]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
42a4f53d 3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
0747795c 29#include "common/vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
8b93c638
JM
42/* Non-zero if we want to see trace of varobj level stuff. */
43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
a121b7c1 53const char *varobj_format_string[] =
1c35a88f 54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 55
0cc7d26f 56/* True if we want to allow Python-based pretty-printing. */
4c37490d 57static bool pretty_printing = false;
0cc7d26f
TT
58
59void
60varobj_enable_pretty_printing (void)
61{
4c37490d 62 pretty_printing = true;
0cc7d26f
TT
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
4d01a485 68 varobj. */
8b93c638 69struct varobj_root
72330bd6 70{
4d01a485
PA
71 /* The expression for this parent. */
72 expression_up exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
9e5b9d2b 75 const struct block *valid_block = NULL;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
9e5b9d2b 79 struct frame_id frame = null_frame_id;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
9e5b9d2b 86 int thread_id = 0;
c5b48eac 87
4c37490d 88 /* If true, the -var-update always recomputes the value in the
a5defcdc 89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
4c37490d 91 bool floating = false;
73a93a32 92
4c37490d 93 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 94 to symbols that do not exist anymore. */
4c37490d 95 bool is_valid = true;
8756216b 96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
9e5b9d2b 99 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
9e5b9d2b 102 struct varobj *rootvar = NULL;
8b93c638 103
72330bd6 104 /* Next root variable */
9e5b9d2b 105 struct varobj_root *next = NULL;
72330bd6 106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
bd046f64 116 bool children_requested = false;
b6313243 117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
9e5b9d2b 121 PyObject *constructor = NULL;
0cc7d26f 122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
9e5b9d2b 125 PyObject *pretty_printer = NULL;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
9e5b9d2b 129 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
9e5b9d2b 136 varobj_item *saved_item = NULL;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
4c37490d 151static int delete_variable (struct varobj *, bool);
8b93c638 152
4c37490d 153static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 154
4c37490d 155static bool install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
2f408ecb 159static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 168
4c37490d
SM
169static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
8264ba82 171
4c37490d
SM
172static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
acd65feb 174
581e13c1 175/* Language-specific routines. */
8b93c638 176
b09e2c59 177static int number_of_children (const struct varobj *);
8b93c638 178
2f408ecb 179static std::string name_of_variable (const struct varobj *);
8b93c638 180
2f408ecb 181static std::string name_of_child (struct varobj *, int);
8b93c638 182
4c37490d 183static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 184
c1cc6152 185static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 186
2f408ecb
PA
187static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
8b93c638 189
4c37490d 190static bool is_root_p (const struct varobj *var);
8b93c638 191
9a1edae6 192static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 193 struct varobj_item *item);
b6313243 194
8b93c638
JM
195/* Private data */
196
581e13c1 197/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 198static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 199
581e13c1 200/* Header of the list of root variable objects. */
8b93c638 201static struct varobj_root *rootlist;
8b93c638 202
581e13c1 203/* Prime number indicating the number of buckets in the hash table. */
5fa13070 204/* A prime large enough to avoid too many collisions. */
8b93c638
JM
205#define VAROBJ_TABLE_SIZE 227
206
581e13c1 207/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
208static struct vlist **varobj_table;
209
8b93c638
JM
210\f
211
212/* API Implementation */
4c37490d 213static bool
b09e2c59 214is_root_p (const struct varobj *var)
b2c2bd75
VP
215{
216 return (var->root->rootvar == var);
217}
8b93c638 218
d452c4bc 219#ifdef HAVE_PYTHON
6cd67bea
TT
220
221/* See python-internal.h. */
222gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224{
225}
226
d452c4bc
UW
227#endif
228
7d8547c9
AC
229/* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232static struct frame_info *
233find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234{
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
9d49bdc2
PA
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
7d8547c9 243 {
1fac167a
UW
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 250
1fac167a
UW
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
7d8547c9
AC
255 return frame;
256 }
9d49bdc2
PA
257
258 return NULL;
7d8547c9
AC
259}
260
5fa13070
SM
261/* Creates a varobj (not its children). */
262
8b93c638 263struct varobj *
2f408ecb
PA
264varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 266{
581e13c1 267 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
269
270 if (expression != NULL)
271 {
e4195b40 272 struct frame_info *fi;
35633fef 273 struct frame_id old_id = null_frame_id;
3977b71f 274 const struct block *block;
bbc13ae3 275 const char *p;
e55dccf0 276 struct value *value = NULL;
1bb9788d 277 CORE_ADDR pc;
8b93c638 278
9d49bdc2
PA
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
581e13c1 284 /* Allow creator to specify context of variable. */
9d49bdc2
PA
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
8b93c638 297 else
9d49bdc2 298 fi = NULL;
8b93c638 299
73a93a32 300 if (type == USE_SELECTED_FRAME)
4c37490d 301 var->root->floating = true;
73a93a32 302
1bb9788d 303 pc = 0;
8b93c638
JM
304 block = NULL;
305 if (fi != NULL)
1bb9788d
TT
306 {
307 block = get_frame_block (fi, 0);
308 pc = get_frame_pc (fi);
309 }
8b93c638
JM
310
311 p = expression;
699bd4cf
TT
312
313 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
a70b8144 317 try
8e7b59a5 318 {
699bd4cf 319 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
8e7b59a5
KS
320 }
321
230d2906 322 catch (const gdb_exception_error &except)
73a93a32
JI
323 {
324 return NULL;
325 }
8b93c638 326
581e13c1 327 /* Don't allow variables to be created for types. */
608b4967
TT
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 331 {
bc8332bb
AC
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
8b93c638
JM
334 return NULL;
335 }
336
9e5b9d2b 337 var->format = variable_default_display (var.get ());
e707fc44 338 var->root->valid_block =
699bd4cf 339 var->root->floating ? NULL : tracker.block ();
2f408ecb 340 var->name = expression;
02142340 341 /* For a root var, the name and the expr are the same. */
2f408ecb 342 var->path_expr = expression;
8b93c638
JM
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
581e13c1 347 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 348 if (var->root->valid_block)
8b93c638 349 {
4e22772d
JK
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
7a424e99 357 var->root->frame = get_frame_id (fi);
00431a78 358 var->root->thread_id = inferior_thread ()->global_num;
35633fef 359 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 360 select_frame (fi);
8b93c638
JM
361 }
362
340a7723 363 /* We definitely need to catch errors here.
8b93c638 364 If evaluate_expression succeeds we got the value we wanted.
581e13c1 365 But if it fails, we still go on with a call to evaluate_type(). */
a70b8144 366 try
8e7b59a5 367 {
4d01a485 368 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 369 }
230d2906 370 catch (const gdb_exception_error &except)
e55dccf0
VP
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
4d01a485 374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 375
e55dccf0
VP
376 var->type = value_type (type_only_value);
377 }
8264ba82 378
492d29ea
PA
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
acd65feb 387
8b93c638 388 /* Set language info */
ca20d462 389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 390
9e5b9d2b 391 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 392
581e13c1 393 /* Set ourselves as our root. */
9e5b9d2b 394 var->root->rootvar = var.get ();
8b93c638 395
581e13c1 396 /* Reset the selected frame. */
35633fef
JK
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
8b93c638
JM
399 }
400
73a93a32 401 /* If the variable object name is null, that means this
581e13c1 402 is a temporary variable, so don't install it. */
73a93a32
JI
403
404 if ((var != NULL) && (objname != NULL))
8b93c638 405 {
2f408ecb 406 var->obj_name = objname;
8b93c638
JM
407
408 /* If a varobj name is duplicated, the install will fail so
581e13c1 409 we must cleanup. */
9e5b9d2b
SM
410 if (!install_variable (var.get ()))
411 return NULL;
8b93c638
JM
412 }
413
9e5b9d2b 414 return var.release ();
8b93c638
JM
415}
416
581e13c1 417/* Generates an unique name that can be used for a varobj. */
8b93c638 418
2d6960b4 419std::string
8b93c638
JM
420varobj_gen_name (void)
421{
422 static int id = 0;
8b93c638 423
581e13c1 424 /* Generate a name for this object. */
8b93c638 425 id++;
2d6960b4 426 return string_printf ("var%d", id);
8b93c638
JM
427}
428
61d8f275
JK
429/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
8b93c638
JM
431
432struct varobj *
2f408ecb 433varobj_get_handle (const char *objname)
8b93c638
JM
434{
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
2f408ecb 446 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
447 cv = cv->next;
448
449 if (cv == NULL)
8a3fe4f8 450 error (_("Variable object not found"));
8b93c638
JM
451
452 return cv->var;
453}
454
581e13c1 455/* Given the handle, return the name of the object. */
8b93c638 456
2f408ecb 457const char *
b09e2c59 458varobj_get_objname (const struct varobj *var)
8b93c638 459{
2f408ecb 460 return var->obj_name.c_str ();
8b93c638
JM
461}
462
2f408ecb
PA
463/* Given the handle, return the expression represented by the
464 object. */
8b93c638 465
2f408ecb 466std::string
b09e2c59 467varobj_get_expression (const struct varobj *var)
8b93c638
JM
468{
469 return name_of_variable (var);
470}
471
30914ca8 472/* See varobj.h. */
8b93c638
JM
473
474int
4c37490d 475varobj_delete (struct varobj *var, bool only_children)
8b93c638 476{
30914ca8 477 return delete_variable (var, only_children);
8b93c638
JM
478}
479
d8b65138
JK
480#if HAVE_PYTHON
481
b6313243
TT
482/* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484static PyObject *
485instantiate_pretty_printer (PyObject *constructor, struct value *value)
486{
b6313243
TT
487 PyObject *val_obj = NULL;
488 PyObject *printer;
b6313243 489
b6313243 490 val_obj = value_to_value_object (value);
b6313243
TT
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
b6313243
TT
497}
498
d8b65138
JK
499#endif
500
581e13c1 501/* Set/Get variable object display format. */
8b93c638
JM
502
503enum varobj_display_formats
504varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506{
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
1c35a88f 514 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
ae7d22a6 522 if (varobj_value_is_changeable_p (var)
b4d61099 523 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 524 {
b4d61099 525 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 526 var->format, var);
ae7d22a6
VP
527 }
528
8b93c638
JM
529 return var->format;
530}
531
532enum varobj_display_formats
b09e2c59 533varobj_get_display_format (const struct varobj *var)
8b93c638
JM
534{
535 return var->format;
536}
537
9b972014 538gdb::unique_xmalloc_ptr<char>
b09e2c59 539varobj_get_display_hint (const struct varobj *var)
b6313243 540{
9b972014 541 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
542
543#if HAVE_PYTHON
0646da15
TT
544 if (!gdb_python_initialized)
545 return NULL;
546
bde7b3e3 547 gdbpy_enter_varobj enter_py (var);
d452c4bc 548
bb5ce47a
YQ
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
551#endif
552
553 return result;
554}
555
0cc7d26f
TT
556/* Return true if the varobj has items after TO, false otherwise. */
557
4c37490d 558bool
b09e2c59 559varobj_has_more (const struct varobj *var, int to)
0cc7d26f 560{
ddf0ea08 561 if (var->children.size () > to)
4c37490d 562 return true;
ddf0ea08
SM
563
564 return ((to == -1 || var->children.size () == to)
bb5ce47a 565 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
566}
567
c5b48eac
VP
568/* If the variable object is bound to a specific thread, that
569 is its evaluation can always be done in context of a frame
570 inside that thread, returns GDB id of the thread -- which
581e13c1 571 is always positive. Otherwise, returns -1. */
c5b48eac 572int
b09e2c59 573varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
574{
575 if (var->root->valid_block && var->root->thread_id > 0)
576 return var->root->thread_id;
577 else
578 return -1;
579}
580
25d5ea92 581void
4c37490d 582varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
583{
584 /* When a variable is unfrozen, we don't fetch its value.
