4063/* Auxiliary function that handles syscall entry/return events.
4064 It returns 1 if the inferior should keep going (and GDB
4065 should ignore the event), or 0 if the event deserves to be
4066 processed. */
ca2163eb 4067
a96d9b2e 4068static int
ca2163eb 4069handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4070{
ca2163eb 4071 struct regcache *regcache;
ca2163eb
PA
4072 int syscall_number;
4073
00431a78 4074 context_switch (ecs);
ca2163eb 4075
00431a78 4076 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4077 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4078 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4079
a96d9b2e
SDJ
4080 if (catch_syscall_enabled () > 0
4081 && catching_syscall_number (syscall_number) > 0)
4082 {
4083 if (debug_infrun)
4084 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4085 syscall_number);
a96d9b2e 4086
16c381f0 4087 ecs->event_thread->control.stop_bpstat
a01bda52 4088 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4089 ecs->event_thread->suspend.stop_pc,
4090 ecs->event_thread, &ecs->ws);
ab04a2af 4091
c65d6b55
PA
4092 if (handle_stop_requested (ecs))
4093 return 0;
4094
ce12b012 4095 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4096 {
4097 /* Catchpoint hit. */
ca2163eb
PA
4098 return 0;
4099 }
a96d9b2e 4100 }
ca2163eb 4101
c65d6b55
PA
4102 if (handle_stop_requested (ecs))
4103 return 0;
4104
ca2163eb 4105 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4106 keep_going (ecs);
4107 return 1;
a96d9b2e
SDJ
4108}
4109
7e324e48
GB
4110/* Lazily fill in the execution_control_state's stop_func_* fields. */
4111
4112static void
4113fill_in_stop_func (struct gdbarch *gdbarch,
4114 struct execution_control_state *ecs)
4115{
4116 if (!ecs->stop_func_filled_in)
4117 {
4118 /* Don't care about return value; stop_func_start and stop_func_name
4119 will both be 0 if it doesn't work. */
59adbf5d
KB
4120 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4121 &ecs->stop_func_name,
4122 &ecs->stop_func_start,
4123 &ecs->stop_func_end);
7e324e48
GB
4124 ecs->stop_func_start
4125 += gdbarch_deprecated_function_start_offset (gdbarch);
4126
591a12a1
UW
4127 if (gdbarch_skip_entrypoint_p (gdbarch))
4128 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4129 ecs->stop_func_start);
4130
7e324e48
GB
4131 ecs->stop_func_filled_in = 1;
4132 }
4133}
4134
4f5d7f63 4135
00431a78 4136/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4137
4138static enum stop_kind
00431a78 4139get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4140{
00431a78 4141 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4142
4143 gdb_assert (inf != NULL);
4144 return inf->control.stop_soon;
4145}
4146
372316f1
PA
4147/* Wait for one event. Store the resulting waitstatus in WS, and
4148 return the event ptid. */
4149
4150static ptid_t
4151wait_one (struct target_waitstatus *ws)
4152{
4153 ptid_t event_ptid;
4154 ptid_t wait_ptid = minus_one_ptid;
4155
4156 overlay_cache_invalid = 1;
4157
4158 /* Flush target cache before starting to handle each event.
4159 Target was running and cache could be stale. This is just a
4160 heuristic. Running threads may modify target memory, but we
4161 don't get any event. */
4162 target_dcache_invalidate ();
4163
4164 if (deprecated_target_wait_hook)
4165 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4166 else
4167 event_ptid = target_wait (wait_ptid, ws, 0);
4168
4169 if (debug_infrun)
4170 print_target_wait_results (wait_ptid, event_ptid, ws);
4171
4172 return event_ptid;
4173}
4174
4175/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4176 instead of the current thread. */
4177#define THREAD_STOPPED_BY(REASON) \
4178static int \
4179thread_stopped_by_ ## REASON (ptid_t ptid) \
4180{ \
2989a365 4181 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4182 inferior_ptid = ptid; \
4183 \
2989a365 4184 return target_stopped_by_ ## REASON (); \
372316f1
PA
4185}
4186
4187/* Generate thread_stopped_by_watchpoint. */
4188THREAD_STOPPED_BY (watchpoint)
4189/* Generate thread_stopped_by_sw_breakpoint. */
4190THREAD_STOPPED_BY (sw_breakpoint)
4191/* Generate thread_stopped_by_hw_breakpoint. */
4192THREAD_STOPPED_BY (hw_breakpoint)
4193
372316f1
PA
4194/* Save the thread's event and stop reason to process it later. */
4195
4196static void
4197save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4198{
372316f1
PA
4199 if (debug_infrun)
4200 {
23fdd69e 4201 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4202
372316f1
PA
4203 fprintf_unfiltered (gdb_stdlog,
4204 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4205 statstr.c_str (),
e99b03dc 4206 tp->ptid.pid (),
e38504b3 4207 tp->ptid.lwp (),
cc6bcb54 4208 tp->ptid.tid ());
372316f1
PA
4209 }
4210
4211 /* Record for later. */
4212 tp->suspend.waitstatus = *ws;
4213 tp->suspend.waitstatus_pending_p = 1;
4214
00431a78 4215 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4216 const address_space *aspace = regcache->aspace ();
372316f1
PA
4217
4218 if (ws->kind == TARGET_WAITKIND_STOPPED
4219 && ws->value.sig == GDB_SIGNAL_TRAP)
4220 {
4221 CORE_ADDR pc = regcache_read_pc (regcache);
4222
4223 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4224
4225 if (thread_stopped_by_watchpoint (tp->ptid))
4226 {
4227 tp->suspend.stop_reason
4228 = TARGET_STOPPED_BY_WATCHPOINT;
4229 }
4230 else if (target_supports_stopped_by_sw_breakpoint ()
4231 && thread_stopped_by_sw_breakpoint (tp->ptid))
4232 {
4233 tp->suspend.stop_reason
4234 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4235 }
4236 else if (target_supports_stopped_by_hw_breakpoint ()
4237 && thread_stopped_by_hw_breakpoint (tp->ptid))
4238 {
4239 tp->suspend.stop_reason
4240 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4241 }
4242 else if (!target_supports_stopped_by_hw_breakpoint ()
4243 && hardware_breakpoint_inserted_here_p (aspace,
4244 pc))
4245 {
4246 tp->suspend.stop_reason
4247 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4248 }
4249 else if (!target_supports_stopped_by_sw_breakpoint ()
4250 && software_breakpoint_inserted_here_p (aspace,
4251 pc))
4252 {
4253 tp->suspend.stop_reason
4254 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4255 }
4256 else if (!thread_has_single_step_breakpoints_set (tp)
4257 && currently_stepping (tp))
4258 {
4259 tp->suspend.stop_reason
4260 = TARGET_STOPPED_BY_SINGLE_STEP;
4261 }
4262 }
4263}
4264
6efcd9a8 4265/* See infrun.h. */
372316f1 4266
6efcd9a8 4267void
372316f1
PA
4268stop_all_threads (void)
4269{
4270 /* We may need multiple passes to discover all threads. */
4271 int pass;
4272 int iterations = 0;
372316f1 4273
fbea99ea 4274 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4275
4276 if (debug_infrun)
4277 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4278
00431a78 4279 scoped_restore_current_thread restore_thread;
372316f1 4280
65706a29 4281 target_thread_events (1);
9885e6bb 4282 SCOPE_EXIT { target_thread_events (0); };
65706a29 4283
372316f1
PA
4284 /* Request threads to stop, and then wait for the stops. Because
4285 threads we already know about can spawn more threads while we're
4286 trying to stop them, and we only learn about new threads when we
4287 update the thread list, do this in a loop, and keep iterating
4288 until two passes find no threads that need to be stopped. */
4289 for (pass = 0; pass < 2; pass++, iterations++)
4290 {
4291 if (debug_infrun)
4292 fprintf_unfiltered (gdb_stdlog,
4293 "infrun: stop_all_threads, pass=%d, "
4294 "iterations=%d\n", pass, iterations);
4295 while (1)
4296 {
4297 ptid_t event_ptid;
4298 struct target_waitstatus ws;
4299 int need_wait = 0;
372316f1
PA
4300
4301 update_thread_list ();
4302
4303 /* Go through all threads looking for threads that we need
4304 to tell the target to stop. */
08036331 4305 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4306 {
4307 if (t->executing)
4308 {
4309 /* If already stopping, don't request a stop again.
4310 We just haven't seen the notification yet. */
4311 if (!t->stop_requested)
4312 {
4313 if (debug_infrun)
4314 fprintf_unfiltered (gdb_stdlog,
4315 "infrun: %s executing, "
4316 "need stop\n",
a068643d 4317 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4318 target_stop (t->ptid);
4319 t->stop_requested = 1;
4320 }
4321 else
4322 {
4323 if (debug_infrun)
4324 fprintf_unfiltered (gdb_stdlog,
4325 "infrun: %s executing, "
4326 "already stopping\n",
a068643d 4327 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4328 }
4329
4330 if (t->stop_requested)
4331 need_wait = 1;
4332 }
4333 else
4334 {
4335 if (debug_infrun)
4336 fprintf_unfiltered (gdb_stdlog,
4337 "infrun: %s not executing\n",
a068643d 4338 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4339
4340 /* The thread may be not executing, but still be
4341 resumed with a pending status to process. */
4342 t->resumed = 0;
4343 }
4344 }
4345
4346 if (!need_wait)
4347 break;
4348
4349 /* If we find new threads on the second iteration, restart
4350 over. We want to see two iterations in a row with all
4351 threads stopped. */
4352 if (pass > 0)
4353 pass = -1;
4354
4355 event_ptid = wait_one (&ws);
c29705b7 4356 if (debug_infrun)
372316f1 4357 {
c29705b7
PW
4358 fprintf_unfiltered (gdb_stdlog,
4359 "infrun: stop_all_threads %s %s\n",
4360 target_waitstatus_to_string (&ws).c_str (),
4361 target_pid_to_str (event_ptid).c_str ());
372316f1 4362 }
372316f1 4363
c29705b7
PW
4364 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4365 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4366 || ws.kind == TARGET_WAITKIND_EXITED
4367 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4368 {
4369 /* All resumed threads exited
4370 or one thread/process exited/signalled. */
372316f1
PA
4371 }
4372 else
4373 {
08036331 4374 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4375 if (t == NULL)
4376 t = add_thread (event_ptid);
4377
4378 t->stop_requested = 0;
4379 t->executing = 0;
4380 t->resumed = 0;
4381 t->control.may_range_step = 0;
4382
6efcd9a8
PA
4383 /* This may be the first time we see the inferior report
4384 a stop. */
08036331 4385 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4386 if (inf->needs_setup)
4387 {
4388 switch_to_thread_no_regs (t);
4389 setup_inferior (0);
4390 }
4391
372316f1
PA
4392 if (ws.kind == TARGET_WAITKIND_STOPPED
4393 && ws.value.sig == GDB_SIGNAL_0)
4394 {
4395 /* We caught the event that we intended to catch, so
4396 there's no event pending. */
4397 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4398 t->suspend.waitstatus_pending_p = 0;
4399
00431a78 4400 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4401 {
4402 /* Add it back to the step-over queue. */
4403 if (debug_infrun)
4404 {
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: displaced-step of %s "
4407 "canceled: adding back to the "
4408 "step-over queue\n",
a068643d 4409 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4410 }
4411 t->control.trap_expected = 0;
4412 thread_step_over_chain_enqueue (t);
4413 }
4414 }
4415 else
4416 {
4417 enum gdb_signal sig;
4418 struct regcache *regcache;
372316f1
PA
4419
4420 if (debug_infrun)
4421 {
23fdd69e 4422 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4423
372316f1
PA
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: target_wait %s, saving "
4426 "status for %d.%ld.%ld\n",
23fdd69e 4427 statstr.c_str (),
e99b03dc 4428 t->ptid.pid (),
e38504b3 4429 t->ptid.lwp (),
cc6bcb54 4430 t->ptid.tid ());
372316f1
PA
4431 }
4432
4433 /* Record for later. */
4434 save_waitstatus (t, &ws);
4435
4436 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4437 ? ws.value.sig : GDB_SIGNAL_0);
4438
00431a78 4439 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4440 {
4441 /* Add it back to the step-over queue. */
4442 t->control.trap_expected = 0;
4443 thread_step_over_chain_enqueue (t);
4444 }
4445
00431a78 4446 regcache = get_thread_regcache (t);
372316f1
PA
4447 t->suspend.stop_pc = regcache_read_pc (regcache);
4448
4449 if (debug_infrun)
4450 {
4451 fprintf_unfiltered (gdb_stdlog,
4452 "infrun: saved stop_pc=%s for %s "
4453 "(currently_stepping=%d)\n",
4454 paddress (target_gdbarch (),
4455 t->suspend.stop_pc),
a068643d 4456 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4457 currently_stepping (t));
4458 }
4459 }
4460 }
4461 }
4462 }
4463
372316f1
PA
4464 if (debug_infrun)
4465 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4466}
4467
f4836ba9
PA
4468/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4469
4470static int
4471handle_no_resumed (struct execution_control_state *ecs)
4472{
3b12939d 4473 if (target_can_async_p ())
f4836ba9 4474 {
3b12939d
PA
4475 struct ui *ui;
4476 int any_sync = 0;
f4836ba9 4477
3b12939d
PA
4478 ALL_UIS (ui)
4479 {
4480 if (ui->prompt_state == PROMPT_BLOCKED)
4481 {
4482 any_sync = 1;
4483 break;
4484 }
4485 }
4486 if (!any_sync)
4487 {
4488 /* There were no unwaited-for children left in the target, but,
4489 we're not synchronously waiting for events either. Just
4490 ignore. */
4491
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: TARGET_WAITKIND_NO_RESUMED "
4495 "(ignoring: bg)\n");
4496 prepare_to_wait (ecs);
4497 return 1;
4498 }
f4836ba9
PA
4499 }
4500
4501 /* Otherwise, if we were running a synchronous execution command, we
4502 may need to cancel it and give the user back the terminal.
4503
4504 In non-stop mode, the target can't tell whether we've already
4505 consumed previous stop events, so it can end up sending us a
4506 no-resumed event like so:
4507
4508 #0 - thread 1 is left stopped
4509
4510 #1 - thread 2 is resumed and hits breakpoint
4511 -> TARGET_WAITKIND_STOPPED
4512
4513 #2 - thread 3 is resumed and exits
4514 this is the last resumed thread, so
4515 -> TARGET_WAITKIND_NO_RESUMED
4516
4517 #3 - gdb processes stop for thread 2 and decides to re-resume
4518 it.
4519
4520 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4521 thread 2 is now resumed, so the event should be ignored.
4522
4523 IOW, if the stop for thread 2 doesn't end a foreground command,
4524 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4525 event. But it could be that the event meant that thread 2 itself
4526 (or whatever other thread was the last resumed thread) exited.
4527
4528 To address this we refresh the thread list and check whether we
4529 have resumed threads _now_. In the example above, this removes
4530 thread 3 from the thread list. If thread 2 was re-resumed, we
4531 ignore this event. If we find no thread resumed, then we cancel
4532 the synchronous command show "no unwaited-for " to the user. */
4533 update_thread_list ();
4534
08036331 4535 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4536 {
4537 if (thread->executing
4538 || thread->suspend.waitstatus_pending_p)
4539 {
4540 /* There were no unwaited-for children left in the target at
4541 some point, but there are now. Just ignore. */
4542 if (debug_infrun)
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: TARGET_WAITKIND_NO_RESUMED "
4545 "(ignoring: found resumed)\n");
4546 prepare_to_wait (ecs);
4547 return 1;
4548 }
4549 }
4550
4551 /* Note however that we may find no resumed thread because the whole
4552 process exited meanwhile (thus updating the thread list results
4553 in an empty thread list). In this case we know we'll be getting
4554 a process exit event shortly. */
08036331 4555 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4556 {
4557 if (inf->pid == 0)
4558 continue;
4559
08036331 4560 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4561 if (thread == NULL)
4562 {
4563 if (debug_infrun)
4564 fprintf_unfiltered (gdb_stdlog,
4565 "infrun: TARGET_WAITKIND_NO_RESUMED "
4566 "(expect process exit)\n");
4567 prepare_to_wait (ecs);
4568 return 1;
4569 }
4570 }
4571
4572 /* Go ahead and report the event. */
4573 return 0;
4574}
4575
05ba8510
PA
4576/* Given an execution control state that has been freshly filled in by
4577 an event from the inferior, figure out what it means and take
4578 appropriate action.
4579
4580 The alternatives are:
4581
22bcd14b 4582 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4583 debugger.
4584
4585 2) keep_going and return; to wait for the next event (set
4586 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4587 once). */
c906108c 4588
ec9499be 4589static void
595915c1 4590handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4591{
595915c1
TT
4592 /* Make sure that all temporary struct value objects that were
4593 created during the handling of the event get deleted at the
4594 end. */
4595 scoped_value_mark free_values;
4596
d6b48e9c
PA
4597 enum stop_kind stop_soon;
4598
c29705b7
PW
4599 if (debug_infrun)
4600 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4601 target_waitstatus_to_string (&ecs->ws).c_str ());
4602
28736962
PA
4603 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4604 {
4605 /* We had an event in the inferior, but we are not interested in
4606 handling it at this level. The lower layers have already
4607 done what needs to be done, if anything.
4608
4609 One of the possible circumstances for this is when the
4610 inferior produces output for the console. The inferior has
4611 not stopped, and we are ignoring the event. Another possible
4612 circumstance is any event which the lower level knows will be
4613 reported multiple times without an intervening resume. */
28736962
PA
4614 prepare_to_wait (ecs);
4615 return;
4616 }
4617
65706a29
PA
4618 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4619 {
65706a29
PA
4620 prepare_to_wait (ecs);
4621 return;
4622 }
4623
0e5bf2a8 4624 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4625 && handle_no_resumed (ecs))
4626 return;
0e5bf2a8 4627
1777feb0 4628 /* Cache the last pid/waitstatus. */
c32c64b7 4629 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4630
ca005067 4631 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4632 stop_stack_dummy = STOP_NONE;
ca005067 4633
0e5bf2a8
PA
4634 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4635 {
4636 /* No unwaited-for children left. IOW, all resumed children
4637 have exited. */
0e5bf2a8 4638 stop_print_frame = 0;
22bcd14b 4639 stop_waiting (ecs);
0e5bf2a8
PA
4640 return;
4641 }
4642
8c90c137 4643 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4644 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4645 {
4646 ecs->event_thread = find_thread_ptid (ecs->ptid);
4647 /* If it's a new thread, add it to the thread database. */
4648 if (ecs->event_thread == NULL)
4649 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4650
4651 /* Disable range stepping. If the next step request could use a
4652 range, this will be end up re-enabled then. */
4653 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4654 }
88ed393a
JK
4655
4656 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4657 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4658
4659 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4660 reinit_frame_cache ();
4661
28736962
PA
4662 breakpoint_retire_moribund ();
4663
2b009048
DJ
4664 /* First, distinguish signals caused by the debugger from signals
4665 that have to do with the program's own actions. Note that
4666 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4667 on the operating system version. Here we detect when a SIGILL or
4668 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4669 something similar for SIGSEGV, since a SIGSEGV will be generated
4670 when we're trying to execute a breakpoint instruction on a
4671 non-executable stack. This happens for call dummy breakpoints
4672 for architectures like SPARC that place call dummies on the
4673 stack. */
2b009048 4674 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4675 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4676 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4677 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4678 {
00431a78 4679 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4680
a01bda52 4681 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4682 regcache_read_pc (regcache)))
4683 {
4684 if (debug_infrun)
4685 fprintf_unfiltered (gdb_stdlog,
4686 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4687 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4688 }
2b009048
DJ
4689 }
4690
28736962
PA
4691 /* Mark the non-executing threads accordingly. In all-stop, all
4692 threads of all processes are stopped when we get any event
e1316e60 4693 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4694 {
4695 ptid_t mark_ptid;
4696
fbea99ea 4697 if (!target_is_non_stop_p ())
372316f1
PA
4698 mark_ptid = minus_one_ptid;
4699 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4700 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4701 {
4702 /* If we're handling a process exit in non-stop mode, even
4703 though threads haven't been deleted yet, one would think
4704 that there is nothing to do, as threads of the dead process
4705 will be soon deleted, and threads of any other process were
4706 left running. However, on some targets, threads survive a
4707 process exit event. E.g., for the "checkpoint" command,
4708 when the current checkpoint/fork exits, linux-fork.c
4709 automatically switches to another fork from within
4710 target_mourn_inferior, by associating the same
4711 inferior/thread to another fork. We haven't mourned yet at
4712 this point, but we must mark any threads left in the
4713 process as not-executing so that finish_thread_state marks
4714 them stopped (in the user's perspective) if/when we present
4715 the stop to the user. */
e99b03dc 4716 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4717 }
4718 else
4719 mark_ptid = ecs->ptid;
4720
4721 set_executing (mark_ptid, 0);
4722
4723 /* Likewise the resumed flag. */
4724 set_resumed (mark_ptid, 0);
4725 }
8c90c137 4726
488f131b
JB
4727 switch (ecs->ws.kind)
4728 {
4729 case TARGET_WAITKIND_LOADED:
00431a78 4730 context_switch (ecs);
b0f4b84b
DJ
4731 /* Ignore gracefully during startup of the inferior, as it might
4732 be the shell which has just loaded some objects, otherwise
4733 add the symbols for the newly loaded objects. Also ignore at
4734 the beginning of an attach or remote session; we will query
4735 the full list of libraries once the connection is
4736 established. */
4f5d7f63 4737
00431a78 4738 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4739 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4740 {
edcc5120
TT
4741 struct regcache *regcache;
4742
00431a78 4743 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4744
4745 handle_solib_event ();
4746
4747 ecs->event_thread->control.stop_bpstat
a01bda52 4748 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4749 ecs->event_thread->suspend.stop_pc,
4750 ecs->event_thread, &ecs->ws);
ab04a2af 4751
c65d6b55
PA
4752 if (handle_stop_requested (ecs))
4753 return;
4754
ce12b012 4755 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4756 {
4757 /* A catchpoint triggered. */
94c57d6a
PA
4758 process_event_stop_test (ecs);
4759 return;
edcc5120 4760 }
488f131b 4761
b0f4b84b
DJ
4762 /* If requested, stop when the dynamic linker notifies
4763 gdb of events. This allows the user to get control
4764 and place breakpoints in initializer routines for
4765 dynamically loaded objects (among other things). */
a493e3e2 4766 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4767 if (stop_on_solib_events)
4768 {
55409f9d
DJ
4769 /* Make sure we print "Stopped due to solib-event" in
4770 normal_stop. */
4771 stop_print_frame = 1;
4772
22bcd14b 4773 stop_waiting (ecs);
b0f4b84b
DJ
4774 return;
4775 }
488f131b 4776 }
b0f4b84b
DJ
4777
4778 /* If we are skipping through a shell, or through shared library
4779 loading that we aren't interested in, resume the program. If
5c09a2c5 4780 we're running the program normally, also resume. */
b0f4b84b
DJ
4781 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4782 {
74960c60
VP
4783 /* Loading of shared libraries might have changed breakpoint
4784 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4785 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4786 insert_breakpoints ();
64ce06e4 4787 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4788 prepare_to_wait (ecs);
4789 return;
4790 }
4791
5c09a2c5
PA
4792 /* But stop if we're attaching or setting up a remote
4793 connection. */
4794 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4795 || stop_soon == STOP_QUIETLY_REMOTE)
4796 {
4797 if (debug_infrun)
4798 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4799 stop_waiting (ecs);
5c09a2c5
PA
4800 return;
4801 }
4802
4803 internal_error (__FILE__, __LINE__,
4804 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4805
488f131b 4806 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4807 if (handle_stop_requested (ecs))
4808 return;
00431a78 4809 context_switch (ecs);
64ce06e4 4810 resume (GDB_SIGNAL_0);
488f131b
JB
4811 prepare_to_wait (ecs);
4812 return;
c5aa993b 4813
65706a29 4814 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4815 if (handle_stop_requested (ecs))
4816 return;
00431a78 4817 context_switch (ecs);
65706a29
PA
4818 if (!switch_back_to_stepped_thread (ecs))
4819 keep_going (ecs);
4820 return;
4821
488f131b 4822 case TARGET_WAITKIND_EXITED:
940c3c06 4823 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4824 inferior_ptid = ecs->ptid;
c9657e70 4825 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4826 set_current_program_space (current_inferior ()->pspace);
4827 handle_vfork_child_exec_or_exit (0);
223ffa71 4828 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4829
0c557179
SDJ
4830 /* Clearing any previous state of convenience variables. */
4831 clear_exit_convenience_vars ();
4832
940c3c06
PA
4833 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4834 {
4835 /* Record the exit code in the convenience variable $_exitcode, so
4836 that the user can inspect this again later. */
4837 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4838 (LONGEST) ecs->ws.value.integer);
4839
4840 /* Also record this in the inferior itself. */
4841 current_inferior ()->has_exit_code = 1;
4842 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4843
98eb56a4
PA
4844 /* Support the --return-child-result option. */
4845 return_child_result_value = ecs->ws.value.integer;
4846
76727919 4847 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4848 }
4849 else
0c557179 4850 {
00431a78 4851 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4852
4853 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4854 {
4855 /* Set the value of the internal variable $_exitsignal,
4856 which holds the signal uncaught by the inferior. */
4857 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4858 gdbarch_gdb_signal_to_target (gdbarch,
4859 ecs->ws.value.sig));
4860 }
4861 else
4862 {
4863 /* We don't have access to the target's method used for
4864 converting between signal numbers (GDB's internal
4865 representation <-> target's representation).
