]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/progspace.h
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / progspace.h
CommitLineData
6c95b8df
PA
1/* Program and address space management, for GDB, the GNU debugger.
2
1d506c26 3 Copyright (C) 2009-2024 Free Software Foundation, Inc.
6c95b8df
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#ifndef PROGSPACE_H
22#define PROGSPACE_H
23
24#include "target.h"
06333fea 25#include "gdb_bfd.h"
268a13a5 26#include "gdbsupport/gdb_vecs.h"
8e260fc0 27#include "registry.h"
9be25986 28#include "solist.h"
268a13a5
TT
29#include "gdbsupport/next-iterator.h"
30#include "gdbsupport/safe-iterator.h"
8971d278 31#include "gdbsupport/intrusive_list.h"
f9582a22
TV
32#include "gdbsupport/refcounted-object.h"
33#include "gdbsupport/gdb_ref_ptr.h"
d0801dd8 34#include <list>
94c93c35 35#include <vector>
6c95b8df
PA
36
37struct target_ops;
38struct bfd;
39struct objfile;
40struct inferior;
41struct exec;
42struct address_space;
08b8a139 43struct program_space;
7b323785 44struct solib;
6c95b8df 45
e2904e1f 46typedef std::list<std::unique_ptr<objfile>> objfile_list;
7d7167ce 47
f9582a22
TV
48/* An address space. It is used for comparing if
49 pspaces/inferior/threads see the same address space and for
50 associating caches to each address space. */
51struct address_space : public refcounted_object
52{
53 /* Create a new address space object, and add it to the list. */
54 address_space ();
55 DISABLE_COPY_AND_ASSIGN (address_space);
56
57 /* Returns the integer address space id of this address space. */
58 int num () const
59 {
60 return m_num;
61 }
62
63 /* Per aspace data-pointers required by other GDB modules. */
64 registry<address_space> registry_fields;
65
66private:
67 int m_num;
68};
69
70using address_space_ref_ptr
71 = gdb::ref_ptr<address_space,
72 refcounted_object_delete_ref_policy<address_space>>;
73
74/* Create a new address space. */
75
76static inline address_space_ref_ptr
77new_address_space ()
78{
79 return address_space_ref_ptr::new_reference (new address_space);
80}
81
e2904e1f 82/* An iterator that wraps an iterator over std::unique_ptr<objfile>,
7d7167ce
TT
83 and dereferences the returned object. This is useful for iterating
84 over a list of shared pointers and returning raw pointers -- which
85 helped avoid touching a lot of code when changing how objfiles are
86 managed. */
87
88class unwrapping_objfile_iterator
89{
90public:
91
92 typedef unwrapping_objfile_iterator self_type;
93 typedef typename ::objfile *value_type;
94 typedef typename ::objfile &reference;
95 typedef typename ::objfile **pointer;
96 typedef typename objfile_list::iterator::iterator_category iterator_category;
97 typedef typename objfile_list::iterator::difference_type difference_type;
98
9be25986
SM
99 unwrapping_objfile_iterator (objfile_list::iterator iter)
100 : m_iter (std::move (iter))
7d7167ce
TT
101 {
102 }
103
104 objfile *operator* () const
105 {
106 return m_iter->get ();
107 }
108
109 unwrapping_objfile_iterator operator++ ()
110 {
111 ++m_iter;
112 return *this;
113 }
114
115 bool operator!= (const unwrapping_objfile_iterator &other) const
116 {
117 return m_iter != other.m_iter;
118 }
119
120private:
121
122 /* The underlying iterator. */
123 objfile_list::iterator m_iter;
124};
125
126
127/* A range that returns unwrapping_objfile_iterators. */
128
9be25986 129using unwrapping_objfile_range = iterator_range<unwrapping_objfile_iterator>;
7d7167ce 130
6c95b8df
PA
131/* A program space represents a symbolic view of an address space.
132 Roughly speaking, it holds all the data associated with a
133 non-running-yet program (main executable, main symbols), and when
134 an inferior is running and is bound to it, includes the list of its
135 mapped in shared libraries.
