]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/s390.cc
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gold / s390.cc
CommitLineData
e79a4bad
MK
1// s390.cc -- s390 target support for gold.
2
a2c58332 3// Copyright (C) 2015-2022 Free Software Foundation, Inc.
e79a4bad
MK
4// Written by Marcin Kościelnicki <koriakin@0x04.net>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "s390.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44namespace
45{
46
47using namespace gold;
48
49// A class to handle the .got.plt section.
50
51template<int size>
52class Output_data_got_plt_s390 : public Output_section_data_build
53{
54 public:
55 Output_data_got_plt_s390(Layout* layout)
56 : Output_section_data_build(size/8),
57 layout_(layout)
58 { }
59
60 Output_data_got_plt_s390(Layout* layout, off_t data_size)
61 : Output_section_data_build(data_size, size/8),
62 layout_(layout)
63 { }
64
65 protected:
66 // Write out the PLT data.
67 void
68 do_write(Output_file*);
69
70 // Write to a map file.
71 void
72 do_print_to_mapfile(Mapfile* mapfile) const
73 { mapfile->print_output_data(this, "** GOT PLT"); }
74
75 private:
76 // A pointer to the Layout class, so that we can find the .dynamic
77 // section when we write out the GOT PLT section.
78 Layout* layout_;
79};
80
81// A class to handle the PLT data.
82
83template<int size>
84class Output_data_plt_s390 : public Output_section_data
85{
86 public:
87 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88 Reloc_section;
89
90 Output_data_plt_s390(Layout* layout,
91 Output_data_got<size, true>* got,
92 Output_data_got_plt_s390<size>* got_plt,
93 Output_data_space* got_irelative)
94 : Output_section_data(4), layout_(layout),
95 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96 got_irelative_(got_irelative), count_(0),
97 irelative_count_(0), free_list_()
98 { this->init(layout); }
99
100 Output_data_plt_s390(Layout* layout,
101 Output_data_got<size, true>* got,
102 Output_data_got_plt_s390<size>* got_plt,
103 Output_data_space* got_irelative,
104 unsigned int plt_count)
105 : Output_section_data((plt_count + 1) * plt_entry_size,
106 4, false),
107 layout_(layout), irelative_rel_(NULL), got_(got),
108 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109 irelative_count_(0), free_list_()
110 {
111 this->init(layout);
112
113 // Initialize the free list and reserve the first entry.
114 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115 this->free_list_.remove(0, plt_entry_size);
116 }
117
118 // Initialize the PLT section.
119 void
120 init(Layout* layout);
121
122 // Add an entry to the PLT.
123 void
124 add_entry(Symbol_table*, Layout*, Symbol* gsym);
125
126 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127 unsigned int
128 add_local_ifunc_entry(Symbol_table*, Layout*,
129 Sized_relobj_file<size, true>*, unsigned int);
130
131 // Add the relocation for a PLT entry.
132 void
133 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134
135 // Return the .rela.plt section data.
136 Reloc_section*
137 rela_plt()
138 { return this->rel_; }
139
140 // Return where the IRELATIVE relocations should go in the PLT
141 // relocations.
142 Reloc_section*
143 rela_irelative(Symbol_table*, Layout*);
144
145 // Return whether we created a section for IRELATIVE relocations.
146 bool
147 has_irelative_section() const
148 { return this->irelative_rel_ != NULL; }
149
150 // Return the number of PLT entries.
151 unsigned int
152 entry_count() const
153 { return this->count_ + this->irelative_count_; }
154
155 // Return the offset of the first non-reserved PLT entry.
156 unsigned int
157 first_plt_entry_offset()
158 { return plt_entry_size; }
159
160 // Return the size of a PLT entry.
161 unsigned int
162 get_plt_entry_size() const
163 { return plt_entry_size; }
164
165 // Reserve a slot in the PLT for an existing symbol in an incremental update.
166 void
167 reserve_slot(unsigned int plt_index)
168 {
169 this->free_list_.remove((plt_index + 1) * plt_entry_size,
170 (plt_index + 2) * plt_entry_size);
171 }
172
173 // Return the PLT address to use for a global symbol.
174 uint64_t
175 address_for_global(const Symbol*);
176
177 // Return the PLT address to use for a local symbol.
178 uint64_t
179 address_for_local(const Relobj*, unsigned int symndx);
180
181 // Add .eh_frame information for the PLT.
182 void
183 add_eh_frame(Layout* layout)
184 {
185 (void)layout;
186 layout->add_eh_frame_for_plt(this,
187 plt_eh_frame_cie,
188 plt_eh_frame_cie_size,
189 plt_eh_frame_fde,
190 plt_eh_frame_fde_size);
191 }
192
193 protected:
194 // Fill in the first PLT entry.
195 void
196 fill_first_plt_entry(unsigned char* pov,
197 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199
200 // Fill in a normal PLT entry. Returns the offset into the entry that
201 // should be the initial GOT slot value.
202 unsigned int
203 fill_plt_entry(unsigned char* pov,
204 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 unsigned int got_offset,
207 unsigned int plt_offset,
208 unsigned int plt_rel_offset);
209
210 void
211 do_adjust_output_section(Output_section* os);
212
213 // Write to a map file.
214 void
215 do_print_to_mapfile(Mapfile* mapfile) const
216 { mapfile->print_output_data(this, _("** PLT")); }
217
218 private:
219 // Set the final size.
220 void
221 set_final_data_size();
222
223 // Write out the PLT data.
224 void
225 do_write(Output_file*);
226
227 // A pointer to the Layout class, so that we can find the .dynamic
228 // section when we write out the GOT PLT section.
229 Layout* layout_;
230 // The reloc section.
231 Reloc_section* rel_;
232 // The IRELATIVE relocs, if necessary. These must follow the
233 // regular PLT relocations.
234 Reloc_section* irelative_rel_;
235 // The .got section.
236 Output_data_got<size, true>* got_;
237 // The .got.plt section.
238 Output_data_got_plt_s390<size>* got_plt_;
239 // The part of the .got.plt section used for IRELATIVE relocs.
240 Output_data_space* got_irelative_;
241 // The number of PLT entries.
242 unsigned int count_;
243 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
244 // follow the regular PLT entries.
245 unsigned int irelative_count_;
246 // List of available regions within the section, for incremental
247 // update links.
248 Free_list free_list_;
249
250 // The size of an entry in the PLT.
251 static const int plt_entry_size = 0x20;
252 // The first entry in the PLT.
253 static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254 static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255 static const unsigned char first_plt_entry_64[plt_entry_size];
256 // Other entries in the PLT for an executable.
257 static const unsigned char plt_entry_32_abs[plt_entry_size];
258 static const unsigned char plt_entry_32_pic12[plt_entry_size];
259 static const unsigned char plt_entry_32_pic16[plt_entry_size];
260 static const unsigned char plt_entry_32_pic[plt_entry_size];
261 static const unsigned char plt_entry_64[plt_entry_size];
262
263 // The .eh_frame unwind information for the PLT.
264 static const int plt_eh_frame_cie_size = 12;
265 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266 static const int plt_eh_frame_fde_size = 12;
267 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268};
269
270
271template<int size>
272class Target_s390 : public Sized_target<size, true>
273{
274 public:
275 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276
277 Target_s390()
278 : Sized_target<size, true>(&s390_info),
279 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280 global_offset_table_(NULL), rela_dyn_(NULL),
281 rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283 layout_(NULL)
284 { }
285
286 // Scan the relocations to look for symbol adjustments.
287 void
288 gc_process_relocs(Symbol_table* symtab,
289 Layout* layout,
290 Sized_relobj_file<size, true>* object,
291 unsigned int data_shndx,
292 unsigned int sh_type,
293 const unsigned char* prelocs,
294 size_t reloc_count,
295 Output_section* output_section,
296 bool needs_special_offset_handling,
297 size_t local_symbol_count,
298 const unsigned char* plocal_symbols);
299
300 // Scan the relocations to look for symbol adjustments.
301 void
302 scan_relocs(Symbol_table* symtab,
303 Layout* layout,
304 Sized_relobj_file<size, true>* object,
305 unsigned int data_shndx,
306 unsigned int sh_type,
307 const unsigned char* prelocs,
308 size_t reloc_count,
309 Output_section* output_section,
310 bool needs_special_offset_handling,
311 size_t local_symbol_count,
312 const unsigned char* plocal_symbols);
313
314 // Finalize the sections.
315 void
316 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317
318 // Return the value to use for a dynamic which requires special
319 // treatment.
320 uint64_t
321 do_dynsym_value(const Symbol*) const;
322
323 // Relocate a section.
324 void
325 relocate_section(const Relocate_info<size, true>*,
326 unsigned int sh_type,
327 const unsigned char* prelocs,
328 size_t reloc_count,
329 Output_section* output_section,
330 bool needs_special_offset_handling,
331 unsigned char* view,
332 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 section_size_type view_size,
334 const Reloc_symbol_changes*);
335
336 // Scan the relocs during a relocatable link.
337 void
338 scan_relocatable_relocs(Symbol_table* symtab,
339 Layout* layout,
340 Sized_relobj_file<size, true>* object,
341 unsigned int data_shndx,
342 unsigned int sh_type,
343 const unsigned char* prelocs,
344 size_t reloc_count,
345 Output_section* output_section,
346 bool needs_special_offset_handling,
347 size_t local_symbol_count,
348 const unsigned char* plocal_symbols,
349 Relocatable_relocs*);
350
4d625b70
CC
351 // Scan the relocs for --emit-relocs.
352 void
353 emit_relocs_scan(Symbol_table* symtab,
354 Layout* layout,
355 Sized_relobj_file<size, true>* object,
356 unsigned int data_shndx,
357 unsigned int sh_type,
358 const unsigned char* prelocs,
359 size_t reloc_count,
360 Output_section* output_section,
361 bool needs_special_offset_handling,
362 size_t local_symbol_count,
363 const unsigned char* plocal_syms,
364 Relocatable_relocs* rr);
365
e79a4bad
MK
366 // Return a string used to fill a code section with nops.
367 std::string
368 do_code_fill(section_size_type length) const;
369
370 // Emit relocations for a section.
371 void
372 relocate_relocs(
373 const Relocate_info<size, true>*,
374 unsigned int sh_type,
375 const unsigned char* prelocs,
376 size_t reloc_count,
377 Output_section* output_section,
378 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
379 unsigned char* view,
380 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
381 section_size_type view_size,
382 unsigned char* reloc_view,
383 section_size_type reloc_view_size);
384
385 // Return whether SYM is defined by the ABI.
386 bool
387 do_is_defined_by_abi(const Symbol* sym) const
388 { return strcmp(sym->name(), "__tls_get_offset") == 0; }
389
390 // Return the PLT address to use for a global symbol.
391 uint64_t
392 do_plt_address_for_global(const Symbol* gsym) const
393 { return this->plt_section()->address_for_global(gsym); }
394
395 uint64_t
396 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
397 { return this->plt_section()->address_for_local(relobj, symndx); }
398
399 // Return the offset to use for the GOT_INDX'th got entry which is
400 // for a local tls symbol specified by OBJECT, SYMNDX.
401 int64_t
402 do_tls_offset_for_local(const Relobj* object,
403 unsigned int symndx,
f19c3684 404 Output_data_got_base* got,
e4d49a0f
AM
405 unsigned int got_indx,
406 uint64_t addend) const;
e79a4bad
MK
407
408 // Return the offset to use for the GOT_INDX'th got entry which is
409 // for global tls symbol GSYM.
410 int64_t
f19c3684
AM
411 do_tls_offset_for_global(Symbol* gsym,
412 Output_data_got_base* got,
413 unsigned int got_indx,
e4d49a0f 414 uint64_t addend) const;
e79a4bad
MK
415
416 // This function should be defined in targets that can use relocation
417 // types to determine (implemented in local_reloc_may_be_function_pointer
418 // and global_reloc_may_be_function_pointer)
419 // if a function's pointer is taken. ICF uses this in safe mode to only
420 // fold those functions whose pointer is defintely not taken.
421 bool
422 do_can_check_for_function_pointers() const
423 { return true; }
424
2b63aca3
MK
425 // Return whether SYM is call to a non-split function.
426 bool
427 do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
428 const unsigned char* view,
429 section_size_type view_size) const;
430
431 // Adjust -fsplit-stack code which calls non-split-stack code.
432 void
433 do_calls_non_split(Relobj* object, unsigned int shndx,
434 section_offset_type fnoffset, section_size_type fnsize,
435 const unsigned char* prelocs, size_t reloc_count,
436 unsigned char* view, section_size_type view_size,
437 std::string* from, std::string* to) const;
438
e79a4bad
MK
439 // Return the size of the GOT section.
440 section_size_type
441 got_size() const
442 {
443 gold_assert(this->got_ != NULL);
444 return this->got_->data_size();
445 }
446
447 // Return the number of entries in the GOT.
448 unsigned int
449 got_entry_count() const
450 {
451 if (this->got_ == NULL)
452 return 0;
453 return this->got_size() / (size / 8);
454 }
455
456 // Return the number of entries in the PLT.
457 unsigned int
458 plt_entry_count() const;
459
460 // Return the offset of the first non-reserved PLT entry.
461 unsigned int
462 first_plt_entry_offset() const;
463
464 // Return the size of each PLT entry.
465 unsigned int
466 plt_entry_size() const;
467
468 // Create the GOT section for an incremental update.
469 Output_data_got_base*
470 init_got_plt_for_update(Symbol_table* symtab,
471 Layout* layout,
472 unsigned int got_count,
473 unsigned int plt_count);
474
475 // Reserve a GOT entry for a local symbol, and regenerate any
476 // necessary dynamic relocations.
477 void
478 reserve_local_got_entry(unsigned int got_index,
479 Sized_relobj<size, true>* obj,
480 unsigned int r_sym,
481 unsigned int got_type);
482
483 // Reserve a GOT entry for a global symbol, and regenerate any
484 // necessary dynamic relocations.
485 void
486 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
487 unsigned int got_type);
488
489 // Register an existing PLT entry for a global symbol.
490 void
491 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
492 Symbol* gsym);
493
494 // Force a COPY relocation for a given symbol.
495 void
496 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
497
498 // Apply an incremental relocation.
499 void
500 apply_relocation(const Relocate_info<size, true>* relinfo,
501 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
502 unsigned int r_type,
503 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
504 const Symbol* gsym,
505 unsigned char* view,
506 typename elfcpp::Elf_types<size>::Elf_Addr address,
507 section_size_type view_size);
508
509 private:
510
511 // The class which scans relocations.
