]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc-tdep.c
gdb/testsuite/
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 66 big-endian IA-64 Quad-Precision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
c378eb4e 148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
0497f5b0
JB
224/* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
c906108c 229
386c036b
MK
230static int
231sparc_structure_or_union_p (const struct type *type)
232{
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
0497f5b0 237 case TYPE_CODE_ARRAY:
386c036b
MK
238 return 1;
239 default:
240 break;
c906108c 241 }
386c036b
MK
242
243 return 0;
c906108c 244}
386c036b
MK
245
246/* Register information. */
247
248static const char *sparc32_register_names[] =
5af923b0 249{
386c036b
MK
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
261};
262
386c036b
MK
263/* Total number of registers. */
264#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 265
386c036b
MK
266/* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269static const char *sparc32_pseudo_register_names[] =
270{
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273};
274
275/* Total number of pseudo registers. */
276#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278/* Return the name of register REGNUM. */
279
280static const char *
d93859e2 281sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
282{
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290}
2d457077 291\f
209bd28e 292/* Construct types for ISA-specific registers. */
2d457077 293
209bd28e
UW
294static struct type *
295sparc_psr_type (struct gdbarch *gdbarch)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 298
209bd28e
UW
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
2d457077 302
e9bb382b 303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
2d457077 309
209bd28e
UW
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314}
315
316static struct type *
317sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 318{
209bd28e
UW
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
e9bb382b 325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
2d457077 347}
386c036b
MK
348
349/* Return the GDB type object for the "standard" data type of data in
c378eb4e 350 register REGNUM. */
386c036b
MK
351
352static struct type *
353sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354{
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 356 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 359 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 362 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 365 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 366
2d457077 367 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 368 return sparc_psr_type (gdbarch);
2d457077
MK
369
370 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 371 return sparc_fsr_type (gdbarch);
2d457077 372
df4df182 373 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
374}
375
05d1431c 376static enum register_status
386c036b
MK
377sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
e1613aba 379 int regnum, gdb_byte *buf)
386c036b 380{
05d1431c
PA
381 enum register_status status;
382
386c036b
MK
383 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
384
385 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
386 status = regcache_raw_read (regcache, regnum, buf);
387 if (status == REG_VALID)
388 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
389 return status;
386c036b
MK
390}
391
392static void
393sparc32_pseudo_register_write (struct gdbarch *gdbarch,
394 struct regcache *regcache,
e1613aba 395 int regnum, const gdb_byte *buf)
386c036b
MK
396{
397 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
398
399 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
400 regcache_raw_write (regcache, regnum, buf);
e1613aba 401 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
402}
403\f
404
49a45ecf
JB
405static CORE_ADDR
406sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
407{
408 /* The ABI requires double-word alignment. */
409 return address & ~0x7;
410}
411
386c036b
MK
412static CORE_ADDR
413sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 414 CORE_ADDR funcaddr,
386c036b
MK
415 struct value **args, int nargs,
416 struct type *value_type,
e4fd649a
UW
417 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
418 struct regcache *regcache)
c906108c 419{
e17a4113
UW
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421
386c036b
MK
422 *bp_addr = sp - 4;
423 *real_pc = funcaddr;
424
d80b854b 425 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 426 {
e1613aba 427 gdb_byte buf[4];
386c036b
MK
428
429 /* This is an UNIMP instruction. */
e17a4113
UW
430 store_unsigned_integer (buf, 4, byte_order,
431 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
432 write_memory (sp - 8, buf, 4);
433 return sp - 8;
c906108c
SS
434 }
435
386c036b
MK
436 return sp - 4;
437}
438
439static CORE_ADDR
440sparc32_store_arguments (struct regcache *regcache, int nargs,
441 struct value **args, CORE_ADDR sp,
442 int struct_return, CORE_ADDR struct_addr)
443{
df4df182 444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
446 /* Number of words in the "parameter array". */
447 int num_elements = 0;
448 int element = 0;
449 int i;
450
451 for (i = 0; i < nargs; i++)
c906108c 452 {
4991999e 453 struct type *type = value_type (args[i]);
386c036b
MK
454 int len = TYPE_LENGTH (type);
455
456 if (sparc_structure_or_union_p (type)
457 || (sparc_floating_p (type) && len == 16))
c906108c 458 {
386c036b
MK
459 /* Structure, Union and Quad-Precision Arguments. */
460 sp -= len;
461
462 /* Use doubleword alignment for these values. That's always
463 correct, and wasting a few bytes shouldn't be a problem. */
464 sp &= ~0x7;
465
0fd88904 466 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
467 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
468 num_elements++;
469 }
470 else if (sparc_floating_p (type))
471 {
472 /* Floating arguments. */
473 gdb_assert (len == 4 || len == 8);
474 num_elements += (len / 4);
c906108c 475 }
c5aa993b
JM
476 else
477 {
386c036b
MK
478 /* Integral and pointer arguments. */
