]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
Support linkmap offsets for the AAPCS64-CAP ABI
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
b811d2c2 3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
8b88a78e 431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 432 return {};
8b88a78e 433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 434 return {};
8b88a78e 435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 436 return {};
97ec2c2f 437 if (!at_phdr || !at_phnum)
17658d46 438 return {};
97ec2c2f
UW
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
17658d46 446 return {};
97ec2c2f 447
09919ac2
JK
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
97ec2c2f
UW
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
43136979
AR
462 int p_type;
463
97ec2c2f
UW
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 466 return {};
97ec2c2f 467
43136979
AR
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
97ec2c2f
UW
479 break;
480 }
481
482 if (i == at_phnum)
17658d46 483 return {};
97ec2c2f
UW
484
485 /* Retrieve address and size. */
e17a4113
UW
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
97ec2c2f
UW
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
43136979
AR
499 int p_type;
500
97ec2c2f
UW
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 503 return {};
97ec2c2f 504
43136979
AR
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
97ec2c2f
UW
516 break;
517 }
518
519 if (i == at_phnum)
17658d46 520 return {};
97ec2c2f
UW
521
522 /* Retrieve address and size. */
e17a4113
UW
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
97ec2c2f
UW
527 }
528
43136979
AR
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
97ec2c2f 539 /* Read in requested program header. */
17658d46
SM
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
97ec2c2f
UW
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
a738da3a
MF
546 if (base_addr)
547 *base_addr = sect_addr;
97ec2c2f
UW
548
549 return buf;
550}
551
552
553/* Return program interpreter string. */
17658d46 554static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
555find_program_interpreter (void)
556{
97ec2c2f
UW
557 /* If we have an exec_bfd, use its section table. */
558 if (exec_bfd
559 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
560 {
561 struct bfd_section *interp_sect;
562
563 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
564 if (interp_sect != NULL)
565 {
fd361982 566 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 567
17658d46
SM
568 gdb::byte_vector buf (sect_size);
569 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
570 sect_size);
571 return buf;
97ec2c2f
UW
572 }
573 }
574
17658d46
SM
575 /* If we didn't find it, use the target auxiliary vector. */
576 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
577}
578
579
b6d7a4bf
SM
580/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
581 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
582
583static int
a738da3a
MF
584scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
585 CORE_ADDR *ptr_addr)
3a40aaa0
UW
586{
587 int arch_size, step, sect_size;
b6d7a4bf 588 long current_dyntag;
b381ea14 589 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 590 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
591 Elf32_External_Dyn *x_dynp_32;
592 Elf64_External_Dyn *x_dynp_64;
593 struct bfd_section *sect;
594
595 if (abfd == NULL)
596 return 0;
0763ab81
PA
597
598 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
599 return 0;
600
3a40aaa0
UW
601 arch_size = bfd_get_arch_size (abfd);
602 if (arch_size == -1)
0763ab81 603 return 0;
3a40aaa0
UW
604
605 /* Find the start address of the .dynamic section. */
606 sect = bfd_get_section_by_name (abfd, ".dynamic");
607 if (sect == NULL)
608 return 0;
61f0d762 609
bb2a6777 610 bool found = false;
d7a78e5c 611 for (target_section &target_section : *current_target_sections)
bb2a6777
TT
612 if (sect == target_section.the_bfd_section)
613 {
614 dyn_addr = target_section.addr;
615 found = true;
616 break;
617 }
618 if (!found)
b381ea14
JK
619 {
620 /* ABFD may come from OBJFILE acting only as a symbol file without being
621 loaded into the target (see add_symbol_file_command). This case is
622 such fallback to the file VMA address without the possibility of
623 having the section relocated to its actual in-memory address. */
624
fd361982 625 dyn_addr = bfd_section_vma (sect);
b381ea14 626 }
3a40aaa0 627
65728c26
DJ
628 /* Read in .dynamic from the BFD. We will get the actual value
629 from memory later. */
fd361982 630 sect_size = bfd_section_size (sect);
224c3ddb 631 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
632 if (!bfd_get_section_contents (abfd, sect,
633 buf, 0, sect_size))
634 return 0;
3a40aaa0
UW
635
636 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
637 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
638 : sizeof (Elf64_External_Dyn);
639 for (bufend = buf + sect_size;
640 buf < bufend;
641 buf += step)
642 {
643 if (arch_size == 32)
644 {
645 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 646 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
647 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
648 }
65728c26 649 else
3a40aaa0
UW
650 {
651 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 652 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
653 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
654 }
b6d7a4bf 655 if (current_dyntag == DT_NULL)
3a40aaa0 656 return 0;
b6d7a4bf 657 if (current_dyntag == desired_dyntag)
3a40aaa0 658 {
65728c26
DJ
659 /* If requested, try to read the runtime value of this .dynamic
660 entry. */
3a40aaa0 661 if (ptr)
65728c26 662 {
b6da22b0 663 struct type *ptr_type;
65728c26 664 gdb_byte ptr_buf[8];
a738da3a 665 CORE_ADDR ptr_addr_1;
65728c26 666
f5656ead 667 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
668 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
669 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 670 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 671 *ptr = dyn_ptr;
a738da3a
MF
672 if (ptr_addr)
673 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
674 }
675 return 1;
3a40aaa0
UW
676 }
677 }
678
679 return 0;
680}
681
b6d7a4bf
SM
682/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
683 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
684 is returned and the corresponding PTR is set. */
97ec2c2f
UW
685
686static int
a738da3a
MF
687scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
688 CORE_ADDR *ptr_addr)
97ec2c2f 689{
f5656ead 690 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 691 int arch_size, step;
b6d7a4bf 692 long current_dyntag;
97ec2c2f 693 CORE_ADDR dyn_ptr;
a738da3a 694 CORE_ADDR base_addr;
97ec2c2f
UW
695
696 /* Read in .dynamic section. */
17658d46
SM
697 gdb::optional<gdb::byte_vector> ph_data
698 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
699 if (!ph_data)
97ec2c2f
UW
700 return 0;
701
702 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
703 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
704 : sizeof (Elf64_External_Dyn);
17658d46
SM
705 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
706 buf < bufend; buf += step)
97ec2c2f
UW
707 {
708 if (arch_size == 32)
709 {
710 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 711
b6d7a4bf 712 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
713 4, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 4, byte_order);
97ec2c2f
UW
716 }
717 else
718 {
719 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 720
b6d7a4bf 721 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
722 8, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 8, byte_order);
97ec2c2f 725 }
b6d7a4bf 726 if (current_dyntag == DT_NULL)
97ec2c2f
UW
727 break;
728
b6d7a4bf 729 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
730 {
731 if (ptr)
732 *ptr = dyn_ptr;
733
a738da3a 734 if (ptr_addr)
17658d46 735 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 736
97ec2c2f
UW
737 return 1;
738 }
739 }
740
97ec2c2f
UW
741 return 0;
742}
743
7f86f058
PA
744/* Locate the base address of dynamic linker structs for SVR4 elf
745 targets.
13437d4b
KB
746
747 For SVR4 elf targets the address of the dynamic linker's runtime
748 structure is contained within the dynamic info section in the
749 executable file. The dynamic section is also mapped into the
750 inferior address space. Because the runtime loader fills in the
751 real address before starting the inferior, we have to read in the
752 dynamic info section from the inferior address space.
753 If there are any errors while trying to find the address, we
7f86f058 754 silently return 0, otherwise the found address is returned. */
13437d4b
KB
755
756static CORE_ADDR
757elf_locate_base (void)
758{
3b7344d5 759 struct bound_minimal_symbol msymbol;
a738da3a 760 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 761
65728c26
DJ
762 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
763 instead of DT_DEBUG, although they sometimes contain an unused
764 DT_DEBUG. */
a738da3a
MF
765 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
766 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 767 {
f5656ead 768 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 769 gdb_byte *pbuf;
b6da22b0 770 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 771
224c3ddb 772 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
773 /* DT_MIPS_RLD_MAP contains a pointer to the address
774 of the dynamic link structure. */
775 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 776 return 0;
b6da22b0 777 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
778 }
779
a738da3a
MF
780 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
781 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
782 in non-PIE. */
783 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
784 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
785 {
786 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
787 gdb_byte *pbuf;
788 int pbuf_size = TYPE_LENGTH (ptr_type);
789
224c3ddb 790 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
791 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
792 DT slot to the address of the dynamic link structure. */
793 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
794 return 0;
795 return extract_typed_address (pbuf, ptr_type);
796 }
797
65728c26 798 /* Find DT_DEBUG. */
a738da3a
MF
799 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
800 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
801 return dyn_ptr;
802
3a40aaa0
UW
803 /* This may be a static executable. Look for the symbol
804 conventionally named _r_debug, as a last resort. */
805 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 806 if (msymbol.minsym != NULL)
77e371c0 807 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
808
809 /* DT_DEBUG entry not found. */
810 return 0;
811}
812
7f86f058 813/* Locate the base address of dynamic linker structs.
13437d4b
KB
814
815 For both the SunOS and SVR4 shared library implementations, if the
816 inferior executable has been linked dynamically, there is a single
817 address somewhere in the inferior's data space which is the key to
818 locating all of the dynamic linker's runtime structures. This
819 address is the value of the debug base symbol. The job of this
820 function is to find and return that address, or to return 0 if there
821 is no such address (the executable is statically linked for example).
822
823 For SunOS, the job is almost trivial, since the dynamic linker and
824 all of it's structures are statically linked to the executable at
825 link time. Thus the symbol for the address we are looking for has
826 already been added to the minimal symbol table for the executable's
827 objfile at the time the symbol file's symbols were read, and all we
828 have to do is look it up there. Note that we explicitly do NOT want
829 to find the copies in the shared library.
830
831 The SVR4 version is a bit more complicated because the address
832 is contained somewhere in the dynamic info section. We have to go
833 to a lot more work to discover the address of the debug base symbol.
834 Because of this complexity, we cache the value we find and return that
835 value on subsequent invocations. Note there is no copy in the
7f86f058 836 executable symbol tables. */
13437d4b
KB
837
838static CORE_ADDR
1a816a87 839locate_base (struct svr4_info *info)
13437d4b 840{
13437d4b
KB
841 /* Check to see if we have a currently valid address, and if so, avoid
842 doing all this work again and just return the cached address. If
843 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
844 section for ELF executables. There's no point in doing any of this
845 though if we don't have some link map offsets to work with. */
13437d4b 846
1a816a87 847 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 848 info->debug_base = elf_locate_base ();
1a816a87 849 return info->debug_base;
13437d4b
KB
850}
851
e4cd0d6a 852/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
853 return its address in the inferior. Return zero if the address
854 could not be determined.
