]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c906108c
SS
257 struct type *atype = check_typedef (type);
258
3e3d7139
JG
259 val = (struct value *) xzalloc (sizeof (struct value));
260 val->contents = NULL;
df407dfe 261 val->next = all_values;
c906108c 262 all_values = val;
df407dfe 263 val->type = type;
4754a64e 264 val->enclosing_type = type;
c906108c 265 VALUE_LVAL (val) = not_lval;
42ae5230 266 val->location.address = 0;
1df6926e 267 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
268 val->offset = 0;
269 val->bitpos = 0;
270 val->bitsize = 0;
9ee8fc9d 271 VALUE_REGNUM (val) = -1;
3e3d7139 272 val->lazy = 1;
feb13ab0 273 val->optimized_out = 0;
13c3b5f5 274 val->embedded_offset = 0;
b44d461b 275 val->pointed_to_offset = 0;
c906108c 276 val->modifiable = 1;
42be36b3 277 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
278
279 /* Values start out on the all_values chain. */
280 val->reference_count = 1;
281
c906108c
SS
282 return val;
283}
284
3e3d7139
JG
285/* Allocate the contents of VAL if it has not been allocated yet. */
286
287void
288allocate_value_contents (struct value *val)
289{
290 if (!val->contents)
291 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
292}
293
294/* Allocate a value and its contents for type TYPE. */
295
296struct value *
297allocate_value (struct type *type)
298{
299 struct value *val = allocate_value_lazy (type);
300 allocate_value_contents (val);
301 val->lazy = 0;
302 return val;
303}
304
c906108c 305/* Allocate a value that has the correct length
938f5214 306 for COUNT repetitions of type TYPE. */
c906108c 307
f23631e4 308struct value *
fba45db2 309allocate_repeat_value (struct type *type, int count)
c906108c 310{
c5aa993b 311 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
312 /* FIXME-type-allocation: need a way to free this type when we are
313 done with it. */
e3506a9f
UW
314 struct type *array_type
315 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
316 return allocate_value (array_type);
c906108c
SS
317}
318
5f5233d4
PA
319struct value *
320allocate_computed_value (struct type *type,
321 struct lval_funcs *funcs,
322 void *closure)
323{
324 struct value *v = allocate_value (type);
325 VALUE_LVAL (v) = lval_computed;
326 v->location.computed.funcs = funcs;
327 v->location.computed.closure = closure;
328 set_value_lazy (v, 1);
329
330 return v;
331}
332
df407dfe
AC
333/* Accessor methods. */
334
17cf0ecd
AC
335struct value *
336value_next (struct value *value)
337{
338 return value->next;
339}
340
df407dfe
AC
341struct type *
342value_type (struct value *value)
343{
344 return value->type;
345}
04624583
AC
346void
347deprecated_set_value_type (struct value *value, struct type *type)
348{
349 value->type = type;
350}
df407dfe
AC
351
352int
353value_offset (struct value *value)
354{
355 return value->offset;
356}
f5cf64a7
AC
357void
358set_value_offset (struct value *value, int offset)
359{
360 value->offset = offset;
361}
df407dfe
AC
362
363int
364value_bitpos (struct value *value)
365{
366 return value->bitpos;
367}
9bbda503
AC
368void
369set_value_bitpos (struct value *value, int bit)
370{
371 value->bitpos = bit;
372}
df407dfe
AC
373
374int
375value_bitsize (struct value *value)
376{
377 return value->bitsize;
378}
9bbda503
AC
379void
380set_value_bitsize (struct value *value, int bit)
381{
382 value->bitsize = bit;
383}
df407dfe 384
4ea48cc1
DJ
385struct value *
386value_parent (struct value *value)
387{
388 return value->parent;
389}
390
fc1a4b47 391gdb_byte *
990a07ab
AC
392value_contents_raw (struct value *value)
393{
3e3d7139
JG
394 allocate_value_contents (value);
395 return value->contents + value->embedded_offset;
990a07ab
AC
396}
397
fc1a4b47 398gdb_byte *
990a07ab
AC
399value_contents_all_raw (struct value *value)
400{
3e3d7139
JG
401 allocate_value_contents (value);
402 return value->contents;
990a07ab
AC
403}
404
4754a64e
AC
405struct type *
406value_enclosing_type (struct value *value)
407{
408 return value->enclosing_type;
409}
410
fc1a4b47 411const gdb_byte *
46615f07
AC
412value_contents_all (struct value *value)
413{
414 if (value->lazy)
415 value_fetch_lazy (value);
3e3d7139 416 return value->contents;
46615f07
AC
417}
418
d69fe07e
AC
419int
420value_lazy (struct value *value)
421{
422 return value->lazy;
423}
424
dfa52d88
AC
425void
426set_value_lazy (struct value *value, int val)
427{
428 value->lazy = val;
429}
430
4e5d721f
DE
431int
432value_stack (struct value *value)
433{
434 return value->stack;
435}
436
437void
438set_value_stack (struct value *value, int val)
439{
440 value->stack = val;
441}
442
fc1a4b47 443const gdb_byte *
0fd88904
AC
444value_contents (struct value *value)
445{
446 return value_contents_writeable (value);
447}
448
fc1a4b47 449gdb_byte *
0fd88904
AC
450value_contents_writeable (struct value *value)
451{
452 if (value->lazy)
453 value_fetch_lazy (value);
fc0c53a0 454 return value_contents_raw (value);
0fd88904
AC
455}
456
a6c442d8
MK
457/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
458 this function is different from value_equal; in C the operator ==
459 can return 0 even if the two values being compared are equal. */
460
461int
462value_contents_equal (struct value *val1, struct value *val2)
463{
464 struct type *type1;
465 struct type *type2;
466 int len;
467
468 type1 = check_typedef (value_type (val1));
469 type2 = check_typedef (value_type (val2));
470 len = TYPE_LENGTH (type1);
471 if (len != TYPE_LENGTH (type2))
472 return 0;
473
474 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
475}
476
feb13ab0
AC
477int
478value_optimized_out (struct value *value)
479{
480 return value->optimized_out;
481}
482
483void
484set_value_optimized_out (struct value *value, int val)
485{
486 value->optimized_out = val;
487}
13c3b5f5
AC
488
489int
490value_embedded_offset (struct value *value)
491{
492 return value->embedded_offset;
493}
494
495void
496set_value_embedded_offset (struct value *value, int val)
497{
498 value->embedded_offset = val;
499}
b44d461b
AC
500
501int
502value_pointed_to_offset (struct value *value)
503{
504 return value->pointed_to_offset;
505}
506
507void
508set_value_pointed_to_offset (struct value *value, int val)
509{
510 value->pointed_to_offset = val;
511}
13bb5560 512
5f5233d4
PA
513struct lval_funcs *
514value_computed_funcs (struct value *v)
515{
516 gdb_assert (VALUE_LVAL (v) == lval_computed);
517
518 return v->location.computed.funcs;
519}
520
521void *
522value_computed_closure (struct value *v)
523{
524 gdb_assert (VALUE_LVAL (v) == lval_computed);
525
526 return v->location.computed.closure;
527}
528
13bb5560
AC
529enum lval_type *
530deprecated_value_lval_hack (struct value *value)
531{
532 return &value->lval;
533}
534
42ae5230
TT
535CORE_ADDR
536value_address (struct value *value)
537{
538 if (value->lval == lval_internalvar
539 || value->lval == lval_internalvar_component)
540 return 0;
541 return value->location.address + value->offset;
542}
543
544CORE_ADDR
545value_raw_address (struct value *value)
546{
547 if (value->lval == lval_internalvar
548 || value->lval == lval_internalvar_component)
549 return 0;
550 return value->location.address;
551}
552
553void
554set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 555{
42ae5230
TT
556 gdb_assert (value->lval != lval_internalvar
557 && value->lval != lval_internalvar_component);
558 value->location.address = addr;
13bb5560
AC
559}
560
561struct internalvar **
562deprecated_value_internalvar_hack (struct value *value)
563{
564 return &value->location.internalvar;
565}
566
567struct frame_id *
568deprecated_value_frame_id_hack (struct value *value)
569{
570 return &value->frame_id;
571}
572
573short *
574deprecated_value_regnum_hack (struct value *value)
575{
576 return &value->regnum;
577}
88e3b34b
AC
578
579int
580deprecated_value_modifiable (struct value *value)
581{
582 return value->modifiable;
583}
584void
585deprecated_set_value_modifiable (struct value *value, int modifiable)
586{
587 value->modifiable = modifiable;
588}
990a07ab 589\f
c906108c
SS
590/* Return a mark in the value chain. All values allocated after the
591 mark is obtained (except for those released) are subject to being freed
592 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 593struct value *
fba45db2 594value_mark (void)
c906108c
SS
595{
596 return all_values;
597}
598
828d3400
DJ
599/* Take a reference to VAL. VAL will not be deallocated until all
600 references are released. */
601
602void
603value_incref (struct value *val)
604{
605 val->reference_count++;
606}
607
608/* Release a reference to VAL, which was acquired with value_incref.