479 gdb_assert (sparc_integral_or_pointer_p (type));
480
481 if (len < 4)
df4df182
UW
482 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
483 args[i]);
386c036b 484 num_elements += ((len + 3) / 4);
c5aa993b 485 }
c906108c 486 }
c906108c 487
386c036b
MK
488 /* Always allocate at least six words. */
489 sp -= max (6, num_elements) * 4;
c906108c 490
386c036b
MK
491 /* The psABI says that "Software convention requires space for the
492 struct/union return value pointer, even if the word is unused." */
493 sp -= 4;
c906108c 494
386c036b
MK
495 /* The psABI says that "Although software convention and the
496 operating system require every stack frame to be doubleword
497 aligned." */
498 sp &= ~0x7;
c906108c 499
386c036b 500 for (i = 0; i < nargs; i++)
c906108c 501 {
0fd88904 502 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 503 struct type *type = value_type (args[i]);
386c036b 504 int len = TYPE_LENGTH (type);
c906108c 505
386c036b 506 gdb_assert (len == 4 || len == 8);
c906108c 507
386c036b
MK
508 if (element < 6)
509 {
510 int regnum = SPARC_O0_REGNUM + element;
c906108c 511
386c036b
MK
512 regcache_cooked_write (regcache, regnum, valbuf);
513 if (len > 4 && element < 5)
514 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
515 }
5af923b0 516
386c036b
MK
517 /* Always store the argument in memory. */
518 write_memory (sp + 4 + element * 4, valbuf, len);
519 element += len / 4;
520 }
c906108c 521
386c036b 522 gdb_assert (element == num_elements);
c906108c 523
386c036b 524 if (struct_return)
c906108c 525 {
e1613aba 526 gdb_byte buf[4];
c906108c 527
e17a4113 528 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
529 write_memory (sp, buf, 4);
530 }
c906108c 531
386c036b 532 return sp;
c906108c
SS
533}
534
386c036b 535static CORE_ADDR
7d9b040b 536sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
537 struct regcache *regcache, CORE_ADDR bp_addr,
538 int nargs, struct value **args, CORE_ADDR sp,
539 int struct_return, CORE_ADDR struct_addr)
c906108c 540{
386c036b
MK
541 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
542
543 /* Set return address. */
544 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
545
546 /* Set up function arguments. */
547 sp = sparc32_store_arguments (regcache, nargs, args, sp,
548 struct_return, struct_addr);
549
550 /* Allocate the 16-word window save area. */
551 sp -= 16 * 4;
c906108c 552
386c036b
MK
553 /* Stack should be doubleword aligned at this point. */
554 gdb_assert (sp % 8 == 0);
c906108c 555
386c036b
MK
556 /* Finally, update the stack pointer. */
557 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
558
559 return sp;
560}
561\f
c906108c 562
386c036b
MK
563/* Use the program counter to determine the contents and size of a
564 breakpoint instruction. Return a pointer to a string of bytes that
565 encode a breakpoint instruction, store the length of the string in
566 *LEN and optionally adjust *PC to point to the correct memory
567 location for inserting the breakpoint. */
568
e1613aba 569static const gdb_byte *
67d57894 570sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 571{
864a1a37 572 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 573
386c036b
MK
574 *len = sizeof (break_insn);
575 return break_insn;
c906108c 576}
386c036b 577\f
c906108c 578
386c036b 579/* Allocate and initialize a frame cache. */
c906108c 580
386c036b
MK
581static struct sparc_frame_cache *
582sparc_alloc_frame_cache (void)
583{
584 struct sparc_frame_cache *cache;
585 int i;
c906108c 586
386c036b 587 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 588
386c036b
MK
589 /* Base address. */
590 cache->base = 0;
591 cache->pc = 0;
c906108c 592
386c036b
MK
593 /* Frameless until proven otherwise. */
594 cache->frameless_p = 1;
595
596 cache->struct_return_p = 0;
597
598 return cache;
599}
600
b0b92586
JB
601/* GCC generates several well-known sequences of instructions at the begining
602 of each function prologue when compiling with -fstack-check. If one of
603 such sequences starts at START_PC, then return the address of the
604 instruction immediately past this sequence. Otherwise, return START_PC. */
605
606static CORE_ADDR
607sparc_skip_stack_check (const CORE_ADDR start_pc)
608{
609 CORE_ADDR pc = start_pc;
610 unsigned long insn;
611 int offset_stack_checking_sequence = 0;
612
613 /* With GCC, all stack checking sequences begin with the same two
614 instructions. */
615
616 /* sethi <some immediate>,%g1 */
617 insn = sparc_fetch_instruction (pc);
618 pc = pc + 4;
619 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
620 return start_pc;
621
622 /* sub %sp, %g1, %g1 */
623 insn = sparc_fetch_instruction (pc);
624 pc = pc + 4;
625 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
626 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
627 return start_pc;
628
629 insn = sparc_fetch_instruction (pc);
630 pc = pc + 4;
631
632 /* First possible sequence:
633 [first two instructions above]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1 - some immediate] */
637 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 /* Valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Second possible sequence: A small number of probes.
645 [first two instructions above]
646 clr [%g1]
647 add %g1, -<some immediate>, %g1
648 clr [%g1]
649 [repeat the two instructions above any (small) number of times]
650 clr [%g1 - some immediate] */
651
652 /* clr [%g1] */
653 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
654 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
655 {
656 while (1)
657 {
658 /* add %g1, -<some immediate>, %g1 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
662 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
663 break;
664
665 /* clr [%g1] */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
670 return start_pc;
671 }
672
673 /* clr [%g1 - some immediate] */
674 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
675 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
676 return start_pc;
677
678 /* We found a valid stack-check sequence, return the new PC. */
679 return pc;
680 }
681
682 /* Third sequence: A probing loop.