13437d4b 855
e4cd0d6a
MK
856 FIXME: Perhaps we should validate the info somehow, perhaps by
857 checking r_version for a known version number, or r_state for
858 RT_CONSISTENT. */
13437d4b
KB
859
860static CORE_ADDR
1a816a87 861solib_svr4_r_map (struct svr4_info *info)
13437d4b 862{
4b188b9f 863 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 864 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 865 CORE_ADDR addr = 0;
13437d4b 866
a70b8144 867 try
08597104
JB
868 {
869 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
870 ptr_type);
871 }
230d2906 872 catch (const gdb_exception_error &ex)
492d29ea
PA
873 {
874 exception_print (gdb_stderr, ex);
875 }
492d29ea 876
08597104 877 return addr;
e4cd0d6a 878}
13437d4b 879
7cd25cfc
DJ
880/* Find r_brk from the inferior's debug base. */
881
882static CORE_ADDR
1a816a87 883solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
884{
885 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 886 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 887
1a816a87
PA
888 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
889 ptr_type);
7cd25cfc
DJ
890}
891
e4cd0d6a
MK
892/* Find the link map for the dynamic linker (if it is not in the
893 normal list of loaded shared objects). */
13437d4b 894
e4cd0d6a 895static CORE_ADDR
1a816a87 896solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
897{
898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 899 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 900 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
901 ULONGEST version = 0;
902
a70b8144 903 try
416f679e
SDJ
904 {
905 /* Check version, and return zero if `struct r_debug' doesn't have
906 the r_ldsomap member. */
907 version
908 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
909 lmo->r_version_size, byte_order);
910 }
230d2906 911 catch (const gdb_exception_error &ex)
416f679e
SDJ
912 {
913 exception_print (gdb_stderr, ex);
914 }
13437d4b 915
e4cd0d6a
MK
916 if (version < 2 || lmo->r_ldsomap_offset == -1)
917 return 0;
13437d4b 918
1a816a87 919 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 920 ptr_type);
13437d4b
KB
921}
922
de18c1d8
JM
923/* On Solaris systems with some versions of the dynamic linker,
924 ld.so's l_name pointer points to the SONAME in the string table
925 rather than into writable memory. So that GDB can find shared
926 libraries when loading a core file generated by gcore, ensure that
927 memory areas containing the l_name string are saved in the core
928 file. */
929
930static int
931svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
932{
933 struct svr4_info *info;
934 CORE_ADDR ldsomap;
74de0234 935 CORE_ADDR name_lm;
de18c1d8 936
d70cc3ba 937 info = get_svr4_info (current_program_space);
de18c1d8
JM
938
939 info->debug_base = 0;
940 locate_base (info);
941 if (!info->debug_base)
942 return 0;
943
944 ldsomap = solib_svr4_r_ldsomap (info);
945 if (!ldsomap)
946 return 0;
947
a7961323 948 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 949 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 950
74de0234 951 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
952}
953
bf469271 954/* See solist.h. */
13437d4b
KB
955
956static int
bf469271 957open_symbol_file_object (int from_tty)
13437d4b
KB
958{
959 CORE_ADDR lm, l_name;
4b188b9f 960 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 961 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 962 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 963 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 964 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
965 symfile_add_flags add_flags = 0;
966
967 if (from_tty)
968 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
969
970 if (symfile_objfile)
9e2f0ad4 971 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 972 return 0;
13437d4b 973
7cd25cfc 974 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
975 info->debug_base = 0;
976 if (locate_base (info) == 0)
a7961323 977 return 0; /* failed somehow... */
13437d4b
KB
978
979 /* First link map member should be the executable. */
1a816a87 980 lm = solib_svr4_r_map (info);
e4cd0d6a 981 if (lm == 0)
a7961323 982 return 0; /* failed somehow... */
13437d4b
KB
983
984 /* Read address of name from target memory to GDB. */
a7961323 985 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 986
cfaefc65 987 /* Convert the address to host format. */
a7961323 988 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 989
13437d4b 990 if (l_name == 0)
a7961323 991 return 0; /* No filename. */
13437d4b
KB
992
993 /* Now fetch the filename from target memory. */
66920317
TT
994 gdb::unique_xmalloc_ptr<char> filename
995 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
13437d4b 996
66920317 997 if (filename == nullptr)
13437d4b 998 {
66920317 999 warning (_("failed to read exec filename from attached file"));
13437d4b
KB
1000 return 0;
1001 }
1002
13437d4b 1003 /* Have a pathname: read the symbol file. */
e83e4e24 1004 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1005
1006 return 1;
1007}
13437d4b 1008
2268b414
JK
1009/* Data exchange structure for the XML parser as returned by
1010 svr4_current_sos_via_xfer_libraries. */
1011
1012struct svr4_library_list
1013{
1014 struct so_list *head, **tailp;
1015
1016 /* Inferior address of struct link_map used for the main executable. It is
1017 NULL if not known. */
1018 CORE_ADDR main_lm;
1019};
1020
7905fc35
PA
1021/* This module's 'free_objfile' observer. */
1022
1023static void
1024svr4_free_objfile_observer (struct objfile *objfile)
1025{
1026 probes_table_remove_objfile_probes (objfile);
1027}
1028
93f2a35e
JK
1029/* Implementation for target_so_ops.free_so. */
1030
1031static void
1032svr4_free_so (struct so_list *so)
1033{
76e75227
SM
1034 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1035
1036 delete li;
93f2a35e
JK
1037}
1038
0892cb63
DE
1039/* Implement target_so_ops.clear_so. */
1040
1041static void
1042svr4_clear_so (struct so_list *so)
1043{
d0e449a1
SM
1044 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1045
1046 if (li != NULL)
1047 li->l_addr_p = 0;
0892cb63
DE
1048}
1049
93f2a35e
JK
1050/* Free so_list built so far (called via cleanup). */
1051
1052static void
1053svr4_free_library_list (void *p_list)
1054{
1055 struct so_list *list = *(struct so_list **) p_list;
1056
1057 while (list != NULL)
1058 {
1059 struct so_list *next = list->next;
1060
3756ef7e 1061 free_so (list);
93f2a35e
JK
1062 list = next;
1063 }
1064}
1065
f9e14852
GB
1066/* Copy library list. */
1067
1068static struct so_list *
1069svr4_copy_library_list (struct so_list *src)
1070{
1071 struct so_list *dst = NULL;
1072 struct so_list **link = &dst;
1073
1074 while (src != NULL)
1075 {
fe978cb0 1076 struct so_list *newobj;
f9e14852 1077
8d749320 1078 newobj = XNEW (struct so_list);
fe978cb0 1079 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1080
76e75227
SM
1081 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1082 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1083
fe978cb0
PA
1084 newobj->next = NULL;
1085 *link = newobj;
1086 link = &newobj->next;
f9e14852
GB
1087
1088 src = src->next;
1089 }
1090
1091 return dst;
1092}
1093
2268b414
JK
1094#ifdef HAVE_LIBEXPAT
1095
1096#include "xml-support.h"
1097
1098/* Handle the start of a <library> element. Note: new elements are added
1099 at the tail of the list, keeping the list in order. */
1100
1101static void
1102library_list_start_library (struct gdb_xml_parser *parser,
1103 const struct gdb_xml_element *element,
4d0fdd9b
SM
1104 void *user_data,
1105 std::vector<gdb_xml_value> &attributes)
2268b414 1106{
19ba03f4
SM
1107 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1108 const char *name
4d0fdd9b 1109 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1110 ULONGEST *lmp
4d0fdd9b 1111 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1112 ULONGEST *l_addrp
4d0fdd9b 1113 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1114 ULONGEST *l_ldp
4d0fdd9b 1115 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1116 struct so_list *new_elem;
1117
41bf6aca 1118 new_elem = XCNEW (struct so_list);
76e75227 1119 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1120 new_elem->lm_info = li;
1121 li->lm_addr = *lmp;
1122 li->l_addr_inferior = *l_addrp;
1123 li->l_ld = *l_ldp;
2268b414
JK
1124
1125 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1126 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1127 strcpy (new_elem->so_original_name, new_elem->so_name);
1128
1129 *list->tailp = new_elem;
1130 list->tailp = &new_elem->next;
1131}
1132
1133/* Handle the start of a <library-list-svr4> element. */
1134
1135static void
1136svr4_library_list_start_list (struct gdb_xml_parser *parser,
1137 const struct gdb_xml_element *element,
4d0fdd9b
SM
1138 void *user_data,
1139 std::vector<gdb_xml_value> &attributes)
2268b414 1140{
19ba03f4
SM
1141 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1142 const char *version
4d0fdd9b 1143 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1144 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1145
1146 if (strcmp (version, "1.0") != 0)
1147 gdb_xml_error (parser,
1148 _("SVR4 Library list has unsupported version \"%s\""),
1149 version);
1150
1151 if (main_lm)
4d0fdd9b 1152 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1153}
1154
1155/* The allowed elements and attributes for an XML library list.
1156 The root element is a <library-list>. */
1157
1158static const struct gdb_xml_attribute svr4_library_attributes[] =
1159{
1160 { "name", GDB_XML_AF_NONE, NULL, NULL },
1161 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1162 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1165};
1166
1167static const struct gdb_xml_element svr4_library_list_children[] =
1168{
1169 {
1170 "library", svr4_library_attributes, NULL,
1171 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1172 library_list_start_library, NULL
1173 },
1174 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1175};
1176
1177static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1178{
1179 { "version", GDB_XML_AF_NONE, NULL, NULL },
1180 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1181 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1182};
1183
1184static const struct gdb_xml_element svr4_library_list_elements[] =
1185{
1186 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1187 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1188 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1189};
1190
2268b414
JK
1191/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1192
1193 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1194 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1195 empty, caller is responsible for freeing all its entries. */
1196
1197static int
1198svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1199{
2b6ff1c0
TT
1200 auto cleanup = make_scope_exit ([&] ()
1201 {
1202 svr4_free_library_list (&list->head);
1203 });
2268b414
JK
1204
1205 memset (list, 0, sizeof (*list));
1206 list->tailp = &list->head;
2eca4a8d 1207 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1208 svr4_library_list_elements, document, list) == 0)
1209 {
1210 /* Parsed successfully, keep the result. */
2b6ff1c0 1211 cleanup.release ();
2268b414
JK
1212 return 1;
1213 }
1214
2268b414
JK
1215 return 0;
1216}
1217
f9e14852 1218/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1219
1220 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1221 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1222 empty, caller is responsible for freeing all its entries.
1223
1224 Note that ANNEX must be NULL if the remote does not explicitly allow
1225 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1226 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1227
1228static int
f9e14852
GB
1229svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1230 const char *annex)
2268b414 1231{
f9e14852
GB
1232 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1233
2268b414 1234 /* Fetch the list of shared libraries. */
9018be22 1235 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1236 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1237 annex);
9018be22 1238 if (!svr4_library_document)
2268b414
JK
1239 return 0;
1240
9018be22 1241 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1242}
1243
1244#else
1245
1246static int
f9e14852
GB
1247svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1248 const char *annex)
2268b414
JK
1249{
1250 return 0;
1251}
1252
1253#endif
1254
34439770
DJ
1255/* If no shared library information is available from the dynamic
1256 linker, build a fallback list from other sources. */
1257
1258static struct so_list *
d70cc3ba 1259svr4_default_sos (svr4_info *info)
34439770 1260{
fe978cb0 1261 struct so_list *newobj;
1a816a87 1262
8e5c319d
JK
1263 if (!info->debug_loader_offset_p)
1264 return NULL;
34439770 1265
fe978cb0 1266 newobj = XCNEW (struct so_list);
76e75227 1267 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1268 newobj->lm_info = li;
34439770 1269
3957565a 1270 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1271 li->l_addr = info->debug_loader_offset;
1272 li->l_addr_p = 1;
34439770 1273
fe978cb0
PA
1274 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1275 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1276 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1277
fe978cb0 1278 return newobj;
34439770
DJ
1279}
1280
f9e14852
GB
1281/* Read the whole inferior libraries chain starting at address LM.