609 This function is also called to deallocate values from the value
610 chain. */
611
3e3d7139
JG
612void
613value_free (struct value *val)
614{
615 if (val)
5f5233d4 616 {
828d3400
DJ
617 gdb_assert (val->reference_count > 0);
618 val->reference_count--;
619 if (val->reference_count > 0)
620 return;
621
4ea48cc1
DJ
622 /* If there's an associated parent value, drop our reference to
623 it. */
624 if (val->parent != NULL)
625 value_free (val->parent);
626
5f5233d4
PA
627 if (VALUE_LVAL (val) == lval_computed)
628 {
629 struct lval_funcs *funcs = val->location.computed.funcs;
630
631 if (funcs->free_closure)
632 funcs->free_closure (val);
633 }
634
635 xfree (val->contents);
636 }
3e3d7139
JG
637 xfree (val);
638}
639
c906108c
SS
640/* Free all values allocated since MARK was obtained by value_mark
641 (except for those released). */
642void
f23631e4 643value_free_to_mark (struct value *mark)
c906108c 644{
f23631e4
AC
645 struct value *val;
646 struct value *next;
c906108c
SS
647
648 for (val = all_values; val && val != mark; val = next)
649 {
df407dfe 650 next = val->next;
c906108c
SS
651 value_free (val);
652 }
653 all_values = val;
654}
655
656/* Free all the values that have been allocated (except for those released).
725e88af
DE
657 Call after each command, successful or not.
658 In practice this is called before each command, which is sufficient. */
c906108c
SS
659
660void
fba45db2 661free_all_values (void)
c906108c 662{
f23631e4
AC
663 struct value *val;
664 struct value *next;
c906108c
SS
665
666 for (val = all_values; val; val = next)
667 {
df407dfe 668 next = val->next;
c906108c
SS
669 value_free (val);
670 }
671
672 all_values = 0;
673}
674
675/* Remove VAL from the chain all_values
676 so it will not be freed automatically. */
677
678void
f23631e4 679release_value (struct value *val)
c906108c 680{
f23631e4 681 struct value *v;
c906108c
SS
682
683 if (all_values == val)
684 {
685 all_values = val->next;
686 return;
687 }
688
689 for (v = all_values; v; v = v->next)
690 {
691 if (v->next == val)
692 {
693 v->next = val->next;
694 break;
695 }
696 }
697}
698
699/* Release all values up to mark */
f23631e4
AC
700struct value *
701value_release_to_mark (struct value *mark)
c906108c 702{
f23631e4
AC
703 struct value *val;
704 struct value *next;
c906108c 705
df407dfe
AC
706 for (val = next = all_values; next; next = next->next)
707 if (next->next == mark)
c906108c 708 {
df407dfe
AC
709 all_values = next->next;
710 next->next = NULL;
c906108c
SS
711 return val;
712 }
713 all_values = 0;
714 return val;
715}
716
717/* Return a copy of the value ARG.
718 It contains the same contents, for same memory address,
719 but it's a different block of storage. */
720
f23631e4
AC
721struct value *
722value_copy (struct value *arg)
c906108c 723{
4754a64e 724 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
725 struct value *val;
726
727 if (value_lazy (arg))
728 val = allocate_value_lazy (encl_type);
729 else
730 val = allocate_value (encl_type);
df407dfe 731 val->type = arg->type;
c906108c 732 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 733 val->location = arg->location;
df407dfe
AC
734 val->offset = arg->offset;
735 val->bitpos = arg->bitpos;
736 val->bitsize = arg->bitsize;
1df6926e 737 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 738 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 739 val->lazy = arg->lazy;
feb13ab0 740 val->optimized_out = arg->optimized_out;
13c3b5f5 741 val->embedded_offset = value_embedded_offset (arg);
b44d461b 742 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 743 val->modifiable = arg->modifiable;
d69fe07e 744 if (!value_lazy (val))
c906108c 745 {
990a07ab 746 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 747 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
748
749 }
4ea48cc1
DJ
750 val->parent = arg->parent;
751 if (val->parent)
752 value_incref (val->parent);
5f5233d4
PA
753 if (VALUE_LVAL (val) == lval_computed)
754 {
755 struct lval_funcs *funcs = val->location.computed.funcs;
756
757 if (funcs->copy_closure)
758 val->location.computed.closure = funcs->copy_closure (val);
759 }
c906108c
SS
760 return val;
761}
74bcbdf3
PA
762
763void
764set_value_component_location (struct value *component, struct value *whole)
765{
766 if (VALUE_LVAL (whole) == lval_internalvar)
767 VALUE_LVAL (component) = lval_internalvar_component;
768 else
769 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 770
74bcbdf3 771 component->location = whole->location;
5f5233d4
PA
772 if (VALUE_LVAL (whole) == lval_computed)
773 {
774 struct lval_funcs *funcs = whole->location.computed.funcs;
775
776 if (funcs->copy_closure)
777 component->location.computed.closure = funcs->copy_closure (whole);
778 }
74bcbdf3
PA
779}
780
c906108c
SS
781\f
782/* Access to the value history. */
783
784/* Record a new value in the value history.
785 Returns the absolute history index of the entry.
786 Result of -1 indicates the value was not saved; otherwise it is the
787 value history index of this new item. */
788
789int
f23631e4 790record_latest_value (struct value *val)
c906108c
SS
791{
792 int i;
793
794 /* We don't want this value to have anything to do with the inferior anymore.
795 In particular, "set $1 = 50" should not affect the variable from which
796 the value was taken, and fast watchpoints should be able to assume that
797 a value on the value history never changes. */
d69fe07e 798 if (value_lazy (val))
c906108c
SS
799 value_fetch_lazy (val);
800 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
801 from. This is a bit dubious, because then *&$1 does not just return $1
802 but the current contents of that location. c'est la vie... */
803 val->modifiable = 0;
804 release_value (val);
805
806 /* Here we treat value_history_count as origin-zero
807 and applying to the value being stored now. */
808
809 i = value_history_count % VALUE_HISTORY_CHUNK;
810 if (i == 0)
811 {
f23631e4 812 struct value_history_chunk *new
c5aa993b
JM
813 = (struct value_history_chunk *)
814 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
815 memset (new->values, 0, sizeof new->values);
816 new->next = value_history_chain;
817 value_history_chain = new;
818 }
819
820 value_history_chain->values[i] = val;
821
822 /* Now we regard value_history_count as origin-one
823 and applying to the value just stored. */
824
825 return ++value_history_count;
826}
827
828/* Return a copy of the value in the history with sequence number NUM. */
829
f23631e4 830struct value *
fba45db2 831access_value_history (int num)
c906108c 832{
f23631e4 833 struct value_history_chunk *chunk;
52f0bd74
AC
834 int i;
835 int absnum = num;
c906108c
SS
836
837 if (absnum <= 0)
838 absnum += value_history_count;
839
840 if (absnum <= 0)
841 {
842 if (num == 0)
8a3fe4f8 843 error (_("The history is empty."));
c906108c 844 else if (num == 1)
8a3fe4f8 845 error (_("There is only one value in the history."));
c906108c 846 else
8a3fe4f8 847 error (_("History does not go back to $$%d."), -num);
c906108c
SS
848 }
849 if (absnum > value_history_count)
8a3fe4f8 850 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
851
852 absnum--;
853
854 /* Now absnum is always absolute and origin zero. */
855
856 chunk = value_history_chain;
857 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
858 i > 0; i--)
859 chunk = chunk->next;
860
861 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
862}
863
c906108c 864static void
fba45db2 865show_values (char *num_exp, int from_tty)
c906108c 866{
52f0bd74 867 int i;
f23631e4 868 struct value *val;
c906108c
SS
869 static int num = 1;
870
871 if (num_exp)
872 {
f132ba9d
TJB
873 /* "show values +" should print from the stored position.
