]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/regcache.c
Rename regcache_cooked_read_ftype and make a function_view
[thirdparty/binutils-gdb.git] / gdb / regcache.c
CommitLineData
32178cab 1/* Cache and manage the values of registers for GDB, the GNU debugger.
3fadccb3 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
32178cab
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
32178cab
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32178cab
MS
19
20#include "defs.h"
32178cab
MS
21#include "inferior.h"
22#include "target.h"
23#include "gdbarch.h"
705152c5 24#include "gdbcmd.h"
4e052eda 25#include "regcache.h"
b59ff9d5 26#include "reggroups.h"
76727919 27#include "observable.h"
0b309272 28#include "regset.h"
94bb8dfe 29#include <forward_list>
32178cab
MS
30
31/*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
3fadccb3 37/* Per-architecture object describing the layout of a register cache.
0df8b418 38 Computed once when the architecture is created. */
3fadccb3
AC
39
40struct gdbarch_data *regcache_descr_handle;
41
42struct regcache_descr
43{
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
bb1db049
AC
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
d2f0b918 50 registers then those registers and not the PC lives in the raw
bb1db049 51 cache. */
3fadccb3 52 long sizeof_raw_registers;
3fadccb3 53
d138e37a
AC
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
02f60eae 57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
d138e37a 58 both raw registers and memory by the architecture methods
02f60eae 59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
d138e37a 60 int nr_cooked_registers;
067df2e5 61 long sizeof_cooked_registers;
d138e37a 62
86d31898 63 /* Offset and size (in 8 bit bytes), of each register in the
d138e37a 64 register cache. All registers (including those in the range
99e42fd8
PA
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
3fadccb3 67 long *register_offset;
3fadccb3 68 long *sizeof_register;
3fadccb3 69
bb425013
AC
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
3fadccb3
AC
72};
73
3fadccb3
AC
74static void *
75init_regcache_descr (struct gdbarch *gdbarch)
76{
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
bb425013 81 /* Create an initial, zero filled, table. */
116f06ea 82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
3fadccb3 83 descr->gdbarch = gdbarch;
3fadccb3 84
d138e37a
AC
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
3fadccb3 87 either mapped onto raw-registers or memory. */
214e098a
UW
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
3fadccb3 90
bb425013 91 /* Fill in a table of register types. */
116f06ea 92 descr->register_type
3e43a32a
MS
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
bb425013 95 for (i = 0; i < descr->nr_cooked_registers; i++)
336a3131 96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
bb425013 97
bb1db049
AC
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
bb1db049 100
067df2e5 101 /* Lay out the register cache.
3fadccb3 102
bb425013
AC
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
3fadccb3
AC
107
108 {
109 long offset = 0;
123f5f96 110
116f06ea
AC
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
d999647b 115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
99e42fd8
PA
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
99e42fd8
PA
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
3fadccb3 125 {
bb425013 126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
3fadccb3
AC
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
3fadccb3 129 }
99e42fd8 130 /* Set the real size of the readonly register cache buffer. */
067df2e5 131 descr->sizeof_cooked_registers = offset;
3fadccb3
AC
132 }
133
3fadccb3
AC
134 return descr;
135}
136
137static struct regcache_descr *
138regcache_descr (struct gdbarch *gdbarch)
139{
19ba03f4
SM
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
3fadccb3
AC
142}
143
bb425013
AC
144/* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147struct type *
148register_type (struct gdbarch *gdbarch, int regnum)
149{
150 struct regcache_descr *descr = regcache_descr (gdbarch);
123f5f96 151
bb425013
AC
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154}
155
0ed04cce
AC
156/* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
08a617da
AC
159int
160register_size (struct gdbarch *gdbarch, int regnum)
161{
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
123f5f96 164
f57d151a 165 gdb_assert (regnum >= 0
214e098a
UW
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
08a617da 168 size = descr->sizeof_register[regnum];
08a617da
AC
169 return size;
170}
171
8d689ee5
YQ
172/* See common/common-regcache.h. */
173
174int
175regcache_register_size (const struct regcache *regcache, int n)
176{
ac7936df 177 return register_size (regcache->arch (), n);
8d689ee5
YQ
178}
179
31716595
YQ
180reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
3fadccb3 182{
ef79d9a3
YQ
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
4621115f 185
31716595 186 if (has_pseudo)
4621115f 187 {
835dcf92
SM
188 m_registers.reset (new gdb_byte[m_descr->sizeof_cooked_registers] ());
189 m_register_status.reset
190 (new register_status[m_descr->nr_cooked_registers] ());
4621115f
YQ
191 }
192 else
193 {
835dcf92
SM
194 m_registers.reset (new gdb_byte[m_descr->sizeof_raw_registers] ());
195 m_register_status.reset
196 (new register_status[gdbarch_num_regs (gdbarch)] ());
4621115f 197 }
31716595
YQ
198}
199
796bb026
YQ
200regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
201/* The register buffers. A read/write register cache can only hold
202 [0 .. gdbarch_num_regs). */
203 : detached_regcache (gdbarch, false), m_aspace (aspace_)
31716595 204{
ef79d9a3
YQ
205 m_ptid = minus_one_ptid;
206}
4621115f 207
302abd6e
SM
208readonly_detached_regcache::readonly_detached_regcache (regcache &src)
209 : readonly_detached_regcache (src.arch (),
210 [&src] (int regnum, gdb_byte *buf)
211 {
212 return src.cooked_read (regnum, buf);
213 })
daf6667d
YQ
214{
215}
216
ef79d9a3 217gdbarch *
31716595 218reg_buffer::arch () const
ef79d9a3
YQ
219{
220 return m_descr->gdbarch;
221}
3fadccb3 222
b292235f 223/* Cleanup class for invalidating a register. */
b94ade42 224
b292235f 225class regcache_invalidator
b94ade42 226{
b292235f 227public:
b94ade42 228
b292235f
TT
229 regcache_invalidator (struct regcache *regcache, int regnum)
230 : m_regcache (regcache),
231 m_regnum (regnum)
232 {
233 }
b94ade42 234
b292235f
TT
235 ~regcache_invalidator ()
236 {
237 if (m_regcache != nullptr)
6aa7d724 238 m_regcache->invalidate (m_regnum);
b292235f 239 }
b94ade42 240
b292235f 241 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
b94ade42 242
b292235f
TT
243 void release ()
244 {
245 m_regcache = nullptr;
246 }
247
248private:
249
250 struct regcache *m_regcache;
251 int m_regnum;
252};
b94ade42 253
51b1fe4e
AC
254/* Return a pointer to register REGNUM's buffer cache. */
255
ef79d9a3 256gdb_byte *
31716595 257reg_buffer::register_buffer (int regnum) const
51b1fe4e 258{
835dcf92 259 return m_registers.get () + m_descr->register_offset[regnum];
51b1fe4e
AC
260}
261
ef79d9a3 262void
302abd6e 263reg_buffer::save (register_read_ftype cooked_read)
ef79d9a3
YQ
264{
265 struct gdbarch *gdbarch = m_descr->gdbarch;
2d28509a 266 int regnum;
123f5f96 267
daf6667d
YQ
268 /* It should have pseudo registers. */
269 gdb_assert (m_has_pseudo);
2d28509a 270 /* Clear the dest. */