585 The 'not_fetched' flag remains set, so next -var-update
586 won't complain.
587
588 We don't fetch the value, because for structures the client
589 should do -var-update anyway. It would be bad to have different
590 client-size logic for structure and other types. */
591 var->frozen = frozen;
592}
593
4c37490d 594bool
b09e2c59 595varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
596{
597 return var->frozen;
598}
599
0cc7d26f
TT
600/* A helper function that restricts a range to what is actually
601 available in a VEC. This follows the usual rules for the meaning
602 of FROM and TO -- if either is negative, the entire range is
603 used. */
604
99ad9427 605void
ddf0ea08
SM
606varobj_restrict_range (const std::vector<varobj *> &children,
607 int *from, int *to)
0cc7d26f 608{
ddf0ea08
SM
609 int len = children.size ();
610
0cc7d26f
TT
611 if (*from < 0 || *to < 0)
612 {
613 *from = 0;
ddf0ea08 614 *to = len;
0cc7d26f
TT
615 }
616 else
617 {
ddf0ea08
SM
618 if (*from > len)
619 *from = len;
620 if (*to > len)
621 *to = len;
0cc7d26f
TT
622 if (*from > *to)
623 *from = *to;
624 }
625}
626
627/* A helper for update_dynamic_varobj_children that installs a new
628 child when needed. */
629
630static void
631install_dynamic_child (struct varobj *var,
0604393c
SM
632 std::vector<varobj *> *changed,
633 std::vector<varobj *> *type_changed,
634 std::vector<varobj *> *newobj,
635 std::vector<varobj *> *unchanged,
4c37490d 636 bool *cchanged,
0cc7d26f 637 int index,
5a2e0d6e 638 struct varobj_item *item)
0cc7d26f 639{
ddf0ea08 640 if (var->children.size () < index + 1)
0cc7d26f
TT
641 {
642 /* There's no child yet. */
5a2e0d6e 643 struct varobj *child = varobj_add_child (var, item);
a109c7c1 644
0604393c 645 if (newobj != NULL)
0cc7d26f 646 {
0604393c 647 newobj->push_back (child);
4c37490d 648 *cchanged = true;
0cc7d26f
TT
649 }
650 }
bf8793bb 651 else
0cc7d26f 652 {
ddf0ea08 653 varobj *existing = var->children[index];
4c37490d 654 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 655
8264ba82
AG
656 if (type_updated)
657 {
0604393c
SM
658 if (type_changed != NULL)
659 type_changed->push_back (existing);
8264ba82 660 }
5a2e0d6e 661 if (install_new_value (existing, item->value, 0))
0cc7d26f 662 {
0604393c
SM
663 if (!type_updated && changed != NULL)
664 changed->push_back (existing);
0cc7d26f 665 }
0604393c
SM
666 else if (!type_updated && unchanged != NULL)
667 unchanged->push_back (existing);
0cc7d26f
TT
668 }
669}
670
576ea091
YQ
671#if HAVE_PYTHON
672
4c37490d 673static bool
b09e2c59 674dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 675{
bb5ce47a 676 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 677
0646da15 678 if (!gdb_python_initialized)
4c37490d 679 return false;
0646da15 680
bde7b3e3
TT
681 gdbpy_enter_varobj enter_py (var);
682 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 683}
576ea091 684#endif
0cc7d26f 685
e5250216
YQ
686/* A factory for creating dynamic varobj's iterators. Returns an
687 iterator object suitable for iterating over VAR's children. */
688
689static struct varobj_iter *
690varobj_get_iterator (struct varobj *var)
691{
576ea091 692#if HAVE_PYTHON
e5250216
YQ
693 if (var->dynamic->pretty_printer)
694 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 695#endif
e5250216
YQ
696
697 gdb_assert_not_reached (_("\
698requested an iterator from a non-dynamic varobj"));
699}
700
827f100c
YQ
701/* Release and clear VAR's saved item, if any. */
702
703static void
704varobj_clear_saved_item (struct varobj_dynamic *var)
705{
706 if (var->saved_item != NULL)
707 {
22bc8444 708 value_decref (var->saved_item->value);
0a8beaba 709 delete var->saved_item;
827f100c
YQ
710 var->saved_item = NULL;
711 }
712}
0cc7d26f 713
4c37490d 714static bool
b6313243 715update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
716 std::vector<varobj *> *changed,
717 std::vector<varobj *> *type_changed,
718 std::vector<varobj *> *newobj,
719 std::vector<varobj *> *unchanged,
4c37490d
SM
720 bool *cchanged,
721 bool update_children,
0cc7d26f
TT
722 int from,
723 int to)
b6313243 724{
b6313243 725 int i;
b6313243 726
4c37490d 727 *cchanged = false;
b6313243 728
bb5ce47a 729 if (update_children || var->dynamic->child_iter == NULL)
b6313243 730 {
e5250216
YQ
731 varobj_iter_delete (var->dynamic->child_iter);
732 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 733
827f100c 734 varobj_clear_saved_item (var->dynamic);
b6313243 735
e5250216 736 i = 0;
b6313243 737
bb5ce47a 738 if (var->dynamic->child_iter == NULL)
4c37490d 739 return false;
b6313243 740 }
0cc7d26f 741 else
ddf0ea08 742 i = var->children.size ();
b6313243 743
0cc7d26f
TT
744 /* We ask for one extra child, so that MI can report whether there
745 are more children. */
746 for (; to < 0 || i < to + 1; ++i)
b6313243 747 {
827f100c 748 varobj_item *item;
b6313243 749
0cc7d26f 750 /* See if there was a leftover from last time. */
827f100c 751 if (var->dynamic->saved_item != NULL)
0cc7d26f 752 {
bb5ce47a
YQ
753 item = var->dynamic->saved_item;
754 var->dynamic->saved_item = NULL;
0cc7d26f
TT
755 }
756 else
a4c8e806 757 {
e5250216 758 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
759 /* Release vitem->value so its lifetime is not bound to the
760 execution of a command. */
761 if (item != NULL && item->value != NULL)
895dafa6 762 item->value = release_value (item->value).release ();
a4c8e806 763 }
b6313243 764
e5250216
YQ
765 if (item == NULL)
766 {
767 /* Iteration is done. Remove iterator from VAR. */
768 varobj_iter_delete (var->dynamic->child_iter);
769 var->dynamic->child_iter = NULL;
770 break;
771 }
0cc7d26f
TT
772 /* We don't want to push the extra child on any report list. */
773 if (to < 0 || i < to)
b6313243 774 {
4c37490d 775 bool can_mention = from < 0 || i >= from;
0cc7d26f 776
0cc7d26f 777 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 778 can_mention ? type_changed : NULL,
fe978cb0 779 can_mention ? newobj : NULL,
0cc7d26f 780 can_mention ? unchanged : NULL,
5e5ac9a5 781 can_mention ? cchanged : NULL, i,
827f100c
YQ
782 item);
783
0a8beaba 784 delete item;
b6313243 785 }
0cc7d26f 786 else
b6313243 787 {
bb5ce47a 788 var->dynamic->saved_item = item;
b6313243 789
0cc7d26f
TT
790 /* We want to truncate the child list just before this
791 element. */
792 break;
793 }
b6313243
TT
794 }
795
ddf0ea08 796 if (i < var->children.size ())
b6313243 797 {
4c37490d 798 *cchanged = true;
ddf0ea08
SM
799 for (int j = i; j < var->children.size (); ++j)
800 varobj_delete (var->children[j], 0);
801
802 var->children.resize (i);
b6313243 803 }
0cc7d26f
TT
804
805 /* If there are fewer children than requested, note that the list of
806 children changed. */
ddf0ea08 807 if (to >= 0 && var->children.size () < to)
4c37490d 808 *cchanged = true;
0cc7d26f 809
ddf0ea08 810 var->num_children = var->children.size ();
b6313243 811
4c37490d 812 return true;
b6313243 813}
25d5ea92 814
8b93c638
JM
815int
816varobj_get_num_children (struct varobj *var)
817{
818 if (var->num_children == -1)
b6313243 819 {
31f628ae 820 if (varobj_is_dynamic_p (var))
0cc7d26f 821 {
4c37490d 822 bool dummy;
0cc7d26f
TT
823
824 /* If we have a dynamic varobj, don't report -1 children.