874 "show values <exp>" should print around value number <exp>. */
c906108c 875 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 876 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
877 }
878 else
879 {
f132ba9d 880 /* "show values" means print the last 10 values. */
c906108c
SS
881 num = value_history_count - 9;
882 }
883
884 if (num <= 0)
885 num = 1;
886
887 for (i = num; i < num + 10 && i <= value_history_count; i++)
888 {
79a45b7d 889 struct value_print_options opts;
c906108c 890 val = access_value_history (i);
a3f17187 891 printf_filtered (("$%d = "), i);
79a45b7d
TT
892 get_user_print_options (&opts);
893 value_print (val, gdb_stdout, &opts);
a3f17187 894 printf_filtered (("\n"));
c906108c
SS
895 }
896
f132ba9d 897 /* The next "show values +" should start after what we just printed. */
c906108c
SS
898 num += 10;
899
900 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
901 "show values +". If num_exp is null, this is unnecessary, since
902 "show values +" is not useful after "show values". */
c906108c
SS
903 if (from_tty && num_exp)
904 {
905 num_exp[0] = '+';
906 num_exp[1] = '\0';
907 }
908}
909\f
910/* Internal variables. These are variables within the debugger
911 that hold values assigned by debugger commands.
912 The user refers to them with a '$' prefix
913 that does not appear in the variable names stored internally. */
914
4fa62494
UW
915struct internalvar
916{
917 struct internalvar *next;
918 char *name;
4fa62494 919
78267919
UW
920 /* We support various different kinds of content of an internal variable.
921 enum internalvar_kind specifies the kind, and union internalvar_data
922 provides the data associated with this particular kind. */
923
924 enum internalvar_kind
925 {
926 /* The internal variable is empty. */
927 INTERNALVAR_VOID,
928
929 /* The value of the internal variable is provided directly as
930 a GDB value object. */
931 INTERNALVAR_VALUE,
932
933 /* A fresh value is computed via a call-back routine on every
934 access to the internal variable. */
935 INTERNALVAR_MAKE_VALUE,
4fa62494 936
78267919
UW
937 /* The internal variable holds a GDB internal convenience function. */
938 INTERNALVAR_FUNCTION,
939
cab0c772
UW
940 /* The variable holds an integer value. */
941 INTERNALVAR_INTEGER,
942
943 /* The variable holds a pointer value. */
944 INTERNALVAR_POINTER,
78267919
UW
945
946 /* The variable holds a GDB-provided string. */
947 INTERNALVAR_STRING,
948
949 } kind;
4fa62494 950
4fa62494
UW
951 union internalvar_data
952 {
78267919
UW
953 /* A value object used with INTERNALVAR_VALUE. */
954 struct value *value;
955
956 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
957 internalvar_make_value make_value;
958
959 /* The internal function used with INTERNALVAR_FUNCTION. */
960 struct
961 {
962 struct internal_function *function;
963 /* True if this is the canonical name for the function. */
964 int canonical;
965 } fn;
966
cab0c772 967 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
968 struct
969 {
970 /* If type is non-NULL, it will be used as the type to generate
971 a value for this internal variable. If type is NULL, a default
972 integer type for the architecture is used. */
973 struct type *type;
cab0c772
UW
974 LONGEST val;
975 } integer;
976
977 /* A pointer value used with INTERNALVAR_POINTER. */
978 struct
979 {
980 struct type *type;
981 CORE_ADDR val;
982 } pointer;
78267919
UW
983
984 /* A string value used with INTERNALVAR_STRING. */
985 char *string;
4fa62494
UW
986 } u;
987};
988
c906108c
SS
989static struct internalvar *internalvars;
990
53e5f3cf
AS
991/* If the variable does not already exist create it and give it the value given.
992 If no value is given then the default is zero. */
993static void
994init_if_undefined_command (char* args, int from_tty)
995{
996 struct internalvar* intvar;
997
998 /* Parse the expression - this is taken from set_command(). */
999 struct expression *expr = parse_expression (args);
1000 register struct cleanup *old_chain =
1001 make_cleanup (free_current_contents, &expr);
1002
1003 /* Validate the expression.
1004 Was the expression an assignment?
1005 Or even an expression at all? */
1006 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1007 error (_("Init-if-undefined requires an assignment expression."));
1008
1009 /* Extract the variable from the parsed expression.
1010 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1011 if (expr->elts[1].opcode != OP_INTERNALVAR)
1012 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1013 intvar = expr->elts[2].internalvar;
1014
1015 /* Only evaluate the expression if the lvalue is void.
1016 This may still fail if the expresssion is invalid. */
78267919 1017 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1018 evaluate_expression (expr);
1019
1020 do_cleanups (old_chain);
1021}
1022
1023
c906108c
SS
1024/* Look up an internal variable with name NAME. NAME should not
1025 normally include a dollar sign.
1026
1027 If the specified internal variable does not exist,
c4a3d09a 1028 the return value is NULL. */
c906108c
SS
1029
1030struct internalvar *
bc3b79fd 1031lookup_only_internalvar (const char *name)
c906108c 1032{
52f0bd74 1033 struct internalvar *var;
c906108c
SS
1034
1035 for (var = internalvars; var; var = var->next)
5cb316ef 1036 if (strcmp (var->name, name) == 0)
c906108c
SS
1037 return var;
1038
c4a3d09a
MF
1039 return NULL;
1040}
1041
1042
1043/* Create an internal variable with name NAME and with a void value.
1044 NAME should not normally include a dollar sign. */
1045
1046struct internalvar *
bc3b79fd 1047create_internalvar (const char *name)
c4a3d09a
MF
1048{
1049 struct internalvar *var;
c906108c 1050 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1051 var->name = concat (name, (char *)NULL);
78267919 1052 var->kind = INTERNALVAR_VOID;
c906108c
SS
1053 var->next = internalvars;
1054 internalvars = var;
1055 return var;
1056}
1057
4aa995e1
PA
1058/* Create an internal variable with name NAME and register FUN as the
1059 function that value_of_internalvar uses to create a value whenever
1060 this variable is referenced. NAME should not normally include a
1061 dollar sign. */
1062
1063struct internalvar *
1064create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1065{
4fa62494 1066 struct internalvar *var = create_internalvar (name);
78267919
UW
1067 var->kind = INTERNALVAR_MAKE_VALUE;
1068 var->u.make_value = fun;
4aa995e1
PA
1069 return var;
1070}
c4a3d09a
MF
1071
1072/* Look up an internal variable with name NAME. NAME should not
1073 normally include a dollar sign.
1074
1075 If the specified internal variable does not exist,
1076 one is created, with a void value. */
1077
1078struct internalvar *
bc3b79fd 1079lookup_internalvar (const char *name)
c4a3d09a
MF
1080{
1081 struct internalvar *var;
1082
1083 var = lookup_only_internalvar (name);
1084 if (var)
1085 return var;
1086
1087 return create_internalvar (name);
1088}
1089
78267919
UW
1090/* Return current value of internal variable VAR. For variables that
1091 are not inherently typed, use a value type appropriate for GDBARCH. */
1092
f23631e4 1093struct value *
78267919 1094value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1095{
f23631e4 1096 struct value *val;
c906108c 1097
78267919 1098 switch (var->kind)
5f5233d4 1099 {
78267919
UW
1100 case INTERNALVAR_VOID:
1101 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1102 break;
4fa62494 1103
78267919
UW
1104 case INTERNALVAR_FUNCTION:
1105 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1106 break;
4fa62494 1107
cab0c772
UW
1108 case INTERNALVAR_INTEGER:
1109 if (!var->u.integer.type)
78267919 1110 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1111 var->u.integer.val);
78267919 1112 else
cab0c772
UW
1113 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1114 break;
1115
1116 case INTERNALVAR_POINTER:
1117 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1118 break;
4fa62494 1119
78267919
UW
1120 case INTERNALVAR_STRING:
1121 val = value_cstring (var->u.string, strlen (var->u.string),
1122 builtin_type (gdbarch)->builtin_char);
1123 break;
4fa62494 1124
78267919
UW
1125 case INTERNALVAR_VALUE:
1126 val = value_copy (var->u.value);
4aa995e1
PA
1127 if (value_lazy (val))
1128 value_fetch_lazy (val);
78267919 1129 break;
4aa995e1 1130
78267919
UW
1131 case INTERNALVAR_MAKE_VALUE:
1132 val = (*var->u.make_value) (gdbarch, var);
1133 break;
1134
1135 default:
1136 internal_error (__FILE__, __LINE__, "bad kind");
1137 }
1138
1139 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1140 on this value go back to affect the original internal variable.