512 class Scan
513 {
514 public:
515 Scan()
516 : issued_non_pic_error_(false)
517 { }
518
519 static inline int
520 get_reference_flags(unsigned int r_type);
521
522 inline void
523 local(Symbol_table* symtab, Layout* layout, Target_s390* target,
524 Sized_relobj_file<size, true>* object,
525 unsigned int data_shndx,
526 Output_section* output_section,
527 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
528 const elfcpp::Sym<size, true>& lsym,
529 bool is_discarded);
530
531 inline void
532 global(Symbol_table* symtab, Layout* layout, Target_s390* target,
533 Sized_relobj_file<size, true>* object,
534 unsigned int data_shndx,
535 Output_section* output_section,
536 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
537 Symbol* gsym);
538
539 inline bool
540 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
541 Target_s390* target,
542 Sized_relobj_file<size, true>* object,
543 unsigned int data_shndx,
544 Output_section* output_section,
545 const elfcpp::Rela<size, true>& reloc,
546 unsigned int r_type,
547 const elfcpp::Sym<size, true>& lsym);
548
549 inline bool
550 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
551 Target_s390* target,
552 Sized_relobj_file<size, true>* object,
553 unsigned int data_shndx,
554 Output_section* output_section,
555 const elfcpp::Rela<size, true>& reloc,
556 unsigned int r_type,
557 Symbol* gsym);
558
559 private:
560 static void
561 unsupported_reloc_local(Sized_relobj_file<size, true>*,
562 unsigned int r_type);
563
564 static void
565 unsupported_reloc_global(Sized_relobj_file<size, true>*,
566 unsigned int r_type, Symbol*);
567
568 void
569 check_non_pic(Relobj*, unsigned int r_type);
570
571 inline bool
572 possible_function_pointer_reloc(unsigned int r_type);
573
574 bool
575 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
576 unsigned int r_type);
577
578 // Whether we have issued an error about a non-PIC compilation.
579 bool issued_non_pic_error_;
580 };
581
582 // The class which implements relocation.
583 class Relocate
584 {
585 public:
586 // Do a relocation. Return false if the caller should not issue
587 // any warnings about this relocation.
588 inline bool
91a65d2f
AM
589 relocate(const Relocate_info<size, true>*, unsigned int,
590 Target_s390*, Output_section*, size_t, const unsigned char*,
591 const Sized_symbol<size>*, const Symbol_value<size>*,
e79a4bad
MK
592 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
593 section_size_type);
594
595 private:
596 // Do a TLS relocation.
597 inline typename elfcpp::Elf_types<size>::Elf_Addr
598 relocate_tls(const Relocate_info<size, true>*, Target_s390*,
599 size_t relnum, const elfcpp::Rela<size, true>&,
600 unsigned int r_type, const Sized_symbol<size>*,
601 const Symbol_value<size>*,
602 unsigned char*, section_size_type);
603
604 // Do a TLS General-Dynamic to Initial-Exec transition.
605 inline void
606 tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
607 const elfcpp::Rela<size, true>&,
608 unsigned char* view,
609 section_size_type view_size);
610
611 // Do a TLS General-Dynamic to Local-Exec transition.
612 inline void
613 tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
614 const elfcpp::Rela<size, true>&,
615 unsigned char* view,
616 section_size_type view_size);
617
618 // Do a TLS Local-Dynamic to Local-Exec transition.
619 inline void
620 tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
621 const elfcpp::Rela<size, true>&,
622 unsigned char* view,
623 section_size_type view_size);
624
625 // Do a TLS Initial-Exec to Local-Exec transition.
626 static inline void
627 tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
628 const elfcpp::Rela<size, true>&,
629 unsigned char* view,
630 section_size_type view_size);
631 };
632
e79a4bad
MK
633 // Adjust TLS relocation type based on the options and whether this
634 // is a local symbol.
635 static tls::Tls_optimization
636 optimize_tls_reloc(bool is_final, int r_type);
637
638 // Get the GOT section.
639 const Output_data_got<size, true>*
640 got_section() const
641 {
642 gold_assert(this->got_ != NULL);
643 return this->got_;
644 }
645
646 // Get the GOT section, creating it if necessary.
647 Output_data_got<size, true>*
648 got_section(Symbol_table*, Layout*);
649
650 typename elfcpp::Elf_types<size>::Elf_Addr
651 got_address() const
652 {
653 gold_assert(this->got_ != NULL);
654 return this->got_plt_->address();
655 }
656
657 typename elfcpp::Elf_types<size>::Elf_Addr
658 got_main_offset() const
659 {
660 gold_assert(this->got_ != NULL);
661 return this->got_->address() - this->got_address();
662 }
663
664 // Create the PLT section.
665 void
666 make_plt_section(Symbol_table* symtab, Layout* layout);
667
668 // Create a PLT entry for a global symbol.
669 void
670 make_plt_entry(Symbol_table*, Layout*, Symbol*);
671
672 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
673 void
674 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
675 Sized_relobj_file<size, true>* relobj,
676 unsigned int local_sym_index);
677
678 // Create a GOT entry for the TLS module index.
679 unsigned int
680 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
681 Sized_relobj_file<size, true>* object);
682
683 // Get the PLT section.
684 Output_data_plt_s390<size>*
685 plt_section() const
686 {
687 gold_assert(this->plt_ != NULL);
688 return this->plt_;
689 }
690
691 // Get the dynamic reloc section, creating it if necessary.
692 Reloc_section*
693 rela_dyn_section(Layout*);
694
695 // Get the section to use for IRELATIVE relocations.
696 Reloc_section*
697 rela_irelative_section(Layout*);
698
699 // Add a potential copy relocation.
700 void
701 copy_reloc(Symbol_table* symtab, Layout* layout,
702 Sized_relobj_file<size, true>* object,
703 unsigned int shndx, Output_section* output_section,
704 Symbol* sym, const elfcpp::Rela<size, true>& reloc)
705 {
859d7987 706 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
e79a4bad
MK
707 this->copy_relocs_.copy_reloc(symtab, layout,
708 symtab->get_sized_symbol<size>(sym),
709 object, shndx, output_section,
859d7987
CC
710 r_type, reloc.get_r_offset(),
711 reloc.get_r_addend(),
712 this->rela_dyn_section(layout));
e79a4bad
MK
713 }
714
2b63aca3
MK
715 // A function for targets to call. Return whether BYTES/LEN matches
716 // VIEW/VIEW_SIZE at OFFSET. Like the one in Target, but takes
717 // an unsigned char * parameter.
718 bool
719 match_view_u(const unsigned char* view, section_size_type view_size,
720 section_offset_type offset, const unsigned char* bytes, size_t len) const
721 {
722 return this->match_view(view, view_size, offset,
723 reinterpret_cast<const char*>(bytes), len);
724 }
725
e79a4bad
MK
726 // Information about this specific target which we pass to the
727 // general Target structure.
728 static Target::Target_info s390_info;
729
730 // The types of GOT entries needed for this platform.
731 // These values are exposed to the ABI in an incremental link.
732 // Do not renumber existing values without changing the version
733 // number of the .gnu_incremental_inputs section.
734 enum Got_type
735 {
736 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
737 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
738 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
739 };
740
741 // The GOT section.
742 Output_data_got<size, true>* got_;
743 // The PLT section.
744 Output_data_plt_s390<size>* plt_;
745 // The GOT PLT section.
746 Output_data_got_plt_s390<size>* got_plt_;
747 // The GOT section for IRELATIVE relocations.
748 Output_data_space* got_irelative_;
749 // The _GLOBAL_OFFSET_TABLE_ symbol.
750 Symbol* global_offset_table_;
751 // The dynamic reloc section.
752 Reloc_section* rela_dyn_;
753 // The section to use for IRELATIVE relocs.
754 Reloc_section* rela_irelative_;
755 // Relocs saved to avoid a COPY reloc.
756 Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
757 // Offset of the GOT entry for the TLS module index.
758 unsigned int got_mod_index_offset_;
759 // True if the _TLS_MODULE_BASE_ symbol has been defined.
760 bool tls_base_symbol_defined_;
761 // For use in do_tls_offset_for_*
762 Layout *layout_;
2b63aca3
MK
763
764 // Code sequences for -fsplit-stack matching.
2b63aca3
MK
765 static const unsigned char ss_code_bras_8[];
766 static const unsigned char ss_code_l_basr[];
767 static const unsigned char ss_code_a_basr[];
2b63aca3
MK
768 static const unsigned char ss_code_larl[];
769 static const unsigned char ss_code_brasl[];
770 static const unsigned char ss_code_jg[];
771 static const unsigned char ss_code_jgl[];
772
773 // Variable code sequence matchers for -fsplit-stack.
40d85a7f
MK
774 bool ss_match_st_r14(unsigned char* view,
775 section_size_type view_size,
776 section_offset_type *offset) const;
777 bool ss_match_l_r14(unsigned char* view,
778 section_size_type view_size,
779 section_offset_type *offset) const;
2b63aca3
MK
780 bool ss_match_mcount(unsigned char* view,
781 section_size_type view_size,
782 section_offset_type *offset) const;
40d85a7f
MK
783 bool ss_match_ear(unsigned char* view,
784 section_size_type view_size,
785 section_offset_type *offset) const;
786 bool ss_match_c(unsigned char* view,
787 section_size_type view_size,
788 section_offset_type *offset) const;
2b63aca3
MK
789 bool ss_match_l(unsigned char* view,
790 section_size_type view_size,
791 section_offset_type *offset,
792 int *guard_reg) const;
793 bool ss_match_ahi(unsigned char* view,
794 section_size_type view_size,
795 section_offset_type *offset,
796 int guard_reg,
797 uint32_t *arg) const;
798 bool ss_match_alfi(unsigned char* view,
799 section_size_type view_size,
800 section_offset_type *offset,
801 int guard_reg,
802 uint32_t *arg) const;
803 bool ss_match_cr(unsigned char* view,
804 section_size_type view_size,
805 section_offset_type *offset,
806 int guard_reg) const;
e79a4bad
MK
807};
808
809template<>
810Target::Target_info Target_s390<32>::s390_info =
811{
812 32, // size
813 true, // is_big_endian
814 elfcpp::EM_S390, // machine_code
815 false, // has_make_symbol
816 false, // has_resolve
817 true, // has_code_fill
818 true, // is_default_stack_executable
819 true, // can_icf_inline_merge_sections
820 '\0', // wrap_char
821 "/lib/ld.so.1", // dynamic_linker
822 0x00400000, // default_text_segment_address
823 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
824 4 * 1024, // common_pagesize (overridable by -z common-page-size)
825 false, // isolate_execinstr
826 0, // rosegment_gap
827 elfcpp::SHN_UNDEF, // small_common_shndx
828 elfcpp::SHN_UNDEF, // large_common_shndx
829 0, // small_common_section_flags
830 0, // large_common_section_flags
831 NULL, // attributes_section
832 NULL, // attributes_vendor
833 "_start", // entry_symbol_name
834 32, // hash_entry_size
bce5a025 835 elfcpp::SHT_PROGBITS, // unwind_section_type
e79a4bad
MK
836};
837
838template<>
839Target::Target_info Target_s390<64>::s390_info =
840{
841 64, // size
842 true, // is_big_endian
843 elfcpp::EM_S390, // machine_code
844 false, // has_make_symbol
845 false, // has_resolve
846 true, // has_code_fill
847 true, // is_default_stack_executable
848 true, // can_icf_inline_merge_sections
849 '\0', // wrap_char
850 "/lib/ld64.so.1", // dynamic_linker
851 0x80000000ll, // default_text_segment_address
852 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
853 4 * 1024, // common_pagesize (overridable by -z common-page-size)
854 false, // isolate_execinstr
855 0, // rosegment_gap
856 elfcpp::SHN_UNDEF, // small_common_shndx
857 elfcpp::SHN_UNDEF, // large_common_shndx
858 0, // small_common_section_flags
859 0, // large_common_section_flags
860 NULL, // attributes_section
861 NULL, // attributes_vendor
862 "_start", // entry_symbol_name
863 64, // hash_entry_size
bce5a025 864 elfcpp::SHT_PROGBITS, // unwind_section_type
e79a4bad
MK
865};
866
867template<int size>
868class S390_relocate_functions
869{
870public:
871 enum Overflow_check
872 {
873 CHECK_NONE,
874 CHECK_SIGNED,
875 CHECK_UNSIGNED,
876 CHECK_BITFIELD,
877 CHECK_LOW_INSN,
878 CHECK_HIGH_INSN
879 };
880
881 enum Status
882 {
883 STATUS_OK,
884 STATUS_OVERFLOW
885 };
886
887private:
888 typedef S390_relocate_functions<size> This;
889 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
890
891 template<int valsize>
892 static inline bool
893 has_overflow_signed(Address value)
894 {
895 // limit = 1 << (valsize - 1) without shift count exceeding size of type
896 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
897 limit <<= ((valsize - 1) >> 1);
898 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
899 return value + limit > (limit << 1) - 1;
900 }
901
902 template<int valsize>
903 static inline bool
904 has_overflow_unsigned(Address value)
905 {
906 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
907 limit <<= ((valsize - 1) >> 1);
908 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
909 return value > (limit << 1) - 1;
910 }
911
912 template<int fieldsize>
913 static inline void
914 rela(unsigned char* view, Address mask, Address value)
915 {
916 typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
917 Valtype* wv = reinterpret_cast<Valtype*>(view);
918 Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
919 val &= ~mask;
920 value &= mask;
921 elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
922 }
923
924public:
925 // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
926 static inline Status
927 rela12(unsigned char* view, Address value)
928 {
929 if (This::template has_overflow_unsigned<12>(value))
930 return STATUS_OVERFLOW;
931 This::template rela<16>(view, 0x0fff, value);
932 return STATUS_OK;
933 }
934
935 // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
936 static inline Status
937 rela16(unsigned char* view, Address value)
938 {
939 if (This::template has_overflow_signed<16>(value))
940 return STATUS_OVERFLOW;
941 This::template rela<16>(view, 0xffff, value);
942 return STATUS_OK;
943 }
944
945 // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
946 static inline Status
947 rela20(unsigned char* view, Address value)
948 {
949 if (This::template has_overflow_signed<20>(value))
950 return STATUS_OVERFLOW;
951 This::template rela<16>(view, 0x0fff, value);
952 This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
953 return STATUS_OK;
954 }
955
956 // R_390_PC12DBL, R_390_PLT12DBL
957 static inline Status
958 pcrela12dbl(unsigned char* view, Address value, Address address)
959 {
960 value -= address;
961 if ((value & 1) != 0)
962 return STATUS_OVERFLOW;
963 if (This::template has_overflow_signed<13>(value))
964 return STATUS_OVERFLOW;
965 value >>= 1;
966 This::template rela<16>(view, 0x0fff, value);
967 return STATUS_OK;
968 }
969
970 // R_390_PC16DBL, R_390_PLT16DBL
971 static inline Status
972 pcrela16dbl(unsigned char* view, Address value, Address address)
973 {
974 value -= address;
975 if ((value & 1) != 0)
976 return STATUS_OVERFLOW;
977 if (This::template has_overflow_signed<17>(value))
978 return STATUS_OVERFLOW;
979 value >>= 1;
980 This::template rela<16>(view, 0xffff, value);
981 return STATUS_OK;
982 }
983
984 // R_390_PC24DBL, R_390_PLT24DBL
985 static inline Status
986 pcrela24dbl(unsigned char* view, Address value, Address address)
987 {
988 value -= address;
989 if ((value & 1) != 0)
990 return STATUS_OVERFLOW;
991 if (This::template has_overflow_signed<25>(value))
992 return STATUS_OVERFLOW;
993 value >>= 1;
994 // Swap doesn't take 24-bit fields well...
