]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh-tdep.c
gdb/doc:
[thirdparty/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
0b302171 3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
c906108c 35#include "gdb_string.h"
1c0159e0 36#include "gdb_assert.h"
b4a20239 37#include "arch-utils.h"
fb409745 38#include "floatformat.h"
4e052eda 39#include "regcache.h"
d16aafd8 40#include "doublest.h"
4be87837 41#include "osabi.h"
dda63807 42#include "reggroups.h"
c9ac0a72 43#include "regset.h"
cb2cf4ce 44#include "objfiles.h"
c906108c 45
ab3b8126 46#include "sh-tdep.h"
04dcf5fa 47#include "sh64-tdep.h"
ab3b8126 48
d658f924 49#include "elf-bfd.h"
1a8629c7
MS
50#include "solib-svr4.h"
51
55ff77ac 52/* sh flags */
283150cd 53#include "elf/sh.h"
fa8f86ff 54#include "dwarf2.h"
c378eb4e 55/* registers numbers shared with the simulator. */
1c922164 56#include "gdb/sim-sh.h"
283150cd 57
c055b101
CV
58/* List of "set sh ..." and "show sh ..." commands. */
59static struct cmd_list_element *setshcmdlist = NULL;
60static struct cmd_list_element *showshcmdlist = NULL;
61
62static const char sh_cc_gcc[] = "gcc";
63static const char sh_cc_renesas[] = "renesas";
40478521 64static const char *const sh_cc_enum[] = {
c055b101
CV
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68};
69
70static const char *sh_active_calling_convention = sh_cc_gcc;
71
da962468 72#define SH_NUM_REGS 67
88e04cc1 73
1c0159e0 74struct sh_frame_cache
cc17453a 75{
1c0159e0
CV
76 /* Base address. */
77 CORE_ADDR base;
78 LONGEST sp_offset;
79 CORE_ADDR pc;
80
c378eb4e 81 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
82 int uses_fp;
83
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
86 CORE_ADDR saved_sp;
63978407 87};
c906108c 88
c055b101
CV
89static int
90sh_is_renesas_calling_convention (struct type *func_type)
91{
ca193e27
TS
92 int val = 0;
93
94 if (func_type)
95 {
96 func_type = check_typedef (func_type);
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
100
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
103 val = 1;
104 }
105
106 if (sh_active_calling_convention == sh_cc_renesas)
107 val = 1;
108
109 return val;
c055b101
CV
110}
111
fa88f677 112static const char *
d93859e2 113sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 114{
617daa0e
CV
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
da962468 125 "", "", "", "", "", "", "", "",
cc17453a
EZ
126 };
127 if (reg_nr < 0)
128 return NULL;
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
130 return NULL;
131 return register_names[reg_nr];
132}
133
fa88f677 134static const char *
d93859e2 135sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 136{
617daa0e
CV
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
144 "ssr", "spc",
cc17453a
EZ
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 147 "", "", "", "", "", "", "", "",
cc17453a
EZ
148 };
149 if (reg_nr < 0)
150 return NULL;
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
152 return NULL;
153 return register_names[reg_nr];
154}
155
fa88f677 156static const char *
d93859e2 157sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 158{
617daa0e
CV
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 163 "fpul", "fpscr",
617daa0e
CV
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "ssr", "spc",
cc17453a
EZ
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 169 "", "", "", "", "", "", "", "",
cc17453a
EZ
170 };
171 if (reg_nr < 0)
172 return NULL;
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[reg_nr];
176}
177
2d188dd3 178static const char *
d93859e2 179sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 180{
617daa0e
CV
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 185 "fpul", "fpscr",
617daa0e
CV
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "",
2d188dd3
NC
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
da962468
CV
191 "", "", "", "", "", "", "", "",
192 };
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198}
199
200static const char *
d93859e2 201sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
202{
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "", "",
216 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 217 the bank register (63). */
da962468
CV
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
225 "",
226 /* 64 - 66 */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
229 "bank",
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
232 };
233 if (reg_nr < 0)
234 return NULL;
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
236 return NULL;
237 return register_names[reg_nr];
238}
239
240static const char *
d93859e2 241sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
242{
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 /* 16 - 22 */
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
249 /* 23, 24 */
250 "", "",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
254 /* 41, 42 */
255 "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 257 the bank register (63). */
da962468
CV
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
265 "",
266 /* 64 - 66 */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
269 "bank",
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
2d188dd3
NC
272 };
273 if (reg_nr < 0)
274 return NULL;
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
276 return NULL;
277 return register_names[reg_nr];
278}
279
fa88f677 280static const char *
d93859e2 281sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 282{
617daa0e
CV
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "", "dsr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
290 "", "",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
da962468 293 "", "", "", "", "", "", "", "",
cc17453a
EZ
294 };
295 if (reg_nr < 0)
296 return NULL;
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
298 return NULL;
299 return register_names[reg_nr];
300}
301
fa88f677 302static const char *
d93859e2 303sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 304{
617daa0e
CV
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "", "dsr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
312 "ssr", "spc",
313 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
da962468 316 "", "", "", "", "", "", "", "",
cc17453a
EZ
317 };
318 if (reg_nr < 0)
319 return NULL;
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
321 return NULL;
322 return register_names[reg_nr];
323}
324
fa88f677 325static const char *
d93859e2 326sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 327{
617daa0e 328 static char *register_names[] = {
a38d2a54 329 /* general registers 0-15 */
617daa0e
CV
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 332 /* 16 - 22 */
617daa0e 333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 334 /* 23, 24 */
53116e27 335 "fpul", "fpscr",
a38d2a54 336 /* floating point registers 25 - 40 */
617daa0e
CV
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 339 /* 41, 42 */
617daa0e 340 "ssr", "spc",
a38d2a54 341 /* bank 0 43 - 50 */
53116e27 342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 343 /* bank 1 51 - 58 */
53116e27 344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 345 "", "", "", "", "", "", "", "",
c378eb4e 346 /* pseudo bank register. */
da962468 347 "",
a38d2a54 348 /* double precision (pseudo) 59 - 66 */
617daa0e 349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a38d2a54 350 /* vectors (pseudo) 67 - 70 */
617daa0e 351 "fv0", "fv4", "fv8", "fv12",
a38d2a54
EZ
352 /* FIXME: missing XF 71 - 86 */
353 /* FIXME: missing XD 87 - 94 */
53116e27
EZ
354 };
355 if (reg_nr < 0)
356 return NULL;
357 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
358 return NULL;
359 return register_names[reg_nr];
360}
361
474e5826 362static const char *
d93859e2 363sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
364{
365 static char *register_names[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 /* 16 - 22 */
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 /* 23, 24 */
372 "", "",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 /* 41, 42 */
377 "ssr", "spc",
378 /* bank 0 43 - 50 */
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
380 /* bank 1 51 - 58 */
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 382 "", "", "", "", "", "", "", "",
c378eb4e 383 /* pseudo bank register. */
da962468 384 "",
474e5826
CV
385 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395}
396
397static const char *
d93859e2 398sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
399{
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
da962468 411 "", "", "", "", "", "", "", "",
474e5826
CV
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418}
419
3117ed25 420static const unsigned char *
67d57894 421sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
cc17453a 422{
c378eb4e 423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
617daa0e
CV
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
bac718a6
UW
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
67d57894 432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
bac718a6
UW
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
cc17453a
EZ
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446}
c906108c
SS
447
448/* Prologue looks like
1c0159e0
CV
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
8db62801 454
c378eb4e 455 Actually it can be more complicated than this but that's it, basically. */
c906108c 456
1c0159e0
CV
457#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
5f883edd
FF
460/* JSR @Rm 0100mmmm00001011 */
461#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
8db62801
EZ
463/* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
c906108c 465#define IS_STS(x) ((x) == 0x4f22)
8db62801 466
03131d99
CV
467/* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469#define IS_MACL_STS(x) ((x) == 0x4f12)
470
8db62801
EZ
471/* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
c906108c 473#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 474
8db62801
EZ
475/* MOV r15,r14 0110111011110011
476 r15-->r14 */
c906108c 477#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
478
479/* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
1c0159e0 481#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 482
c906108c
SS