1141
1142 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1143 no underlying modifyable state in the internal variable.
1144
1145 Likewise, if the variable's value is a computed lvalue, we want
1146 references to it to produce another computed lvalue, where
1147 references and assignments actually operate through the
1148 computed value's functions.
1149
1150 This means that internal variables with computed values
1151 behave a little differently from other internal variables:
1152 assignments to them don't just replace the previous value
1153 altogether. At the moment, this seems like the behavior we
1154 want. */
1155
1156 if (var->kind != INTERNALVAR_MAKE_VALUE
1157 && val->lval != lval_computed)
1158 {
1159 VALUE_LVAL (val) = lval_internalvar;
1160 VALUE_INTERNALVAR (val) = var;
5f5233d4 1161 }
d3c139e9 1162
4fa62494
UW
1163 return val;
1164}
d3c139e9 1165
4fa62494
UW
1166int
1167get_internalvar_integer (struct internalvar *var, LONGEST *result)
1168{
78267919 1169 switch (var->kind)
4fa62494 1170 {
cab0c772
UW
1171 case INTERNALVAR_INTEGER:
1172 *result = var->u.integer.val;
1173 return 1;
d3c139e9 1174
4fa62494
UW
1175 default:
1176 return 0;
1177 }
1178}
d3c139e9 1179
4fa62494
UW
1180static int
1181get_internalvar_function (struct internalvar *var,
1182 struct internal_function **result)
1183{
78267919 1184 switch (var->kind)
d3c139e9 1185 {
78267919
UW
1186 case INTERNALVAR_FUNCTION:
1187 *result = var->u.fn.function;
4fa62494 1188 return 1;
d3c139e9 1189
4fa62494
UW
1190 default:
1191 return 0;
1192 }
c906108c
SS
1193}
1194
1195void
fba45db2 1196set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1197 int bitsize, struct value *newval)
c906108c 1198{
4fa62494 1199 gdb_byte *addr;
c906108c 1200
78267919 1201 switch (var->kind)
4fa62494 1202 {
78267919
UW
1203 case INTERNALVAR_VALUE:
1204 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1205
1206 if (bitsize)
50810684 1207 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1208 value_as_long (newval), bitpos, bitsize);
1209 else
1210 memcpy (addr + offset, value_contents (newval),
1211 TYPE_LENGTH (value_type (newval)));
1212 break;
78267919
UW
1213
1214 default:
1215 /* We can never get a component of any other kind. */
1216 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1217 }
c906108c
SS
1218}
1219
1220void
f23631e4 1221set_internalvar (struct internalvar *var, struct value *val)
c906108c 1222{
78267919 1223 enum internalvar_kind new_kind;
4fa62494 1224 union internalvar_data new_data = { 0 };
c906108c 1225
78267919 1226 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1227 error (_("Cannot overwrite convenience function %s"), var->name);
1228
4fa62494 1229 /* Prepare new contents. */
78267919 1230 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1231 {
1232 case TYPE_CODE_VOID:
78267919 1233 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1234 break;
1235
1236 case TYPE_CODE_INTERNAL_FUNCTION:
1237 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1238 new_kind = INTERNALVAR_FUNCTION;
1239 get_internalvar_function (VALUE_INTERNALVAR (val),
1240 &new_data.fn.function);
1241 /* Copies created here are never canonical. */
4fa62494
UW
1242 break;
1243
1244 case TYPE_CODE_INT:
cab0c772
UW
1245 new_kind = INTERNALVAR_INTEGER;
1246 new_data.integer.type = value_type (val);
1247 new_data.integer.val = value_as_long (val);
4fa62494
UW
1248 break;
1249
1250 case TYPE_CODE_PTR:
cab0c772
UW
1251 new_kind = INTERNALVAR_POINTER;
1252 new_data.pointer.type = value_type (val);
1253 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1254 break;
1255
1256 default:
78267919
UW
1257 new_kind = INTERNALVAR_VALUE;
1258 new_data.value = value_copy (val);
1259 new_data.value->modifiable = 1;
4fa62494
UW
1260
1261 /* Force the value to be fetched from the target now, to avoid problems
1262 later when this internalvar is referenced and the target is gone or
1263 has changed. */
78267919
UW
1264 if (value_lazy (new_data.value))
1265 value_fetch_lazy (new_data.value);
4fa62494
UW
1266
1267 /* Release the value from the value chain to prevent it from being
1268 deleted by free_all_values. From here on this function should not
1269 call error () until new_data is installed into the var->u to avoid
1270 leaking memory. */
78267919 1271 release_value (new_data.value);
4fa62494
UW
1272 break;
1273 }
1274
1275 /* Clean up old contents. */
1276 clear_internalvar (var);
1277
1278 /* Switch over. */
78267919 1279 var->kind = new_kind;
4fa62494 1280 var->u = new_data;
c906108c
SS
1281 /* End code which must not call error(). */
1282}
1283
4fa62494
UW
1284void
1285set_internalvar_integer (struct internalvar *var, LONGEST l)
1286{
1287 /* Clean up old contents. */
1288 clear_internalvar (var);
1289
cab0c772
UW
1290 var->kind = INTERNALVAR_INTEGER;
1291 var->u.integer.type = NULL;
1292 var->u.integer.val = l;
78267919
UW
1293}
1294
1295void
1296set_internalvar_string (struct internalvar *var, const char *string)
1297{
1298 /* Clean up old contents. */
1299 clear_internalvar (var);
1300
1301 var->kind = INTERNALVAR_STRING;
1302 var->u.string = xstrdup (string);
4fa62494
UW
1303}
1304
1305static void
1306set_internalvar_function (struct internalvar *var, struct internal_function *f)
1307{
1308 /* Clean up old contents. */
1309 clear_internalvar (var);
1310
78267919
UW
1311 var->kind = INTERNALVAR_FUNCTION;
1312 var->u.fn.function = f;
1313 var->u.fn.canonical = 1;
1314 /* Variables installed here are always the canonical version. */
4fa62494
UW
1315}
1316
1317void
1318clear_internalvar (struct internalvar *var)
1319{
1320 /* Clean up old contents. */
78267919 1321 switch (var->kind)
4fa62494 1322 {
78267919
UW
1323 case INTERNALVAR_VALUE:
1324 value_free (var->u.value);
1325 break;
1326
1327 case INTERNALVAR_STRING:
1328 xfree (var->u.string);
4fa62494
UW
1329 break;
1330
1331 default:
4fa62494
UW
1332 break;
1333 }
1334
78267919
UW
1335 /* Reset to void kind. */
1336 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1337}
1338
c906108c 1339char *
fba45db2 1340internalvar_name (struct internalvar *var)
c906108c
SS
1341{
1342 return var->name;
1343}
1344
4fa62494
UW
1345static struct internal_function *
1346create_internal_function (const char *name,
1347 internal_function_fn handler, void *cookie)
bc3b79fd 1348{
bc3b79fd
TJB
1349 struct internal_function *ifn = XNEW (struct internal_function);
1350 ifn->name = xstrdup (name);
1351 ifn->handler = handler;
1352 ifn->cookie = cookie;
4fa62494 1353 return ifn;
bc3b79fd
TJB
1354}
1355
1356char *
1357value_internal_function_name (struct value *val)
1358{
4fa62494
UW
1359 struct internal_function *ifn;
1360 int result;
1361
1362 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1363 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1364 gdb_assert (result);
1365
bc3b79fd
TJB
1366 return ifn->name;
1367}
1368
1369struct value *
d452c4bc
UW
1370call_internal_function (struct gdbarch *gdbarch,
1371 const struct language_defn *language,
1372 struct value *func, int argc, struct value **argv)
bc3b79fd 1373{
4fa62494
UW
1374 struct internal_function *ifn;
1375 int result;
1376
1377 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1378 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1379 gdb_assert (result);
1380
d452c4bc 1381 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1382}
1383
1384/* The 'function' command. This does nothing -- it is just a
1385 placeholder to let "help function NAME" work. This is also used as
1386 the implementation of the sub-command that is created when
1387 registering an internal function. */
1388static void
1389function_command (char *command, int from_tty)
1390{
1391 /* Do nothing. */
1392}
1393