683 [first two instructions above]
684 sethi <some immediate>, %g4
685 sub %g1, %g4, %g4
686 cmp %g1, %g4
687 be <disp>
688 add %g1, -<some immediate>, %g1
689 ba <disp>
690 clr [%g1]
691 clr [%g4 - some immediate] */
692
693 /* sethi <some immediate>, %g4 */
694 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
695 {
696 /* sub %g1, %g4, %g4 */
697 insn = sparc_fetch_instruction (pc);
698 pc = pc + 4;
699 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
700 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
701 return start_pc;
702
703 /* cmp %g1, %g4 */
704 insn = sparc_fetch_instruction (pc);
705 pc = pc + 4;
706 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
707 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
708 return start_pc;
709
710 /* be <disp> */
711 insn = sparc_fetch_instruction (pc);
712 pc = pc + 4;
713 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
714 return start_pc;
715
716 /* add %g1, -<some immediate>, %g1 */
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
720 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
721 return start_pc;
722
723 /* ba <disp> */
724 insn = sparc_fetch_instruction (pc);
725 pc = pc + 4;
726 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
727 return start_pc;
728
729 /* clr [%g1] */
730 insn = sparc_fetch_instruction (pc);
731 pc = pc + 4;
732 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
733 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
734 return start_pc;
735
736 /* clr [%g4 - some immediate] */
737 insn = sparc_fetch_instruction (pc);
738 pc = pc + 4;
739 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
740 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
741 return start_pc;
742
743 /* We found a valid stack-check sequence, return the new PC. */
744 return pc;
745 }
746
747 /* No stack check code in our prologue, return the start_pc. */
748 return start_pc;
749}
750
386c036b 751CORE_ADDR
be8626e0
MD
752sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
753 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 754{
be8626e0 755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
756 unsigned long insn;
757 int offset = 0;
c906108c 758 int dest = -1;
c906108c 759
b0b92586
JB
760 pc = sparc_skip_stack_check (pc);
761
386c036b
MK
762 if (current_pc <= pc)
763 return current_pc;
764
765 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
766 SPARC the linker usually defines a symbol (typically
767 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
768 This symbol makes us end up here with PC pointing at the start of
769 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
770 would do our normal prologue analysis, we would probably conclude
771 that we've got a frame when in reality we don't, since the
772 dynamic linker patches up the first PLT with some code that
773 starts with a SAVE instruction. Patch up PC such that it points
774 at the start of our PLT entry. */
775 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
776 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 777
386c036b
MK
778 insn = sparc_fetch_instruction (pc);
779
780 /* Recognize a SETHI insn and record its destination. */
781 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
782 {
783 dest = X_RD (insn);
386c036b
MK
784 offset += 4;
785
786 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
787 }
788
386c036b
MK
789 /* Allow for an arithmetic operation on DEST or %g1. */
790 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
791 && (X_RD (insn) == 1 || X_RD (insn) == dest))
792 {
386c036b 793 offset += 4;
c906108c 794
386c036b 795 insn = sparc_fetch_instruction (pc + 8);
c906108c 796 }
c906108c 797
386c036b
MK
798 /* Check for the SAVE instruction that sets up the frame. */
799 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 800 {
386c036b
MK
801 cache->frameless_p = 0;
802 return pc + offset + 4;
c906108c
SS
803 }
804
805 return pc;
806}
807
386c036b 808static CORE_ADDR
236369e7 809sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
810{
811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 812 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
813}
814
815/* Return PC of first real instruction of the function starting at
816 START_PC. */
f510d44e 817
386c036b 818static CORE_ADDR
6093d2eb 819sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 820{
f510d44e
DM
821 struct symtab_and_line sal;
822 CORE_ADDR func_start, func_end;
386c036b 823 struct sparc_frame_cache cache;
f510d44e
DM
824
825 /* This is the preferred method, find the end of the prologue by
826 using the debugging information. */
827 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
828 {
829 sal = find_pc_line (func_start, 0);
830
831 if (sal.end < func_end
832 && start_pc <= sal.end)
833 return sal.end;
834 }
835
be8626e0 836 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
837
838 /* The psABI says that "Although the first 6 words of arguments
839 reside in registers, the standard stack frame reserves space for
840 them.". It also suggests that a function may use that space to
841 "write incoming arguments 0 to 5" into that space, and that's
842 indeed what GCC seems to be doing. In that case GCC will
843 generate debug information that points to the stack slots instead
844 of the registers, so we should consider the instructions that
845 write out these incoming arguments onto the stack. Of course we
846 only need to do this if we have a stack frame. */
847
848 while (!cache.frameless_p)
849 {
850 unsigned long insn = sparc_fetch_instruction (start_pc);
851
852 /* Recognize instructions that store incoming arguments in
853 %i0...%i5 into the corresponding stack slot. */
854 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
855 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
856 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
857 {
858 start_pc += 4;
859 continue;
860 }
861
862 break;
863 }
864
865 return start_pc;
c906108c
SS