483#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
485
486/* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
c906108c 488#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
489
490/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 493/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 494 make this entirely clear. */
1c0159e0
CV
495/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499#define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504#define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
518/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
520/* SUB Rn,R15 00111111nnnn1000 */
521#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 522
1c0159e0 523#define FPSCR_SZ (1 << 20)
cc17453a 524
c378eb4e 525/* The following instructions are used for epilogue testing. */
1c0159e0
CV
526#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527#define IS_RTS(x) ((x) == 0x000b)
528#define IS_LDS(x) ((x) == 0x4f26)
03131d99 529#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
530#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 533
cc17453a 534static CORE_ADDR
e17a4113 535sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 536 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 537 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 538{
e17a4113 539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 540 ULONGEST inst;
1c0159e0
CV
541 int offset;
542 int sav_offset = 0;
c906108c 543 int r3_val = 0;
1c0159e0 544 int reg, sav_reg = -1;
cc17453a 545
1c0159e0 546 cache->uses_fp = 0;
5cbb9812 547 for (; pc < limit_pc; pc += 2)
cc17453a 548 {
e17a4113 549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 550 /* See where the registers will be saved to. */
f2ea0907 551 if (IS_PUSH (inst))
cc17453a 552 {
1c0159e0
CV
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
cc17453a 555 }
f2ea0907 556 else if (IS_STS (inst))
cc17453a 557 {
1c0159e0
CV
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
cc17453a 560 }
03131d99
CV
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
f2ea0907 566 else if (IS_MOV_R3 (inst))
cc17453a 567 {
f2ea0907 568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 569 }
f2ea0907 570 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
571 {
572 r3_val <<= 1;
573 }
f2ea0907 574 else if (IS_ADD_R3SP (inst))
cc17453a 575 {
1c0159e0 576 cache->sp_offset += -r3_val;
cc17453a 577 }
f2ea0907 578 else if (IS_ADD_IMM_SP (inst))
cc17453a 579 {
1c0159e0
CV
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
c906108c 582 }
1c0159e0 583 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 584 {
1c0159e0
CV
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
a2b4a96c 591 offset = (inst & 0xff) << 1;
1c0159e0 592 sav_offset =
e17a4113 593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
594 }
595 }
c906108c 596 }
1c0159e0 597 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 598 {
1c0159e0
CV
599 if (sav_reg < 0)
600 {
a2b4a96c 601 reg = GET_TARGET_REG (inst);
1c0159e0
CV
602 if (reg < 14)
603 {
604 sav_reg = reg;
a2b4a96c 605 offset = (inst & 0xff) << 2;
1c0159e0 606 sav_offset =
e17a4113
UW
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
1c0159e0
CV
609 }
610 }
c906108c 611 }
5cbb9812
TS
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
03131d99
CV
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 622 /* MOVI20 is a 32 bit instruction! */
03131d99 623 pc += 2;
e17a4113
UW
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
1c0159e0 633 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 634 {
1c0159e0
CV
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
c906108c 641 }
f2ea0907 642 else if (IS_FPUSH (inst))
c906108c 643 {
d2ca4222 644 if (fpscr & FPSCR_SZ)
c906108c 645 {
1c0159e0 646 cache->sp_offset += 8;
c906108c
SS
647 }
648 else
649 {
1c0159e0 650 cache->sp_offset += 4;
c906108c
SS
651 }
652 }
f2ea0907 653 else if (IS_MOV_SP_FP (inst))
617daa0e 654 {
5cbb9812
TS
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
960ccd7d 659 cache->uses_fp = 1;
1c0159e0
CV
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
c378eb4e 664 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 665 for (; pc < limit_pc; pc += 2)
1c0159e0 666 {
e17a4113 667 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 668 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 669 {
1c0159e0
CV
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
617daa0e 672 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 675 {
1c0159e0
CV
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 682 continue;
1c0159e0
CV
683 else
684 break;
685 }
686 break;
687 }
5f883edd
FF
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 696 so, note that before returning the current pc. */
5cbb9812
TS
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
5f883edd
FF
703 break;
704 }
c378eb4e
MS
705#if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
c906108c
SS
709 else
710 break;
2bfa91ee 711#endif
c906108c
SS
712 }
713
1c0159e0
CV
714 return pc;
715}
c906108c 716
c378eb4e 717/* Skip any prologue before the guts of a function. */
1c0159e0 718static CORE_ADDR
8a8bc27f 719sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 720{
5cbb9812 721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
5cbb9812 727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
cc17453a 733
8a8bc27f
TS
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
c906108c 736
5cbb9812
TS
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
1c0159e0 750 cache.sp_offset = -4;
5cbb9812 751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
c906108c 754
1c0159e0
CV
755 return pc;
756}
757
2e952408 758/* The ABI says:
9a5cef92
EZ
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
c378eb4e 771 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 772 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 773 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
c378eb4e 778 All other aggregate types are returned by address. The caller
9a5cef92 779 function passes the address of an area large enough to hold the
c378eb4e 780 aggregate value in R2. The called function stores the result in
7fe958be 781 this location.
9a5cef92
EZ
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
7fe958be
EZ
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 803 memory. */
9a5cef92 804
1c0159e0 805static int
c055b101 806sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
807{
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
3f997a97 810
c055b101
CV
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
3f997a97
CV
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
283150cd
EZ
839}
840
c055b101
CV
841static int
842sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843{
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848}
849
19f59343
MS
850static CORE_ADDR
851sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852{
853 return sp & ~3;
854}
855
55ff77ac 856/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
857 Setup the function arguments for calling a function in the inferior.
858
85a453d5 859 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
6df2bf50
MS
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
c906108c
SS
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
c378eb4e 876 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
6df2bf50 881 MVS: The above appears to be true for the SH variants that do not
55ff77ac 882 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
c906108c
SS
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
c5aa993b 898
c906108c
SS
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
c378eb4e 906 to R7. */
c906108c 907
c378eb4e 908/* Helper function to justify value in register according to endianess. */
e5e33cd9 909static char *
d93859e2 910sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9
CV
911{
912 static char valbuf[4];
913
617daa0e 914 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
915 if (len < 4)
916 {
c378eb4e 917 /* value gets right-justified in the register or stack word. */
d93859e2 918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
0fd88904 919 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
e5e33cd9 920 else
0fd88904 921 memcpy (valbuf, (char *) value_contents (val), len);
e5e33cd9
CV
922 return valbuf;
923 }
0fd88904 924 return (char *) value_contents (val);
617daa0e 925}
e5e33cd9 926
c378eb4e 927/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
928static CORE_ADDR
929sh_stack_allocsize (int nargs, struct value **args)
930{
931 int stack_alloc = 0;
932 while (nargs-- > 0)
4991999e 933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
934 return stack_alloc;
935}
936
937/* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
c378eb4e 939 it's intended to work. */
e5e33cd9 940
c378eb4e 941/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
942static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
c378eb4e 944/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
945static void
946sh_init_flt_argreg (void)
947{
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949}
950
951/* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
c378eb4e 959 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 960static int
c055b101 961sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
962{
963 int argreg;
964
c378eb4e 965 /* First search for the next free register. */
617daa0e
CV
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
e5e33cd9
CV
968 if (!flt_argreg_array[argreg])
969 break;
970
c378eb4e 971 /* No register left? */
e5e33cd9
CV
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
c378eb4e 977 /* Doubles are always starting in a even register number. */
e5e33cd9 978 if (argreg & 1)
617daa0e 979 {
c055b101
CV
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
984
985 ++argreg;
986
c378eb4e 987 /* No register left? */
e5e33cd9
CV
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
c378eb4e 991 /* Also mark the next register as used. */
e5e33cd9
CV
992 flt_argreg_array[argreg + 1] = 1;
993 }
c055b101
CV
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 996 {
c378eb4e 997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003}
1004
afce3d2a
CV
1005/* Helper function which figures out, if a type is treated like a float type.