995 This::template rela<8>(view, 0xff, value >> 16);
996 This::template rela<16>(view + 1, 0xffff, value);
997 return STATUS_OK;
998 }
999
1000 // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
1001 static inline Status
1002 pcrela32dbl(unsigned char* view, Address value, Address address)
1003 {
1004 Address reloc = value - address;
1005 if ((reloc & 1) != 0)
1006 {
1007 gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
1008 // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
1009 // return STATUS_OVERFLOW;
1010 }
1011 if (This::template has_overflow_signed<33>(reloc))
1012 return STATUS_OVERFLOW;
1013 reloc >>= 1;
1014 if (value < address && size == 32)
1015 reloc |= 0x80000000;
1016 This::template rela<32>(view, 0xffffffff, reloc);
1017 return STATUS_OK;
1018 }
1019
1020};
1021
1022// Initialize the PLT section.
1023
1024template<int size>
1025void
1026Output_data_plt_s390<size>::init(Layout* layout)
1027{
1028 this->rel_ = new Reloc_section(false);
1029 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1030 elfcpp::SHF_ALLOC, this->rel_,
1031 ORDER_DYNAMIC_PLT_RELOCS, false);
1032}
1033
1034template<int size>
1035void
1036Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
1037{
1038 os->set_entsize(plt_entry_size);
1039}
1040
1041// Add an entry to the PLT.
1042
1043template<int size>
1044void
1045Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
1046 Symbol* gsym)
1047{
1048 gold_assert(!gsym->has_plt_offset());
1049
1050 unsigned int plt_index;
1051 off_t plt_offset;
1052 section_offset_type got_offset;
1053
1054 unsigned int* pcount;
1055 unsigned int offset;
1056 unsigned int reserved;
1057 Output_section_data_build* got;
1058 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1059 && gsym->can_use_relative_reloc(false))
1060 {
1061 pcount = &this->irelative_count_;
1062 offset = 0;
1063 reserved = 0;
1064 got = this->got_irelative_;
1065 }
1066 else
1067 {
1068 pcount = &this->count_;
1069 offset = 1;
1070 reserved = 3;
1071 got = this->got_plt_;
1072 }
1073
1074 if (!this->is_data_size_valid())
1075 {
1076 // Note that when setting the PLT offset for a non-IRELATIVE
1077 // entry we skip the initial reserved PLT entry.
1078 plt_index = *pcount + offset;
1079 plt_offset = plt_index * plt_entry_size;
1080
1081 ++*pcount;
1082
1083 got_offset = (plt_index - offset + reserved) * size / 8;
1084 gold_assert(got_offset == got->current_data_size());
1085
1086 // Every PLT entry needs a GOT entry which points back to the PLT
1087 // entry (this will be changed by the dynamic linker, normally
1088 // lazily when the function is called).
1089 got->set_current_data_size(got_offset + size / 8);
1090 }
1091 else
1092 {
1093 // FIXME: This is probably not correct for IRELATIVE relocs.
1094
1095 // For incremental updates, find an available slot.
1096 plt_offset = this->free_list_.allocate(plt_entry_size,
1097 plt_entry_size, 0);
1098 if (plt_offset == -1)
1099 gold_fallback(_("out of patch space (PLT);"
1100 " relink with --incremental-full"));
1101
1102 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1103 // can be calculated from the PLT index, adjusting for the three
1104 // reserved entries at the beginning of the GOT.
1105 plt_index = plt_offset / plt_entry_size - 1;
1106 got_offset = (plt_index - offset + reserved) * size / 8;
1107 }
1108
1109 gsym->set_plt_offset(plt_offset);
1110
1111 // Every PLT entry needs a reloc.
1112 this->add_relocation(symtab, layout, gsym, got_offset);
1113
1114 // Note that we don't need to save the symbol. The contents of the
1115 // PLT are independent of which symbols are used. The symbols only
1116 // appear in the relocations.
1117}
1118
1119// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1120// the PLT offset.
1121
1122template<int size>
1123unsigned int
1124Output_data_plt_s390<size>::add_local_ifunc_entry(
1125 Symbol_table* symtab,
1126 Layout* layout,
1127 Sized_relobj_file<size, true>* relobj,
1128 unsigned int local_sym_index)
1129{
1130 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1131 ++this->irelative_count_;
1132
1133 section_offset_type got_offset = this->got_irelative_->current_data_size();
1134
1135 // Every PLT entry needs a GOT entry which points back to the PLT
1136 // entry.
1137 this->got_irelative_->set_current_data_size(got_offset + size / 8);
1138
1139 // Every PLT entry needs a reloc.
1140 Reloc_section* rela = this->rela_irelative(symtab, layout);
1141 rela->add_symbolless_local_addend(relobj, local_sym_index,
1142 elfcpp::R_390_IRELATIVE,
1143 this->got_irelative_, got_offset, 0);
1144
1145 return plt_offset;
1146}
1147
1148// Add the relocation for a PLT entry.
1149
1150template<int size>
1151void
1152Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1153 Layout* layout,
1154 Symbol* gsym,
1155 unsigned int got_offset)
1156{
1157 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1158 && gsym->can_use_relative_reloc(false))
1159 {
1160 Reloc_section* rela = this->rela_irelative(symtab, layout);
1161 rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1162 this->got_irelative_, got_offset, 0);
1163 }
1164 else
1165 {
1166 gsym->set_needs_dynsym_entry();
1167 this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1168 got_offset, 0);
1169 }
1170}
1171
1172// Return where the IRELATIVE relocations should go in the PLT. These
1173// follow the JUMP_SLOT and the TLSDESC relocations.
1174
1175template<int size>
1176typename Output_data_plt_s390<size>::Reloc_section*
1177Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1178 Layout* layout)
1179{
1180 if (this->irelative_rel_ == NULL)
1181 {
1182 this->irelative_rel_ = new Reloc_section(false);
1183 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1184 elfcpp::SHF_ALLOC, this->irelative_rel_,
1185 ORDER_DYNAMIC_PLT_RELOCS, false);
1186 gold_assert(this->irelative_rel_->output_section()
1187 == this->rel_->output_section());
1188
1189 if (parameters->doing_static_link())
1190 {
1191 // A statically linked executable will only have a .rela.plt
1192 // section to hold R_390_IRELATIVE relocs for
1193 // STT_GNU_IFUNC symbols. The library will use these
1194 // symbols to locate the IRELATIVE relocs at program startup
1195 // time.
1196 symtab->define_in_output_data("__rela_iplt_start", NULL,
1197 Symbol_table::PREDEFINED,
1198 this->irelative_rel_, 0, 0,
1199 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1200 elfcpp::STV_HIDDEN, 0, false, true);
1201 symtab->define_in_output_data("__rela_iplt_end", NULL,
1202 Symbol_table::PREDEFINED,
1203 this->irelative_rel_, 0, 0,
1204 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1205 elfcpp::STV_HIDDEN, 0, true, true);
1206 }
1207 }
1208 return this->irelative_rel_;
1209}
1210
1211// Return the PLT address to use for a global symbol.
1212
1213template<int size>
1214uint64_t
1215Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1216{
1217 uint64_t offset = 0;
1218 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1219 && gsym->can_use_relative_reloc(false))
1220 offset = (this->count_ + 1) * plt_entry_size;
1221 return this->address() + offset + gsym->plt_offset();
1222}
1223
1224// Return the PLT address to use for a local symbol. These are always
1225// IRELATIVE relocs.
1226
1227template<int size>
1228uint64_t
1229Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1230 unsigned int r_sym)
1231{
1232 return (this->address()
1233 + (this->count_ + 1) * plt_entry_size
1234 + object->local_plt_offset(r_sym));
1235}
1236
1237// Set the final size.
1238template<int size>
1239void
1240Output_data_plt_s390<size>::set_final_data_size()
1241{
1242 unsigned int count = this->count_ + this->irelative_count_;
1243 this->set_data_size((count + 1) * plt_entry_size);
1244}
1245
1246template<int size>
1247const unsigned char
1248Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1249{
1250 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1251 0x0d, 0x10, // basr %r1, %r0
1252 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1253 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1254 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1255 0x07, 0xf1, // br %r1
1256 0x00, 0x00, // padding
1257 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1258 0x00, 0x00, 0x00, 0x00, // padding
1259};
1260
1261template<int size>
1262const unsigned char
1263Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1264{
1265 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1266 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1267 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1268 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1269 0x07, 0xf1, // br %r1
1270 0x00, 0x00, // padding
1271 0x00, 0x00, 0x00, 0x00, // padding
1272 0x00, 0x00, 0x00, 0x00, // padding
1273 0x00, 0x00, 0x00, 0x00, // padding
1274};
1275
1276template<int size>
1277const unsigned char
1278Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1279{
1280 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1281 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1282 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1283 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1284 0x07, 0xf1, // br %r1
1285 0x07, 0x00, // nopr
1286 0x07, 0x00, // nopr
1287 0x07, 0x00, // nopr
1288};
1289
1290template<int size>
1291void
1292Output_data_plt_s390<size>::fill_first_plt_entry(
1293 unsigned char* pov,
1294 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1295 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1296{
1297 if (size == 64)
1298 {
1299 memcpy(pov, first_plt_entry_64, plt_entry_size);
1300 S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1301 }
1302 else if (!parameters->options().output_is_position_independent())
1303 {
1304 memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1305 elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1306 }
1307 else
1308 {
1309 memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1310 }
1311}
1312
1313template<int size>
1314const unsigned char
1315Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1316{
1317 // first part
1318 0x0d, 0x10, // basr %r1, %r0
1319 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1320 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1321 0x07, 0xf1, // br %r1
1322 // second part
1323 0x0d, 0x10, // basr %r1, %r0
1324 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1325 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1326 0x00, 0x00, // padding
1327 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1328 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1329};
1330
1331template<int size>
1332const unsigned char
1333Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1334{
1335 // first part
1336 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1337 0x07, 0xf1, // br %r1
1338 0x00, 0x00, // padding
1339 0x00, 0x00, 0x00, 0x00, // padding
1340 // second part
1341 0x0d, 0x10, // basr %r1, %r0
1342 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1343 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1344 0x00, 0x00, // padding
1345 0x00, 0x00, 0x00, 0x00, // padding
1346 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1347};
1348
1349template<int size>
1350const unsigned char
1351Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1352{
1353 // first part
1354 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1355 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1356 0x07, 0xf1, // br %r1
1357 0x00, 0x00, // padding
1358 // second part
1359 0x0d, 0x10, // basr %r1, %r0
1360 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1361 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1362 0x00, 0x00, // padding
1363 0x00, 0x00, 0x00, 0x00, // padding
1364 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1365};
1366
1367template<int size>
1368const unsigned char
1369Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1370{
1371 // first part
1372 0x0d, 0x10, // basr %r1, %r0
1373 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1374 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1375 0x07, 0xf1, // br %r1
1376 // second part
1377 0x0d, 0x10, // basr %r1, %r0
1378 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1379 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1380 0x00, 0x00, // padding
1381 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1382 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1383};
1384
1385template<int size>
1386const unsigned char
1387Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1388{
1389 // first part
1390 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1391 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1392 0x07, 0xf1, // br %r1
1393 // second part
1394 0x0d, 0x10, // basr %r1, %r0
1395 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1396 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1397 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1398};
1399
1400template<int size>
1401unsigned int
1402Output_data_plt_s390<size>::fill_plt_entry(
1403 unsigned char* pov,
1404 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1405 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1406 unsigned int got_offset,
1407 unsigned int plt_offset,
1408 unsigned int plt_rel_offset)
1409{
1410 if (size == 64)
1411 {
1412 memcpy(pov, plt_entry_64, plt_entry_size);
1413 S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1414 S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1415 }
1416 else
1417 {
1418 if (!parameters->options().output_is_position_independent())
1419 {
1420 memcpy(pov, plt_entry_32_abs, plt_entry_size);
1421 elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1422 }
1423 else
1424 {
1425 if (got_offset < 0x1000)
1426 {
1427 memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1428 S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1429 }
1430 else if (got_offset < 0x8000)
1431 {
1432 memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1433 S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1434 }
1435 else
1436 {
1437 memcpy(pov, plt_entry_32_pic, plt_entry_size);
1438 elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1439 }
1440 }
1441 typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1442 if (plt_offset >= 0x10000)
1443 {
1444 // Would overflow pcrela16dbl - aim at the farthest previous jump
1445 // we can reach.
1446 if (plt_offset > 0x10000)
1447 {
1448 // Use the full range of pcrel16dbl.
1449 target = plt_address + plt_offset - 0x10000 + 18;
1450 }
1451 else
1452 {
1453 // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1454 // of first_plt_entry, which doesn't have the jump back like the others.
1455 // Aim at the next entry instead.
1456 target = plt_address + plt_offset - 0xffe0 + 18;
1457 }
1458 }
1459 S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1460 }
1461 elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1462 if (size == 64)
1463 return 14;
1464 else
1465 return 12;
1466}
1467
1468// The .eh_frame unwind information for the PLT.
1469
1470template<>
1471const unsigned char
1472Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1473{
1474 1, // CIE version.
1475 'z', // Augmentation: augmentation size included.
1476 'R', // Augmentation: FDE encoding included.
1477 '\0', // End of augmentation string.
1478 1, // Code alignment factor.
1479 0x7c, // Data alignment factor.
1480 14, // Return address column.
1481 1, // Augmentation size.
1482 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1483 | elfcpp::DW_EH_PE_sdata4),
1484 elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60.
1485};
1486
1487template<>
1488const unsigned char
1489Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1490{
1491 1, // CIE version.
1492 'z', // Augmentation: augmentation size included.
1493 'R', // Augmentation: FDE encoding included.
1494 '\0', // End of augmentation string.
1495 1, // Code alignment factor.
1496 0x78, // Data alignment factor.
1497 14, // Return address column.
1498 1, // Augmentation size.
1499 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1500 | elfcpp::DW_EH_PE_sdata4),
1501 elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0.
1502};
1503
1504template<int size>
1505const unsigned char
1506Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1507{
1508 0, 0, 0, 0, // Replaced with offset to .plt.
1509 0, 0, 0, 0, // Replaced with size of .plt.
1510 0, // Augmentation size.
1511 elfcpp::DW_CFA_nop,
1512 elfcpp::DW_CFA_nop,
1513 elfcpp::DW_CFA_nop
1514};
1515
1516// Write out the PLT. This uses the hand-coded instructions above,
1517// and adjusts them as needed.