136
137 In the traditional debugging scenario, there's a 1-1 correspondence
138 among program spaces, inferiors and address spaces, like so:
139
140 pspace1 (prog1) <--> inf1(pid1) <--> aspace1
141
142 In the case of debugging more than one traditional unix process or
143 program, we still have:
144
145 |-----------------+------------+---------|
146 | pspace1 (prog1) | inf1(pid1) | aspace1 |
147 |----------------------------------------|
148 | pspace2 (prog1) | no inf yet | aspace2 |
149 |-----------------+------------+---------|
150 | pspace3 (prog2) | inf2(pid2) | aspace3 |
151 |-----------------+------------+---------|
152
153 In the former example, if inf1 forks (and GDB stays attached to
154 both processes), the new child will have its own program and
155 address spaces. Like so:
156
157 |-----------------+------------+---------|
158 | pspace1 (prog1) | inf1(pid1) | aspace1 |
159 |-----------------+------------+---------|
160 | pspace2 (prog1) | inf2(pid2) | aspace2 |
161 |-----------------+------------+---------|
162
163 However, had inf1 from the latter case vforked instead, it would
164 share the program and address spaces with its parent, until it
165 execs or exits, like so:
166
167 |-----------------+------------+---------|
168 | pspace1 (prog1) | inf1(pid1) | aspace1 |
169 | | inf2(pid2) | |
170 |-----------------+------------+---------|
171
172 When the vfork child execs, it is finally given new program and
173 address spaces.
174
175 |-----------------+------------+---------|
176 | pspace1 (prog1) | inf1(pid1) | aspace1 |
177 |-----------------+------------+---------|
178 | pspace2 (prog1) | inf2(pid2) | aspace2 |
179 |-----------------+------------+---------|
180
181 There are targets where the OS (if any) doesn't provide memory
182 management or VM protection, where all inferiors share the same
183 address space --- e.g. uClinux. GDB models this by having all
184 inferiors share the same address space, but, giving each its own
185 program space, like so:
186
187 |-----------------+------------+---------|
188 | pspace1 (prog1) | inf1(pid1) | |
189 |-----------------+------------+ |
190 | pspace2 (prog1) | inf2(pid2) | aspace1 |
191 |-----------------+------------+ |
192 | pspace3 (prog2) | inf3(pid3) | |
193 |-----------------+------------+---------|
194
195 The address space sharing matters for run control and breakpoints
196 management. E.g., did we just hit a known breakpoint that we need
197 to step over? Is this breakpoint a duplicate of this other one, or
198 do I need to insert a trap?
199
200 Then, there are targets where all symbols look the same for all
201 inferiors, although each has its own address space, as e.g.,
202 Ericsson DICOS. In such case, the model is:
203
204 |---------+------------+---------|
205 | | inf1(pid1) | aspace1 |
206 | +------------+---------|
207 | pspace | inf2(pid2) | aspace2 |
208 | +------------+---------|
209 | | inf3(pid3) | aspace3 |
210 |---------+------------+---------|
211
212 Note however, that the DICOS debug API takes care of making GDB
213 believe that breakpoints are "global". That is, although each
214 process does have its own private copy of data symbols (just like a
215 bunch of forks), to the breakpoints module, all processes share a
216 single address space, so all breakpoints set at the same address
217 are duplicates of each other, even breakpoints set in the data
218 space (e.g., call dummy breakpoints placed on stack). This allows
219 a simplification in the spaces implementation: we avoid caring for
220 a many-many links between address and program spaces. Either
221 there's a single address space bound to the program space
222 (traditional unix/uClinux), or, in the DICOS case, the address
223 space bound to the program space is mostly ignored. */
224
225/* The program space structure. */
226
227struct program_space
564b1e3f 228{
381ce63f
PA
229 /* Constructs a new empty program space, binds it to ASPACE, and
230 adds it to the program space list. */
f9582a22 231 explicit program_space (address_space_ref_ptr aspace);
381ce63f
PA
232
233 /* Releases a program space, and all its contents (shared libraries,
234 objfiles, and any other references to the program space in other
235 modules). It is an internal error to call this when the program
236 space is the current program space, since there should always be
237 a program space. */
564b1e3f
SM
238 ~program_space ();
239
9be25986 240 using objfiles_range = unwrapping_objfile_range;
2030c079 241
30baf67b 242 /* Return an iterable object that can be used to iterate over all
2030c079
TT
243 objfiles. The basic use is in a foreach, like:
244
245 for (objfile *objf : pspace->objfiles ()) { ... } */
7d7167ce 246 objfiles_range objfiles ()
2030c079 247 {
9be25986
SM
248 return objfiles_range
249 (unwrapping_objfile_iterator (objfiles_list.begin ()),
250 unwrapping_objfile_iterator (objfiles_list.end ()));
2030c079
TT
251 }
252
9be25986 253 using objfiles_safe_range = basic_safe_range<objfiles_range>;
7e955d83
TT
254
255 /* An iterable object that can be used to iterate over all objfiles.