4866 Therefore, we cannot do a good job at displaying this
4867 information to the user. It's better to just warn
4868 her about it (if infrun debugging is enabled), and
4869 give up. */
4870 if (debug_infrun)
4871 fprintf_filtered (gdb_stdlog, _("\
4872Cannot fill $_exitsignal with the correct signal number.\n"));
4873 }
4874
76727919 4875 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4876 }
8cf64490 4877
488f131b 4878 gdb_flush (gdb_stdout);
bc1e6c81 4879 target_mourn_inferior (inferior_ptid);
488f131b 4880 stop_print_frame = 0;
22bcd14b 4881 stop_waiting (ecs);
488f131b 4882 return;
c5aa993b 4883
488f131b 4884 /* The following are the only cases in which we keep going;
1777feb0 4885 the above cases end in a continue or goto. */
488f131b 4886 case TARGET_WAITKIND_FORKED:
deb3b17b 4887 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4888 /* Check whether the inferior is displaced stepping. */
4889 {
00431a78 4890 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4891 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4892
4893 /* If checking displaced stepping is supported, and thread
4894 ecs->ptid is displaced stepping. */
00431a78 4895 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4896 {
4897 struct inferior *parent_inf
c9657e70 4898 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4899 struct regcache *child_regcache;
4900 CORE_ADDR parent_pc;
4901
4902 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4903 indicating that the displaced stepping of syscall instruction
4904 has been done. Perform cleanup for parent process here. Note
4905 that this operation also cleans up the child process for vfork,
4906 because their pages are shared. */
00431a78 4907 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4908 /* Start a new step-over in another thread if there's one
4909 that needs it. */
4910 start_step_over ();
e2d96639
YQ
4911
4912 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4913 {
c0987663 4914 struct displaced_step_inferior_state *displaced
00431a78 4915 = get_displaced_stepping_state (parent_inf);
c0987663 4916
e2d96639
YQ
4917 /* Restore scratch pad for child process. */
4918 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4919 }
4920
4921 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4922 the child's PC is also within the scratchpad. Set the child's PC
4923 to the parent's PC value, which has already been fixed up.
4924 FIXME: we use the parent's aspace here, although we're touching
4925 the child, because the child hasn't been added to the inferior
4926 list yet at this point. */
4927
4928 child_regcache
4929 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4930 gdbarch,
4931 parent_inf->aspace);
4932 /* Read PC value of parent process. */
4933 parent_pc = regcache_read_pc (regcache);
4934
4935 if (debug_displaced)
4936 fprintf_unfiltered (gdb_stdlog,
4937 "displaced: write child pc from %s to %s\n",
4938 paddress (gdbarch,
4939 regcache_read_pc (child_regcache)),
4940 paddress (gdbarch, parent_pc));
4941
4942 regcache_write_pc (child_regcache, parent_pc);
4943 }
4944 }
4945
00431a78 4946 context_switch (ecs);
5a2901d9 4947
b242c3c2
PA
4948 /* Immediately detach breakpoints from the child before there's
4949 any chance of letting the user delete breakpoints from the
4950 breakpoint lists. If we don't do this early, it's easy to
4951 leave left over traps in the child, vis: "break foo; catch
4952 fork; c; <fork>; del; c; <child calls foo>". We only follow
4953 the fork on the last `continue', and by that time the
4954 breakpoint at "foo" is long gone from the breakpoint table.
4955 If we vforked, then we don't need to unpatch here, since both
4956 parent and child are sharing the same memory pages; we'll
4957 need to unpatch at follow/detach time instead to be certain
4958 that new breakpoints added between catchpoint hit time and
4959 vfork follow are detached. */
4960 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4961 {
b242c3c2
PA
4962 /* This won't actually modify the breakpoint list, but will
4963 physically remove the breakpoints from the child. */
d80ee84f 4964 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4965 }
4966
34b7e8a6 4967 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4968
e58b0e63
PA
4969 /* In case the event is caught by a catchpoint, remember that
4970 the event is to be followed at the next resume of the thread,
4971 and not immediately. */
4972 ecs->event_thread->pending_follow = ecs->ws;
4973
f2ffa92b
PA
4974 ecs->event_thread->suspend.stop_pc
4975 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 4976
16c381f0 4977 ecs->event_thread->control.stop_bpstat
a01bda52 4978 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
4979 ecs->event_thread->suspend.stop_pc,
4980 ecs->event_thread, &ecs->ws);
675bf4cb 4981
c65d6b55
PA
4982 if (handle_stop_requested (ecs))
4983 return;
4984
ce12b012
PA
4985 /* If no catchpoint triggered for this, then keep going. Note
4986 that we're interested in knowing the bpstat actually causes a
4987 stop, not just if it may explain the signal. Software
4988 watchpoints, for example, always appear in the bpstat. */
4989 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4990 {
e58b0e63 4991 int should_resume;
3e43a32a
MS
4992 int follow_child
4993 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4994
a493e3e2 4995 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4996
4997 should_resume = follow_fork ();
4998
00431a78
PA
4999 thread_info *parent = ecs->event_thread;
5000 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5001
a2077e25
PA
5002 /* At this point, the parent is marked running, and the
5003 child is marked stopped. */
5004
5005 /* If not resuming the parent, mark it stopped. */
5006 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5007 parent->set_running (false);
a2077e25
PA
5008
5009 /* If resuming the child, mark it running. */
5010 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5011 child->set_running (true);
a2077e25 5012
6c95b8df 5013 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5014 if (!detach_fork && (non_stop
5015 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5016 {
5017 if (follow_child)
5018 switch_to_thread (parent);
5019 else
5020 switch_to_thread (child);
5021
5022 ecs->event_thread = inferior_thread ();
5023 ecs->ptid = inferior_ptid;
5024 keep_going (ecs);
5025 }
5026
5027 if (follow_child)
5028 switch_to_thread (child);
5029 else
5030 switch_to_thread (parent);
5031
e58b0e63
PA
5032 ecs->event_thread = inferior_thread ();
5033 ecs->ptid = inferior_ptid;
5034
5035 if (should_resume)
5036 keep_going (ecs);
5037 else
22bcd14b 5038 stop_waiting (ecs);
04e68871
DJ
5039 return;
5040 }
94c57d6a
PA
5041 process_event_stop_test (ecs);
5042 return;
488f131b 5043
6c95b8df
PA
5044 case TARGET_WAITKIND_VFORK_DONE:
5045 /* Done with the shared memory region. Re-insert breakpoints in
5046 the parent, and keep going. */
5047
00431a78 5048 context_switch (ecs);
6c95b8df
PA
5049
5050 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5051 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5052
5053 if (handle_stop_requested (ecs))
5054 return;
5055
6c95b8df
PA
5056 /* This also takes care of reinserting breakpoints in the
5057 previously locked inferior. */
5058 keep_going (ecs);
5059 return;
5060
488f131b 5061 case TARGET_WAITKIND_EXECD:
488f131b 5062
cbd2b4e3
PA
5063 /* Note we can't read registers yet (the stop_pc), because we
5064 don't yet know the inferior's post-exec architecture.
5065 'stop_pc' is explicitly read below instead. */
00431a78 5066 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5067
6c95b8df
PA
5068 /* Do whatever is necessary to the parent branch of the vfork. */
5069 handle_vfork_child_exec_or_exit (1);
5070
795e548f
PA
5071 /* This causes the eventpoints and symbol table to be reset.
5072 Must do this now, before trying to determine whether to
5073 stop. */
71b43ef8 5074 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5075
17d8546e
DB
5076 /* In follow_exec we may have deleted the original thread and
5077 created a new one. Make sure that the event thread is the
5078 execd thread for that case (this is a nop otherwise). */
5079 ecs->event_thread = inferior_thread ();
5080
f2ffa92b
PA
5081 ecs->event_thread->suspend.stop_pc
5082 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5083
16c381f0 5084 ecs->event_thread->control.stop_bpstat
a01bda52 5085 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5086 ecs->event_thread->suspend.stop_pc,
5087 ecs->event_thread, &ecs->ws);
795e548f 5088
71b43ef8
PA
5089 /* Note that this may be referenced from inside
5090 bpstat_stop_status above, through inferior_has_execd. */
5091 xfree (ecs->ws.value.execd_pathname);
5092 ecs->ws.value.execd_pathname = NULL;
5093
c65d6b55
PA
5094 if (handle_stop_requested (ecs))
5095 return;
5096
04e68871 5097 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5098 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5099 {
a493e3e2 5100 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5101 keep_going (ecs);
5102 return;
5103 }
94c57d6a
PA
5104 process_event_stop_test (ecs);
5105 return;
488f131b 5106
b4dc5ffa
MK
5107 /* Be careful not to try to gather much state about a thread
5108 that's in a syscall. It's frequently a losing proposition. */
488f131b 5109 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5110 /* Getting the current syscall number. */
94c57d6a
PA
5111 if (handle_syscall_event (ecs) == 0)
5112 process_event_stop_test (ecs);
5113 return;
c906108c 5114
488f131b
JB
5115 /* Before examining the threads further, step this thread to
5116 get it entirely out of the syscall. (We get notice of the
5117 event when the thread is just on the verge of exiting a
5118 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5119 into user code.) */
488f131b 5120 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5121 if (handle_syscall_event (ecs) == 0)
5122 process_event_stop_test (ecs);
5123 return;
c906108c 5124
488f131b 5125 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5126 handle_signal_stop (ecs);
5127 return;
c906108c 5128
b2175913
MS
5129 case TARGET_WAITKIND_NO_HISTORY:
5130 /* Reverse execution: target ran out of history info. */
eab402df 5131
d1988021 5132 /* Switch to the stopped thread. */
00431a78 5133 context_switch (ecs);
d1988021
MM
5134 if (debug_infrun)
5135 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5136
34b7e8a6 5137 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5138 ecs->event_thread->suspend.stop_pc
5139 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5140
5141 if (handle_stop_requested (ecs))
5142 return;
5143
76727919 5144 gdb::observers::no_history.notify ();
22bcd14b 5145 stop_waiting (ecs);
b2175913 5146 return;
488f131b 5147 }
4f5d7f63
PA
5148}
5149
372316f1
PA
5150/* Restart threads back to what they were trying to do back when we
5151 paused them for an in-line step-over. The EVENT_THREAD thread is
5152 ignored. */
4d9d9d04
PA
5153
5154static void
372316f1
PA
5155restart_threads (struct thread_info *event_thread)
5156{
372316f1
PA
5157 /* In case the instruction just stepped spawned a new thread. */
5158 update_thread_list ();
5159
08036331 5160 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5161 {
5162 if (tp == event_thread)
5163 {
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: restart threads: "
5167 "[%s] is event thread\n",
a068643d 5168 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5169 continue;
5170 }
5171
5172 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5173 {
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: restart threads: "
5177 "[%s] not meant to be running\n",
a068643d 5178 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5179 continue;
5180 }
5181
5182 if (tp->resumed)
5183 {
5184 if (debug_infrun)
5185 fprintf_unfiltered (gdb_stdlog,
5186 "infrun: restart threads: [%s] resumed\n",
a068643d 5187 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5188 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5189 continue;
5190 }
5191
5192 if (thread_is_in_step_over_chain (tp))
5193 {
5194 if (debug_infrun)
5195 fprintf_unfiltered (gdb_stdlog,
5196 "infrun: restart threads: "
5197 "[%s] needs step-over\n",
a068643d 5198 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5199 gdb_assert (!tp->resumed);
5200 continue;
5201 }
5202
5203
5204 if (tp->suspend.waitstatus_pending_p)
5205 {
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog,
5208 "infrun: restart threads: "
5209 "[%s] has pending status\n",
a068643d 5210 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5211 tp->resumed = 1;
5212 continue;
5213 }
5214
c65d6b55
PA
5215 gdb_assert (!tp->stop_requested);
5216
372316f1
PA
5217 /* If some thread needs to start a step-over at this point, it
5218 should still be in the step-over queue, and thus skipped
5219 above. */
5220 if (thread_still_needs_step_over (tp))
5221 {
5222 internal_error (__FILE__, __LINE__,
5223 "thread [%s] needs a step-over, but not in "
5224 "step-over queue\n",
a068643d 5225 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5226 }
5227
5228 if (currently_stepping (tp))
5229 {
5230 if (debug_infrun)
5231 fprintf_unfiltered (gdb_stdlog,
5232 "infrun: restart threads: [%s] was stepping\n",
a068643d 5233 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5234 keep_going_stepped_thread (tp);
5235 }
5236 else
5237 {
5238 struct execution_control_state ecss;
5239 struct execution_control_state *ecs = &ecss;
5240
5241 if (debug_infrun)
5242 fprintf_unfiltered (gdb_stdlog,
5243 "infrun: restart threads: [%s] continuing\n",
a068643d 5244 target_pid_to_str (tp->ptid).c_str ());
372316f1 5245 reset_ecs (ecs, tp);
00431a78 5246 switch_to_thread (tp);
372316f1
PA
5247 keep_going_pass_signal (ecs);
5248 }
5249 }
5250}
5251
5252/* Callback for iterate_over_threads. Find a resumed thread that has
5253 a pending waitstatus. */
5254
5255static int
5256resumed_thread_with_pending_status (struct thread_info *tp,
5257 void *arg)
5258{
5259 return (tp->resumed
5260 && tp->suspend.waitstatus_pending_p);
5261}
5262
5263/* Called when we get an event that may finish an in-line or
5264 out-of-line (displaced stepping) step-over started previously.
5265 Return true if the event is processed and we should go back to the
5266 event loop; false if the caller should continue processing the
5267 event. */
5268
5269static int
4d9d9d04
PA
5270finish_step_over (struct execution_control_state *ecs)
5271{
372316f1
PA
5272 int had_step_over_info;
5273
00431a78 5274 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5275 ecs->event_thread->suspend.stop_signal);
5276
372316f1
PA
5277 had_step_over_info = step_over_info_valid_p ();
5278
5279 if (had_step_over_info)
4d9d9d04
PA
5280 {
5281 /* If we're stepping over a breakpoint with all threads locked,
5282 then only the thread that was stepped should be reporting
5283 back an event. */
5284 gdb_assert (ecs->event_thread->control.trap_expected);
5285
c65d6b55 5286 clear_step_over_info ();
4d9d9d04
PA
5287 }
5288
fbea99ea 5289 if (!target_is_non_stop_p ())
372316f1 5290 return 0;
4d9d9d04
PA
5291
5292 /* Start a new step-over in another thread if there's one that
5293 needs it. */
5294 start_step_over ();
372316f1
PA
5295
5296 /* If we were stepping over a breakpoint before, and haven't started
5297 a new in-line step-over sequence, then restart all other threads
5298 (except the event thread). We can't do this in all-stop, as then
5299 e.g., we wouldn't be able to issue any other remote packet until
5300 these other threads stop. */
5301 if (had_step_over_info && !step_over_info_valid_p ())
5302 {
5303 struct thread_info *pending;
5304
5305 /* If we only have threads with pending statuses, the restart
5306 below won't restart any thread and so nothing re-inserts the
5307 breakpoint we just stepped over. But we need it inserted
5308 when we later process the pending events, otherwise if
5309 another thread has a pending event for this breakpoint too,
5310 we'd discard its event (because the breakpoint that
5311 originally caused the event was no longer inserted). */
00431a78 5312 context_switch (ecs);
372316f1
PA
5313 insert_breakpoints ();
5314
5315 restart_threads (ecs->event_thread);
5316
5317 /* If we have events pending, go through handle_inferior_event
5318 again, picking up a pending event at random. This avoids
5319 thread starvation. */
5320
5321 /* But not if we just stepped over a watchpoint in order to let
5322 the instruction execute so we can evaluate its expression.
5323 The set of watchpoints that triggered is recorded in the
5324 breakpoint objects themselves (see bp->watchpoint_triggered).
5325 If we processed another event first, that other event could
5326 clobber this info. */
5327 if (ecs->event_thread->stepping_over_watchpoint)
5328 return 0;
5329
5330 pending = iterate_over_threads (resumed_thread_with_pending_status,
5331 NULL);
5332 if (pending != NULL)
5333 {
5334 struct thread_info *tp = ecs->event_thread;
5335 struct regcache *regcache;
5336
5337 if (debug_infrun)
5338 {
5339 fprintf_unfiltered (gdb_stdlog,
5340 "infrun: found resumed threads with "
5341 "pending events, saving status\n");
5342 }
5343
5344 gdb_assert (pending != tp);
5345
5346 /* Record the event thread's event for later. */
5347 save_waitstatus (tp, &ecs->ws);
5348 /* This was cleared early, by handle_inferior_event. Set it
5349 so this pending event is considered by
5350 do_target_wait. */
5351 tp->resumed = 1;
5352
5353 gdb_assert (!tp->executing);
5354
00431a78 5355 regcache = get_thread_regcache (tp);
372316f1
PA
5356 tp->suspend.stop_pc = regcache_read_pc (regcache);
5357
5358 if (debug_infrun)
5359 {
5360 fprintf_unfiltered (gdb_stdlog,
5361 "infrun: saved stop_pc=%s for %s "
5362 "(currently_stepping=%d)\n",
5363 paddress (target_gdbarch (),
5364 tp->suspend.stop_pc),
a068643d 5365 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5366 currently_stepping (tp));
5367 }
5368
5369 /* This in-line step-over finished; clear this so we won't
5370 start a new one. This is what handle_signal_stop would
5371 do, if we returned false. */
5372 tp->stepping_over_breakpoint = 0;
5373
5374 /* Wake up the event loop again. */
5375 mark_async_event_handler (infrun_async_inferior_event_token);
5376
5377 prepare_to_wait (ecs);
5378 return 1;
5379 }
5380 }
5381
5382 return 0;
4d9d9d04
PA
5383}
5384
4f5d7f63
PA
5385/* Come here when the program has stopped with a signal. */
5386
5387static void
5388handle_signal_stop (struct execution_control_state *ecs)
5389{
5390 struct frame_info *frame;
5391 struct gdbarch *gdbarch;
5392 int stopped_by_watchpoint;
5393 enum stop_kind stop_soon;
5394 int random_signal;
c906108c 5395
f0407826
DE
5396 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5397
c65d6b55
PA
5398 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5399
f0407826
DE
5400 /* Do we need to clean up the state of a thread that has
5401 completed a displaced single-step? (Doing so usually affects
5402 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5403 if (finish_step_over (ecs))
5404 return;
f0407826
DE
5405
5406 /* If we either finished a single-step or hit a breakpoint, but
5407 the user wanted this thread to be stopped, pretend we got a
5408 SIG0 (generic unsignaled stop). */
5409 if (ecs->event_thread->stop_requested
5410 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5411 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5412
f2ffa92b
PA
5413 ecs->event_thread->suspend.stop_pc
5414 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5415
527159b7 5416 if (debug_infrun)
237fc4c9 5417 {
00431a78 5418 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5419 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5420 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5421
5422 inferior_ptid = ecs->ptid;
5af949e3
UW
5423
5424 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5425 paddress (reg_gdbarch,
f2ffa92b 5426 ecs->event_thread->suspend.stop_pc));
d92524f1 5427 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5428 {
5429 CORE_ADDR addr;
abbb1732 5430
237fc4c9
PA
5431 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5432
8b88a78e 5433 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5434 fprintf_unfiltered (gdb_stdlog,
5af949e3 5435 "infrun: stopped data address = %s\n",
b926417a 5436 paddress (reg_gdbarch, addr));
237fc4c9
PA
5437 else
5438 fprintf_unfiltered (gdb_stdlog,
5439 "infrun: (no data address available)\n");
5440 }
5441 }
527159b7 5442
36fa8042
PA
5443 /* This is originated from start_remote(), start_inferior() and
5444 shared libraries hook functions. */
00431a78 5445 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5446 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5447 {
00431a78 5448 context_switch (ecs);
36fa8042
PA
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5451 stop_print_frame = 1;
22bcd14b 5452 stop_waiting (ecs);
36fa8042
PA
5453 return;
5454 }
5455
36fa8042
PA
5456 /* This originates from attach_command(). We need to overwrite
5457 the stop_signal here, because some kernels don't ignore a
5458 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5459 See more comments in inferior.h. On the other hand, if we
5460 get a non-SIGSTOP, report it to the user - assume the backend
5461 will handle the SIGSTOP if it should show up later.