825 So, try to fetch some children first. */
8264ba82 826 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 827 false, 0, 0);
0cc7d26f
TT
828 }
829 else
b6313243
TT
830 var->num_children = number_of_children (var);
831 }
8b93c638 832
0cc7d26f 833 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
834}
835
836/* Creates a list of the immediate children of a variable object;
581e13c1 837 the return code is the number of such children or -1 on error. */
8b93c638 838
ddf0ea08 839const std::vector<varobj *> &
0cc7d26f 840varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 841{
bd046f64 842 var->dynamic->children_requested = true;
b6313243 843
31f628ae 844 if (varobj_is_dynamic_p (var))
0cc7d26f 845 {
4c37490d
SM
846 bool children_changed;
847
b6313243
TT
848 /* This, in theory, can result in the number of children changing without
849 frontend noticing. But well, calling -var-list-children on the same
850 varobj twice is not something a sane frontend would do. */
8264ba82 851 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 852 &children_changed, false, 0, *to);
99ad9427 853 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
854 return var->children;
855 }
8b93c638 856
8b93c638
JM
857 if (var->num_children == -1)
858 var->num_children = number_of_children (var);
859
74a44383
DJ
860 /* If that failed, give up. */
861 if (var->num_children == -1)
d56d46f5 862 return var->children;
74a44383 863
28335dcc
VP
864 /* If we're called when the list of children is not yet initialized,
865 allocate enough elements in it. */
ddf0ea08
SM
866 while (var->children.size () < var->num_children)
867 var->children.push_back (NULL);
28335dcc 868
ddf0ea08 869 for (int i = 0; i < var->num_children; i++)
8b93c638 870 {
ddf0ea08 871 if (var->children[i] == NULL)
28335dcc
VP
872 {
873 /* Either it's the first call to varobj_list_children for
874 this variable object, and the child was never created,
875 or it was explicitly deleted by the client. */
2f408ecb 876 std::string name = name_of_child (var, i);
ddf0ea08 877 var->children[i] = create_child (var, i, name);
28335dcc 878 }
8b93c638
JM
879 }
880
99ad9427 881 varobj_restrict_range (var->children, from, to);
d56d46f5 882 return var->children;
8b93c638
JM
883}
884
b6313243 885static struct varobj *
5a2e0d6e 886varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 887{
ddf0ea08
SM
888 varobj *v = create_child_with_value (var, var->children.size (), item);
889
890 var->children.push_back (v);
a109c7c1 891
b6313243
TT
892 return v;
893}
894
8b93c638 895/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
896 prints on the console. The caller is responsible for freeing the string.
897 */
8b93c638 898
2f408ecb 899std::string
8b93c638
JM
900varobj_get_type (struct varobj *var)
901{
8ab91b96 902 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
903 NULL, too.)
904 Do not return a type for invalid variables as well. */
905 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 906 return std::string ();
8b93c638 907
1a4300e9 908 return type_to_string (var->type);
8b93c638
JM
909}
910
1ecb4ee0
DJ
911/* Obtain the type of an object variable. */
912
913struct type *
b09e2c59 914varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
915{
916 return var->type;
917}
918
85254831
KS
919/* Is VAR a path expression parent, i.e., can it be used to construct
920 a valid path expression? */
921
4c37490d 922static bool
b09e2c59 923is_path_expr_parent (const struct varobj *var)
85254831 924{
9a9a7608
AB
925 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
926 return var->root->lang_ops->is_path_expr_parent (var);
927}
85254831 928
9a9a7608
AB
929/* Is VAR a path expression parent, i.e., can it be used to construct
930 a valid path expression? By default we assume any VAR can be a path
931 parent. */
85254831 932
4c37490d 933bool
b09e2c59 934varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 935{
4c37490d 936 return true;
85254831
KS
937}
938
939/* Return the path expression parent for VAR. */
940
c1cc6152
SM
941const struct varobj *
942varobj_get_path_expr_parent (const struct varobj *var)
85254831 943{
c1cc6152 944 const struct varobj *parent = var;
85254831
KS
945
946 while (!is_root_p (parent) && !is_path_expr_parent (parent))
947 parent = parent->parent;
948
5abe0f0c
JV
949 /* Computation of full rooted expression for children of dynamic
950 varobjs is not supported. */
951 if (varobj_is_dynamic_p (parent))
952 error (_("Invalid variable object (child of a dynamic varobj)"));
953
85254831
KS
954 return parent;
955}
956
02142340
VP
957/* Return a pointer to the full rooted expression of varobj VAR.
958 If it has not been computed yet, compute it. */
2f408ecb
PA
959
960const char *
c1cc6152 961varobj_get_path_expr (const struct varobj *var)
02142340 962{
2f408ecb 963 if (var->path_expr.empty ())
02142340
VP
964 {
965 /* For root varobjs, we initialize path_expr
966 when creating varobj, so here it should be
967 child varobj. */
c1cc6152 968 struct varobj *mutable_var = (struct varobj *) var;
02142340 969 gdb_assert (!is_root_p (var));
2568868e 970
c1cc6152 971 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 972 }
2568868e 973
2f408ecb 974 return var->path_expr.c_str ();
02142340
VP
975}
976
fa4d0c40 977const struct language_defn *
b09e2c59 978varobj_get_language (const struct varobj *var)
8b93c638 979{
fa4d0c40 980 return var->root->exp->language_defn;
8b93c638
JM
981}
982
983int
b09e2c59 984varobj_get_attributes (const struct varobj *var)
8b93c638
JM
985{
986 int attributes = 0;
987
340a7723 988 if (varobj_editable_p (var))
581e13c1 989 /* FIXME: define masks for attributes. */
8b93c638
JM
990 attributes |= 0x00000001; /* Editable */
991
992 return attributes;
993}
994
cde5ef40
YQ
995/* Return true if VAR is a dynamic varobj. */
996
4c37490d 997bool
b09e2c59 998varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 999{
bb5ce47a 1000 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1001}
1002
2f408ecb 1003std::string
de051565
MK
1004varobj_get_formatted_value (struct varobj *var,
1005 enum varobj_display_formats format)
1006{
1007 return my_value_of_variable (var, format);
1008}
1009
2f408ecb 1010std::string
8b93c638
JM
1011varobj_get_value (struct varobj *var)
1012{
de051565 1013 return my_value_of_variable (var, var->format);
8b93c638
JM
1014}
1015
1016/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1017 value of the given expression. */
1018/* Note: Invokes functions that can call error(). */
8b93c638 1019
4c37490d 1020bool
2f408ecb 1021varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1022{
34365054 1023 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1024 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1025 We need to first construct a legal expression for this -- ugh! */
1026 /* Does this cover all the bases? */
34365054 1027 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1028 int saved_input_radix = input_radix;
bbc13ae3 1029 const char *s = expression;
8b93c638 1030
340a7723 1031 gdb_assert (varobj_editable_p (var));
8b93c638 1032
581e13c1 1033 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1034 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
a70b8144 1035 try
8e7b59a5 1036 {
4d01a485 1037 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1038 }
1039
230d2906 1040 catch (const gdb_exception_error &except)
340a7723 1041 {
581e13c1 1042 /* We cannot proceed without a valid expression. */
4c37490d 1043 return false;
8b93c638
JM
1044 }
1045
340a7723
NR
1046 /* All types that are editable must also be changeable. */
1047 gdb_assert (varobj_value_is_changeable_p (var));
1048
1049 /* The value of a changeable variable object must not be lazy. */
b4d61099 1050 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1051
1052 /* Need to coerce the input. We want to check if the
1053 value of the variable object will be different
1054 after assignment, and the first thing value_assign
1055 does is coerce the input.
