]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/s12z-tdep.c
gdb: add type::length / type::set_length
[thirdparty/binutils-gdb.git] / gdb / s12z-tdep.c
CommitLineData
51d21d60 1/* Target-dependent code for the S12Z, for the GDB.
4a94e368 2 Copyright (C) 2018-2022 Free Software Foundation, Inc.
51d21d60
JD
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19/* Much of this file is shamelessly copied from or1k-tdep.c and others. */
20
21#include "defs.h"
22
23#include "arch-utils.h"
82ca8957 24#include "dwarf2/frame.h"
268a13a5 25#include "gdbsupport/errors.h"
51d21d60
JD
26#include "frame-unwind.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "inferior.h"
30#include "opcode/s12z.h"
31#include "trad-frame.h"
32#include "remote.h"
f16f7b7c 33#include "opcodes/s12z-opc.h"
76eb8ef1 34#include "gdbarch.h"
c8154ce0 35#include "disasm.h"
51d21d60
JD
36
37/* Two of the registers included in S12Z_N_REGISTERS are
38 the CCH and CCL "registers" which are just views into
39 the CCW register. */
40#define N_PHYSICAL_REGISTERS (S12Z_N_REGISTERS - 2)
41
42
c3247a98
JD
43/* A permutation of all the physical registers. Indexing this array
44 with an integer from gdb's internal representation will return the
45 register enum. */
51d21d60
JD
46static const int reg_perm[N_PHYSICAL_REGISTERS] =
47 {
48 REG_D0,
49 REG_D1,
50 REG_D2,
51 REG_D3,
52 REG_D4,
53 REG_D5,
54 REG_D6,
55 REG_D7,
56 REG_X,
57 REG_Y,
58 REG_S,
59 REG_P,
60 REG_CCW
61 };
62
c3247a98
JD
63/* The inverse of the above permutation. Indexing this
64 array with a register enum (e.g. REG_D2) will return the register
65 number in gdb's internal representation. */
66static const int inv_reg_perm[N_PHYSICAL_REGISTERS] =
67 {
68 2, 3, 4, 5, /* d2, d3, d4, d5 */
69 0, 1, /* d0, d1 */
70 6, 7, /* d6, d7 */
71 8, 9, 10, 11, 12 /* x, y, s, p, ccw */
72 };
51d21d60
JD
73
74/* Return the name of the register REGNUM. */
75static const char *
76s12z_register_name (struct gdbarch *gdbarch, int regnum)
77{
78 /* Registers is declared in opcodes/s12z.h. */
79 return registers[reg_perm[regnum]].name;
80}
81
82static CORE_ADDR
83s12z_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
84{
85 CORE_ADDR start_pc = 0;
86
87 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
88 {
89 CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
90
91 if (prologue_end != 0)
dda83cd7 92 return prologue_end;
51d21d60
JD
93 }
94
422186a9
TT
95 warning (_("%s Failed to find end of prologue PC = %08x"),
96 __FUNCTION__, (unsigned int) pc);
51d21d60
JD
97
98 return pc;
99}
100
51d21d60
JD
101static struct type *
102s12z_register_type (struct gdbarch *gdbarch, int reg_nr)
103{
104 switch (registers[reg_perm[reg_nr]].bytes)
105 {
106 case 1:
107 return builtin_type (gdbarch)->builtin_uint8;
108 case 2:
109 return builtin_type (gdbarch)->builtin_uint16;
110 case 3:
111 return builtin_type (gdbarch)->builtin_uint24;
112 case 4:
113 return builtin_type (gdbarch)->builtin_uint32;
114 default:
115 return builtin_type (gdbarch)->builtin_uint32;
116 }
117 return builtin_type (gdbarch)->builtin_int0;
118}
119
120
121static int
122s12z_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
123{
124 switch (num)
125 {
126 case 15: return REG_S;
127 case 7: return REG_X;
128 case 8: return REG_Y;
129 case 42: return REG_D0;
130 case 43: return REG_D1;
131 case 44: return REG_D2;
132 case 45: return REG_D3;
133 case 46: return REG_D4;
134 case 47: return REG_D5;