1518
1519template<int size>
1520void
1521Output_data_plt_s390<size>::do_write(Output_file* of)
1522{
1523 const off_t offset = this->offset();
1524 const section_size_type oview_size =
1525 convert_to_section_size_type(this->data_size());
1526 unsigned char* const oview = of->get_output_view(offset, oview_size);
1527
1528 const off_t got_file_offset = this->got_plt_->offset();
1529 gold_assert(parameters->incremental_update()
1530 || (got_file_offset + this->got_plt_->data_size()
1531 == this->got_irelative_->offset()));
1532 const section_size_type got_size =
1533 convert_to_section_size_type(this->got_plt_->data_size()
1534 + this->got_irelative_->data_size());
1535 unsigned char* const got_view = of->get_output_view(got_file_offset,
1536 got_size);
1537
1538 unsigned char* pov = oview;
1539
1540 // The base address of the .plt section.
1541 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1542 // The base address of the PLT portion of the .got section,
1543 // which is where the GOT pointer will point, and where the
1544 // three reserved GOT entries are located.
1545 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1546 = this->got_plt_->address();
1547
1548 this->fill_first_plt_entry(pov, got_address, plt_address);
1549 pov += this->get_plt_entry_size();
1550
1551 unsigned char* got_pov = got_view;
1552
1553 const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1554
1555 unsigned int plt_offset = this->get_plt_entry_size();
1556 unsigned int plt_rel_offset = 0;
1557 unsigned int got_offset = 3 * size / 8;
1558 const unsigned int count = this->count_ + this->irelative_count_;
1559 // The first three entries in the GOT are reserved, and are written
1560 // by Output_data_got_plt_s390::do_write.
1561 got_pov += 3 * size / 8;
1562
1563 for (unsigned int plt_index = 0;
1564 plt_index < count;
1565 ++plt_index,
1566 pov += plt_entry_size,
1567 got_pov += size / 8,
1568 plt_offset += plt_entry_size,
1569 plt_rel_offset += rel_size,
1570 got_offset += size / 8)
1571 {
1572 // Set and adjust the PLT entry itself.
1573 unsigned int lazy_offset = this->fill_plt_entry(pov,
1574 got_address, plt_address,
1575 got_offset, plt_offset,
1576 plt_rel_offset);
1577
1578 // Set the entry in the GOT.
1579 elfcpp::Swap<size, true>::writeval(got_pov,
1580 plt_address + plt_offset + lazy_offset);
1581 }
1582
1583 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1584 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1585
1586 of->write_output_view(offset, oview_size, oview);
1587 of->write_output_view(got_file_offset, got_size, got_view);
1588}
1589
1590// Get the GOT section, creating it if necessary.
1591
1592template<int size>
1593Output_data_got<size, true>*
1594Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1595{
1596 if (this->got_ == NULL)
1597 {
1598 gold_assert(symtab != NULL && layout != NULL);
1599
1600 // When using -z now, we can treat .got as a relro section.
1601 // Without -z now, it is modified after program startup by lazy
1602 // PLT relocations.
1603 bool is_got_relro = parameters->options().now();
1604 Output_section_order got_order = (is_got_relro
1605 ? ORDER_RELRO_LAST
1606 : ORDER_DATA);
1607
1608 // The old GNU linker creates a .got.plt section. We just
1609 // create another set of data in the .got section. Note that we
1610 // always create a PLT if we create a GOT, although the PLT
1611 // might be empty.
1612 this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1613 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1614 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1615 this->got_plt_, got_order, is_got_relro);
1616
1617 // The first three entries are reserved.
1618 this->got_plt_->set_current_data_size(3 * size / 8);
1619
1620 // If there are any IRELATIVE relocations, they get GOT entries
1621 // in .got.plt after the jump slot entries.
1622 this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1623 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1624 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1625 this->got_irelative_,
1626 got_order, is_got_relro);
1627
1628 // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1629 // .got.plt sections in output. The output .got section contains both
1630 // PLT and non-PLT GOT entries.
1631 this->got_ = new Output_data_got<size, true>();
1632
1633 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1634 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1635 this->got_, got_order, is_got_relro);
1636
1637 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1638 this->global_offset_table_ =
1639 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1640 Symbol_table::PREDEFINED,
1641 this->got_plt_,
1642 0, 0, elfcpp::STT_OBJECT,
1643 elfcpp::STB_LOCAL,
1644 elfcpp::STV_HIDDEN, 0,
1645 false, false);
1646
1647 }
1648 return this->got_;
1649}
1650
1651// Get the dynamic reloc section, creating it if necessary.
1652
1653template<int size>
1654typename Target_s390<size>::Reloc_section*
1655Target_s390<size>::rela_dyn_section(Layout* layout)
1656{
1657 if (this->rela_dyn_ == NULL)
1658 {
1659 gold_assert(layout != NULL);
1660 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1661 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1662 elfcpp::SHF_ALLOC, this->rela_dyn_,
1663 ORDER_DYNAMIC_RELOCS, false);
1664 }
1665 return this->rela_dyn_;
1666}
1667
1668// Get the section to use for IRELATIVE relocs, creating it if
1669// necessary. These go in .rela.dyn, but only after all other dynamic
1670// relocations. They need to follow the other dynamic relocations so
1671// that they can refer to global variables initialized by those
1672// relocs.
1673
1674template<int size>
1675typename Target_s390<size>::Reloc_section*
1676Target_s390<size>::rela_irelative_section(Layout* layout)
1677{
1678 if (this->rela_irelative_ == NULL)
1679 {
1680 // Make sure we have already created the dynamic reloc section.
1681 this->rela_dyn_section(layout);
1682 this->rela_irelative_ = new Reloc_section(false);
1683 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1684 elfcpp::SHF_ALLOC, this->rela_irelative_,
1685 ORDER_DYNAMIC_RELOCS, false);
1686 gold_assert(this->rela_dyn_->output_section()
1687 == this->rela_irelative_->output_section());
1688 }
1689 return this->rela_irelative_;
1690}
1691
1692// Write the first three reserved words of the .got.plt section.
1693// The remainder of the section is written while writing the PLT
1694// in Output_data_plt_s390::do_write.
1695
1696template<int size>
1697void
1698Output_data_got_plt_s390<size>::do_write(Output_file* of)
1699{
1700 // The first entry in the GOT is the address of the .dynamic section
1701 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1702 // We saved space for them when we created the section in
1703 // Target_x86_64::got_section.
1704 const off_t got_file_offset = this->offset();
1705 gold_assert(this->data_size() >= 3 * size / 8);
1706 unsigned char* const got_view =
1707 of->get_output_view(got_file_offset, 3 * size / 8);
1708 Output_section* dynamic = this->layout_->dynamic_section();
1709 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1710 elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1711 memset(got_view + size / 8, 0, 2 * size / 8);
1712 of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1713}
1714
1715// Create the PLT section.
1716
1717template<int size>
1718void
1719Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1720{
1721 if (this->plt_ == NULL)
1722 {
1723 // Create the GOT sections first.
1724 this->got_section(symtab, layout);
1725
1726 // Ensure that .rela.dyn always appears before .rela.plt This is
1727 // necessary due to how, on 32-bit S/390 and some other targets,
1728 // .rela.dyn needs to include .rela.plt in it's range.
1729 this->rela_dyn_section(layout);
1730
1731 this->plt_ = new Output_data_plt_s390<size>(layout,
1732 this->got_, this->got_plt_, this->got_irelative_);
1733
1734 // Add unwind information if requested.
1735 if (parameters->options().ld_generated_unwind_info())
1736 this->plt_->add_eh_frame(layout);
1737
1738 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1739 (elfcpp::SHF_ALLOC
1740 | elfcpp::SHF_EXECINSTR),
1741 this->plt_, ORDER_PLT, false);
1742
1743 // Make the sh_info field of .rela.plt point to .plt.
1744 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1745 rela_plt_os->set_info_section(this->plt_->output_section());
1746 }
1747}
1748
1749// Create a PLT entry for a global symbol.
1750
1751template<int size>
1752void
1753Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1754 Symbol* gsym)
1755{
1756 if (gsym->has_plt_offset())
1757 return;
1758
1759 if (this->plt_ == NULL)
1760 this->make_plt_section(symtab, layout);
1761
1762 this->plt_->add_entry(symtab, layout, gsym);
1763}
1764
1765// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1766
1767template<int size>
1768void
1769Target_s390<size>::make_local_ifunc_plt_entry(
1770 Symbol_table* symtab, Layout* layout,
1771 Sized_relobj_file<size, true>* relobj,
1772 unsigned int local_sym_index)
1773{
1774 if (relobj->local_has_plt_offset(local_sym_index))
1775 return;
1776 if (this->plt_ == NULL)
1777 this->make_plt_section(symtab, layout);
1778 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1779 relobj,
1780 local_sym_index);
1781 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1782}
1783
1784// Return the number of entries in the PLT.
1785
1786template<int size>
1787unsigned int
1788Target_s390<size>::plt_entry_count() const
1789{
1790 if (this->plt_ == NULL)
1791 return 0;
1792 return this->plt_->entry_count();
1793}
1794
1795// Return the offset of the first non-reserved PLT entry.
1796
1797template<int size>
1798unsigned int
1799Target_s390<size>::first_plt_entry_offset() const
1800{
1801 return this->plt_->first_plt_entry_offset();
1802}
1803
1804// Return the size of each PLT entry.
1805
1806template<int size>
1807unsigned int
1808Target_s390<size>::plt_entry_size() const
1809{
1810 return this->plt_->get_plt_entry_size();
1811}
1812
1813// Create the GOT and PLT sections for an incremental update.
1814
1815template<int size>
1816Output_data_got_base*
1817Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1818 Layout* layout,
1819 unsigned int got_count,
1820 unsigned int plt_count)
1821{
1822 gold_assert(this->got_ == NULL);
1823
1824 // Add the three reserved entries.
1825 this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1826 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1827 (elfcpp::SHF_ALLOC
1828 | elfcpp::SHF_WRITE),
1829 this->got_plt_, ORDER_NON_RELRO_FIRST,
1830 false);
1831
1832 // If there are any IRELATIVE relocations, they get GOT entries in
1833 // .got.plt after the jump slot entries.
1834 this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1835 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1836 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1837 this->got_irelative_,
1838 ORDER_NON_RELRO_FIRST, false);
1839
1840 this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1841 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1842 (elfcpp::SHF_ALLOC
1843 | elfcpp::SHF_WRITE),
1844 this->got_, ORDER_RELRO_LAST,
1845 true);
1846
1847 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1848 this->global_offset_table_ =
1849 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1850 Symbol_table::PREDEFINED,
1851 this->got_plt_,
1852 0, 0, elfcpp::STT_OBJECT,
1853 elfcpp::STB_LOCAL,
1854 elfcpp::STV_HIDDEN, 0,
1855 false, false);
1856
1857 // Create the PLT section.
1858 this->plt_ = new Output_data_plt_s390<size>(layout,
1859 this->got_, this->got_plt_, this->got_irelative_, plt_count);
1860
1861 // Add unwind information if requested.
1862 if (parameters->options().ld_generated_unwind_info())
1863 this->plt_->add_eh_frame(layout);
1864
1865 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1866 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1867 this->plt_, ORDER_PLT, false);
1868
1869 // Make the sh_info field of .rela.plt point to .plt.
1870 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1871 rela_plt_os->set_info_section(this->plt_->output_section());
1872
1873 // Create the rela_dyn section.
1874 this->rela_dyn_section(layout);
1875
1876 return this->got_;
1877}
1878
1879// Reserve a GOT entry for a local symbol, and regenerate any
1880// necessary dynamic relocations.
1881
1882template<int size>
1883void
1884Target_s390<size>::reserve_local_got_entry(
1885 unsigned int got_index,
1886 Sized_relobj<size, true>* obj,
1887 unsigned int r_sym,
1888 unsigned int got_type)
1889{
1890 unsigned int got_offset = got_index * size / 8;
1891 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1892
1893 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1894 switch (got_type)
1895 {
1896 case GOT_TYPE_STANDARD:
1897 if (parameters->options().output_is_position_independent())
1898 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1899 this->got_, got_offset, 0, false);
1900 break;
1901 case GOT_TYPE_TLS_OFFSET:
1902 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1903 this->got_, got_offset, 0);
1904 break;
1905 case GOT_TYPE_TLS_PAIR:
1906 this->got_->reserve_slot(got_index + 1);
1907 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1908 this->got_, got_offset, 0);
1909 break;
1910 default:
1911 gold_unreachable();
1912 }
1913}
1914
1915// Reserve a GOT entry for a global symbol, and regenerate any
1916// necessary dynamic relocations.
1917
1918template<int size>
1919void
1920Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1921 Symbol* gsym,
1922 unsigned int got_type)
1923{
1924 unsigned int got_offset = got_index * size / 8;
1925 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1926
1927 this->got_->reserve_global(got_index, gsym, got_type);
1928 switch (got_type)
1929 {
1930 case GOT_TYPE_STANDARD:
1931 if (!gsym->final_value_is_known())
1932 {
1933 if (gsym->is_from_dynobj()
1934 || gsym->is_undefined()
1935 || gsym->is_preemptible()
1936 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1937 rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1938 this->got_, got_offset, 0);
1939 else
1940 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1941 this->got_, got_offset, 0, false);
1942 }
1943 break;
1944 case GOT_TYPE_TLS_OFFSET:
1945 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1946 this->got_, got_offset, 0, false);
1947 break;
1948 case GOT_TYPE_TLS_PAIR:
1949 this->got_->reserve_slot(got_index + 1);
1950 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1951 this->got_, got_offset, 0, false);
1952 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1953 this->got_, got_offset + size / 8, 0, false);
1954 break;
1955 default:
1956 gold_unreachable();
1957 }
1958}
1959
1960// Register an existing PLT entry for a global symbol.
1961
1962template<int size>
1963void
1964Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1965 Layout* layout,
1966 unsigned int plt_index,
1967 Symbol* gsym)
1968{
1969 gold_assert(this->plt_ != NULL);
1970 gold_assert(!gsym->has_plt_offset());
1971
1972 this->plt_->reserve_slot(plt_index);
1973
1974 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1975
1976 unsigned int got_offset = (plt_index + 3) * size / 8;
1977 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1978}
1979
1980// Force a COPY relocation for a given symbol.
1981
1982template<int size>
1983void
1984Target_s390<size>::emit_copy_reloc(
1985 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1986{
1987 this->copy_relocs_.emit_copy_reloc(symtab,
1988 symtab->get_sized_symbol<size>(sym),
1989 os,
1990 offset,
1991 this->rela_dyn_section(NULL));
1992}
1993
1994// Create a GOT entry for the TLS module index.
1995
1996template<int size>
1997unsigned int
1998Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1999 Sized_relobj_file<size, true>* object)
2000{
2001 if (this->got_mod_index_offset_ == -1U)
2002 {
2003 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2004 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2005 Output_data_got<size, true>* got = this->got_section(symtab, layout);
2006 unsigned int got_offset = got->add_constant(0);
2007 rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
2008 got_offset, 0);
2009 got->add_constant(0);
2010 this->got_mod_index_offset_ = got_offset;
2011 }
2012 return this->got_mod_index_offset_;
2013}
2014
2015// Optimize the TLS relocation type based on what we know about the
2016// symbol. IS_FINAL is true if the final address of this symbol is
2017// known at link time.
2018
2019template<int size>
2020tls::Tls_optimization
2021Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
2022{
2023 // If we are generating a shared library, then we can't do anything
2024 // in the linker.