835dcf92
SM
271 memset (m_registers.get (), 0, m_descr->sizeof_cooked_registers);
272 memset (m_register_status.get (), REG_UNKNOWN, m_descr->nr_cooked_registers);
2d28509a 273 /* Copy over any registers (identified by their membership in the
f57d151a
UW
274 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
275 gdbarch_num_pseudo_regs) range is checked since some architectures need
5602984a 276 to save/restore `cooked' registers that live in memory. */
ef79d9a3 277 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
2d28509a
AC
278 {
279 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
280 {
50d6adef 281 gdb_byte *dst_buf = register_buffer (regnum);
302abd6e 282 enum register_status status = cooked_read (regnum, dst_buf);
123f5f96 283
50d6adef
AH
284 gdb_assert (status != REG_UNKNOWN);
285
286 if (status != REG_VALID)
287 memset (dst_buf, 0, register_size (gdbarch, regnum));
05d1431c 288
ef79d9a3 289 m_register_status[regnum] = status;
2d28509a
AC
290 }
291 }
292}
293
ef79d9a3 294void
daf6667d 295regcache::restore (readonly_detached_regcache *src)
2d28509a 296{
ef79d9a3 297 struct gdbarch *gdbarch = m_descr->gdbarch;
2d28509a 298 int regnum;
123f5f96 299
fc5b8736 300 gdb_assert (src != NULL);
daf6667d 301 gdb_assert (src->m_has_pseudo);
fc5b8736
YQ
302
303 gdb_assert (gdbarch == src->arch ());
304
2d28509a 305 /* Copy over any registers, being careful to only restore those that
f57d151a
UW
306 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
307 + gdbarch_num_pseudo_regs) range is checked since some architectures need
5602984a 308 to save/restore `cooked' registers that live in memory. */
ef79d9a3 309 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
2d28509a 310 {
5602984a 311 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
2d28509a 312 {
ef79d9a3
YQ
313 if (src->m_register_status[regnum] == REG_VALID)
314 cooked_write (regnum, src->register_buffer (regnum));
2d28509a
AC
315 }
316 }
317}
318
9c861883
AH
319/* See common/common-regcache.h. */
320
ef79d9a3 321enum register_status
c8ec2f33 322reg_buffer::get_register_status (int regnum) const
ef79d9a3 323{
c8ec2f33 324 assert_regnum (regnum);
6ed7ea50 325
aac0d564 326 return m_register_status[regnum];
3fadccb3
AC
327}
328
ef79d9a3 329void
9c861883 330reg_buffer::invalidate (int regnum)
ef79d9a3 331{
4e888c28 332 assert_regnum (regnum);
ef79d9a3
YQ
333 m_register_status[regnum] = REG_UNKNOWN;
334}
9c5ea4d9 335
4e888c28 336void
31716595 337reg_buffer::assert_regnum (int regnum) const
4e888c28 338{
31716595
YQ
339 gdb_assert (regnum >= 0);
340 if (m_has_pseudo)
341 gdb_assert (regnum < m_descr->nr_cooked_registers);
342 else
343 gdb_assert (regnum < gdbarch_num_regs (arch ()));
4e888c28
YQ
344}
345
3fadccb3 346/* Global structure containing the current regcache. */
3fadccb3 347
5ebd2499 348/* NOTE: this is a write-through cache. There is no "dirty" bit for
32178cab
MS
349 recording if the register values have been changed (eg. by the
350 user). Therefore all registers must be written back to the
351 target when appropriate. */
e521e87e 352std::forward_list<regcache *> regcache::current_regcache;
c2250ad1
UW
353
354struct regcache *
e2d96639
YQ
355get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
356 struct address_space *aspace)
c2250ad1 357{
e521e87e 358 for (const auto &regcache : regcache::current_regcache)
94bb8dfe
YQ
359 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
360 return regcache;
594f7785 361
796bb026 362 regcache *new_regcache = new regcache (gdbarch, aspace);
594f7785 363
e521e87e 364 regcache::current_regcache.push_front (new_regcache);
ef79d9a3 365 new_regcache->set_ptid (ptid);
e2d96639 366
e2d96639
YQ
367 return new_regcache;
368}
369
370struct regcache *
371get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
372{
ed4227b7 373 address_space *aspace = target_thread_address_space (ptid);
b78974c3 374
e2d96639 375 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
594f7785
UW
376}
377
c2250ad1
UW
378static ptid_t current_thread_ptid;
379static struct gdbarch *current_thread_arch;
380
381struct regcache *
382get_thread_regcache (ptid_t ptid)
383{
384 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
385 {
386 current_thread_ptid = ptid;
387 current_thread_arch = target_thread_architecture (ptid);
388 }
389
390 return get_thread_arch_regcache (ptid, current_thread_arch);
391}
392
393struct regcache *
394get_current_regcache (void)
594f7785
UW
395{
396 return get_thread_regcache (inferior_ptid);
397}
32178cab 398
361c8ade
GB
399/* See common/common-regcache.h. */
400
401struct regcache *
402get_thread_regcache_for_ptid (ptid_t ptid)
403{
404 return get_thread_regcache (ptid);
405}
32178cab 406
f4c5303c
OF
407/* Observer for the target_changed event. */
408
2c0b251b 409static void
f4c5303c
OF
410regcache_observer_target_changed (struct target_ops *target)
411{
412 registers_changed ();
413}
414
5231c1fd
PA
415/* Update global variables old ptids to hold NEW_PTID if they were
416 holding OLD_PTID. */
e521e87e
YQ
417void
418regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 419{
e521e87e 420 for (auto &regcache : regcache::current_regcache)
94bb8dfe
YQ
421 {
422 if (ptid_equal (regcache->ptid (), old_ptid))
423 regcache->set_ptid (new_ptid);
424 }
5231c1fd
PA
425}
426
32178cab
MS
427/* Low level examining and depositing of registers.
428
429 The caller is responsible for making sure that the inferior is
430 stopped before calling the fetching routines, or it will get
431 garbage. (a change from GDB version 3, in which the caller got the
432 value from the last stop). */
433
434/* REGISTERS_CHANGED ()
435
436 Indicate that registers may have changed, so invalidate the cache. */
437
438void
e66408ed 439registers_changed_ptid (ptid_t ptid)
32178cab 440{
e521e87e 441 for (auto oit = regcache::current_regcache.before_begin (),
94bb8dfe 442 it = std::next (oit);
e521e87e 443 it != regcache::current_regcache.end ();
94bb8dfe 444 )
c2250ad1 445 {
94bb8dfe 446 if (ptid_match ((*it)->ptid (), ptid))
e66408ed 447 {
94bb8dfe 448 delete *it;
e521e87e 449 it = regcache::current_regcache.erase_after (oit);
e66408ed 450 }
94bb8dfe
YQ
451 else
452 oit = it++;
c2250ad1 453 }
32178cab 454
c34fd852 455 if (ptid_match (current_thread_ptid, ptid))
041274d8
PA
456 {
457 current_thread_ptid = null_ptid;
458 current_thread_arch = NULL;
459 }
32178cab 460
c34fd852 461 if (ptid_match (inferior_ptid, ptid))
041274d8
PA
462 {
463 /* We just deleted the regcache of the current thread. Need to
464 forget about any frames we have cached, too. */
465 reinit_frame_cache ();
466 }
467}
c2250ad1 468
041274d8
PA
469void
470registers_changed (void)
471{
472 registers_changed_ptid (minus_one_ptid);
a5d9d57d 473
32178cab
MS
474 /* Force cleanup of any alloca areas if using C alloca instead of
475 a builtin alloca. This particular call is used to clean up
476 areas allocated by low level target code which may build up
477 during lengthy interactions between gdb and the target before
478 gdb gives control to the user (ie watchpoints). */
479 alloca (0);
32178cab
MS
480}
481
ef79d9a3
YQ
482void
483regcache::raw_update (int regnum)
484{
4e888c28 485 assert_regnum (regnum);
8e368124 486
3fadccb3
AC
487 /* Make certain that the register cache is up-to-date with respect
488 to the current thread. This switching shouldn't be necessary
489 only there is still only one target side register cache. Sigh!