135 case 48: return REG_D6;
136 case 49: return REG_D7;
137 }
138 return -1;
139}
140
141
142/* Support functions for frame handling. */
143
c5358db4
JD
144/* A struct (based on mem_read_abstraction_base) to read memory
145 through the disassemble_info API. */
146struct mem_read_abstraction
147{
148 struct mem_read_abstraction_base base; /* The parent struct. */
149 bfd_vma memaddr; /* Where to read from. */
85102364 150 struct disassemble_info* info; /* The disassembler to use for reading. */
c5358db4
JD
151};
152
153/* Advance the reader by one byte. */
154static void
155advance (struct mem_read_abstraction_base *b)
156{
157 struct mem_read_abstraction *mra = (struct mem_read_abstraction *) b;
158 mra->memaddr++;
159}
160
161/* Return the current position of the reader. */
162static bfd_vma
163posn (struct mem_read_abstraction_base *b)
164{
165 struct mem_read_abstraction *mra = (struct mem_read_abstraction *) b;
166 return mra->memaddr;
167}
168
169/* Read the N bytes at OFFSET using B. The bytes read are stored in BYTES.
170 It is the caller's responsibility to ensure that this is of at least N
171 in size. */
172static int
173abstract_read_memory (struct mem_read_abstraction_base *b,
174 int offset,
175 size_t n, bfd_byte *bytes)
176{
177 struct mem_read_abstraction *mra = (struct mem_read_abstraction *) b;
178
179 int status =
180 (*mra->info->read_memory_func) (mra->memaddr + offset,
181 bytes, n, mra->info);
182
183 if (status != 0)
184 {
185 (*mra->info->memory_error_func) (status, mra->memaddr, mra->info);
186 return -1;
187 }
188
189 return 0;
190}
191
192
193/* Return the stack adjustment caused by a push or pull instruction. */
194static int
195push_pull_get_stack_adjustment (int n_operands,
196 struct operand *const *operands)
197{
198 int stack_adjustment = 0;
199 gdb_assert (n_operands > 0);
200 if (operands[0]->cl == OPND_CL_REGISTER_ALL)
201 stack_adjustment = 26; /* All the regs are involved. */
202 else if (operands[0]->cl == OPND_CL_REGISTER_ALL16)
203 stack_adjustment = 4 * 2; /* All four 16 bit regs are involved. */
204 else
205 for (int i = 0; i < n_operands; ++i)
206 {
207 if (operands[i]->cl != OPND_CL_REGISTER)
208 continue; /* I don't think this can ever happen. */
209 const struct register_operand *op
210 = (const struct register_operand *) operands[i];
211 switch (op->reg)
212 {
213 case REG_X:
214 case REG_Y:
215 stack_adjustment += 3;
216 break;
217 case REG_D7:
218 case REG_D6:
219 stack_adjustment += 4;
220 break;
221 case REG_D2:
222 case REG_D3:
223 case REG_D4:
224 case REG_D5:
225 stack_adjustment += 2;
226 break;
227 case REG_D0:
228 case REG_D1:
229 case REG_CCL:
230 case REG_CCH:
231 stack_adjustment += 1;
232 break;
233 default:
234 gdb_assert_not_reached ("Invalid register in push/pull operation.");
235 break;
236 }
237 }
238 return stack_adjustment;
239}
240
51d21d60
JD
241/* Initialize a prologue cache. */
242
243static struct trad_frame_cache *
244s12z_frame_cache (struct frame_info *this_frame, void **prologue_cache)
245{
246 struct trad_frame_cache *info;
247
248 CORE_ADDR this_sp;
249 CORE_ADDR this_sp_for_id;
250
251 CORE_ADDR start_addr;
252 CORE_ADDR end_addr;
253
254 /* Nothing to do if we already have this info. */
255 if (NULL != *prologue_cache)
256 return (struct trad_frame_cache *) *prologue_cache;
257
258 /* Get a new prologue cache and populate it with default values. */
259 info = trad_frame_cache_zalloc (this_frame);