5462
5463 Also consider that the attach is complete when we see a
5464 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5465 target extended-remote report it instead of a SIGSTOP
5466 (e.g. gdbserver). We already rely on SIGTRAP being our
5467 signal, so this is no exception.
5468
5469 Also consider that the attach is complete when we see a
5470 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5471 the target to stop all threads of the inferior, in case the
5472 low level attach operation doesn't stop them implicitly. If
5473 they weren't stopped implicitly, then the stub will report a
5474 GDB_SIGNAL_0, meaning: stopped for no particular reason
5475 other than GDB's request. */
5476 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5477 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5478 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5479 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5480 {
5481 stop_print_frame = 1;
22bcd14b 5482 stop_waiting (ecs);
36fa8042
PA
5483 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5484 return;
5485 }
5486
488f131b 5487 /* See if something interesting happened to the non-current thread. If
b40c7d58 5488 so, then switch to that thread. */
d7e15655 5489 if (ecs->ptid != inferior_ptid)
488f131b 5490 {
527159b7 5491 if (debug_infrun)
8a9de0e4 5492 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5493
00431a78 5494 context_switch (ecs);
c5aa993b 5495
9a4105ab 5496 if (deprecated_context_hook)
00431a78 5497 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5498 }
c906108c 5499
568d6575
UW
5500 /* At this point, get hold of the now-current thread's frame. */
5501 frame = get_current_frame ();
5502 gdbarch = get_frame_arch (frame);
5503
2adfaa28 5504 /* Pull the single step breakpoints out of the target. */
af48d08f 5505 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5506 {
af48d08f 5507 struct regcache *regcache;
af48d08f 5508 CORE_ADDR pc;
2adfaa28 5509
00431a78 5510 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5511 const address_space *aspace = regcache->aspace ();
5512
af48d08f 5513 pc = regcache_read_pc (regcache);
34b7e8a6 5514
af48d08f
PA
5515 /* However, before doing so, if this single-step breakpoint was
5516 actually for another thread, set this thread up for moving
5517 past it. */
5518 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5519 aspace, pc))
5520 {
5521 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5522 {
5523 if (debug_infrun)
5524 {
5525 fprintf_unfiltered (gdb_stdlog,
af48d08f 5526 "infrun: [%s] hit another thread's "
34b7e8a6 5527 "single-step breakpoint\n",
a068643d 5528 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5529 }
af48d08f
PA
5530 ecs->hit_singlestep_breakpoint = 1;
5531 }
5532 }
5533 else
5534 {
5535 if (debug_infrun)
5536 {
5537 fprintf_unfiltered (gdb_stdlog,
5538 "infrun: [%s] hit its "
5539 "single-step breakpoint\n",
a068643d 5540 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5541 }
5542 }
488f131b 5543 }
af48d08f 5544 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5545
963f9c80
PA
5546 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5547 && ecs->event_thread->control.trap_expected
5548 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5549 stopped_by_watchpoint = 0;
5550 else
5551 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5552
5553 /* If necessary, step over this watchpoint. We'll be back to display
5554 it in a moment. */
5555 if (stopped_by_watchpoint
d92524f1 5556 && (target_have_steppable_watchpoint
568d6575 5557 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5558 {
488f131b
JB
5559 /* At this point, we are stopped at an instruction which has
5560 attempted to write to a piece of memory under control of
5561 a watchpoint. The instruction hasn't actually executed
5562 yet. If we were to evaluate the watchpoint expression
5563 now, we would get the old value, and therefore no change
5564 would seem to have occurred.
5565
5566 In order to make watchpoints work `right', we really need
5567 to complete the memory write, and then evaluate the
d983da9c
DJ
5568 watchpoint expression. We do this by single-stepping the
5569 target.
5570
7f89fd65 5571 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5572 it. For example, the PA can (with some kernel cooperation)
5573 single step over a watchpoint without disabling the watchpoint.
5574
5575 It is far more common to need to disable a watchpoint to step
5576 the inferior over it. If we have non-steppable watchpoints,
5577 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5578 disable all watchpoints.
5579
5580 Any breakpoint at PC must also be stepped over -- if there's
5581 one, it will have already triggered before the watchpoint
5582 triggered, and we either already reported it to the user, or
5583 it didn't cause a stop and we called keep_going. In either
5584 case, if there was a breakpoint at PC, we must be trying to
5585 step past it. */
5586 ecs->event_thread->stepping_over_watchpoint = 1;
5587 keep_going (ecs);
488f131b
JB
5588 return;
5589 }
5590
4e1c45ea 5591 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5592 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5593 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5594 ecs->event_thread->control.stop_step = 0;
488f131b 5595 stop_print_frame = 1;
488f131b 5596 stopped_by_random_signal = 0;
ddfe970e 5597 bpstat stop_chain = NULL;
488f131b 5598
edb3359d
DJ
5599 /* Hide inlined functions starting here, unless we just performed stepi or
5600 nexti. After stepi and nexti, always show the innermost frame (not any
5601 inline function call sites). */
16c381f0 5602 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5603 {
00431a78
PA
5604 const address_space *aspace
5605 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5606
5607 /* skip_inline_frames is expensive, so we avoid it if we can
5608 determine that the address is one where functions cannot have
5609 been inlined. This improves performance with inferiors that
5610 load a lot of shared libraries, because the solib event
5611 breakpoint is defined as the address of a function (i.e. not
5612 inline). Note that we have to check the previous PC as well
5613 as the current one to catch cases when we have just
5614 single-stepped off a breakpoint prior to reinstating it.
5615 Note that we're assuming that the code we single-step to is
5616 not inline, but that's not definitive: there's nothing
5617 preventing the event breakpoint function from containing
5618 inlined code, and the single-step ending up there. If the
5619 user had set a breakpoint on that inlined code, the missing
5620 skip_inline_frames call would break things. Fortunately
5621 that's an extremely unlikely scenario. */
f2ffa92b
PA
5622 if (!pc_at_non_inline_function (aspace,
5623 ecs->event_thread->suspend.stop_pc,
5624 &ecs->ws)
a210c238
MR
5625 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5626 && ecs->event_thread->control.trap_expected
5627 && pc_at_non_inline_function (aspace,
5628 ecs->event_thread->prev_pc,
09ac7c10 5629 &ecs->ws)))
1c5a993e 5630 {
f2ffa92b
PA
5631 stop_chain = build_bpstat_chain (aspace,
5632 ecs->event_thread->suspend.stop_pc,
5633 &ecs->ws);
00431a78 5634 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5635
5636 /* Re-fetch current thread's frame in case that invalidated
5637 the frame cache. */
5638 frame = get_current_frame ();
5639 gdbarch = get_frame_arch (frame);
5640 }
0574c78f 5641 }
edb3359d 5642
a493e3e2 5643 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5644 && ecs->event_thread->control.trap_expected
568d6575 5645 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5646 && currently_stepping (ecs->event_thread))
3352ef37 5647 {
b50d7442 5648 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5649 also on an instruction that needs to be stepped multiple
1777feb0 5650 times before it's been fully executing. E.g., architectures
3352ef37
AC
5651 with a delay slot. It needs to be stepped twice, once for
5652 the instruction and once for the delay slot. */
5653 int step_through_delay
568d6575 5654 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5655
527159b7 5656 if (debug_infrun && step_through_delay)
8a9de0e4 5657 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5658 if (ecs->event_thread->control.step_range_end == 0
5659 && step_through_delay)
3352ef37
AC
5660 {
5661 /* The user issued a continue when stopped at a breakpoint.
5662 Set up for another trap and get out of here. */
4e1c45ea 5663 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5664 keep_going (ecs);
5665 return;
5666 }
5667 else if (step_through_delay)
5668 {
5669 /* The user issued a step when stopped at a breakpoint.
5670 Maybe we should stop, maybe we should not - the delay
5671 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5672 case, don't decide that here, just set
5673 ecs->stepping_over_breakpoint, making sure we
5674 single-step again before breakpoints are re-inserted. */
4e1c45ea 5675 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5676 }
5677 }
5678
ab04a2af
TT
5679 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5680 handles this event. */
5681 ecs->event_thread->control.stop_bpstat
a01bda52 5682 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5683 ecs->event_thread->suspend.stop_pc,
5684 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5685
ab04a2af
TT
5686 /* Following in case break condition called a
5687 function. */
5688 stop_print_frame = 1;
73dd234f 5689
ab04a2af
TT
5690 /* This is where we handle "moribund" watchpoints. Unlike
5691 software breakpoints traps, hardware watchpoint traps are
5692 always distinguishable from random traps. If no high-level
5693 watchpoint is associated with the reported stop data address
5694 anymore, then the bpstat does not explain the signal ---
5695 simply make sure to ignore it if `stopped_by_watchpoint' is
5696 set. */
5697
5698 if (debug_infrun
5699 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5700 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5701 GDB_SIGNAL_TRAP)
ab04a2af
TT
5702 && stopped_by_watchpoint)
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: no user watchpoint explains "
5705 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5706
bac7d97b 5707 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5708 at one stage in the past included checks for an inferior
5709 function call's call dummy's return breakpoint. The original
5710 comment, that went with the test, read:
03cebad2 5711
ab04a2af
TT
5712 ``End of a stack dummy. Some systems (e.g. Sony news) give
5713 another signal besides SIGTRAP, so check here as well as
5714 above.''
73dd234f 5715
ab04a2af
TT
5716 If someone ever tries to get call dummys on a
5717 non-executable stack to work (where the target would stop
5718 with something like a SIGSEGV), then those tests might need
5719 to be re-instated. Given, however, that the tests were only
5720 enabled when momentary breakpoints were not being used, I
5721 suspect that it won't be the case.
488f131b 5722
ab04a2af
TT
5723 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5724 be necessary for call dummies on a non-executable stack on
5725 SPARC. */
488f131b 5726
bac7d97b 5727 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5728 random_signal
5729 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5730 ecs->event_thread->suspend.stop_signal);
bac7d97b 5731
1cf4d951
PA
5732 /* Maybe this was a trap for a software breakpoint that has since
5733 been removed. */
5734 if (random_signal && target_stopped_by_sw_breakpoint ())
5735 {
f2ffa92b
PA
5736 if (program_breakpoint_here_p (gdbarch,
5737 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5738 {
5739 struct regcache *regcache;
5740 int decr_pc;
5741
5742 /* Re-adjust PC to what the program would see if GDB was not
5743 debugging it. */
00431a78 5744 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5745 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5746 if (decr_pc != 0)
5747 {
07036511
TT
5748 gdb::optional<scoped_restore_tmpl<int>>
5749 restore_operation_disable;
1cf4d951
PA
5750
5751 if (record_full_is_used ())
07036511
TT
5752 restore_operation_disable.emplace
5753 (record_full_gdb_operation_disable_set ());
1cf4d951 5754
f2ffa92b
PA
5755 regcache_write_pc (regcache,
5756 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5757 }
5758 }
5759 else
5760 {
5761 /* A delayed software breakpoint event. Ignore the trap. */
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog,
5764 "infrun: delayed software breakpoint "
5765 "trap, ignoring\n");
5766 random_signal = 0;
5767 }
5768 }
5769
5770 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5771 has since been removed. */
5772 if (random_signal && target_stopped_by_hw_breakpoint ())
5773 {
5774 /* A delayed hardware breakpoint event. Ignore the trap. */
5775 if (debug_infrun)
5776 fprintf_unfiltered (gdb_stdlog,
5777 "infrun: delayed hardware breakpoint/watchpoint "
5778 "trap, ignoring\n");
5779 random_signal = 0;
5780 }
5781
bac7d97b
PA
5782 /* If not, perhaps stepping/nexting can. */
5783 if (random_signal)
5784 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5785 && currently_stepping (ecs->event_thread));
ab04a2af 5786
2adfaa28
PA
5787 /* Perhaps the thread hit a single-step breakpoint of _another_
5788 thread. Single-step breakpoints are transparent to the
5789 breakpoints module. */
5790 if (random_signal)
5791 random_signal = !ecs->hit_singlestep_breakpoint;
5792
bac7d97b
PA
5793 /* No? Perhaps we got a moribund watchpoint. */
5794 if (random_signal)
5795 random_signal = !stopped_by_watchpoint;
ab04a2af 5796
c65d6b55
PA
5797 /* Always stop if the user explicitly requested this thread to
5798 remain stopped. */
5799 if (ecs->event_thread->stop_requested)
5800 {
5801 random_signal = 1;
5802 if (debug_infrun)
5803 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5804 }
5805
488f131b
JB
5806 /* For the program's own signals, act according to
5807 the signal handling tables. */
5808
ce12b012 5809 if (random_signal)
488f131b
JB
5810 {
5811 /* Signal not for debugging purposes. */
c9657e70 5812 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5813 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5814
527159b7 5815 if (debug_infrun)
c9737c08
PA
5816 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5817 gdb_signal_to_symbol_string (stop_signal));
527159b7 5818
488f131b
JB
5819 stopped_by_random_signal = 1;
5820
252fbfc8
PA
5821 /* Always stop on signals if we're either just gaining control
5822 of the program, or the user explicitly requested this thread
5823 to remain stopped. */
d6b48e9c 5824 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5825 || ecs->event_thread->stop_requested
24291992 5826 || (!inf->detaching
16c381f0 5827 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5828 {
22bcd14b 5829 stop_waiting (ecs);
488f131b
JB
5830 return;
5831 }
b57bacec
PA
5832
5833 /* Notify observers the signal has "handle print" set. Note we
5834 returned early above if stopping; normal_stop handles the
5835 printing in that case. */
5836 if (signal_print[ecs->event_thread->suspend.stop_signal])
5837 {
5838 /* The signal table tells us to print about this signal. */
223ffa71 5839 target_terminal::ours_for_output ();
76727919 5840 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5841 target_terminal::inferior ();
b57bacec 5842 }
488f131b
JB
5843
5844 /* Clear the signal if it should not be passed. */
16c381f0 5845 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5846 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5847
f2ffa92b 5848 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5849 && ecs->event_thread->control.trap_expected
8358c15c 5850 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5851 {
5852 /* We were just starting a new sequence, attempting to
5853 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5854 Instead this signal arrives. This signal will take us out
68f53502
AC
5855 of the stepping range so GDB needs to remember to, when
5856 the signal handler returns, resume stepping off that
5857 breakpoint. */
5858 /* To simplify things, "continue" is forced to use the same
5859 code paths as single-step - set a breakpoint at the
5860 signal return address and then, once hit, step off that
5861 breakpoint. */
237fc4c9
PA
5862 if (debug_infrun)
5863 fprintf_unfiltered (gdb_stdlog,
5864 "infrun: signal arrived while stepping over "
5865 "breakpoint\n");
d3169d93 5866
2c03e5be 5867 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5868 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5869 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5870 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5871
5872 /* If we were nexting/stepping some other thread, switch to
5873 it, so that we don't continue it, losing control. */
5874 if (!switch_back_to_stepped_thread (ecs))
5875 keep_going (ecs);
9d799f85 5876 return;
68f53502 5877 }
9d799f85 5878
e5f8a7cc 5879 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5880 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5881 ecs->event_thread)
e5f8a7cc 5882 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5883 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5884 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5885 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5886 {
5887 /* The inferior is about to take a signal that will take it
5888 out of the single step range. Set a breakpoint at the
5889 current PC (which is presumably where the signal handler
5890 will eventually return) and then allow the inferior to
5891 run free.
5892
5893 Note that this is only needed for a signal delivered
5894 while in the single-step range. Nested signals aren't a
5895 problem as they eventually all return. */
237fc4c9
PA
5896 if (debug_infrun)
5897 fprintf_unfiltered (gdb_stdlog,
5898 "infrun: signal may take us out of "
5899 "single-step range\n");
5900
372316f1 5901 clear_step_over_info ();
2c03e5be 5902 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5903 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5904 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5905 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5906 keep_going (ecs);
5907 return;
d303a6c7 5908 }
9d799f85
AC
5909
5910 /* Note: step_resume_breakpoint may be non-NULL. This occures
5911 when either there's a nested signal, or when there's a
5912 pending signal enabled just as the signal handler returns
5913 (leaving the inferior at the step-resume-breakpoint without
5914 actually executing it). Either way continue until the
5915 breakpoint is really hit. */
c447ac0b
PA
5916
5917 if (!switch_back_to_stepped_thread (ecs))
5918 {
5919 if (debug_infrun)
5920 fprintf_unfiltered (gdb_stdlog,
5921 "infrun: random signal, keep going\n");
5922
5923 keep_going (ecs);
5924 }
5925 return;
488f131b 5926 }
94c57d6a
PA
5927
5928 process_event_stop_test (ecs);
5929}
5930
5931/* Come here when we've got some debug event / signal we can explain
5932 (IOW, not a random signal), and test whether it should cause a
5933 stop, or whether we should resume the inferior (transparently).
5934 E.g., could be a breakpoint whose condition evaluates false; we
5935 could be still stepping within the line; etc. */
5936
5937static void
5938process_event_stop_test (struct execution_control_state *ecs)
5939{
5940 struct symtab_and_line stop_pc_sal;
5941 struct frame_info *frame;
5942 struct gdbarch *gdbarch;
cdaa5b73
PA
5943 CORE_ADDR jmp_buf_pc;
5944 struct bpstat_what what;
94c57d6a 5945
cdaa5b73 5946 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5947
cdaa5b73
PA
5948 frame = get_current_frame ();
5949 gdbarch = get_frame_arch (frame);
fcf3daef 5950
cdaa5b73 5951 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5952
cdaa5b73
PA
5953 if (what.call_dummy)
5954 {
5955 stop_stack_dummy = what.call_dummy;
5956 }
186c406b 5957
243a9253
PA
5958 /* A few breakpoint types have callbacks associated (e.g.,
5959 bp_jit_event). Run them now. */
5960 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5961
cdaa5b73
PA
5962 /* If we hit an internal event that triggers symbol changes, the
5963 current frame will be invalidated within bpstat_what (e.g., if we
5964 hit an internal solib event). Re-fetch it. */
5965 frame = get_current_frame ();
5966 gdbarch = get_frame_arch (frame);
e2e4d78b 5967
cdaa5b73
PA
5968 switch (what.main_action)
5969 {
5970 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5971 /* If we hit the breakpoint at longjmp while stepping, we
5972 install a momentary breakpoint at the target of the
5973 jmp_buf. */
186c406b 5974
cdaa5b73
PA
5975 if (debug_infrun)
5976 fprintf_unfiltered (gdb_stdlog,
5977 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 5978
cdaa5b73 5979 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 5980
cdaa5b73
PA
5981 if (what.is_longjmp)
5982 {
5983 struct value *arg_value;
5984
5985 /* If we set the longjmp breakpoint via a SystemTap probe,
5986 then use it to extract the arguments. The destination PC
5987 is the third argument to the probe. */
5988 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5989 if (arg_value)
8fa0c4f8
AA
5990 {
5991 jmp_buf_pc = value_as_address (arg_value);
5992 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5993 }
cdaa5b73
PA
5994 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5995 || !gdbarch_get_longjmp_target (gdbarch,
5996 frame, &jmp_buf_pc))
e2e4d78b 5997 {
cdaa5b73
PA
5998 if (debug_infrun)
5999 fprintf_unfiltered (gdb_stdlog,
6000 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6001 "(!gdbarch_get_longjmp_target)\n");
6002 keep_going (ecs);
6003 return;
e2e4d78b 6004 }
e2e4d78b 6005
cdaa5b73
PA
6006 /* Insert a breakpoint at resume address. */
6007 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6008 }
6009 else
6010 check_exception_resume (ecs, frame);
6011 keep_going (ecs);
6012 return;
e81a37f7 6013
cdaa5b73
PA
6014 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6015 {
6016 struct frame_info *init_frame;
e81a37f7 6017
cdaa5b73 6018 /* There are several cases to consider.
c906108c 6019
cdaa5b73
PA
6020 1. The initiating frame no longer exists. In this case we
6021 must stop, because the exception or longjmp has gone too
6022 far.