1282 Expect the first entry in the chain's previous entry to be PREV_LM.
1283 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1284 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1285 to it. Returns nonzero upon success. If zero is returned the
1286 entries stored to LINK_PTR_PTR are still valid although they may
1287 represent only part of the inferior library list. */
13437d4b 1288
f9e14852 1289static int
d70cc3ba 1290svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1291 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1292{
c725e7b6 1293 CORE_ADDR first_l_name = 0;
f9e14852 1294 CORE_ADDR next_lm;
13437d4b 1295
cb08cc53 1296 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1297 {
b3bc8453 1298 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1299
a7961323 1300 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1301 newobj->lm_info = li;
1302 if (li == NULL)
b3bc8453 1303 return 0;
13437d4b 1304
d0e449a1 1305 next_lm = li->l_next;
492928e4 1306
d0e449a1 1307 if (li->l_prev != prev_lm)
492928e4 1308 {
2268b414 1309 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1310 paddress (target_gdbarch (), prev_lm),
d0e449a1 1311 paddress (target_gdbarch (), li->l_prev));
f9e14852 1312 return 0;
492928e4 1313 }
13437d4b
KB
1314
1315 /* For SVR4 versions, the first entry in the link map is for the
1316 inferior executable, so we must ignore it. For some versions of
1317 SVR4, it has no name. For others (Solaris 2.3 for example), it
1318 does have a name, so we can no longer use a missing name to
c378eb4e 1319 decide when to ignore it. */
d0e449a1 1320 if (ignore_first && li->l_prev == 0)
93a57060 1321 {
d0e449a1
SM
1322 first_l_name = li->l_name;
1323 info->main_lm_addr = li->lm_addr;
cb08cc53 1324 continue;
93a57060 1325 }
13437d4b 1326
cb08cc53 1327 /* Extract this shared object's name. */
66920317
TT
1328 gdb::unique_xmalloc_ptr<char> buffer
1329 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1330 if (buffer == nullptr)
cb08cc53 1331 {
7d760051
UW
1332 /* If this entry's l_name address matches that of the
1333 inferior executable, then this is not a normal shared
1334 object, but (most likely) a vDSO. In this case, silently
1335 skip it; otherwise emit a warning. */
d0e449a1 1336 if (first_l_name == 0 || li->l_name != first_l_name)
66920317 1337 warning (_("Can't read pathname for load map."));
cb08cc53 1338 continue;
13437d4b
KB
1339 }
1340
e83e4e24 1341 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1342 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1343 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1344
cb08cc53
JK
1345 /* If this entry has no name, or its name matches the name
1346 for the main executable, don't include it in the list. */
fe978cb0 1347 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1348 continue;
e4cd0d6a 1349
fe978cb0 1350 newobj->next = 0;
b3bc8453
TT
1351 /* Don't free it now. */
1352 **link_ptr_ptr = newobj.release ();
1353 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1354 }
f9e14852
GB
1355
1356 return 1;
cb08cc53
JK
1357}
1358
f9e14852
GB
1359/* Read the full list of currently loaded shared objects directly
1360 from the inferior, without referring to any libraries read and
1361 stored by the probes interface. Handle special cases relating
1362 to the first elements of the list. */
cb08cc53
JK
1363
1364static struct so_list *
f9e14852 1365svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1366{
1367 CORE_ADDR lm;
1368 struct so_list *head = NULL;
1369 struct so_list **link_ptr = &head;
cb08cc53 1370 int ignore_first;
2268b414
JK
1371 struct svr4_library_list library_list;
1372
0c5bf5a9
JK
1373 /* Fall back to manual examination of the target if the packet is not
1374 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1375 tests a case where gdbserver cannot find the shared libraries list while
1376 GDB itself is able to find it via SYMFILE_OBJFILE.
1377
1378 Unfortunately statically linked inferiors will also fall back through this
1379 suboptimal code path. */
1380
f9e14852
GB
1381 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1382 NULL);
1383 if (info->using_xfer)
2268b414
JK
1384 {
1385 if (library_list.main_lm)
f9e14852 1386 info->main_lm_addr = library_list.main_lm;
2268b414 1387
d70cc3ba 1388 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1389 }
cb08cc53 1390
cb08cc53
JK
1391 /* Always locate the debug struct, in case it has moved. */
1392 info->debug_base = 0;
1393 locate_base (info);
1394
1395 /* If we can't find the dynamic linker's base structure, this
1396 must not be a dynamically linked executable. Hmm. */
1397 if (! info->debug_base)
d70cc3ba 1398 return svr4_default_sos (info);
cb08cc53
JK
1399
1400 /* Assume that everything is a library if the dynamic loader was loaded
1401 late by a static executable. */
1402 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1403 ignore_first = 0;
1404 else
1405 ignore_first = 1;
1406
2b6ff1c0
TT
1407 auto cleanup = make_scope_exit ([&] ()
1408 {
1409 svr4_free_library_list (&head);
1410 });
cb08cc53
JK
1411
1412 /* Walk the inferior's link map list, and build our list of
1413 `struct so_list' nodes. */
1414 lm = solib_svr4_r_map (info);
1415 if (lm)
d70cc3ba 1416 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1417
1418 /* On Solaris, the dynamic linker is not in the normal list of
1419 shared objects, so make sure we pick it up too. Having
1420 symbol information for the dynamic linker is quite crucial
1421 for skipping dynamic linker resolver code. */
1422 lm = solib_svr4_r_ldsomap (info);
1423 if (lm)
d70cc3ba 1424 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1425
2b6ff1c0 1426 cleanup.release ();
13437d4b 1427
34439770 1428 if (head == NULL)
d70cc3ba 1429 return svr4_default_sos (info);
34439770 1430
13437d4b
KB
1431 return head;
1432}
1433
8b9a549d
PA
1434/* Implement the main part of the "current_sos" target_so_ops
1435 method. */
f9e14852
GB
1436
1437static struct so_list *
d70cc3ba 1438svr4_current_sos_1 (svr4_info *info)
f9e14852 1439{
f9e14852
GB
1440 /* If the solib list has been read and stored by the probes
1441 interface then we return a copy of the stored list. */
1442 if (info->solib_list != NULL)
1443 return svr4_copy_library_list (info->solib_list);
1444
1445 /* Otherwise obtain the solib list directly from the inferior. */
1446 return svr4_current_sos_direct (info);
1447}
1448
8b9a549d
PA
1449/* Implement the "current_sos" target_so_ops method. */
1450
1451static struct so_list *
1452svr4_current_sos (void)
1453{
d70cc3ba
SM
1454 svr4_info *info = get_svr4_info (current_program_space);
1455 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1456 struct mem_range vsyscall_range;
1457
1458 /* Filter out the vDSO module, if present. Its symbol file would
1459 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1460 managed by symfile-mem.c:add_vsyscall_page. */
1461 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1462 && vsyscall_range.length != 0)
1463 {
1464 struct so_list **sop;
1465
1466 sop = &so_head;
1467 while (*sop != NULL)
1468 {
1469 struct so_list *so = *sop;
1470
1471 /* We can't simply match the vDSO by starting address alone,
1472 because lm_info->l_addr_inferior (and also l_addr) do not
1473 necessarily represent the real starting address of the
1474 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1475 field (the ".dynamic" section of the shared object)
1476 always points at the absolute/resolved address though.
1477 So check whether that address is inside the vDSO's
1478 mapping instead.
1479
1480 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1481 0-based ELF, and we see:
1482
1483 (gdb) info auxv
1484 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1485 (gdb) p/x *_r_debug.r_map.l_next
1486 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1487
1488 And on Linux 2.6.32 (x86_64) we see:
1489
1490 (gdb) info auxv
1491 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1492 (gdb) p/x *_r_debug.r_map.l_next
1493 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1494
1495 Dumping that vDSO shows:
1496
1497 (gdb) info proc mappings
1498 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1499 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1500 # readelf -Wa vdso.bin
1501 [...]
1502 Entry point address: 0xffffffffff700700
1503 [...]
1504 Section Headers:
1505 [Nr] Name Type Address Off Size
1506 [ 0] NULL 0000000000000000 000000 000000
1507 [ 1] .hash HASH ffffffffff700120 000120 000038
1508 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1509 [...]