1394/* Clean up if an internal function's command is destroyed. */
1395static void
1396function_destroyer (struct cmd_list_element *self, void *ignore)
1397{
1398 xfree (self->name);
1399 xfree (self->doc);
1400}
1401
1402/* Add a new internal function. NAME is the name of the function; DOC
1403 is a documentation string describing the function. HANDLER is
1404 called when the function is invoked. COOKIE is an arbitrary
1405 pointer which is passed to HANDLER and is intended for "user
1406 data". */
1407void
1408add_internal_function (const char *name, const char *doc,
1409 internal_function_fn handler, void *cookie)
1410{
1411 struct cmd_list_element *cmd;
4fa62494 1412 struct internal_function *ifn;
bc3b79fd 1413 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1414
1415 ifn = create_internal_function (name, handler, cookie);
1416 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1417
1418 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1419 &functionlist);
1420 cmd->destroyer = function_destroyer;
1421}
1422
ae5a43e0
DJ
1423/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1424 prevent cycles / duplicates. */
1425
4e7a5ef5 1426void
ae5a43e0
DJ
1427preserve_one_value (struct value *value, struct objfile *objfile,
1428 htab_t copied_types)
1429{
1430 if (TYPE_OBJFILE (value->type) == objfile)
1431 value->type = copy_type_recursive (objfile, value->type, copied_types);
1432
1433 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1434 value->enclosing_type = copy_type_recursive (objfile,
1435 value->enclosing_type,
1436 copied_types);
1437}
1438
78267919
UW
1439/* Likewise for internal variable VAR. */
1440
1441static void
1442preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1443 htab_t copied_types)
1444{
1445 switch (var->kind)
1446 {
cab0c772
UW
1447 case INTERNALVAR_INTEGER:
1448 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1449 var->u.integer.type
1450 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1451 break;
1452
1453 case INTERNALVAR_POINTER:
1454 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1455 var->u.pointer.type
1456 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1457 break;
1458
1459 case INTERNALVAR_VALUE:
1460 preserve_one_value (var->u.value, objfile, copied_types);
1461 break;
1462 }
1463}
1464
ae5a43e0
DJ
1465/* Update the internal variables and value history when OBJFILE is
1466 discarded; we must copy the types out of the objfile. New global types
1467 will be created for every convenience variable which currently points to
1468 this objfile's types, and the convenience variables will be adjusted to
1469 use the new global types. */
c906108c
SS
1470
1471void
ae5a43e0 1472preserve_values (struct objfile *objfile)
c906108c 1473{
ae5a43e0
DJ
1474 htab_t copied_types;
1475 struct value_history_chunk *cur;
52f0bd74 1476 struct internalvar *var;
a08702d6 1477 struct value *val;
ae5a43e0 1478 int i;
c906108c 1479
ae5a43e0
DJ
1480 /* Create the hash table. We allocate on the objfile's obstack, since
1481 it is soon to be deleted. */
1482 copied_types = create_copied_types_hash (objfile);
1483
1484 for (cur = value_history_chain; cur; cur = cur->next)
1485 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1486 if (cur->values[i])
1487 preserve_one_value (cur->values[i], objfile, copied_types);
1488
1489 for (var = internalvars; var; var = var->next)
78267919 1490 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1491
4e7a5ef5 1492 preserve_python_values (objfile, copied_types);
a08702d6 1493
ae5a43e0 1494 htab_delete (copied_types);
c906108c
SS
1495}
1496
1497static void
fba45db2 1498show_convenience (char *ignore, int from_tty)
c906108c 1499{
e17c207e 1500 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1501 struct internalvar *var;
c906108c 1502 int varseen = 0;
79a45b7d 1503 struct value_print_options opts;
c906108c 1504
79a45b7d 1505 get_user_print_options (&opts);
c906108c
SS
1506 for (var = internalvars; var; var = var->next)
1507 {
c906108c
SS
1508 if (!varseen)
1509 {
1510 varseen = 1;
1511 }
a3f17187 1512 printf_filtered (("$%s = "), var->name);
78267919 1513 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1514 &opts);
a3f17187 1515 printf_filtered (("\n"));
c906108c
SS
1516 }
1517 if (!varseen)
a3f17187
AC
1518 printf_unfiltered (_("\
1519No debugger convenience variables now defined.\n\
c906108c 1520Convenience variables have names starting with \"$\";\n\
a3f17187 1521use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1522}
1523\f
1524/* Extract a value as a C number (either long or double).
1525 Knows how to convert fixed values to double, or
1526 floating values to long.
1527 Does not deallocate the value. */
1528
1529LONGEST
f23631e4 1530value_as_long (struct value *val)
c906108c
SS
1531{
1532 /* This coerces arrays and functions, which is necessary (e.g.
1533 in disassemble_command). It also dereferences references, which
1534 I suspect is the most logical thing to do. */
994b9211 1535 val = coerce_array (val);
0fd88904 1536 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1537}
1538
1539DOUBLEST
f23631e4 1540value_as_double (struct value *val)
c906108c
SS
1541{
1542 DOUBLEST foo;
1543 int inv;
c5aa993b 1544
0fd88904 1545 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1546 if (inv)
8a3fe4f8 1547 error (_("Invalid floating value found in program."));
c906108c
SS
1548 return foo;
1549}
4ef30785 1550
4478b372
JB
1551/* Extract a value as a C pointer. Does not deallocate the value.
1552 Note that val's type may not actually be a pointer; value_as_long
1553 handles all the cases. */
c906108c 1554CORE_ADDR
f23631e4 1555value_as_address (struct value *val)
c906108c 1556{
50810684
UW
1557 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1558
c906108c
SS
1559 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1560 whether we want this to be true eventually. */
1561#if 0
bf6ae464 1562 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1563 non-address (e.g. argument to "signal", "info break", etc.), or
1564 for pointers to char, in which the low bits *are* significant. */
50810684 1565 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1566#else
f312f057
JB
1567
1568 /* There are several targets (IA-64, PowerPC, and others) which
1569 don't represent pointers to functions as simply the address of
1570 the function's entry point. For example, on the IA-64, a
1571 function pointer points to a two-word descriptor, generated by
1572 the linker, which contains the function's entry point, and the
1573 value the IA-64 "global pointer" register should have --- to
1574 support position-independent code. The linker generates
1575 descriptors only for those functions whose addresses are taken.
1576
1577 On such targets, it's difficult for GDB to convert an arbitrary
1578 function address into a function pointer; it has to either find
1579 an existing descriptor for that function, or call malloc and
1580 build its own. On some targets, it is impossible for GDB to
1581 build a descriptor at all: the descriptor must contain a jump
1582 instruction; data memory cannot be executed; and code memory
1583 cannot be modified.
1584
1585 Upon entry to this function, if VAL is a value of type `function'
1586 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1587 value_address (val) is the address of the function. This is what
f312f057
JB
1588 you'll get if you evaluate an expression like `main'. The call
1589 to COERCE_ARRAY below actually does all the usual unary
1590 conversions, which includes converting values of type `function'
1591 to `pointer to function'. This is the challenging conversion
1592 discussed above. Then, `unpack_long' will convert that pointer
1593 back into an address.