1056 For example, if we are assigning an array to a pointer variable we
b021a221 1057 should compare the pointer with the array's address, not with the
340a7723
NR
1058 array's content. */
1059 value = coerce_array (value);
1060
8e7b59a5
KS
1061 /* The new value may be lazy. value_assign, or
1062 rather value_contents, will take care of this. */
a70b8144 1063 try
8e7b59a5 1064 {
b4d61099 1065 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1066 }
1067
230d2906 1068 catch (const gdb_exception_error &except)
492d29ea 1069 {
4c37490d 1070 return false;
492d29ea 1071 }
8e7b59a5 1072
340a7723
NR
1073 /* If the value has changed, record it, so that next -var-update can
1074 report this change. If a variable had a value of '1', we've set it
1075 to '333' and then set again to '1', when -var-update will report this
1076 variable as changed -- because the first assignment has set the
1077 'updated' flag. There's no need to optimize that, because return value
1078 of -var-update should be considered an approximation. */
4c37490d 1079 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1080 input_radix = saved_input_radix;
4c37490d 1081 return true;
8b93c638
JM
1082}
1083
0cc7d26f
TT
1084#if HAVE_PYTHON
1085
1086/* A helper function to install a constructor function and visualizer
bb5ce47a 1087 in a varobj_dynamic. */
0cc7d26f
TT
1088
1089static void
bb5ce47a 1090install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1091 PyObject *visualizer)
1092{
1093 Py_XDECREF (var->constructor);
1094 var->constructor = constructor;
1095
1096 Py_XDECREF (var->pretty_printer);
1097 var->pretty_printer = visualizer;
1098
e5250216 1099 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1100 var->child_iter = NULL;
1101}
1102
1103/* Install the default visualizer for VAR. */
1104
1105static void
1106install_default_visualizer (struct varobj *var)
1107{
d65aec65
PM
1108 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1109 if (CPLUS_FAKE_CHILD (var))
1110 return;
1111
0cc7d26f
TT
1112 if (pretty_printing)
1113 {
a31abe80 1114 gdbpy_ref<> pretty_printer;
0cc7d26f 1115
b4d61099 1116 if (var->value != nullptr)
0cc7d26f 1117 {
b4d61099 1118 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1119 if (pretty_printer == nullptr)
0cc7d26f
TT
1120 {
1121 gdbpy_print_stack ();
1122 error (_("Cannot instantiate printer for default visualizer"));
1123 }
1124 }
a31abe80 1125
0cc7d26f 1126 if (pretty_printer == Py_None)
895dafa6 1127 pretty_printer.reset (nullptr);
0cc7d26f 1128
a31abe80 1129 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1130 }
1131}
1132
1133/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1134 make a new object. */
1135
1136static void
1137construct_visualizer (struct varobj *var, PyObject *constructor)
1138{
1139 PyObject *pretty_printer;
1140
d65aec65
PM
1141 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1142 if (CPLUS_FAKE_CHILD (var))
1143 return;
1144
0cc7d26f
TT
1145 Py_INCREF (constructor);
1146 if (constructor == Py_None)
1147 pretty_printer = NULL;
1148 else
1149 {
b4d61099
TT
1150 pretty_printer = instantiate_pretty_printer (constructor,
1151 var->value.get ());
0cc7d26f
TT
1152 if (! pretty_printer)
1153 {
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1158 }
1159
1160 if (pretty_printer == Py_None)
1161 {
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1164 }
1165 }
1166
bb5ce47a 1167 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1168}
1169
1170#endif /* HAVE_PYTHON */
1171
1172/* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1174
1175static void
1176install_new_value_visualizer (struct varobj *var)
1177{
1178#if HAVE_PYTHON
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
0646da15
TT
1181 if (!gdb_python_initialized)
1182 return;
1183
bb5ce47a 1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1185 {
bde7b3e3 1186 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1187
bb5ce47a 1188 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1189 install_default_visualizer (var);
1190 else
bb5ce47a 1191 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1192 }
1193#else
1194 /* Do nothing. */
1195#endif
1196}
1197
8264ba82
AG
1198/* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1202
4c37490d 1203static bool
8264ba82
AG
1204update_type_if_necessary (struct varobj *var, struct value *new_value)
1205{
1206 if (new_value)
1207 {
1208 struct value_print_options opts;
1209
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1212 {
2f408ecb
PA
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
8264ba82 1216
2f408ecb
PA
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
8264ba82
AG
1219 {
1220 var->type = new_type;
1221
1222 /* This information may be not valid for a new type. */
30914ca8 1223 varobj_delete (var, 1);
ddf0ea08 1224 var->children.clear ();
8264ba82 1225 var->num_children = -1;
4c37490d 1226 return true;
8264ba82
AG
1227 }
1228 }
1229 }
1230
4c37490d 1231 return false;
8264ba82
AG
1232}
1233
4c37490d
SM
1234/* Assign a new value to a variable object. If INITIAL is true,
1235 this is the first assignment after the variable object was just
acd65feb 1236 created, or changed type. In that case, just assign the value
4c37490d
SM
1237 and return false.
1238 Otherwise, assign the new value, and return true if the value is
1239 different from the current one, false otherwise. The comparison is
581e13c1
MS
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
4c37490d 1243 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1244
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
4c37490d
SM
1247static bool
1248install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1249{
4c37490d
SM
1250 bool changeable;
1251 bool need_to_fetch;
1252 bool changed = false;
1253 bool intentionally_not_fetched = false;
acd65feb 1254
acd65feb 1255 /* We need to know the varobj's type to decide if the value should
3e43a32a 1256 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1257 don't have a type. */
acd65feb 1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1259 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1260
1261 /* If the type has custom visualizer, we consider it to be always
581e13c1 1262 changeable. FIXME: need to make sure this behaviour will not
b6313243 1263 mess up read-sensitive values. */
bb5ce47a 1264 if (var->dynamic->pretty_printer != NULL)
4c37490d 1265 changeable = true;
b6313243 1266
acd65feb
VP
1267 need_to_fetch = changeable;
1268
b26ed50d
VP
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1272 if (value)
0cc7d26f 1273 value = coerce_ref (value);
b26ed50d 1274
acd65feb
VP
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1284 fetch now. */
4c37490d 1285 need_to_fetch = true;
acd65feb
VP
1286
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1292 {
c1cc6152 1293 const struct varobj *parent = var->parent;
4c37490d 1294 bool frozen = var->frozen;
a109c7c1 1295
25d5ea92
VP
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1298
1299 if (frozen && initial)
1300 {
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
4c37490d 1305 intentionally_not_fetched = true;
25d5ea92 1306 }
8e7b59a5 1307 else
acd65feb 1308 {
8e7b59a5 1309
a70b8144 1310 try
8e7b59a5
KS
1311 {
1312 value_fetch_lazy (value);
1313 }
1314
230d2906 1315 catch (const gdb_exception_error &except)
8e7b59a5
KS
1316 {
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1320 value = NULL;
1321 }
acd65feb 1322 }
acd65feb
VP
1323 }
1324
e848a8a5
TT
1325 /* Get a reference now, before possibly passing it to any Python
1326 code that might release it. */
b4d61099 1327 value_ref_ptr value_holder;
e848a8a5 1328 if (value != NULL)
bbfa6f00 1329 value_holder = value_ref_ptr::new_reference (value);
b6313243 1330
7a4d50bf
VP
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
2f408ecb 1335 std::string print_value;
bb5ce47a
YQ
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
99ad9427 1338 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1339
acd65feb
VP
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1342 to compare with. */
7a4d50bf 1343 if (!initial && changeable)
acd65feb 1344 {
3e43a32a
MS
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
581e13c1 1348 varobj had after the previous -var-update. So need to the
3e43a32a 1349 varobj as changed. */
acd65feb 1350 if (var->updated)
4c37490d 1351 changed = true;
bb5ce47a 1352 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1353 {
1354 /* Try to compare the values. That requires that both
1355 values are non-lazy. */
b4d61099 1356 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1357 {
1358 /* This is a frozen varobj and the value was never read.
1359 Presumably, UI shows some "never read" indicator.
1360 Now that we've fetched the real value, we need to report
1361 this varobj as changed so that UI can show the real
1362 value. */
4c37490d 1363 changed = true;
25d5ea92
VP
1364 }
1365 else if (var->value == NULL && value == NULL)
581e13c1 1366 /* Equal. */
acd65feb
VP
1367 ;
1368 else if (var->value == NULL || value == NULL)
57e66780 1369 {
4c37490d 1370 changed = true;
57e66780 1371 }
acd65feb
VP
1372 else
1373 {
b4d61099 1374 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1375 gdb_assert (!value_lazy (value));
85265413 1376
2f408ecb
PA
1377 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1378 if (var->print_value != print_value)
4c37490d 1379 changed = true;
acd65feb
VP
1380 }
1381 }
1382 }
85265413 1383
ee342b23
VP
1384 if (!initial && !changeable)
1385 {
1386 /* For values that are not changeable, we don't compare the values.