1510 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1511 */
d0e449a1
SM
1512
1513 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1514
1515 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1516 {
1517 *sop = so->next;
1518 free_so (so);
1519 break;
1520 }
1521
1522 sop = &so->next;
1523 }
1524 }
1525
1526 return so_head;
1527}
1528
93a57060 1529/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1530
1531CORE_ADDR
1532svr4_fetch_objfile_link_map (struct objfile *objfile)
1533{
d70cc3ba 1534 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1535
93a57060 1536 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1537 if (info->main_lm_addr == 0)
e696b3ad 1538 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1539
93a57060
DJ
1540 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1541 if (objfile == symfile_objfile)
1a816a87 1542 return info->main_lm_addr;
93a57060 1543
df22c1e5
JB
1544 /* If OBJFILE is a separate debug object file, look for the
1545 original object file. */
1546 if (objfile->separate_debug_objfile_backlink != NULL)
1547 objfile = objfile->separate_debug_objfile_backlink;
1548
93a57060
DJ
1549 /* The other link map addresses may be found by examining the list
1550 of shared libraries. */
a1fd1ac9 1551 for (struct so_list *so : current_program_space->solibs ())
93a57060 1552 if (so->objfile == objfile)
d0e449a1
SM
1553 {
1554 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1555
1556 return li->lm_addr;
1557 }
93a57060
DJ
1558
1559 /* Not found! */
bc4a16ae
EZ
1560 return 0;
1561}
13437d4b
KB
1562
1563/* On some systems, the only way to recognize the link map entry for
1564 the main executable file is by looking at its name. Return
1565 non-zero iff SONAME matches one of the known main executable names. */
1566
1567static int
bc043ef3 1568match_main (const char *soname)
13437d4b 1569{
bc043ef3 1570 const char * const *mainp;
13437d4b
KB
1571
1572 for (mainp = main_name_list; *mainp != NULL; mainp++)
1573 {
1574 if (strcmp (soname, *mainp) == 0)
1575 return (1);
1576 }
1577
1578 return (0);
1579}
1580
13437d4b
KB
1581/* Return 1 if PC lies in the dynamic symbol resolution code of the
1582 SVR4 run time loader. */
13437d4b 1583
7d522c90 1584int
d7fa2ae2 1585svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1586{
d70cc3ba 1587 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1588
1589 return ((pc >= info->interp_text_sect_low
1590 && pc < info->interp_text_sect_high)
1591 || (pc >= info->interp_plt_sect_low
1592 && pc < info->interp_plt_sect_high)
3e5d3a5a 1593 || in_plt_section (pc)
0875794a 1594 || in_gnu_ifunc_stub (pc));
13437d4b 1595}
13437d4b 1596
2f4950cd
AC
1597/* Given an executable's ABFD and target, compute the entry-point
1598 address. */
1599
1600static CORE_ADDR
1601exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1602{
8c2b9656
YQ
1603 CORE_ADDR addr;
1604
2f4950cd
AC
1605 /* KevinB wrote ... for most targets, the address returned by
1606 bfd_get_start_address() is the entry point for the start
1607 function. But, for some targets, bfd_get_start_address() returns
1608 the address of a function descriptor from which the entry point
1609 address may be extracted. This address is extracted by
1610 gdbarch_convert_from_func_ptr_addr(). The method
1611 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1612 function for targets which don't use function descriptors. */
8c2b9656 1613 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1614 bfd_get_start_address (abfd),
1615 targ);
8c2b9656 1616 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1617}
13437d4b 1618
f9e14852
GB
1619/* A probe and its associated action. */
1620
1621struct probe_and_action
1622{
1623 /* The probe. */
935676c9 1624 probe *prob;
f9e14852 1625
729662a5
TT
1626 /* The relocated address of the probe. */
1627 CORE_ADDR address;
1628
f9e14852
GB
1629 /* The action. */
1630 enum probe_action action;
7905fc35
PA
1631
1632 /* The objfile where this probe was found. */
1633 struct objfile *objfile;
f9e14852
GB
1634};
1635
1636/* Returns a hash code for the probe_and_action referenced by p. */
1637
1638static hashval_t
1639hash_probe_and_action (const void *p)
1640{
19ba03f4 1641 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1642
729662a5 1643 return (hashval_t) pa->address;
f9e14852
GB
1644}
1645
1646/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1647 are equal. */
1648
1649static int
1650equal_probe_and_action (const void *p1, const void *p2)
1651{
19ba03f4
SM
1652 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1653 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1654
729662a5 1655 return pa1->address == pa2->address;
f9e14852
GB
1656}
1657
7905fc35
PA
1658/* Traversal function for probes_table_remove_objfile_probes. */
1659
1660static int
1661probes_table_htab_remove_objfile_probes (void **slot, void *info)
1662{
1663 probe_and_action *pa = (probe_and_action *) *slot;
1664 struct objfile *objfile = (struct objfile *) info;
1665
1666 if (pa->objfile == objfile)
09232438
TT
1667 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1668 slot);
7905fc35
PA
1669
1670 return 1;
1671}
1672
1673/* Remove all probes that belong to OBJFILE from the probes table. */
1674
1675static void
1676probes_table_remove_objfile_probes (struct objfile *objfile)
1677{
d70cc3ba 1678 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1679 if (info->probes_table != nullptr)
09232438 1680 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1681 probes_table_htab_remove_objfile_probes, objfile);
1682}
1683
f9e14852
GB
1684/* Register a solib event probe and its associated action in the
1685 probes table. */
1686
1687static void
d70cc3ba 1688register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1689 probe *prob, CORE_ADDR address,
729662a5 1690 enum probe_action action)
f9e14852 1691{
f9e14852
GB
1692 struct probe_and_action lookup, *pa;
1693 void **slot;
1694
1695 /* Create the probes table, if necessary. */
1696 if (info->probes_table == NULL)
09232438
TT
1697 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1698 equal_probe_and_action,
1699 xfree, xcalloc, xfree));
f9e14852 1700
729662a5 1701 lookup.address = address;
09232438 1702 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1703 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1704
1705 pa = XCNEW (struct probe_and_action);
935676c9 1706 pa->prob = prob;
729662a5 1707 pa->address = address;
f9e14852 1708 pa->action = action;
7905fc35 1709 pa->objfile = objfile;
f9e14852
GB
1710
1711 *slot = pa;
1712}
1713
1714/* Get the solib event probe at the specified location, and the
1715 action associated with it. Returns NULL if no solib event probe
1716 was found. */
1717
1718static struct probe_and_action *
1719solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1720{
f9e14852
GB
1721 struct probe_and_action lookup;
1722 void **slot;
1723
729662a5 1724 lookup.address = address;
09232438 1725 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1726
1727 if (slot == NULL)
1728 return NULL;
1729
1730 return (struct probe_and_action *) *slot;
1731}
1732
1733/* Decide what action to take when the specified solib event probe is
1734 hit. */
1735
1736static enum probe_action
1737solib_event_probe_action (struct probe_and_action *pa)
1738{
1739 enum probe_action action;
73c6b475 1740 unsigned probe_argc = 0;
08a6411c 1741 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1742
1743 action = pa->action;
1744 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1745 return action;
1746
1747 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1748
1749 /* Check that an appropriate number of arguments has been supplied.
1750 We expect:
1751 arg0: Lmid_t lmid (mandatory)
1752 arg1: struct r_debug *debug_base (mandatory)
1753 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1754 try
3bd7e5b7 1755 {
fe01123e 1756 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1757 }
230d2906 1758 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1759 {
1760 exception_print (gdb_stderr, ex);
1761 probe_argc = 0;
1762 }
3bd7e5b7 1763
935676c9
SDJ
1764 /* If get_argument_count throws an exception, probe_argc will be set
1765 to zero. However, if pa->prob does not have arguments, then
1766 get_argument_count will succeed but probe_argc will also be zero.
1767 Both cases happen because of different things, but they are
1768 treated equally here: action will be set to
3bd7e5b7 1769 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1770 if (probe_argc == 2)
1771 action = FULL_RELOAD;
1772 else if (probe_argc < 2)
1773 action = PROBES_INTERFACE_FAILED;
1774
1775 return action;
1776}
1777
1778/* Populate the shared object list by reading the entire list of
1779 shared objects from the inferior. Handle special cases relating
1780 to the first elements of the list. Returns nonzero on success. */
1781
1782static int
1783solist_update_full (struct svr4_info *info)
1784{
1785 free_solib_list (info);
1786 info->solib_list = svr4_current_sos_direct (info);
1787
1788 return 1;
1789}
1790
1791/* Update the shared object list starting from the link-map entry
1792 passed by the linker in the probe's third argument. Returns
1793 nonzero if the list was successfully updated, or zero to indicate
1794 failure. */
1795
1796static int
1797solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1798{
1799 struct so_list *tail;
1800 CORE_ADDR prev_lm;
1801
1802 /* svr4_current_sos_direct contains logic to handle a number of
1803 special cases relating to the first elements of the list. To
1804 avoid duplicating this logic we defer to solist_update_full
1805 if the list is empty. */
1806 if (info->solib_list == NULL)
1807 return 0;
1808
1809 /* Fall back to a full update if we are using a remote target
1810 that does not support incremental transfers. */
1811 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1812 return 0;
1813
1814 /* Walk to the end of the list. */
1815 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1816 /* Nothing. */;
d0e449a1
SM
1817
1818 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1819 prev_lm = li->lm_addr;
f9e14852
GB
1820
1821 /* Read the new objects. */
1822 if (info->using_xfer)
1823 {
1824 struct svr4_library_list library_list;
1825 char annex[64];
1826
1827 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1828 phex_nz (lm, sizeof (lm)),
1829 phex_nz (prev_lm, sizeof (prev_lm)));
1830 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1831 return 0;
1832
1833 tail->next = library_list.head;
1834 }
1835 else
1836 {
1837 struct so_list **link = &tail->next;
1838
1839 /* IGNORE_FIRST may safely be set to zero here because the
1840 above check and deferral to solist_update_full ensures
1841 that this call to svr4_read_so_list will never see the
1842 first element. */
d70cc3ba 1843 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1844 return 0;
1845 }
1846
1847 return 1;
1848}
1849
1850/* Disable the probes-based linker interface and revert to the
1851 original interface. We don't reset the breakpoints as the
1852 ones set up for the probes-based interface are adequate. */
1853
1854static void
d70cc3ba 1855disable_probes_interface (svr4_info *info)
f9e14852 1856{
f9e14852 1857 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1858 "Reverting to original interface."));
f9e14852
GB
1859
1860 free_probes_table (info);
1861 free_solib_list (info);
1862}
1863
1864/* Update the solib list as appropriate when using the
1865 probes-based linker interface. Do nothing if using the
1866 standard interface. */
1867
1868static void
1869svr4_handle_solib_event (void)
1870{
d70cc3ba 1871 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1872 struct probe_and_action *pa;
1873 enum probe_action action;
ad1c917a 1874 struct value *val = NULL;
f9e14852 1875 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1876 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1877
1878 /* Do nothing if not using the probes interface. */
1879 if (info->probes_table == NULL)
1880 return;
1881
1882 /* If anything goes wrong we revert to the original linker
1883 interface. */
d70cc3ba
SM
1884 auto cleanup = make_scope_exit ([info] ()
1885 {
1886 disable_probes_interface (info);
1887 });
f9e14852
GB
1888
1889 pc = regcache_read_pc (get_current_regcache ());
1890 pa = solib_event_probe_at (info, pc);
1891 if (pa == NULL)
d01c5877 1892 return;
f9e14852
GB
1893
1894 action = solib_event_probe_action (pa);
1895 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1896 return;
f9e14852
GB
1897
1898 if (action == DO_NOTHING)
1899 {
d01c5877 1900 cleanup.release ();
f9e14852
GB
1901 return;
1902 }
1903
935676c9 1904 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1905 using find_pc_section. find_pc_section is accelerated by a cache
1906 called the section map. The section map is invalidated every
1907 time a shared library is loaded or unloaded, and if the inferior
1908 is generating a lot of shared library events then the section map
1909 will be updated every time svr4_handle_solib_event is called.