1006
2e952408 1007 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032static int
1033sh_treat_as_flt_p (struct type *type)
1034{
1035 int len = TYPE_LENGTH (type);
1036
1037 /* Ordinary float types are obviously treated as float. */
1038 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1039 return 1;
1040 /* Otherwise non-struct types are not treated as float. */
1041 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1042 return 0;
1043 /* Otherwise structs with more than one memeber are not treated as float. */
1044 if (TYPE_NFIELDS (type) != 1)
1045 return 0;
1046 /* Otherwise if the type of that member is float, the whole type is
1047 treated as float. */
1048 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1049 return 1;
1050 /* Otherwise it's not treated as float. */
1051 return 0;
1052}
1053
cc17453a 1054static CORE_ADDR
617daa0e 1055sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1056 struct value *function,
617daa0e 1057 struct regcache *regcache,
6df2bf50 1058 CORE_ADDR bp_addr, int nargs,
617daa0e 1059 struct value **args,
6df2bf50
MS
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
1062{
e17a4113 1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1064 int stack_offset = 0;
1065 int argreg = ARG0_REGNUM;
8748518b 1066 int flt_argreg = 0;
6df2bf50 1067 int argnum;
c055b101 1068 struct type *func_type = value_type (function);
6df2bf50
MS
1069 struct type *type;
1070 CORE_ADDR regval;
1071 char *val;
8748518b 1072 int len, reg_size = 0;
afce3d2a
CV
1073 int pass_on_stack = 0;
1074 int treat_as_flt;
c055b101
CV
1075 int last_reg_arg = INT_MAX;
1076
1077 /* The Renesas ABI expects all varargs arguments, plus the last
1078 non-vararg argument to be on the stack, no matter how many
1079 registers have been used so far. */
1080 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1081 && TYPE_VARARGS (func_type))
c055b101 1082 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1083
c378eb4e 1084 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1085 sp = sh_frame_align (gdbarch, sp);
1086
c378eb4e 1087 /* Make room on stack for args. */
e5e33cd9
CV
1088 sp -= sh_stack_allocsize (nargs, args);
1089
c378eb4e 1090 /* Initialize float argument mechanism. */
e5e33cd9 1091 sh_init_flt_argreg ();
6df2bf50
MS
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 16 bytes
1095 in four registers available. Loop thru args from first to last. */
e5e33cd9 1096 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1097 {
4991999e 1098 type = value_type (args[argnum]);
6df2bf50 1099 len = TYPE_LENGTH (type);
d93859e2 1100 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1101
1102 /* Some decisions have to be made how various types are handled.
c378eb4e 1103 This also differs in different ABIs. */
e5e33cd9 1104 pass_on_stack = 0;
e5e33cd9 1105
c378eb4e 1106 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1107 treat_as_flt = sh_treat_as_flt_p (type);
1108 if (treat_as_flt)
c055b101
CV
1109 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1110 /* In Renesas ABI, long longs and aggregate types are always passed
1111 on stack. */
1112 else if (sh_is_renesas_calling_convention (func_type)
1113 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1114 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1115 || TYPE_CODE (type) == TYPE_CODE_UNION))
1116 pass_on_stack = 1;
afce3d2a
CV
1117 /* In contrast to non-FPU CPUs, arguments are never split between
1118 registers and stack. If an argument doesn't fit in the remaining
1119 registers it's always pushed entirely on the stack. */
1120 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1121 pass_on_stack = 1;
48db5a3c 1122
6df2bf50
MS
1123 while (len > 0)
1124 {
afce3d2a
CV
1125 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1126 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1127 || pass_on_stack))
1128 || argnum > last_reg_arg)
617daa0e 1129 {
c378eb4e 1130 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1131 reg_size = (len + 3) & ~3;
1132 write_memory (sp + stack_offset, val, reg_size);
1133 stack_offset += reg_size;
6df2bf50 1134 }
afce3d2a 1135 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1136 {
e5e33cd9
CV
1137 /* Argument goes in a float argument register. */
1138 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1139 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1140 /* In little endian mode, float types taking two registers
1141 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1142 be stored swapped in the argument registers. The below
1143 code first writes the first 32 bits in the next but one
1144 register, increments the val and len values accordingly
1145 and then proceeds as normal by writing the second 32 bits
c378eb4e 1146 into the next register. */
b47193f7 1147 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1148 && TYPE_LENGTH (type) == 2 * reg_size)
1149 {
1150 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1151 regval);
1152 val += reg_size;
1153 len -= reg_size;
c378eb4e
MS
1154 regval = extract_unsigned_integer (val, reg_size,
1155 byte_order);
2e952408 1156 }
6df2bf50
MS
1157 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1158 }
afce3d2a 1159 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1160 {
6df2bf50 1161 /* there's room in a register */
e5e33cd9 1162 reg_size = register_size (gdbarch, argreg);
e17a4113 1163 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1164 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1165 }
c378eb4e
MS
1166 /* Store the value one register at a time or in one step on
1167 stack. */
e5e33cd9
CV
1168 len -= reg_size;
1169 val += reg_size;
6df2bf50
MS
1170 }
1171 }
1172
c055b101
CV
1173 if (struct_return)
1174 {
1175 if (sh_is_renesas_calling_convention (func_type))
1176 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1177 the stack and store the struct return address there. */
e17a4113 1178 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1179 else
1180 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1181 its own dedicated register. */
1182 regcache_cooked_write_unsigned (regcache,
1183 STRUCT_RETURN_REGNUM, struct_addr);
1184 }
1185
c378eb4e 1186 /* Store return address. */
55ff77ac 1187 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1188
1189 /* Update stack pointer. */
3e8c568d 1190 regcache_cooked_write_unsigned (regcache,
b47193f7 1191 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1192
1193 return sp;
1194}
1195
1196static CORE_ADDR
617daa0e 1197sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1198 struct value *function,
617daa0e
CV
1199 struct regcache *regcache,
1200 CORE_ADDR bp_addr,
1201 int nargs, struct value **args,
1202 CORE_ADDR sp, int struct_return,
6df2bf50 1203 CORE_ADDR struct_addr)
c906108c 1204{
e17a4113 1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1206 int stack_offset = 0;
1207 int argreg = ARG0_REGNUM;
c906108c 1208 int argnum;
c055b101 1209 struct type *func_type = value_type (function);
c906108c
SS
1210 struct type *type;
1211 CORE_ADDR regval;
1212 char *val;
c055b101
CV
1213 int len, reg_size = 0;
1214 int pass_on_stack = 0;
1215 int last_reg_arg = INT_MAX;
1216
1217 /* The Renesas ABI expects all varargs arguments, plus the last
1218 non-vararg argument to be on the stack, no matter how many
1219 registers have been used so far. */
1220 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1221 && TYPE_VARARGS (func_type))
c055b101 1222 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1223
c378eb4e 1224 /* First force sp to a 4-byte alignment. */
19f59343 1225 sp = sh_frame_align (gdbarch, sp);
c906108c 1226
c378eb4e 1227 /* Make room on stack for args. */
e5e33cd9 1228 sp -= sh_stack_allocsize (nargs, args);
c906108c 1229
c906108c
SS
1230 /* Now load as many as possible of the first arguments into
1231 registers, and push the rest onto the stack. There are 16 bytes
1232 in four registers available. Loop thru args from first to last. */
e5e33cd9 1233 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1234 {
4991999e 1235 type = value_type (args[argnum]);
c5aa993b 1236 len = TYPE_LENGTH (type);
d93859e2 1237 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1238
c055b101 1239 /* Some decisions have to be made how various types are handled.