2c03e5be 6023
cdaa5b73
PA
6024 2. The initiating frame exists, and is the same as the
6025 current frame. We stop, because the exception or longjmp
6026 has been caught.
2c03e5be 6027
cdaa5b73
PA
6028 3. The initiating frame exists and is different from the
6029 current frame. This means the exception or longjmp has
6030 been caught beneath the initiating frame, so keep going.
c906108c 6031
cdaa5b73
PA
6032 4. longjmp breakpoint has been placed just to protect
6033 against stale dummy frames and user is not interested in
6034 stopping around longjmps. */
c5aa993b 6035
cdaa5b73
PA
6036 if (debug_infrun)
6037 fprintf_unfiltered (gdb_stdlog,
6038 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6039
cdaa5b73
PA
6040 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6041 != NULL);
6042 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6043
cdaa5b73
PA
6044 if (what.is_longjmp)
6045 {
b67a2c6f 6046 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6047
cdaa5b73 6048 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6049 {
cdaa5b73
PA
6050 /* Case 4. */
6051 keep_going (ecs);
6052 return;
e5ef252a 6053 }
cdaa5b73 6054 }
c5aa993b 6055
cdaa5b73 6056 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6057
cdaa5b73
PA
6058 if (init_frame)
6059 {
6060 struct frame_id current_id
6061 = get_frame_id (get_current_frame ());
6062 if (frame_id_eq (current_id,
6063 ecs->event_thread->initiating_frame))
6064 {
6065 /* Case 2. Fall through. */
6066 }
6067 else
6068 {
6069 /* Case 3. */
6070 keep_going (ecs);
6071 return;
6072 }
68f53502 6073 }
488f131b 6074
cdaa5b73
PA
6075 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6076 exists. */
6077 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6078
bdc36728 6079 end_stepping_range (ecs);
cdaa5b73
PA
6080 }
6081 return;
e5ef252a 6082
cdaa5b73
PA
6083 case BPSTAT_WHAT_SINGLE:
6084 if (debug_infrun)
6085 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6086 ecs->event_thread->stepping_over_breakpoint = 1;
6087 /* Still need to check other stuff, at least the case where we
6088 are stepping and step out of the right range. */
6089 break;
e5ef252a 6090
cdaa5b73
PA
6091 case BPSTAT_WHAT_STEP_RESUME:
6092 if (debug_infrun)
6093 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6094
cdaa5b73
PA
6095 delete_step_resume_breakpoint (ecs->event_thread);
6096 if (ecs->event_thread->control.proceed_to_finish
6097 && execution_direction == EXEC_REVERSE)
6098 {
6099 struct thread_info *tp = ecs->event_thread;
6100
6101 /* We are finishing a function in reverse, and just hit the
6102 step-resume breakpoint at the start address of the
6103 function, and we're almost there -- just need to back up
6104 by one more single-step, which should take us back to the
6105 function call. */
6106 tp->control.step_range_start = tp->control.step_range_end = 1;
6107 keep_going (ecs);
e5ef252a 6108 return;
cdaa5b73
PA
6109 }
6110 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6111 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6112 && execution_direction == EXEC_REVERSE)
6113 {
6114 /* We are stepping over a function call in reverse, and just
6115 hit the step-resume breakpoint at the start address of
6116 the function. Go back to single-stepping, which should
6117 take us back to the function call. */
6118 ecs->event_thread->stepping_over_breakpoint = 1;
6119 keep_going (ecs);
6120 return;
6121 }
6122 break;
e5ef252a 6123
cdaa5b73
PA
6124 case BPSTAT_WHAT_STOP_NOISY:
6125 if (debug_infrun)
6126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6127 stop_print_frame = 1;
e5ef252a 6128
99619bea
PA
6129 /* Assume the thread stopped for a breapoint. We'll still check
6130 whether a/the breakpoint is there when the thread is next
6131 resumed. */
6132 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6133
22bcd14b 6134 stop_waiting (ecs);
cdaa5b73 6135 return;
e5ef252a 6136
cdaa5b73
PA
6137 case BPSTAT_WHAT_STOP_SILENT:
6138 if (debug_infrun)
6139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6140 stop_print_frame = 0;
e5ef252a 6141
99619bea
PA
6142 /* Assume the thread stopped for a breapoint. We'll still check
6143 whether a/the breakpoint is there when the thread is next
6144 resumed. */
6145 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6146 stop_waiting (ecs);
cdaa5b73
PA
6147 return;
6148
6149 case BPSTAT_WHAT_HP_STEP_RESUME:
6150 if (debug_infrun)
6151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6152
6153 delete_step_resume_breakpoint (ecs->event_thread);
6154 if (ecs->event_thread->step_after_step_resume_breakpoint)
6155 {
6156 /* Back when the step-resume breakpoint was inserted, we
6157 were trying to single-step off a breakpoint. Go back to
6158 doing that. */
6159 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6160 ecs->event_thread->stepping_over_breakpoint = 1;
6161 keep_going (ecs);
6162 return;
e5ef252a 6163 }
cdaa5b73
PA
6164 break;
6165
6166 case BPSTAT_WHAT_KEEP_CHECKING:
6167 break;
e5ef252a 6168 }
c906108c 6169
af48d08f
PA
6170 /* If we stepped a permanent breakpoint and we had a high priority
6171 step-resume breakpoint for the address we stepped, but we didn't
6172 hit it, then we must have stepped into the signal handler. The
6173 step-resume was only necessary to catch the case of _not_
6174 stepping into the handler, so delete it, and fall through to
6175 checking whether the step finished. */
6176 if (ecs->event_thread->stepped_breakpoint)
6177 {
6178 struct breakpoint *sr_bp
6179 = ecs->event_thread->control.step_resume_breakpoint;
6180
8d707a12
PA
6181 if (sr_bp != NULL
6182 && sr_bp->loc->permanent
af48d08f
PA
6183 && sr_bp->type == bp_hp_step_resume
6184 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6185 {
6186 if (debug_infrun)
6187 fprintf_unfiltered (gdb_stdlog,
6188 "infrun: stepped permanent breakpoint, stopped in "
6189 "handler\n");
6190 delete_step_resume_breakpoint (ecs->event_thread);
6191 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6192 }
6193 }
6194
cdaa5b73
PA
6195 /* We come here if we hit a breakpoint but should not stop for it.
6196 Possibly we also were stepping and should stop for that. So fall
6197 through and test for stepping. But, if not stepping, do not
6198 stop. */
c906108c 6199
a7212384
UW
6200 /* In all-stop mode, if we're currently stepping but have stopped in
6201 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6202 if (switch_back_to_stepped_thread (ecs))
6203 return;
776f04fa 6204
8358c15c 6205 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6206 {
527159b7 6207 if (debug_infrun)
d3169d93
DJ
6208 fprintf_unfiltered (gdb_stdlog,
6209 "infrun: step-resume breakpoint is inserted\n");
527159b7 6210
488f131b
JB
6211 /* Having a step-resume breakpoint overrides anything
6212 else having to do with stepping commands until
6213 that breakpoint is reached. */
488f131b
JB
6214 keep_going (ecs);
6215 return;
6216 }
c5aa993b 6217
16c381f0 6218 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6219 {
527159b7 6220 if (debug_infrun)
8a9de0e4 6221 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6222 /* Likewise if we aren't even stepping. */
488f131b
JB
6223 keep_going (ecs);
6224 return;
6225 }
c5aa993b 6226
4b7703ad
JB
6227 /* Re-fetch current thread's frame in case the code above caused
6228 the frame cache to be re-initialized, making our FRAME variable
6229 a dangling pointer. */
6230 frame = get_current_frame ();
628fe4e4 6231 gdbarch = get_frame_arch (frame);
7e324e48 6232 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6233
488f131b 6234 /* If stepping through a line, keep going if still within it.
c906108c 6235
488f131b
JB
6236 Note that step_range_end is the address of the first instruction
6237 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6238 within it!
6239
6240 Note also that during reverse execution, we may be stepping
6241 through a function epilogue and therefore must detect when
6242 the current-frame changes in the middle of a line. */
6243
f2ffa92b
PA
6244 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6245 ecs->event_thread)
31410e84 6246 && (execution_direction != EXEC_REVERSE
388a8562 6247 || frame_id_eq (get_frame_id (frame),
16c381f0 6248 ecs->event_thread->control.step_frame_id)))
488f131b 6249 {
527159b7 6250 if (debug_infrun)
5af949e3
UW
6251 fprintf_unfiltered
6252 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6253 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6254 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6255
c1e36e3e
PA
6256 /* Tentatively re-enable range stepping; `resume' disables it if
6257 necessary (e.g., if we're stepping over a breakpoint or we
6258 have software watchpoints). */
6259 ecs->event_thread->control.may_range_step = 1;
6260
b2175913
MS
6261 /* When stepping backward, stop at beginning of line range
6262 (unless it's the function entry point, in which case
6263 keep going back to the call point). */
f2ffa92b 6264 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6265 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6266 && stop_pc != ecs->stop_func_start
6267 && execution_direction == EXEC_REVERSE)
bdc36728 6268 end_stepping_range (ecs);
b2175913
MS
6269 else
6270 keep_going (ecs);
6271
488f131b
JB
6272 return;
6273 }
c5aa993b 6274
488f131b 6275 /* We stepped out of the stepping range. */
c906108c 6276
488f131b 6277 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6278 loader dynamic symbol resolution code...
6279
6280 EXEC_FORWARD: we keep on single stepping until we exit the run
6281 time loader code and reach the callee's address.
6282
6283 EXEC_REVERSE: we've already executed the callee (backward), and
6284 the runtime loader code is handled just like any other
6285 undebuggable function call. Now we need only keep stepping
6286 backward through the trampoline code, and that's handled further
6287 down, so there is nothing for us to do here. */
6288
6289 if (execution_direction != EXEC_REVERSE
16c381f0 6290 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6291 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6292 {
4c8c40e6 6293 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6294 gdbarch_skip_solib_resolver (gdbarch,
6295 ecs->event_thread->suspend.stop_pc);
c906108c 6296
527159b7 6297 if (debug_infrun)
3e43a32a
MS
6298 fprintf_unfiltered (gdb_stdlog,
6299 "infrun: stepped into dynsym resolve code\n");
527159b7 6300
488f131b
JB
6301 if (pc_after_resolver)
6302 {
6303 /* Set up a step-resume breakpoint at the address
6304 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6305 symtab_and_line sr_sal;
488f131b 6306 sr_sal.pc = pc_after_resolver;
6c95b8df 6307 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6308
a6d9a66e
UW
6309 insert_step_resume_breakpoint_at_sal (gdbarch,
6310 sr_sal, null_frame_id);
c5aa993b 6311 }
c906108c 6312
488f131b
JB
6313 keep_going (ecs);
6314 return;
6315 }
c906108c 6316
1d509aa6
MM
6317 /* Step through an indirect branch thunk. */
6318 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6319 && gdbarch_in_indirect_branch_thunk (gdbarch,
6320 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6321 {
6322 if (debug_infrun)
6323 fprintf_unfiltered (gdb_stdlog,
6324 "infrun: stepped into indirect branch thunk\n");
6325 keep_going (ecs);
6326 return;
6327 }
6328
16c381f0
JK
6329 if (ecs->event_thread->control.step_range_end != 1
6330 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6331 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6332 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6333 {
527159b7 6334 if (debug_infrun)
3e43a32a
MS
6335 fprintf_unfiltered (gdb_stdlog,
6336 "infrun: stepped into signal trampoline\n");
42edda50 6337 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6338 a signal trampoline (either by a signal being delivered or by
6339 the signal handler returning). Just single-step until the
6340 inferior leaves the trampoline (either by calling the handler
6341 or returning). */
488f131b
JB
6342 keep_going (ecs);
6343 return;
6344 }
c906108c 6345
14132e89
MR
6346 /* If we're in the return path from a shared library trampoline,
6347 we want to proceed through the trampoline when stepping. */
6348 /* macro/2012-04-25: This needs to come before the subroutine
6349 call check below as on some targets return trampolines look
6350 like subroutine calls (MIPS16 return thunks). */
6351 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6352 ecs->event_thread->suspend.stop_pc,
6353 ecs->stop_func_name)
14132e89
MR
6354 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6355 {
6356 /* Determine where this trampoline returns. */
f2ffa92b
PA
6357 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6358 CORE_ADDR real_stop_pc
6359 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6360
6361 if (debug_infrun)
6362 fprintf_unfiltered (gdb_stdlog,
6363 "infrun: stepped into solib return tramp\n");
6364
6365 /* Only proceed through if we know where it's going. */
6366 if (real_stop_pc)
6367 {
6368 /* And put the step-breakpoint there and go until there. */
51abb421 6369 symtab_and_line sr_sal;
14132e89
MR
6370 sr_sal.pc = real_stop_pc;
6371 sr_sal.section = find_pc_overlay (sr_sal.pc);
6372 sr_sal.pspace = get_frame_program_space (frame);
6373
6374 /* Do not specify what the fp should be when we stop since
6375 on some machines the prologue is where the new fp value
6376 is established. */
6377 insert_step_resume_breakpoint_at_sal (gdbarch,
6378 sr_sal, null_frame_id);
6379
6380 /* Restart without fiddling with the step ranges or
6381 other state. */
6382 keep_going (ecs);
6383 return;
6384 }
6385 }
6386
c17eaafe
DJ
6387 /* Check for subroutine calls. The check for the current frame
6388 equalling the step ID is not necessary - the check of the
6389 previous frame's ID is sufficient - but it is a common case and
6390 cheaper than checking the previous frame's ID.
14e60db5
DJ
6391
6392 NOTE: frame_id_eq will never report two invalid frame IDs as
6393 being equal, so to get into this block, both the current and
6394 previous frame must have valid frame IDs. */
005ca36a
JB
6395 /* The outer_frame_id check is a heuristic to detect stepping
6396 through startup code. If we step over an instruction which
6397 sets the stack pointer from an invalid value to a valid value,
6398 we may detect that as a subroutine call from the mythical
6399 "outermost" function. This could be fixed by marking
6400 outermost frames as !stack_p,code_p,special_p. Then the
6401 initial outermost frame, before sp was valid, would
ce6cca6d 6402 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6403 for more. */
edb3359d 6404 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6405 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6406 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6407 ecs->event_thread->control.step_stack_frame_id)
6408 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6409 outer_frame_id)
885eeb5b 6410 || (ecs->event_thread->control.step_start_function
f2ffa92b 6411 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6412 {
f2ffa92b 6413 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6414 CORE_ADDR real_stop_pc;
8fb3e588 6415
527159b7 6416 if (debug_infrun)
8a9de0e4 6417 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6418
b7a084be 6419 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6420 {
6421 /* I presume that step_over_calls is only 0 when we're
6422 supposed to be stepping at the assembly language level
6423 ("stepi"). Just stop. */
388a8562 6424 /* And this works the same backward as frontward. MVS */
bdc36728 6425 end_stepping_range (ecs);
95918acb
AC
6426 return;
6427 }
8fb3e588 6428
388a8562
MS
6429 /* Reverse stepping through solib trampolines. */
6430
6431 if (execution_direction == EXEC_REVERSE
16c381f0 6432 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6433 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6434 || (ecs->stop_func_start == 0
6435 && in_solib_dynsym_resolve_code (stop_pc))))
6436 {
6437 /* Any solib trampoline code can be handled in reverse
6438 by simply continuing to single-step. We have already
6439 executed the solib function (backwards), and a few
6440 steps will take us back through the trampoline to the
6441 caller. */
6442 keep_going (ecs);
6443 return;
6444 }
6445
16c381f0 6446 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6447 {
b2175913
MS
6448 /* We're doing a "next".
6449
6450 Normal (forward) execution: set a breakpoint at the
6451 callee's return address (the address at which the caller
6452 will resume).
6453
6454 Reverse (backward) execution. set the step-resume
6455 breakpoint at the start of the function that we just
6456 stepped into (backwards), and continue to there. When we
6130d0b7 6457 get there, we'll need to single-step back to the caller. */
b2175913
MS
6458
6459 if (execution_direction == EXEC_REVERSE)
6460 {
acf9414f
JK
6461 /* If we're already at the start of the function, we've either
6462 just stepped backward into a single instruction function,
6463 or stepped back out of a signal handler to the first instruction
6464 of the function. Just keep going, which will single-step back
6465 to the caller. */
58c48e72 6466 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6467 {
acf9414f 6468 /* Normal function call return (static or dynamic). */
51abb421 6469 symtab_and_line sr_sal;
acf9414f
JK
6470 sr_sal.pc = ecs->stop_func_start;
6471 sr_sal.pspace = get_frame_program_space (frame);
6472 insert_step_resume_breakpoint_at_sal (gdbarch,
6473 sr_sal, null_frame_id);
6474 }
b2175913
MS
6475 }
6476 else
568d6575 6477 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6478
8567c30f
AC
6479 keep_going (ecs);
6480 return;
6481 }
a53c66de 6482
95918acb 6483 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6484 calling routine and the real function), locate the real
6485 function. That's what tells us (a) whether we want to step
6486 into it at all, and (b) what prologue we want to run to the
6487 end of, if we do step into it. */
568d6575 6488 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6489 if (real_stop_pc == 0)
568d6575 6490 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6491 if (real_stop_pc != 0)
6492 ecs->stop_func_start = real_stop_pc;
8fb3e588 6493
db5f024e 6494 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6495 {
51abb421 6496 symtab_and_line sr_sal;
1b2bfbb9 6497 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6498 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6499
a6d9a66e
UW
6500 insert_step_resume_breakpoint_at_sal (gdbarch,
6501 sr_sal, null_frame_id);
8fb3e588
AC
6502 keep_going (ecs);
6503 return;
1b2bfbb9
RC
6504 }
6505
95918acb 6506 /* If we have line number information for the function we are
1bfeeb0f
JL
6507 thinking of stepping into and the function isn't on the skip
6508 list, step into it.
95918acb 6509
8fb3e588
AC
6510 If there are several symtabs at that PC (e.g. with include
6511 files), just want to know whether *any* of them have line
6512 numbers. find_pc_line handles this. */
95918acb
AC
6513 {
6514 struct symtab_and_line tmp_sal;
8fb3e588 6515
95918acb 6516 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6517 if (tmp_sal.line != 0
85817405 6518 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6519 tmp_sal))
95918acb 6520 {
b2175913 6521 if (execution_direction == EXEC_REVERSE)
568d6575 6522 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6523 else
568d6575 6524 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6525 return;
6526 }
6527 }
6528
6529 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6530 set, we stop the step so that the user has a chance to switch
6531 in assembly mode. */
16c381f0 6532 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6533 && step_stop_if_no_debug)
95918acb 6534 {
bdc36728 6535 end_stepping_range (ecs);
95918acb
AC
6536 return;
6537 }
6538
b2175913
MS
6539 if (execution_direction == EXEC_REVERSE)
6540 {
acf9414f
JK
6541 /* If we're already at the start of the function, we've either just
6542 stepped backward into a single instruction function without line
6543 number info, or stepped back out of a signal handler to the first
6544 instruction of the function without line number info. Just keep
6545 going, which will single-step back to the caller. */
6546 if (ecs->stop_func_start != stop_pc)
6547 {
6548 /* Set a breakpoint at callee's start address.
6549 From there we can step once and be back in the caller. */
51abb421 6550 symtab_and_line sr_sal;
acf9414f
JK
6551 sr_sal.pc = ecs->stop_func_start;
6552 sr_sal.pspace = get_frame_program_space (frame);
6553 insert_step_resume_breakpoint_at_sal (gdbarch,
6554 sr_sal, null_frame_id);
6555 }
b2175913
MS
6556 }
6557 else
6558 /* Set a breakpoint at callee's return address (the address
6559 at which the caller will resume). */
568d6575 6560 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6561
95918acb 6562 keep_going (ecs);
488f131b 6563 return;
488f131b 6564 }
c906108c 6565
fdd654f3
MS
6566 /* Reverse stepping through solib trampolines. */
6567
6568 if (execution_direction == EXEC_REVERSE
16c381f0 6569 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6570 {
f2ffa92b
PA
6571 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6572
fdd654f3
MS
6573 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6574 || (ecs->stop_func_start == 0
6575 && in_solib_dynsym_resolve_code (stop_pc)))
6576 {
6577 /* Any solib trampoline code can be handled in reverse
6578 by simply continuing to single-step. We have already
6579 executed the solib function (backwards), and a few
6580 steps will take us back through the trampoline to the
6581 caller. */
6582 keep_going (ecs);
6583 return;
6584 }
6585 else if (in_solib_dynsym_resolve_code (stop_pc))
6586 {
6587 /* Stepped backward into the solib dynsym resolver.