490 On the bright side, at least there is a regcache object. */
8e368124 491
796bb026 492 if (get_register_status (regnum) == REG_UNKNOWN)
3fadccb3 493 {
ef79d9a3 494 target_fetch_registers (this, regnum);
788c8b10
PA
495
496 /* A number of targets can't access the whole set of raw
497 registers (because the debug API provides no means to get at
498 them). */
ef79d9a3
YQ
499 if (m_register_status[regnum] == REG_UNKNOWN)
500 m_register_status[regnum] = REG_UNAVAILABLE;
3fadccb3 501 }
8e368124
AH
502}
503
ef79d9a3 504enum register_status
849d0ba8 505readable_regcache::raw_read (int regnum, gdb_byte *buf)
8e368124
AH
506{
507 gdb_assert (buf != NULL);
ef79d9a3 508 raw_update (regnum);
05d1431c 509
ef79d9a3
YQ
510 if (m_register_status[regnum] != REG_VALID)
511 memset (buf, 0, m_descr->sizeof_register[regnum]);
05d1431c 512 else
ef79d9a3
YQ
513 memcpy (buf, register_buffer (regnum),
514 m_descr->sizeof_register[regnum]);
05d1431c 515
aac0d564 516 return m_register_status[regnum];
61a0eb5b
AC
517}
518
05d1431c 519enum register_status
28fc6740 520regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
ef79d9a3
YQ
521{
522 gdb_assert (regcache != NULL);
6f98355c 523 return regcache->raw_read (regnum, val);
ef79d9a3
YQ
524}
525
6f98355c 526template<typename T, typename>
ef79d9a3 527enum register_status
849d0ba8 528readable_regcache::raw_read (int regnum, T *val)
28fc6740 529{
2d522557 530 gdb_byte *buf;
05d1431c 531 enum register_status status;
123f5f96 532
4e888c28 533 assert_regnum (regnum);
ef79d9a3
YQ
534 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
535 status = raw_read (regnum, buf);
05d1431c 536 if (status == REG_VALID)
6f98355c
YQ
537 *val = extract_integer<T> (buf,
538 m_descr->sizeof_register[regnum],
539 gdbarch_byte_order (m_descr->gdbarch));
05d1431c
PA
540 else
541 *val = 0;
542 return status;
28fc6740
AC
543}
544
05d1431c 545enum register_status
28fc6740
AC
546regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
547 ULONGEST *val)
ef79d9a3
YQ
548{
549 gdb_assert (regcache != NULL);
6f98355c 550 return regcache->raw_read (regnum, val);
28fc6740
AC
551}
552
c00dcbe9
MK
553void
554regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
ef79d9a3
YQ
555{
556 gdb_assert (regcache != NULL);
6f98355c 557 regcache->raw_write (regnum, val);
ef79d9a3
YQ
558}
559
6f98355c 560template<typename T, typename>
ef79d9a3 561void
6f98355c 562regcache::raw_write (int regnum, T val)
c00dcbe9 563{
7c543f7b 564 gdb_byte *buf;
123f5f96 565
4e888c28 566 assert_regnum (regnum);
ef79d9a3 567 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
6f98355c
YQ
568 store_integer (buf, m_descr->sizeof_register[regnum],
569 gdbarch_byte_order (m_descr->gdbarch), val);
ef79d9a3 570 raw_write (regnum, buf);
c00dcbe9
MK
571}
572
573void
574regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
575 ULONGEST val)
ef79d9a3
YQ
576{
577 gdb_assert (regcache != NULL);
6f98355c 578 regcache->raw_write (regnum, val);
c00dcbe9
MK
579}
580
9fd15b2e
YQ
581LONGEST
582regcache_raw_get_signed (struct regcache *regcache, int regnum)
583{
584 LONGEST value;
585 enum register_status status;
586
587 status = regcache_raw_read_signed (regcache, regnum, &value);
588 if (status == REG_UNAVAILABLE)
589 throw_error (NOT_AVAILABLE_ERROR,
590 _("Register %d is not available"), regnum);
591 return value;
592}
593
ef79d9a3 594enum register_status
849d0ba8 595readable_regcache::cooked_read (int regnum, gdb_byte *buf)
68365089 596{
d138e37a 597 gdb_assert (regnum >= 0);
ef79d9a3 598 gdb_assert (regnum < m_descr->nr_cooked_registers);
d999647b 599 if (regnum < num_raw_registers ())
ef79d9a3 600 return raw_read (regnum, buf);
849d0ba8 601 else if (m_has_pseudo
ef79d9a3 602 && m_register_status[regnum] != REG_UNKNOWN)
05d1431c 603 {
ef79d9a3
YQ
604 if (m_register_status[regnum] == REG_VALID)
605 memcpy (buf, register_buffer (regnum),
606 m_descr->sizeof_register[regnum]);
05d1431c 607 else
ef79d9a3 608 memset (buf, 0, m_descr->sizeof_register[regnum]);
05d1431c 609
aac0d564 610 return m_register_status[regnum];
05d1431c 611 }
ef79d9a3 612 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
3543a589
TT
613 {
614 struct value *mark, *computed;
615 enum register_status result = REG_VALID;
616
617 mark = value_mark ();
618
ef79d9a3
YQ
619 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
620 this, regnum);
3543a589
TT
621 if (value_entirely_available (computed))
622 memcpy (buf, value_contents_raw (computed),
ef79d9a3 623 m_descr->sizeof_register[regnum]);
3543a589
TT
624 else
625 {
ef79d9a3 626 memset (buf, 0, m_descr->sizeof_register[regnum]);
3543a589
TT
627 result = REG_UNAVAILABLE;
628 }
629
630 value_free_to_mark (mark);
631
632 return result;
633 }
d138e37a 634 else
ef79d9a3 635 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
05d1431c 636 regnum, buf);
61a0eb5b
AC
637}
638
ef79d9a3 639struct value *
849d0ba8 640readable_regcache::cooked_read_value (int regnum)
3543a589
TT
641{
642 gdb_assert (regnum >= 0);
ef79d9a3 643 gdb_assert (regnum < m_descr->nr_cooked_registers);
3543a589 644
d999647b 645 if (regnum < num_raw_registers ()
849d0ba8 646 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
ef79d9a3 647 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
3543a589
TT
648 {
649 struct value *result;
650
ef79d9a3 651 result = allocate_value (register_type (m_descr->gdbarch, regnum));
3543a589
TT
652 VALUE_LVAL (result) = lval_register;
653 VALUE_REGNUM (result) = regnum;
654
655 /* It is more efficient in general to do this delegation in this
656 direction than in the other one, even though the value-based
657 API is preferred. */
ef79d9a3
YQ
658 if (cooked_read (regnum,
659 value_contents_raw (result)) == REG_UNAVAILABLE)
3543a589
TT
660 mark_value_bytes_unavailable (result, 0,
661 TYPE_LENGTH (value_type (result)));
662
663 return result;
664 }
665 else
ef79d9a3
YQ
666 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
667 this, regnum);
3543a589
TT
668}
669
05d1431c 670enum register_status
a378f419
AC
671regcache_cooked_read_signed (struct regcache *regcache, int regnum,
672 LONGEST *val)
ef79d9a3
YQ
673{
674 gdb_assert (regcache != NULL);
6f98355c 675 return regcache->cooked_read (regnum, val);
ef79d9a3
YQ
676}
677
6f98355c 678template<typename T, typename>
ef79d9a3 679enum register_status
849d0ba8 680readable_regcache::cooked_read (int regnum, T *val)
a378f419 681{
05d1431c 682 enum register_status status;
2d522557 683 gdb_byte *buf;
123f5f96 684
ef79d9a3
YQ
685 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
686 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
687 status = cooked_read (regnum, buf);
05d1431c 688 if (status == REG_VALID)
6f98355c
YQ
689 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
690 gdbarch_byte_order (m_descr->gdbarch));
05d1431c
PA
691 else
692 *val = 0;
693 return status;
a378f419