1910 We called find_pc_section in svr4_create_solib_event_breakpoints,
1911 so we can guarantee that the dynamic linker's sections are in the
1912 section map. We can therefore inhibit section map updates across
935676c9 1913 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1914 {
1915 scoped_restore inhibit_updates
1916 = inhibit_section_map_updates (current_program_space);
f9e14852 1917
a70b8144 1918 try
06424eac
TT
1919 {
1920 val = pa->prob->evaluate_argument (1, frame);
1921 }
230d2906 1922 catch (const gdb_exception_error &ex)
06424eac
TT
1923 {
1924 exception_print (gdb_stderr, ex);
1925 val = NULL;
1926 }
f9e14852 1927
06424eac 1928 if (val == NULL)
d01c5877 1929 return;
f9e14852 1930
06424eac
TT
1931 debug_base = value_as_address (val);
1932 if (debug_base == 0)
d01c5877 1933 return;
f9e14852 1934
06424eac
TT
1935 /* Always locate the debug struct, in case it moved. */
1936 info->debug_base = 0;
1937 if (locate_base (info) == 0)
cb736441
GB
1938 {
1939 /* It's possible for the reloc_complete probe to be triggered before
1940 the linker has set the DT_DEBUG pointer (for example, when the
1941 linker has finished relocating an LD_AUDIT library or its
1942 dependencies). Since we can't yet handle libraries from other link
1943 namespaces, we don't lose anything by ignoring them here. */
1944 struct value *link_map_id_val;
1945 try
1946 {
1947 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1948 }
1949 catch (const gdb_exception_error)
1950 {
1951 link_map_id_val = NULL;
1952 }
1953 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1954 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1955 action = DO_NOTHING;
1956 else
1957 return;
1958 }
3bd7e5b7 1959
06424eac
TT
1960 /* GDB does not currently support libraries loaded via dlmopen
1961 into namespaces other than the initial one. We must ignore
1962 any namespace other than the initial namespace here until
1963 support for this is added to GDB. */
1964 if (debug_base != info->debug_base)
1965 action = DO_NOTHING;
f9e14852 1966
06424eac
TT
1967 if (action == UPDATE_OR_RELOAD)
1968 {
a70b8144 1969 try
06424eac
TT
1970 {
1971 val = pa->prob->evaluate_argument (2, frame);
1972 }
230d2906 1973 catch (const gdb_exception_error &ex)
06424eac
TT
1974 {
1975 exception_print (gdb_stderr, ex);
06424eac
TT
1976 return;
1977 }
06424eac
TT
1978
1979 if (val != NULL)
1980 lm = value_as_address (val);
1981
1982 if (lm == 0)
1983 action = FULL_RELOAD;
1984 }
f9e14852 1985
06424eac
TT
1986 /* Resume section map updates. Closing the scope is
1987 sufficient. */
1988 }
f9e14852
GB
1989
1990 if (action == UPDATE_OR_RELOAD)
1991 {
1992 if (!solist_update_incremental (info, lm))
1993 action = FULL_RELOAD;
1994 }
1995
1996 if (action == FULL_RELOAD)
1997 {
1998 if (!solist_update_full (info))
d01c5877 1999 return;
f9e14852
GB
2000 }
2001
d01c5877 2002 cleanup.release ();
f9e14852
GB
2003}
2004
2005/* Helper function for svr4_update_solib_event_breakpoints. */
2006
95da600f
CB
2007static bool
2008svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852
GB
2009{
2010 struct bp_location *loc;
2011
2012 if (b->type != bp_shlib_event)
2013 {
2014 /* Continue iterating. */
95da600f 2015 return false;
f9e14852
GB
2016 }
2017
2018 for (loc = b->loc; loc != NULL; loc = loc->next)
2019 {
2020 struct svr4_info *info;
2021 struct probe_and_action *pa;
2022
09232438 2023 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2024 if (info == NULL || info->probes_table == NULL)
2025 continue;
2026
2027 pa = solib_event_probe_at (info, loc->address);
2028 if (pa == NULL)
2029 continue;
2030
2031 if (pa->action == DO_NOTHING)
2032 {
2033 if (b->enable_state == bp_disabled && stop_on_solib_events)
2034 enable_breakpoint (b);
2035 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2036 disable_breakpoint (b);
2037 }
2038
2039 break;
2040 }
2041
2042 /* Continue iterating. */
95da600f 2043 return false;
f9e14852
GB
2044}
2045
2046/* Enable or disable optional solib event breakpoints as appropriate.
2047 Called whenever stop_on_solib_events is changed. */
2048
2049static void
2050svr4_update_solib_event_breakpoints (void)
2051{
95da600f 2052 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
f9e14852
GB
2053}
2054
2055/* Create and register solib event breakpoints. PROBES is an array
2056 of NUM_PROBES elements, each of which is vector of probes. A
2057 solib event breakpoint will be created and registered for each
2058 probe. */
2059
2060static void
d70cc3ba 2061svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2062 const std::vector<probe *> *probes,
729662a5 2063 struct objfile *objfile)
f9e14852 2064{
45461e0d 2065 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2066 {
2067 enum probe_action action = probe_info[i].action;
f9e14852 2068
45461e0d 2069 for (probe *p : probes[i])
f9e14852 2070 {
935676c9 2071 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2072
2073 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2074 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2075 }
2076 }
2077
2078 svr4_update_solib_event_breakpoints ();
2079}
2080
e661ef01
AH
2081/* Find all the glibc named probes. Only if all of the probes are found, then
2082 create them and return true. Otherwise return false. If WITH_PREFIX is set
2083 then add "rtld" to the front of the probe names. */
2084static bool
2085svr4_find_and_create_probe_breakpoints (svr4_info *info,
2086 struct gdbarch *gdbarch,
2087 struct obj_section *os,
2088 bool with_prefix)
2089{
2090 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2091
2092 for (int i = 0; i < NUM_PROBES; i++)
2093 {
2094 const char *name = probe_info[i].name;
2095 char buf[32];
2096
2097 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2098 version of the probes code in which the probes' names were prefixed
2099 with "rtld_" and the "map_failed" probe did not exist. The locations
2100 of the probes are otherwise the same, so we check for probes with
2101 prefixed names if probes with unprefixed names are not present. */
2102 if (with_prefix)
2103 {
2104 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2105 name = buf;
2106 }
2107
2108 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2109
2110 /* The "map_failed" probe did not exist in early
2111 versions of the probes code in which the probes'
2112 names were prefixed with "rtld_". */
2113 if (with_prefix && streq (name, "rtld_map_failed"))
2114 continue;
2115
2116 /* Ensure at least one probe for the current name was found. */
2117 if (probes[i].empty ())
2118 return false;
2119
2120 /* Ensure probe arguments can be evaluated. */
d90b8f26 2121 for (probe *p : probes[i])
e661ef01 2122 {
e661ef01
AH
2123 if (!p->can_evaluate_arguments ())
2124 return false;
d90b8f26
AH
2125 /* This will fail if the probe is invalid. This has been seen on Arm
2126 due to references to symbols that have been resolved away. */
2127 try
2128 {
2129 p->get_argument_count (gdbarch);
2130 }
2131 catch (const gdb_exception_error &ex)
2132 {
2133 exception_print (gdb_stderr, ex);
2134 warning (_("Initializing probes-based dynamic linker interface "
2135 "failed.\nReverting to original interface."));
2136 return false;
2137 }
e661ef01
AH
2138 }
2139 }
2140
2141 /* All probes found. Now create them. */
2142 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2143 return true;
2144}
2145
f9e14852
GB
2146/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2147 before and after mapping and unmapping shared libraries. The sole
2148 purpose of this method is to allow debuggers to set a breakpoint so
2149 they can track these changes.
2150
2151 Some versions of the glibc dynamic linker contain named probes
2152 to allow more fine grained stopping. Given the address of the
2153 original marker function, this function attempts to find these
2154 probes, and if found, sets breakpoints on those instead. If the
2155 probes aren't found, a single breakpoint is set on the original
2156 marker function. */
2157
2158static void
d70cc3ba 2159svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2160 CORE_ADDR address)
2161{
e661ef01 2162 struct obj_section *os = find_pc_section (address);
f9e14852 2163
e661ef01
AH
2164 if (os == nullptr
2165 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2166 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2167 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2168}
2169
cb457ae2
YQ
2170/* Helper function for gdb_bfd_lookup_symbol. */
2171
2172static int
3953f15c 2173cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2174{
2175 return (strcmp (sym->name, (const char *) data) == 0
2176 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2177}
7f86f058 2178/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2179
2180 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2181 debugger interface, support for arranging for the inferior to hit
2182 a breakpoint after mapping in the shared libraries. This function
2183 enables that breakpoint.
2184
2185 For SunOS, there is a special flag location (in_debugger) which we
2186 set to 1. When the dynamic linker sees this flag set, it will set
2187 a breakpoint at a location known only to itself, after saving the
2188 original contents of that place and the breakpoint address itself,
2189 in it's own internal structures. When we resume the inferior, it
2190 will eventually take a SIGTRAP when it runs into the breakpoint.
2191 We handle this (in a different place) by restoring the contents of
2192 the breakpointed location (which is only known after it stops),
2193 chasing around to locate the shared libraries that have been
2194 loaded, then resuming.
2195
2196 For SVR4, the debugger interface structure contains a member (r_brk)
2197 which is statically initialized at the time the shared library is
2198 built, to the offset of a function (_r_debug_state) which is guaran-
2199 teed to be called once before mapping in a library, and again when
2200 the mapping is complete. At the time we are examining this member,
2201 it contains only the unrelocated offset of the function, so we have
2202 to do our own relocation. Later, when the dynamic linker actually
2203 runs, it relocates r_brk to be the actual address of _r_debug_state().
2204
2205 The debugger interface structure also contains an enumeration which
2206 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2207 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2208 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2209
2210static int
268a4a75 2211enable_break (struct svr4_info *info, int from_tty)
13437d4b 2212{
3b7344d5 2213 struct bound_minimal_symbol msymbol;
bc043ef3 2214 const char * const *bkpt_namep;
13437d4b 2215 asection *interp_sect;
7cd25cfc 2216 CORE_ADDR sym_addr;
13437d4b 2217
6c95b8df
PA
2218 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2219 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2220
7cd25cfc
DJ
2221 /* If we already have a shared library list in the target, and
2222 r_debug contains r_brk, set the breakpoint there - this should
2223 mean r_brk has already been relocated. Assume the dynamic linker
2224 is the object containing r_brk. */
2225
e696b3ad 2226 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2227 sym_addr = 0;
1a816a87
PA
2228 if (info->debug_base && solib_svr4_r_map (info) != 0)
2229 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2230
2231 if (sym_addr != 0)
2232 {
2233 struct obj_section *os;
2234
b36ec657 2235 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2236 (target_gdbarch (),
2237 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2238 sym_addr,
2239 current_top_target ()));
b36ec657 2240
48379de6
DE
2241 /* On at least some versions of Solaris there's a dynamic relocation
2242 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2243 we get control before the dynamic linker has self-relocated.
2244 Check if SYM_ADDR is in a known section, if it is assume we can
2245 trust its value. This is just a heuristic though, it could go away
2246 or be replaced if it's getting in the way.
2247
2248 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2249 however it's spelled in your particular system) is ARM or Thumb.
2250 That knowledge is encoded in the address, if it's Thumb the low bit
2251 is 1. However, we've stripped that info above and it's not clear
2252 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2253 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2254 find_pc_section verifies we know about the address and have some
2255 hope of computing the right kind of breakpoint to use (via
2256 symbol info). It does mean that GDB needs to be pointed at a
2257 non-stripped version of the dynamic linker in order to obtain
2258 information it already knows about. Sigh. */
2259
7cd25cfc
DJ
2260 os = find_pc_section (sym_addr);
2261 if (os != NULL)
2262 {
2263 /* Record the relocated start and end address of the dynamic linker
2264 text and plt section for svr4_in_dynsym_resolve_code. */
2265 bfd *tmp_bfd;
2266 CORE_ADDR load_addr;
2267
2268 tmp_bfd = os->objfile->obfd;
b3b3bada 2269 load_addr = os->objfile->text_section_offset ();
7cd25cfc
DJ
2270
2271 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2272 if (interp_sect)
2273 {
fd361982
AM
2274 info->interp_text_sect_low
2275 = bfd_section_vma (interp_sect) + load_addr;
2276 info->interp_text_sect_high
2277 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2278 }
2279 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2280 if (interp_sect)
2281 {
fd361982
AM
2282 info->interp_plt_sect_low
2283 = bfd_section_vma (interp_sect) + load_addr;
2284 info->interp_plt_sect_high
2285 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2286 }
2287
d70cc3ba 2288 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2289 return 1;
2290 }
2291 }
2292
97ec2c2f 2293 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2294 into the old breakpoint at symbol code. */
17658d46
SM
2295 gdb::optional<gdb::byte_vector> interp_name_holder
2296 = find_program_interpreter ();
2297 if (interp_name_holder)
13437d4b 2298 {
17658d46 2299 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2300 CORE_ADDR load_addr = 0;
2301 int load_addr_found = 0;
2ec9a4f8 2302 int loader_found_in_list = 0;
2f4950cd 2303 struct target_ops *tmp_bfd_target;
13437d4b 2304
7cd25cfc 2305 sym_addr = 0;
13437d4b
KB
2306
2307 /* Now we need to figure out where the dynamic linker was
2308 loaded so that we can load its symbols and place a breakpoint
2309 in the dynamic linker itself.