6588 Set a breakpoint at its start and continue, then
6589 one more step will take us out. */
51abb421 6590 symtab_and_line sr_sal;
fdd654f3 6591 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6592 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6593 insert_step_resume_breakpoint_at_sal (gdbarch,
6594 sr_sal, null_frame_id);
6595 keep_going (ecs);
6596 return;
6597 }
6598 }
6599
f2ffa92b 6600 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6601
1b2bfbb9
RC
6602 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6603 the trampoline processing logic, however, there are some trampolines
6604 that have no names, so we should do trampoline handling first. */
16c381f0 6605 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6606 && ecs->stop_func_name == NULL
2afb61aa 6607 && stop_pc_sal.line == 0)
1b2bfbb9 6608 {
527159b7 6609 if (debug_infrun)
3e43a32a
MS
6610 fprintf_unfiltered (gdb_stdlog,
6611 "infrun: stepped into undebuggable function\n");
527159b7 6612
1b2bfbb9 6613 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6614 undebuggable function (where there is no debugging information
6615 and no line number corresponding to the address where the
1b2bfbb9
RC
6616 inferior stopped). Since we want to skip this kind of code,
6617 we keep going until the inferior returns from this
14e60db5
DJ
6618 function - unless the user has asked us not to (via
6619 set step-mode) or we no longer know how to get back
6620 to the call site. */
6621 if (step_stop_if_no_debug
c7ce8faa 6622 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6623 {
6624 /* If we have no line number and the step-stop-if-no-debug
6625 is set, we stop the step so that the user has a chance to
6626 switch in assembly mode. */
bdc36728 6627 end_stepping_range (ecs);
1b2bfbb9
RC
6628 return;
6629 }
6630 else
6631 {
6632 /* Set a breakpoint at callee's return address (the address
6633 at which the caller will resume). */
568d6575 6634 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6635 keep_going (ecs);
6636 return;
6637 }
6638 }
6639
16c381f0 6640 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6641 {
6642 /* It is stepi or nexti. We always want to stop stepping after
6643 one instruction. */
527159b7 6644 if (debug_infrun)
8a9de0e4 6645 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6646 end_stepping_range (ecs);
1b2bfbb9
RC
6647 return;
6648 }
6649
2afb61aa 6650 if (stop_pc_sal.line == 0)
488f131b
JB
6651 {
6652 /* We have no line number information. That means to stop
6653 stepping (does this always happen right after one instruction,
6654 when we do "s" in a function with no line numbers,
6655 or can this happen as a result of a return or longjmp?). */
527159b7 6656 if (debug_infrun)
8a9de0e4 6657 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6658 end_stepping_range (ecs);
488f131b
JB
6659 return;
6660 }
c906108c 6661
edb3359d
DJ
6662 /* Look for "calls" to inlined functions, part one. If the inline
6663 frame machinery detected some skipped call sites, we have entered
6664 a new inline function. */
6665
6666 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6667 ecs->event_thread->control.step_frame_id)
00431a78 6668 && inline_skipped_frames (ecs->event_thread))
edb3359d 6669 {
edb3359d
DJ
6670 if (debug_infrun)
6671 fprintf_unfiltered (gdb_stdlog,
6672 "infrun: stepped into inlined function\n");
6673
51abb421 6674 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6675
16c381f0 6676 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6677 {
6678 /* For "step", we're going to stop. But if the call site
6679 for this inlined function is on the same source line as
6680 we were previously stepping, go down into the function
6681 first. Otherwise stop at the call site. */
6682
6683 if (call_sal.line == ecs->event_thread->current_line
6684 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6685 step_into_inline_frame (ecs->event_thread);
edb3359d 6686
bdc36728 6687 end_stepping_range (ecs);
edb3359d
DJ
6688 return;
6689 }
6690 else
6691 {
6692 /* For "next", we should stop at the call site if it is on a
6693 different source line. Otherwise continue through the
6694 inlined function. */
6695 if (call_sal.line == ecs->event_thread->current_line
6696 && call_sal.symtab == ecs->event_thread->current_symtab)
6697 keep_going (ecs);
6698 else
bdc36728 6699 end_stepping_range (ecs);
edb3359d
DJ
6700 return;
6701 }
6702 }
6703
6704 /* Look for "calls" to inlined functions, part two. If we are still
6705 in the same real function we were stepping through, but we have
6706 to go further up to find the exact frame ID, we are stepping
6707 through a more inlined call beyond its call site. */
6708
6709 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6710 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6711 ecs->event_thread->control.step_frame_id)
edb3359d 6712 && stepped_in_from (get_current_frame (),
16c381f0 6713 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6714 {
6715 if (debug_infrun)
6716 fprintf_unfiltered (gdb_stdlog,
6717 "infrun: stepping through inlined function\n");
6718
16c381f0 6719 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6720 keep_going (ecs);
6721 else
bdc36728 6722 end_stepping_range (ecs);
edb3359d
DJ
6723 return;
6724 }
6725
f2ffa92b 6726 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6727 && (ecs->event_thread->current_line != stop_pc_sal.line
6728 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6729 {
6730 /* We are at the start of a different line. So stop. Note that
6731 we don't stop if we step into the middle of a different line.
6732 That is said to make things like for (;;) statements work
6733 better. */
527159b7 6734 if (debug_infrun)
3e43a32a
MS
6735 fprintf_unfiltered (gdb_stdlog,
6736 "infrun: stepped to a different line\n");
bdc36728 6737 end_stepping_range (ecs);
488f131b
JB
6738 return;
6739 }
c906108c 6740
488f131b 6741 /* We aren't done stepping.
c906108c 6742
488f131b
JB
6743 Optimize by setting the stepping range to the line.
6744 (We might not be in the original line, but if we entered a
6745 new line in mid-statement, we continue stepping. This makes
6746 things like for(;;) statements work better.) */
c906108c 6747
16c381f0
JK
6748 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6749 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6750 ecs->event_thread->control.may_range_step = 1;
edb3359d 6751 set_step_info (frame, stop_pc_sal);
488f131b 6752
527159b7 6753 if (debug_infrun)
8a9de0e4 6754 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6755 keep_going (ecs);
104c1213
JM
6756}
6757
c447ac0b
PA
6758/* In all-stop mode, if we're currently stepping but have stopped in
6759 some other thread, we may need to switch back to the stepped
6760 thread. Returns true we set the inferior running, false if we left
6761 it stopped (and the event needs further processing). */
6762
6763static int
6764switch_back_to_stepped_thread (struct execution_control_state *ecs)
6765{
fbea99ea 6766 if (!target_is_non_stop_p ())
c447ac0b 6767 {
99619bea
PA
6768 struct thread_info *stepping_thread;
6769
6770 /* If any thread is blocked on some internal breakpoint, and we
6771 simply need to step over that breakpoint to get it going
6772 again, do that first. */
6773
6774 /* However, if we see an event for the stepping thread, then we
6775 know all other threads have been moved past their breakpoints
6776 already. Let the caller check whether the step is finished,
6777 etc., before deciding to move it past a breakpoint. */
6778 if (ecs->event_thread->control.step_range_end != 0)
6779 return 0;
6780
6781 /* Check if the current thread is blocked on an incomplete
6782 step-over, interrupted by a random signal. */
6783 if (ecs->event_thread->control.trap_expected
6784 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6785 {
99619bea
PA
6786 if (debug_infrun)
6787 {
6788 fprintf_unfiltered (gdb_stdlog,
6789 "infrun: need to finish step-over of [%s]\n",
a068643d 6790 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6791 }
6792 keep_going (ecs);
6793 return 1;
6794 }
2adfaa28 6795
99619bea
PA
6796 /* Check if the current thread is blocked by a single-step
6797 breakpoint of another thread. */
6798 if (ecs->hit_singlestep_breakpoint)
6799 {
6800 if (debug_infrun)
6801 {
6802 fprintf_unfiltered (gdb_stdlog,
6803 "infrun: need to step [%s] over single-step "
6804 "breakpoint\n",
a068643d 6805 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6806 }
6807 keep_going (ecs);
6808 return 1;
6809 }
6810
4d9d9d04
PA
6811 /* If this thread needs yet another step-over (e.g., stepping
6812 through a delay slot), do it first before moving on to
6813 another thread. */
6814 if (thread_still_needs_step_over (ecs->event_thread))
6815 {
6816 if (debug_infrun)
6817 {
6818 fprintf_unfiltered (gdb_stdlog,
6819 "infrun: thread [%s] still needs step-over\n",
a068643d 6820 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6821 }
6822 keep_going (ecs);
6823 return 1;
6824 }
70509625 6825
483805cf
PA
6826 /* If scheduler locking applies even if not stepping, there's no
6827 need to walk over threads. Above we've checked whether the
6828 current thread is stepping. If some other thread not the
6829 event thread is stepping, then it must be that scheduler
6830 locking is not in effect. */
856e7dd6 6831 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6832 return 0;
6833
4d9d9d04
PA
6834 /* Otherwise, we no longer expect a trap in the current thread.
6835 Clear the trap_expected flag before switching back -- this is
6836 what keep_going does as well, if we call it. */
6837 ecs->event_thread->control.trap_expected = 0;
6838
6839 /* Likewise, clear the signal if it should not be passed. */
6840 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6841 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6842
6843 /* Do all pending step-overs before actually proceeding with
483805cf 6844 step/next/etc. */
4d9d9d04
PA
6845 if (start_step_over ())
6846 {
6847 prepare_to_wait (ecs);
6848 return 1;
6849 }
6850
6851 /* Look for the stepping/nexting thread. */
483805cf 6852 stepping_thread = NULL;
4d9d9d04 6853
08036331 6854 for (thread_info *tp : all_non_exited_threads ())
483805cf 6855 {
fbea99ea
PA
6856 /* Ignore threads of processes the caller is not
6857 resuming. */
483805cf 6858 if (!sched_multi
e99b03dc 6859 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6860 continue;
6861
6862 /* When stepping over a breakpoint, we lock all threads
6863 except the one that needs to move past the breakpoint.
6864 If a non-event thread has this set, the "incomplete
6865 step-over" check above should have caught it earlier. */
372316f1
PA
6866 if (tp->control.trap_expected)
6867 {
6868 internal_error (__FILE__, __LINE__,
6869 "[%s] has inconsistent state: "
6870 "trap_expected=%d\n",
a068643d 6871 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6872 tp->control.trap_expected);
6873 }
483805cf
PA
6874
6875 /* Did we find the stepping thread? */
6876 if (tp->control.step_range_end)
6877 {
6878 /* Yep. There should only one though. */
6879 gdb_assert (stepping_thread == NULL);
6880
6881 /* The event thread is handled at the top, before we
6882 enter this loop. */
6883 gdb_assert (tp != ecs->event_thread);
6884
6885 /* If some thread other than the event thread is
6886 stepping, then scheduler locking can't be in effect,
6887 otherwise we wouldn't have resumed the current event
6888 thread in the first place. */
856e7dd6 6889 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6890
6891 stepping_thread = tp;
6892 }
99619bea
PA
6893 }
6894
483805cf 6895 if (stepping_thread != NULL)
99619bea 6896 {
c447ac0b
PA
6897 if (debug_infrun)
6898 fprintf_unfiltered (gdb_stdlog,
6899 "infrun: switching back to stepped thread\n");
6900
2ac7589c
PA
6901 if (keep_going_stepped_thread (stepping_thread))
6902 {
6903 prepare_to_wait (ecs);
6904 return 1;
6905 }
6906 }
6907 }
2adfaa28 6908
2ac7589c
PA
6909 return 0;
6910}
2adfaa28 6911
2ac7589c
PA
6912/* Set a previously stepped thread back to stepping. Returns true on
6913 success, false if the resume is not possible (e.g., the thread
6914 vanished). */
6915
6916static int
6917keep_going_stepped_thread (struct thread_info *tp)
6918{
6919 struct frame_info *frame;
2ac7589c
PA
6920 struct execution_control_state ecss;
6921 struct execution_control_state *ecs = &ecss;
2adfaa28 6922
2ac7589c
PA
6923 /* If the stepping thread exited, then don't try to switch back and
6924 resume it, which could fail in several different ways depending
6925 on the target. Instead, just keep going.
2adfaa28 6926
2ac7589c
PA
6927 We can find a stepping dead thread in the thread list in two
6928 cases:
2adfaa28 6929
2ac7589c
PA
6930 - The target supports thread exit events, and when the target
6931 tries to delete the thread from the thread list, inferior_ptid
6932 pointed at the exiting thread. In such case, calling
6933 delete_thread does not really remove the thread from the list;
6934 instead, the thread is left listed, with 'exited' state.
64ce06e4 6935
2ac7589c
PA
6936 - The target's debug interface does not support thread exit
6937 events, and so we have no idea whatsoever if the previously
6938 stepping thread is still alive. For that reason, we need to
6939 synchronously query the target now. */
2adfaa28 6940
00431a78 6941 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6942 {
6943 if (debug_infrun)
6944 fprintf_unfiltered (gdb_stdlog,
6945 "infrun: not resuming previously "
6946 "stepped thread, it has vanished\n");
6947
00431a78 6948 delete_thread (tp);
2ac7589c 6949 return 0;
c447ac0b 6950 }
2ac7589c
PA
6951
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: resuming previously stepped thread\n");
6955
6956 reset_ecs (ecs, tp);
00431a78 6957 switch_to_thread (tp);
2ac7589c 6958
f2ffa92b 6959 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 6960 frame = get_current_frame ();
2ac7589c
PA
6961
6962 /* If the PC of the thread we were trying to single-step has
6963 changed, then that thread has trapped or been signaled, but the
6964 event has not been reported to GDB yet. Re-poll the target
6965 looking for this particular thread's event (i.e. temporarily
6966 enable schedlock) by:
6967
6968 - setting a break at the current PC
6969 - resuming that particular thread, only (by setting trap
6970 expected)
6971
6972 This prevents us continuously moving the single-step breakpoint
6973 forward, one instruction at a time, overstepping. */
6974
f2ffa92b 6975 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
6976 {
6977 ptid_t resume_ptid;
6978
6979 if (debug_infrun)
6980 fprintf_unfiltered (gdb_stdlog,
6981 "infrun: expected thread advanced also (%s -> %s)\n",
6982 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 6983 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
6984
6985 /* Clear the info of the previous step-over, as it's no longer
6986 valid (if the thread was trying to step over a breakpoint, it
6987 has already succeeded). It's what keep_going would do too,
6988 if we called it. Do this before trying to insert the sss
6989 breakpoint, otherwise if we were previously trying to step
6990 over this exact address in another thread, the breakpoint is
6991 skipped. */
6992 clear_step_over_info ();
6993 tp->control.trap_expected = 0;
6994
6995 insert_single_step_breakpoint (get_frame_arch (frame),
6996 get_frame_address_space (frame),
f2ffa92b 6997 tp->suspend.stop_pc);
2ac7589c 6998
372316f1 6999 tp->resumed = 1;
fbea99ea 7000 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7001 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7002 }
7003 else
7004 {
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: expected thread still hasn't advanced\n");
7008
7009 keep_going_pass_signal (ecs);
7010 }
7011 return 1;
c447ac0b
PA
7012}
7013
8b061563
PA
7014/* Is thread TP in the middle of (software or hardware)
7015 single-stepping? (Note the result of this function must never be
7016 passed directly as target_resume's STEP parameter.) */
104c1213 7017
a289b8f6 7018static int
b3444185 7019currently_stepping (struct thread_info *tp)
a7212384 7020{
8358c15c
JK
7021 return ((tp->control.step_range_end
7022 && tp->control.step_resume_breakpoint == NULL)
7023 || tp->control.trap_expected
af48d08f 7024 || tp->stepped_breakpoint
8358c15c 7025 || bpstat_should_step ());
a7212384
UW
7026}
7027
b2175913
MS
7028/* Inferior has stepped into a subroutine call with source code that
7029 we should not step over. Do step to the first line of code in
7030 it. */
c2c6d25f
JM
7031
7032static void
568d6575
UW
7033handle_step_into_function (struct gdbarch *gdbarch,
7034 struct execution_control_state *ecs)
c2c6d25f 7035{
7e324e48
GB
7036 fill_in_stop_func (gdbarch, ecs);
7037
f2ffa92b
PA
7038 compunit_symtab *cust
7039 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7040 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7041 ecs->stop_func_start
7042 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7043
51abb421 7044 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7045 /* Use the step_resume_break to step until the end of the prologue,
7046 even if that involves jumps (as it seems to on the vax under
7047 4.2). */
7048 /* If the prologue ends in the middle of a source line, continue to
7049 the end of that source line (if it is still within the function).
7050 Otherwise, just go to end of prologue. */
2afb61aa
PA
7051 if (stop_func_sal.end
7052 && stop_func_sal.pc != ecs->stop_func_start
7053 && stop_func_sal.end < ecs->stop_func_end)
7054 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7055
2dbd5e30
KB
7056 /* Architectures which require breakpoint adjustment might not be able
7057 to place a breakpoint at the computed address. If so, the test
7058 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7059 ecs->stop_func_start to an address at which a breakpoint may be
7060 legitimately placed.
8fb3e588 7061
2dbd5e30
KB
7062 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7063 made, GDB will enter an infinite loop when stepping through
7064 optimized code consisting of VLIW instructions which contain
7065 subinstructions corresponding to different source lines. On
7066 FR-V, it's not permitted to place a breakpoint on any but the
7067 first subinstruction of a VLIW instruction. When a breakpoint is
7068 set, GDB will adjust the breakpoint address to the beginning of
7069 the VLIW instruction. Thus, we need to make the corresponding
7070 adjustment here when computing the stop address. */
8fb3e588 7071
568d6575 7072 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7073 {
7074 ecs->stop_func_start
568d6575 7075 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7076 ecs->stop_func_start);
2dbd5e30
KB
7077 }
7078
f2ffa92b 7079 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7080 {
7081 /* We are already there: stop now. */
bdc36728 7082 end_stepping_range (ecs);
c2c6d25f
JM
7083 return;
7084 }
7085 else
7086 {
7087 /* Put the step-breakpoint there and go until there. */
51abb421 7088 symtab_and_line sr_sal;
c2c6d25f
JM
7089 sr_sal.pc = ecs->stop_func_start;
7090 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7091 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7092
c2c6d25f 7093 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7094 some machines the prologue is where the new fp value is
7095 established. */
a6d9a66e 7096 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7097
7098 /* And make sure stepping stops right away then. */
16c381f0
JK
7099 ecs->event_thread->control.step_range_end
7100 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7101 }
7102 keep_going (ecs);
7103}
d4f3574e 7104
b2175913
MS
7105/* Inferior has stepped backward into a subroutine call with source
7106 code that we should not step over. Do step to the beginning of the
7107 last line of code in it. */
7108
7109static void
568d6575
UW
7110handle_step_into_function_backward (struct gdbarch *gdbarch,
7111 struct execution_control_state *ecs)
b2175913 7112{
43f3e411 7113 struct compunit_symtab *cust;
167e4384 7114 struct symtab_and_line stop_func_sal;
b2175913 7115
7e324e48
GB
7116 fill_in_stop_func (gdbarch, ecs);
7117
f2ffa92b 7118 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7119 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7120 ecs->stop_func_start
7121 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7122
f2ffa92b 7123 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7124
7125 /* OK, we're just going to keep stepping here. */
f2ffa92b 7126 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7127 {
7128 /* We're there already. Just stop stepping now. */
bdc36728 7129 end_stepping_range (ecs);
b2175913
MS
7130 }
7131 else
7132 {
7133 /* Else just reset the step range and keep going.
7134 No step-resume breakpoint, they don't work for
7135 epilogues, which can have multiple entry paths. */
16c381f0
JK
7136 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7137 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7138 keep_going (ecs);
7139 }
7140 return;
7141}
7142
d3169d93 7143/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7144 This is used to both functions and to skip over code. */
7145
7146static void
2c03e5be
PA
7147insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7148 struct symtab_and_line sr_sal,
7149 struct frame_id sr_id,
7150 enum bptype sr_type)
44cbf7b5 7151{
611c83ae
PA
7152 /* There should never be more than one step-resume or longjmp-resume
7153 breakpoint per thread, so we should never be setting a new
44cbf7b5 7154 step_resume_breakpoint when one is already active. */
8358c15c 7155 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7156 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7157
7158 if (debug_infrun)
7159 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7160 "infrun: inserting step-resume breakpoint at %s\n",
7161 paddress (gdbarch, sr_sal.pc));
d3169d93 7162
8358c15c 7163 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7164 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7165}
7166
9da8c2a0 7167void
2c03e5be
PA
7168insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7169 struct symtab_and_line sr_sal,
7170 struct frame_id sr_id)
7171{
7172 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7173 sr_sal, sr_id,
7174 bp_step_resume);
44cbf7b5 7175}
7ce450bd 7176
2c03e5be
PA
7177/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7178 This is used to skip a potential signal handler.
7ce450bd 7179
14e60db5
DJ
7180 This is called with the interrupted function's frame. The signal
7181 handler, when it returns, will resume the interrupted function at
7182 RETURN_FRAME.pc. */
d303a6c7
AC
7183
7184static void
2c03e5be 7185insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7186{
f4c1edd8 7187 gdb_assert (return_frame != NULL);
d303a6c7 7188
51abb421
PA
7189 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7190
7191 symtab_and_line sr_sal;
568d6575 7192 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7193 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7194 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7195
2c03e5be
PA
7196 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7197 get_stack_frame_id (return_frame),
7198 bp_hp_step_resume);
d303a6c7
AC
7199}
7200
2c03e5be
PA
7201/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7202 is used to skip a function after stepping into it (for "next" or if
7203 the called function has no debugging information).
14e60db5
DJ
7204
7205 The current function has almost always been reached by single
7206 stepping a call or return instruction. NEXT_FRAME belongs to the
7207 current function, and the breakpoint will be set at the caller's
7208 resume address.