AC
694}
695
05d1431c 696enum register_status
a378f419
AC
697regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
698 ULONGEST *val)
ef79d9a3
YQ
699{
700 gdb_assert (regcache != NULL);
6f98355c 701 return regcache->cooked_read (regnum, val);
a378f419
AC
702}
703
a66a9c23
AC
704void
705regcache_cooked_write_signed (struct regcache *regcache, int regnum,
706 LONGEST val)
ef79d9a3
YQ
707{
708 gdb_assert (regcache != NULL);
6f98355c 709 regcache->cooked_write (regnum, val);
ef79d9a3
YQ
710}
711
6f98355c 712template<typename T, typename>
ef79d9a3 713void
6f98355c 714regcache::cooked_write (int regnum, T val)
a66a9c23 715{
7c543f7b 716 gdb_byte *buf;
123f5f96 717
ef79d9a3
YQ
718 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
719 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
6f98355c
YQ
720 store_integer (buf, m_descr->sizeof_register[regnum],
721 gdbarch_byte_order (m_descr->gdbarch), val);
ef79d9a3 722 cooked_write (regnum, buf);
a66a9c23
AC
723}
724
725void
726regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
727 ULONGEST val)
ef79d9a3
YQ
728{
729 gdb_assert (regcache != NULL);
6f98355c 730 regcache->cooked_write (regnum, val);
a66a9c23
AC
731}
732
ef79d9a3
YQ
733void
734regcache::raw_write (int regnum, const gdb_byte *buf)
61a0eb5b 735{
594f7785 736
ef79d9a3 737 gdb_assert (buf != NULL);
4e888c28 738 assert_regnum (regnum);
3fadccb3 739
3fadccb3
AC
740 /* On the sparc, writing %g0 is a no-op, so we don't even want to
741 change the registers array if something writes to this register. */
ef79d9a3 742 if (gdbarch_cannot_store_register (arch (), regnum))
3fadccb3
AC
743 return;
744
3fadccb3 745 /* If we have a valid copy of the register, and new value == old
0df8b418 746 value, then don't bother doing the actual store. */
ef79d9a3
YQ
747 if (get_register_status (regnum) == REG_VALID
748 && (memcmp (register_buffer (regnum), buf,
749 m_descr->sizeof_register[regnum]) == 0))
3fadccb3
AC
750 return;
751
ef79d9a3 752 target_prepare_to_store (this);
c8ec2f33 753 raw_supply (regnum, buf);
b94ade42 754
b292235f
TT
755 /* Invalidate the register after it is written, in case of a
756 failure. */
757 regcache_invalidator invalidator (this, regnum);
b94ade42 758
ef79d9a3 759 target_store_registers (this, regnum);
594f7785 760
b292235f
TT
761 /* The target did not throw an error so we can discard invalidating
762 the register. */
763 invalidator.release ();
61a0eb5b
AC
764}
765
ef79d9a3
YQ
766void
767regcache::cooked_write (int regnum, const gdb_byte *buf)
68365089 768{
d138e37a 769 gdb_assert (regnum >= 0);
ef79d9a3 770 gdb_assert (regnum < m_descr->nr_cooked_registers);
d999647b 771 if (regnum < num_raw_registers ())
ef79d9a3 772 raw_write (regnum, buf);
d138e37a 773 else
ef79d9a3 774 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
d8124050 775 regnum, buf);
61a0eb5b
AC
776}
777
06c0b04e
AC
778/* Perform a partial register transfer using a read, modify, write
779 operation. */
780
ef79d9a3 781enum register_status
849d0ba8
YQ
782readable_regcache::read_part (int regnum, int offset, int len, void *in,
783 bool is_raw)
784{
785 struct gdbarch *gdbarch = arch ();
786 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
787
788 gdb_assert (in != NULL);
789 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
790 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
791 /* Something to do? */
792 if (offset + len == 0)
793 return REG_VALID;
794 /* Read (when needed) ... */
795 enum register_status status;
796
797 if (is_raw)
798 status = raw_read (regnum, reg);
799 else
800 status = cooked_read (regnum, reg);
801 if (status != REG_VALID)
802 return status;
803
804 /* ... modify ... */
805 memcpy (in, reg + offset, len);
806
807 return REG_VALID;
808}
809
810enum register_status
811regcache::write_part (int regnum, int offset, int len,
d3037ba6 812 const void *out, bool is_raw)
ef79d9a3
YQ
813{
814 struct gdbarch *gdbarch = arch ();
9890e433 815 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
123f5f96 816
849d0ba8 817 gdb_assert (out != NULL);
ef79d9a3
YQ
818 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
819 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
06c0b04e
AC
820 /* Something to do? */
821 if (offset + len == 0)
05d1431c 822 return REG_VALID;
0df8b418 823 /* Read (when needed) ... */
849d0ba8 824 if (offset > 0
ef79d9a3 825 || offset + len < m_descr->sizeof_register[regnum])
06c0b04e 826 {
05d1431c
PA
827 enum register_status status;
828
d3037ba6
YQ
829 if (is_raw)
830 status = raw_read (regnum, reg);
831 else
832 status = cooked_read (regnum, reg);
05d1431c
PA
833 if (status != REG_VALID)
834 return status;
06c0b04e 835 }
849d0ba8
YQ
836
837 memcpy (reg + offset, out, len);
06c0b04e 838 /* ... write (when needed). */
849d0ba8
YQ
839 if (is_raw)
840 raw_write (regnum, reg);
841 else
842 cooked_write (regnum, reg);
05d1431c
PA
843
844 return REG_VALID;
06c0b04e
AC
845}
846
ef79d9a3 847enum register_status
849d0ba8 848readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
ef79d9a3 849{
4e888c28 850 assert_regnum (regnum);
849d0ba8 851 return read_part (regnum, offset, len, buf, true);
06c0b04e
AC
852}
853
4f0420fd 854/* See regcache.h. */
123f5f96 855
ef79d9a3
YQ
856void
857regcache::raw_write_part (int regnum, int offset, int len,
858 const gdb_byte *buf)
859{
4e888c28 860 assert_regnum (regnum);
849d0ba8 861 write_part (regnum, offset, len, buf, true);
06c0b04e
AC
862}
863
ef79d9a3 864enum register_status
849d0ba8
YQ
865readable_regcache::cooked_read_part (int regnum, int offset, int len,
866 gdb_byte *buf)
ef79d9a3
YQ
867{
868 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
849d0ba8 869 return read_part (regnum, offset, len, buf, false);
06c0b04e
AC
870}
871
ef79d9a3
YQ
872void
873regcache::cooked_write_part (int regnum, int offset, int len,
874 const gdb_byte *buf)
875{
876 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
849d0ba8 877 write_part (regnum, offset, len, buf, false);
06c0b04e 878}
32178cab 879
9c861883
AH
880/* See common/common-regcache.h. */
881
ef79d9a3 882void
9c861883 883reg_buffer::raw_supply (int regnum, const void *buf)
9a661b68
MK
884{
885 void *regbuf;
886 size_t size;
887
4e888c28 888 assert_regnum (regnum);
9a661b68 889
ef79d9a3
YQ
890 regbuf = register_buffer (regnum);
891 size = m_descr->sizeof_register[regnum];
9a661b68
MK
892
893 if (buf)
ee99023e
PA
894 {
895 memcpy (regbuf, buf, size);
ef79d9a3 896 m_register_status[regnum] = REG_VALID;
ee99023e 897 }
9a661b68 898 else
ee99023e
PA
899 {
900 /* This memset not strictly necessary, but better than garbage
901 in case the register value manages to escape somewhere (due
902 to a bug, no less). */
903 memset (regbuf, 0, size);
ef79d9a3 904 m_register_status[regnum] = REG_UNAVAILABLE;
ee99023e 905 }
9a661b68
MK
906}
907
9c861883 908/* See regcache.h. */
b057297a
AH
909