1387 However, we want to notice if a value was not NULL and now is NULL,
1388 or vise versa, so that we report when top-level varobjs come in scope
1389 and leave the scope. */
1390 changed = (var->value != NULL) != (value != NULL);
1391 }
1392
acd65feb 1393 /* We must always keep the new value, since children depend on it. */
b4d61099 1394 var->value = value_holder;
25d5ea92 1395 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1396 var->not_fetched = true;
25d5ea92 1397 else
4c37490d
SM
1398 var->not_fetched = false;
1399 var->updated = false;
85265413 1400
0cc7d26f
TT
1401 install_new_value_visualizer (var);
1402
1403 /* If we installed a pretty-printer, re-compare the printed version
1404 to see if the variable changed. */
bb5ce47a 1405 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1406 {
b4d61099
TT
1407 print_value = varobj_value_get_print_value (var->value.get (),
1408 var->format, var);
2f408ecb
PA
1409 if ((var->print_value.empty () && !print_value.empty ())
1410 || (!var->print_value.empty () && print_value.empty ())
1411 || (!var->print_value.empty () && !print_value.empty ()
1412 && var->print_value != print_value))
4c37490d 1413 changed = true;
0cc7d26f 1414 }
0cc7d26f
TT
1415 var->print_value = print_value;
1416
b4d61099 1417 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1418
1419 return changed;
1420}
acd65feb 1421
0cc7d26f
TT
1422/* Return the requested range for a varobj. VAR is the varobj. FROM
1423 and TO are out parameters; *FROM and *TO will be set to the
1424 selected sub-range of VAR. If no range was selected using
1425 -var-set-update-range, then both will be -1. */
1426void
b09e2c59 1427varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1428{
0cc7d26f
TT
1429 *from = var->from;
1430 *to = var->to;
b6313243
TT
1431}
1432
0cc7d26f
TT
1433/* Set the selected sub-range of children of VAR to start at index
1434 FROM and end at index TO. If either FROM or TO is less than zero,
1435 this is interpreted as a request for all children. */
1436void
1437varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1438{
0cc7d26f
TT
1439 var->from = from;
1440 var->to = to;
b6313243
TT
1441}
1442
1443void
1444varobj_set_visualizer (struct varobj *var, const char *visualizer)
1445{
1446#if HAVE_PYTHON
bde7b3e3 1447 PyObject *mainmod;
b6313243 1448
0646da15
TT
1449 if (!gdb_python_initialized)
1450 return;
1451
bde7b3e3 1452 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1453
1454 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1455 gdbpy_ref<> globals
1456 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1457 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1458 globals.get (), globals.get ()));
b6313243 1459
bde7b3e3 1460 if (constructor == NULL)
b6313243
TT
1461 {
1462 gdbpy_print_stack ();
da1f2771 1463 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1464 }
1465
bde7b3e3 1466 construct_visualizer (var, constructor.get ());
b6313243 1467
0cc7d26f 1468 /* If there are any children now, wipe them. */
30914ca8 1469 varobj_delete (var, 1 /* children only */);
0cc7d26f 1470 var->num_children = -1;
b6313243 1471#else
da1f2771 1472 error (_("Python support required"));
b6313243
TT
1473#endif
1474}
1475
7a290c40 1476/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1477 true if var has mutated. In other words, if the type of
7a290c40
JB
1478 the new value is different from the type of the varobj's old
1479 value.
1480
1481 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1482
4c37490d 1483static bool
b09e2c59 1484varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1485 struct type *new_type)
1486{
1487 /* If we haven't previously computed the number of children in var,
1488 it does not matter from the front-end's perspective whether
1489 the type has mutated or not. For all intents and purposes,
1490 it has not mutated. */
1491 if (var->num_children < 0)
4c37490d 1492 return false;
7a290c40 1493
4c37490d 1494 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1495 {
1496 /* The varobj module, when installing new values, explicitly strips
1497 references, saying that we're not interested in those addresses.
1498 But detection of mutation happens before installing the new
1499 value, so our value may be a reference that we need to strip
1500 in order to remain consistent. */
1501 if (new_value != NULL)
1502 new_value = coerce_ref (new_value);
1503 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1504 }
7a290c40 1505 else
4c37490d 1506 return false;
7a290c40
JB
1507}
1508
8b93c638
JM
1509/* Update the values for a variable and its children. This is a
1510 two-pronged attack. First, re-parse the value for the root's
1511 expression to see if it's changed. Then go all the way
1512 through its children, reconstructing them and noting if they've
1513 changed.
1514
4c37490d 1515 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1516 of MI request to update this specific variable, or
581e13c1 1517 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1518 update frozen variables.
705da579 1519
581e13c1 1520 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1521 returns TYPE_CHANGED, then it has done this and VARP will be modified
1522 to point to the new varobj. */
8b93c638 1523
0604393c 1524std::vector<varobj_update_result>
4c37490d 1525varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1526{
4c37490d 1527 bool type_changed = false;
fe978cb0 1528 struct value *newobj;
0604393c
SM
1529 std::vector<varobj_update_result> stack;
1530 std::vector<varobj_update_result> result;
8b93c638 1531
25d5ea92
VP
1532 /* Frozen means frozen -- we don't check for any change in
1533 this varobj, including its going out of scope, or
1534 changing type. One use case for frozen varobjs is
1535 retaining previously evaluated expressions, and we don't
1536 want them to be reevaluated at all. */
fe978cb0 1537 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1538 return result;
8756216b
DP
1539
1540 if (!(*varp)->root->is_valid)
f7f9ae2c 1541 {
0604393c 1542 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1543 return result;
1544 }
8b93c638 1545
25d5ea92 1546 if ((*varp)->root->rootvar == *varp)
ae093f96 1547 {
0604393c 1548 varobj_update_result r (*varp);
f7f9ae2c 1549
581e13c1 1550 /* Update the root variable. value_of_root can return NULL
25d5ea92 1551 if the variable is no longer around, i.e. we stepped out of
581e13c1 1552 the frame in which a local existed. We are letting the
25d5ea92
VP
1553 value_of_root variable dispose of the varobj if the type
1554 has changed. */
fe978cb0 1555 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1556 if (update_type_if_necessary (*varp, newobj))
1557 type_changed = true;
f7f9ae2c 1558 r.varobj = *varp;
f7f9ae2c 1559 r.type_changed = type_changed;
fe978cb0 1560 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1561 r.changed = true;
ea56f9c2 1562
fe978cb0 1563 if (newobj == NULL)
f7f9ae2c 1564 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1565 r.value_installed = true;
f7f9ae2c
VP
1566
1567 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1568 {
0b4bc29a 1569 if (r.type_changed || r.changed)
0604393c
SM
1570 result.push_back (std::move (r));
1571
b6313243
TT
1572 return result;
1573 }
a109c7c1 1574
0604393c 1575 stack.push_back (std::move (r));
b20d8971 1576 }
0604393c
SM
1577 else
1578 stack.emplace_back (*varp);
8b93c638 1579
8756216b 1580 /* Walk through the children, reconstructing them all. */
0604393c 1581 while (!stack.empty ())
8b93c638 1582 {
0604393c
SM
1583 varobj_update_result r = std::move (stack.back ());
1584 stack.pop_back ();
b6313243
TT
1585 struct varobj *v = r.varobj;
1586
b6313243
TT
1587 /* Update this variable, unless it's a root, which is already
1588 updated. */
1589 if (!r.value_installed)
7a290c40
JB
1590 {
1591 struct type *new_type;
1592
fe978cb0 1593 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1594 if (update_type_if_necessary (v, newobj))
1595 r.type_changed = true;
fe978cb0
PA
1596 if (newobj)
1597 new_type = value_type (newobj);
7a290c40 1598 else
ca20d462 1599 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1600
fe978cb0 1601 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1602 {
1603 /* The children are no longer valid; delete them now.
1604 Report the fact that its type changed as well. */
30914ca8 1605 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1606 v->num_children = -1;
1607 v->to = -1;
1608 v->from = -1;
1609 v->type = new_type;
4c37490d 1610 r.type_changed = true;
7a290c40
JB
1611 }
1612
fe978cb0 1613 if (install_new_value (v, newobj, r.type_changed))
b6313243 1614 {
4c37490d
SM
1615 r.changed = true;
1616 v->updated = false;
b6313243
TT
1617 }
1618 }
1619
31f628ae
YQ
1620 /* We probably should not get children of a dynamic varobj, but
1621 for which -var-list-children was never invoked. */
1622 if (varobj_is_dynamic_p (v))
b6313243 1623 {
b926417a 1624 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1625 bool children_changed = false;
b6313243
TT
1626
1627 if (v->frozen)
1628 continue;
1629
bd046f64 1630 if (!v->dynamic->children_requested)
0cc7d26f 1631 {
4c37490d 1632 bool dummy;
0cc7d26f
TT
1633
1634 /* If we initially did not have potential children, but
1635 now we do, consider the varobj as changed.