1594
1595 So, suppose the user types `disassemble foo' on an architecture
1596 with a strange function pointer representation, on which GDB
1597 cannot build its own descriptors, and suppose further that `foo'
1598 has no linker-built descriptor. The address->pointer conversion
1599 will signal an error and prevent the command from running, even
1600 though the next step would have been to convert the pointer
1601 directly back into the same address.
1602
1603 The following shortcut avoids this whole mess. If VAL is a
1604 function, just return its address directly. */
df407dfe
AC
1605 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1606 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1607 return value_address (val);
f312f057 1608
994b9211 1609 val = coerce_array (val);
fc0c74b1
AC
1610
1611 /* Some architectures (e.g. Harvard), map instruction and data
1612 addresses onto a single large unified address space. For
1613 instance: An architecture may consider a large integer in the
1614 range 0x10000000 .. 0x1000ffff to already represent a data
1615 addresses (hence not need a pointer to address conversion) while
1616 a small integer would still need to be converted integer to
1617 pointer to address. Just assume such architectures handle all
1618 integer conversions in a single function. */
1619
1620 /* JimB writes:
1621
1622 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1623 must admonish GDB hackers to make sure its behavior matches the
1624 compiler's, whenever possible.
1625
1626 In general, I think GDB should evaluate expressions the same way
1627 the compiler does. When the user copies an expression out of
1628 their source code and hands it to a `print' command, they should
1629 get the same value the compiler would have computed. Any
1630 deviation from this rule can cause major confusion and annoyance,
1631 and needs to be justified carefully. In other words, GDB doesn't
1632 really have the freedom to do these conversions in clever and
1633 useful ways.
1634
1635 AndrewC pointed out that users aren't complaining about how GDB
1636 casts integers to pointers; they are complaining that they can't
1637 take an address from a disassembly listing and give it to `x/i'.
1638 This is certainly important.
1639
79dd2d24 1640 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1641 makes it possible for GDB to "get it right" in all circumstances
1642 --- the target has complete control over how things get done, so
1643 people can Do The Right Thing for their target without breaking
1644 anyone else. The standard doesn't specify how integers get
1645 converted to pointers; usually, the ABI doesn't either, but
1646 ABI-specific code is a more reasonable place to handle it. */
1647
df407dfe
AC
1648 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1649 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1650 && gdbarch_integer_to_address_p (gdbarch))
1651 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1652 value_contents (val));
fc0c74b1 1653
0fd88904 1654 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1655#endif
1656}
1657\f
1658/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1659 as a long, or as a double, assuming the raw data is described
1660 by type TYPE. Knows how to convert different sizes of values
1661 and can convert between fixed and floating point. We don't assume
1662 any alignment for the raw data. Return value is in host byte order.
1663
1664 If you want functions and arrays to be coerced to pointers, and
1665 references to be dereferenced, call value_as_long() instead.
1666
1667 C++: It is assumed that the front-end has taken care of
1668 all matters concerning pointers to members. A pointer
1669 to member which reaches here is considered to be equivalent
1670 to an INT (or some size). After all, it is only an offset. */
1671
1672LONGEST
fc1a4b47 1673unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1674{
e17a4113 1675 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1676 enum type_code code = TYPE_CODE (type);
1677 int len = TYPE_LENGTH (type);
1678 int nosign = TYPE_UNSIGNED (type);
c906108c 1679
c906108c
SS
1680 switch (code)
1681 {
1682 case TYPE_CODE_TYPEDEF:
1683 return unpack_long (check_typedef (type), valaddr);
1684 case TYPE_CODE_ENUM:
4f2aea11 1685 case TYPE_CODE_FLAGS:
c906108c
SS
1686 case TYPE_CODE_BOOL:
1687 case TYPE_CODE_INT:
1688 case TYPE_CODE_CHAR:
1689 case TYPE_CODE_RANGE:
0d5de010 1690 case TYPE_CODE_MEMBERPTR:
c906108c 1691 if (nosign)
e17a4113 1692 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1693 else
e17a4113 1694 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1695
1696 case TYPE_CODE_FLT:
96d2f608 1697 return extract_typed_floating (valaddr, type);
c906108c 1698
4ef30785
TJB
1699 case TYPE_CODE_DECFLOAT:
1700 /* libdecnumber has a function to convert from decimal to integer, but
1701 it doesn't work when the decimal number has a fractional part. */
e17a4113 1702 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1703
c906108c
SS
1704 case TYPE_CODE_PTR:
1705 case TYPE_CODE_REF:
1706 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1707 whether we want this to be true eventually. */
4478b372 1708 return extract_typed_address (valaddr, type);
c906108c 1709
c906108c 1710 default:
8a3fe4f8 1711 error (_("Value can't be converted to integer."));
c906108c 1712 }
c5aa993b 1713 return 0; /* Placate lint. */
c906108c
SS
1714}
1715
1716/* Return a double value from the specified type and address.
1717 INVP points to an int which is set to 0 for valid value,
1718 1 for invalid value (bad float format). In either case,
1719 the returned double is OK to use. Argument is in target
1720 format, result is in host format. */
1721
1722DOUBLEST
fc1a4b47 1723unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1724{
e17a4113 1725 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1726 enum type_code code;
1727 int len;
1728 int nosign;
1729
1730 *invp = 0; /* Assume valid. */
1731 CHECK_TYPEDEF (type);
1732 code = TYPE_CODE (type);
1733 len = TYPE_LENGTH (type);
1734 nosign = TYPE_UNSIGNED (type);
1735 if (code == TYPE_CODE_FLT)
1736 {
75bc7ddf
AC
1737 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1738 floating-point value was valid (using the macro
1739 INVALID_FLOAT). That test/macro have been removed.
1740
1741 It turns out that only the VAX defined this macro and then
1742 only in a non-portable way. Fixing the portability problem
1743 wouldn't help since the VAX floating-point code is also badly
1744 bit-rotten. The target needs to add definitions for the
ea06eb3d 1745 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1746 exactly describe the target floating-point format. The
1747 problem here is that the corresponding floatformat_vax_f and
1748 floatformat_vax_d values these methods should be set to are
1749 also not defined either. Oops!
1750
1751 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1752 definitions and the new cases for floatformat_is_valid (). */
1753
1754 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1755 {
1756 *invp = 1;
1757 return 0.0;
1758 }
1759
96d2f608 1760 return extract_typed_floating (valaddr, type);
c906108c 1761 }
4ef30785 1762 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1763 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1764 else if (nosign)
1765 {
1766 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1767 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1768 }
1769 else
1770 {
1771 /* Signed -- we are OK with unpack_long. */
1772 return unpack_long (type, valaddr);
1773 }
1774}
1775
1776/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1777 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1778 We don't assume any alignment for the raw data. Return value is in
1779 host byte order.
1780
1781 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1782 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1783
1784 C++: It is assumed that the front-end has taken care of
1785 all matters concerning pointers to members. A pointer
1786 to member which reaches here is considered to be equivalent
1787 to an INT (or some size). After all, it is only an offset. */
1788
1789CORE_ADDR
fc1a4b47 1790unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1791{
1792 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1793 whether we want this to be true eventually. */
1794 return unpack_long (type, valaddr);
1795}
4478b372 1796
c906108c 1797\f
2c2738a0
DC
1798/* Get the value of the FIELDN'th field (which must be static) of
1799 TYPE. Return NULL if the field doesn't exist or has been
1800 optimized out. */
c906108c 1801
f23631e4 1802struct value *
fba45db2 1803value_static_field (struct type *type, int fieldno)
c906108c 1804{
948e66d9
DJ
1805 struct value *retval;
1806
d6a843b5 1807 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1808 {
948e66d9 1809 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1810 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1811 }
1812 else
1813 {
1814 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1815 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1816 if (sym == NULL)
c906108c
SS
1817 {
1818 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1819 as non-debuggable symbols */
1820 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1821 if (!msym)
1822 return NULL;
1823 else
c5aa993b 1824 {
948e66d9 1825 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1826 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1827 }
1828 }
1829 else
1830 {
948e66d9
DJ
1831 /* SYM should never have a SYMBOL_CLASS which will require
1832 read_var_value to use the FRAME parameter. */
1833 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1834 warning (_("static field's value depends on the current "
1835 "frame - bad debug info?"));
948e66d9 1836 retval = read_var_value (sym, NULL);
2b127877 1837 }
948e66d9
DJ
1838 if (retval && VALUE_LVAL (retval) == lval_memory)
1839 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1840 value_address (retval));
c906108c 1841 }
948e66d9 1842 return retval;
c906108c
SS
1843}
1844
2b127877
DB
1845/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1846 You have to be careful here, since the size of the data area for the value
1847 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1848 than the old enclosing type, you have to allocate more space for the data.