2025 if (parameters->options().shared())
2026 return tls::TLSOPT_NONE;
2027
2028 switch (r_type)
2029 {
2030 case elfcpp::R_390_TLS_GD32:
2031 case elfcpp::R_390_TLS_GD64:
2032 case elfcpp::R_390_TLS_GDCALL:
2033 // These are General-Dynamic which permits fully general TLS
2034 // access. Since we know that we are generating an executable,
2035 // we can convert this to Initial-Exec. If we also know that
2036 // this is a local symbol, we can further switch to Local-Exec.
2037 if (is_final)
2038 return tls::TLSOPT_TO_LE;
2039 return tls::TLSOPT_TO_IE;
2040
2041 case elfcpp::R_390_TLS_LDM32:
2042 case elfcpp::R_390_TLS_LDM64:
2043 case elfcpp::R_390_TLS_LDO32:
2044 case elfcpp::R_390_TLS_LDO64:
2045 case elfcpp::R_390_TLS_LDCALL:
2046 // This is Local-Dynamic, which refers to a local symbol in the
2047 // dynamic TLS block. Since we know that we generating an
2048 // executable, we can switch to Local-Exec.
2049 return tls::TLSOPT_TO_LE;
2050
2051 case elfcpp::R_390_TLS_IE32:
2052 case elfcpp::R_390_TLS_IE64:
2053 case elfcpp::R_390_TLS_GOTIE32:
2054 case elfcpp::R_390_TLS_GOTIE64:
2055 case elfcpp::R_390_TLS_LOAD:
2056 // These are Initial-Exec relocs which get the thread offset
2057 // from the GOT. If we know that we are linking against the
2058 // local symbol, we can switch to Local-Exec, which links the
2059 // thread offset into the instruction.
2060 if (is_final)
2061 return tls::TLSOPT_TO_LE;
2062 return tls::TLSOPT_NONE;
2063
2064 case elfcpp::R_390_TLS_GOTIE12:
2065 case elfcpp::R_390_TLS_IEENT:
2066 case elfcpp::R_390_TLS_GOTIE20:
2067 // These are Initial-Exec, but cannot be optimized.
2068 return tls::TLSOPT_NONE;
2069
2070 case elfcpp::R_390_TLS_LE32:
2071 case elfcpp::R_390_TLS_LE64:
2072 // When we already have Local-Exec, there is nothing further we
2073 // can do.
2074 return tls::TLSOPT_NONE;
2075
2076 default:
2077 gold_unreachable();
2078 }
2079}
2080
2081// Get the Reference_flags for a particular relocation.
2082
2083template<int size>
2084int
2085Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2086{
2087 switch (r_type)
2088 {
2089 case elfcpp::R_390_NONE:
2090 case elfcpp::R_390_GNU_VTINHERIT:
2091 case elfcpp::R_390_GNU_VTENTRY:
2092 case elfcpp::R_390_GOTPC:
2093 case elfcpp::R_390_GOTPCDBL:
2094 // No symbol reference.
2095 return 0;
2096
2097 case elfcpp::R_390_64:
2098 case elfcpp::R_390_32:
2099 case elfcpp::R_390_20:
2100 case elfcpp::R_390_16:
2101 case elfcpp::R_390_12:
2102 case elfcpp::R_390_8:
2103 return Symbol::ABSOLUTE_REF;
2104
2105 case elfcpp::R_390_PC12DBL:
2106 case elfcpp::R_390_PC16:
2107 case elfcpp::R_390_PC16DBL:
2108 case elfcpp::R_390_PC24DBL:
2109 case elfcpp::R_390_PC32:
2110 case elfcpp::R_390_PC32DBL:
2111 case elfcpp::R_390_PC64:
2112 case elfcpp::R_390_GOTOFF16:
2113 case elfcpp::R_390_GOTOFF32:
2114 case elfcpp::R_390_GOTOFF64:
2115 return Symbol::RELATIVE_REF;
2116
2117 case elfcpp::R_390_PLT12DBL:
2118 case elfcpp::R_390_PLT16DBL:
2119 case elfcpp::R_390_PLT24DBL:
2120 case elfcpp::R_390_PLT32:
2121 case elfcpp::R_390_PLT32DBL:
2122 case elfcpp::R_390_PLT64:
2123 case elfcpp::R_390_PLTOFF16:
2124 case elfcpp::R_390_PLTOFF32:
2125 case elfcpp::R_390_PLTOFF64:
2126 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2127
2128 case elfcpp::R_390_GOT12:
2129 case elfcpp::R_390_GOT16:
2130 case elfcpp::R_390_GOT20:
2131 case elfcpp::R_390_GOT32:
2132 case elfcpp::R_390_GOT64:
2133 case elfcpp::R_390_GOTENT:
2134 case elfcpp::R_390_GOTPLT12:
2135 case elfcpp::R_390_GOTPLT16:
2136 case elfcpp::R_390_GOTPLT20:
2137 case elfcpp::R_390_GOTPLT32:
2138 case elfcpp::R_390_GOTPLT64:
2139 case elfcpp::R_390_GOTPLTENT:
2140 // Absolute in GOT.
2141 return Symbol::ABSOLUTE_REF;
2142
2143 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2144 case elfcpp::R_390_TLS_GD64:
2145 case elfcpp::R_390_TLS_GDCALL:
2146 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2147 case elfcpp::R_390_TLS_LDM64:
2148 case elfcpp::R_390_TLS_LDO32:
2149 case elfcpp::R_390_TLS_LDO64:
2150 case elfcpp::R_390_TLS_LDCALL:
2151 case elfcpp::R_390_TLS_IE32: // Initial-exec
2152 case elfcpp::R_390_TLS_IE64:
2153 case elfcpp::R_390_TLS_IEENT:
2154 case elfcpp::R_390_TLS_GOTIE12:
2155 case elfcpp::R_390_TLS_GOTIE20:
2156 case elfcpp::R_390_TLS_GOTIE32:
2157 case elfcpp::R_390_TLS_GOTIE64:
2158 case elfcpp::R_390_TLS_LOAD:
2159 case elfcpp::R_390_TLS_LE32: // Local-exec
2160 case elfcpp::R_390_TLS_LE64:
2161 return Symbol::TLS_REF;
2162
2163 case elfcpp::R_390_COPY:
2164 case elfcpp::R_390_GLOB_DAT:
2165 case elfcpp::R_390_JMP_SLOT:
2166 case elfcpp::R_390_RELATIVE:
2167 case elfcpp::R_390_IRELATIVE:
2168 case elfcpp::R_390_TLS_TPOFF:
2169 case elfcpp::R_390_TLS_DTPOFF:
2170 case elfcpp::R_390_TLS_DTPMOD:
2171 default:
2172 // Not expected. We will give an error later.
2173 return 0;
2174 }
2175}
2176
2177// Report an unsupported relocation against a local symbol.
2178
2179template<int size>
2180void
2181Target_s390<size>::Scan::unsupported_reloc_local(
2182 Sized_relobj_file<size, true>* object,
2183 unsigned int r_type)
2184{
2185 gold_error(_("%s: unsupported reloc %u against local symbol"),
2186 object->name().c_str(), r_type);
2187}
2188
2189// We are about to emit a dynamic relocation of type R_TYPE. If the
2190// dynamic linker does not support it, issue an error.
2191
2192template<int size>
2193void
2194Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2195{
2196 gold_assert(r_type != elfcpp::R_390_NONE);
2197
2198 if (size == 64)
2199 {
2200 switch (r_type)
2201 {
2202 // These are the relocation types supported by glibc for s390 64-bit.
2203 case elfcpp::R_390_RELATIVE:
2204 case elfcpp::R_390_IRELATIVE:
2205 case elfcpp::R_390_COPY:
2206 case elfcpp::R_390_GLOB_DAT:
2207 case elfcpp::R_390_JMP_SLOT:
2208 case elfcpp::R_390_TLS_DTPMOD:
2209 case elfcpp::R_390_TLS_DTPOFF:
2210 case elfcpp::R_390_TLS_TPOFF:
2211 case elfcpp::R_390_8:
2212 case elfcpp::R_390_16:
2213 case elfcpp::R_390_32:
2214 case elfcpp::R_390_64:
2215 case elfcpp::R_390_PC16:
2216 case elfcpp::R_390_PC16DBL:
2217 case elfcpp::R_390_PC32:
2218 case elfcpp::R_390_PC32DBL:
2219 case elfcpp::R_390_PC64:
2220 return;
2221
2222 default:
2223 break;
2224 }
2225 }
2226 else
2227 {
2228 switch (r_type)
2229 {
2230 // These are the relocation types supported by glibc for s390 32-bit.
2231 case elfcpp::R_390_RELATIVE:
2232 case elfcpp::R_390_IRELATIVE:
2233 case elfcpp::R_390_COPY:
2234 case elfcpp::R_390_GLOB_DAT:
2235 case elfcpp::R_390_JMP_SLOT:
2236 case elfcpp::R_390_TLS_DTPMOD:
2237 case elfcpp::R_390_TLS_DTPOFF:
2238 case elfcpp::R_390_TLS_TPOFF:
2239 case elfcpp::R_390_8:
2240 case elfcpp::R_390_16:
2241 case elfcpp::R_390_32:
2242 case elfcpp::R_390_PC16:
2243 case elfcpp::R_390_PC16DBL:
2244 case elfcpp::R_390_PC32:
2245 case elfcpp::R_390_PC32DBL:
2246 return;
2247
2248 default:
2249 break;
2250 }
2251 }
2252
2253 // This prevents us from issuing more than one error per reloc
2254 // section. But we can still wind up issuing more than one
2255 // error per object file.
2256 if (this->issued_non_pic_error_)
2257 return;
2258 gold_assert(parameters->options().output_is_position_independent());
2259 object->error(_("requires unsupported dynamic reloc; "
2260 "recompile with -fPIC"));
2261 this->issued_non_pic_error_ = true;
2262 return;
2263}
2264
2265// Return whether we need to make a PLT entry for a relocation of the
2266// given type against a STT_GNU_IFUNC symbol.
2267
2268template<int size>
2269bool
2270Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2271 Sized_relobj_file<size, true>* object,
2272 unsigned int r_type)
2273{
2274 int flags = Scan::get_reference_flags(r_type);
2275 if (flags & Symbol::TLS_REF)
2276 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2277 object->name().c_str(), r_type);
2278 return flags != 0;
2279}
2280
2281// Scan a relocation for a local symbol.
2282
2283template<int size>
2284inline void
2285Target_s390<size>::Scan::local(Symbol_table* symtab,
2286 Layout* layout,
2287 Target_s390<size>* target,
2288 Sized_relobj_file<size, true>* object,
2289 unsigned int data_shndx,
2290 Output_section* output_section,
2291 const elfcpp::Rela<size, true>& reloc,
2292 unsigned int r_type,
2293 const elfcpp::Sym<size, true>& lsym,
2294 bool is_discarded)
2295{
2296 if (is_discarded)
2297 return;
2298
2299 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2300 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2301
2302 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2303 {
2304 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2305 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2306 }
2307
2308 switch (r_type)
2309 {
2310 case elfcpp::R_390_NONE:
2311 case elfcpp::R_390_GNU_VTINHERIT:
2312 case elfcpp::R_390_GNU_VTENTRY:
2313 break;
2314
2315 case elfcpp::R_390_64:
2316 // If building a shared library (or a position-independent
2317 // executable), we need to create a dynamic relocation for this
2318 // location. The relocation applied at link time will apply the
2319 // link-time value, so we flag the location with an
2320 // R_390_RELATIVE relocation so the dynamic loader can
2321 // relocate it easily.
2322 if (parameters->options().output_is_position_independent() && size == 64)
2323 {
2324 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2325 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2326 rela_dyn->add_local_relative(object, r_sym,
2327 elfcpp::R_390_RELATIVE,
2328 output_section, data_shndx,
2329 reloc.get_r_offset(),
2330 reloc.get_r_addend(), is_ifunc);
2331 }
2332 break;
2333
2334 case elfcpp::R_390_32:
2335 case elfcpp::R_390_20:
2336 case elfcpp::R_390_16:
2337 case elfcpp::R_390_12:
2338 case elfcpp::R_390_8:
2339 if (parameters->options().output_is_position_independent())
2340 {
2341 if (size == 32 && r_type == elfcpp::R_390_32)
2342 {
2343 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2344 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2345 rela_dyn->add_local_relative(object, r_sym,
2346 elfcpp::R_390_RELATIVE,
2347 output_section, data_shndx,
2348 reloc.get_r_offset(),
2349 reloc.get_r_addend(), is_ifunc);
2350 break;
2351 }
2352
2353 check_non_pic(object, r_type);
2354
2355 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2356 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2357 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2358 rela_dyn->add_local(object, r_sym, r_type, output_section,
2359 data_shndx, reloc.get_r_offset(),
2360 reloc.get_r_addend());
2361 else
2362 {
2363 gold_assert(lsym.get_st_value() == 0);
2364 unsigned int shndx = lsym.get_st_shndx();
2365 bool is_ordinary;
2366 shndx = object->adjust_sym_shndx(r_sym, shndx,
2367 &is_ordinary);
2368 if (!is_ordinary)
2369 object->error(_("section symbol %u has bad shndx %u"),
2370 r_sym, shndx);
2371 else
2372 rela_dyn->add_local_section(object, shndx,
2373 r_type, output_section,
2374 data_shndx, reloc.get_r_offset(),
2375 reloc.get_r_addend());
2376 }
2377 }
2378 break;
2379
2380 case elfcpp::R_390_PC12DBL:
2381 case elfcpp::R_390_PC16:
2382 case elfcpp::R_390_PC16DBL:
2383 case elfcpp::R_390_PC24DBL:
2384 case elfcpp::R_390_PC32:
2385 case elfcpp::R_390_PC32DBL:
2386 case elfcpp::R_390_PC64:
2387 break;
2388
2389 case elfcpp::R_390_PLT12DBL:
2390 case elfcpp::R_390_PLT16DBL:
2391 case elfcpp::R_390_PLT24DBL:
2392 case elfcpp::R_390_PLT32:
2393 case elfcpp::R_390_PLT32DBL:
2394 case elfcpp::R_390_PLT64:
2395 // Since we know this is a local symbol, we can handle this as a
2396 // PC32 reloc.
2397 break;
2398
2399 case elfcpp::R_390_GOTPC:
2400 case elfcpp::R_390_GOTPCDBL:
2401 case elfcpp::R_390_GOTOFF16:
2402 case elfcpp::R_390_GOTOFF32:
2403 case elfcpp::R_390_GOTOFF64:
2404 case elfcpp::R_390_PLTOFF16:
2405 case elfcpp::R_390_PLTOFF32:
2406 case elfcpp::R_390_PLTOFF64:
2407 // We need a GOT section.
2408 target->got_section(symtab, layout);
2409 // For PLTOFF*, we'd normally want a PLT section, but since we
2410 // know this is a local symbol, no PLT is needed.