c378eb4e 1240 This also differs in different ABIs. */
c055b101
CV
1241 pass_on_stack = 0;
1242 /* Renesas ABI pushes doubles and long longs entirely on stack.
1243 Same goes for aggregate types. */
1244 if (sh_is_renesas_calling_convention (func_type)
1245 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1246 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1247 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (type) == TYPE_CODE_UNION))
1249 pass_on_stack = 1;
c906108c
SS
1250 while (len > 0)
1251 {
c055b101
CV
1252 if (argreg > ARGLAST_REGNUM || pass_on_stack
1253 || argnum > last_reg_arg)
617daa0e 1254 {
e5e33cd9 1255 /* The remainder of the data goes entirely on the stack,
c378eb4e 1256 4-byte aligned. */
e5e33cd9
CV
1257 reg_size = (len + 3) & ~3;
1258 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1259 stack_offset += reg_size;
c906108c 1260 }
e5e33cd9 1261 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1262 {
c378eb4e 1263 /* There's room in a register. */
e5e33cd9 1264 reg_size = register_size (gdbarch, argreg);
e17a4113 1265 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1266 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1267 }
e5e33cd9
CV
1268 /* Store the value reg_size bytes at a time. This means that things
1269 larger than reg_size bytes may go partly in registers and partly
c906108c 1270 on the stack. */
e5e33cd9
CV
1271 len -= reg_size;
1272 val += reg_size;
c906108c
SS
1273 }
1274 }
48db5a3c 1275
c055b101
CV
1276 if (struct_return)
1277 {
1278 if (sh_is_renesas_calling_convention (func_type))
1279 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1280 the stack and store the struct return address there. */
e17a4113 1281 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1282 else
1283 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1284 its own dedicated register. */
1285 regcache_cooked_write_unsigned (regcache,
1286 STRUCT_RETURN_REGNUM, struct_addr);
1287 }
1288
c378eb4e 1289 /* Store return address. */
55ff77ac 1290 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1291
1292 /* Update stack pointer. */
3e8c568d 1293 regcache_cooked_write_unsigned (regcache,
b47193f7 1294 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1295
c906108c
SS
1296 return sp;
1297}
1298
cc17453a
EZ
1299/* Find a function's return value in the appropriate registers (in
1300 regbuf), and copy it into valbuf. Extract from an array REGBUF
1301 containing the (raw) register state a function return value of type
1302 TYPE, and copy that, in virtual format, into VALBUF. */
1303static void
3ffc5b9b
CV
1304sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1305 void *valbuf)
c906108c 1306{
e17a4113
UW
1307 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1309 int len = TYPE_LENGTH (type);
3116c80a
EZ
1310 int return_register = R0_REGNUM;
1311 int offset;
617daa0e 1312
cc17453a 1313 if (len <= 4)
3116c80a 1314 {
48db5a3c
CV
1315 ULONGEST c;
1316
1317 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1318 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1319 }
48db5a3c 1320 else if (len == 8)
3116c80a 1321 {
48db5a3c
CV
1322 int i, regnum = R0_REGNUM;
1323 for (i = 0; i < len; i += 4)
617daa0e 1324 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a
EZ
1325 }
1326 else
8a3fe4f8 1327 error (_("bad size for return value"));
3116c80a
EZ
1328}
1329
1330static void
3ffc5b9b
CV
1331sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1332 void *valbuf)
3116c80a 1333{
d93859e2 1334 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1335 if (sh_treat_as_flt_p (type))
3116c80a 1336 {
48db5a3c 1337 int len = TYPE_LENGTH (type);
d93859e2 1338 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1339 for (i = 0; i < len; i += 4)
d93859e2 1340 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c378eb4e
MS
1341 regcache_raw_read (regcache, regnum++,
1342 (char *) valbuf + len - 4 - i);
2e952408
CV
1343 else
1344 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a 1345 }
cc17453a 1346 else
3ffc5b9b 1347 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1348}
c906108c 1349
cc17453a
EZ
1350/* Write into appropriate registers a function return value
1351 of type TYPE, given in virtual format.
1352 If the architecture is sh4 or sh3e, store a function's return value
1353 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1354 depending on the type of the return value. In all the other cases
1355 the result is stored in r0, left-justified. */
cc17453a 1356static void
3ffc5b9b
CV
1357sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1358 const void *valbuf)
cc17453a 1359{
e17a4113
UW
1360 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1362 ULONGEST val;
1363 int len = TYPE_LENGTH (type);
d19b71be 1364
48db5a3c 1365 if (len <= 4)
d19b71be 1366 {
e17a4113 1367 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1368 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1369 }
1370 else
48db5a3c
CV
1371 {
1372 int i, regnum = R0_REGNUM;
1373 for (i = 0; i < len; i += 4)
617daa0e 1374 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1375 }
cc17453a 1376}
c906108c 1377
cc17453a 1378static void
3ffc5b9b
CV
1379sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1380 const void *valbuf)
cc17453a 1381{
d93859e2 1382 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1383 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1384 {
1385 int len = TYPE_LENGTH (type);
d93859e2 1386 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1387 for (i = 0; i < len; i += 4)
d93859e2 1388 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c8a3b559
CV
1389 regcache_raw_write (regcache, regnum++,
1390 (char *) valbuf + len - 4 - i);
1391 else
1392 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1393 }
cc17453a 1394 else
3ffc5b9b 1395 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1396}
1397
c0409442 1398static enum return_value_convention
6a3a010b 1399sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1400 struct type *type, struct regcache *regcache,
18cf8b5b 1401 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1402{
6a3a010b
MR
1403 struct type *func_type = function ? value_type (function) : NULL;
1404
c055b101
CV
1405 if (sh_use_struct_convention_nofpu (
1406 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1407 return RETURN_VALUE_STRUCT_CONVENTION;
1408 if (writebuf)
3ffc5b9b 1409 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1410 else if (readbuf)
3ffc5b9b 1411 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1412 return RETURN_VALUE_REGISTER_CONVENTION;
1413}
1414
1415static enum return_value_convention
6a3a010b 1416sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1417 struct type *type, struct regcache *regcache,
18cf8b5b 1418 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1419{
6a3a010b
MR
1420 struct type *func_type = function ? value_type (function) : NULL;
1421
c055b101
CV
1422 if (sh_use_struct_convention (
1423 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1424 return RETURN_VALUE_STRUCT_CONVENTION;
1425 if (writebuf)
3ffc5b9b 1426 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1427 else if (readbuf)
3ffc5b9b 1428 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1429 return RETURN_VALUE_REGISTER_CONVENTION;
1430}
1431
da962468
CV
1432static struct type *
1433sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1434{
b47193f7 1435 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1436 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1437 return builtin_type (gdbarch)->builtin_float;
da962468 1438 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1439 return builtin_type (gdbarch)->builtin_double;
da962468 1440 else
0dfff4cb 1441 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1442}
1443
cc17453a
EZ
1444/* Return the GDB type object for the "standard" data type
1445 of data in register N. */
cc17453a 1446static struct type *
48db5a3c 1447sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1448{
b47193f7 1449 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1450 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1451 return builtin_type (gdbarch)->builtin_float;
8db62801 1452 else
0dfff4cb 1453 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1454}
1455
7f4dbe94 1456static struct type *
0dfff4cb 1457sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1458{
e3506a9f
UW
1459 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1460 0, high);
7f4dbe94
EZ
1461}
1462
53116e27 1463static struct type *
48db5a3c 1464sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1465{
b47193f7 1466 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1467 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1468 return builtin_type (gdbarch)->builtin_float;
617daa0e 1469 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1470 return builtin_type (gdbarch)->builtin_double;
617daa0e 1471 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1472 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1473 else
0dfff4cb 1474 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1475}
1476
cc17453a 1477static struct type *
48db5a3c 1478sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1479{
0dfff4cb 1480 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1481}
1482
dda63807
AS
1483/* Is a register in a reggroup?