256 The basic use is in a foreach, like:
257
258 for (objfile *objf : pspace->objfiles_safe ()) { ... }
259
260 This variant uses a basic_safe_iterator so that objfiles can be
261 deleted during iteration. */
262 objfiles_safe_range objfiles_safe ()
263 {
9be25986
SM
264 return objfiles_safe_range
265 (objfiles_range
266 (unwrapping_objfile_iterator (objfiles_list.begin ()),
267 unwrapping_objfile_iterator (objfiles_list.end ())));
7e955d83
TT
268 }
269
7cac64af
TT
270 /* Add OBJFILE to the list of objfiles, putting it just before
271 BEFORE. If BEFORE is nullptr, it will go at the end of the
272 list. */
e2904e1f 273 void add_objfile (std::unique_ptr<objfile> &&objfile,
7d7167ce 274 struct objfile *before);
7cac64af 275
23452926
TT
276 /* Remove OBJFILE from the list of objfiles. */
277 void remove_objfile (struct objfile *objfile);
7cac64af 278
deeafabb
TT
279 /* Return true if there is more than one object file loaded; false
280 otherwise. */
d0801dd8
TT
281 bool multi_objfile_p () const
282 {
283 return objfiles_list.size () > 1;
284 }
deeafabb 285
343cc952
TT
286 /* Free all the objfiles associated with this program space. */
287 void free_all_objfiles ();
288
27b2eff1
TT
289 /* Return the objfile containing ADDRESS, or nullptr if the address
290 is outside all objfiles in this progspace. */
291 struct objfile *objfile_for_address (CORE_ADDR address);
292
8971d278 293 /* Return the list of all the solibs in this program space. */
7b323785 294 intrusive_list<solib> &solibs ()
8971d278 295 { return so_list; }
a1fd1ac9 296
8a4f1402
TT
297 /* Close and clear exec_bfd. If we end up with no target sections
298 to read memory from, this unpushes the exec_ops target. */
299 void exec_close ();
deeafabb 300
7e10abd1
TT
301 /* Return the exec BFD for this program space. */
302 bfd *exec_bfd () const
6fdf95ae 303 { return ebfd.get (); }
7e10abd1
TT
304
305 /* Set the exec BFD for this program space to ABFD. */
19f6550e 306 void set_exec_bfd (gdb_bfd_ref_ptr &&abfd)
7e10abd1 307 {
19f6550e 308 ebfd = std::move (abfd);
7e10abd1
TT
309 }
310
6fdf95ae
SM
311 bfd *core_bfd () const
312 { return cbfd.get (); }
313
e39fb971
TT
314 /* Reset saved solib data at the start of an solib event. This lets
315 us properly collect the data when calling solib_add, so it can then
316 later be printed. */
317 void clear_solib_cache ();
318
004eecfd
TT
319 /* Returns true iff there's no inferior bound to this program
320 space. */
321 bool empty ();
322
2a3f84af 323 /* Remove all target sections owned by OWNER. */
0e17d3fc 324 void remove_target_sections (target_section_owner owner);
2a3f84af 325
3769e227
TT
326 /* Add the sections array defined by SECTIONS to the
327 current set of target sections. */
0e17d3fc 328 void add_target_sections (target_section_owner owner,
25b5a04e 329 const std::vector<target_section> &sections);
3769e227 330
d9eebde0
TT
331 /* Add the sections of OBJFILE to the current set of target
332 sections. They are given OBJFILE as the "owner". */
333 void add_target_sections (struct objfile *objfile);
334
02f7d26b
AB
335 /* Clear all target sections from M_TARGET_SECTIONS table. */
336 void clear_target_sections ()
337 {
338 m_target_sections.clear ();
339 }
340
341 /* Return a reference to the M_TARGET_SECTIONS table. */
25b5a04e 342 std::vector<target_section> &target_sections ()
02f7d26b
AB
343 {
344 return m_target_sections;
345 }
346
564b1e3f
SM
347 /* Unique ID number. */
348 int num = 0;
349
350 /* The main executable loaded into this program space. This is
351 managed by the exec target. */
352
353 /* The BFD handle for the main executable. */
19f6550e 354 gdb_bfd_ref_ptr ebfd;
564b1e3f
SM
355 /* The last-modified time, from when the exec was brought in. */
356 long ebfd_mtime = 0;
357 /* Similar to bfd_get_filename (exec_bfd) but in original form given
c20cb686
TT
358 by user, without symbolic links and pathname resolved. It is not
359 NULL iff EBFD is not NULL. */
360 gdb::unique_xmalloc_ptr<char> exec_filename;
564b1e3f 361
e540a5a2 362 /* Binary file diddling handle for the core file. */
06333fea 363 gdb_bfd_ref_ptr cbfd;
e540a5a2 364
564b1e3f
SM
365 /* The address space attached to this program space. More than one
366 program space may be bound to the same address space. In the
367 traditional unix-like debugging scenario, this will usually
368 match the address space bound to the inferior, and is mostly
369 used by the breakpoints module for address matches. If the
370 target shares a program space for all inferiors and breakpoints
371 are global, then this field is ignored (we don't currently
372 support inferiors sharing a program space if the target doesn't