910void
9c861883
AH
911reg_buffer::raw_supply_integer (int regnum, const gdb_byte *addr,
912 int addr_len, bool is_signed)
b057297a
AH
913{
914 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
915 gdb_byte *regbuf;
916 size_t regsize;
917
4e888c28 918 assert_regnum (regnum);
b057297a
AH
919
920 regbuf = register_buffer (regnum);
921 regsize = m_descr->sizeof_register[regnum];
922
923 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
924 byte_order);
925 m_register_status[regnum] = REG_VALID;
926}
927
9c861883 928/* See regcache.h. */
f81fdd35
AH
929
930void
9c861883 931reg_buffer::raw_supply_zeroed (int regnum)
f81fdd35
AH
932{
933 void *regbuf;
934 size_t size;
935
4e888c28 936 assert_regnum (regnum);
f81fdd35
AH
937
938 regbuf = register_buffer (regnum);
939 size = m_descr->sizeof_register[regnum];
940
941 memset (regbuf, 0, size);
942 m_register_status[regnum] = REG_VALID;
943}
944
9c861883
AH
945/* See common/common-regcache.h. */
946
ef79d9a3 947void
9c861883 948reg_buffer::raw_collect (int regnum, void *buf) const
9a661b68
MK
949{
950 const void *regbuf;
951 size_t size;
952
ef79d9a3 953 gdb_assert (buf != NULL);
4e888c28 954 assert_regnum (regnum);
9a661b68 955
ef79d9a3
YQ
956 regbuf = register_buffer (regnum);
957 size = m_descr->sizeof_register[regnum];
9a661b68
MK
958 memcpy (buf, regbuf, size);
959}
960
9c861883 961/* See regcache.h. */
b057297a
AH
962
963void
9c861883
AH
964reg_buffer::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
965 bool is_signed) const
b057297a
AH
966{
967 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
968 const gdb_byte *regbuf;
969 size_t regsize;
970
4e888c28 971 assert_regnum (regnum);
b057297a
AH
972
973 regbuf = register_buffer (regnum);
974 regsize = m_descr->sizeof_register[regnum];
975
976 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
977 byte_order);
978}
979
9c861883
AH
980/* Transfer a single or all registers belonging to a certain register
981 set to or from a buffer. This is the main worker function for
982 regcache_supply_regset and regcache_collect_regset. */
983
ef79d9a3
YQ
984void
985regcache::transfer_regset (const struct regset *regset,
986 struct regcache *out_regcache,
987 int regnum, const void *in_buf,
988 void *out_buf, size_t size) const
0b309272
AA
989{
990 const struct regcache_map_entry *map;
991 int offs = 0, count;
992
19ba03f4
SM
993 for (map = (const struct regcache_map_entry *) regset->regmap;
994 (count = map->count) != 0;
995 map++)
0b309272
AA
996 {
997 int regno = map->regno;
998 int slot_size = map->size;
999
1000 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
ef79d9a3 1001 slot_size = m_descr->sizeof_register[regno];
0b309272
AA
1002
1003 if (regno == REGCACHE_MAP_SKIP
1004 || (regnum != -1
1005 && (regnum < regno || regnum >= regno + count)))
1006 offs += count * slot_size;
1007
1008 else if (regnum == -1)
1009 for (; count--; regno++, offs += slot_size)
1010 {
1011 if (offs + slot_size > size)
1012 break;
1013
1014 if (out_buf)
ef79d9a3 1015 raw_collect (regno, (gdb_byte *) out_buf + offs);
0b309272 1016 else
ef79d9a3
YQ
1017 out_regcache->raw_supply (regno, in_buf
1018 ? (const gdb_byte *) in_buf + offs
1019 : NULL);
0b309272
AA
1020 }
1021 else
1022 {
1023 /* Transfer a single register and return. */
1024 offs += (regnum - regno) * slot_size;
1025 if (offs + slot_size > size)
1026 return;
1027
1028 if (out_buf)
ef79d9a3 1029 raw_collect (regnum, (gdb_byte *) out_buf + offs);
0b309272 1030 else
ef79d9a3
YQ
1031 out_regcache->raw_supply (regnum, in_buf
1032 ? (const gdb_byte *) in_buf + offs
1033 : NULL);
0b309272
AA
1034 return;
1035 }
1036 }
1037}
1038
1039/* Supply register REGNUM from BUF to REGCACHE, using the register map
1040 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1041 If BUF is NULL, set the register(s) to "unavailable" status. */
1042
1043void
1044regcache_supply_regset (const struct regset *regset,
1045 struct regcache *regcache,
1046 int regnum, const void *buf, size_t size)
1047{
ef79d9a3
YQ
1048 regcache->supply_regset (regset, regnum, buf, size);
1049}
1050
1051void
1052regcache::supply_regset (const struct regset *regset,
1053 int regnum, const void *buf, size_t size)
1054{
1055 transfer_regset (regset, this, regnum, buf, NULL, size);
0b309272
AA
1056}
1057
1058/* Collect register REGNUM from REGCACHE to BUF, using the register
1059 map in REGSET. If REGNUM is -1, do this for all registers in
1060 REGSET. */
1061
1062void
1063regcache_collect_regset (const struct regset *regset,
1064 const struct regcache *regcache,
1065 int regnum, void *buf, size_t size)
1066{
ef79d9a3
YQ
1067 regcache->collect_regset (regset, regnum, buf, size);
1068}
1069
1070void
1071regcache::collect_regset (const struct regset *regset,
1072 int regnum, void *buf, size_t size) const
1073{
1074 transfer_regset (regset, NULL, regnum, NULL, buf, size);
0b309272
AA
1075}
1076
f868386e
AH
1077/* See common/common-regcache.h. */
1078
1079bool
1080reg_buffer::raw_compare (int regnum, const void *buf, int offset) const
1081{
1082 gdb_assert (buf != NULL);
1083 assert_regnum (regnum);
1084
1085 const char *regbuf = (const char *) register_buffer (regnum);
1086 size_t size = m_descr->sizeof_register[regnum];
1087 gdb_assert (size >= offset);
1088
1089 return (memcmp (buf, regbuf + offset, size - offset) == 0);
1090}
193cb69f 1091
515630c5 1092/* Special handling for register PC. */
32178cab
MS
1093
1094CORE_ADDR
515630c5 1095regcache_read_pc (struct regcache *regcache)
32178cab 1096{
ac7936df 1097 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 1098
32178cab
MS
1099 CORE_ADDR pc_val;
1100
61a1198a
UW
1101 if (gdbarch_read_pc_p (gdbarch))
1102 pc_val = gdbarch_read_pc (gdbarch, regcache);
cde9ea48 1103 /* Else use per-frame method on get_current_frame. */
214e098a 1104 else if (gdbarch_pc_regnum (gdbarch) >= 0)
cde9ea48 1105 {
61a1198a 1106 ULONGEST raw_val;
123f5f96 1107
05d1431c
PA
1108 if (regcache_cooked_read_unsigned (regcache,
1109 gdbarch_pc_regnum (gdbarch),
1110 &raw_val) == REG_UNAVAILABLE)
1111 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1112
214e098a 1113 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
cde9ea48
AC
1114 }
1115 else
515630c5
UW
1116 internal_error (__FILE__, __LINE__,
1117 _("regcache_read_pc: Unable to find PC"));
32178cab
MS
1118 return pc_val;
1119}
1120
32178cab 1121void
515630c5 1122regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
32178cab 1123{
ac7936df 1124 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 1125
61a1198a
UW
1126 if (gdbarch_write_pc_p (gdbarch))
1127 gdbarch_write_pc (gdbarch, regcache, pc);
214e098a 1128 else if (gdbarch_pc_regnum (gdbarch) >= 0)
3e8c568d 1129 regcache_cooked_write_unsigned (regcache,
214e098a 1130 gdbarch_pc_regnum (gdbarch), pc);
61a1198a
UW
1131 else
1132 internal_error (__FILE__, __LINE__,