1636 Otherwise, if children were never requested, consider
1637 it as unchanged -- presumably, such varobj is not yet
1638 expanded in the UI, so we need not bother getting
1639 it. */
1640 if (!varobj_has_more (v, 0))
1641 {
8264ba82 1642 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1643 &dummy, false, 0, 0);
0cc7d26f 1644 if (varobj_has_more (v, 0))
4c37490d 1645 r.changed = true;
0cc7d26f
TT
1646 }
1647
1648 if (r.changed)
0604393c 1649 result.push_back (std::move (r));
0cc7d26f
TT
1650
1651 continue;
1652 }
1653
4c37490d 1654 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1655 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1656 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1657 &newobj_vec,
1658 &unchanged, &children_changed,
1659 true, v->from, v->to))
b6313243 1660 {
b926417a 1661 if (children_changed || !newobj_vec.empty ())
b6313243 1662 {
4c37490d 1663 r.children_changed = true;
b926417a 1664 r.newobj = std::move (newobj_vec);
b6313243 1665 }
0cc7d26f
TT
1666 /* Push in reverse order so that the first child is
1667 popped from the work stack first, and so will be
1668 added to result first. This does not affect
1669 correctness, just "nicer". */
b926417a 1670 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1671 {
b926417a 1672 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1673
1674 /* Type may change only if value was changed. */
b926417a
TT
1675 item.changed = true;
1676 item.type_changed = true;
1677 item.value_installed = true;
0604393c 1678
b926417a 1679 stack.push_back (std::move (item));
8264ba82 1680 }
0604393c 1681 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1682 {
b926417a 1683 varobj_update_result item (changed[i]);
a109c7c1 1684
b926417a
TT
1685 item.changed = true;
1686 item.value_installed = true;
0604393c 1687
b926417a 1688 stack.push_back (std::move (item));
b6313243 1689 }
0604393c
SM
1690 for (int i = unchanged.size () - 1; i >= 0; --i)
1691 {
1692 if (!unchanged[i]->frozen)
1693 {
b926417a 1694 varobj_update_result item (unchanged[i]);
0604393c 1695
b926417a 1696 item.value_installed = true;
0cc7d26f 1697
b926417a 1698 stack.push_back (std::move (item));
0604393c
SM
1699 }
1700 }
1701 if (r.changed || r.children_changed)
1702 result.push_back (std::move (r));
0cc7d26f 1703
b6313243
TT
1704 continue;
1705 }
1706 }
28335dcc
VP
1707
1708 /* Push any children. Use reverse order so that the first
1709 child is popped from the work stack first, and so
1710 will be added to result first. This does not
1711 affect correctness, just "nicer". */
0604393c 1712 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1713 {
ddf0ea08 1714 varobj *c = v->children[i];
a109c7c1 1715
28335dcc 1716 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1717 if (c != NULL && !c->frozen)
0604393c 1718 stack.emplace_back (c);
8b93c638 1719 }
b6313243
TT
1720
1721 if (r.changed || r.type_changed)
0604393c 1722 result.push_back (std::move (r));
8b93c638
JM
1723 }
1724
f7f9ae2c 1725 return result;
8b93c638 1726}
8b93c638
JM
1727
1728/* Helper functions */
1729
1730/*
1731 * Variable object construction/destruction
1732 */
1733
1734static int
4c37490d 1735delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1736{
1737 int delcount = 0;
1738
30914ca8 1739 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1740 true /* remove_from_parent_p */ );
8b93c638
JM
1741
1742 return delcount;
1743}
1744
581e13c1 1745/* Delete the variable object VAR and its children. */
8b93c638
JM
1746/* IMPORTANT NOTE: If we delete a variable which is a child
1747 and the parent is not removed we dump core. It must be always
581e13c1 1748 initially called with remove_from_parent_p set. */
8b93c638 1749static void
4c37490d
SM
1750delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1751 bool remove_from_parent_p)
8b93c638 1752{
581e13c1 1753 /* Delete any children of this variable, too. */
ddf0ea08 1754 for (varobj *child : var->children)
28335dcc 1755 {
214270ab
VP
1756 if (!child)
1757 continue;
ddf0ea08 1758
8b93c638 1759 if (!remove_from_parent_p)
28335dcc 1760 child->parent = NULL;
ddf0ea08 1761
4c37490d 1762 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1763 }
ddf0ea08 1764 var->children.clear ();
8b93c638 1765
581e13c1 1766 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1767 if (only_children_p)
1768 return;
1769
581e13c1 1770 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1771 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1772 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1773 if (!var->obj_name.empty ())
8b93c638 1774 {
8b93c638
JM
1775 *delcountp = *delcountp + 1;
1776 }
1777
581e13c1 1778 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1779 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1780 (as indicated by remove_from_parent_p) we don't bother doing an
1781 expensive list search to find the element to remove when we are
581e13c1 1782 discarding the list afterwards. */
72330bd6 1783 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1784 var->parent->children[var->index] = NULL;
72330bd6 1785
2f408ecb 1786 if (!var->obj_name.empty ())
73a93a32 1787 uninstall_variable (var);
8b93c638 1788
581e13c1 1789 /* Free memory associated with this variable. */
9e5b9d2b 1790 delete var;
8b93c638
JM
1791}
1792
581e13c1 1793/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1794static bool
fba45db2 1795install_variable (struct varobj *var)
8b93c638
JM
1796{
1797 struct vlist *cv;
1798 struct vlist *newvl;
1799 const char *chp;
1800 unsigned int index = 0;
1801 unsigned int i = 1;
1802
2f408ecb 1803 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1804 {
1805 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1806 }
1807
1808 cv = *(varobj_table + index);
2f408ecb 1809 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1810 cv = cv->next;
1811
1812 if (cv != NULL)
8a3fe4f8 1813 error (_("Duplicate variable object name"));
8b93c638 1814
581e13c1 1815 /* Add varobj to hash table. */
8d749320 1816 newvl = XNEW (struct vlist);
8b93c638
JM
1817 newvl->next = *(varobj_table + index);
1818 newvl->var = var;
1819 *(varobj_table + index) = newvl;
1820
581e13c1 1821 /* If root, add varobj to root list. */
b2c2bd75 1822 if (is_root_p (var))
8b93c638 1823 {
581e13c1 1824 /* Add to list of root variables. */
8b93c638
JM
1825 if (rootlist == NULL)
1826 var->root->next = NULL;
1827 else
1828 var->root->next = rootlist;
1829 rootlist = var->root;
8b93c638
JM
1830 }
1831
4c37490d 1832 return true; /* OK */
8b93c638
JM
1833}
1834
581e13c1 1835/* Unistall the object VAR. */
8b93c638 1836static void
fba45db2 1837uninstall_variable (struct varobj *var)
8b93c638
JM
1838{
1839 struct vlist *cv;
1840 struct vlist *prev;
1841 struct varobj_root *cr;
1842 struct varobj_root *prer;
1843 const char *chp;
1844 unsigned int index = 0;
1845 unsigned int i = 1;
1846
581e13c1 1847 /* Remove varobj from hash table. */
2f408ecb 1848 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1849 {
1850 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1851 }
1852
1853 cv = *(varobj_table + index);
1854 prev = NULL;
2f408ecb 1855 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1856 {
1857 prev = cv;
1858 cv = cv->next;
1859 }
1860
1861 if (varobjdebug)
2f408ecb 1862 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1863
1864 if (cv == NULL)
1865 {
72330bd6
AC
1866 warning
1867 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1868 var->obj_name.c_str ());
8b93c638
JM
1869 return;
1870 }
1871
1872 if (prev == NULL)
1873 *(varobj_table + index) = cv->next;
1874 else
1875 prev->next = cv->next;
1876
b8c9b27d 1877 xfree (cv);
8b93c638 1878
581e13c1 1879 /* If root, remove varobj from root list. */
b2c2bd75 1880 if (is_root_p (var))
8b93c638 1881 {
581e13c1 1882 /* Remove from list of root variables. */
8b93c638
JM
1883 if (rootlist == var->root)
1884 rootlist = var->root->next;
1885 else
1886 {
1887 prer = NULL;
1888 cr = rootlist;
1889 while ((cr != NULL) && (cr->rootvar != var))
1890 {
1891 prer = cr;
1892 cr = cr->next;
1893 }
1894 if (cr == NULL)
1895 {
8f7e195f
JB
1896 warning (_("Assertion failed: Could not find "
1897 "varobj \"%s\" in root list"),
2f408ecb 1898 var->obj_name.c_str ());
8b93c638
JM
1899 return;
1900 }
1901 if (prer == NULL)
1902 rootlist = NULL;
1903 else
1904 prer->next = cr->next;
1905 }
8b93c638
JM
1906 }
1907
1908}
1909
837ce252
SM
1910/* Create and install a child of the parent of the given name.
1911
1912 The created VAROBJ takes ownership of the allocated NAME. */
1913
8b93c638 1914static struct varobj *
2f408ecb 1915create_child (struct varobj *parent, int index, std::string &name)
b6313243 1916{
5a2e0d6e
YQ
1917 struct varobj_item item;
1918
2f408ecb 1919 std::swap (item.name, name);
5a2e0d6e
YQ
1920 item.value = value_of_child (parent, index);
1921
1922 return create_child_with_value (parent, index, &item);
b6313243
TT
1923}
1924
1925static struct varobj *
5a2e0d6e
YQ
1926create_child_with_value (struct varobj *parent, int index,
1927 struct varobj_item *item)
8b93c638 1928{
9e5b9d2b 1929 varobj *child = new varobj (parent->root);
8b93c638 1930
5e5ac9a5 1931 /* NAME is allocated by caller. */
2f408ecb 1932 std::swap (child->name, item->name);
8b93c638 1933 child->index = index;
8b93c638 1934 child->parent = parent;
85254831 1935
99ad9427 1936 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1937 child->obj_name = string_printf ("%s.%d_anonymous",
1938 parent->obj_name.c_str (), index);
85254831 1939 else
2f408ecb
PA
1940 child->obj_name = string_printf ("%s.%s",
1941 parent->obj_name.c_str (),
1942 child->name.c_str ());
85254831 1943
8b93c638
JM
1944 install_variable (child);
1945
acd65feb
VP
1946 /* Compute the type of the child. Must do this before
1947 calling install_new_value. */
5a2e0d6e 1948 if (item->value != NULL)
acd65feb 1949 /* If the child had no evaluation errors, var->value
581e13c1 1950 will be non-NULL and contain a valid type. */
5a2e0d6e 1951 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1952 else
581e13c1 1953 /* Otherwise, we must compute the type. */
ca20d462
YQ
1954 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1955 child->index);
5a2e0d6e 1956 install_new_value (child, item->value, 1);
acd65feb 1957
8b93c638
JM
1958 return child;
1959}
8b93c638
JM
1960\f
1961
1962/*
1963 * Miscellaneous utility functions.