2310
2311 This address is stored on the stack. However, I've been unable
2312 to find any magic formula to find it for Solaris (appears to
2313 be trivial on GNU/Linux). Therefore, we have to try an alternate
2314 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2315
192b62ce 2316 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2317 try
f1838a98 2318 {
97ec2c2f 2319 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2320 }
230d2906 2321 catch (const gdb_exception &ex)
492d29ea
PA
2322 {
2323 }
492d29ea 2324
13437d4b
KB
2325 if (tmp_bfd == NULL)
2326 goto bkpt_at_symbol;
2327
2f4950cd 2328 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2329 well as BFD operations can be used. target_bfd_reopen
2330 acquires its own reference. */
2331 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2332
f8766ec1
KB
2333 /* On a running target, we can get the dynamic linker's base
2334 address from the shared library table. */
a1fd1ac9 2335 for (struct so_list *so : current_program_space->solibs ())
8ad2fcde 2336 {
97ec2c2f 2337 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2338 {
2339 load_addr_found = 1;
2ec9a4f8 2340 loader_found_in_list = 1;
192b62ce 2341 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2342 break;
2343 }
8ad2fcde
KB
2344 }
2345
8d4e36ba
JB
2346 /* If we were not able to find the base address of the loader
2347 from our so_list, then try using the AT_BASE auxilliary entry. */
2348 if (!load_addr_found)
8b88a78e 2349 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2350 {
f5656ead 2351 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2352
2353 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2354 that `+ load_addr' will overflow CORE_ADDR width not creating
2355 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2356 GDB. */
2357
d182d057 2358 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2359 {
d182d057 2360 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2361 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2362 tmp_bfd_target);
2363
2364 gdb_assert (load_addr < space_size);
2365
2366 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2367 64bit ld.so with 32bit executable, it should not happen. */
2368
2369 if (tmp_entry_point < space_size
2370 && tmp_entry_point + load_addr >= space_size)
2371 load_addr -= space_size;
2372 }
2373
2374 load_addr_found = 1;
2375 }
8d4e36ba 2376
8ad2fcde
KB
2377 /* Otherwise we find the dynamic linker's base address by examining
2378 the current pc (which should point at the entry point for the
8d4e36ba
JB
2379 dynamic linker) and subtracting the offset of the entry point.
2380
2381 This is more fragile than the previous approaches, but is a good
2382 fallback method because it has actually been working well in
2383 most cases. */
8ad2fcde 2384 if (!load_addr_found)
fb14de7b 2385 {
c2250ad1 2386 struct regcache *regcache
5b6d1e4f
PA
2387 = get_thread_arch_regcache (current_inferior ()->process_target (),
2388 inferior_ptid, target_gdbarch ());
433759f7 2389
fb14de7b 2390 load_addr = (regcache_read_pc (regcache)
192b62ce 2391 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2392 }
2ec9a4f8
DJ
2393
2394 if (!loader_found_in_list)
34439770 2395 {
1a816a87
PA
2396 info->debug_loader_name = xstrdup (interp_name);
2397 info->debug_loader_offset_p = 1;
2398 info->debug_loader_offset = load_addr;
e696b3ad 2399 solib_add (NULL, from_tty, auto_solib_add);
34439770 2400 }
13437d4b
KB
2401
2402 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2403 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2404 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2405 if (interp_sect)
2406 {
fd361982
AM
2407 info->interp_text_sect_low
2408 = bfd_section_vma (interp_sect) + load_addr;
2409 info->interp_text_sect_high
2410 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2411 }
192b62ce 2412 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2413 if (interp_sect)
2414 {
fd361982
AM
2415 info->interp_plt_sect_low
2416 = bfd_section_vma (interp_sect) + load_addr;
2417 info->interp_plt_sect_high
2418 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2419 }
2420
2421 /* Now try to set a breakpoint in the dynamic linker. */
2422 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2423 {
192b62ce
TT
2424 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2425 cmp_name_and_sec_flags,
3953f15c 2426 *bkpt_namep);
13437d4b
KB
2427 if (sym_addr != 0)
2428 break;
2429 }
2430
2bbe3cc1
DJ
2431 if (sym_addr != 0)
2432 /* Convert 'sym_addr' from a function pointer to an address.
2433 Because we pass tmp_bfd_target instead of the current
2434 target, this will always produce an unrelocated value. */
f5656ead 2435 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2436 sym_addr,
2437 tmp_bfd_target);
2438
695c3173
TT
2439 /* We're done with both the temporary bfd and target. Closing
2440 the target closes the underlying bfd, because it holds the
2441 only remaining reference. */
460014f5 2442 target_close (tmp_bfd_target);
13437d4b
KB
2443
2444 if (sym_addr != 0)
2445 {
d70cc3ba 2446 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2447 load_addr + sym_addr);
13437d4b
KB
2448 return 1;
2449 }
2450
2451 /* For whatever reason we couldn't set a breakpoint in the dynamic
2452 linker. Warn and drop into the old code. */
2453 bkpt_at_symbol:
82d03102
PG
2454 warning (_("Unable to find dynamic linker breakpoint function.\n"
2455 "GDB will be unable to debug shared library initializers\n"
2456 "and track explicitly loaded dynamic code."));
13437d4b 2457 }
13437d4b 2458
e499d0f1
DJ
2459 /* Scan through the lists of symbols, trying to look up the symbol and
2460 set a breakpoint there. Terminate loop when we/if we succeed. */
2461
2462 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2463 {
2464 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2465 if ((msymbol.minsym != NULL)
77e371c0 2466 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2467 {
77e371c0 2468 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2469 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2470 sym_addr,
8b88a78e 2471 current_top_target ());
d70cc3ba
SM
2472 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2473 sym_addr);
e499d0f1
DJ
2474 return 1;
2475 }
2476 }
13437d4b 2477
17658d46 2478 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2479 {
c6490bf2 2480 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2481 {
c6490bf2 2482 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2483 if ((msymbol.minsym != NULL)
77e371c0 2484 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2485 {
77e371c0 2486 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2487 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2488 sym_addr,
8b88a78e 2489 current_top_target ());
d70cc3ba
SM
2490 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2491 sym_addr);
c6490bf2
KB
2492 return 1;
2493 }
13437d4b
KB
2494 }
2495 }
542c95c2 2496 return 0;
13437d4b
KB
2497}
2498
d1012b8e 2499/* Read the ELF program headers from ABFD. */
e2a44558 2500
d1012b8e
SM
2501static gdb::optional<gdb::byte_vector>
2502read_program_headers_from_bfd (bfd *abfd)
e2a44558 2503{
d1012b8e
SM
2504 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2505 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2506 if (phdrs_size == 0)
2507 return {};
09919ac2 2508
d1012b8e 2509 gdb::byte_vector buf (phdrs_size);
09919ac2 2510 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2511 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2512 return {};
09919ac2
JK
2513
2514 return buf;
b8040f19
JK
2515}
2516
01c30d6e
JK
2517/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2518 exec_bfd. Otherwise return 0.
2519
2520 We relocate all of the sections by the same amount. This
c378eb4e 2521 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2522 According to the System V Application Binary Interface,
2523 Edition 4.1, page 5-5:
2524
2525 ... Though the system chooses virtual addresses for
2526 individual processes, it maintains the segments' relative
2527 positions. Because position-independent code uses relative
85102364 2528 addressing between segments, the difference between
b8040f19
JK
2529 virtual addresses in memory must match the difference
2530 between virtual addresses in the file. The difference
2531 between the virtual address of any segment in memory and
2532 the corresponding virtual address in the file is thus a
2533 single constant value for any one executable or shared
2534 object in a given process. This difference is the base
2535 address. One use of the base address is to relocate the
2536 memory image of the program during dynamic linking.
2537
2538 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2539 ABI and is left unspecified in some of the earlier editions.
2540
2541 Decide if the objfile needs to be relocated. As indicated above, we will
2542 only be here when execution is stopped. But during attachment PC can be at
2543 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2544 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2545 regcache_read_pc would point to the interpreter and not the main executable.
2546
2547 So, to summarize, relocations are necessary when the start address obtained
2548 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2549
09919ac2
JK
2550 [ The astute reader will note that we also test to make sure that
2551 the executable in question has the DYNAMIC flag set. It is my
2552 opinion that this test is unnecessary (undesirable even). It
2553 was added to avoid inadvertent relocation of an executable
2554 whose e_type member in the ELF header is not ET_DYN. There may
2555 be a time in the future when it is desirable to do relocations
2556 on other types of files as well in which case this condition
2557 should either be removed or modified to accomodate the new file
2558 type. - Kevin, Nov 2000. ] */
b8040f19 2559
01c30d6e
JK
2560static int
2561svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2562{
41752192
JK
2563 /* ENTRY_POINT is a possible function descriptor - before
2564 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2565 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2566
2567 if (exec_bfd == NULL)
2568 return 0;
2569
09919ac2
JK
2570 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2571 being executed themselves and PIE (Position Independent Executable)
2572 executables are ET_DYN. */
2573
2574 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2575 return 0;
2576
8b88a78e 2577 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2578 return 0;
2579
8f61baf8 2580 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2581
8f61baf8 2582 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2583 alignment. It is cheaper than the program headers comparison below. */
2584
2585 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2586 {
2587 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2588
2589 /* p_align of PT_LOAD segments does not specify any alignment but
2590 only congruency of addresses:
2591 p_offset % p_align == p_vaddr % p_align
2592 Kernel is free to load the executable with lower alignment. */
2593
8f61baf8 2594 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2595 return 0;
2596 }
2597
2598 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2599 comparing their program headers. If the program headers in the auxilliary
2600 vector do not match the program headers in the executable, then we are
2601 looking at a different file than the one used by the kernel - for
2602 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2603
2604 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2605 {
d1012b8e 2606 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2607 really do not match. */
0a1e94c7 2608 int arch_size;
09919ac2 2609
17658d46
SM
2610 gdb::optional<gdb::byte_vector> phdrs_target
2611 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2612 gdb::optional<gdb::byte_vector> phdrs_binary
2613 = read_program_headers_from_bfd (exec_bfd);
2614 if (phdrs_target && phdrs_binary)
0a1e94c7 2615 {
f5656ead 2616 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2617
2618 /* We are dealing with three different addresses. EXEC_BFD
2619 represents current address in on-disk file. target memory content
2620 may be different from EXEC_BFD as the file may have been prelinked
2621 to a different address after the executable has been loaded.
2622 Moreover the address of placement in target memory can be
3e43a32a
MS
2623 different from what the program headers in target memory say -
2624 this is the goal of PIE.