515630c5 1133 _("regcache_write_pc: Unable to update PC"));
edb3359d
DJ
1134
1135 /* Writing the PC (for instance, from "load") invalidates the
1136 current frame. */
1137 reinit_frame_cache ();
32178cab
MS
1138}
1139
d999647b 1140int
31716595 1141reg_buffer::num_raw_registers () const
d999647b
YQ
1142{
1143 return gdbarch_num_regs (arch ());
1144}
1145
ed771251 1146void
ef79d9a3 1147regcache::debug_print_register (const char *func, int regno)
ed771251 1148{
ef79d9a3 1149 struct gdbarch *gdbarch = arch ();
ed771251
AH
1150
1151 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1152 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1153 && gdbarch_register_name (gdbarch, regno) != NULL
1154 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1155 fprintf_unfiltered (gdb_stdlog, "(%s)",
1156 gdbarch_register_name (gdbarch, regno));
1157 else
1158 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1159 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1160 {
1161 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1162 int size = register_size (gdbarch, regno);
ef79d9a3 1163 gdb_byte *buf = register_buffer (regno);
ed771251
AH
1164
1165 fprintf_unfiltered (gdb_stdlog, " = ");
1166 for (int i = 0; i < size; i++)
1167 {
1168 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1169 }
1170 if (size <= sizeof (LONGEST))
1171 {
1172 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1173
1174 fprintf_unfiltered (gdb_stdlog, " %s %s",
1175 core_addr_to_string_nz (val), plongest (val));
1176 }
1177 }
1178 fprintf_unfiltered (gdb_stdlog, "\n");
1179}
32178cab 1180
705152c5 1181static void
0b39b52e 1182reg_flush_command (const char *command, int from_tty)
705152c5
MS
1183{
1184 /* Force-flush the register cache. */
1185 registers_changed ();
1186 if (from_tty)
a3f17187 1187 printf_filtered (_("Register cache flushed.\n"));
705152c5
MS
1188}
1189
4c74fe6b
YQ
1190void
1191register_dump::dump (ui_file *file)
af030b9a 1192{
4c74fe6b
YQ
1193 auto descr = regcache_descr (m_gdbarch);
1194 int regnum;
1195 int footnote_nr = 0;
1196 int footnote_register_offset = 0;
1197 int footnote_register_type_name_null = 0;
1198 long register_offset = 0;
af030b9a 1199
4c74fe6b
YQ
1200 gdb_assert (descr->nr_cooked_registers
1201 == (gdbarch_num_regs (m_gdbarch)
1202 + gdbarch_num_pseudo_regs (m_gdbarch)));
af030b9a 1203
4c74fe6b
YQ
1204 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1205 {
1206 /* Name. */
1207 if (regnum < 0)
1208 fprintf_unfiltered (file, " %-10s", "Name");
1209 else
1210 {
1211 const char *p = gdbarch_register_name (m_gdbarch, regnum);
123f5f96 1212
4c74fe6b
YQ
1213 if (p == NULL)
1214 p = "";
1215 else if (p[0] == '\0')
1216 p = "''";
1217 fprintf_unfiltered (file, " %-10s", p);
1218 }
af030b9a 1219
4c74fe6b
YQ
1220 /* Number. */
1221 if (regnum < 0)
1222 fprintf_unfiltered (file, " %4s", "Nr");
1223 else
1224 fprintf_unfiltered (file, " %4d", regnum);
af030b9a 1225
4c74fe6b
YQ
1226 /* Relative number. */
1227 if (regnum < 0)
1228 fprintf_unfiltered (file, " %4s", "Rel");
1229 else if (regnum < gdbarch_num_regs (m_gdbarch))
1230 fprintf_unfiltered (file, " %4d", regnum);
1231 else
1232 fprintf_unfiltered (file, " %4d",
1233 (regnum - gdbarch_num_regs (m_gdbarch)));
af030b9a 1234
4c74fe6b
YQ
1235 /* Offset. */
1236 if (regnum < 0)
1237 fprintf_unfiltered (file, " %6s ", "Offset");
1238 else
af030b9a 1239 {
4c74fe6b
YQ
1240 fprintf_unfiltered (file, " %6ld",
1241 descr->register_offset[regnum]);
1242 if (register_offset != descr->register_offset[regnum]
1243 || (regnum > 0
1244 && (descr->register_offset[regnum]
1245 != (descr->register_offset[regnum - 1]
1246 + descr->sizeof_register[regnum - 1])))
1247 )
af030b9a 1248 {
4c74fe6b
YQ
1249 if (!footnote_register_offset)
1250 footnote_register_offset = ++footnote_nr;
1251 fprintf_unfiltered (file, "*%d", footnote_register_offset);
af030b9a 1252 }
4c74fe6b
YQ
1253 else
1254 fprintf_unfiltered (file, " ");
1255 register_offset = (descr->register_offset[regnum]
1256 + descr->sizeof_register[regnum]);
af030b9a
AC
1257 }
1258
4c74fe6b
YQ
1259 /* Size. */
1260 if (regnum < 0)
1261 fprintf_unfiltered (file, " %5s ", "Size");
1262 else
1263 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
f3384e66 1264
4c74fe6b 1265 /* Type. */
f3384e66 1266 {
4c74fe6b
YQ
1267 const char *t;
1268 std::string name_holder;
b59ff9d5 1269
4c74fe6b
YQ
1270 if (regnum < 0)
1271 t = "Type";
215c69dc
YQ
1272 else
1273 {
4c74fe6b 1274 static const char blt[] = "builtin_type";
123f5f96 1275
4c74fe6b
YQ
1276 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1277 if (t == NULL)
f3384e66 1278 {
4c74fe6b
YQ
1279 if (!footnote_register_type_name_null)
1280 footnote_register_type_name_null = ++footnote_nr;
1281 name_holder = string_printf ("*%d",
1282 footnote_register_type_name_null);
1283 t = name_holder.c_str ();
f3384e66 1284 }
4c74fe6b
YQ
1285 /* Chop a leading builtin_type. */
1286 if (startswith (t, blt))
1287 t += strlen (blt);
f3384e66 1288 }
4c74fe6b 1289 fprintf_unfiltered (file, " %-15s", t);
f3384e66 1290 }
f3384e66 1291
4c74fe6b
YQ
1292 /* Leading space always present. */
1293 fprintf_unfiltered (file, " ");
af030b9a 1294
4c74fe6b 1295 dump_reg (file, regnum);
ed4227b7 1296
4c74fe6b 1297 fprintf_unfiltered (file, "\n");
ed4227b7
PA
1298 }
1299
4c74fe6b
YQ
1300 if (footnote_register_offset)
1301 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1302 footnote_register_offset);
1303 if (footnote_register_type_name_null)
1304 fprintf_unfiltered (file,
1305 "*%d: Register type's name NULL.\n",
1306 footnote_register_type_name_null);
c21236dc
PA
1307}
1308
8248946c
YQ
1309#if GDB_SELF_TEST
1310#include "selftest.h"
1b30aaa5
YQ
1311#include "selftest-arch.h"
1312#include "gdbthread.h"
ec7a5fcb 1313#include "target-float.h"
8248946c
YQ
1314
1315namespace selftests {
1316
e521e87e 1317class regcache_access : public regcache
8248946c 1318{
e521e87e
YQ
1319public:
1320
1321 /* Return the number of elements in current_regcache. */
1322
1323 static size_t
1324 current_regcache_size ()
1325 {
1326 return std::distance (regcache::current_regcache.begin (),
1327 regcache::current_regcache.end ());
1328 }
1329};
8248946c
YQ
1330
1331static void
1332current_regcache_test (void)
1333{
1334 /* It is empty at the start. */
e521e87e 1335 SELF_CHECK (regcache_access::current_regcache_size () == 0);
8248946c
YQ
1336
1337 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1338
1339 /* Get regcache from ptid1, a new regcache is added to
1340 current_regcache. */
1341 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1342 target_gdbarch (),
1343 NULL);
1344
1345 SELF_CHECK (regcache != NULL);
1346 SELF_CHECK (regcache->ptid () == ptid1);
e521e87e 1347 SELF_CHECK (regcache_access::current_regcache_size () == 1);
8248946c
YQ
1348
1349 /* Get regcache from ptid2, a new regcache is added to