260 *prologue_cache = info;
261
262 /* Find the start address of this function (which is a normal frame, even
263 if the next frame is the sentinel frame) and the end of its prologue. */
264 CORE_ADDR this_pc = get_frame_pc (this_frame);
265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
266 find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
267
268 /* Get the stack pointer if we have one (if there's no process executing
269 yet we won't have a frame. */
270 this_sp = (NULL == this_frame) ? 0 :
271 get_frame_register_unsigned (this_frame, REG_S);
272
273 /* Return early if GDB couldn't find the function. */
274 if (start_addr == 0)
275 {
422186a9 276 warning (_("Couldn't find function including address %s SP is %s"),
dda83cd7
SM
277 paddress (gdbarch, this_pc),
278 paddress (gdbarch, this_sp));
51d21d60
JD
279
280 /* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
281 crashing right at the beginning. Build the frame ID as best we
282 can. */
283 trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
284
285 return info;
286 }
287
288 /* The default frame base of this frame (for ID purposes only - frame
289 base is an overloaded term) is its stack pointer. For now we use the
290 value of the SP register in this frame. However if the PC is in the
291 prologue of this frame, before the SP has been set up, then the value
292 will actually be that of the prev frame, and we'll need to adjust it
293 later. */
294 trad_frame_set_this_base (info, this_sp);
295 this_sp_for_id = this_sp;
296
297 /* We should only examine code that is in the prologue. This is all code
298 up to (but not including) end_addr. We should only populate the cache
299 while the address is up to (but not including) the PC or end_addr,
300 whichever is first. */
301 end_addr = s12z_skip_prologue (gdbarch, start_addr);
302
303 /* All the following analysis only occurs if we are in the prologue and
304 have executed the code. Check we have a sane prologue size, and if
305 zero we are frameless and can give up here. */
306 if (end_addr < start_addr)
307 error (_("end addr %s is less than start addr %s"),
308 paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
309
310 CORE_ADDR addr = start_addr; /* Where we have got to? */
311 int frame_size = 0;
312 int saved_frame_size = 0;
51d21d60 313
8b39b1e7 314 struct gdb_non_printing_memory_disassembler dis (gdbarch);
51d21d60 315
c5358db4
JD
316 struct mem_read_abstraction mra;
317 mra.base.read = (int (*)(mem_read_abstraction_base*,
318 int, size_t, bfd_byte*)) abstract_read_memory;
319 mra.base.advance = advance ;
320 mra.base.posn = posn;
8b39b1e7 321 mra.info = dis.disasm_info ();
51d21d60 322
c5358db4
JD
323 while (this_pc > addr)
324 {
325 enum optr optr = OP_INVALID;
326 short osize;
327 int n_operands = 0;
328 struct operand *operands[6];
329 mra.memaddr = addr;
330 int n_bytes =
331 decode_s12z (&optr, &osize, &n_operands, operands,
332 (mem_read_abstraction_base *) &mra);
333
334 switch (optr)
335 {
336 case OP_tbNE:
337 case OP_tbPL:
338 case OP_tbMI:
339 case OP_tbGT:
340 case OP_tbLE:
341 case OP_dbNE:
342 case OP_dbEQ:
343 case OP_dbPL:
344 case OP_dbMI:
345 case OP_dbGT:
346 case OP_dbLE:
347 /* Conditional Branches. If any of these are encountered, then
348 it is likely that a RTS will terminate it. So we need to save
349 the frame size so it can be restored. */
350 saved_frame_size = frame_size;
351 break;