866}
867
386c036b 868/* Normal frames. */
9319a2fe 869
386c036b 870struct sparc_frame_cache *
236369e7 871sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 872{
386c036b 873 struct sparc_frame_cache *cache;
9319a2fe 874
386c036b
MK
875 if (*this_cache)
876 return *this_cache;
c906108c 877
386c036b
MK
878 cache = sparc_alloc_frame_cache ();
879 *this_cache = cache;
c906108c 880
236369e7 881 cache->pc = get_frame_func (this_frame);
386c036b 882 if (cache->pc != 0)
236369e7
JB
883 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
884 get_frame_pc (this_frame), cache);
386c036b
MK
885
886 if (cache->frameless_p)
c906108c 887 {
cbeae229
MK
888 /* This function is frameless, so %fp (%i6) holds the frame
889 pointer for our calling frame. Use %sp (%o6) as this frame's
890 base address. */
891 cache->base =
236369e7 892 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
893 }
894 else
895 {
896 /* For normal frames, %fp (%i6) holds the frame pointer, the
897 base address for the current stack frame. */
898 cache->base =
236369e7 899 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 900 }
c906108c 901
5b2d44a0
MK
902 if (cache->base & 1)
903 cache->base += BIAS;
904
386c036b 905 return cache;
c906108c 906}
c906108c 907
aff37fc1
DM
908static int
909sparc32_struct_return_from_sym (struct symbol *sym)
910{
911 struct type *type = check_typedef (SYMBOL_TYPE (sym));
912 enum type_code code = TYPE_CODE (type);
913
914 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
915 {
916 type = check_typedef (TYPE_TARGET_TYPE (type));
917 if (sparc_structure_or_union_p (type)
918 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
919 return 1;
920 }
921
922 return 0;
923}
924
386c036b 925struct sparc_frame_cache *
236369e7 926sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 927{
386c036b
MK
928 struct sparc_frame_cache *cache;
929 struct symbol *sym;
c906108c 930
386c036b
MK
931 if (*this_cache)
932 return *this_cache;
c906108c 933
236369e7 934 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 935
386c036b
MK
936 sym = find_pc_function (cache->pc);
937 if (sym)
c906108c 938 {
aff37fc1 939 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 940 }
5465445a
JB
941 else
942 {
943 /* There is no debugging information for this function to
944 help us determine whether this function returns a struct
945 or not. So we rely on another heuristic which is to check
946 the instruction at the return address and see if this is
947 an "unimp" instruction. If it is, then it is a struct-return
948 function. */
949 CORE_ADDR pc;
950 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
951
236369e7 952 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
953 if (sparc_is_unimp_insn (pc))
954 cache->struct_return_p = 1;
955 }
c906108c 956
386c036b
MK
957 return cache;
958}
959
960static void
236369e7 961sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
962 struct frame_id *this_id)
963{
964 struct sparc_frame_cache *cache =
236369e7 965 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
966
967 /* This marks the outermost frame. */
968 if (cache->base == 0)
969 return;
970
971 (*this_id) = frame_id_build (cache->base, cache->pc);
972}
c906108c 973
236369e7
JB
974static struct value *
975sparc32_frame_prev_register (struct frame_info *this_frame,
976 void **this_cache, int regnum)
386c036b 977{
e17a4113 978 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 979 struct sparc_frame_cache *cache =
236369e7 980 sparc32_frame_cache (this_frame, this_cache);
c906108c 981
386c036b 982 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 983 {
236369e7 984 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 985
236369e7
JB
986 /* If this functions has a Structure, Union or Quad-Precision
987 return value, we have to skip the UNIMP instruction that encodes
988 the size of the structure. */
989 if (cache->struct_return_p)
990 pc += 4;
386c036b 991
236369e7
JB
992 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
993 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
994 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
995 }
996
42cdca6c
MK
997 /* Handle StackGhost. */
998 {
e17a4113 999 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1000
1001 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1002 {
236369e7
JB
1003 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1004 ULONGEST i7;
1005
1006 /* Read the value in from memory. */
1007 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1008 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1009 }
1010 }
1011
386c036b
MK
1012 /* The previous frame's `local' and `in' registers have been saved
1013 in the register save area. */
1014 if (!cache->frameless_p
1015 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1016 {
236369e7 1017 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1018
236369e7 1019 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1020 }
c906108c 1021
236369e7 1022 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1023 current frame's `in' registers. */
1024 if (!cache->frameless_p
1025 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1026 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1027
236369e7 1028 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1029}
c906108c 1030
386c036b
MK
1031static const struct frame_unwind sparc32_frame_unwind =
1032{
1033 NORMAL_FRAME,
1034 sparc32_frame_this_id,
236369e7
JB
1035 sparc32_frame_prev_register,
1036 NULL,
1037 default_frame_sniffer
386c036b 1038};
386c036b 1039\f
c906108c 1040
386c036b 1041static CORE_ADDR
236369e7 1042sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1043{
1044 struct sparc_frame_cache *cache =
236369e7 1045 sparc32_frame_cache (this_frame, this_cache);
c906108c 1046
386c036b
MK
1047 return cache->base;
1048}
c906108c 1049
386c036b
MK
1050static const struct frame_base sparc32_frame_base =
1051{
1052 &sparc32_frame_unwind,
1053 sparc32_frame_base_address,
1054 sparc32_frame_base_address,