1484 The default code in reggroup.c doesn't identify system registers, some
1485 float registers or any of the vector registers.
1486 TODO: sh2a and dsp registers. */
63807e1d 1487static int
dda63807
AS
1488sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1489 struct reggroup *reggroup)
1490{
b47193f7
UW
1491 if (gdbarch_register_name (gdbarch, regnum) == NULL
1492 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1493 return 0;
1494
1495 if (reggroup == float_reggroup
1496 && (regnum == FPUL_REGNUM
1497 || regnum == FPSCR_REGNUM))
1498 return 1;
1499
1500 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1501 {
1502 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1503 return 1;
1504 if (reggroup == general_reggroup)
1505 return 0;
1506 }
1507
1508 if (regnum == VBR_REGNUM
1509 || regnum == SR_REGNUM
1510 || regnum == FPSCR_REGNUM
1511 || regnum == SSR_REGNUM
1512 || regnum == SPC_REGNUM)
1513 {
1514 if (reggroup == system_reggroup)
1515 return 1;
1516 if (reggroup == general_reggroup)
1517 return 0;
1518 }
1519
1520 /* The default code can cope with any other registers. */
1521 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1522}
1523
fb409745 1524/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1525 is little endian. When the user writes one of those registers, for
fb409745
EZ
1526 instance with 'ser var $dr0=1', we want the double to be stored
1527 like this:
1528 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1529 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1530
1531 This corresponds to little endian byte order & big endian word
1532 order. However if we let gdb write the register w/o conversion, it
1533 will write fr0 and fr1 this way:
1534 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1535 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1536 because it will consider fr0 and fr1 as a single LE stretch of memory.
1537
1538 To achieve what we want we must force gdb to store things in
1539 floatformat_ieee_double_littlebyte_bigword (which is defined in
1540 include/floatformat.h and libiberty/floatformat.c.
1541
1542 In case the target is big endian, there is no problem, the
1543 raw bytes will look like:
1544 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1545 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1546
1547 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1548 because they are stored as 4 individual FP elements. */
fb409745 1549
7bd872fe 1550static void
b66ba949
CV
1551sh_register_convert_to_virtual (int regnum, struct type *type,
1552 char *from, char *to)
55ff77ac 1553{
617daa0e 1554 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1555 {
1556 DOUBLEST val;
617daa0e
CV
1557 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1558 from, &val);
55ff77ac 1559 store_typed_floating (to, type, val);
283150cd
EZ
1560 }
1561 else
617daa0e
CV
1562 error
1563 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1564}
1565
1566static void
b66ba949
CV
1567sh_register_convert_to_raw (struct type *type, int regnum,
1568 const void *from, void *to)
283150cd 1569{
617daa0e 1570 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1571 {
48db5a3c 1572 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1573 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1574 &val, to);
283150cd
EZ
1575 }
1576 else
8a3fe4f8 1577 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1578}
1579
c378eb4e 1580/* For vectors of 4 floating point registers. */
1c0159e0 1581static int
d93859e2 1582fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1583{
1584 int fp_regnum;
1585
d93859e2 1586 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1587 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1588 return fp_regnum;
1589}
1590
c378eb4e 1591/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1592static int
d93859e2 1593dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1594{
1595 int fp_regnum;
1596
d93859e2 1597 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1598 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1599 return fp_regnum;
1600}
1601
05d1431c
PA
1602/* Concatenate PORTIONS contiguous raw registers starting at
1603 BASE_REGNUM into BUFFER. */
1604
1605static enum register_status
1606pseudo_register_read_portions (struct gdbarch *gdbarch,
1607 struct regcache *regcache,
1608 int portions,
1609 int base_regnum, gdb_byte *buffer)
1610{
1611 int portion;
1612
1613 for (portion = 0; portion < portions; portion++)
1614 {
1615 enum register_status status;
1616 gdb_byte *b;
1617
1618 b = buffer + register_size (gdbarch, base_regnum) * portion;
1619 status = regcache_raw_read (regcache, base_regnum + portion, b);
1620 if (status != REG_VALID)
1621 return status;
1622 }
1623
1624 return REG_VALID;
1625}
1626
1627static enum register_status
d8124050 1628sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1629 int reg_nr, gdb_byte *buffer)
53116e27 1630{
05d1431c 1631 int base_regnum;
d9d9c31f 1632 char temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1633 enum register_status status;
53116e27 1634
9bed62d7 1635 if (reg_nr == PSEUDO_BANK_REGNUM)
05d1431c
PA
1636 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1637 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1638 {
d93859e2 1639 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1640
c378eb4e 1641 /* Build the value in the provided buffer. */
7bd872fe 1642 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1643 status = pseudo_register_read_portions (gdbarch, regcache,
1644 2, base_regnum, temp_buffer);
1645 if (status == REG_VALID)
1646 {
1647 /* We must pay attention to the endiannes. */
1648 sh_register_convert_to_virtual (reg_nr,
1649 register_type (gdbarch, reg_nr),
1650 temp_buffer, buffer);
1651 }
1652 return status;
7bd872fe 1653 }
617daa0e 1654 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1655 {
d93859e2 1656 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1657
1658 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1659 return pseudo_register_read_portions (gdbarch, regcache,
1660 4, base_regnum, buffer);
53116e27 1661 }
05d1431c
PA
1662 else
1663 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1664}
1665
a78f21af 1666static void
d8124050 1667sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1668 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1669{
1670 int base_regnum, portion;
d9d9c31f 1671 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 1672