1350 current_regcache. */
1351 regcache = get_thread_arch_aspace_regcache (ptid2,
1352 target_gdbarch (),
1353 NULL);
1354 SELF_CHECK (regcache != NULL);
1355 SELF_CHECK (regcache->ptid () == ptid2);
e521e87e 1356 SELF_CHECK (regcache_access::current_regcache_size () == 2);
8248946c
YQ
1357
1358 /* Get regcache from ptid3, a new regcache is added to
1359 current_regcache. */
1360 regcache = get_thread_arch_aspace_regcache (ptid3,
1361 target_gdbarch (),
1362 NULL);
1363 SELF_CHECK (regcache != NULL);
1364 SELF_CHECK (regcache->ptid () == ptid3);
e521e87e 1365 SELF_CHECK (regcache_access::current_regcache_size () == 3);
8248946c
YQ
1366
1367 /* Get regcache from ptid2 again, nothing is added to
1368 current_regcache. */
1369 regcache = get_thread_arch_aspace_regcache (ptid2,
1370 target_gdbarch (),
1371 NULL);
1372 SELF_CHECK (regcache != NULL);
1373 SELF_CHECK (regcache->ptid () == ptid2);
e521e87e 1374 SELF_CHECK (regcache_access::current_regcache_size () == 3);
8248946c
YQ
1375
1376 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1377 current_regcache. */
1378 registers_changed_ptid (ptid2);
e521e87e 1379 SELF_CHECK (regcache_access::current_regcache_size () == 2);
8248946c
YQ
1380}
1381
1b30aaa5
YQ
1382class target_ops_no_register : public test_target_ops
1383{
1384public:
1385 target_ops_no_register ()
1386 : test_target_ops {}
f6ac5f3d 1387 {}
1b30aaa5
YQ
1388
1389 void reset ()
1390 {
1391 fetch_registers_called = 0;
1392 store_registers_called = 0;
1393 xfer_partial_called = 0;
1394 }
1395
f6ac5f3d
PA
1396 void fetch_registers (regcache *regs, int regno) override;
1397 void store_registers (regcache *regs, int regno) override;
1398
1399 enum target_xfer_status xfer_partial (enum target_object object,
1400 const char *annex, gdb_byte *readbuf,
1401 const gdb_byte *writebuf,
1402 ULONGEST offset, ULONGEST len,
1403 ULONGEST *xfered_len) override;
1404
1b30aaa5
YQ
1405 unsigned int fetch_registers_called = 0;
1406 unsigned int store_registers_called = 0;
1407 unsigned int xfer_partial_called = 0;
1408};
1409
f6ac5f3d
PA
1410void
1411target_ops_no_register::fetch_registers (regcache *regs, int regno)
1b30aaa5 1412{
1b30aaa5
YQ
1413 /* Mark register available. */
1414 regs->raw_supply_zeroed (regno);
f6ac5f3d 1415 this->fetch_registers_called++;
1b30aaa5
YQ
1416}
1417
f6ac5f3d
PA
1418void
1419target_ops_no_register::store_registers (regcache *regs, int regno)
1b30aaa5 1420{
f6ac5f3d 1421 this->store_registers_called++;
1b30aaa5
YQ
1422}
1423
f6ac5f3d
PA
1424enum target_xfer_status
1425target_ops_no_register::xfer_partial (enum target_object object,
1426 const char *annex, gdb_byte *readbuf,
1427 const gdb_byte *writebuf,
1428 ULONGEST offset, ULONGEST len,
1429 ULONGEST *xfered_len)
1b30aaa5 1430{
f6ac5f3d 1431 this->xfer_partial_called++;
1b30aaa5
YQ
1432
1433 *xfered_len = len;
1434 return TARGET_XFER_OK;
1435}
1436
1437class readwrite_regcache : public regcache
1438{
1439public:
1440 readwrite_regcache (struct gdbarch *gdbarch)
796bb026 1441 : regcache (gdbarch, nullptr)
1b30aaa5
YQ
1442 {}
1443};
1444
1445/* Test regcache::cooked_read gets registers from raw registers and
1446 memory instead of target to_{fetch,store}_registers. */
1447
1448static void
1449cooked_read_test (struct gdbarch *gdbarch)
1450{
1451 /* Error out if debugging something, because we're going to push the
1452 test target, which would pop any existing target. */
8b88a78e 1453 if (current_top_target ()->to_stratum >= process_stratum)
1b30aaa5
YQ
1454 error (_("target already pushed"));
1455
1456 /* Create a mock environment. An inferior with a thread, with a
1457 process_stratum target pushed. */
1458
1459 target_ops_no_register mock_target;
1460 ptid_t mock_ptid (1, 1);
1461 inferior mock_inferior (mock_ptid.pid ());
1462 address_space mock_aspace {};
1463 mock_inferior.gdbarch = gdbarch;
1464 mock_inferior.aspace = &mock_aspace;
1465 thread_info mock_thread (&mock_inferior, mock_ptid);
1466
1467 scoped_restore restore_thread_list
1468 = make_scoped_restore (&thread_list, &mock_thread);
1469
1470 /* Add the mock inferior to the inferior list so that look ups by
1471 target+ptid can find it. */
1472 scoped_restore restore_inferior_list
1473 = make_scoped_restore (&inferior_list);
1474 inferior_list = &mock_inferior;
1475
1476 /* Switch to the mock inferior. */
1477 scoped_restore_current_inferior restore_current_inferior;
1478 set_current_inferior (&mock_inferior);
1479
1480 /* Push the process_stratum target so we can mock accessing
1481 registers. */
1482 push_target (&mock_target);
1483
1484 /* Pop it again on exit (return/exception). */
1485 struct on_exit
1486 {
1487 ~on_exit ()
1488 {
1489 pop_all_targets_at_and_above (process_stratum);
1490 }
1491 } pop_targets;
1492
1493 /* Switch to the mock thread. */
1494 scoped_restore restore_inferior_ptid
1495 = make_scoped_restore (&inferior_ptid, mock_ptid);
1496
1497 /* Test that read one raw register from regcache_no_target will go
1498 to the target layer. */
1499 int regnum;
1500
1501 /* Find a raw register which size isn't zero. */
1502 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1503 {
1504 if (register_size (gdbarch, regnum) != 0)
1505 break;
1506 }
1507
1508 readwrite_regcache readwrite (gdbarch);
1509 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1510
1511 readwrite.raw_read (regnum, buf.data ());
1512
1513 /* raw_read calls target_fetch_registers. */
1514 SELF_CHECK (mock_target.fetch_registers_called > 0);
1515 mock_target.reset ();
1516
1517 /* Mark all raw registers valid, so the following raw registers
1518 accesses won't go to target. */
1519 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1520 readwrite.raw_update (i);
1521
1522 mock_target.reset ();
1523 /* Then, read all raw and pseudo registers, and don't expect calling
1524 to_{fetch,store}_registers. */
1525 for (int regnum = 0;
1526 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1527 regnum++)
1528 {
1529 if (register_size (gdbarch, regnum) == 0)
1530 continue;
1531
1532 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1533
1534 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1535
dc711524
YQ
1536 SELF_CHECK (mock_target.fetch_registers_called == 0);
1537 SELF_CHECK (mock_target.store_registers_called == 0);
1b30aaa5
YQ
1538
1539 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1540 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1541 SELF_CHECK (mock_target.xfer_partial_called == 0);
1542
1543 mock_target.reset ();
1544 }
a63f2d2f 1545
215c69dc 1546 readonly_detached_regcache readonly (readwrite);
a63f2d2f
YQ
1547
1548 /* GDB may go to target layer to fetch all registers and memory for
1549 readonly regcache. */
1550 mock_target.reset ();
1551
1552 for (int regnum = 0;
1553 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1554 regnum++)
1555 {
a63f2d2f
YQ
