]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/m32r-linux-tdep.c
Change Ada catchpoints to be bp_catchpoint
[thirdparty/binutils-gdb.git] / gdb / m32r-linux-tdep.c
CommitLineData
9b32d526
KI
1/* Target-dependent code for GNU/Linux m32r.
2
42a4f53d 3 Copyright (C) 2004-2019 Free Software Foundation, Inc.
9b32d526
KI
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
9b32d526
KI
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
9b32d526
KI
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "frame.h"
23#include "value.h"
24#include "regcache.h"
25#include "inferior.h"
26#include "osabi.h"
27#include "reggroups.h"
9b098f24 28#include "regset.h"
9b32d526 29
9b32d526
KI
30#include "glibc-tdep.h"
31#include "solib-svr4.h"
982e9687 32#include "symtab.h"
9b32d526
KI
33
34#include "trad-frame.h"
35#include "frame-unwind.h"
36
37#include "m32r-tdep.h"
a5ee0f0c
PA
38#include "linux-tdep.h"
39
9b32d526
KI
40\f
41
42/* Recognizing signal handler frames. */
43
44/* GNU/Linux has two flavors of signals. Normal signal handlers, and
45 "realtime" (RT) signals. The RT signals can provide additional
46 information to the signal handler if the SA_SIGINFO flag is set
47 when establishing a signal handler using `sigaction'. It is not
48 unlikely that future versions of GNU/Linux will support SA_SIGINFO
49 for normal signals too. */
50
51/* When the m32r Linux kernel calls a signal handler and the
52 SA_RESTORER flag isn't set, the return address points to a bit of
53 code on the stack. This function returns whether the PC appears to
54 be within this bit of code.
55
56 The instruction sequence for normal signals is
57 ldi r7, #__NR_sigreturn
58 trap #2
59 or 0x67 0x77 0x10 0xf2.
60
61 Checking for the code sequence should be somewhat reliable, because
62 the effect is to call the system call sigreturn. This is unlikely
63 to occur anywhere other than in a signal trampoline.
64
65 It kind of sucks that we have to read memory from the process in
66 order to identify a signal trampoline, but there doesn't seem to be
67 any other way. Therefore we only do the memory reads if no
68 function name could be identified, which should be the case since
69 the code is on the stack.
70
71 Detection of signal trampolines for handlers that set the
72 SA_RESTORER flag is in general not possible. Unfortunately this is
73 what the GNU C Library has been doing for quite some time now.
74 However, as of version 2.1.2, the GNU C Library uses signal
75 trampolines (named __restore and __restore_rt) that are identical
76 to the ones used by the kernel. Therefore, these trampolines are
77 supported too. */
78
16ac4ab5 79static const gdb_byte linux_sigtramp_code[] = {
9b32d526
KI
80 0x67, 0x77, 0x10, 0xf2,
81};
82
83/* If PC is in a sigtramp routine, return the address of the start of
84 the routine. Otherwise, return 0. */
85
86static CORE_ADDR
94afd7a6 87m32r_linux_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
9b32d526 88{
16ac4ab5 89 gdb_byte buf[4];
9b32d526
KI
90
91 /* We only recognize a signal trampoline if PC is at the start of
92 one of the instructions. We optimize for finding the PC at the
93 start of the instruction sequence, as will be the case when the
94 trampoline is not the first frame on the stack. We assume that
95 in the case where the PC is not at the start of the instruction
96 sequence, there will be a few trailing readable bytes on the
97 stack. */
98
99 if (pc % 2 != 0)
100 {
94afd7a6 101 if (!safe_frame_unwind_memory (this_frame, pc, buf, 2))
9b32d526
KI
102 return 0;
103
104 if (memcmp (buf, linux_sigtramp_code, 2) == 0)
105 pc -= 2;
106 else
107 return 0;
108 }
109
94afd7a6 110 if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
9b32d526
KI
111 return 0;
112
113 if (memcmp (buf, linux_sigtramp_code, 4) != 0)
114 return 0;
115
116 return pc;
117}
118
119/* This function does the same for RT signals. Here the instruction
120 sequence is
121 ldi r7, #__NR_rt_sigreturn
122 trap #2
123 or 0x97 0xf0 0x00 0xad 0x10 0xf2 0xf0 0x00.