9bed62d7
CV
1673 if (reg_nr == PSEUDO_BANK_REGNUM)
1674 {
1675 /* When the bank register is written to, the whole register bank
1676 is switched and all values in the bank registers must be read
c378eb4e 1677 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1678 so that a re-read happens next time it's necessary. */
1679 int bregnum;
1680
1681 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1682 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
9c5ea4d9 1683 regcache_invalidate (regcache, bregnum);
9bed62d7
CV
1684 }
1685 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1686 {
d93859e2 1687 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1688
c378eb4e 1689 /* We must pay attention to the endiannes. */
7b9ee6a8 1690 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
b66ba949 1691 reg_nr, buffer, temp_buffer);
7bd872fe 1692
53116e27
EZ
1693 /* Write the real regs for which this one is an alias. */
1694 for (portion = 0; portion < 2; portion++)
617daa0e 1695 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1696 (temp_buffer
617daa0e
CV
1697 + register_size (gdbarch,
1698 base_regnum) * portion));
53116e27 1699 }
617daa0e 1700 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1701 {
d93859e2 1702 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1703
1704 /* Write the real regs for which this one is an alias. */
1705 for (portion = 0; portion < 4; portion++)
d8124050
AC
1706 regcache_raw_write (regcache, base_regnum + portion,
1707 ((char *) buffer
617daa0e
CV
1708 + register_size (gdbarch,
1709 base_regnum) * portion));
53116e27
EZ
1710 }
1711}
1712
2f14585c 1713static int
e7faf938 1714sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1715{
e7faf938
MD
1716 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1717 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1718 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1719 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1720 if (nr == MOD_REGNUM)
2f14585c 1721 return SIM_SH_MOD_REGNUM;
f2ea0907 1722 if (nr == RS_REGNUM)
2f14585c 1723 return SIM_SH_RS_REGNUM;
f2ea0907 1724 if (nr == RE_REGNUM)
2f14585c 1725 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1726 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1727 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1728 return nr;
1729}
1c0159e0 1730
da962468 1731static int
e7faf938 1732sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1733{
1734 switch (nr)
1735 {
1736 case TBR_REGNUM:
1737 return SIM_SH_TBR_REGNUM;
1738 case IBNR_REGNUM:
1739 return SIM_SH_IBNR_REGNUM;
1740 case IBCR_REGNUM:
1741 return SIM_SH_IBCR_REGNUM;
1742 case BANK_REGNUM:
1743 return SIM_SH_BANK_REGNUM;
1744 case MACLB_REGNUM:
1745 return SIM_SH_BANK_MACL_REGNUM;
1746 case GBRB_REGNUM:
1747 return SIM_SH_BANK_GBR_REGNUM;
1748 case PRB_REGNUM:
1749 return SIM_SH_BANK_PR_REGNUM;
1750 case IVNB_REGNUM:
1751 return SIM_SH_BANK_IVN_REGNUM;
1752 case MACHB_REGNUM:
1753 return SIM_SH_BANK_MACH_REGNUM;
1754 default:
1755 break;
1756 }
e7faf938 1757 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1758}
1759
357d3800
AS
1760/* Set up the register unwinding such that call-clobbered registers are
1761 not displayed in frames >0 because the true value is not certain.
1762 The 'undefined' registers will show up as 'not available' unless the
1763 CFI says otherwise.
1764
1765 This function is currently set up for SH4 and compatible only. */
1766
1767static void
1768sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1769 struct dwarf2_frame_state_reg *reg,
4a4e5149 1770 struct frame_info *this_frame)
357d3800
AS
1771{
1772 /* Mark the PC as the destination for the return address. */
b47193f7 1773 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1774 reg->how = DWARF2_FRAME_REG_RA;
1775
1776 /* Mark the stack pointer as the call frame address. */
b47193f7 1777 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1778 reg->how = DWARF2_FRAME_REG_CFA;
1779
1780 /* The above was taken from the default init_reg in dwarf2-frame.c
1781 while the below is SH specific. */
1782
1783 /* Caller save registers. */
1784 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1785 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1786 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1787 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1788 || (regnum == MACH_REGNUM)
1789 || (regnum == MACL_REGNUM)
1790 || (regnum == FPUL_REGNUM)
1791 || (regnum == SR_REGNUM))
1792 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1793
1794 /* Callee save registers. */
1795 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1796 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1797 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1798 || (regnum == FV0_REGNUM+3))
1799 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1800
1801 /* Other registers. These are not in the ABI and may or may not
1802 mean anything in frames >0 so don't show them. */
1803 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1804 || (regnum == GBR_REGNUM)
1805 || (regnum == VBR_REGNUM)
1806 || (regnum == FPSCR_REGNUM)
1807 || (regnum == SSR_REGNUM)
1808 || (regnum == SPC_REGNUM))
1809 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1810}
1811
1c0159e0
CV
1812static struct sh_frame_cache *
1813sh_alloc_frame_cache (void)
1814{
1815 struct sh_frame_cache *cache;
1816 int i;
1817
1818 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1819
1820 /* Base address. */
1821 cache->base = 0;
1822 cache->saved_sp = 0;
1823 cache->sp_offset = 0;
1824 cache->pc = 0;
1825
1826 /* Frameless until proven otherwise. */
1827 cache->uses_fp = 0;
617daa0e 1828
1c0159e0
CV
1829 /* Saved registers. We initialize these to -1 since zero is a valid
1830 offset (that's where fp is supposed to be stored). */
1831 for (i = 0; i < SH_NUM_REGS; i++)
1832 {
1833 cache->saved_regs[i] = -1;
1834 }
617daa0e 1835
1c0159e0 1836 return cache;
617daa0e 1837}
1c0159e0
CV
1838
1839static struct sh_frame_cache *
94afd7a6 1840sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1841{
e17a4113 1842 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1843 struct sh_frame_cache *cache;
1844 CORE_ADDR current_pc;
1845 int i;
1846
1847 if (*this_cache)
1848 return *this_cache;
1849
1850 cache = sh_alloc_frame_cache ();
1851 *this_cache = cache;
1852
1853 /* In principle, for normal frames, fp holds the frame pointer,
1854 which holds the base address for the current stack frame.