352 case OP_rts:
353 /* Restore the frame size from a previously saved value. */
354 frame_size = saved_frame_size;
355 break;
356 case OP_push:
357 frame_size += push_pull_get_stack_adjustment (n_operands, operands);
358 break;
359 case OP_pull:
360 frame_size -= push_pull_get_stack_adjustment (n_operands, operands);
361 break;
362 case OP_lea:
363 if (operands[0]->cl == OPND_CL_REGISTER)
364 {
365 int reg = ((struct register_operand *) (operands[0]))->reg;
366 if ((reg == REG_S) && (operands[1]->cl == OPND_CL_MEMORY))
367 {
368 const struct memory_operand *mo
369 = (const struct memory_operand * ) operands[1];
370 if (mo->n_regs == 1 && !mo->indirect
371 && mo->regs[0] == REG_S
372 && mo->mutation == OPND_RM_NONE)
373 {
374 /* LEA S, (xxx, S) -- Decrement the stack. This is
375 almost certainly the start of a frame. */
376 int simm = (signed char) mo->base_offset;
377 frame_size -= simm;
378 }
379 }
380 }
381 break;
382 default:
383 break;
384 }
385 addr += n_bytes;
386 for (int o = 0; o < n_operands; ++o)
387 free (operands[o]);
51d21d60
JD
388 }
389
390 /* If the PC has not actually got to this point, then the frame
391 base will be wrong, and we adjust it. */
392 if (this_pc < addr)
393 {
394 /* Only do if executing. */
395 if (0 != this_sp)
dda83cd7
SM
396 {
397 this_sp_for_id = this_sp - frame_size;
398 trad_frame_set_this_base (info, this_sp_for_id);
399 }
51d21d60
JD
400 trad_frame_set_reg_value (info, REG_S, this_sp + 3);
401 trad_frame_set_reg_addr (info, REG_P, this_sp);
402 }
403 else
404 {
7b5227d1 405 gdb_assert (this_sp == this_sp_for_id);
51d21d60 406 /* The stack pointer of the prev frame is frame_size greater
dda83cd7
SM
407 than the stack pointer of this frame plus one address
408 size (caused by the JSR or BSR). */
51d21d60 409 trad_frame_set_reg_value (info, REG_S,
dda83cd7 410 this_sp + frame_size + 3);
51d21d60
JD
411 trad_frame_set_reg_addr (info, REG_P, this_sp + frame_size);
412 }
413
414
415 /* Build the frame ID. */
416 trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
417
418 return info;
419}
420
421/* Implement the this_id function for the stub unwinder. */
422static void
423s12z_frame_this_id (struct frame_info *this_frame,
424 void **prologue_cache, struct frame_id *this_id)
425{
426 struct trad_frame_cache *info = s12z_frame_cache (this_frame,
427 prologue_cache);
428
429 trad_frame_get_id (info, this_id);
430}
431
432
433/* Implement the prev_register function for the stub unwinder. */
434static struct value *
435s12z_frame_prev_register (struct frame_info *this_frame,
436 void **prologue_cache, int regnum)
437{
438 struct trad_frame_cache *info = s12z_frame_cache (this_frame,
439 prologue_cache);
440
441 return trad_frame_get_register (info, this_frame, regnum);
442}
443
444/* Data structures for the normal prologue-analysis-based unwinder. */
445static const struct frame_unwind s12z_frame_unwind = {
a154d838 446 "s12z prologue",
51d21d60
JD
447 NORMAL_FRAME,
448 default_frame_unwind_stop_reason,
449 s12z_frame_this_id,
450 s12z_frame_prev_register,
451 NULL,
452 default_frame_sniffer,
453 NULL,
454};
455
456
457constexpr gdb_byte s12z_break_insn[] = {0x00};
458
459typedef BP_MANIPULATION (s12z_break_insn) s12z_breakpoint;
460
ab25d9bb 461struct s12z_gdbarch_tdep : gdbarch_tdep_base
51d21d60
JD
462{
463};
464
465/* A vector of human readable characters representing the
466 bits in the CCW register. Unused bits are represented as '-'.