1055 sparc32_frame_base_address
1056};
c906108c 1057
386c036b 1058static struct frame_id
236369e7 1059sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1060{
1061 CORE_ADDR sp;
5af923b0 1062
236369e7 1063 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1064 if (sp & 1)
1065 sp += BIAS;
236369e7 1066 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1067}
1068\f
c906108c 1069
3923a2b2
MK
1070/* Extract a function return value of TYPE from REGCACHE, and copy
1071 that into VALBUF. */
5af923b0 1072
386c036b
MK
1073static void
1074sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1075 gdb_byte *valbuf)
386c036b
MK
1076{
1077 int len = TYPE_LENGTH (type);
e1613aba 1078 gdb_byte buf[8];
c906108c 1079
386c036b
MK
1080 gdb_assert (!sparc_structure_or_union_p (type));
1081 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1082
386c036b 1083 if (sparc_floating_p (type))
5af923b0 1084 {
386c036b
MK
1085 /* Floating return values. */
1086 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1087 if (len > 4)
1088 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1089 memcpy (valbuf, buf, len);
5af923b0
MS
1090 }
1091 else
1092 {
386c036b
MK
1093 /* Integral and pointer return values. */
1094 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1095
386c036b
MK
1096 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1097 if (len > 4)
1098 {
1099 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1100 gdb_assert (len == 8);
1101 memcpy (valbuf, buf, 8);
1102 }
1103 else
1104 {
1105 /* Just stripping off any unused bytes should preserve the
1106 signed-ness just fine. */
1107 memcpy (valbuf, buf + 4 - len, len);
1108 }
1109 }
1110}
c906108c 1111
3923a2b2
MK
1112/* Store the function return value of type TYPE from VALBUF into
1113 REGCACHE. */
c906108c 1114
386c036b
MK
1115static void
1116sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1117 const gdb_byte *valbuf)
386c036b
MK
1118{
1119 int len = TYPE_LENGTH (type);
e1613aba 1120 gdb_byte buf[8];
c906108c 1121
386c036b
MK
1122 gdb_assert (!sparc_structure_or_union_p (type));
1123 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1124 gdb_assert (len <= 8);
c906108c 1125
386c036b
MK
1126 if (sparc_floating_p (type))
1127 {
1128 /* Floating return values. */
1129 memcpy (buf, valbuf, len);
1130 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1131 if (len > 4)
1132 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1133 }
1134 else
c906108c 1135 {
386c036b
MK
1136 /* Integral and pointer return values. */
1137 gdb_assert (sparc_integral_or_pointer_p (type));
1138
1139 if (len > 4)
2757dd86 1140 {
386c036b
MK
1141 gdb_assert (len == 8);
1142 memcpy (buf, valbuf, 8);
1143 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1144 }
1145 else
1146 {
386c036b
MK
1147 /* ??? Do we need to do any sign-extension here? */
1148 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1149 }
386c036b 1150 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1151 }
1152}
1153
b9d4c5ed 1154static enum return_value_convention
c055b101
CV
1155sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1156 struct type *type, struct regcache *regcache,
1157 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1158{
e17a4113
UW
1159 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1160
0a8f48b9
MK
1161 /* The psABI says that "...every stack frame reserves the word at
1162 %fp+64. If a function returns a structure, union, or
1163 quad-precision value, this word should hold the address of the
1164 object into which the return value should be copied." This
1165 guarantees that we can always find the return value, not just
1166 before the function returns. */
1167
b9d4c5ed
MK
1168 if (sparc_structure_or_union_p (type)
1169 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1170 {
1171 if (readbuf)
1172 {
1173 ULONGEST sp;
1174 CORE_ADDR addr;
1175
1176 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1177 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1178 read_memory (addr, readbuf, TYPE_LENGTH (type));
1179 }
1180
1181 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1182 }
b9d4c5ed
MK
1183
1184 if (readbuf)
1185 sparc32_extract_return_value (type, regcache, readbuf);
1186 if (writebuf)
1187 sparc32_store_return_value (type, regcache, writebuf);
1188
1189 return RETURN_VALUE_REGISTER_CONVENTION;
1190}
1191
386c036b
MK
1192static int
1193sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1194{
386c036b
MK
1195 return (sparc_structure_or_union_p (type)
1196 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1197}
c906108c 1198
aff37fc1 1199static int
4a4e5149 1200sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1201{
236369e7 1202 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1203 struct symbol *sym = find_pc_function (pc);
1204
1205 if (sym)
1206 return sparc32_struct_return_from_sym (sym);
1207 return 0;
1208}
1209
f5a9b87d
DM
1210static void
1211sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1212 struct dwarf2_frame_state_reg *reg,
4a4e5149 1213 struct frame_info *this_frame)
f5a9b87d 1214{
aff37fc1
DM
1215 int off;
1216
f5a9b87d
DM
1217 switch (regnum)
1218 {
1219 case SPARC_G0_REGNUM:
1220 /* Since %g0 is always zero, there is no point in saving it, and
1221 people will be inclined omit it from the CFI. Make sure we
1222 don't warn about that. */
1223 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1224 break;
1225 case SPARC_SP_REGNUM:
1226 reg->how = DWARF2_FRAME_REG_CFA;
1227 break;
1228 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1229 case SPARC32_NPC_REGNUM:
1230 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1231 off = 8;
4a4e5149 1232 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1233 off += 4;
1234 if (regnum == SPARC32_NPC_REGNUM)
1235 off += 4;
1236 reg->loc.offset = off;
f5a9b87d
DM
1237 break;
1238 }
1239}
1240
386c036b
MK
1241\f
1242/* The SPARC Architecture doesn't have hardware single-step support,