2411 break;
2412
2413 case elfcpp::R_390_GOT12:
2414 case elfcpp::R_390_GOT16:
2415 case elfcpp::R_390_GOT20:
2416 case elfcpp::R_390_GOT32:
2417 case elfcpp::R_390_GOT64:
2418 case elfcpp::R_390_GOTENT:
2419 case elfcpp::R_390_GOTPLT12:
2420 case elfcpp::R_390_GOTPLT16:
2421 case elfcpp::R_390_GOTPLT20:
2422 case elfcpp::R_390_GOTPLT32:
2423 case elfcpp::R_390_GOTPLT64:
2424 case elfcpp::R_390_GOTPLTENT:
2425 {
2426 // The symbol requires a GOT section.
2427 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2428
2429 // The symbol requires a GOT entry.
2430 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2431
2432 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2433 // lets function pointers compare correctly with shared
2434 // libraries. Otherwise we would need an IRELATIVE reloc.
2435 bool is_new;
2436 if (is_ifunc)
2437 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2438 else
2439 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2440 if (is_new)
2441 {
2442 // If we are generating a shared object, we need to add a
2443 // dynamic relocation for this symbol's GOT entry.
2444 if (parameters->options().output_is_position_independent())
2445 {
2446 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2447 unsigned int got_offset =
2448 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2449 rela_dyn->add_local_relative(object, r_sym,
2450 elfcpp::R_390_RELATIVE,
2451 got, got_offset, 0, is_ifunc);
2452 }
2453 }
2454 // For GOTPLT*, we'd normally want a PLT section, but since
2455 // we know this is a local symbol, no PLT is needed.
2456 }
2457 break;
2458
2459 case elfcpp::R_390_COPY:
2460 case elfcpp::R_390_GLOB_DAT:
2461 case elfcpp::R_390_JMP_SLOT:
2462 case elfcpp::R_390_RELATIVE:
2463 case elfcpp::R_390_IRELATIVE:
2464 // These are outstanding tls relocs, which are unexpected when linking
2465 case elfcpp::R_390_TLS_TPOFF:
2466 case elfcpp::R_390_TLS_DTPOFF:
2467 case elfcpp::R_390_TLS_DTPMOD:
2468 gold_error(_("%s: unexpected reloc %u in object file"),
2469 object->name().c_str(), r_type);
2470 break;
2471
2472 // These are initial tls relocs, which are expected when linking
2473 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2474 case elfcpp::R_390_TLS_GD64:
2475 case elfcpp::R_390_TLS_GDCALL:
2476 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2477 case elfcpp::R_390_TLS_LDM64:
2478 case elfcpp::R_390_TLS_LDO32:
2479 case elfcpp::R_390_TLS_LDO64:
2480 case elfcpp::R_390_TLS_LDCALL:
2481 case elfcpp::R_390_TLS_IE32: // Initial-exec
2482 case elfcpp::R_390_TLS_IE64:
2483 case elfcpp::R_390_TLS_IEENT:
2484 case elfcpp::R_390_TLS_GOTIE12:
2485 case elfcpp::R_390_TLS_GOTIE20:
2486 case elfcpp::R_390_TLS_GOTIE32:
2487 case elfcpp::R_390_TLS_GOTIE64:
2488 case elfcpp::R_390_TLS_LOAD:
2489 case elfcpp::R_390_TLS_LE32: // Local-exec
2490 case elfcpp::R_390_TLS_LE64:
2491 {
2492 bool output_is_shared = parameters->options().shared();
2493 const tls::Tls_optimization optimized_type
2494 = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2495 r_type);
2496 switch (r_type)
2497 {
2498 case elfcpp::R_390_TLS_GD32: // General-dynamic
2499 case elfcpp::R_390_TLS_GD64:
2500 case elfcpp::R_390_TLS_GDCALL:
2501 if (optimized_type == tls::TLSOPT_NONE)
2502 {
2503 // Create a pair of GOT entries for the module index and
2504 // dtv-relative offset.
2505 Output_data_got<size, true>* got
2506 = target->got_section(symtab, layout);
2507 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2508 unsigned int shndx = lsym.get_st_shndx();
2509 bool is_ordinary;
2510 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2511 if (!is_ordinary)
2512 object->error(_("local symbol %u has bad shndx %u"),
2513 r_sym, shndx);
2514 else
2515 got->add_local_pair_with_rel(object, r_sym,
2516 shndx,
2517 GOT_TYPE_TLS_PAIR,
2518 target->rela_dyn_section(layout),
2519 elfcpp::R_390_TLS_DTPMOD);
2520 }
2521 else if (optimized_type != tls::TLSOPT_TO_LE)
2522 unsupported_reloc_local(object, r_type);
2523 break;
2524
2525 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2526 case elfcpp::R_390_TLS_LDM64:
2527 case elfcpp::R_390_TLS_LDCALL:
2528 if (optimized_type == tls::TLSOPT_NONE)
2529 {
2530 // Create a GOT entry for the module index.
2531 target->got_mod_index_entry(symtab, layout, object);
2532 }
2533 else if (optimized_type != tls::TLSOPT_TO_LE)
2534 unsupported_reloc_local(object, r_type);
2535 break;
2536
2537 case elfcpp::R_390_TLS_LDO32:
2538 case elfcpp::R_390_TLS_LDO64:
2539 break;
2540
2541 case elfcpp::R_390_TLS_IE32: // Initial-exec
2542 case elfcpp::R_390_TLS_IE64:
2543 // These two involve an absolute address
2544 if (parameters->options().shared()
2545 && optimized_type == tls::TLSOPT_NONE)
2546 {
2547 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2548 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2549 {
2550 // We need to create a dynamic relocation.
2551 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2552 unsigned int r_sym =
2553 elfcpp::elf_r_sym<size>(reloc.get_r_info());
2554 rela_dyn->add_local_relative(object, r_sym,
2555 elfcpp::R_390_RELATIVE,
2556 output_section, data_shndx,
2557 reloc.get_r_offset(),
2558 reloc.get_r_addend(), false);
2559 }
2560 else
2561 {
2562 unsupported_reloc_local(object, r_type);
2563 }
2564 }
d8e90251 2565 // Fall through.
e79a4bad
MK
2566 case elfcpp::R_390_TLS_IEENT:
2567 case elfcpp::R_390_TLS_GOTIE12:
2568 case elfcpp::R_390_TLS_GOTIE20:
2569 case elfcpp::R_390_TLS_GOTIE32:
2570 case elfcpp::R_390_TLS_GOTIE64:
2571 case elfcpp::R_390_TLS_LOAD:
2572 layout->set_has_static_tls();
2573 if (optimized_type == tls::TLSOPT_NONE)
2574 {
2575 if (!output_is_shared)
2576 {
2577 // We're making an executable, and the symbol is local, but
2578 // we cannot optimize to LE. Make a const GOT entry instead.
2579 Output_data_got<size, true>* got
2580 = target->got_section(symtab, layout);
2581 unsigned int r_sym
2582 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2583 got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2584 }
2585 else
2586 {
2587 // Create a GOT entry for the tp-relative offset.
2588 Output_data_got<size, true>* got
2589 = target->got_section(symtab, layout);
2590 unsigned int r_sym
2591 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2592 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2593 target->rela_dyn_section(layout),
2594 elfcpp::R_390_TLS_TPOFF);
2595 }
2596 }
2597 else if (optimized_type != tls::TLSOPT_TO_LE)
2598 unsupported_reloc_local(object, r_type);
2599 break;
2600
2601 case elfcpp::R_390_TLS_LE32: // Local-exec
2602 case elfcpp::R_390_TLS_LE64:
2603 layout->set_has_static_tls();
2604 if (output_is_shared)
2605 {
2606 // We need to create a dynamic relocation.
2607 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2608 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2609 {
2610 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2611 unsigned int r_sym
2612 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2613 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2614 rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2615 output_section, data_shndx,
2616 reloc.get_r_offset(),
2617 reloc.get_r_addend());
2618 }
2619 else
2620 {
2621 unsupported_reloc_local(object, r_type);
2622 }
2623 }
2624 break;
2625
2626 default:
2627 gold_unreachable();
2628 }
2629 }
2630 break;
2631
2632 default:
2633 gold_error(_("%s: unsupported reloc %u against local symbol"),
2634 object->name().c_str(), r_type);
2635 break;
2636 }
2637}
2638
2639// Scan a relocation for a global symbol.
2640
2641template<int size>
2642inline void
2643Target_s390<size>::Scan::global(Symbol_table* symtab,
2644 Layout* layout,
2645 Target_s390<size>* target,
2646 Sized_relobj_file<size, true>* object,
2647 unsigned int data_shndx,
2648 Output_section* output_section,
2649 const elfcpp::Rela<size, true>& reloc,
2650 unsigned int r_type,
2651 Symbol* gsym)
2652{
2653 // A STT_GNU_IFUNC symbol may require a PLT entry.
2654 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2655 && this->reloc_needs_plt_for_ifunc(object, r_type))
2656 target->make_plt_entry(symtab, layout, gsym);
2657
2658 switch (r_type)
2659 {
2660 case elfcpp::R_390_NONE:
2661 case elfcpp::R_390_GNU_VTINHERIT:
2662 case elfcpp::R_390_GNU_VTENTRY:
2663 break;
2664
2665 case elfcpp::R_390_64:
2666 case elfcpp::R_390_32:
2667 case elfcpp::R_390_20:
2668 case elfcpp::R_390_16:
2669 case elfcpp::R_390_12:
2670 case elfcpp::R_390_8:
2671 {
2672 // Make a PLT entry if necessary.
2673 if (gsym->needs_plt_entry())
2674 {
2675 target->make_plt_entry(symtab, layout, gsym);
2676 // Since this is not a PC-relative relocation, we may be
2677 // taking the address of a function. In that case we need to
2678 // set the entry in the dynamic symbol table to the address of
2679 // the PLT entry.
2680 if (gsym->is_from_dynobj() && !parameters->options().shared())
2681 gsym->set_needs_dynsym_value();
2682 }
2683 // Make a dynamic relocation if necessary.
2684 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2685 {
2686 if (!parameters->options().output_is_position_independent()
2687 && gsym->may_need_copy_reloc())
2688 {
2689 target->copy_reloc(symtab, layout, object,
2690 data_shndx, output_section, gsym, reloc);
2691 }
2692 else if (((size == 64 && r_type == elfcpp::R_390_64)
2693 || (size == 32 && r_type == elfcpp::R_390_32))
2694 && gsym->type() == elfcpp::STT_GNU_IFUNC
2695 && gsym->can_use_relative_reloc(false)
2696 && !gsym->is_from_dynobj()
2697 && !gsym->is_undefined()
2698 && !gsym->is_preemptible())
2699 {
2700 // Use an IRELATIVE reloc for a locally defined
2701 // STT_GNU_IFUNC symbol. This makes a function
2702 // address in a PIE executable match the address in a
2703 // shared library that it links against.
2704 Reloc_section* rela_dyn =
2705 target->rela_irelative_section(layout);
2706 unsigned int r_type = elfcpp::R_390_IRELATIVE;
2707 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2708 output_section, object,
2709 data_shndx,
2710 reloc.get_r_offset(),
2711 reloc.get_r_addend());
2712 }
2713 else if (((size == 64 && r_type == elfcpp::R_390_64)
2714 || (size == 32 && r_type == elfcpp::R_390_32))
2715 && gsym->can_use_relative_reloc(false))
2716 {
2717 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2718 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2719 output_section, object,
2720 data_shndx,
2721 reloc.get_r_offset(),
2722 reloc.get_r_addend(), false);
2723 }
2724 else
2725 {
2726 check_non_pic(object, r_type);
2727 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2728 rela_dyn->add_global(gsym, r_type, output_section, object,
2729 data_shndx, reloc.get_r_offset(),
2730 reloc.get_r_addend());
2731 }
2732 }
2733 }
2734 break;
2735
2736 case elfcpp::R_390_PC12DBL:
2737 case elfcpp::R_390_PC16:
2738 case elfcpp::R_390_PC16DBL:
2739 case elfcpp::R_390_PC24DBL:
2740 case elfcpp::R_390_PC32:
2741 case elfcpp::R_390_PC32DBL:
2742 case elfcpp::R_390_PC64:
2743 {
2744 // Make a PLT entry if necessary.
2745 if (gsym->needs_plt_entry())
2746 {
2747 target->make_plt_entry(symtab, layout, gsym);
2748 // larl is often used to take address of a function. Aim the
2749 // symbol at the PLT entry.
2750 if (gsym->is_from_dynobj() && !parameters->options().shared())
2751 gsym->set_needs_dynsym_value();
2752 }
2753 // Make a dynamic relocation if necessary.
2754 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2755 {
2756 if (parameters->options().output_is_executable()
2757 && gsym->may_need_copy_reloc())
2758 {
2759 target->copy_reloc(symtab, layout, object,
2760 data_shndx, output_section, gsym, reloc);
2761 }
2762 else
2763 {
2764 check_non_pic(object, r_type);
2765 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2766 rela_dyn->add_global(gsym, r_type, output_section, object,
2767 data_shndx, reloc.get_r_offset(),
2768 reloc.get_r_addend());
2769 }
2770 }
2771 }
2772 break;
2773
2774 case elfcpp::R_390_PLT12DBL:
2775 case elfcpp::R_390_PLT16DBL:
2776 case elfcpp::R_390_PLT24DBL:
2777 case elfcpp::R_390_PLT32:
2778 case elfcpp::R_390_PLT32DBL:
2779 case elfcpp::R_390_PLT64:
2780 // If the symbol is fully resolved, this is just a PC32 reloc.
2781 // Otherwise we need a PLT entry.
2782 if (gsym->final_value_is_known())
2783 break;
2784 // If building a shared library, we can also skip the PLT entry
2785 // if the symbol is defined in the output file and is protected
2786 // or hidden.
2787 if (gsym->is_defined()
2788 && !gsym->is_from_dynobj()
2789 && !gsym->is_preemptible())
2790 break;
2791 target->make_plt_entry(symtab, layout, gsym);
2792 break;
2793
2794 case elfcpp::R_390_GOTPC:
2795 case elfcpp::R_390_GOTPCDBL:
2796 case elfcpp::R_390_GOTOFF16:
2797 case elfcpp::R_390_GOTOFF32:
2798 case elfcpp::R_390_GOTOFF64:
2799 case elfcpp::R_390_PLTOFF16:
2800 case elfcpp::R_390_PLTOFF32:
2801 case elfcpp::R_390_PLTOFF64:
2802 // We need a GOT section.
2803 target->got_section(symtab, layout);
2804 // For PLTOFF*, we also need a PLT entry (but only if the
2805 // symbol is not fully resolved).