467 Lowest significant bit comes first. */
468static const char ccw_bits[] =
469 {
470 'C', /* Carry */
471 'V', /* Two's Complement Overflow */
472 'Z', /* Zero */
473 'N', /* Negative */
474 'I', /* Interrupt */
475 '-',
476 'X', /* Non-Maskable Interrupt */
477 'S', /* STOP Disable */
478 '0', /* Interrupt priority level */
479 '0', /* ditto */
480 '0', /* ditto */
481 '-',
482 '-',
483 '-',
484 '-',
485 'U' /* User/Supervisor State. */
486 };
487
488/* Print a human readable representation of the CCW register.
489 For example: "u----000SX-Inzvc" corresponds to the value
490 0xD0. */
491static void
492s12z_print_ccw_info (struct gdbarch *gdbarch,
dda83cd7
SM
493 struct ui_file *file,
494 struct frame_info *frame,
495 int reg)
51d21d60
JD
496{
497 struct value *v = value_of_register (reg, frame);
498 const char *name = gdbarch_register_name (gdbarch, reg);
499 uint32_t ccw = value_as_long (v);
0426ad51 500 gdb_puts (name, file);
51d21d60
JD
501 size_t len = strlen (name);
502 const int stop_1 = 15;
503 const int stop_2 = 17;
504 for (int i = 0; i < stop_1 - len; ++i)
a11ac3b3 505 gdb_putc (' ', file);
6cb06a8c 506 gdb_printf (file, "0x%04x", ccw);
51d21d60 507 for (int i = 0; i < stop_2 - len; ++i)
a11ac3b3 508 gdb_putc (' ', file);
51d21d60
JD
509 for (int b = 15; b >= 0; --b)
510 {
511 if (ccw & (0x1u << b))
dda83cd7
SM
512 {
513 if (ccw_bits[b] == 0)
a11ac3b3 514 gdb_putc ('1', file);
dda83cd7 515 else
a11ac3b3 516 gdb_putc (ccw_bits[b], file);
dda83cd7 517 }
51d21d60 518 else
a11ac3b3 519 gdb_putc (tolower (ccw_bits[b]), file);
51d21d60 520 }
a11ac3b3 521 gdb_putc ('\n', file);
51d21d60
JD
522}
523
524static void
525s12z_print_registers_info (struct gdbarch *gdbarch,
526 struct ui_file *file,
527 struct frame_info *frame,
528 int regnum, int print_all)
529{
530 const int numregs = (gdbarch_num_regs (gdbarch)
531 + gdbarch_num_pseudo_regs (gdbarch));
532
533 if (regnum == -1)
534 {
535 for (int reg = 0; reg < numregs; reg++)
dda83cd7
SM
536 {
537 if (REG_CCW == reg_perm[reg])
538 {
539 s12z_print_ccw_info (gdbarch, file, frame, reg);
540 continue;
541 }
542 default_print_registers_info (gdbarch, file, frame, reg, print_all);
543 }
51d21d60
JD
544 }
545 else if (REG_CCW == reg_perm[regnum])
546 s12z_print_ccw_info (gdbarch, file, frame, regnum);
547 else
548 default_print_registers_info (gdbarch, file, frame, regnum, print_all);
549}
550
551\f
552
c3247a98
JD
553
554static void
555s12z_extract_return_value (struct type *type, struct regcache *regcache,
dda83cd7 556 void *valbuf)
c3247a98
JD
557{
558 int reg = -1;
559
560 switch (TYPE_LENGTH (type))
561 {
562 case 0: /* Nothing to do */
563 return;
564
565 case 1:
566 reg = REG_D0;
567 break;
568
569 case 2:
570 reg = REG_D2;
571 break;
572
573 case 3:
574 reg = REG_X;
575 break;
576
577 case 4:
578 reg = REG_D6;
579 break;
580
581 default:
582 error (_("bad size for return value"));
583 return;
584 }
585
586 regcache->cooked_read (inv_reg_perm[reg], (gdb_byte *) valbuf);