1243 and most operating systems don't implement it either, so we provide
1244 software single-step mechanism. */
c906108c 1245
386c036b 1246static CORE_ADDR
0b1b3e42 1247sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1248 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1249{
1250 unsigned long insn = sparc_fetch_instruction (pc);
1251 int conditional_p = X_COND (insn) & 0x7;
1252 int branch_p = 0;
1253 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1254
386c036b 1255 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1256 {
386c036b
MK
1257 /* Branch on Integer Register with Prediction (BPr). */
1258 branch_p = 1;
1259 conditional_p = 1;
c906108c 1260 }
386c036b 1261 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1262 {
386c036b
MK
1263 /* Branch on Floating-Point Condition Codes (FBfcc). */
1264 branch_p = 1;
1265 offset = 4 * X_DISP22 (insn);
c906108c 1266 }
386c036b
MK
1267 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1268 {
1269 /* Branch on Floating-Point Condition Codes with Prediction
1270 (FBPfcc). */
1271 branch_p = 1;
1272 offset = 4 * X_DISP19 (insn);
1273 }
1274 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1275 {
1276 /* Branch on Integer Condition Codes (Bicc). */
1277 branch_p = 1;
1278 offset = 4 * X_DISP22 (insn);
1279 }
1280 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1281 {
386c036b
MK
1282 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1283 branch_p = 1;
1284 offset = 4 * X_DISP19 (insn);
c906108c 1285 }
c893be75
MK
1286 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1287 {
1288 /* Trap instruction (TRAP). */
0b1b3e42 1289 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1290 }
386c036b
MK
1291
1292 /* FIXME: Handle DONE and RETRY instructions. */
1293
386c036b 1294 if (branch_p)
c906108c 1295 {
386c036b 1296 if (conditional_p)
c906108c 1297 {
386c036b
MK
1298 /* For conditional branches, return nPC + 4 iff the annul
1299 bit is 1. */
1300 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1301 }
1302 else
1303 {
386c036b
MK
1304 /* For unconditional branches, return the target if its
1305 specified condition is "always" and return nPC + 4 if the
1306 condition is "never". If the annul bit is 1, set *NPC to
1307 zero. */
1308 if (X_COND (insn) == 0x0)
1309 pc = *npc, offset = 4;
1310 if (X_A (insn))
1311 *npc = 0;
1312
1313 gdb_assert (offset != 0);
1314 return pc + offset;
c906108c
SS
1315 }
1316 }
386c036b
MK
1317
1318 return 0;
c906108c
SS
1319}
1320
c893be75 1321static CORE_ADDR
0b1b3e42 1322sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1323{
1324 return 0;
1325}
1326
e6590a1b 1327int
0b1b3e42 1328sparc_software_single_step (struct frame_info *frame)
386c036b 1329{
0b1b3e42 1330 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1331 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1332 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1333 CORE_ADDR npc, nnpc;
c906108c 1334
e0cd558a 1335 CORE_ADDR pc, orig_npc;
c906108c 1336
0b1b3e42
UW
1337 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1338 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1339
e0cd558a 1340 /* Analyze the instruction at PC. */
0b1b3e42 1341 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1342 if (npc != 0)
6c95b8df 1343 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1344
e0cd558a 1345 if (nnpc != 0)
6c95b8df 1346 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1347
e0cd558a
UW
1348 /* Assert that we have set at least one breakpoint, and that
1349 they're not set at the same spot - unless we're going
1350 from here straight to NULL, i.e. a call or jump to 0. */
1351 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1352 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1353
1354 return 1;
386c036b
MK
1355}
1356
1357static void
61a1198a 1358sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1359{
61a1198a 1360 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1361
61a1198a
UW
1362 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1363 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1364}
1365\f
5af923b0 1366
a54124c5
MK
1367/* Return the appropriate register set for the core section identified
1368 by SECT_NAME and SECT_SIZE. */
1369
63807e1d 1370static const struct regset *
a54124c5
MK
1371sparc_regset_from_core_section (struct gdbarch *gdbarch,
1372 const char *sect_name, size_t sect_size)
1373{
1374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1375
c558d81a 1376 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1377 return tdep->gregset;
1378
c558d81a 1379 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1380 return tdep->fpregset;
1381
1382 return NULL;
1383}
1384\f
1385
386c036b
MK
1386static struct gdbarch *
1387sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1388{
1389 struct gdbarch_tdep *tdep;
1390 struct gdbarch *gdbarch;
c906108c 1391
386c036b
MK
1392 /* If there is already a candidate, use it. */
1393 arches = gdbarch_list_lookup_by_info (arches, &info);
1394 if (arches != NULL)
1395 return arches->gdbarch;
c906108c 1396
386c036b 1397 /* Allocate space for the new architecture. */
1390fcc2 1398 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1399 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1400
386c036b
MK
1401 tdep->pc_regnum = SPARC32_PC_REGNUM;
1402 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1403 tdep->step_trap = sparc_step_trap;
386c036b
MK
1404
1405 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1406 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1407
1408 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1409 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1410 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1411 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1412 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1413 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1414
1415 /* Register numbers of various important registers. */