124
125 The effect is to call the system call rt_sigreturn. */
126
16ac4ab5 127static const gdb_byte linux_rt_sigtramp_code[] = {
9b32d526
KI
128 0x97, 0xf0, 0x00, 0xad, 0x10, 0xf2, 0xf0, 0x00,
129};
130
131/* If PC is in a RT sigtramp routine, return the address of the start
132 of the routine. Otherwise, return 0. */
133
134static CORE_ADDR
94afd7a6 135m32r_linux_rt_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
9b32d526 136{
16ac4ab5 137 gdb_byte buf[4];
9b32d526
KI
138
139 /* We only recognize a signal trampoline if PC is at the start of
140 one of the instructions. We optimize for finding the PC at the
141 start of the instruction sequence, as will be the case when the
142 trampoline is not the first frame on the stack. We assume that
143 in the case where the PC is not at the start of the instruction
144 sequence, there will be a few trailing readable bytes on the
145 stack. */
146
147 if (pc % 2 != 0)
148 return 0;
149
94afd7a6 150 if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
9b32d526
KI
151 return 0;
152
153 if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
154 {
94afd7a6 155 if (!safe_frame_unwind_memory (this_frame, pc + 4, buf, 4))
9b32d526
KI
156 return 0;
157
158 if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
159 return pc;
160 }
161 else if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
162 {
94afd7a6 163 if (!safe_frame_unwind_memory (this_frame, pc - 4, buf, 4))
9b32d526
KI
164 return 0;
165
166 if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
167 return pc - 4;
168 }
169
170 return 0;
171}
172
173static int
2c02bd72 174m32r_linux_pc_in_sigtramp (CORE_ADDR pc, const char *name,
94afd7a6 175 struct frame_info *this_frame)
9b32d526
KI
176{
177 /* If we have NAME, we can optimize the search. The trampolines are
178 named __restore and __restore_rt. However, they aren't dynamically
179 exported from the shared C library, so the trampoline may appear to
180 be part of the preceding function. This should always be sigaction,
181 __sigaction, or __libc_sigaction (all aliases to the same function). */
182 if (name == NULL || strstr (name, "sigaction") != NULL)
94afd7a6
UW
183 return (m32r_linux_sigtramp_start (pc, this_frame) != 0
184 || m32r_linux_rt_sigtramp_start (pc, this_frame) != 0);
9b32d526
KI
185
186 return (strcmp ("__restore", name) == 0
187 || strcmp ("__restore_rt", name) == 0);
188}
189
190/* From <asm/sigcontext.h>. */
191static int m32r_linux_sc_reg_offset[] = {
192 4 * 4, /* r0 */
193 5 * 4, /* r1 */
194 6 * 4, /* r2 */
195 7 * 4, /* r3 */
196 0 * 4, /* r4 */
197 1 * 4, /* r5 */
198 2 * 4, /* r6 */
199 8 * 4, /* r7 */
200 9 * 4, /* r8 */
201 10 * 4, /* r9 */
202 11 * 4, /* r10 */
203 12 * 4, /* r11 */
204 13 * 4, /* r12 */
205 21 * 4, /* fp */
206 22 * 4, /* lr */
207 -1 * 4, /* sp */
208 16 * 4, /* psw */
209 -1 * 4, /* cbr */
210 23 * 4, /* spi */
211 20 * 4, /* spu */
212 19 * 4, /* bpc */
213 17 * 4, /* pc */
214 15 * 4, /* accl */
215 14 * 4 /* acch */
216};
217
218struct m32r_frame_cache
219{
220 CORE_ADDR base, pc;
221 struct trad_frame_saved_reg *saved_regs;
222};
223
224static struct m32r_frame_cache *
94afd7a6 225m32r_linux_sigtramp_frame_cache (struct frame_info *this_frame,
9b32d526
KI
226 void **this_cache)
227{
228 struct m32r_frame_cache *cache;
229 CORE_ADDR sigcontext_addr, addr;
230 int regnum;
231
232 if ((*this_cache) != NULL)
9a3c8263 233 return (struct m32r_frame_cache *) (*this_cache);
9b32d526
KI
234 cache = FRAME_OBSTACK_ZALLOC (struct m32r_frame_cache);
235 (*this_cache) = cache;
94afd7a6 236 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
9b32d526 237
94afd7a6 238 cache->base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