1855 However, for functions that don't need it, the frame pointer is
1856 optional. For these "frameless" functions the frame pointer is
c378eb4e 1857 actually the frame pointer of the calling frame. */
94afd7a6 1858 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1859 if (cache->base == 0)
1860 return cache;
1861
94afd7a6
UW
1862 cache->pc = get_frame_func (this_frame);
1863 current_pc = get_frame_pc (this_frame);
1c0159e0 1864 if (cache->pc != 0)
d2ca4222
UW
1865 {
1866 ULONGEST fpscr;
9fc05685
KB
1867
1868 /* Check for the existence of the FPSCR register. If it exists,
1869 fetch its value for use in prologue analysis. Passing a zero
1870 value is the best choice for architecture variants upon which
1871 there's no FPSCR register. */
1872 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1873 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1874 else
1875 fpscr = 0;
1876
e17a4113 1877 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1878 }
617daa0e 1879
1c0159e0
CV
1880 if (!cache->uses_fp)
1881 {
1882 /* We didn't find a valid frame, which means that CACHE->base
1883 currently holds the frame pointer for our calling frame. If
1884 we're at the start of a function, or somewhere half-way its
1885 prologue, the function's frame probably hasn't been fully
1886 setup yet. Try to reconstruct the base address for the stack
1887 frame by looking at the stack pointer. For truly "frameless"
1888 functions this might work too. */
94afd7a6 1889 cache->base = get_frame_register_unsigned
e17a4113 1890 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1891 }
1892
1893 /* Now that we have the base address for the stack frame we can
1894 calculate the value of sp in the calling frame. */
1895 cache->saved_sp = cache->base + cache->sp_offset;
1896
1897 /* Adjust all the saved registers such that they contain addresses
1898 instead of offsets. */
1899 for (i = 0; i < SH_NUM_REGS; i++)
1900 if (cache->saved_regs[i] != -1)
1901 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1902
1903 return cache;
1904}
1905
94afd7a6
UW
1906static struct value *
1907sh_frame_prev_register (struct frame_info *this_frame,
1908 void **this_cache, int regnum)
1c0159e0 1909{
94afd7a6
UW
1910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1911 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1912
1913 gdb_assert (regnum >= 0);
1914
b47193f7 1915 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1916 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1917
1918 /* The PC of the previous frame is stored in the PR register of
1919 the current frame. Frob regnum so that we pull the value from
1920 the correct place. */
b47193f7 1921 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1922 regnum = PR_REGNUM;
1923
1924 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1925 return frame_unwind_got_memory (this_frame, regnum,
1926 cache->saved_regs[regnum]);
1c0159e0 1927
94afd7a6 1928 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1929}
1930
1931static void
94afd7a6 1932sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1933 struct frame_id *this_id)
1934{
94afd7a6 1935 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1936
1937 /* This marks the outermost frame. */
1938 if (cache->base == 0)
1939 return;
1940
1941 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1942}
1c0159e0 1943
617daa0e 1944static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1945 NORMAL_FRAME,
8fbca658 1946 default_frame_unwind_stop_reason,
1c0159e0 1947 sh_frame_this_id,
94afd7a6
UW
1948 sh_frame_prev_register,
1949 NULL,
1950 default_frame_sniffer
1c0159e0
CV
1951};
1952
1c0159e0
CV
1953static CORE_ADDR
1954sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1955{
3e8c568d 1956 return frame_unwind_register_unsigned (next_frame,
b47193f7 1957 gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1958}
1959
1960static CORE_ADDR
1961sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1962{
3e8c568d 1963 return frame_unwind_register_unsigned (next_frame,
b47193f7 1964 gdbarch_pc_regnum (gdbarch));
1c0159e0
CV
1965}
1966
1967static struct frame_id
94afd7a6 1968sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1c0159e0 1969{
94afd7a6
UW
1970 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1971 gdbarch_sp_regnum (gdbarch));
1972 return frame_id_build (sp, get_frame_pc (this_frame));
1c0159e0
CV
1973}
1974
1975static CORE_ADDR
94afd7a6 1976sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 1977{
94afd7a6 1978 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 1979
1c0159e0
CV
1980 return cache->base;
1981}
617daa0e
CV
1982
1983static const struct frame_base sh_frame_base = {
1c0159e0
CV
1984 &sh_frame_unwind,
1985 sh_frame_base_address,
1986 sh_frame_base_address,
1987 sh_frame_base_address
617daa0e 1988};
1c0159e0 1989
cb2cf4ce
TS
1990static struct sh_frame_cache *
1991sh_make_stub_cache (struct frame_info *this_frame)
1992{
1993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1994 struct sh_frame_cache *cache;
1995
1996 cache = sh_alloc_frame_cache ();
1997
1998 cache->saved_sp
1999 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2000
2001 return cache;
2002}
2003
2004static void
2005sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2006 struct frame_id *this_id)
2007{
2008 struct sh_frame_cache *cache;
2009
2010 if (*this_cache == NULL)
2011 *this_cache = sh_make_stub_cache (this_frame);
2012 cache = *this_cache;
2013
2014 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2015}
2016
2017static int
2018sh_stub_unwind_sniffer (const struct frame_unwind *self,
2019 struct frame_info *this_frame,
2020 void **this_prologue_cache)
2021{
2022 CORE_ADDR addr_in_block;
2023
2024 addr_in_block = get_frame_address_in_block (this_frame);
2025 if (in_plt_section (addr_in_block, NULL))
2026 return 1;
2027
2028 return 0;
2029}
2030
2031static const struct frame_unwind sh_stub_unwind =
2032{
2033 NORMAL_FRAME,
2034 default_frame_unwind_stop_reason,
2035 sh_stub_this_id,
2036 sh_frame_prev_register,
2037 NULL,
2038 sh_stub_unwind_sniffer
2039};
2040
1c0159e0
CV
2041/* The epilogue is defined here as the area at the end of a function,
2042 either on the `ret' instruction itself or after an instruction which
c378eb4e 2043 destroys the function's stack frame. */
1c0159e0
CV
2044static int
2045sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2046{
e17a4113 2047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2048 CORE_ADDR func_addr = 0, func_end = 0;
2049
2050 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2051 {
2052 ULONGEST inst;
2053 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2054 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2055 unfortunately also treated as part of the function (which
c378eb4e 2056 means, they are below func_end. */
1c0159e0
CV
2057 CORE_ADDR addr = func_end - 28;
2058 if (addr < func_addr + 4)
617daa0e 2059 addr = func_addr + 4;
1c0159e0
CV
2060 if (pc < addr)
2061 return 0;
2062
c378eb4e 2063 /* First search forward until hitting an rts. */
1c0159e0 2064 while (addr < func_end
e17a4113 2065 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2066 addr += 2;
2067 if (addr >= func_end)
617daa0e 2068 return 0;
1c0159e0
CV
2069
2070 /* At this point we should find a mov.l @r15+,r14 instruction,
2071 either before or after the rts. If not, then the function has
c378eb4e 2072 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2073 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2074 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2075 byte_order)))
617daa0e 2076 addr -= 2;
e17a4113
UW
2077 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2078 byte_order)))
1c0159e0
CV
2079 return 0;
2080
e17a4113 2081 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2082
c378eb4e 2083 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2084 if (IS_MACL_LDS (inst))
2085 {
2086 addr -= 2;
e17a4113 2087 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2088 }
2089
c378eb4e 2090 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2091 if (IS_LDS (inst))
617daa0e 2092 {
1c0159e0 2093 addr -= 2;
e17a4113 2094 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2095 }
2096
c378eb4e 2097 /* Step over possible mov r14,r15. */
1c0159e0 2098 if (IS_MOV_FP_SP (inst))
617daa0e 2099 {
1c0159e0 2100 addr -= 2;
e17a4113 2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2102 }
2103
2104 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2105 instructions. */
1c0159e0 2106 while (addr > func_addr + 4
617daa0e 2107 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2108 {
2109 addr -= 2;
e17a4113 2110 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2111 }
2112
03131d99
CV
2113 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2114 That's allowed for the epilogue. */
2115 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2116 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2117 && addr > func_addr + 6
e17a4113
UW
2118 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2119 byte_order)))
03131d99
CV
2120 addr -= 4;
2121
1c0159e0
CV
2122 if (pc >= addr)
2123 return 1;
2124 }
2125 return 0;
2126}
c9ac0a72
AS
2127
2128
2129/* Supply register REGNUM from the buffer specified by REGS and LEN
2130 in the register set REGSET to register cache REGCACHE.