2806 if ((r_type == elfcpp::R_390_PLTOFF16
2807 || r_type == elfcpp::R_390_PLTOFF32
2808 || r_type == elfcpp::R_390_PLTOFF64)
2809 && !gsym->final_value_is_known())
2810 target->make_plt_entry(symtab, layout, gsym);
2811 break;
2812
2813 case elfcpp::R_390_GOT12:
2814 case elfcpp::R_390_GOT16:
2815 case elfcpp::R_390_GOT20:
2816 case elfcpp::R_390_GOT32:
2817 case elfcpp::R_390_GOT64:
2818 case elfcpp::R_390_GOTENT:
2819 case elfcpp::R_390_GOTPLT12:
2820 case elfcpp::R_390_GOTPLT16:
2821 case elfcpp::R_390_GOTPLT20:
2822 case elfcpp::R_390_GOTPLT32:
2823 case elfcpp::R_390_GOTPLT64:
2824 case elfcpp::R_390_GOTPLTENT:
2825 {
2826 // The symbol requires a GOT entry.
2827 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2828
2829 if (gsym->final_value_is_known())
2830 {
2831 // For a STT_GNU_IFUNC symbol we want the PLT address.
2832 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2833 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2834 else
2835 got->add_global(gsym, GOT_TYPE_STANDARD);
2836 }
2837 else
2838 {
2839 // If this symbol is not fully resolved, we need to add a
2840 // dynamic relocation for it.
2841 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2842
2843 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2844 //
2845 // 1) The symbol may be defined in some other module.
2846 //
2847 // 2) We are building a shared library and this is a
2848 // protected symbol; using GLOB_DAT means that the dynamic
2849 // linker can use the address of the PLT in the main
2850 // executable when appropriate so that function address
2851 // comparisons work.
2852 //
2853 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2854 // code, again so that function address comparisons work.
2855 if (gsym->is_from_dynobj()
2856 || gsym->is_undefined()
2857 || gsym->is_preemptible()
2858 || (gsym->visibility() == elfcpp::STV_PROTECTED
2859 && parameters->options().shared())
2860 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2861 && parameters->options().output_is_position_independent()))
2862 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2863 elfcpp::R_390_GLOB_DAT);
2864 else
2865 {
2866 // For a STT_GNU_IFUNC symbol we want to write the PLT
2867 // offset into the GOT, so that function pointer
2868 // comparisons work correctly.
2869 bool is_new;
2870 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2871 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2872 else
2873 {
2874 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2875 // Tell the dynamic linker to use the PLT address
2876 // when resolving relocations.
2877 if (gsym->is_from_dynobj()
2878 && !parameters->options().shared())
2879 gsym->set_needs_dynsym_value();
2880 }
2881 if (is_new)
2882 {
2883 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2884 rela_dyn->add_global_relative(gsym,
2885 elfcpp::R_390_RELATIVE,
2886 got, got_off, 0, false);
2887 }
2888 }
2889 }
2890 }
2891 break;
2892
2893 case elfcpp::R_390_COPY:
2894 case elfcpp::R_390_GLOB_DAT:
2895 case elfcpp::R_390_JMP_SLOT:
2896 case elfcpp::R_390_RELATIVE:
2897 case elfcpp::R_390_IRELATIVE:
2898 // These are outstanding tls relocs, which are unexpected when linking
2899 case elfcpp::R_390_TLS_TPOFF:
2900 case elfcpp::R_390_TLS_DTPOFF:
2901 case elfcpp::R_390_TLS_DTPMOD:
2902 gold_error(_("%s: unexpected reloc %u in object file"),
2903 object->name().c_str(), r_type);
2904 break;
2905
2906 // These are initial tls relocs, which are expected for global()
2907 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2908 case elfcpp::R_390_TLS_GD64:
2909 case elfcpp::R_390_TLS_GDCALL:
2910 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2911 case elfcpp::R_390_TLS_LDM64:
2912 case elfcpp::R_390_TLS_LDO32:
2913 case elfcpp::R_390_TLS_LDO64:
2914 case elfcpp::R_390_TLS_LDCALL:
2915 case elfcpp::R_390_TLS_IE32: // Initial-exec
2916 case elfcpp::R_390_TLS_IE64:
2917 case elfcpp::R_390_TLS_IEENT:
2918 case elfcpp::R_390_TLS_GOTIE12:
2919 case elfcpp::R_390_TLS_GOTIE20:
2920 case elfcpp::R_390_TLS_GOTIE32:
2921 case elfcpp::R_390_TLS_GOTIE64:
2922 case elfcpp::R_390_TLS_LOAD:
2923 case elfcpp::R_390_TLS_LE32: // Local-exec
2924 case elfcpp::R_390_TLS_LE64:
2925 {
2926 // For the optimizable Initial-Exec model, we can treat undef symbols
2927 // as final when building an executable.
2928 const bool is_final = (gsym->final_value_is_known() ||
2929 ((r_type == elfcpp::R_390_TLS_IE32 ||
2930 r_type == elfcpp::R_390_TLS_IE64 ||
2931 r_type == elfcpp::R_390_TLS_GOTIE32 ||
2932 r_type == elfcpp::R_390_TLS_GOTIE64) &&
2933 gsym->is_undefined() &&
2934 parameters->options().output_is_executable()));
2935 const tls::Tls_optimization optimized_type
2936 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2937 switch (r_type)
2938 {
2939 case elfcpp::R_390_TLS_GD32: // General-dynamic
2940 case elfcpp::R_390_TLS_GD64:
2941 case elfcpp::R_390_TLS_GDCALL:
2942 if (optimized_type == tls::TLSOPT_NONE)
2943 {
2944 // Create a pair of GOT entries for the module index and
2945 // dtv-relative offset.
2946 Output_data_got<size, true>* got
2947 = target->got_section(symtab, layout);
2948 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2949 target->rela_dyn_section(layout),
2950 elfcpp::R_390_TLS_DTPMOD,
2951 elfcpp::R_390_TLS_DTPOFF);
2952 }
2953 else if (optimized_type == tls::TLSOPT_TO_IE)
2954 {
2955 // Create a GOT entry for the tp-relative offset.
2956 Output_data_got<size, true>* got
2957 = target->got_section(symtab, layout);
2958 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2959 target->rela_dyn_section(layout),
2960 elfcpp::R_390_TLS_TPOFF);
2961 }
2962 else if (optimized_type != tls::TLSOPT_TO_LE)
2963 unsupported_reloc_global(object, r_type, gsym);
2964 break;
2965
2966 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2967 case elfcpp::R_390_TLS_LDM64:
2968 case elfcpp::R_390_TLS_LDCALL:
2969 if (optimized_type == tls::TLSOPT_NONE)
2970 {
2971 // Create a GOT entry for the module index.
2972 target->got_mod_index_entry(symtab, layout, object);
2973 }
2974 else if (optimized_type != tls::TLSOPT_TO_LE)
2975 unsupported_reloc_global(object, r_type, gsym);
2976 break;
2977
2978 case elfcpp::R_390_TLS_LDO32:
2979 case elfcpp::R_390_TLS_LDO64:
2980 break;
2981
2982 case elfcpp::R_390_TLS_IE32: // Initial-exec
2983 case elfcpp::R_390_TLS_IE64:
2984 // These two involve an absolute address
2985 if (parameters->options().shared())
2986 {
2987 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2988 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2989 {
2990 // We need to create a dynamic relocation.
2991 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2992 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2993 output_section, object,
2994 data_shndx,
2995 reloc.get_r_offset(),
2996 reloc.get_r_addend(), false);
2997 }
2998 else
2999 {
3000 unsupported_reloc_global(object, r_type, gsym);
3001 }
3002 }
d8e90251 3003 // Fall through.
e79a4bad
MK
3004 case elfcpp::R_390_TLS_IEENT:
3005 case elfcpp::R_390_TLS_GOTIE12:
3006 case elfcpp::R_390_TLS_GOTIE20:
3007 case elfcpp::R_390_TLS_GOTIE32:
3008 case elfcpp::R_390_TLS_GOTIE64:
3009 case elfcpp::R_390_TLS_LOAD:
3010 layout->set_has_static_tls();
3011 if (optimized_type == tls::TLSOPT_NONE)
3012 {
3013 if (is_final && !parameters->options().shared())
3014 {
3015 // We're making an executable, and the symbol is local, but
3016 // we cannot optimize to LE. Make a const GOT entry instead.
3017 Output_data_got<size, true>* got
3018 = target->got_section(symtab, layout);
3019 got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
3020 }
3021 else
3022 {
3023 // Create a GOT entry for the tp-relative offset.
3024 Output_data_got<size, true>* got
3025 = target->got_section(symtab, layout);
3026 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3027 target->rela_dyn_section(layout),
3028 elfcpp::R_390_TLS_TPOFF);
3029 }
3030 }
3031 else if (optimized_type != tls::TLSOPT_TO_LE)
3032 unsupported_reloc_global(object, r_type, gsym);
3033 break;
3034
3035 case elfcpp::R_390_TLS_LE32: // Local-exec
3036 case elfcpp::R_390_TLS_LE64:
3037 layout->set_has_static_tls();
3038 if (parameters->options().shared())
3039 {
3040 // We need to create a dynamic relocation.
3041 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
3042 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
3043 {
3044 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3045 rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
3046 output_section, object,
3047 data_shndx, reloc.get_r_offset(),
3048 reloc.get_r_addend());
3049 }
3050 else
3051 {
3052 unsupported_reloc_global(object, r_type, gsym);
3053 }
3054 }
3055 break;
3056
3057 default:
3058 gold_unreachable();
3059 }
3060 }
3061 break;
3062
3063 default:
3064 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3065 object->name().c_str(), r_type,
3066 gsym->demangled_name().c_str());
3067 break;
3068 }
3069}
3070
3071
3072// Report an unsupported relocation against a global symbol.
3073
3074template<int size>
3075void
3076Target_s390<size>::Scan::unsupported_reloc_global(
3077 Sized_relobj_file<size, true>* object,
3078 unsigned int r_type,
3079 Symbol* gsym)
3080{
3081 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3082 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3083}
3084
3085// Returns true if this relocation type could be that of a function pointer.
3086template<int size>
3087inline bool
3088Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3089{
3090 switch (r_type)
3091 {
3092 case elfcpp::R_390_32:
3093 case elfcpp::R_390_64:
3094 case elfcpp::R_390_PC32DBL: // could be used by larl insn
3095 case elfcpp::R_390_GOT12:
3096 case elfcpp::R_390_GOT16:
3097 case elfcpp::R_390_GOT20:
3098 case elfcpp::R_390_GOT32:
3099 case elfcpp::R_390_GOT64:
3100 case elfcpp::R_390_GOTENT:
3101 case elfcpp::R_390_GOTOFF16:
3102 case elfcpp::R_390_GOTOFF32:
3103 case elfcpp::R_390_GOTOFF64:
3104 return true;
3105 }
3106 return false;
3107}
3108
3109// For safe ICF, scan a relocation for a local symbol to check if it
3110// corresponds to a function pointer being taken. In that case mark
3111// the function whose pointer was taken as not foldable.
3112
3113template<int size>
3114inline bool
3115Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3116 Symbol_table* ,
3117 Layout* ,
3118 Target_s390<size>* ,
3119 Sized_relobj_file<size, true>* ,
3120 unsigned int ,
3121 Output_section* ,
3122 const elfcpp::Rela<size, true>& ,
3123 unsigned int r_type,
3124 const elfcpp::Sym<size, true>&)
3125{
3126 // When building a shared library, do not fold any local symbols.
3127 return (parameters->options().shared()
3128 || possible_function_pointer_reloc(r_type));
3129}
3130
3131// For safe ICF, scan a relocation for a global symbol to check if it
3132// corresponds to a function pointer being taken. In that case mark
3133// the function whose pointer was taken as not foldable.
3134
3135template<int size>
3136inline bool
3137Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3138 Symbol_table*,
3139 Layout* ,
3140 Target_s390<size>* ,
3141 Sized_relobj_file<size, true>* ,
3142 unsigned int ,
3143 Output_section* ,
3144 const elfcpp::Rela<size, true>& ,
3145 unsigned int r_type,
3146 Symbol* gsym)
3147{
3148 // When building a shared library, do not fold symbols whose visibility
3149 // is hidden, internal or protected.
3150 return ((parameters->options().shared()
3151 && (gsym->visibility() == elfcpp::STV_INTERNAL
3152 || gsym->visibility() == elfcpp::STV_PROTECTED
3153 || gsym->visibility() == elfcpp::STV_HIDDEN))
3154 || possible_function_pointer_reloc(r_type));
3155}
3156
3157template<int size>
3158void
3159Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3160 Layout* layout,
3161 Sized_relobj_file<size, true>* object,
3162 unsigned int data_shndx,
3163 unsigned int sh_type,
3164 const unsigned char* prelocs,
3165 size_t reloc_count,
3166 Output_section* output_section,
3167 bool needs_special_offset_handling,
3168 size_t local_symbol_count,
3169 const unsigned char* plocal_symbols)
3170{
4d625b70
CC
3171 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3172 Classify_reloc;
e79a4bad
MK
3173
3174 if (sh_type == elfcpp::SHT_REL)
3175 return;
3176
4d625b70 3177 gold::gc_process_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
3178 symtab,
3179 layout,
3180 this,
3181 object,
3182 data_shndx,
3183 prelocs,
3184 reloc_count,
3185 output_section,
3186 needs_special_offset_handling,
3187 local_symbol_count,
3188 plocal_symbols);
3189}
3190
3191// Perform a relocation.
3192
3193template<int size>
3194inline bool
3195Target_s390<size>::Relocate::relocate(
3196 const Relocate_info<size, true>* relinfo,
91a65d2f 3197 unsigned int,
e79a4bad
MK
3198 Target_s390<size>* target,
3199 Output_section*,
3200 size_t relnum,
91a65d2f 3201 const unsigned char* preloc,
e79a4bad
MK
3202 const Sized_symbol<size>* gsym,
3203 const Symbol_value<size>* psymval,
3204 unsigned char* view,
3205 typename elfcpp::Elf_types<size>::Elf_Addr address,
3206 section_size_type view_size)
3207{
3208 if (view == NULL)
3209 return true;
3210
91a65d2f
AM
3211 const elfcpp::Rela<size, true> rela(preloc);
3212 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
e79a4bad
MK
3213 const Sized_relobj_file<size, true>* object = relinfo->object;
3214
3215 // Pick the value to use for symbols defined in the PLT.