1556 if (register_size (gdbarch, regnum) == 0)
1557 continue;
1558
1559 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1560 enum register_status status = readonly.cooked_read (regnum,
1561 buf.data ());
1562
1563 if (regnum < gdbarch_num_regs (gdbarch))
1564 {
1565 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1566
1567 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1568 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1569 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1570 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1571 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1572 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
ea005f31
AB
1573 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1574 || bfd_arch == bfd_arch_riscv)
a63f2d2f
YQ
1575 {
1576 /* Raw registers. If raw registers are not in save_reggroup,
1577 their status are unknown. */
1578 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1579 SELF_CHECK (status == REG_VALID);
1580 else
1581 SELF_CHECK (status == REG_UNKNOWN);
1582 }
1583 else
1584 SELF_CHECK (status == REG_VALID);
1585 }
1586 else
1587 {
1588 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1589 SELF_CHECK (status == REG_VALID);
1590 else
1591 {
1592 /* If pseudo registers are not in save_reggroup, some of
1593 them can be computed from saved raw registers, but some
1594 of them are unknown. */
1595 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1596
1597 if (bfd_arch == bfd_arch_frv
1598 || bfd_arch == bfd_arch_m32c
1599 || bfd_arch == bfd_arch_mep
1600 || bfd_arch == bfd_arch_sh)
1601 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1602 else if (bfd_arch == bfd_arch_mips
1603 || bfd_arch == bfd_arch_h8300)
1604 SELF_CHECK (status == REG_UNKNOWN);
1605 else
1606 SELF_CHECK (status == REG_VALID);
1607 }
1608 }
1609
1610 SELF_CHECK (mock_target.fetch_registers_called == 0);
1611 SELF_CHECK (mock_target.store_registers_called == 0);
1612 SELF_CHECK (mock_target.xfer_partial_called == 0);
1613
1614 mock_target.reset ();
1615 }
1b30aaa5
YQ
1616}
1617
ec7a5fcb
YQ
1618/* Test regcache::cooked_write by writing some expected contents to
1619 registers, and checking that contents read from registers and the
1620 expected contents are the same. */
1621
1622static void
1623cooked_write_test (struct gdbarch *gdbarch)
1624{
1625 /* Error out if debugging something, because we're going to push the
1626 test target, which would pop any existing target. */
8b88a78e 1627 if (current_top_target ()->to_stratum >= process_stratum)
ec7a5fcb
YQ
1628 error (_("target already pushed"));
1629
1630 /* Create a mock environment. A process_stratum target pushed. */
1631
1632 target_ops_no_register mock_target;
1633
1634 /* Push the process_stratum target so we can mock accessing
1635 registers. */
1636 push_target (&mock_target);
1637
1638 /* Pop it again on exit (return/exception). */
1639 struct on_exit
1640 {
1641 ~on_exit ()
1642 {
1643 pop_all_targets_at_and_above (process_stratum);
1644 }
1645 } pop_targets;
1646
1647 readwrite_regcache readwrite (gdbarch);
1648
1649 const int num_regs = (gdbarch_num_regs (gdbarch)
1650 + gdbarch_num_pseudo_regs (gdbarch));
1651
1652 for (auto regnum = 0; regnum < num_regs; regnum++)
1653 {
1654 if (register_size (gdbarch, regnum) == 0
1655 || gdbarch_cannot_store_register (gdbarch, regnum))
1656 continue;
1657
1658 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1659
1660 if ((bfd_arch == bfd_arch_sparc
1661 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1662 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1663 && gdbarch_ptr_bit (gdbarch) == 64
1664 && (regnum >= gdbarch_num_regs (gdbarch)
1665 && regnum <= gdbarch_num_regs (gdbarch) + 4))
ec7a5fcb
YQ
1666 || (bfd_arch == bfd_arch_spu
1667 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1668 TARGET_OBJECT_SPU. */
1669 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1670 continue;
1671
1672 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1673 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1674 const auto type = register_type (gdbarch, regnum);
1675
1676 if (TYPE_CODE (type) == TYPE_CODE_FLT
1677 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1678 {
1679 /* Generate valid float format. */
1680 target_float_from_string (expected.data (), type, "1.25");
1681 }
1682 else if (TYPE_CODE (type) == TYPE_CODE_INT
1683 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1684 || TYPE_CODE (type) == TYPE_CODE_PTR
1685 || TYPE_CODE (type) == TYPE_CODE_UNION
1686 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 if (bfd_arch == bfd_arch_ia64
1689 || (regnum >= gdbarch_num_regs (gdbarch)
1690 && (bfd_arch == bfd_arch_xtensa
1691 || bfd_arch == bfd_arch_bfin
1692 || bfd_arch == bfd_arch_m32c
1693 /* m68hc11 pseudo registers are in memory. */
1694 || bfd_arch == bfd_arch_m68hc11
1695 || bfd_arch == bfd_arch_m68hc12
1696 || bfd_arch == bfd_arch_s390))
1697 || (bfd_arch == bfd_arch_frv
1698 /* FRV pseudo registers except iacc0. */
1699 && regnum > gdbarch_num_regs (gdbarch)))
1700 {
1701 /* Skip setting the expected values for some architecture
1702 registers. */
1703 }
1704 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1705 {
1706 /* RL78_PC_REGNUM */
1707 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1708 expected[j] = j;
1709 }
1710 else
1711 {
1712 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1713 expected[j] = j;
1714 }
1715 }
1716 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1717 {
1718 /* No idea how to test flags. */
1719 continue;
1720 }
1721 else
1722 {
1723 /* If we don't know how to create the expected value for the
1724 this type, make it fail. */
1725 SELF_CHECK (0);
1726 }
1727
1728 readwrite.cooked_write (regnum, expected.data ());
1729
1730 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1731 SELF_CHECK (expected == buf);
1732 }
1733}
1734
8248946c
YQ
1735} // namespace selftests
1736#endif /* GDB_SELF_TEST */
1737
32178cab
MS
1738void
1739_initialize_regcache (void)
1740{
3e43a32a
MS
1741 regcache_descr_handle
1742 = gdbarch_data_register_post_init (init_regcache_descr);
705152c5 1743
76727919
TT
1744 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1745 gdb::observers::thread_ptid_changed.attach
1746 (regcache::regcache_thread_ptid_changed);
f4c5303c 1747
705152c5 1748 add_com ("flushregs", class_maintenance, reg_flush_command,
1bedd215 1749 _("Force gdb to flush its register cache (maintainer command)"));
39f77062 1750
8248946c 1751#if GDB_SELF_TEST
1526853e 1752 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1b30aaa5
YQ
1753
1754 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1755 selftests::cooked_read_test);
ec7a5fcb
YQ
1756 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1757 selftests::cooked_write_test);
8248946c 1758#endif
32178cab 1759}