1416 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1417 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1418 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1419
1420 /* Call dummy code. */
49a45ecf 1421 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1422 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1423 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1424 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1425
b9d4c5ed 1426 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1427 set_gdbarch_stabs_argument_has_addr
1428 (gdbarch, sparc32_stabs_argument_has_addr);
1429
1430 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1431
1432 /* Stack grows downward. */
1433 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1434
386c036b 1435 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1436
386c036b 1437 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1438
386c036b 1439 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1440
386c036b
MK
1441 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1442 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1443
236369e7 1444 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1445
386c036b 1446 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1447
386c036b
MK
1448 frame_base_set_default (gdbarch, &sparc32_frame_base);
1449
f5a9b87d
DM
1450 /* Hook in the DWARF CFI frame unwinder. */
1451 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1452 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1453 StackGhost issues have been resolved. */
1454
b2a0b9b2
DM
1455 /* Hook in ABI-specific overrides, if they have been registered. */
1456 gdbarch_init_osabi (info, gdbarch);
1457
236369e7 1458 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1459
a54124c5 1460 /* If we have register sets, enable the generic core file support. */
4c72d57a 1461 if (tdep->gregset)
a54124c5
MK
1462 set_gdbarch_regset_from_core_section (gdbarch,
1463 sparc_regset_from_core_section);
1464
386c036b
MK
1465 return gdbarch;
1466}
1467\f
1468/* Helper functions for dealing with register windows. */
1469
1470void
1471sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1472{
e17a4113
UW
1473 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1475 int offset = 0;
e1613aba 1476 gdb_byte buf[8];
386c036b
MK
1477 int i;
1478
1479 if (sp & 1)
1480 {
1481 /* Registers are 64-bit. */
1482 sp += BIAS;
c906108c 1483
386c036b
MK
1484 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1485 {
1486 if (regnum == i || regnum == -1)
1487 {
1488 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1489
1490 /* Handle StackGhost. */
1491 if (i == SPARC_I7_REGNUM)
1492 {
e17a4113
UW
1493 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1494 ULONGEST i7;
f700a364 1495
e17a4113
UW
1496 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1497 store_unsigned_integer (buf + offset, 8, byte_order,
1498 i7 ^ wcookie);
f700a364
MK
1499 }
1500
386c036b
MK
1501 regcache_raw_supply (regcache, i, buf);
1502 }
1503 }
1504 }
1505 else
c906108c 1506 {
386c036b
MK
1507 /* Registers are 32-bit. Toss any sign-extension of the stack
1508 pointer. */
1509 sp &= 0xffffffffUL;
c906108c 1510
386c036b
MK
1511 /* Clear out the top half of the temporary buffer, and put the
1512 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1513 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1514 {
386c036b
MK
1515 memset (buf, 0, 4);
1516 offset = 4;
1517 }
c906108c 1518
386c036b
MK
1519 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1520 {
1521 if (regnum == i || regnum == -1)
1522 {
1523 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1524 buf + offset, 4);
42cdca6c
MK
1525
1526 /* Handle StackGhost. */
1527 if (i == SPARC_I7_REGNUM)
1528 {
e17a4113
UW
1529 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1530 ULONGEST i7;
42cdca6c 1531
e17a4113
UW
1532 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1533 store_unsigned_integer (buf + offset, 4, byte_order,
1534 i7 ^ wcookie);
42cdca6c
MK
1535 }
1536
386c036b
MK
1537 regcache_raw_supply (regcache, i, buf);
1538 }
c906108c
SS
1539 }
1540 }
c906108c 1541}
c906108c
SS
1542
1543void
386c036b
MK
1544sparc_collect_rwindow (const struct regcache *regcache,
1545 CORE_ADDR sp, int regnum)
c906108c 1546{
e17a4113
UW
1547 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1548 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1549 int offset = 0;
e1613aba 1550 gdb_byte buf[8];
386c036b 1551 int i;
5af923b0 1552
386c036b 1553 if (sp & 1)
5af923b0 1554 {
386c036b
MK
1555 /* Registers are 64-bit. */
1556 sp += BIAS;
c906108c 1557
386c036b
MK
1558 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1559 {
1560 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1561 {
1562 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1563
1564 /* Handle StackGhost. */
1565 if (i == SPARC_I7_REGNUM)
1566 {
e17a4113
UW
1567 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1568 ULONGEST i7;
f700a364 1569
e17a4113
UW
1570 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1571 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1572 }
1573
386c036b
MK
1574 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1575 }
1576 }
5af923b0
MS
1577 }
1578 else
1579 {
386c036b
MK
1580 /* Registers are 32-bit. Toss any sign-extension of the stack
1581 pointer. */
1582 sp &= 0xffffffffUL;
1583
1584 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1585 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1586 offset = 4;
1587
1588 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1589 {
1590 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1591 {
1592 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1593
1594 /* Handle StackGhost. */
1595 if (i == SPARC_I7_REGNUM)
1596 {
e17a4113
UW
1597 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1598 ULONGEST i7;
42cdca6c 1599
e17a4113
UW
1600 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1601 store_unsigned_integer (buf + offset, 4, byte_order,