7209
7210 This is a separate function rather than reusing
2c03e5be 7211 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7212 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7213 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7214
7215static void
7216insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7217{
14e60db5
DJ
7218 /* We shouldn't have gotten here if we don't know where the call site
7219 is. */
c7ce8faa 7220 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7221
51abb421 7222 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7223
51abb421 7224 symtab_and_line sr_sal;
c7ce8faa
DJ
7225 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7226 frame_unwind_caller_pc (next_frame));
14e60db5 7227 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7228 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7229
a6d9a66e 7230 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7231 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7232}
7233
611c83ae
PA
7234/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7235 new breakpoint at the target of a jmp_buf. The handling of
7236 longjmp-resume uses the same mechanisms used for handling
7237 "step-resume" breakpoints. */
7238
7239static void
a6d9a66e 7240insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7241{
e81a37f7
TT
7242 /* There should never be more than one longjmp-resume breakpoint per
7243 thread, so we should never be setting a new
611c83ae 7244 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7245 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7246
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7249 "infrun: inserting longjmp-resume breakpoint at %s\n",
7250 paddress (gdbarch, pc));
611c83ae 7251
e81a37f7 7252 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7253 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7254}
7255
186c406b
TT
7256/* Insert an exception resume breakpoint. TP is the thread throwing
7257 the exception. The block B is the block of the unwinder debug hook
7258 function. FRAME is the frame corresponding to the call to this
7259 function. SYM is the symbol of the function argument holding the
7260 target PC of the exception. */
7261
7262static void
7263insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7264 const struct block *b,
186c406b
TT
7265 struct frame_info *frame,
7266 struct symbol *sym)
7267{
a70b8144 7268 try
186c406b 7269 {
63e43d3a 7270 struct block_symbol vsym;
186c406b
TT
7271 struct value *value;
7272 CORE_ADDR handler;
7273 struct breakpoint *bp;
7274
de63c46b
PA
7275 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7276 b, VAR_DOMAIN);
63e43d3a 7277 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7278 /* If the value was optimized out, revert to the old behavior. */
7279 if (! value_optimized_out (value))
7280 {
7281 handler = value_as_address (value);
7282
7283 if (debug_infrun)
7284 fprintf_unfiltered (gdb_stdlog,
7285 "infrun: exception resume at %lx\n",
7286 (unsigned long) handler);
7287
7288 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7289 handler,
7290 bp_exception_resume).release ();
c70a6932
JK
7291
7292 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7293 frame = NULL;
7294
5d5658a1 7295 bp->thread = tp->global_num;
186c406b
TT
7296 inferior_thread ()->control.exception_resume_breakpoint = bp;
7297 }
7298 }
230d2906 7299 catch (const gdb_exception_error &e)
492d29ea
PA
7300 {
7301 /* We want to ignore errors here. */
7302 }
186c406b
TT
7303}
7304
28106bc2
SDJ
7305/* A helper for check_exception_resume that sets an
7306 exception-breakpoint based on a SystemTap probe. */
7307
7308static void
7309insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7310 const struct bound_probe *probe,
28106bc2
SDJ
7311 struct frame_info *frame)
7312{
7313 struct value *arg_value;
7314 CORE_ADDR handler;
7315 struct breakpoint *bp;
7316
7317 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7318 if (!arg_value)
7319 return;
7320
7321 handler = value_as_address (arg_value);
7322
7323 if (debug_infrun)
7324 fprintf_unfiltered (gdb_stdlog,
7325 "infrun: exception resume at %s\n",
6bac7473 7326 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7327 handler));
7328
7329 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7330 handler, bp_exception_resume).release ();
5d5658a1 7331 bp->thread = tp->global_num;
28106bc2
SDJ
7332 inferior_thread ()->control.exception_resume_breakpoint = bp;
7333}
7334
186c406b
TT
7335/* This is called when an exception has been intercepted. Check to
7336 see whether the exception's destination is of interest, and if so,
7337 set an exception resume breakpoint there. */
7338
7339static void
7340check_exception_resume (struct execution_control_state *ecs,
28106bc2 7341 struct frame_info *frame)
186c406b 7342{
729662a5 7343 struct bound_probe probe;
28106bc2
SDJ
7344 struct symbol *func;
7345
7346 /* First see if this exception unwinding breakpoint was set via a
7347 SystemTap probe point. If so, the probe has two arguments: the
7348 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7349 set a breakpoint there. */
6bac7473 7350 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7351 if (probe.prob)
28106bc2 7352 {
729662a5 7353 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7354 return;
7355 }
7356
7357 func = get_frame_function (frame);
7358 if (!func)
7359 return;
186c406b 7360
a70b8144 7361 try
186c406b 7362 {
3977b71f 7363 const struct block *b;
8157b174 7364 struct block_iterator iter;
186c406b
TT
7365 struct symbol *sym;
7366 int argno = 0;
7367
7368 /* The exception breakpoint is a thread-specific breakpoint on
7369 the unwinder's debug hook, declared as:
7370
7371 void _Unwind_DebugHook (void *cfa, void *handler);
7372
7373 The CFA argument indicates the frame to which control is
7374 about to be transferred. HANDLER is the destination PC.
7375
7376 We ignore the CFA and set a temporary breakpoint at HANDLER.
7377 This is not extremely efficient but it avoids issues in gdb
7378 with computing the DWARF CFA, and it also works even in weird
7379 cases such as throwing an exception from inside a signal
7380 handler. */
7381
7382 b = SYMBOL_BLOCK_VALUE (func);
7383 ALL_BLOCK_SYMBOLS (b, iter, sym)
7384 {
7385 if (!SYMBOL_IS_ARGUMENT (sym))
7386 continue;
7387
7388 if (argno == 0)
7389 ++argno;
7390 else
7391 {
7392 insert_exception_resume_breakpoint (ecs->event_thread,
7393 b, frame, sym);
7394 break;
7395 }
7396 }
7397 }
230d2906 7398 catch (const gdb_exception_error &e)
492d29ea
PA
7399 {
7400 }
186c406b
TT
7401}
7402
104c1213 7403static void
22bcd14b 7404stop_waiting (struct execution_control_state *ecs)
104c1213 7405{
527159b7 7406 if (debug_infrun)
22bcd14b 7407 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7408
cd0fc7c3
SS
7409 /* Let callers know we don't want to wait for the inferior anymore. */
7410 ecs->wait_some_more = 0;
fbea99ea
PA
7411
7412 /* If all-stop, but the target is always in non-stop mode, stop all
7413 threads now that we're presenting the stop to the user. */
7414 if (!non_stop && target_is_non_stop_p ())
7415 stop_all_threads ();
cd0fc7c3
SS
7416}
7417
4d9d9d04
PA
7418/* Like keep_going, but passes the signal to the inferior, even if the
7419 signal is set to nopass. */
d4f3574e
SS
7420
7421static void
4d9d9d04 7422keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7423{
d7e15655 7424 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7425 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7426
d4f3574e 7427 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7428 ecs->event_thread->prev_pc
00431a78 7429 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7430
4d9d9d04 7431 if (ecs->event_thread->control.trap_expected)
d4f3574e 7432 {
4d9d9d04
PA
7433 struct thread_info *tp = ecs->event_thread;
7434
7435 if (debug_infrun)
7436 fprintf_unfiltered (gdb_stdlog,
7437 "infrun: %s has trap_expected set, "
7438 "resuming to collect trap\n",
a068643d 7439 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7440
a9ba6bae
PA
7441 /* We haven't yet gotten our trap, and either: intercepted a
7442 non-signal event (e.g., a fork); or took a signal which we
7443 are supposed to pass through to the inferior. Simply
7444 continue. */
64ce06e4 7445 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7446 }
372316f1
PA
7447 else if (step_over_info_valid_p ())
7448 {
7449 /* Another thread is stepping over a breakpoint in-line. If
7450 this thread needs a step-over too, queue the request. In
7451 either case, this resume must be deferred for later. */
7452 struct thread_info *tp = ecs->event_thread;
7453
7454 if (ecs->hit_singlestep_breakpoint
7455 || thread_still_needs_step_over (tp))
7456 {
7457 if (debug_infrun)
7458 fprintf_unfiltered (gdb_stdlog,
7459 "infrun: step-over already in progress: "
7460 "step-over for %s deferred\n",
a068643d 7461 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7462 thread_step_over_chain_enqueue (tp);
7463 }
7464 else
7465 {
7466 if (debug_infrun)
7467 fprintf_unfiltered (gdb_stdlog,
7468 "infrun: step-over in progress: "
7469 "resume of %s deferred\n",
a068643d 7470 target_pid_to_str (tp->ptid).c_str ());
372316f1 7471 }
372316f1 7472 }
d4f3574e
SS
7473 else
7474 {
31e77af2 7475 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7476 int remove_bp;
7477 int remove_wps;
8d297bbf 7478 step_over_what step_what;
31e77af2 7479
d4f3574e 7480 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7481 anyway (if we got a signal, the user asked it be passed to
7482 the child)
7483 -- or --
7484 We got our expected trap, but decided we should resume from
7485 it.
d4f3574e 7486
a9ba6bae 7487 We're going to run this baby now!
d4f3574e 7488
c36b740a
VP
7489 Note that insert_breakpoints won't try to re-insert
7490 already inserted breakpoints. Therefore, we don't
7491 care if breakpoints were already inserted, or not. */
a9ba6bae 7492
31e77af2
PA
7493 /* If we need to step over a breakpoint, and we're not using
7494 displaced stepping to do so, insert all breakpoints
7495 (watchpoints, etc.) but the one we're stepping over, step one
7496 instruction, and then re-insert the breakpoint when that step
7497 is finished. */
963f9c80 7498
6c4cfb24
PA
7499 step_what = thread_still_needs_step_over (ecs->event_thread);
7500
963f9c80 7501 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7502 || (step_what & STEP_OVER_BREAKPOINT));
7503 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7504
cb71640d
PA
7505 /* We can't use displaced stepping if we need to step past a
7506 watchpoint. The instruction copied to the scratch pad would
7507 still trigger the watchpoint. */
7508 if (remove_bp
3fc8eb30 7509 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7510 {
a01bda52 7511 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7512 regcache_read_pc (regcache), remove_wps,
7513 ecs->event_thread->global_num);
45e8c884 7514 }
963f9c80 7515 else if (remove_wps)
21edc42f 7516 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7517
7518 /* If we now need to do an in-line step-over, we need to stop
7519 all other threads. Note this must be done before
7520 insert_breakpoints below, because that removes the breakpoint
7521 we're about to step over, otherwise other threads could miss
7522 it. */
fbea99ea 7523 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7524 stop_all_threads ();
abbb1732 7525
31e77af2 7526 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7527 try
31e77af2
PA
7528 {
7529 insert_breakpoints ();
7530 }
230d2906 7531 catch (const gdb_exception_error &e)
31e77af2
PA
7532 {
7533 exception_print (gdb_stderr, e);
22bcd14b 7534 stop_waiting (ecs);
bdf2a94a 7535 clear_step_over_info ();
31e77af2 7536 return;
d4f3574e
SS
7537 }
7538
963f9c80 7539 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7540
64ce06e4 7541 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7542 }
7543
488f131b 7544 prepare_to_wait (ecs);
d4f3574e
SS
7545}
7546
4d9d9d04
PA
7547/* Called when we should continue running the inferior, because the
7548 current event doesn't cause a user visible stop. This does the
7549 resuming part; waiting for the next event is done elsewhere. */
7550
7551static void
7552keep_going (struct execution_control_state *ecs)
7553{
7554 if (ecs->event_thread->control.trap_expected
7555 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7556 ecs->event_thread->control.trap_expected = 0;
7557
7558 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7559 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7560 keep_going_pass_signal (ecs);
7561}
7562
104c1213
JM
7563/* This function normally comes after a resume, before
7564 handle_inferior_event exits. It takes care of any last bits of
7565 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7566
104c1213
JM
7567static void
7568prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7569{
527159b7 7570 if (debug_infrun)
8a9de0e4 7571 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7572
104c1213 7573 ecs->wait_some_more = 1;
0b333c5e
PA
7574
7575 if (!target_is_async_p ())
7576 mark_infrun_async_event_handler ();
c906108c 7577}
11cf8741 7578
fd664c91 7579/* We are done with the step range of a step/next/si/ni command.
b57bacec 7580 Called once for each n of a "step n" operation. */
fd664c91
PA
7581
7582static void
bdc36728 7583end_stepping_range (struct execution_control_state *ecs)
fd664c91 7584{
bdc36728 7585 ecs->event_thread->control.stop_step = 1;
bdc36728 7586 stop_waiting (ecs);
fd664c91
PA
7587}
7588
33d62d64
JK
7589/* Several print_*_reason functions to print why the inferior has stopped.
7590 We always print something when the inferior exits, or receives a signal.
7591 The rest of the cases are dealt with later on in normal_stop and
7592 print_it_typical. Ideally there should be a call to one of these
7593 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7594 stop_waiting is called.
33d62d64 7595
fd664c91
PA
7596 Note that we don't call these directly, instead we delegate that to
7597 the interpreters, through observers. Interpreters then call these
7598 with whatever uiout is right. */
33d62d64 7599
fd664c91
PA
7600void
7601print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7602{
fd664c91 7603 /* For CLI-like interpreters, print nothing. */
33d62d64 7604
112e8700 7605 if (uiout->is_mi_like_p ())
fd664c91 7606 {
112e8700 7607 uiout->field_string ("reason",
fd664c91
PA
7608 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7609 }
7610}
33d62d64 7611
fd664c91
PA
7612void
7613print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7614{
33d62d64 7615 annotate_signalled ();
112e8700
SM
7616 if (uiout->is_mi_like_p ())
7617 uiout->field_string
7618 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7619 uiout->text ("\nProgram terminated with signal ");
33d62d64 7620 annotate_signal_name ();
112e8700 7621 uiout->field_string ("signal-name",
2ea28649 7622 gdb_signal_to_name (siggnal));
33d62d64 7623 annotate_signal_name_end ();
112e8700 7624 uiout->text (", ");
33d62d64 7625 annotate_signal_string ();
112e8700 7626 uiout->field_string ("signal-meaning",
2ea28649 7627 gdb_signal_to_string (siggnal));
33d62d64 7628 annotate_signal_string_end ();
112e8700
SM
7629 uiout->text (".\n");
7630 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7631}
7632
fd664c91
PA
7633void
7634print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7635{
fda326dd 7636 struct inferior *inf = current_inferior ();
a068643d 7637 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7638
33d62d64
JK
7639 annotate_exited (exitstatus);
7640 if (exitstatus)
7641 {
112e8700
SM
7642 if (uiout->is_mi_like_p ())
7643 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7644 uiout->text ("[Inferior ");
7645 uiout->text (plongest (inf->num));
7646 uiout->text (" (");
a068643d 7647 uiout->text (pidstr.c_str ());
112e8700
SM
7648 uiout->text (") exited with code ");
7649 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7650 uiout->text ("]\n");
33d62d64
JK
7651 }
7652 else
11cf8741 7653 {
112e8700
SM
7654 if (uiout->is_mi_like_p ())
7655 uiout->field_string
7656 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7657 uiout->text ("[Inferior ");
7658 uiout->text (plongest (inf->num));
7659 uiout->text (" (");
a068643d 7660 uiout->text (pidstr.c_str ());
112e8700 7661 uiout->text (") exited normally]\n");
33d62d64 7662 }
33d62d64
JK
7663}
7664
012b3a21
WT
7665/* Some targets/architectures can do extra processing/display of
7666 segmentation faults. E.g., Intel MPX boundary faults.
7667 Call the architecture dependent function to handle the fault. */
7668
7669static void
7670handle_segmentation_fault (struct ui_out *uiout)
7671{
7672 struct regcache *regcache = get_current_regcache ();
ac7936df 7673 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7674
7675 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7676 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7677}
7678
fd664c91
PA
7679void
7680print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7681{
f303dbd6
PA
7682 struct thread_info *thr = inferior_thread ();
7683
33d62d64
JK
7684 annotate_signal ();
7685
112e8700 7686 if (uiout->is_mi_like_p ())
f303dbd6
PA
7687 ;
7688 else if (show_thread_that_caused_stop ())
33d62d64 7689 {
f303dbd6 7690 const char *name;
33d62d64 7691
112e8700
SM
7692 uiout->text ("\nThread ");
7693 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7694
7695 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7696 if (name != NULL)
7697 {
112e8700
SM
7698 uiout->text (" \"");
7699 uiout->field_fmt ("name", "%s", name);
7700 uiout->text ("\"");
f303dbd6 7701 }
33d62d64 7702 }
f303dbd6 7703 else
112e8700 7704 uiout->text ("\nProgram");
f303dbd6 7705
112e8700
SM
7706 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7707 uiout->text (" stopped");
33d62d64
JK
7708 else
7709 {
112e8700 7710 uiout->text (" received signal ");
8b93c638 7711 annotate_signal_name ();
112e8700
SM
7712 if (uiout->is_mi_like_p ())
7713 uiout->field_string
7714 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7715 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7716 annotate_signal_name_end ();
112e8700 7717 uiout->text (", ");
8b93c638 7718 annotate_signal_string ();
112e8700 7719 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7720
7721 if (siggnal == GDB_SIGNAL_SEGV)
7722 handle_segmentation_fault (uiout);
7723
8b93c638 7724 annotate_signal_string_end ();
33d62d64 7725 }
112e8700 7726 uiout->text (".\n");
33d62d64 7727}
252fbfc8 7728
fd664c91
PA
7729void
7730print_no_history_reason (struct ui_out *uiout)
33d62d64 7731{
112e8700 7732 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7733}
43ff13b4 7734
0c7e1a46
PA
7735/* Print current location without a level number, if we have changed
7736 functions or hit a breakpoint. Print source line if we have one.
7737 bpstat_print contains the logic deciding in detail what to print,
7738 based on the event(s) that just occurred. */
7739
243a9253
PA
7740static void
7741print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7742{
7743 int bpstat_ret;
f486487f 7744 enum print_what source_flag;
0c7e1a46
PA
7745 int do_frame_printing = 1;
7746 struct thread_info *tp = inferior_thread ();
7747
7748 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7749 switch (bpstat_ret)
7750 {
7751 case PRINT_UNKNOWN:
7752 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7753 should) carry around the function and does (or should) use
7754 that when doing a frame comparison. */
7755 if (tp->control.stop_step
7756 && frame_id_eq (tp->control.step_frame_id,
7757 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7758 && (tp->control.step_start_function
7759 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7760 {
7761 /* Finished step, just print source line. */
7762 source_flag = SRC_LINE;
7763 }
7764 else
7765 {
7766 /* Print location and source line. */
7767 source_flag = SRC_AND_LOC;
7768 }
7769 break;
7770 case PRINT_SRC_AND_LOC:
7771 /* Print location and source line. */
7772 source_flag = SRC_AND_LOC;
7773 break;
7774 case PRINT_SRC_ONLY:
7775 source_flag = SRC_LINE;
7776 break;
7777 case PRINT_NOTHING:
7778 /* Something bogus. */
7779 source_flag = SRC_LINE;
7780 do_frame_printing = 0;
7781 break;
7782 default:
7783 internal_error (__FILE__, __LINE__, _("Unknown value."));
7784 }
7785
7786 /* The behavior of this routine with respect to the source
7787 flag is:
7788 SRC_LINE: Print only source line
7789 LOCATION: Print only location
7790 SRC_AND_LOC: Print location and source line. */
7791 if (do_frame_printing)
7792 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7793}
7794
243a9253
PA
7795/* See infrun.h. */
7796
7797void
4c7d57e7 7798print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7799{
243a9253
PA
7800 struct target_waitstatus last;
7801 ptid_t last_ptid;
7802 struct thread_info *tp;
7803
7804 get_last_target_status (&last_ptid, &last);
7805
67ad9399
TT
7806 {
7807 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7808
67ad9399 7809 print_stop_location (&last);
243a9253 7810
67ad9399 7811 /* Display the auto-display expressions. */
4c7d57e7
TT
7812 if (displays)
7813 do_displays ();
67ad9399 7814 }
243a9253
PA
7815
7816 tp = inferior_thread ();
7817 if (tp->thread_fsm != NULL
46e3ed7f 7818 && tp->thread_fsm->finished_p ())
243a9253
PA
7819 {
7820 struct return_value_info *rv;
7821
46e3ed7f 7822 rv = tp->thread_fsm->return_value ();
243a9253
PA
7823 if (rv != NULL)
7824 print_return_value (uiout, rv);
7825 }
0c7e1a46
PA
7826}
7827
388a7084
PA
7828/* See infrun.h. */
7829
7830void
7831maybe_remove_breakpoints (void)
7832{
7833 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7834 {
7835 if (remove_breakpoints ())
7836 {
223ffa71 7837 target_terminal::ours_for_output ();
388a7084
PA
7838 printf_filtered (_("Cannot remove breakpoints because "
7839 "program is no longer writable.\nFurther "
7840 "execution is probably impossible.\n"));
7841 }
7842 }
7843}
7844
4c2f2a79
PA
7845/* The execution context that just caused a normal stop. */
7846
7847struct stop_context
7848{
2d844eaf
TT
7849 stop_context ();
7850 ~stop_context ();
7851
7852 DISABLE_COPY_AND_ASSIGN (stop_context);
7853
7854 bool changed () const;
7855
4c2f2a79
PA
7856 /* The stop ID. */
7857 ULONGEST stop_id;
c906108c 7858
4c2f2a79 7859 /* The event PTID. */
c906108c 7860
4c2f2a79
PA
7861 ptid_t ptid;
7862
7863 /* If stopp for a thread event, this is the thread that caused the
7864 stop. */
7865 struct thread_info *thread;
7866
7867 /* The inferior that caused the stop. */
7868 int inf_num;
7869};
7870
2d844eaf 7871/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7872 takes a strong reference to the thread. */
7873
2d844eaf 7874stop_context::stop_context ()
4c2f2a79 7875{
2d844eaf
TT
7876 stop_id = get_stop_id ();
7877 ptid = inferior_ptid;
7878 inf_num = current_inferior ()->num;
4c2f2a79 7879
d7e15655 7880 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7881 {
7882 /* Take a strong reference so that the thread can't be deleted
7883 yet. */
2d844eaf
TT
7884 thread = inferior_thread ();
7885 thread->incref ();
4c2f2a79
PA
7886 }
7887 else
2d844eaf 7888 thread = NULL;
4c2f2a79
PA
7889}
7890
7891/* Release a stop context previously created with save_stop_context.