1964 */
1965
581e13c1 1966/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1967varobj::varobj (varobj_root *root_)
1968: root (root_), dynamic (new varobj_dynamic)
8b93c638 1969{
8b93c638
JM
1970}
1971
581e13c1 1972/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1973
1974varobj::~varobj ()
8b93c638 1975{
9e5b9d2b
SM
1976 varobj *var = this;
1977
d452c4bc 1978#if HAVE_PYTHON
bb5ce47a 1979 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1980 {
bde7b3e3 1981 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1982
1983 Py_XDECREF (var->dynamic->constructor);
1984 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1985 }
1986#endif
1987
827f100c
YQ
1988 varobj_iter_delete (var->dynamic->child_iter);
1989 varobj_clear_saved_item (var->dynamic);
36746093 1990
b2c2bd75 1991 if (is_root_p (var))
4d01a485 1992 delete var->root;
8b93c638 1993
9e5b9d2b 1994 delete var->dynamic;
74b7792f
AC
1995}
1996
6e2a9270
VP
1997/* Return the type of the value that's stored in VAR,
1998 or that would have being stored there if the
581e13c1 1999 value were accessible.
6e2a9270
VP
2000
2001 This differs from VAR->type in that VAR->type is always
2002 the true type of the expession in the source language.
2003 The return value of this function is the type we're
2004 actually storing in varobj, and using for displaying
2005 the values and for comparing previous and new values.
2006
2007 For example, top-level references are always stripped. */
99ad9427 2008struct type *
b09e2c59 2009varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2010{
2011 struct type *type;
2012
b4d61099
TT
2013 if (var->value != nullptr)
2014 type = value_type (var->value.get ());
6e2a9270
VP
2015 else
2016 type = var->type;
2017
2018 type = check_typedef (type);
2019
aa006118 2020 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2021 type = get_target_type (type);
2022
2023 type = check_typedef (type);
2024
2025 return type;
2026}
2027
8b93c638 2028/* What is the default display for this variable? We assume that
581e13c1 2029 everything is "natural". Any exceptions? */
8b93c638 2030static enum varobj_display_formats
fba45db2 2031variable_default_display (struct varobj *var)
8b93c638
JM
2032{
2033 return FORMAT_NATURAL;
2034}
2035
8b93c638
JM
2036/*
2037 * Language-dependencies
2038 */
2039
2040/* Common entry points */
2041
8b93c638
JM
2042/* Return the number of children for a given variable.
2043 The result of this function is defined by the language
581e13c1 2044 implementation. The number of children returned by this function
8b93c638 2045 is the number of children that the user will see in the variable
581e13c1 2046 display. */
8b93c638 2047static int
b09e2c59 2048number_of_children (const struct varobj *var)
8b93c638 2049{
ca20d462 2050 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2051}
2052
2f408ecb
PA
2053/* What is the expression for the root varobj VAR? */
2054
2055static std::string
b09e2c59 2056name_of_variable (const struct varobj *var)
8b93c638 2057{
ca20d462 2058 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2059}
2060
2f408ecb
PA
2061/* What is the name of the INDEX'th child of VAR? */
2062
2063static std::string
fba45db2 2064name_of_child (struct varobj *var, int index)
8b93c638 2065{
ca20d462 2066 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2067}
2068
2213e2be 2069/* If frame associated with VAR can be found, switch
4c37490d 2070 to it and return true. Otherwise, return false. */
2213e2be 2071
4c37490d 2072static bool
b09e2c59 2073check_scope (const struct varobj *var)
2213e2be
YQ
2074{
2075 struct frame_info *fi;
4c37490d 2076 bool scope;
2213e2be
YQ
2077
2078 fi = frame_find_by_id (var->root->frame);
2079 scope = fi != NULL;
2080
2081 if (fi)
2082 {
2083 CORE_ADDR pc = get_frame_pc (fi);
2084
2085 if (pc < BLOCK_START (var->root->valid_block) ||
2086 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2087 scope = false;
2213e2be
YQ
2088 else
2089 select_frame (fi);
2090 }
2091 return scope;
2092}
2093
2094/* Helper function to value_of_root. */
2095
2096static struct value *
2097value_of_root_1 (struct varobj **var_handle)
2098{
2099 struct value *new_val = NULL;
2100 struct varobj *var = *var_handle;
4c37490d 2101 bool within_scope = false;
2213e2be
YQ
2102
2103 /* Only root variables can be updated... */
2104 if (!is_root_p (var))
2105 /* Not a root var. */
2106 return NULL;
2107
5ed8105e 2108 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2109
2110 /* Determine whether the variable is still around. */
2111 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2112 within_scope = true;
2213e2be
YQ
2113 else if (var->root->thread_id == 0)
2114 {
2115 /* The program was single-threaded when the variable object was
2116 created. Technically, it's possible that the program became
2117 multi-threaded since then, but we don't support such
2118 scenario yet. */
2119 within_scope = check_scope (var);
2120 }
2121 else
2122 {
00431a78 2123 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2124
00431a78 2125 if (thread != NULL)
2213e2be 2126 {
00431a78 2127 switch_to_thread (thread);
2213e2be
YQ
2128 within_scope = check_scope (var);
2129 }
2130 }
2131
2132 if (within_scope)
2133 {
2213e2be
YQ
2134
2135 /* We need to catch errors here, because if evaluate
2136 expression fails we want to just return NULL. */
a70b8144 2137 try
2213e2be 2138 {
4d01a485 2139 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2140 }
230d2906 2141 catch (const gdb_exception_error &except)
492d29ea
PA
2142 {
2143 }
2213e2be
YQ
2144 }
2145
2213e2be
YQ
2146 return new_val;
2147}
2148
a5defcdc
VP
2149/* What is the ``struct value *'' of the root variable VAR?
2150 For floating variable object, evaluation can get us a value
2151 of different type from what is stored in varobj already. In
2152 that case:
2153 - *type_changed will be set to 1
2154 - old varobj will be freed, and new one will be
2155 created, with the same name.
2156 - *var_handle will be set to the new varobj
2157 Otherwise, *type_changed will be set to 0. */
30b28db1 2158static struct value *
4c37490d 2159value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2160{
73a93a32
JI
2161 struct varobj *var;
2162
2163 if (var_handle == NULL)
2164 return NULL;
2165
2166 var = *var_handle;
2167
2168 /* This should really be an exception, since this should
581e13c1 2169 only get called with a root variable. */
73a93a32 2170
b2c2bd75 2171 if (!is_root_p (var))
73a93a32
JI
2172 return NULL;
2173
a5defcdc 2174 if (var->root->floating)
73a93a32
JI
2175 {
2176 struct varobj *tmp_var;
6225abfa 2177
2f408ecb 2178 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2179 USE_SELECTED_FRAME);
2180 if (tmp_var == NULL)
2181 {
2182 return NULL;
2183 }
2f408ecb
PA
2184 std::string old_type = varobj_get_type (var);
2185 std::string new_type = varobj_get_type (tmp_var);
2186 if (old_type == new_type)
73a93a32 2187 {
fcacd99f
VP
2188 /* The expression presently stored inside var->root->exp
2189 remembers the locations of local variables relatively to
2190 the frame where the expression was created (in DWARF location
2191 button, for example). Naturally, those locations are not
2192 correct in other frames, so update the expression. */
2193
4d01a485 2194 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2195
30914ca8 2196 varobj_delete (tmp_var, 0);
73a93a32
JI
2197 *type_changed = 0;
2198 }
2199 else
2200 {
2f408ecb 2201 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2202 tmp_var->from = var->from;
2203 tmp_var->to = var->to;
30914ca8 2204 varobj_delete (var, 0);
a5defcdc 2205
73a93a32
JI
2206 install_variable (tmp_var);
2207 *var_handle = tmp_var;
705da579 2208 var = *var_handle;
4c37490d 2209 *type_changed = true;
73a93a32
JI
2210 }
2211 }
2212 else
2213 {
2214 *type_changed = 0;
2215 }
2216
7a290c40
JB
2217 {
2218 struct value *value;
2219
2213e2be 2220 value = value_of_root_1 (var_handle);
7a290c40
JB
2221 if (var->value == NULL || value == NULL)
2222 {
2223 /* For root varobj-s, a NULL value indicates a scoping issue.
2224 So, nothing to do in terms of checking for mutations. */
2225 }
2226 else if (varobj_value_has_mutated (var, value, value_type (value)))
2227 {
2228 /* The type has mutated, so the children are no longer valid.