1602 i7 ^ wcookie);
42cdca6c
MK
1603 }
1604
386c036b
MK
1605 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1606 buf + offset, 4);
1607 }
1608 }
5af923b0 1609 }
c906108c
SS
1610}
1611
386c036b
MK
1612/* Helper functions for dealing with register sets. */
1613
c906108c 1614void
386c036b
MK
1615sparc32_supply_gregset (const struct sparc_gregset *gregset,
1616 struct regcache *regcache,
1617 int regnum, const void *gregs)
c906108c 1618{
e1613aba 1619 const gdb_byte *regs = gregs;
386c036b 1620 int i;
5af923b0 1621
386c036b
MK
1622 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1623 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1624 regs + gregset->r_psr_offset);
c906108c 1625
386c036b
MK
1626 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1627 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1628 regs + gregset->r_pc_offset);
5af923b0 1629
386c036b
MK
1630 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1631 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1632 regs + gregset->r_npc_offset);
5af923b0 1633
386c036b
MK
1634 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1635 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1636 regs + gregset->r_y_offset);
5af923b0 1637
386c036b
MK
1638 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1639 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1640
386c036b 1641 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1642 {
386c036b
MK
1643 int offset = gregset->r_g1_offset;
1644
1645 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1646 {
1647 if (regnum == i || regnum == -1)
1648 regcache_raw_supply (regcache, i, regs + offset);
1649 offset += 4;
1650 }
c906108c 1651 }
386c036b
MK
1652
1653 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1654 {
386c036b
MK
1655 /* Not all of the register set variants include Locals and
1656 Inputs. For those that don't, we read them off the stack. */
1657 if (gregset->r_l0_offset == -1)
1658 {
1659 ULONGEST sp;
1660
1661 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1662 sparc_supply_rwindow (regcache, sp, regnum);
1663 }
1664 else
1665 {
1666 int offset = gregset->r_l0_offset;
1667
1668 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1669 {
1670 if (regnum == i || regnum == -1)
1671 regcache_raw_supply (regcache, i, regs + offset);
1672 offset += 4;
1673 }
1674 }
c906108c
SS
1675 }
1676}
1677
c5aa993b 1678void
386c036b
MK
1679sparc32_collect_gregset (const struct sparc_gregset *gregset,
1680 const struct regcache *regcache,
1681 int regnum, void *gregs)
c906108c 1682{
e1613aba 1683 gdb_byte *regs = gregs;
386c036b 1684 int i;
c5aa993b 1685
386c036b
MK
1686 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1687 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1688 regs + gregset->r_psr_offset);
60054393 1689
386c036b
MK
1690 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1691 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1692 regs + gregset->r_pc_offset);
1693
1694 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1695 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1696 regs + gregset->r_npc_offset);
5af923b0 1697
386c036b
MK
1698 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1699 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1700 regs + gregset->r_y_offset);
1701
1702 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1703 {
386c036b
MK
1704 int offset = gregset->r_g1_offset;
1705
1706 /* %g0 is always zero. */
1707 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1708 {
1709 if (regnum == i || regnum == -1)
1710 regcache_raw_collect (regcache, i, regs + offset);
1711 offset += 4;
1712 }
5af923b0 1713 }
386c036b
MK
1714
1715 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1716 {
386c036b
MK
1717 /* Not all of the register set variants include Locals and
1718 Inputs. For those that don't, we read them off the stack. */
1719 if (gregset->r_l0_offset != -1)
1720 {
1721 int offset = gregset->r_l0_offset;
1722
1723 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1724 {
1725 if (regnum == i || regnum == -1)
1726 regcache_raw_collect (regcache, i, regs + offset);
1727 offset += 4;
1728 }
1729 }
5af923b0 1730 }
c906108c
SS
1731}
1732
c906108c 1733void
386c036b
MK
1734sparc32_supply_fpregset (struct regcache *regcache,
1735 int regnum, const void *fpregs)
c906108c 1736{
e1613aba 1737 const gdb_byte *regs = fpregs;
386c036b 1738 int i;
60054393 1739
386c036b 1740 for (i = 0; i < 32; i++)
c906108c 1741 {
386c036b
MK
1742 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1743 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1744 }
5af923b0 1745
386c036b
MK
1746 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1747 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1748}
1749
386c036b
MK
1750void
1751sparc32_collect_fpregset (const struct regcache *regcache,
1752 int regnum, void *fpregs)
c906108c 1753{
e1613aba 1754 gdb_byte *regs = fpregs;
386c036b 1755 int i;
c906108c 1756
386c036b
MK
1757 for (i = 0; i < 32; i++)
1758 {
1759 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1760 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1761 }
c906108c 1762
386c036b
MK
1763 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1764 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1765}
c906108c 1766\f
c906108c 1767
386c036b 1768/* SunOS 4. */
c906108c 1769
386c036b
MK
1770/* From <machine/reg.h>. */
1771const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1772{
386c036b
MK
1773 0 * 4, /* %psr */
1774 1 * 4, /* %pc */
1775 2 * 4, /* %npc */
1776 3 * 4, /* %y */
1777 -1, /* %wim */
1778 -1, /* %tbr */
1779 4 * 4, /* %g1 */
1780 -1 /* %l0 */
1781};
1782\f
c906108c 1783
386c036b
MK
1784/* Provide a prototype to silence -Wmissing-prototypes. */
1785void _initialize_sparc_tdep (void);
c906108c
SS
1786
1787void
386c036b 1788_initialize_sparc_tdep (void)
c906108c 1789{
386c036b 1790 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1791}