7892 Releases the strong reference to the thread as well. */
7893
2d844eaf 7894stop_context::~stop_context ()
4c2f2a79 7895{
2d844eaf
TT
7896 if (thread != NULL)
7897 thread->decref ();
4c2f2a79
PA
7898}
7899
7900/* Return true if the current context no longer matches the saved stop
7901 context. */
7902
2d844eaf
TT
7903bool
7904stop_context::changed () const
7905{
7906 if (ptid != inferior_ptid)
7907 return true;
7908 if (inf_num != current_inferior ()->num)
7909 return true;
7910 if (thread != NULL && thread->state != THREAD_STOPPED)
7911 return true;
7912 if (get_stop_id () != stop_id)
7913 return true;
7914 return false;
4c2f2a79
PA
7915}
7916
7917/* See infrun.h. */
7918
7919int
96baa820 7920normal_stop (void)
c906108c 7921{
73b65bb0
DJ
7922 struct target_waitstatus last;
7923 ptid_t last_ptid;
7924
7925 get_last_target_status (&last_ptid, &last);
7926
4c2f2a79
PA
7927 new_stop_id ();
7928
29f49a6a
PA
7929 /* If an exception is thrown from this point on, make sure to
7930 propagate GDB's knowledge of the executing state to the
7931 frontend/user running state. A QUIT is an easy exception to see
7932 here, so do this before any filtered output. */
731f534f
PA
7933
7934 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7935
c35b1492 7936 if (!non_stop)
731f534f 7937 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7938 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7939 || last.kind == TARGET_WAITKIND_EXITED)
7940 {
7941 /* On some targets, we may still have live threads in the
7942 inferior when we get a process exit event. E.g., for
7943 "checkpoint", when the current checkpoint/fork exits,
7944 linux-fork.c automatically switches to another fork from
7945 within target_mourn_inferior. */
731f534f
PA
7946 if (inferior_ptid != null_ptid)
7947 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
7948 }
7949 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 7950 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 7951
b57bacec
PA
7952 /* As we're presenting a stop, and potentially removing breakpoints,
7953 update the thread list so we can tell whether there are threads
7954 running on the target. With target remote, for example, we can
7955 only learn about new threads when we explicitly update the thread
7956 list. Do this before notifying the interpreters about signal
7957 stops, end of stepping ranges, etc., so that the "new thread"
7958 output is emitted before e.g., "Program received signal FOO",
7959 instead of after. */
7960 update_thread_list ();
7961
7962 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 7963 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 7964
c906108c
SS
7965 /* As with the notification of thread events, we want to delay
7966 notifying the user that we've switched thread context until
7967 the inferior actually stops.
7968
73b65bb0
DJ
7969 There's no point in saying anything if the inferior has exited.
7970 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
7971 "received a signal".
7972
7973 Also skip saying anything in non-stop mode. In that mode, as we
7974 don't want GDB to switch threads behind the user's back, to avoid
7975 races where the user is typing a command to apply to thread x,
7976 but GDB switches to thread y before the user finishes entering
7977 the command, fetch_inferior_event installs a cleanup to restore
7978 the current thread back to the thread the user had selected right
7979 after this event is handled, so we're not really switching, only
7980 informing of a stop. */
4f8d22e3 7981 if (!non_stop
731f534f 7982 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
7983 && target_has_execution
7984 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
7985 && last.kind != TARGET_WAITKIND_EXITED
7986 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 7987 {
0e454242 7988 SWITCH_THRU_ALL_UIS ()
3b12939d 7989 {
223ffa71 7990 target_terminal::ours_for_output ();
3b12939d 7991 printf_filtered (_("[Switching to %s]\n"),
a068643d 7992 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
7993 annotate_thread_changed ();
7994 }
39f77062 7995 previous_inferior_ptid = inferior_ptid;
c906108c 7996 }
c906108c 7997
0e5bf2a8
PA
7998 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7999 {
0e454242 8000 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8001 if (current_ui->prompt_state == PROMPT_BLOCKED)
8002 {
223ffa71 8003 target_terminal::ours_for_output ();
3b12939d
PA
8004 printf_filtered (_("No unwaited-for children left.\n"));
8005 }
0e5bf2a8
PA
8006 }
8007
b57bacec 8008 /* Note: this depends on the update_thread_list call above. */
388a7084 8009 maybe_remove_breakpoints ();
c906108c 8010
c906108c
SS
8011 /* If an auto-display called a function and that got a signal,
8012 delete that auto-display to avoid an infinite recursion. */
8013
8014 if (stopped_by_random_signal)
8015 disable_current_display ();
8016
0e454242 8017 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8018 {
8019 async_enable_stdin ();
8020 }
c906108c 8021
388a7084 8022 /* Let the user/frontend see the threads as stopped. */
731f534f 8023 maybe_finish_thread_state.reset ();
388a7084
PA
8024
8025 /* Select innermost stack frame - i.e., current frame is frame 0,
8026 and current location is based on that. Handle the case where the
8027 dummy call is returning after being stopped. E.g. the dummy call
8028 previously hit a breakpoint. (If the dummy call returns
8029 normally, we won't reach here.) Do this before the stop hook is
8030 run, so that it doesn't get to see the temporary dummy frame,
8031 which is not where we'll present the stop. */
8032 if (has_stack_frames ())
8033 {
8034 if (stop_stack_dummy == STOP_STACK_DUMMY)
8035 {
8036 /* Pop the empty frame that contains the stack dummy. This
8037 also restores inferior state prior to the call (struct
8038 infcall_suspend_state). */
8039 struct frame_info *frame = get_current_frame ();
8040
8041 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8042 frame_pop (frame);
8043 /* frame_pop calls reinit_frame_cache as the last thing it
8044 does which means there's now no selected frame. */
8045 }
8046
8047 select_frame (get_current_frame ());
8048
8049 /* Set the current source location. */
8050 set_current_sal_from_frame (get_current_frame ());
8051 }
dd7e2d2b
PA
8052
8053 /* Look up the hook_stop and run it (CLI internally handles problem
8054 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8055 if (stop_command != NULL)
8056 {
2d844eaf 8057 stop_context saved_context;
4c2f2a79 8058
a70b8144 8059 try
bf469271
PA
8060 {
8061 execute_cmd_pre_hook (stop_command);
8062 }
230d2906 8063 catch (const gdb_exception &ex)
bf469271
PA
8064 {
8065 exception_fprintf (gdb_stderr, ex,
8066 "Error while running hook_stop:\n");
8067 }
4c2f2a79
PA
8068
8069 /* If the stop hook resumes the target, then there's no point in
8070 trying to notify about the previous stop; its context is
8071 gone. Likewise if the command switches thread or inferior --
8072 the observers would print a stop for the wrong
8073 thread/inferior. */
2d844eaf
TT
8074 if (saved_context.changed ())
8075 return 1;
4c2f2a79 8076 }
dd7e2d2b 8077
388a7084
PA
8078 /* Notify observers about the stop. This is where the interpreters
8079 print the stop event. */
d7e15655 8080 if (inferior_ptid != null_ptid)
76727919 8081 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8082 stop_print_frame);
8083 else
76727919 8084 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8085
243a9253
PA
8086 annotate_stopped ();
8087
48844aa6
PA
8088 if (target_has_execution)
8089 {
8090 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8091 && last.kind != TARGET_WAITKIND_EXITED
8092 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8093 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8094 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8095 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8096 }
6c95b8df
PA
8097
8098 /* Try to get rid of automatically added inferiors that are no
8099 longer needed. Keeping those around slows down things linearly.
8100 Note that this never removes the current inferior. */
8101 prune_inferiors ();
4c2f2a79
PA
8102
8103 return 0;
c906108c 8104}
c906108c 8105\f
c5aa993b 8106int
96baa820 8107signal_stop_state (int signo)
c906108c 8108{
d6b48e9c 8109 return signal_stop[signo];
c906108c
SS
8110}
8111
c5aa993b 8112int
96baa820 8113signal_print_state (int signo)
c906108c
SS
8114{
8115 return signal_print[signo];
8116}
8117
c5aa993b 8118int
96baa820 8119signal_pass_state (int signo)
c906108c
SS
8120{
8121 return signal_program[signo];
8122}
8123
2455069d
UW
8124static void
8125signal_cache_update (int signo)
8126{
8127 if (signo == -1)
8128 {
a493e3e2 8129 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8130 signal_cache_update (signo);
8131
8132 return;
8133 }
8134
8135 signal_pass[signo] = (signal_stop[signo] == 0
8136 && signal_print[signo] == 0
ab04a2af
TT
8137 && signal_program[signo] == 1
8138 && signal_catch[signo] == 0);
2455069d
UW
8139}
8140
488f131b 8141int
7bda5e4a 8142signal_stop_update (int signo, int state)
d4f3574e
SS
8143{
8144 int ret = signal_stop[signo];
abbb1732 8145
d4f3574e 8146 signal_stop[signo] = state;
2455069d 8147 signal_cache_update (signo);
d4f3574e
SS
8148 return ret;
8149}
8150
488f131b 8151int
7bda5e4a 8152signal_print_update (int signo, int state)
d4f3574e
SS
8153{
8154 int ret = signal_print[signo];
abbb1732 8155
d4f3574e 8156 signal_print[signo] = state;
2455069d 8157 signal_cache_update (signo);
d4f3574e
SS
8158 return ret;
8159}
8160
488f131b 8161int
7bda5e4a 8162signal_pass_update (int signo, int state)
d4f3574e
SS
8163{
8164 int ret = signal_program[signo];
abbb1732 8165
d4f3574e 8166 signal_program[signo] = state;
2455069d 8167 signal_cache_update (signo);
d4f3574e
SS
8168 return ret;
8169}
8170
ab04a2af
TT
8171/* Update the global 'signal_catch' from INFO and notify the
8172 target. */
8173
8174void
8175signal_catch_update (const unsigned int *info)
8176{
8177 int i;
8178
8179 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8180 signal_catch[i] = info[i] > 0;
8181 signal_cache_update (-1);
adc6a863 8182 target_pass_signals (signal_pass);
ab04a2af
TT
8183}
8184
c906108c 8185static void
96baa820 8186sig_print_header (void)
c906108c 8187{
3e43a32a
MS
8188 printf_filtered (_("Signal Stop\tPrint\tPass "
8189 "to program\tDescription\n"));
c906108c
SS
8190}
8191
8192static void
2ea28649 8193sig_print_info (enum gdb_signal oursig)
c906108c 8194{
2ea28649 8195 const char *name = gdb_signal_to_name (oursig);
c906108c 8196 int name_padding = 13 - strlen (name);
96baa820 8197
c906108c
SS
8198 if (name_padding <= 0)
8199 name_padding = 0;
8200
8201 printf_filtered ("%s", name);
488f131b 8202 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8203 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8204 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8205 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8206 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8207}
8208
8209/* Specify how various signals in the inferior should be handled. */
8210
8211static void
0b39b52e 8212handle_command (const char *args, int from_tty)
c906108c 8213{
c906108c 8214 int digits, wordlen;
b926417a 8215 int sigfirst, siglast;
2ea28649 8216 enum gdb_signal oursig;
c906108c 8217 int allsigs;
c906108c
SS
8218
8219 if (args == NULL)
8220 {
e2e0b3e5 8221 error_no_arg (_("signal to handle"));
c906108c
SS
8222 }
8223
1777feb0 8224 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8225
adc6a863
PA
8226 const size_t nsigs = GDB_SIGNAL_LAST;
8227 unsigned char sigs[nsigs] {};
c906108c 8228
1777feb0 8229 /* Break the command line up into args. */
c906108c 8230
773a1edc 8231 gdb_argv built_argv (args);
c906108c
SS
8232
8233 /* Walk through the args, looking for signal oursigs, signal names, and
8234 actions. Signal numbers and signal names may be interspersed with
8235 actions, with the actions being performed for all signals cumulatively
1777feb0 8236 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8237
773a1edc 8238 for (char *arg : built_argv)
c906108c 8239 {
773a1edc
TT
8240 wordlen = strlen (arg);
8241 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8242 {;
8243 }
8244 allsigs = 0;
8245 sigfirst = siglast = -1;
8246
773a1edc 8247 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8248 {
8249 /* Apply action to all signals except those used by the
1777feb0 8250 debugger. Silently skip those. */
c906108c
SS
8251 allsigs = 1;
8252 sigfirst = 0;
8253 siglast = nsigs - 1;
8254 }
773a1edc 8255 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8256 {
8257 SET_SIGS (nsigs, sigs, signal_stop);
8258 SET_SIGS (nsigs, sigs, signal_print);
8259 }
773a1edc 8260 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8261 {
8262 UNSET_SIGS (nsigs, sigs, signal_program);
8263 }
773a1edc 8264 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8265 {
8266 SET_SIGS (nsigs, sigs, signal_print);
8267 }
773a1edc 8268 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8269 {
8270 SET_SIGS (nsigs, sigs, signal_program);
8271 }
773a1edc 8272 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8273 {
8274 UNSET_SIGS (nsigs, sigs, signal_stop);
8275 }
773a1edc 8276 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8277 {
8278 SET_SIGS (nsigs, sigs, signal_program);
8279 }
773a1edc 8280 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8281 {
8282 UNSET_SIGS (nsigs, sigs, signal_print);
8283 UNSET_SIGS (nsigs, sigs, signal_stop);
8284 }
773a1edc 8285 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8286 {
8287 UNSET_SIGS (nsigs, sigs, signal_program);
8288 }
8289 else if (digits > 0)
8290 {
8291 /* It is numeric. The numeric signal refers to our own
8292 internal signal numbering from target.h, not to host/target
8293 signal number. This is a feature; users really should be
8294 using symbolic names anyway, and the common ones like
8295 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8296
8297 sigfirst = siglast = (int)
773a1edc
TT
8298 gdb_signal_from_command (atoi (arg));
8299 if (arg[digits] == '-')
c906108c
SS
8300 {
8301 siglast = (int)
773a1edc 8302 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8303 }
8304 if (sigfirst > siglast)
8305 {
1777feb0 8306 /* Bet he didn't figure we'd think of this case... */
b926417a 8307 std::swap (sigfirst, siglast);
c906108c
SS
8308 }
8309 }
8310 else
8311 {
773a1edc 8312 oursig = gdb_signal_from_name (arg);
a493e3e2 8313 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8314 {
8315 sigfirst = siglast = (int) oursig;
8316 }
8317 else
8318 {
8319 /* Not a number and not a recognized flag word => complain. */
773a1edc 8320 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8321 }
8322 }
8323
8324 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8325 which signals to apply actions to. */
c906108c 8326
b926417a 8327 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8328 {
2ea28649 8329 switch ((enum gdb_signal) signum)
c906108c 8330 {
a493e3e2
PA
8331 case GDB_SIGNAL_TRAP:
8332 case GDB_SIGNAL_INT:
c906108c
SS
8333 if (!allsigs && !sigs[signum])
8334 {
9e2f0ad4 8335 if (query (_("%s is used by the debugger.\n\
3e43a32a 8336Are you sure you want to change it? "),
2ea28649 8337 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8338 {
8339 sigs[signum] = 1;
8340 }
8341 else
c119e040 8342 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8343 }
8344 break;
a493e3e2
PA
8345 case GDB_SIGNAL_0:
8346 case GDB_SIGNAL_DEFAULT:
8347 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8348 /* Make sure that "all" doesn't print these. */
8349 break;
8350 default:
8351 sigs[signum] = 1;
8352 break;
8353 }
8354 }
c906108c
SS
8355 }
8356
b926417a 8357 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8358 if (sigs[signum])
8359 {
2455069d 8360 signal_cache_update (-1);
adc6a863
PA
8361 target_pass_signals (signal_pass);
8362 target_program_signals (signal_program);
c906108c 8363
3a031f65
PA
8364 if (from_tty)
8365 {
8366 /* Show the results. */
8367 sig_print_header ();
8368 for (; signum < nsigs; signum++)
8369 if (sigs[signum])
aead7601 8370 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8371 }
8372
8373 break;
8374 }
c906108c
SS
8375}
8376
de0bea00
MF
8377/* Complete the "handle" command. */
8378
eb3ff9a5 8379static void
de0bea00 8380handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8381 completion_tracker &tracker,
6f937416 8382 const char *text, const char *word)
de0bea00 8383{
de0bea00
MF
8384 static const char * const keywords[] =
8385 {
8386 "all",
8387 "stop",
8388 "ignore",
8389 "print",
8390 "pass",
8391 "nostop",
8392 "noignore",
8393 "noprint",
8394 "nopass",
8395 NULL,
8396 };
8397
eb3ff9a5
PA
8398 signal_completer (ignore, tracker, text, word);
8399 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8400}
8401
2ea28649
PA
8402enum gdb_signal
8403gdb_signal_from_command (int num)
ed01b82c
PA
8404{
8405 if (num >= 1 && num <= 15)
2ea28649 8406 return (enum gdb_signal) num;
ed01b82c
PA
8407 error (_("Only signals 1-15 are valid as numeric signals.\n\
8408Use \"info signals\" for a list of symbolic signals."));
8409}
8410
c906108c
SS
8411/* Print current contents of the tables set by the handle command.
8412 It is possible we should just be printing signals actually used
8413 by the current target (but for things to work right when switching
8414 targets, all signals should be in the signal tables). */
8415
8416static void
1d12d88f 8417info_signals_command (const char *signum_exp, int from_tty)
c906108c 8418{
2ea28649 8419 enum gdb_signal oursig;
abbb1732 8420
c906108c
SS
8421 sig_print_header ();
8422
8423 if (signum_exp)
8424 {
8425 /* First see if this is a symbol name. */
2ea28649 8426 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8427 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8428 {
8429 /* No, try numeric. */
8430 oursig =
2ea28649 8431 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8432 }
8433 sig_print_info (oursig);
8434 return;
8435 }
8436
8437 printf_filtered ("\n");
8438 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8439 for (oursig = GDB_SIGNAL_FIRST;
8440 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8441 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8442 {
8443 QUIT;
8444
a493e3e2
PA
8445 if (oursig != GDB_SIGNAL_UNKNOWN
8446 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8447 sig_print_info (oursig);
8448 }
8449
3e43a32a
MS
8450 printf_filtered (_("\nUse the \"handle\" command "
8451 "to change these tables.\n"));
c906108c 8452}
4aa995e1
PA
8453
8454/* The $_siginfo convenience variable is a bit special. We don't know
8455 for sure the type of the value until we actually have a chance to
7a9dd1b2 8456 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8457 also dependent on which thread you have selected.
8458
8459 1. making $_siginfo be an internalvar that creates a new value on
8460 access.
8461
8462 2. making the value of $_siginfo be an lval_computed value. */
8463
8464/* This function implements the lval_computed support for reading a
8465 $_siginfo value. */
8466
8467static void
8468siginfo_value_read (struct value *v)
8469{
8470 LONGEST transferred;
8471
a911d87a
PA
8472 /* If we can access registers, so can we access $_siginfo. Likewise
8473 vice versa. */
8474 validate_registers_access ();
c709acd1 8475
4aa995e1 8476 transferred =
8b88a78e 8477 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8478 NULL,
8479 value_contents_all_raw (v),
8480 value_offset (v),
8481 TYPE_LENGTH (value_type (v)));
8482
8483 if (transferred != TYPE_LENGTH (value_type (v)))
8484 error (_("Unable to read siginfo"));
8485}
8486
8487/* This function implements the lval_computed support for writing a
8488 $_siginfo value. */
8489
8490static void
8491siginfo_value_write (struct value *v, struct value *fromval)
8492{
8493 LONGEST transferred;
8494
a911d87a
PA
8495 /* If we can access registers, so can we access $_siginfo. Likewise
8496 vice versa. */
8497 validate_registers_access ();
c709acd1 8498
8b88a78e 8499 transferred = target_write (current_top_target (),
4aa995e1
PA
8500 TARGET_OBJECT_SIGNAL_INFO,
8501 NULL,
8502 value_contents_all_raw (fromval),
8503 value_offset (v),
8504 TYPE_LENGTH (value_type (fromval)));
8505
8506 if (transferred != TYPE_LENGTH (value_type (fromval)))
8507 error (_("Unable to write siginfo"));
8508}
8509
c8f2448a 8510static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8511 {
8512 siginfo_value_read,
8513 siginfo_value_write
8514 };
8515
8516/* Return a new value with the correct type for the siginfo object of
78267919
UW
8517 the current thread using architecture GDBARCH. Return a void value
8518 if there's no object available. */
4aa995e1 8519
2c0b251b 8520static struct value *
22d2b532
SDJ
8521siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8522 void *ignore)
4aa995e1 8523{
4aa995e1 8524 if (target_has_stack
d7e15655 8525 && inferior_ptid != null_ptid
78267919 8526 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8527 {
78267919 8528 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8529
78267919 8530 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8531 }
8532
78267919 8533 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8534}
8535
c906108c 8536\f
16c381f0
JK
8537/* infcall_suspend_state contains state about the program itself like its
8538 registers and any signal it received when it last stopped.