1849 The return value is a pointer to the new version of this value structure. */
1850
f23631e4
AC
1851struct value *
1852value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1853{
3e3d7139
JG
1854 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1855 val->contents =
1856 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1857
1858 val->enclosing_type = new_encl_type;
1859 return val;
2b127877
DB
1860}
1861
c906108c
SS
1862/* Given a value ARG1 (offset by OFFSET bytes)
1863 of a struct or union type ARG_TYPE,
1864 extract and return the value of one of its (non-static) fields.
1865 FIELDNO says which field. */
1866
f23631e4
AC
1867struct value *
1868value_primitive_field (struct value *arg1, int offset,
aa1ee363 1869 int fieldno, struct type *arg_type)
c906108c 1870{
f23631e4 1871 struct value *v;
52f0bd74 1872 struct type *type;
c906108c
SS
1873
1874 CHECK_TYPEDEF (arg_type);
1875 type = TYPE_FIELD_TYPE (arg_type, fieldno);
9e19b45e 1876 type = check_typedef (type);
c906108c
SS
1877
1878 /* Handle packed fields */
1879
1880 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1881 {
4ea48cc1
DJ
1882 /* Create a new value for the bitfield, with bitpos and bitsize
1883 set. If possible, arrange offset and bitpos so that we can
1884 do a single aligned read of the size of the containing type.
1885 Otherwise, adjust offset to the byte containing the first
1886 bit. Assume that the address, offset, and embedded offset
1887 are sufficiently aligned. */
1888 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1889 int container_bitsize = TYPE_LENGTH (type) * 8;
1890
1891 v = allocate_value_lazy (type);
df407dfe 1892 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1893 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1894 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1895 v->bitpos = bitpos % container_bitsize;
1896 else
1897 v->bitpos = bitpos % 8;
4a76eae5 1898 v->offset = value_embedded_offset (arg1)
4ea48cc1
DJ
1899 + (bitpos - v->bitpos) / 8;
1900 v->parent = arg1;
1901 value_incref (v->parent);
1902 if (!value_lazy (arg1))
1903 value_fetch_lazy (v);
c906108c
SS
1904 }
1905 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1906 {
1907 /* This field is actually a base subobject, so preserve the
1908 entire object's contents for later references to virtual
1909 bases, etc. */
a4e2ee12
DJ
1910
1911 /* Lazy register values with offsets are not supported. */
1912 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1913 value_fetch_lazy (arg1);
1914
1915 if (value_lazy (arg1))
3e3d7139 1916 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1917 else
3e3d7139
JG
1918 {
1919 v = allocate_value (value_enclosing_type (arg1));
1920 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1921 TYPE_LENGTH (value_enclosing_type (arg1)));
1922 }
1923 v->type = type;
df407dfe 1924 v->offset = value_offset (arg1);
13c3b5f5
AC
1925 v->embedded_offset = (offset + value_embedded_offset (arg1)
1926 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1927 }
1928 else
1929 {
1930 /* Plain old data member */
1931 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1932
1933 /* Lazy register values with offsets are not supported. */
1934 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1935 value_fetch_lazy (arg1);
1936
1937 if (value_lazy (arg1))
3e3d7139 1938 v = allocate_value_lazy (type);
c906108c 1939 else
3e3d7139
JG
1940 {
1941 v = allocate_value (type);
1942 memcpy (value_contents_raw (v),
1943 value_contents_raw (arg1) + offset,
1944 TYPE_LENGTH (type));
1945 }
df407dfe 1946 v->offset = (value_offset (arg1) + offset
13c3b5f5 1947 + value_embedded_offset (arg1));
c906108c 1948 }
74bcbdf3 1949 set_value_component_location (v, arg1);
9ee8fc9d 1950 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1951 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1952 return v;
1953}
1954
1955/* Given a value ARG1 of a struct or union type,
1956 extract and return the value of one of its (non-static) fields.
1957 FIELDNO says which field. */
1958
f23631e4 1959struct value *
aa1ee363 1960value_field (struct value *arg1, int fieldno)
c906108c 1961{
df407dfe 1962 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1963}
1964
1965/* Return a non-virtual function as a value.
1966 F is the list of member functions which contains the desired method.
0478d61c
FF
1967 J is an index into F which provides the desired method.
1968
1969 We only use the symbol for its address, so be happy with either a
1970 full symbol or a minimal symbol.
1971 */
c906108c 1972
f23631e4
AC
1973struct value *
1974value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1975 int offset)
c906108c 1976{
f23631e4 1977 struct value *v;
52f0bd74 1978 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1979 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1980 struct symbol *sym;
0478d61c 1981 struct minimal_symbol *msym;
c906108c 1982
2570f2b7 1983 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1984 if (sym != NULL)
0478d61c 1985 {
5ae326fa
AC
1986 msym = NULL;
1987 }
1988 else
1989 {
1990 gdb_assert (sym == NULL);
0478d61c 1991 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1992 if (msym == NULL)
1993 return NULL;
0478d61c
FF
1994 }
1995
c906108c 1996 v = allocate_value (ftype);
0478d61c
FF
1997 if (sym)
1998 {
42ae5230 1999 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2000 }
2001 else
2002 {
bccdca4a
UW
2003 /* The minimal symbol might point to a function descriptor;
2004 resolve it to the actual code address instead. */
2005 struct objfile *objfile = msymbol_objfile (msym);
2006 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2007
42ae5230
TT
2008 set_value_address (v,
2009 gdbarch_convert_from_func_ptr_addr
2010 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2011 }
c906108c
SS
2012
2013 if (arg1p)
c5aa993b 2014 {
df407dfe 2015 if (type != value_type (*arg1p))
c5aa993b
JM
2016 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2017 value_addr (*arg1p)));
2018
070ad9f0 2019 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2020 VALUE_OFFSET (*arg1p) += offset;
2021 */
c906108c
SS
2022 }
2023
2024 return v;
2025}
2026
c906108c 2027\f
4ea48cc1
DJ
2028/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2029 object at VALADDR. The bitfield starts at BITPOS bits and contains
2030 BITSIZE bits.
c906108c
SS
2031
2032 Extracting bits depends on endianness of the machine. Compute the
2033 number of least significant bits to discard. For big endian machines,
2034 we compute the total number of bits in the anonymous object, subtract
2035 off the bit count from the MSB of the object to the MSB of the
2036 bitfield, then the size of the bitfield, which leaves the LSB discard
2037 count. For little endian machines, the discard count is simply the
2038 number of bits from the LSB of the anonymous object to the LSB of the
2039 bitfield.
2040
2041 If the field is signed, we also do sign extension. */
2042
2043LONGEST
4ea48cc1
DJ
2044unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2045 int bitpos, int bitsize)
c906108c 2046{
4ea48cc1 2047 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2048 ULONGEST val;
2049 ULONGEST valmask;
c906108c 2050 int lsbcount;
4a76eae5 2051 int bytes_read;
c906108c 2052
4a76eae5
DJ
2053 /* Read the minimum number of bytes required; there may not be
2054 enough bytes to read an entire ULONGEST. */
c906108c 2055 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2056 if (bitsize)
2057 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2058 else
2059 bytes_read = TYPE_LENGTH (field_type);
2060
2061 val = extract_unsigned_integer (valaddr + bitpos / 8,
2062 bytes_read, byte_order);
c906108c
SS
2063
2064 /* Extract bits. See comment above. */
2065
4ea48cc1 2066 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2067 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2068 else
2069 lsbcount = (bitpos % 8);
2070 val >>= lsbcount;
2071
2072 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2073 If the field is signed, and is negative, then sign extend. */
2074
2075 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2076 {
2077 valmask = (((ULONGEST) 1) << bitsize) - 1;
2078 val &= valmask;
2079 if (!TYPE_UNSIGNED (field_type))
2080 {
2081 if (val & (valmask ^ (valmask >> 1)))
2082 {
2083 val |= ~valmask;
2084 }
2085 }
2086 }
2087 return (val);
2088}
2089
4ea48cc1
DJ
2090/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2091 VALADDR. See unpack_bits_as_long for more details. */
2092
2093LONGEST
2094unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2095{
2096 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2097 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2098 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2099
2100 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2101}
2102
c906108c
SS
2103/* Modify the value of a bitfield. ADDR points to a block of memory in
2104 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2105 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2106 indicate which bits (in target bit order) comprise the bitfield.