587}
588
51d21d60
JD
589static enum return_value_convention
590s12z_return_value (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
591 struct type *type, struct regcache *regcache,
592 gdb_byte *readbuf, const gdb_byte *writebuf)
51d21d60 593{
78134374
SM
594 if (type->code () == TYPE_CODE_STRUCT
595 || type->code () == TYPE_CODE_UNION
596 || type->code () == TYPE_CODE_ARRAY
c3247a98
JD
597 || TYPE_LENGTH (type) > 4)
598 return RETURN_VALUE_STRUCT_CONVENTION;
599
600 if (readbuf)
601 s12z_extract_return_value (type, regcache, readbuf);
602
51d21d60
JD
603 return RETURN_VALUE_REGISTER_CONVENTION;
604}
605
606
607static void
608show_bdccsr_command (const char *args, int from_tty)
609{
610 struct string_file output;
611 target_rcmd ("bdccsr", &output);
612
6cb06a8c 613 gdb_printf ("The current BDCCSR value is %s\n", output.string().c_str());
51d21d60
JD
614}
615
616static struct gdbarch *
617s12z_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
618{
345bd07c 619 s12z_gdbarch_tdep *tdep = new s12z_gdbarch_tdep;
51d21d60
JD
620 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
621
622 add_cmd ("bdccsr", class_support, show_bdccsr_command,
623 _("Show the current value of the microcontroller's BDCCSR."),
dda83cd7 624 &maintenanceinfolist);
51d21d60
JD
625
626 /* Target data types. */
627 set_gdbarch_short_bit (gdbarch, 16);
628 set_gdbarch_int_bit (gdbarch, 16);
629 set_gdbarch_long_bit (gdbarch, 32);
630 set_gdbarch_long_long_bit (gdbarch, 32);
631 set_gdbarch_ptr_bit (gdbarch, 24);
632 set_gdbarch_addr_bit (gdbarch, 24);
633 set_gdbarch_char_signed (gdbarch, 0);
634
635 set_gdbarch_ps_regnum (gdbarch, REG_CCW);
636 set_gdbarch_pc_regnum (gdbarch, REG_P);
637 set_gdbarch_sp_regnum (gdbarch, REG_S);
638
639
640 set_gdbarch_print_registers_info (gdbarch, s12z_print_registers_info);
641
642 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
643 s12z_breakpoint::kind_from_pc);
644 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
645 s12z_breakpoint::bp_from_kind);
646
647 set_gdbarch_num_regs (gdbarch, N_PHYSICAL_REGISTERS);
648 set_gdbarch_register_name (gdbarch, s12z_register_name);
649 set_gdbarch_skip_prologue (gdbarch, s12z_skip_prologue);
650 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
651 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s12z_dwarf_reg_to_regnum);
652
653 set_gdbarch_register_type (gdbarch, s12z_register_type);
654
51d21d60 655 frame_unwind_append_unwinder (gdbarch, &s12z_frame_unwind);
85102364 656 /* Currently, the only known producer for this architecture, produces buggy
51d21d60
JD
657 dwarf CFI. So don't append a dwarf unwinder until the situation is
658 better understood. */
659
660 set_gdbarch_return_value (gdbarch, s12z_return_value);
661
662 return gdbarch;
663}
664
6c265988 665void _initialize_s12z_tdep ();
51d21d60 666void
6c265988 667_initialize_s12z_tdep ()
51d21d60
JD
668{
669 gdbarch_register (bfd_arch_s12z, s12z_gdbarch_init, NULL);
670}