8539 This state must be restored regardless of how the inferior function call
8540 ends (either successfully, or after it hits a breakpoint or signal)
8541 if the program is to properly continue where it left off. */
8542
6bf78e29 8543class infcall_suspend_state
7a292a7a 8544{
6bf78e29
AB
8545public:
8546 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8547 once the inferior function call has finished. */
8548 infcall_suspend_state (struct gdbarch *gdbarch,
8549 const struct thread_info *tp,
8550 struct regcache *regcache)
8551 : m_thread_suspend (tp->suspend),
8552 m_registers (new readonly_detached_regcache (*regcache))
8553 {
8554 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8555
8556 if (gdbarch_get_siginfo_type_p (gdbarch))
8557 {
8558 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8559 size_t len = TYPE_LENGTH (type);
8560
8561 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8562
8563 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8564 siginfo_data.get (), 0, len) != len)
8565 {
8566 /* Errors ignored. */
8567 siginfo_data.reset (nullptr);
8568 }
8569 }
8570
8571 if (siginfo_data)
8572 {
8573 m_siginfo_gdbarch = gdbarch;
8574 m_siginfo_data = std::move (siginfo_data);
8575 }
8576 }
8577
8578 /* Return a pointer to the stored register state. */
16c381f0 8579
6bf78e29
AB
8580 readonly_detached_regcache *registers () const
8581 {
8582 return m_registers.get ();
8583 }
8584
8585 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8586
8587 void restore (struct gdbarch *gdbarch,
8588 struct thread_info *tp,
8589 struct regcache *regcache) const
8590 {
8591 tp->suspend = m_thread_suspend;
8592
8593 if (m_siginfo_gdbarch == gdbarch)
8594 {
8595 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8596
8597 /* Errors ignored. */
8598 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8599 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8600 }
8601
8602 /* The inferior can be gone if the user types "print exit(0)"
8603 (and perhaps other times). */
8604 if (target_has_execution)
8605 /* NB: The register write goes through to the target. */
8606 regcache->restore (registers ());
8607 }
8608
8609private:
8610 /* How the current thread stopped before the inferior function call was
8611 executed. */
8612 struct thread_suspend_state m_thread_suspend;
8613
8614 /* The registers before the inferior function call was executed. */
8615 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8616
35515841 8617 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8618 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8619
8620 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8621 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8622 content would be invalid. */
6bf78e29 8623 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8624};
8625
cb524840
TT
8626infcall_suspend_state_up
8627save_infcall_suspend_state ()
b89667eb 8628{
b89667eb 8629 struct thread_info *tp = inferior_thread ();
1736ad11 8630 struct regcache *regcache = get_current_regcache ();
ac7936df 8631 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8632
6bf78e29
AB
8633 infcall_suspend_state_up inf_state
8634 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8635
6bf78e29
AB
8636 /* Having saved the current state, adjust the thread state, discarding
8637 any stop signal information. The stop signal is not useful when
8638 starting an inferior function call, and run_inferior_call will not use
8639 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8640 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8641
b89667eb
DE
8642 return inf_state;
8643}
8644
8645/* Restore inferior session state to INF_STATE. */
8646
8647void
16c381f0 8648restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8649{
8650 struct thread_info *tp = inferior_thread ();
1736ad11 8651 struct regcache *regcache = get_current_regcache ();
ac7936df 8652 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8653
6bf78e29 8654 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8655 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8656}
8657
b89667eb 8658void
16c381f0 8659discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8660{
dd848631 8661 delete inf_state;
b89667eb
DE
8662}
8663
daf6667d 8664readonly_detached_regcache *
16c381f0 8665get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8666{
6bf78e29 8667 return inf_state->registers ();
b89667eb
DE
8668}
8669
16c381f0
JK
8670/* infcall_control_state contains state regarding gdb's control of the
8671 inferior itself like stepping control. It also contains session state like
8672 the user's currently selected frame. */
b89667eb 8673
16c381f0 8674struct infcall_control_state
b89667eb 8675{
16c381f0
JK
8676 struct thread_control_state thread_control;
8677 struct inferior_control_state inferior_control;
d82142e2
JK
8678
8679 /* Other fields: */
ee841dd8
TT
8680 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8681 int stopped_by_random_signal = 0;
7a292a7a 8682
b89667eb 8683 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8684 struct frame_id selected_frame_id {};
7a292a7a
SS
8685};
8686
c906108c 8687/* Save all of the information associated with the inferior<==>gdb
b89667eb 8688 connection. */
c906108c 8689
cb524840
TT
8690infcall_control_state_up
8691save_infcall_control_state ()
c906108c 8692{
cb524840 8693 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8694 struct thread_info *tp = inferior_thread ();
d6b48e9c 8695 struct inferior *inf = current_inferior ();
7a292a7a 8696
16c381f0
JK
8697 inf_status->thread_control = tp->control;
8698 inf_status->inferior_control = inf->control;
d82142e2 8699
8358c15c 8700 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8701 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8702
16c381f0
JK
8703 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8704 chain. If caller's caller is walking the chain, they'll be happier if we
8705 hand them back the original chain when restore_infcall_control_state is
8706 called. */
8707 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8708
8709 /* Other fields: */
8710 inf_status->stop_stack_dummy = stop_stack_dummy;
8711 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8712
206415a3 8713 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8714
7a292a7a 8715 return inf_status;
c906108c
SS
8716}
8717
bf469271
PA
8718static void
8719restore_selected_frame (const frame_id &fid)
c906108c 8720{
bf469271 8721 frame_info *frame = frame_find_by_id (fid);
c906108c 8722
aa0cd9c1
AC
8723 /* If inf_status->selected_frame_id is NULL, there was no previously
8724 selected frame. */
101dcfbe 8725 if (frame == NULL)
c906108c 8726 {
8a3fe4f8 8727 warning (_("Unable to restore previously selected frame."));
bf469271 8728 return;
c906108c
SS
8729 }
8730
0f7d239c 8731 select_frame (frame);
c906108c
SS
8732}
8733
b89667eb
DE
8734/* Restore inferior session state to INF_STATUS. */
8735
c906108c 8736void
16c381f0 8737restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8738{
4e1c45ea 8739 struct thread_info *tp = inferior_thread ();
d6b48e9c 8740 struct inferior *inf = current_inferior ();
4e1c45ea 8741
8358c15c
JK
8742 if (tp->control.step_resume_breakpoint)
8743 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8744
5b79abe7
TT
8745 if (tp->control.exception_resume_breakpoint)
8746 tp->control.exception_resume_breakpoint->disposition
8747 = disp_del_at_next_stop;
8748
d82142e2 8749 /* Handle the bpstat_copy of the chain. */
16c381f0 8750 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8751
16c381f0
JK
8752 tp->control = inf_status->thread_control;
8753 inf->control = inf_status->inferior_control;
d82142e2
JK
8754
8755 /* Other fields: */
8756 stop_stack_dummy = inf_status->stop_stack_dummy;
8757 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8758
b89667eb 8759 if (target_has_stack)
c906108c 8760 {
bf469271 8761 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8762 walking the stack might encounter a garbage pointer and
8763 error() trying to dereference it. */
a70b8144 8764 try
bf469271
PA
8765 {
8766 restore_selected_frame (inf_status->selected_frame_id);
8767 }
230d2906 8768 catch (const gdb_exception_error &ex)
bf469271
PA
8769 {
8770 exception_fprintf (gdb_stderr, ex,
8771 "Unable to restore previously selected frame:\n");
8772 /* Error in restoring the selected frame. Select the
8773 innermost frame. */
8774 select_frame (get_current_frame ());
8775 }
c906108c 8776 }
c906108c 8777
ee841dd8 8778 delete inf_status;
7a292a7a 8779}
c906108c
SS
8780
8781void
16c381f0 8782discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8783{
8358c15c
JK
8784 if (inf_status->thread_control.step_resume_breakpoint)
8785 inf_status->thread_control.step_resume_breakpoint->disposition
8786 = disp_del_at_next_stop;
8787
5b79abe7
TT
8788 if (inf_status->thread_control.exception_resume_breakpoint)
8789 inf_status->thread_control.exception_resume_breakpoint->disposition
8790 = disp_del_at_next_stop;
8791
1777feb0 8792 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8793 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8794
ee841dd8 8795 delete inf_status;
7a292a7a 8796}
b89667eb 8797\f
7f89fd65 8798/* See infrun.h. */
0c557179
SDJ
8799
8800void
8801clear_exit_convenience_vars (void)
8802{
8803 clear_internalvar (lookup_internalvar ("_exitsignal"));
8804 clear_internalvar (lookup_internalvar ("_exitcode"));
8805}
c5aa993b 8806\f
488f131b 8807
b2175913
MS
8808/* User interface for reverse debugging:
8809 Set exec-direction / show exec-direction commands
8810 (returns error unless target implements to_set_exec_direction method). */
8811
170742de 8812enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8813static const char exec_forward[] = "forward";
8814static const char exec_reverse[] = "reverse";
8815static const char *exec_direction = exec_forward;
40478521 8816static const char *const exec_direction_names[] = {
b2175913
MS
8817 exec_forward,
8818 exec_reverse,
8819 NULL
8820};
8821
8822static void
eb4c3f4a 8823set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8824 struct cmd_list_element *cmd)
8825{
8826 if (target_can_execute_reverse)
8827 {
8828 if (!strcmp (exec_direction, exec_forward))
8829 execution_direction = EXEC_FORWARD;
8830 else if (!strcmp (exec_direction, exec_reverse))
8831 execution_direction = EXEC_REVERSE;
8832 }
8bbed405
MS
8833 else
8834 {
8835 exec_direction = exec_forward;
8836 error (_("Target does not support this operation."));
8837 }
b2175913
MS
8838}
8839
8840static void
8841show_exec_direction_func (struct ui_file *out, int from_tty,
8842 struct cmd_list_element *cmd, const char *value)
8843{
8844 switch (execution_direction) {
8845 case EXEC_FORWARD:
8846 fprintf_filtered (out, _("Forward.\n"));
8847 break;
8848 case EXEC_REVERSE:
8849 fprintf_filtered (out, _("Reverse.\n"));
8850 break;
b2175913 8851 default:
d8b34453
PA
8852 internal_error (__FILE__, __LINE__,
8853 _("bogus execution_direction value: %d"),
8854 (int) execution_direction);
b2175913
MS
8855 }
8856}
8857
d4db2f36
PA
8858static void
8859show_schedule_multiple (struct ui_file *file, int from_tty,
8860 struct cmd_list_element *c, const char *value)
8861{
3e43a32a
MS
8862 fprintf_filtered (file, _("Resuming the execution of threads "
8863 "of all processes is %s.\n"), value);
d4db2f36 8864}
ad52ddc6 8865
22d2b532
SDJ
8866/* Implementation of `siginfo' variable. */
8867
8868static const struct internalvar_funcs siginfo_funcs =
8869{
8870 siginfo_make_value,
8871 NULL,
8872 NULL
8873};
8874
372316f1
PA
8875/* Callback for infrun's target events source. This is marked when a
8876 thread has a pending status to process. */
8877
8878static void
8879infrun_async_inferior_event_handler (gdb_client_data data)
8880{
372316f1
PA
8881 inferior_event_handler (INF_REG_EVENT, NULL);
8882}
8883
c906108c 8884void
96baa820 8885_initialize_infrun (void)
c906108c 8886{
de0bea00 8887 struct cmd_list_element *c;
c906108c 8888
372316f1
PA
8889 /* Register extra event sources in the event loop. */
8890 infrun_async_inferior_event_token
8891 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8892
11db9430 8893 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8894What debugger does when program gets various signals.\n\
8895Specify a signal as argument to print info on that signal only."));
c906108c
SS
8896 add_info_alias ("handle", "signals", 0);
8897
de0bea00 8898 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8899Specify how to handle signals.\n\
486c7739 8900Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8901Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8902If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8903will be displayed instead.\n\
8904\n\
c906108c
SS
8905Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8906from 1-15 are allowed for compatibility with old versions of GDB.\n\
8907Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8908The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8909used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8910\n\
1bedd215 8911Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8912\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8913Stop means reenter debugger if this signal happens (implies print).\n\
8914Print means print a message if this signal happens.\n\
8915Pass means let program see this signal; otherwise program doesn't know.\n\
8916Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8917Pass and Stop may be combined.\n\
8918\n\
8919Multiple signals may be specified. Signal numbers and signal names\n\
8920may be interspersed with actions, with the actions being performed for\n\
8921all signals cumulatively specified."));
de0bea00 8922 set_cmd_completer (c, handle_completer);
486c7739 8923
c906108c 8924 if (!dbx_commands)
1a966eab
AC
8925 stop_command = add_cmd ("stop", class_obscure,
8926 not_just_help_class_command, _("\
8927There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8928This allows you to set a list of commands to be run each time execution\n\
1a966eab 8929of the program stops."), &cmdlist);
c906108c 8930
ccce17b0 8931 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8932Set inferior debugging."), _("\
8933Show inferior debugging."), _("\
8934When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8935 NULL,
8936 show_debug_infrun,
8937 &setdebuglist, &showdebuglist);
527159b7 8938
3e43a32a
MS
8939 add_setshow_boolean_cmd ("displaced", class_maintenance,
8940 &debug_displaced, _("\
237fc4c9
PA
8941Set displaced stepping debugging."), _("\
8942Show displaced stepping debugging."), _("\
8943When non-zero, displaced stepping specific debugging is enabled."),
8944 NULL,
8945 show_debug_displaced,
8946 &setdebuglist, &showdebuglist);
8947
ad52ddc6
PA
8948 add_setshow_boolean_cmd ("non-stop", no_class,
8949 &non_stop_1, _("\
8950Set whether gdb controls the inferior in non-stop mode."), _("\
8951Show whether gdb controls the inferior in non-stop mode."), _("\
8952When debugging a multi-threaded program and this setting is\n\
8953off (the default, also called all-stop mode), when one thread stops\n\
8954(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8955all other threads in the program while you interact with the thread of\n\
8956interest. When you continue or step a thread, you can allow the other\n\
8957threads to run, or have them remain stopped, but while you inspect any\n\
8958thread's state, all threads stop.\n\
8959\n\
8960In non-stop mode, when one thread stops, other threads can continue\n\
8961to run freely. You'll be able to step each thread independently,\n\
8962leave it stopped or free to run as needed."),
8963 set_non_stop,
8964 show_non_stop,
8965 &setlist,
8966 &showlist);
8967
adc6a863 8968 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
8969 {
8970 signal_stop[i] = 1;
8971 signal_print[i] = 1;
8972 signal_program[i] = 1;
ab04a2af 8973 signal_catch[i] = 0;
c906108c
SS
8974 }
8975
4d9d9d04
PA
8976 /* Signals caused by debugger's own actions should not be given to
8977 the program afterwards.
8978
8979 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8980 explicitly specifies that it should be delivered to the target
8981 program. Typically, that would occur when a user is debugging a
8982 target monitor on a simulator: the target monitor sets a
8983 breakpoint; the simulator encounters this breakpoint and halts
8984 the simulation handing control to GDB; GDB, noting that the stop
8985 address doesn't map to any known breakpoint, returns control back
8986 to the simulator; the simulator then delivers the hardware
8987 equivalent of a GDB_SIGNAL_TRAP to the program being
8988 debugged. */
a493e3e2
PA
8989 signal_program[GDB_SIGNAL_TRAP] = 0;
8990 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
8991
8992 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
8993 signal_stop[GDB_SIGNAL_ALRM] = 0;
8994 signal_print[GDB_SIGNAL_ALRM] = 0;
8995 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8996 signal_print[GDB_SIGNAL_VTALRM] = 0;
8997 signal_stop[GDB_SIGNAL_PROF] = 0;
8998 signal_print[GDB_SIGNAL_PROF] = 0;
8999 signal_stop[GDB_SIGNAL_CHLD] = 0;
9000 signal_print[GDB_SIGNAL_CHLD] = 0;
9001 signal_stop[GDB_SIGNAL_IO] = 0;
9002 signal_print[GDB_SIGNAL_IO] = 0;
9003 signal_stop[GDB_SIGNAL_POLL] = 0;
9004 signal_print[GDB_SIGNAL_POLL] = 0;
9005 signal_stop[GDB_SIGNAL_URG] = 0;
9006 signal_print[GDB_SIGNAL_URG] = 0;
9007 signal_stop[GDB_SIGNAL_WINCH] = 0;
9008 signal_print[GDB_SIGNAL_WINCH] = 0;
9009 signal_stop[GDB_SIGNAL_PRIO] = 0;
9010 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9011
cd0fc7c3
SS
9012 /* These signals are used internally by user-level thread
9013 implementations. (See signal(5) on Solaris.) Like the above
9014 signals, a healthy program receives and handles them as part of
9015 its normal operation. */
a493e3e2
PA
9016 signal_stop[GDB_SIGNAL_LWP] = 0;
9017 signal_print[GDB_SIGNAL_LWP] = 0;
9018 signal_stop[GDB_SIGNAL_WAITING] = 0;
9019 signal_print[GDB_SIGNAL_WAITING] = 0;
9020 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9021 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9022 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9023 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9024
2455069d
UW
9025 /* Update cached state. */
9026 signal_cache_update (-1);
9027
85c07804
AC
9028 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9029 &stop_on_solib_events, _("\
9030Set stopping for shared library events."), _("\
9031Show stopping for shared library events."), _("\
c906108c
SS
9032If nonzero, gdb will give control to the user when the dynamic linker\n\
9033notifies gdb of shared library events. The most common event of interest\n\
85c07804 9034to the user would be loading/unloading of a new library."),
f9e14852 9035 set_stop_on_solib_events,
920d2a44 9036 show_stop_on_solib_events,
85c07804 9037 &setlist, &showlist);
c906108c 9038
7ab04401
AC
9039 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9040 follow_fork_mode_kind_names,
9041 &follow_fork_mode_string, _("\
9042Set debugger response to a program call of fork or vfork."), _("\
9043Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9044A fork or vfork creates a new process. follow-fork-mode can be:\n\
9045 parent - the original process is debugged after a fork\n\
9046 child - the new process is debugged after a fork\n\
ea1dd7bc 9047The unfollowed process will continue to run.\n\
7ab04401
AC
9048By default, the debugger will follow the parent process."),
9049 NULL,
920d2a44 9050 show_follow_fork_mode_string,
7ab04401
AC
9051 &setlist, &showlist);
9052
6c95b8df
PA
9053 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9054 follow_exec_mode_names,
9055 &follow_exec_mode_string, _("\
9056Set debugger response to a program call of exec."), _("\
9057Show debugger response to a program call of exec."), _("\
9058An exec call replaces the program image of a process.\n\
9059\n\
9060follow-exec-mode can be:\n\
9061\n\
cce7e648 9062 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9063to this new inferior. The program the process was running before\n\
9064the exec call can be restarted afterwards by restarting the original\n\
9065inferior.\n\
9066\n\
9067 same - the debugger keeps the process bound to the same inferior.\n\
9068The new executable image replaces the previous executable loaded in\n\
9069the inferior. Restarting the inferior after the exec call restarts\n\
9070the executable the process was running after the exec call.\n\
9071\n\
9072By default, the debugger will use the same inferior."),
9073 NULL,
9074 show_follow_exec_mode_string,
9075 &setlist, &showlist);
9076
7ab04401
AC
9077 add_setshow_enum_cmd ("scheduler-locking", class_run,
9078 scheduler_enums, &scheduler_mode, _("\
9079Set mode for locking scheduler during execution."), _("\
9080Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9081off == no locking (threads may preempt at any time)\n\
9082on == full locking (no thread except the current thread may run)\n\
9083 This applies to both normal execution and replay mode.\n\
9084step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9085 In this mode, other threads may run during other commands.\n\
9086 This applies to both normal execution and replay mode.\n\
9087replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9088 set_schedlock_func, /* traps on target vector */
920d2a44 9089 show_scheduler_mode,
7ab04401 9090 &setlist, &showlist);
5fbbeb29 9091
d4db2f36
PA
9092 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9093Set mode for resuming threads of all processes."), _("\
9094Show mode for resuming threads of all processes."), _("\
9095When on, execution commands (such as 'continue' or 'next') resume all\n\
9096threads of all processes. When off (which is the default), execution\n\
9097commands only resume the threads of the current process. The set of\n\
9098threads that are resumed is further refined by the scheduler-locking\n\
9099mode (see help set scheduler-locking)."),
9100 NULL,
9101 show_schedule_multiple,
9102 &setlist, &showlist);
9103
5bf193a2
AC
9104 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9105Set mode of the step operation."), _("\
9106Show mode of the step operation."), _("\
9107When set, doing a step over a function without debug line information\n\
9108will stop at the first instruction of that function. Otherwise, the\n\
9109function is skipped and the step command stops at a different source line."),
9110 NULL,
920d2a44 9111 show_step_stop_if_no_debug,
5bf193a2 9112 &setlist, &showlist);
ca6724c1 9113
72d0e2c5
YQ
9114 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9115 &can_use_displaced_stepping, _("\
237fc4c9
PA
9116Set debugger's willingness to use displaced stepping."), _("\
9117Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9118If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9119supported by the target architecture. If off, gdb will not use displaced\n\
9120stepping to step over breakpoints, even if such is supported by the target\n\
9121architecture. If auto (which is the default), gdb will use displaced stepping\n\
9122if the target architecture supports it and non-stop mode is active, but will not\n\
9123use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9124 NULL,
9125 show_can_use_displaced_stepping,
9126 &setlist, &showlist);
237fc4c9 9127
b2175913
MS
9128 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9129 &exec_direction, _("Set direction of execution.\n\
9130Options are 'forward' or 'reverse'."),
9131 _("Show direction of execution (forward/reverse)."),
9132 _("Tells gdb whether to execute forward or backward."),
9133 set_exec_direction_func, show_exec_direction_func,
9134 &setlist, &showlist);
9135
6c95b8df
PA
9136 /* Set/show detach-on-fork: user-settable mode. */
9137
9138 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9139Set whether gdb will detach the child of a fork."), _("\
9140Show whether gdb will detach the child of a fork."), _("\
9141Tells gdb whether to detach the child of a fork."),
9142 NULL, NULL, &setlist, &showlist);
9143
03583c20
UW
9144 /* Set/show disable address space randomization mode. */
9145
9146 add_setshow_boolean_cmd ("disable-randomization", class_support,
9147 &disable_randomization, _("\
9148Set disabling of debuggee's virtual address space randomization."), _("\
9149Show disabling of debuggee's virtual address space randomization."), _("\
9150When this mode is on (which is the default), randomization of the virtual\n\
9151address space is disabled. Standalone programs run with the randomization\n\
9152enabled by default on some platforms."),
9153 &set_disable_randomization,
9154 &show_disable_randomization,
9155 &setlist, &showlist);
9156
ca6724c1 9157 /* ptid initializations */
ca6724c1
KB
9158 inferior_ptid = null_ptid;
9159 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9160
76727919
TT
9161 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9162 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9163 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9164 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9165
9166 /* Explicitly create without lookup, since that tries to create a
9167 value with a void typed value, and when we get here, gdbarch
9168 isn't initialized yet. At this point, we're quite sure there
9169 isn't another convenience variable of the same name. */
22d2b532 9170 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9171
9172 add_setshow_boolean_cmd ("observer", no_class,
9173 &observer_mode_1, _("\
9174Set whether gdb controls the inferior in observer mode."), _("\
9175Show whether gdb controls the inferior in observer mode."), _("\
9176In observer mode, GDB can get data from the inferior, but not\n\
9177affect its execution. Registers and memory may not be changed,\n\
9178breakpoints may not be set, and the program cannot be interrupted\n\
9179or signalled."),
9180 set_observer_mode,
9181 show_observer_mode,
9182 &setlist,
9183 &showlist);
c906108c 9184}