0a1e94c7
JK
2625
2626 Detected DISPLACEMENT covers both the offsets of PIE placement and
2627 possible new prelink performed after start of the program. Here
2628 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2629 content offset for the verification purpose. */
2630
d1012b8e 2631 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2632 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2633 return 0;
3e43a32a 2634 else if (arch_size == 32
17658d46
SM
2635 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2636 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2637 {
2638 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2639 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2640 CORE_ADDR displacement = 0;
2641 int i;
2642
2643 /* DISPLACEMENT could be found more easily by the difference of
2644 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2645 already have enough information to compute that displacement
2646 with what we've read. */
2647
2648 for (i = 0; i < ehdr2->e_phnum; i++)
2649 if (phdr2[i].p_type == PT_LOAD)
2650 {
2651 Elf32_External_Phdr *phdrp;
2652 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2653 CORE_ADDR vaddr, paddr;
2654 CORE_ADDR displacement_vaddr = 0;
2655 CORE_ADDR displacement_paddr = 0;
2656
17658d46 2657 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2658 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2659 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2660
2661 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2662 byte_order);
2663 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2664
2665 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2666 byte_order);
2667 displacement_paddr = paddr - phdr2[i].p_paddr;
2668
2669 if (displacement_vaddr == displacement_paddr)
2670 displacement = displacement_vaddr;
2671
2672 break;
2673 }
2674
17658d46
SM
2675 /* Now compare program headers from the target and the binary
2676 with optional DISPLACEMENT. */
0a1e94c7 2677
17658d46
SM
2678 for (i = 0;
2679 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2680 i++)
0a1e94c7
JK
2681 {
2682 Elf32_External_Phdr *phdrp;
2683 Elf32_External_Phdr *phdr2p;
2684 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2685 CORE_ADDR vaddr, paddr;
43b8e241 2686 asection *plt2_asect;
0a1e94c7 2687
17658d46 2688 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2689 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2690 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2691 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2692
2693 /* PT_GNU_STACK is an exception by being never relocated by
2694 prelink as its addresses are always zero. */
2695
2696 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2697 continue;
2698
2699 /* Check also other adjustment combinations - PR 11786. */
2700
3e43a32a
MS
2701 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2702 byte_order);
0a1e94c7
JK
2703 vaddr -= displacement;
2704 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2705
3e43a32a
MS
2706 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2707 byte_order);
0a1e94c7
JK
2708 paddr -= displacement;
2709 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2710
2711 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2712 continue;
2713
204b5331
DE
2714 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2715 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2716 Strip also modifies memsz of PT_TLS.
204b5331 2717 See PR 11786. */
c44deb73
SM
2718 if (phdr2[i].p_type == PT_GNU_RELRO
2719 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2720 {
2721 Elf32_External_Phdr tmp_phdr = *phdrp;
2722 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2723
2724 memset (tmp_phdr.p_filesz, 0, 4);
2725 memset (tmp_phdr.p_memsz, 0, 4);
2726 memset (tmp_phdr.p_flags, 0, 4);
2727 memset (tmp_phdr.p_align, 0, 4);
2728 memset (tmp_phdr2.p_filesz, 0, 4);
2729 memset (tmp_phdr2.p_memsz, 0, 4);
2730 memset (tmp_phdr2.p_flags, 0, 4);
2731 memset (tmp_phdr2.p_align, 0, 4);
2732
2733 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2734 == 0)
2735 continue;
2736 }
2737
43b8e241
JK
2738 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2739 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2740 if (plt2_asect)
2741 {
2742 int content2;
2743 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2744 CORE_ADDR filesz;
2745
fd361982 2746 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2747 & SEC_HAS_CONTENTS) != 0;
2748
2749 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2750 byte_order);
2751
2752 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2753 FILESZ is from the in-memory image. */
2754 if (content2)
fd361982 2755 filesz += bfd_section_size (plt2_asect);
43b8e241 2756 else
fd361982 2757 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2758
2759 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2760 filesz);
2761
2762 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2763 continue;
2764 }
2765
d1012b8e 2766 return 0;
0a1e94c7
JK
2767 }
2768 }
3e43a32a 2769 else if (arch_size == 64
17658d46
SM
2770 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2771 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2772 {
2773 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2774 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2775 CORE_ADDR displacement = 0;
2776 int i;
2777
2778 /* DISPLACEMENT could be found more easily by the difference of
2779 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2780 already have enough information to compute that displacement
2781 with what we've read. */
2782
2783 for (i = 0; i < ehdr2->e_phnum; i++)
2784 if (phdr2[i].p_type == PT_LOAD)
2785 {
2786 Elf64_External_Phdr *phdrp;
2787 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2788 CORE_ADDR vaddr, paddr;
2789 CORE_ADDR displacement_vaddr = 0;
2790 CORE_ADDR displacement_paddr = 0;
2791
17658d46 2792 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2793 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2794 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2795
2796 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2797 byte_order);
2798 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2799
2800 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2801 byte_order);
2802 displacement_paddr = paddr - phdr2[i].p_paddr;
2803
2804 if (displacement_vaddr == displacement_paddr)
2805 displacement = displacement_vaddr;
2806
2807 break;
2808 }
2809
2810 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2811
17658d46
SM
2812 for (i = 0;
2813 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2814 i++)
0a1e94c7
JK
2815 {
2816 Elf64_External_Phdr *phdrp;
2817 Elf64_External_Phdr *phdr2p;
2818 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2819 CORE_ADDR vaddr, paddr;
43b8e241 2820 asection *plt2_asect;
0a1e94c7 2821
17658d46 2822 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2823 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2824 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2825 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2826
2827 /* PT_GNU_STACK is an exception by being never relocated by
2828 prelink as its addresses are always zero. */
2829
2830 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2831 continue;
2832
2833 /* Check also other adjustment combinations - PR 11786. */
2834
3e43a32a
MS
2835 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2836 byte_order);
0a1e94c7
JK
2837 vaddr -= displacement;
2838 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2839
3e43a32a
MS
2840 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2841 byte_order);
0a1e94c7
JK
2842 paddr -= displacement;
2843 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2844
2845 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2846 continue;
2847
204b5331
DE
2848 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2849 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2850 Strip also modifies memsz of PT_TLS.
204b5331 2851 See PR 11786. */
c44deb73
SM
2852 if (phdr2[i].p_type == PT_GNU_RELRO
2853 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2854 {
2855 Elf64_External_Phdr tmp_phdr = *phdrp;
2856 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2857
2858 memset (tmp_phdr.p_filesz, 0, 8);
2859 memset (tmp_phdr.p_memsz, 0, 8);
2860 memset (tmp_phdr.p_flags, 0, 4);
2861 memset (tmp_phdr.p_align, 0, 8);
2862 memset (tmp_phdr2.p_filesz, 0, 8);
2863 memset (tmp_phdr2.p_memsz, 0, 8);
2864 memset (tmp_phdr2.p_flags, 0, 4);
2865 memset (tmp_phdr2.p_align, 0, 8);
2866
2867 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2868 == 0)
2869 continue;
2870 }
2871
43b8e241
JK
2872 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2873 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2874 if (plt2_asect)
2875 {
2876 int content2;
2877 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2878 CORE_ADDR filesz;
2879
fd361982 2880 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2881 & SEC_HAS_CONTENTS) != 0;
2882
2883 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2884 byte_order);
2885
2886 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2887 FILESZ is from the in-memory image. */
2888 if (content2)
fd361982 2889 filesz += bfd_section_size (plt2_asect);
43b8e241 2890 else
fd361982 2891 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2892
2893 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2894 filesz);
2895
2896 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2897 continue;
2898 }
2899
d1012b8e 2900 return 0;
0a1e94c7
JK
2901 }
2902 }
2903 else
d1012b8e 2904 return 0;
0a1e94c7 2905 }
09919ac2 2906 }
b8040f19 2907
ccf26247
JK
2908 if (info_verbose)
2909 {
2910 /* It can be printed repeatedly as there is no easy way to check
2911 the executable symbols/file has been already relocated to
2912 displacement. */
2913
2914 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2915 "displacement %s for \"%s\".\n"),
8f61baf8 2916 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2917 bfd_get_filename (exec_bfd));
2918 }
2919
8f61baf8 2920 *displacementp = exec_displacement;
01c30d6e 2921 return 1;
b8040f19
JK
2922}
2923
2924/* Relocate the main executable. This function should be called upon
c378eb4e 2925 stopping the inferior process at the entry point to the program.
b8040f19
JK
2926 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2927 different, the main executable is relocated by the proper amount. */
2928
2929static void
2930svr4_relocate_main_executable (void)
2931{
01c30d6e
JK
2932 CORE_ADDR displacement;
2933
4e5799b6
JK
2934 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2935 probably contains the offsets computed using the PIE displacement
2936 from the previous run, which of course are irrelevant for this run.
2937 So we need to determine the new PIE displacement and recompute the
2938 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2939 already contains pre-computed offsets.
01c30d6e 2940
4e5799b6 2941 If we cannot compute the PIE displacement, either:
01c30d6e 2942
4e5799b6
JK
2943 - The executable is not PIE.
2944
2945 - SYMFILE_OBJFILE does not match the executable started in the target.
2946 This can happen for main executable symbols loaded at the host while
2947 `ld.so --ld-args main-executable' is loaded in the target.
2948
2949 Then we leave the section offsets untouched and use them as is for
2950 this run. Either:
2951
2952 - These section offsets were properly reset earlier, and thus
2953 already contain the correct values. This can happen for instance
2954 when reconnecting via the remote protocol to a target that supports
2955 the `qOffsets' packet.
2956
2957 - The section offsets were not reset earlier, and the best we can
c378eb4e 2958 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2959
2960 if (! svr4_exec_displacement (&displacement))
2961 return;
b8040f19 2962
01c30d6e
JK
2963 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2964 addresses. */
b8040f19
JK
2965
2966 if (symfile_objfile)
e2a44558 2967 {
6a053cb1
TT
2968 section_offsets new_offsets (symfile_objfile->section_offsets.size (),
2969 displacement);
b8040f19 2970 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2971 }
51bee8e9
JK
2972 else if (exec_bfd)
2973 {
2974 asection *asect;
2975
2976 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2977 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 2978 bfd_section_vma (asect) + displacement);
51bee8e9 2979 }
e2a44558
KB
2980}
2981
7f86f058 2982/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2983
2984 For SVR4 executables, this first instruction is either the first
2985 instruction in the dynamic linker (for dynamically linked
2986 executables) or the instruction at "start" for statically linked
2987 executables. For dynamically linked executables, the system
2988 first exec's /lib/libc.so.N, which contains the dynamic linker,
2989 and starts it running. The dynamic linker maps in any needed
2990 shared libraries, maps in the actual user executable, and then
2991 jumps to "start" in the user executable.
2992
7f86f058
PA
2993 We can arrange to cooperate with the dynamic linker to discover the
2994 names of shared libraries that are dynamically linked, and the base
2995 addresses to which they are linked.