373 make breakpoints global). */
f9582a22 374 address_space_ref_ptr aspace;
564b1e3f
SM
375
376 /* True if this program space's section offsets don't yet represent
377 the final offsets of the "live" address space (that is, the
378 section addresses still require the relocation offsets to be
379 applied, and hence we can't trust the section addresses for
380 anything that pokes at live memory). E.g., for qOffsets
381 targets, or for PIE executables, until we connect and ask the
382 target for the final relocation offsets, the symbols we've used
383 to set breakpoints point at the wrong addresses. */
384 int executing_startup = 0;
385
386 /* True if no breakpoints should be inserted in this program
387 space. */
388 int breakpoints_not_allowed = 0;
389
390 /* The object file that the main symbol table was loaded from
391 (e.g. the argument to the "symbol-file" or "file" command). */
392 struct objfile *symfile_object_file = NULL;
393
d0801dd8 394 /* All known objfiles are kept in a linked list. */
e2904e1f 395 std::list<std::unique_ptr<objfile>> objfiles_list;
564b1e3f 396
564b1e3f
SM
397 /* List of shared objects mapped into this space. Managed by
398 solib.c. */
7b323785 399 intrusive_list<solib> so_list;
564b1e3f
SM
400
401 /* Number of calls to solib_add. */
402 unsigned int solib_add_generation = 0;
403
404 /* When an solib is added, it is also added to this vector. This
405 is so we can properly report solib changes to the user. */
7b323785 406 std::vector<solib *> added_solibs;
564b1e3f
SM
407
408 /* When an solib is removed, its name is added to this vector.
409 This is so we can properly report solib changes to the user. */
6fb16ce6 410 std::vector<std::string> deleted_solibs;
564b1e3f
SM
411
412 /* Per pspace data-pointers required by other GDB modules. */
08b8a139 413 registry<program_space> registry_fields;
02f7d26b
AB
414
415private:
416 /* The set of target sections matching the sections mapped into
417 this program space. Managed by both exec_ops and solib.c. */
25b5a04e 418 std::vector<target_section> m_target_sections;
564b1e3f 419};
6c95b8df 420
6c95b8df 421/* The list of all program spaces. There's always at least one. */
94c93c35 422extern std::vector<struct program_space *>program_spaces;
6c95b8df
PA
423
424/* The current program space. This is always non-null. */
425extern struct program_space *current_program_space;
426
7b21ae94
SM
427/* Initialize progspace-related global state. */
428extern void initialize_progspace ();
429
6c95b8df
PA
430/* Copies program space SRC to DEST. Copies the main executable file,
431 and the main symbol file. Returns DEST. */
432extern struct program_space *clone_program_space (struct program_space *dest,
433 struct program_space *src);
434
6c95b8df
PA
435/* Sets PSPACE as the current program space. This is usually used
436 instead of set_current_space_and_thread when the current
437 thread/inferior is not important for the operations that follow.
438 E.g., when accessing the raw symbol tables. If memory access is
439 required, then you should use switch_to_program_space_and_thread.
440 Otherwise, it is the caller's responsibility to make sure that the
441 currently selected inferior/thread matches the selected program
442 space. */
443extern void set_current_program_space (struct program_space *pspace);
444
5ed8105e
PA
445/* Save/restore the current program space. */
446
447class scoped_restore_current_program_space
448{
449public:
450 scoped_restore_current_program_space ()
451 : m_saved_pspace (current_program_space)
452 {}
453
454 ~scoped_restore_current_program_space ()
455 { set_current_program_space (m_saved_pspace); }
456
d6541620 457 DISABLE_COPY_AND_ASSIGN (scoped_restore_current_program_space);
6c95b8df 458
5ed8105e
PA
459private:
460 program_space *m_saved_pspace;
461};
6c95b8df 462
6c95b8df
PA
463/* Maybe create a new address space object, and add it to the list, or
464 return a pointer to an existing address space, in case inferiors
465 share an address space. */
f9582a22 466extern address_space_ref_ptr maybe_new_address_space ();
6c95b8df
PA
467
468/* Update all program spaces matching to address spaces. The user may
469 have created several program spaces, and loaded executables into
470 them before connecting to the target interface that will create the
471 inferiors. All that happens before GDB has a chance to know if the
472 inferiors will share an address space or not. Call this after
473 having connected to the target interface and having fetched the
474 target description, to fixup the program/address spaces
475 mappings. */
476extern void update_address_spaces (void);
477
6c95b8df 478#endif