2131 REGTABLE specifies where each register can be found in REGS.
2132 If REGNUM is -1, do this for all registers in REGSET. */
2133
2134void
2135sh_corefile_supply_regset (const struct regset *regset,
2136 struct regcache *regcache,
2137 int regnum, const void *regs, size_t len)
2138{
2139 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2142 ? tdep->core_gregmap
2143 : tdep->core_fpregmap);
2144 int i;
2145
2146 for (i = 0; regmap[i].regnum != -1; i++)
2147 {
2148 if ((regnum == -1 || regnum == regmap[i].regnum)
2149 && regmap[i].offset + 4 <= len)
2150 regcache_raw_supply (regcache, regmap[i].regnum,
2151 (char *)regs + regmap[i].offset);
2152 }
2153}
2154
2155/* Collect register REGNUM in the register set REGSET from register cache
2156 REGCACHE into the buffer specified by REGS and LEN.
2157 REGTABLE specifies where each register can be found in REGS.
2158 If REGNUM is -1, do this for all registers in REGSET. */
2159
2160void
2161sh_corefile_collect_regset (const struct regset *regset,
2162 const struct regcache *regcache,
2163 int regnum, void *regs, size_t len)
2164{
2165 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2168 ? tdep->core_gregmap
2169 : tdep->core_fpregmap);
2170 int i;
2171
2172 for (i = 0; regmap[i].regnum != -1; i++)
2173 {
2174 if ((regnum == -1 || regnum == regmap[i].regnum)
2175 && regmap[i].offset + 4 <= len)
2176 regcache_raw_collect (regcache, regmap[i].regnum,
2177 (char *)regs + regmap[i].offset);
2178 }
2179}
2180
2181/* The following two regsets have the same contents, so it is tempting to
2182 unify them, but they are distiguished by their address, so don't. */
2183
2184struct regset sh_corefile_gregset =
2185{
2186 NULL,
2187 sh_corefile_supply_regset,
2188 sh_corefile_collect_regset
2189};
2190
2191static struct regset sh_corefile_fpregset =
2192{
2193 NULL,
2194 sh_corefile_supply_regset,
2195 sh_corefile_collect_regset
2196};
2197
2198static const struct regset *
2199sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2200 size_t sect_size)
2201{
2202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2203
2204 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2205 return &sh_corefile_gregset;
2206
2207 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2208 return &sh_corefile_fpregset;
2209
2210 return NULL;
2211}
ccf00f21 2212\f
cc17453a
EZ
2213
2214static struct gdbarch *
fba45db2 2215sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2216{
cc17453a 2217 struct gdbarch *gdbarch;
c9ac0a72 2218 struct gdbarch_tdep *tdep;
d658f924 2219
2d4c29c5
TS
2220 /* SH5 is handled entirely in sh64-tdep.c. */
2221 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2222 return sh64_gdbarch_init (info, arches);
55ff77ac 2223
4be87837
DJ
2224 /* If there is already a candidate, use it. */
2225 arches = gdbarch_list_lookup_by_info (arches, &info);
2226 if (arches != NULL)
2227 return arches->gdbarch;
cc17453a
EZ
2228
2229 /* None found, create a new architecture from the information
c378eb4e 2230 provided. */
c9ac0a72
AS
2231 tdep = XZALLOC (struct gdbarch_tdep);
2232 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2233
48db5a3c
CV
2234 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2235 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2236 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2237 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2238 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2239 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2240 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2241 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2242
f2ea0907 2243 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2244 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2245 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2246 set_gdbarch_fp0_regnum (gdbarch, -1);
2247 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2248
1c0159e0 2249 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2250 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2251
eaf90c5d 2252 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
48db5a3c 2253
9dae60cc 2254 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2f14585c 2255 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2256
c0409442 2257 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2258
48db5a3c
CV
2259 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2260 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2261
1c0159e0
CV
2262 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2263
48db5a3c
CV
2264 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2265
19f59343 2266 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2267 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2268 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
94afd7a6 2269 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
1c0159e0
CV
2270 frame_base_set_default (gdbarch, &sh_frame_base);
2271
617daa0e 2272 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
cc17453a 2273
357d3800
AS
2274 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2275
c9ac0a72
AS
2276 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2277
cc17453a 2278 switch (info.bfd_arch_info->mach)
8db62801 2279 {
cc17453a 2280 case bfd_mach_sh:
48db5a3c 2281 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2282 break;
1c0159e0 2283
cc17453a 2284 case bfd_mach_sh2:
48db5a3c 2285 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2286 break;
1c0159e0 2287
2d188dd3 2288 case bfd_mach_sh2e:
c378eb4e 2289 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c
CV
2290 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2291
2292 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2293 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2294 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2295 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2296 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2297 break;
1c0159e0 2298
da962468
CV
2299 case bfd_mach_sh2a:
2300 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2301 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2302 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2303
2304 set_gdbarch_fp0_regnum (gdbarch, 25);
2305 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2306 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2307 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2308 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2309 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2310 break;
2311
2312 case bfd_mach_sh2a_nofpu:
2313 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2314 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2315
2316 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2317 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2318 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2319 break;
2320
cc17453a 2321 case bfd_mach_sh_dsp:
48db5a3c 2322 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2323 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2324 break;
1c0159e0 2325
cc17453a 2326 case bfd_mach_sh3:
4e6cbc38
AS
2327 case bfd_mach_sh3_nommu:
2328 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2329 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2330 break;
1c0159e0 2331
cc17453a 2332 case bfd_mach_sh3e:
4e6cbc38 2333 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2334 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c
CV
2335 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2336
2337 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2338 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2339 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2340 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2341 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2342 break;
1c0159e0 2343
cc17453a 2344 case bfd_mach_sh3_dsp:
48db5a3c 2345 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2346 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2347 break;
1c0159e0 2348
cc17453a 2349 case bfd_mach_sh4:
474e5826 2350 case bfd_mach_sh4a:
46e8a76b 2351 case bfd_mach_sh2a_or_sh4:
48db5a3c 2352 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2353 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2354 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2355 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2356 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2357 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2358 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2359 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2360 break;
1c0159e0 2361
474e5826
CV
2362 case bfd_mach_sh4_nofpu:
2363 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2364 case bfd_mach_sh4_nommu_nofpu:
2365 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2366 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2367 break;
2368
2369 case bfd_mach_sh4al_dsp:
2370 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2371 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2372 break;
2373
cc17453a 2374 default:
b58cbbf2 2375 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2376 break;
8db62801 2377 }
cc17453a 2378
4be87837
DJ
2379 /* Hook in ABI-specific overrides, if they have been registered. */
2380 gdbarch_init_osabi (info, gdbarch);
d658f924 2381
94afd7a6 2382 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2383 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2384 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2385
cc17453a 2386 return gdbarch;
8db62801
EZ
2387}
2388
c055b101
CV
2389static void
2390show_sh_command (char *args, int from_tty)
2391{
2392 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2393}
2394
2395static void
2396set_sh_command (char *args, int from_tty)
2397{
2398 printf_unfiltered
2399 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2400 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2401}
2402
c378eb4e 2403extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2404
c906108c 2405void
fba45db2 2406_initialize_sh_tdep (void)
c906108c
SS
2407{
2408 struct cmd_list_element *c;
617daa0e 2409
f2ea0907 2410 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2411
2d4c29c5
TS
2412 /* We can't use an alias here because 'info registers' has not yet been
2413 registered. */
2414 c = add_com ("regs", class_vars, all_registers_info,
2415 _("Print all registers"));
2416 deprecate_cmd (c, "info all-registers");
2417
c055b101
CV
2418 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2419 &setshcmdlist, "set sh ", 0, &setlist);
2420 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2421 &showshcmdlist, "show sh ", 0, &showlist);
2422
2423 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2424 &sh_active_calling_convention,
2425 _("Set calling convention used when calling target "
2426 "functions from GDB."),
2427 _("Show calling convention used when calling target "
2428 "functions from GDB."),
2429 _("gcc - Use GCC calling convention (default).\n"
2430 "renesas - Enforce Renesas calling convention."),
2431 NULL, NULL,
2432 &setshcmdlist, &showshcmdlist);
c906108c 2433}