2229 Just delete them, and tell our caller that the type has
2230 changed. */
30914ca8 2231 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2232 var->num_children = -1;
2233 var->to = -1;
2234 var->from = -1;
4c37490d 2235 *type_changed = true;
7a290c40
JB
2236 }
2237 return value;
2238 }
8b93c638
JM
2239}
2240
581e13c1 2241/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2242static struct value *
c1cc6152 2243value_of_child (const struct varobj *parent, int index)
8b93c638 2244{
30b28db1 2245 struct value *value;
8b93c638 2246
ca20d462 2247 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2248
8b93c638
JM
2249 return value;
2250}
2251
581e13c1 2252/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2253static std::string
de051565 2254my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2255{
8756216b 2256 if (var->root->is_valid)
0cc7d26f 2257 {
bb5ce47a 2258 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2259 return varobj_value_get_print_value (var->value.get (), var->format,
2260 var);
ca20d462 2261 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2262 }
8756216b 2263 else
2f408ecb 2264 return std::string ();
8b93c638
JM
2265}
2266
99ad9427
YQ
2267void
2268varobj_formatted_print_options (struct value_print_options *opts,
2269 enum varobj_display_formats format)
2270{
2271 get_formatted_print_options (opts, format_code[(int) format]);
2272 opts->deref_ref = 0;
0625771b 2273 opts->raw = !pretty_printing;
99ad9427
YQ
2274}
2275
2f408ecb 2276std::string
99ad9427
YQ
2277varobj_value_get_print_value (struct value *value,
2278 enum varobj_display_formats format,
b09e2c59 2279 const struct varobj *var)
85265413 2280{
79a45b7d 2281 struct value_print_options opts;
be759fcf
PM
2282 struct type *type = NULL;
2283 long len = 0;
1eba6383 2284 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2285 /* Initialize it just to avoid a GCC false warning. */
2286 CORE_ADDR str_addr = 0;
4c37490d 2287 bool string_print = false;
57e66780
DJ
2288
2289 if (value == NULL)
2f408ecb 2290 return std::string ();
57e66780 2291
d7e74731 2292 string_file stb;
2f408ecb
PA
2293 std::string thevalue;
2294
b6313243 2295#if HAVE_PYTHON
0646da15
TT
2296 if (gdb_python_initialized)
2297 {
bb5ce47a 2298 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2299
68cdc557 2300 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2301
0646da15
TT
2302 if (value_formatter)
2303 {
2304 /* First check to see if we have any children at all. If so,
2305 we simply return {...}. */
2306 if (dynamic_varobj_has_child_method (var))
d7e74731 2307 return "{...}";
b6313243 2308
0646da15
TT
2309 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2310 {
2311 struct value *replacement;
0646da15 2312
a5c5eda7
SM
2313 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2314 &replacement,
2315 &stb);
0646da15
TT
2316
2317 /* If we have string like output ... */
68cdc557 2318 if (output != NULL)
0646da15 2319 {
0646da15
TT
2320 /* If this is a lazy string, extract it. For lazy
2321 strings we always print as a string, so set
2322 string_print. */
68cdc557 2323 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2324 {
68cdc557
TT
2325 gdbpy_extract_lazy_string (output.get (), &str_addr,
2326 &type, &len, &encoding);
4c37490d 2327 string_print = true;
0646da15
TT
2328 }
2329 else
2330 {
2331 /* If it is a regular (non-lazy) string, extract
2332 it and copy the contents into THEVALUE. If the
2333 hint says to print it as a string, set
2334 string_print. Otherwise just return the extracted
2335 string as a value. */
2336
9b972014 2337 gdb::unique_xmalloc_ptr<char> s
68cdc557 2338 = python_string_to_target_string (output.get ());
0646da15
TT
2339
2340 if (s)
2341 {
e3821cca 2342 struct gdbarch *gdbarch;
0646da15 2343
9b972014
TT
2344 gdb::unique_xmalloc_ptr<char> hint
2345 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2346 if (hint)
2347 {
9b972014 2348 if (!strcmp (hint.get (), "string"))
4c37490d 2349 string_print = true;
0646da15
TT
2350 }
2351
9b972014 2352 thevalue = std::string (s.get ());
2f408ecb 2353 len = thevalue.size ();
e3821cca 2354 gdbarch = get_type_arch (value_type (value));
0646da15 2355 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2356
2357 if (!string_print)
d7e74731 2358 return thevalue;
0646da15
TT
2359 }
2360 else
2361 gdbpy_print_stack ();
2362 }
2363 }
2364 /* If the printer returned a replacement value, set VALUE
2365 to REPLACEMENT. If there is not a replacement value,
2366 just use the value passed to this function. */
2367 if (replacement)
2368 value = replacement;
2369 }
2370 }
2371 }
b6313243
TT
2372#endif
2373
99ad9427 2374 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2375
2376 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2377 if (!thevalue.empty ())
d7e74731 2378 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2379 len, encoding.get (), 0, &opts);
09ca9e2e 2380 else if (string_print)
00bd41d6
PM
2381 /* Otherwise, if string_print is set, and it is not a regular
2382 string, it is a lazy string. */
d7e74731 2383 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2384 else
00bd41d6 2385 /* All other cases. */
d7e74731 2386 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2387
d7e74731 2388 return std::move (stb.string ());
85265413
NR
2389}
2390
4c37490d 2391bool
b09e2c59 2392varobj_editable_p (const struct varobj *var)
340a7723
NR
2393{
2394 struct type *type;
340a7723 2395
b4d61099
TT
2396 if (!(var->root->is_valid && var->value != nullptr
2397 && VALUE_LVAL (var->value.get ())))
4c37490d 2398 return false;
340a7723 2399
99ad9427 2400 type = varobj_get_value_type (var);
340a7723
NR
2401
2402 switch (TYPE_CODE (type))
2403 {
2404 case TYPE_CODE_STRUCT:
2405 case TYPE_CODE_UNION:
2406 case TYPE_CODE_ARRAY:
2407 case TYPE_CODE_FUNC:
2408 case TYPE_CODE_METHOD:
4c37490d 2409 return false;
340a7723
NR
2410 break;
2411
2412 default:
4c37490d 2413 return true;
340a7723
NR
2414 break;
2415 }
2416}
2417
d32cafc7 2418/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2419
4c37490d 2420bool
b09e2c59 2421varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2422{
ca20d462 2423 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2424}
2425
4c37490d 2426/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2427 selected frame, and not bound to thread/frame. Such variable objects
2428 are created using '@' as frame specifier to -var-create. */
4c37490d 2429bool
b09e2c59 2430varobj_floating_p (const struct varobj *var)
5a413362
VP
2431{
2432 return var->root->floating;
2433}
2434
d32cafc7
JB
2435/* Implement the "value_is_changeable_p" varobj callback for most
2436 languages. */
2437
4c37490d 2438bool
b09e2c59 2439varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2440{
4c37490d 2441 bool r;
d32cafc7
JB
2442 struct type *type;
2443
2444 if (CPLUS_FAKE_CHILD (var))
4c37490d 2445 return false;
d32cafc7 2446
99ad9427 2447 type = varobj_get_value_type (var);
d32cafc7
JB
2448
2449 switch (TYPE_CODE (type))
2450 {
2451 case TYPE_CODE_STRUCT:
2452 case TYPE_CODE_UNION:
2453 case TYPE_CODE_ARRAY:
4c37490d 2454 r = false;
d32cafc7
JB
2455 break;
2456
2457 default:
4c37490d 2458 r = true;
d32cafc7
JB
2459 }
2460
2461 return r;
2462}
2463
54333c3b
JK
2464/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2465 with an arbitrary caller supplied DATA pointer. */
2466
2467void
2468all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2469{
2470 struct varobj_root *var_root, *var_root_next;
2471
2472 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2473
2474 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2475 {
2476 var_root_next = var_root->next;
2477
2478 (*func) (var_root->rootvar, data);
2479 }
2480}
8756216b 2481
54333c3b 2482/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2483 defined on globals. It is a helper for varobj_invalidate.
2484
2485 This function is called after changing the symbol file, in this case the
2486 pointers to "struct type" stored by the varobj are no longer valid. All
2487 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2488
54333c3b
JK
2489static void
2490varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2491{
4e969b4f
AB
2492 /* global and floating var must be re-evaluated. */
2493 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2494 {
54333c3b 2495 struct varobj *tmp_var;
2dbd25e5 2496
54333c3b
JK
2497 /* Try to create a varobj with same expression. If we succeed
2498 replace the old varobj, otherwise invalidate it. */
2f408ecb 2499 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2500 USE_CURRENT_FRAME);
2501 if (tmp_var != NULL)
2502 {
2f408ecb 2503 tmp_var->obj_name = var->obj_name;
30914ca8 2504 varobj_delete (var, 0);
54333c3b 2505 install_variable (tmp_var);
2dbd25e5 2506 }
54333c3b 2507 else
4c37490d 2508 var->root->is_valid = false;
2dbd25e5 2509 }
54333c3b 2510 else /* locals must be invalidated. */
4c37490d 2511 var->root->is_valid = false;
54333c3b
JK
2512}
2513
2514/* Invalidate the varobjs that are tied to locals and re-create the ones that
2515 are defined on globals.
2516 Invalidated varobjs will be always printed in_scope="invalid". */
2517
2518void
2519varobj_invalidate (void)
2520{
2521 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2522}
481695ed 2523
1c3569d4
MR
2524void
2525_initialize_varobj (void)
2526{
8d749320 2527 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2528
2529 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2530 &varobjdebug,
2531 _("Set varobj debugging."),
2532 _("Show varobj debugging."),
2533 _("When non-zero, varobj debugging is enabled."),
2534 NULL, show_varobjdebug,
2535 &setdebuglist, &showdebuglist);
2536}