2107 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2108 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2109
2110void
50810684
UW
2111modify_field (struct type *type, gdb_byte *addr,
2112 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2113{
e17a4113 2114 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2115 ULONGEST oword;
2116 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2117
2118 /* If a negative fieldval fits in the field in question, chop
2119 off the sign extension bits. */
f4e88c8e
PH
2120 if ((~fieldval & ~(mask >> 1)) == 0)
2121 fieldval &= mask;
c906108c
SS
2122
2123 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2124 if (0 != (fieldval & ~mask))
c906108c
SS
2125 {
2126 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2127 we don't have a sprintf_longest. */
8a3fe4f8 2128 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2129
2130 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2131 fieldval &= mask;
c906108c
SS
2132 }
2133
e17a4113 2134 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2135
2136 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2137 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2138 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2139
f4e88c8e 2140 oword &= ~(mask << bitpos);
c906108c
SS
2141 oword |= fieldval << bitpos;
2142
e17a4113 2143 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2144}
2145\f
14d06750 2146/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2147
14d06750
DJ
2148void
2149pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2150{
e17a4113 2151 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2152 int len;
14d06750
DJ
2153
2154 type = check_typedef (type);
c906108c
SS
2155 len = TYPE_LENGTH (type);
2156
14d06750 2157 switch (TYPE_CODE (type))
c906108c 2158 {
c906108c
SS
2159 case TYPE_CODE_INT:
2160 case TYPE_CODE_CHAR:
2161 case TYPE_CODE_ENUM:
4f2aea11 2162 case TYPE_CODE_FLAGS:
c906108c
SS
2163 case TYPE_CODE_BOOL:
2164 case TYPE_CODE_RANGE:
0d5de010 2165 case TYPE_CODE_MEMBERPTR:
e17a4113 2166 store_signed_integer (buf, len, byte_order, num);
c906108c 2167 break;
c5aa993b 2168
c906108c
SS
2169 case TYPE_CODE_REF:
2170 case TYPE_CODE_PTR:
14d06750 2171 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2172 break;
c5aa993b 2173
c906108c 2174 default:
14d06750
DJ
2175 error (_("Unexpected type (%d) encountered for integer constant."),
2176 TYPE_CODE (type));
c906108c 2177 }
14d06750
DJ
2178}
2179
2180
2181/* Convert C numbers into newly allocated values. */
2182
2183struct value *
2184value_from_longest (struct type *type, LONGEST num)
2185{
2186 struct value *val = allocate_value (type);
2187
2188 pack_long (value_contents_raw (val), type, num);
2189
c906108c
SS
2190 return val;
2191}
2192
4478b372
JB
2193
2194/* Create a value representing a pointer of type TYPE to the address
2195 ADDR. */
f23631e4 2196struct value *
4478b372
JB
2197value_from_pointer (struct type *type, CORE_ADDR addr)
2198{
f23631e4 2199 struct value *val = allocate_value (type);
cab0c772 2200 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2201 return val;
2202}
2203
2204
8acb6b92
TT
2205/* Create a value of type TYPE whose contents come from VALADDR, if it
2206 is non-null, and whose memory address (in the inferior) is
2207 ADDRESS. */
2208
2209struct value *
2210value_from_contents_and_address (struct type *type,
2211 const gdb_byte *valaddr,
2212 CORE_ADDR address)
2213{
2214 struct value *v = allocate_value (type);
2215 if (valaddr == NULL)
2216 set_value_lazy (v, 1);
2217 else
2218 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2219 set_value_address (v, address);
33d502b4 2220 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2221 return v;
2222}
2223
f23631e4 2224struct value *
fba45db2 2225value_from_double (struct type *type, DOUBLEST num)
c906108c 2226{
f23631e4 2227 struct value *val = allocate_value (type);
c906108c 2228 struct type *base_type = check_typedef (type);
52f0bd74
AC
2229 enum type_code code = TYPE_CODE (base_type);
2230 int len = TYPE_LENGTH (base_type);
c906108c
SS
2231
2232 if (code == TYPE_CODE_FLT)
2233 {
990a07ab 2234 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2235 }
2236 else
8a3fe4f8 2237 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2238
2239 return val;
2240}
994b9211 2241
27bc4d80 2242struct value *
4ef30785 2243value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2244{
2245 struct value *val = allocate_value (type);
27bc4d80 2246
4ef30785 2247 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 2248
27bc4d80
TJB
2249 return val;
2250}
2251
994b9211
AC
2252struct value *
2253coerce_ref (struct value *arg)
2254{
df407dfe 2255 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
2256 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2257 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2258 unpack_pointer (value_type (arg),
0fd88904 2259 value_contents (arg)));
994b9211
AC
2260 return arg;
2261}
2262
2263struct value *
2264coerce_array (struct value *arg)
2265{
f3134b88
TT
2266 struct type *type;
2267
994b9211 2268 arg = coerce_ref (arg);
f3134b88
TT
2269 type = check_typedef (value_type (arg));
2270
2271 switch (TYPE_CODE (type))
2272 {
2273 case TYPE_CODE_ARRAY:
2274 if (current_language->c_style_arrays)
2275 arg = value_coerce_array (arg);
2276 break;
2277 case TYPE_CODE_FUNC:
2278 arg = value_coerce_function (arg);
2279 break;
2280 }
994b9211
AC
2281 return arg;
2282}
c906108c 2283\f
c906108c 2284
48436ce6
AC
2285/* Return true if the function returning the specified type is using
2286 the convention of returning structures in memory (passing in the
82585c72 2287 address as a hidden first parameter). */
c906108c
SS
2288
2289int
d80b854b
UW
2290using_struct_return (struct gdbarch *gdbarch,
2291 struct type *func_type, struct type *value_type)
c906108c 2292{
52f0bd74 2293 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2294
2295 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2296 error (_("Function return type unknown."));
c906108c 2297
667e784f
AC
2298 if (code == TYPE_CODE_VOID)
2299 /* A void return value is never in memory. See also corresponding
44e5158b 2300 code in "print_return_value". */
667e784f
AC
2301 return 0;
2302
92ad9cd9 2303 /* Probe the architecture for the return-value convention. */
d80b854b 2304 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2305 NULL, NULL, NULL)
31db7b6c 2306 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2307}
2308
42be36b3
CT
2309/* Set the initialized field in a value struct. */
2310
2311void
2312set_value_initialized (struct value *val, int status)
2313{
2314 val->initialized = status;
2315}
2316
2317/* Return the initialized field in a value struct. */
2318
2319int
2320value_initialized (struct value *val)
2321{
2322 return val->initialized;
2323}
2324
c906108c 2325void
fba45db2 2326_initialize_values (void)
c906108c 2327{
1a966eab
AC
2328 add_cmd ("convenience", no_class, show_convenience, _("\
2329Debugger convenience (\"$foo\") variables.\n\
c906108c 2330These variables are created when you assign them values;\n\
1a966eab
AC
2331thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2332\n\
c906108c
SS
2333A few convenience variables are given values automatically:\n\
2334\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2335\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2336 &showlist);
2337
2338 add_cmd ("values", no_class, show_values,
1a966eab 2339 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2340 &showlist);
53e5f3cf
AS
2341
2342 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2343Initialize a convenience variable if necessary.\n\
2344init-if-undefined VARIABLE = EXPRESSION\n\
2345Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2346exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2347VARIABLE is already initialized."));
bc3b79fd
TJB
2348
2349 add_prefix_cmd ("function", no_class, function_command, _("\
2350Placeholder command for showing help on convenience functions."),
2351 &functionlist, "function ", 0, &cmdlist);
c906108c 2352}