9b32d526
KI
239 sigcontext_addr = cache->base + 4;
240
94afd7a6
UW
241 cache->pc = get_frame_pc (this_frame);
242 addr = m32r_linux_sigtramp_start (cache->pc, this_frame);
9b32d526
KI
243 if (addr == 0)
244 {
245 /* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR
246 accordingly. */
94afd7a6 247 addr = m32r_linux_rt_sigtramp_start (cache->pc, this_frame);
9b32d526
KI
248 if (addr)
249 sigcontext_addr += 128;
250 else
94afd7a6 251 addr = get_frame_func (this_frame);
9b32d526
KI
252 }
253 cache->pc = addr;
254
94afd7a6 255 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
9b32d526
KI
256
257 for (regnum = 0; regnum < sizeof (m32r_linux_sc_reg_offset) / 4; regnum++)
258 {
259 if (m32r_linux_sc_reg_offset[regnum] >= 0)
260 cache->saved_regs[regnum].addr =
261 sigcontext_addr + m32r_linux_sc_reg_offset[regnum];
262 }
263
264 return cache;
265}
266
267static void
94afd7a6 268m32r_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
9b32d526
KI
269 void **this_cache,
270 struct frame_id *this_id)
271{
272 struct m32r_frame_cache *cache =
94afd7a6 273 m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
9b32d526
KI
274
275 (*this_id) = frame_id_build (cache->base, cache->pc);
276}
277
94afd7a6
UW
278static struct value *
279m32r_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
280 void **this_cache, int regnum)
9b32d526
KI
281{
282 struct m32r_frame_cache *cache =
94afd7a6 283 m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
9b32d526 284
94afd7a6 285 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
9b32d526
KI
286}
287
94afd7a6
UW
288static int
289m32r_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
290 struct frame_info *this_frame,
291 void **this_cache)
9b32d526 292{
94afd7a6 293 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 294 const char *name;
9b32d526
KI
295
296 find_pc_partial_function (pc, &name, NULL, NULL);
94afd7a6
UW
297 if (m32r_linux_pc_in_sigtramp (pc, name, this_frame))
298 return 1;
9b32d526 299
94afd7a6 300 return 0;
9b32d526
KI
301}
302
94afd7a6
UW
303static const struct frame_unwind m32r_linux_sigtramp_frame_unwind = {
304 SIGTRAMP_FRAME,
8fbca658 305 default_frame_unwind_stop_reason,
94afd7a6
UW
306 m32r_linux_sigtramp_frame_this_id,
307 m32r_linux_sigtramp_frame_prev_register,
308 NULL,
309 m32r_linux_sigtramp_frame_sniffer
310};
311
9b098f24
KI
312/* Mapping between the registers in `struct pt_regs'
313 format and GDB's register array layout. */
314
315static int m32r_pt_regs_offset[] = {
316 4 * 4, /* r0 */
317 4 * 5, /* r1 */
318 4 * 6, /* r2 */
319 4 * 7, /* r3 */
320 4 * 0, /* r4 */
321 4 * 1, /* r5 */
322 4 * 2, /* r6 */
323 4 * 8, /* r7 */
324 4 * 9, /* r8 */
325 4 * 10, /* r9 */
326 4 * 11, /* r10 */
327 4 * 12, /* r11 */
328 4 * 13, /* r12 */
329 4 * 24, /* fp */
330 4 * 25, /* lr */
331 4 * 23, /* sp */
332 4 * 19, /* psw */
333 4 * 19, /* cbr */
334 4 * 26, /* spi */
335 4 * 23, /* spu */
336 4 * 22, /* bpc */
337 4 * 20, /* pc */
338 4 * 16, /* accl */
339 4 * 15 /* acch */
340};
341
342#define PSW_OFFSET (4 * 19)
343#define BBPSW_OFFSET (4 * 21)
344#define SPU_OFFSET (4 * 23)
345#define SPI_OFFSET (4 * 26)
346
5fac247f
AA
347#define M32R_LINUX_GREGS_SIZE (4 * 28)
348
9b098f24
KI
349static void
350m32r_linux_supply_gregset (const struct regset *regset,
351 struct regcache *regcache, int regnum,
352 const void *gregs, size_t size)
353{
9a3c8263 354 const gdb_byte *regs = (const gdb_byte *) gregs;
ba199d7d 355 enum bfd_endian byte_order =
ac7936df 356 gdbarch_byte_order (regcache->arch ());
ba199d7d
AA
357 ULONGEST psw, bbpsw;
358 gdb_byte buf[4];
359 const gdb_byte *p;
9b098f24
KI
360 int i;
361
ba199d7d
AA
362 psw = extract_unsigned_integer (regs + PSW_OFFSET, 4, byte_order);