13437d4b
KB
2996
2997 This function is responsible for discovering those names and
2998 addresses, and saving sufficient information about them to allow
d2e5c99a 2999 their symbols to be read at a later time. */
13437d4b 3000
e2a44558 3001static void
268a4a75 3002svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3003{
1a816a87
PA
3004 struct svr4_info *info;
3005
d70cc3ba 3006 info = get_svr4_info (current_program_space);
2020b7ab 3007
f9e14852
GB
3008 /* Clear the probes-based interface's state. */
3009 free_probes_table (info);
3010 free_solib_list (info);
3011
e2a44558 3012 /* Relocate the main executable if necessary. */
86e4bafc 3013 svr4_relocate_main_executable ();
e2a44558 3014
c91c8c16
PA
3015 /* No point setting a breakpoint in the dynamic linker if we can't
3016 hit it (e.g., a core file, or a trace file). */
55f6301a 3017 if (!target_has_execution ())
c91c8c16
PA
3018 return;
3019
d5a921c9 3020 if (!svr4_have_link_map_offsets ())
513f5903 3021 return;
d5a921c9 3022
268a4a75 3023 if (!enable_break (info, from_tty))
542c95c2 3024 return;
13437d4b
KB
3025}
3026
3027static void
3028svr4_clear_solib (void)
3029{
6c95b8df
PA
3030 struct svr4_info *info;
3031
d70cc3ba 3032 info = get_svr4_info (current_program_space);
6c95b8df
PA
3033 info->debug_base = 0;
3034 info->debug_loader_offset_p = 0;
3035 info->debug_loader_offset = 0;
3036 xfree (info->debug_loader_name);
3037 info->debug_loader_name = NULL;
13437d4b
KB
3038}
3039
6bb7be43
JB
3040/* Clear any bits of ADDR that wouldn't fit in a target-format
3041 data pointer. "Data pointer" here refers to whatever sort of
3042 address the dynamic linker uses to manage its sections. At the
3043 moment, we don't support shared libraries on any processors where
3044 code and data pointers are different sizes.
3045
3046 This isn't really the right solution. What we really need here is
3047 a way to do arithmetic on CORE_ADDR values that respects the
3048 natural pointer/address correspondence. (For example, on the MIPS,
3049 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3050 sign-extend the value. There, simply truncating the bits above
819844ad 3051 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3052 be a new gdbarch method or something. */
3053static CORE_ADDR
3054svr4_truncate_ptr (CORE_ADDR addr)
3055{
f5656ead 3056 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3057 /* We don't need to truncate anything, and the bit twiddling below
3058 will fail due to overflow problems. */
3059 return addr;
3060 else
f5656ead 3061 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3062}
3063
3064
749499cb
KB
3065static void
3066svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3067 struct target_section *sec)
749499cb 3068{
2b2848e2
DE
3069 bfd *abfd = sec->the_bfd_section->owner;
3070
3071 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3072 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3073}
4b188b9f 3074\f
749499cb 3075
4b188b9f 3076/* Architecture-specific operations. */
6bb7be43 3077
4b188b9f
MK
3078/* Per-architecture data key. */
3079static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3080
4b188b9f 3081struct solib_svr4_ops
e5e2b9ff 3082{
4b188b9f
MK
3083 /* Return a description of the layout of `struct link_map'. */
3084 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3085};
e5e2b9ff 3086
4b188b9f 3087/* Return a default for the architecture-specific operations. */
e5e2b9ff 3088
4b188b9f
MK
3089static void *
3090solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3091{
4b188b9f 3092 struct solib_svr4_ops *ops;
e5e2b9ff 3093
4b188b9f 3094 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3095 ops->fetch_link_map_offsets = NULL;
4b188b9f 3096 return ops;
e5e2b9ff
KB
3097}
3098
4b188b9f 3099/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3100 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3101
21479ded 3102void
e5e2b9ff
KB
3103set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3104 struct link_map_offsets *(*flmo) (void))
21479ded 3105{
19ba03f4
SM
3106 struct solib_svr4_ops *ops
3107 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3108
3109 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3110
3111 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3112 set_gdbarch_iterate_over_objfiles_in_search_order
3113 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3114}
3115
4b188b9f
MK
3116/* Fetch a link_map_offsets structure using the architecture-specific
3117 `struct link_map_offsets' fetcher. */
1c4dcb57 3118
4b188b9f
MK
3119static struct link_map_offsets *
3120svr4_fetch_link_map_offsets (void)
21479ded 3121{
19ba03f4
SM
3122 struct solib_svr4_ops *ops
3123 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3124 solib_svr4_data);
4b188b9f
MK
3125
3126 gdb_assert (ops->fetch_link_map_offsets);
3127 return ops->fetch_link_map_offsets ();
21479ded
KB
3128}
3129
4b188b9f
MK
3130/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3131
3132static int
3133svr4_have_link_map_offsets (void)
3134{
19ba03f4
SM
3135 struct solib_svr4_ops *ops
3136 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3137 solib_svr4_data);
433759f7 3138
4b188b9f
MK
3139 return (ops->fetch_link_map_offsets != NULL);
3140}
3141\f
3142
e4bbbda8
MK
3143/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3144 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3145 with the original SVR4 implementation. */
e4bbbda8
MK
3146
3147/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3148 for an ILP32 SVR4 system. */
d989b283 3149
e4bbbda8
MK
3150struct link_map_offsets *
3151svr4_ilp32_fetch_link_map_offsets (void)
3152{
3153 static struct link_map_offsets lmo;
3154 static struct link_map_offsets *lmp = NULL;
3155
3156 if (lmp == NULL)
3157 {
3158 lmp = &lmo;
3159
e4cd0d6a
MK
3160 lmo.r_version_offset = 0;
3161 lmo.r_version_size = 4;
e4bbbda8 3162 lmo.r_map_offset = 4;
7cd25cfc 3163 lmo.r_brk_offset = 8;
e4cd0d6a 3164 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3165
3166 /* Everything we need is in the first 20 bytes. */
3167 lmo.link_map_size = 20;
3168 lmo.l_addr_offset = 0;
e4bbbda8 3169 lmo.l_name_offset = 4;
cc10cae3 3170 lmo.l_ld_offset = 8;
e4bbbda8 3171 lmo.l_next_offset = 12;
e4bbbda8 3172 lmo.l_prev_offset = 16;
e4bbbda8
MK
3173 }
3174
3175 return lmp;
3176}
3177
3178/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3179 for an LP64 SVR4 system. */
d989b283 3180
e4bbbda8
MK
3181struct link_map_offsets *
3182svr4_lp64_fetch_link_map_offsets (void)
3183{
3184 static struct link_map_offsets lmo;
3185 static struct link_map_offsets *lmp = NULL;
3186
3187 if (lmp == NULL)
3188 {
3189 lmp = &lmo;
3190
e4cd0d6a
MK
3191 lmo.r_version_offset = 0;
3192 lmo.r_version_size = 4;
e4bbbda8 3193 lmo.r_map_offset = 8;
7cd25cfc 3194 lmo.r_brk_offset = 16;
e4cd0d6a 3195 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3196
3197 /* Everything we need is in the first 40 bytes. */
3198 lmo.link_map_size = 40;
3199 lmo.l_addr_offset = 0;
e4bbbda8 3200 lmo.l_name_offset = 8;
cc10cae3 3201 lmo.l_ld_offset = 16;
e4bbbda8 3202 lmo.l_next_offset = 24;
e4bbbda8 3203 lmo.l_prev_offset = 32;
e4bbbda8
MK
3204 }
3205
3206 return lmp;
3207}
7b0fc424
LM
3208
3209/* Build an appropriate `struct link_map_offsets'
3210 for a LP64 CHERI SVR4 system.
3211
3212 The structure, offsets and sizes for CHERI are the following:
3213
3214 struct link_map { size 80
3215 ElfW(Addr) l_addr; offset 0 - size 8
3216 char* l_name; offset 16 - size 16
3217 ElfW(Dyn)* l_ld; offset 32 - size 16
3218 struct link_map* l_next; offset 48 - size 16
3219 struct link_map* l_prev; offset 64 - size 16
3220 };
3221
3222 struct r_debug { size 64
3223 int32_t r_version; offset 0 - size 4
3224 struct link_map* r_map; offset 16 - size 16
3225 ElfW(Addr) r_brk; offset 32 - size 8
3226 enum { offset 40 - size 4
3227 RT_CONSISTENT,
3228 RT_ADD,
3229 RT_DELETE
3230 } r_state;
3231 ElfW(Addr) r_ldbase; offset 48 - size 8
3232 }; */
3233
3234struct link_map_offsets *
3235svr4_lp64_cheri_fetch_link_map_offsets (void)
3236{
3237 static struct link_map_offsets lmo;
3238 static struct link_map_offsets *lmp = NULL;
3239
3240 if (lmp == NULL)
3241 {
3242 lmp = &lmo;
3243
3244 lmo.r_version_offset = 0;
3245 lmo.r_version_size = 4;
3246 lmo.r_map_offset = 16;
3247 lmo.r_brk_offset = 32;
3248 lmo.r_ldsomap_offset = 48;
3249
3250 lmo.link_map_size = 80;
3251 lmo.l_addr_offset = 0;
3252 lmo.l_name_offset = 16;
3253 lmo.l_ld_offset = 32;
3254 lmo.l_next_offset = 48;
3255 lmo.l_prev_offset = 64;
3256 }
3257
3258 return lmp;
3259}
e4bbbda8
MK
3260\f
3261
7d522c90 3262struct target_so_ops svr4_so_ops;
13437d4b 3263
626ca2c0 3264/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3265 different rule for symbol lookup. The lookup begins here in the DSO, not in
3266 the main executable. */
3267
626ca2c0
CB
3268static void
3269svr4_iterate_over_objfiles_in_search_order
3270 (struct gdbarch *gdbarch,
3271 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3272 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3273{
626ca2c0
CB
3274 bool checked_current_objfile = false;
3275 if (current_objfile != nullptr)
61f0d762 3276 {
626ca2c0 3277 bfd *abfd;
61f0d762 3278
626ca2c0
CB
3279 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3280 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3281
626ca2c0
CB
3282 if (current_objfile == symfile_objfile)
3283 abfd = exec_bfd;
3284 else
3285 abfd = current_objfile->obfd;
3286
7ab78ccb
SM
3287 if (abfd != nullptr
3288 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3289 {
3290 checked_current_objfile = true;
3291 if (cb (current_objfile, cb_data) != 0)
3292 return;
3293 }
3294 }
3a40aaa0 3295
626ca2c0
CB
3296 for (objfile *objfile : current_program_space->objfiles ())
3297 {
3298 if (checked_current_objfile && objfile == current_objfile)
3299 continue;
3300 if (cb (objfile, cb_data) != 0)
3301 return;
3302 }
3a40aaa0
UW
3303}
3304
6c265988 3305void _initialize_svr4_solib ();
13437d4b 3306void
6c265988 3307_initialize_svr4_solib ()
13437d4b 3308{
4b188b9f
MK
3309 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3310
749499cb 3311 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3312 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3313 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3314 svr4_so_ops.clear_solib = svr4_clear_solib;
3315 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3316 svr4_so_ops.current_sos = svr4_current_sos;
3317 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3318 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3319 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3320 svr4_so_ops.same = svr4_same;
de18c1d8 3321 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3322 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3323 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3324
3325 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3326}