363 bbpsw = extract_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order);
364 psw = ((0x00c1 & bbpsw) << 8) | ((0xc100 & psw) >> 8);
9b098f24 365
ba199d7d 366 for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++)
9b098f24
KI
367 {
368 if (regnum != -1 && regnum != i)
369 continue;
370
371 switch (i)
372 {
373 case PSW_REGNUM:
ba199d7d
AA
374 store_unsigned_integer (buf, 4, byte_order, psw);
375 p = buf;
9b098f24
KI
376 break;
377 case CBR_REGNUM:
ba199d7d
AA
378 store_unsigned_integer (buf, 4, byte_order, psw & 1);
379 p = buf;
9b098f24
KI
380 break;
381 case M32R_SP_REGNUM:
ba199d7d 382 p = regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET);
9b098f24 383 break;
ba199d7d
AA
384 default:
385 p = regs + m32r_pt_regs_offset[i];
9b098f24
KI
386 }
387
73e1c03f 388 regcache->raw_supply (i, p);
ba199d7d
AA
389 }
390}
391
392static void
393m32r_linux_collect_gregset (const struct regset *regset,
394 const struct regcache *regcache,
395 int regnum, void *gregs, size_t size)
396{
9a3c8263 397 gdb_byte *regs = (gdb_byte *) gregs;
ba199d7d
AA
398 int i;
399 enum bfd_endian byte_order =
ac7936df 400 gdbarch_byte_order (regcache->arch ());
ba199d7d
AA
401 ULONGEST psw;
402 gdb_byte buf[4];
403
34a79281 404 regcache->raw_collect (PSW_REGNUM, buf);
ba199d7d
AA
405 psw = extract_unsigned_integer (buf, 4, byte_order);
406
407 for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++)
408 {
409 if (regnum != -1 && regnum != i)
410 continue;
411
412 switch (i)
413 {
414 case PSW_REGNUM:
415 store_unsigned_integer (regs + PSW_OFFSET, 4, byte_order,
416 (psw & 0xc1) << 8);
417 store_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order,
418 (psw >> 8) & 0xc1);
419 break;
420 case CBR_REGNUM:
421 break;
422 case M32R_SP_REGNUM:
34a79281
SM
423 regcache->raw_collect
424 (i, regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET));
ba199d7d
AA
425 break;
426 default:
34a79281 427 regcache->raw_collect (i, regs + m32r_pt_regs_offset[i]);
ba199d7d 428 }
9b098f24
KI
429 }
430}
431
3ca7dae4 432static const struct regset m32r_linux_gregset = {
ba199d7d
AA
433 NULL,
434 m32r_linux_supply_gregset, m32r_linux_collect_gregset
9b098f24
KI
435};
436
5fac247f
AA
437static void
438m32r_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
439 iterate_over_regset_sections_cb *cb,
440 void *cb_data,
441 const struct regcache *regcache)
9b098f24 442{
a616bb94
AH
443 cb (".reg", M32R_LINUX_GREGS_SIZE, M32R_LINUX_GREGS_SIZE, &m32r_linux_gregset,
444 NULL, cb_data);
9b098f24
KI
445}
446
9b32d526
KI
447static void
448m32r_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
449{
9b32d526 450
a5ee0f0c
PA
451 linux_init_abi (info, gdbarch);
452
9b32d526
KI
453 /* Since EVB register is not available for native debug, we reduce
454 the number of registers. */
455 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS - 1);
456
94afd7a6 457 frame_unwind_append_unwinder (gdbarch, &m32r_linux_sigtramp_frame_unwind);
9b32d526
KI
458
459 /* GNU/Linux uses SVR4-style shared libraries. */
982e9687 460 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
9b32d526
KI
461 set_solib_svr4_fetch_link_map_offsets
462 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
9b098f24
KI
463
464 /* Core file support. */
5fac247f
AA
465 set_gdbarch_iterate_over_regset_sections
466 (gdbarch, m32r_linux_iterate_over_regset_sections);
b2756930
KB
467
468 /* Enable TLS support. */
469 set_gdbarch_fetch_tls_load_module_address (gdbarch,
470 svr4_fetch_objfile_link_map);
9b32d526
KI
471}
472
9b32d526
KI
473void
474_initialize_m32r_linux_tdep (void)
475{
476 gdbarch_register_osabi (bfd_arch_m32r, 0, GDB_OSABI_LINUX,
477 m32r_linux_init_abi);
478}