3216 Symbol_value<size> symval;
3217 if (gsym != NULL
3218 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3219 {
3220 symval.set_output_value(target->plt_address_for_global(gsym));
3221 psymval = &symval;
3222 }
3223 else if (gsym == NULL && psymval->is_ifunc_symbol())
3224 {
3225 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3226 if (object->local_has_plt_offset(r_sym))
3227 {
3228 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3229 psymval = &symval;
3230 }
3231 }
3232
3233 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3234
3235 typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3236
3237 switch (r_type)
3238 {
3239 case elfcpp::R_390_PLT64:
3240 case elfcpp::R_390_PLT32:
3241 case elfcpp::R_390_PLT32DBL:
3242 case elfcpp::R_390_PLT24DBL:
3243 case elfcpp::R_390_PLT16DBL:
3244 case elfcpp::R_390_PLT12DBL:
3245 gold_assert(gsym == NULL
3246 || gsym->has_plt_offset()
3247 || gsym->final_value_is_known()
3248 || (gsym->is_defined()
3249 && !gsym->is_from_dynobj()
3250 && !gsym->is_preemptible()));
d8e90251 3251 // Fall through.
e79a4bad
MK
3252 case elfcpp::R_390_8:
3253 case elfcpp::R_390_12:
3254 case elfcpp::R_390_16:
3255 case elfcpp::R_390_20:
3256 case elfcpp::R_390_32:
3257 case elfcpp::R_390_64:
3258 case elfcpp::R_390_PC16:
3259 case elfcpp::R_390_PC32:
3260 case elfcpp::R_390_PC64:
3261 case elfcpp::R_390_PC32DBL:
3262 case elfcpp::R_390_PC24DBL:
3263 case elfcpp::R_390_PC16DBL:
3264 case elfcpp::R_390_PC12DBL:
3265 value = psymval->value(object, addend);
3266 break;
3267
3268 case elfcpp::R_390_GOTPC:
3269 case elfcpp::R_390_GOTPCDBL:
3270 gold_assert(gsym != NULL);
3271 value = target->got_address() + addend;
3272 break;
3273
3274 case elfcpp::R_390_PLTOFF64:
3275 case elfcpp::R_390_PLTOFF32:
3276 case elfcpp::R_390_PLTOFF16:
3277 gold_assert(gsym == NULL
3278 || gsym->has_plt_offset()
3279 || gsym->final_value_is_known());
d8e90251 3280 // Fall through.
e79a4bad
MK
3281 case elfcpp::R_390_GOTOFF64:
3282 case elfcpp::R_390_GOTOFF32:
3283 case elfcpp::R_390_GOTOFF16:
3284 value = (psymval->value(object, addend)
3285 - target->got_address());
3286 break;
3287
3288 case elfcpp::R_390_GOT12:
3289 case elfcpp::R_390_GOT16:
3290 case elfcpp::R_390_GOT20:
3291 case elfcpp::R_390_GOT32:
3292 case elfcpp::R_390_GOT64:
3293 case elfcpp::R_390_GOTENT:
3294 case elfcpp::R_390_GOTPLT12:
3295 case elfcpp::R_390_GOTPLT16:
3296 case elfcpp::R_390_GOTPLT20:
3297 case elfcpp::R_390_GOTPLT32:
3298 case elfcpp::R_390_GOTPLT64:
3299 case elfcpp::R_390_GOTPLTENT:
3300 {
3301 unsigned int got_offset = 0;
3302 if (gsym != NULL)
3303 {
3304 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3305 got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3306 }
3307 else
3308 {
3309 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3310 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3311 got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3312 }
3313 value = got_offset + target->got_main_offset() + addend;
3314 }
3315 break;
3316
3317 // These are initial tls relocs, which are expected when linking
3318 case elfcpp::R_390_TLS_LOAD:
3319 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic
3320 case elfcpp::R_390_TLS_GD32:
3321 case elfcpp::R_390_TLS_GD64:
3322 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic
3323 case elfcpp::R_390_TLS_LDM32:
3324 case elfcpp::R_390_TLS_LDM64:
3325 case elfcpp::R_390_TLS_LDO32:
3326 case elfcpp::R_390_TLS_LDO64:
3327 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec
3328 case elfcpp::R_390_TLS_GOTIE20:
3329 case elfcpp::R_390_TLS_GOTIE32:
3330 case elfcpp::R_390_TLS_GOTIE64:
3331 case elfcpp::R_390_TLS_IE32:
3332 case elfcpp::R_390_TLS_IE64:
3333 case elfcpp::R_390_TLS_IEENT:
3334 case elfcpp::R_390_TLS_LE32: // Local-exec
3335 case elfcpp::R_390_TLS_LE64:
3336 value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3337 view, view_size);
3338 break;
3339
3340 default:
3341 break;
3342 }
3343
3344 typename S390_relocate_functions<size>::Status status
3345 = S390_relocate_functions<size>::STATUS_OK;
3346
3347 switch (r_type)
3348 {
3349 case elfcpp::R_390_NONE:
3350 case elfcpp::R_390_GNU_VTINHERIT:
3351 case elfcpp::R_390_GNU_VTENTRY:
3352 case elfcpp::R_390_TLS_GDCALL:
3353 case elfcpp::R_390_TLS_LDCALL:
3354 case elfcpp::R_390_TLS_LOAD:
3355 break;
3356
3357 case elfcpp::R_390_64:
3358 case elfcpp::R_390_GOT64:
3359 case elfcpp::R_390_GOTPLT64:
3360 case elfcpp::R_390_PLTOFF64:
3361 case elfcpp::R_390_GOTOFF64:
3362 case elfcpp::R_390_TLS_GD64:
3363 case elfcpp::R_390_TLS_LDM64:
3364 case elfcpp::R_390_TLS_LDO64:
3365 case elfcpp::R_390_TLS_GOTIE64:
3366 case elfcpp::R_390_TLS_IE64:
3367 case elfcpp::R_390_TLS_LE64:
3368 Relocate_functions<size, true>::rela64(view, value, 0);
3369 break;
3370
3371 case elfcpp::R_390_32:
3372 case elfcpp::R_390_GOT32:
3373 case elfcpp::R_390_GOTPLT32:
3374 case elfcpp::R_390_PLTOFF32:
3375 case elfcpp::R_390_GOTOFF32:
3376 case elfcpp::R_390_TLS_GD32:
3377 case elfcpp::R_390_TLS_LDM32:
3378 case elfcpp::R_390_TLS_LDO32:
3379 case elfcpp::R_390_TLS_GOTIE32:
3380 case elfcpp::R_390_TLS_IE32:
3381 case elfcpp::R_390_TLS_LE32:
3382 Relocate_functions<size, true>::rela32(view, value, 0);
3383 break;
3384
3385 case elfcpp::R_390_20:
3386 case elfcpp::R_390_GOT20:
3387 case elfcpp::R_390_GOTPLT20:
3388 case elfcpp::R_390_TLS_GOTIE20:
3389 status = S390_relocate_functions<size>::rela20(view, value);
3390 break;
3391
3392 case elfcpp::R_390_16:
3393 case elfcpp::R_390_GOT16:
3394 case elfcpp::R_390_GOTPLT16:
3395 case elfcpp::R_390_PLTOFF16:
3396 case elfcpp::R_390_GOTOFF16:
3397 status = S390_relocate_functions<size>::rela16(view, value);
3398 break;
3399
3400 case elfcpp::R_390_12:
3401 case elfcpp::R_390_GOT12:
3402 case elfcpp::R_390_GOTPLT12:
3403 case elfcpp::R_390_TLS_GOTIE12:
3404 status = S390_relocate_functions<size>::rela12(view, value);
3405 break;
3406
3407 case elfcpp::R_390_8:
3408 Relocate_functions<size, true>::rela8(view, value, 0);
3409 break;
3410
3411 case elfcpp::R_390_PC16:
3412 Relocate_functions<size, true>::pcrela16(view, value, 0,
3413 address);
3414 break;
3415
3416 case elfcpp::R_390_PLT64:
3417 case elfcpp::R_390_PC64:
3418 Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3419 break;
3420
3421 case elfcpp::R_390_PLT32:
3422 case elfcpp::R_390_PC32:
3423 case elfcpp::R_390_GOTPC:
3424 Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3425 break;
3426
3427 case elfcpp::R_390_PLT32DBL:
3428 case elfcpp::R_390_PC32DBL:
3429 case elfcpp::R_390_GOTPCDBL:
3430 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3431 break;
3432
3433 case elfcpp::R_390_PLT24DBL:
3434 case elfcpp::R_390_PC24DBL:
3435 status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3436 break;
3437
3438 case elfcpp::R_390_PLT16DBL:
3439 case elfcpp::R_390_PC16DBL:
3440 status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3441 break;
3442
3443 case elfcpp::R_390_PLT12DBL:
3444 case elfcpp::R_390_PC12DBL:
3445 status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3446 break;
3447
3448 case elfcpp::R_390_GOTENT:
3449 case elfcpp::R_390_GOTPLTENT:
3450 case elfcpp::R_390_TLS_IEENT:
3451 value += target->got_address();
3452 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3453 break;
3454
3455 case elfcpp::R_390_COPY:
3456 case elfcpp::R_390_GLOB_DAT:
3457 case elfcpp::R_390_JMP_SLOT:
3458 case elfcpp::R_390_RELATIVE:
3459 case elfcpp::R_390_IRELATIVE:
3460 // These are outstanding tls relocs, which are unexpected when linking
3461 case elfcpp::R_390_TLS_TPOFF:
3462 case elfcpp::R_390_TLS_DTPMOD:
3463 case elfcpp::R_390_TLS_DTPOFF:
3464 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3465 _("unexpected reloc %u in object file"),
3466 r_type);
3467 break;
3468
3469 default:
3470 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3471 _("unsupported reloc %u"),
3472 r_type);
3473 break;
3474 }
3475
3476 if (status != S390_relocate_functions<size>::STATUS_OK)
3477 {
3478 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3479 _("relocation overflow"));
3480 }
3481
3482 return true;
3483}
3484
3485// Perform a TLS relocation.
3486
3487template<int size>
3488inline typename elfcpp::Elf_types<size>::Elf_Addr
3489Target_s390<size>::Relocate::relocate_tls(
3490 const Relocate_info<size, true>* relinfo,
3491 Target_s390<size>* target,
3492 size_t relnum,
3493 const elfcpp::Rela<size, true>& rela,
3494 unsigned int r_type,
3495 const Sized_symbol<size>* gsym,
3496 const Symbol_value<size>* psymval,
3497 unsigned char* view,
3498 section_size_type view_size)
3499{
3500 Output_segment* tls_segment = relinfo->layout->tls_segment();
3501
3502 const Sized_relobj_file<size, true>* object = relinfo->object;
3503 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3504 elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3505 bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3506
3507 typename elfcpp::Elf_types<size>::Elf_Addr value
3508 = psymval->value(relinfo->object, addend);
3509
3510 const bool is_final = (gsym == NULL
3511 ? !parameters->options().shared()
3512 : gsym->final_value_is_known());
3513 tls::Tls_optimization optimized_type
3514 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3515 switch (r_type)
3516 {
3517 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker
3518 if (optimized_type == tls::TLSOPT_TO_LE)
3519 {
3520 if (tls_segment == NULL)
3521 {
3522 gold_assert(parameters->errors()->error_count() > 0
3523 || issue_undefined_symbol_error(gsym));
3524 return 0;
3525 }
3526 this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3527 break;
3528 }
3529 else
3530 {
3531 if (optimized_type == tls::TLSOPT_TO_IE)
3532 {
3533 this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3534 break;
3535 }
3536 else if (optimized_type == tls::TLSOPT_NONE)
3537 {
3538 break;
3539 }
3540 }
3541 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3542 _("unsupported reloc %u"), r_type);
3543 break;
3544
3545 case elfcpp::R_390_TLS_GD32: // Global-dynamic
3546 case elfcpp::R_390_TLS_GD64:
3547 if (optimized_type == tls::TLSOPT_TO_LE)
3548 {
3549 if (tls_segment == NULL)
3550 {
3551 gold_assert(parameters->errors()->error_count() > 0
3552 || issue_undefined_symbol_error(gsym));
3553 return 0;
3554 }
3555 return value - tls_segment->memsz();
3556 }
3557 else
3558 {
3559 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3560 ? GOT_TYPE_TLS_OFFSET
3561 : GOT_TYPE_TLS_PAIR);
3562 if (gsym != NULL)
3563 {
3564 gold_assert(gsym->has_got_offset(got_type));
3565 return (gsym->got_offset(got_type)
3566 + target->got_main_offset()
3567 + addend);
3568 }
3569 else
3570 {
3571 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3572 gold_assert(object->local_has_got_offset(r_sym, got_type));
3573 return (object->local_got_offset(r_sym, got_type)
3574 + target->got_main_offset()
3575 + addend);
3576 }
3577 }
3578 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3579 _("unsupported reloc %u"), r_type);
3580 break;
3581
3582 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker
3583 // This is a marker relocation. If the sequence is being turned to LE,
3584 // we modify the instruction, otherwise the instruction is untouched.
3585 if (optimized_type == tls::TLSOPT_TO_LE)
3586 {
3587 if (tls_segment == NULL)
3588 {
3589 gold_assert(parameters->errors()->error_count() > 0
3590 || issue_undefined_symbol_error(gsym));
3591 return 0;
3592 }
3593 this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3594 break;
3595 }
3596 else if (optimized_type == tls::TLSOPT_NONE)
3597 {
3598 break;
3599 }
3600 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3601 _("unsupported reloc %u"), r_type);
3602 break;
3603
3604 case elfcpp::R_390_TLS_LDM32: // Local-dynamic module
3605 case elfcpp::R_390_TLS_LDM64:
3606 if (optimized_type == tls::TLSOPT_TO_LE)
3607 {
3608 if (tls_segment == NULL)
3609 {
3610 gold_assert(parameters->errors()->error_count() > 0
3611 || issue_undefined_symbol_error(gsym));
3612 return 0;
3613 }
3614 // Doesn't matter what we fill it with - it's going to be unused.
3615 return 0;
3616 }
3617 else if (optimized_type == tls::TLSOPT_NONE)
3618 {
3619 // Relocate the field with the offset of the GOT entry for
3620 // the module index.
3621 return (target->got_mod_index_entry(NULL, NULL, NULL)
3622 + addend
3623 + target->got_main_offset());
3624 }
3625 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3626 _("unsupported reloc %u"), r_type);
3627 break;
3628
3629 case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset
3630 case elfcpp::R_390_TLS_LDO64:
3631 // This relocation type is used in debugging information.
3632 // In that case we need to not optimize the value. If the
3633 // section is not allocatable, then we assume we should not
3634 // optimize this reloc.
3635 if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3636 {
3637 if (tls_segment == NULL)
3638 {
3639 gold_assert(parameters->errors()->error_count() > 0
3640 || issue_undefined_symbol_error(gsym));
3641 return 0;
3642 }
3643 value -= tls_segment->memsz();
3644 }
3645 return value;
3646
3647 case elfcpp::R_390_TLS_LOAD: // Initial-exec marker
3648 // This is a marker relocation. If the sequence is being turned to LE,
3649 // we modify the instruction, otherwise the instruction is untouched.
3650 if (gsym != NULL
3651 && gsym->is_undefined()
3652 && parameters->options().output_is_executable())
3653 {
3654 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3655 rela, view,
3656 view_size);
3657 break;
3658 }
3659 else if (optimized_type == tls::TLSOPT_TO_LE)
3660 {
3661 if (tls_segment == NULL)
3662 {
3663 gold_assert(parameters->errors()->error_count() > 0
3664 || issue_undefined_symbol_error(gsym));
3665 return 0;
3666 }
3667 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3668 rela, view,
3669 view_size);
3670 break;
3671 }
3672 else if (optimized_type == tls::TLSOPT_NONE)
3673 {
3674 break;
3675 }
3676 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3677 _("unsupported reloc type %u"),
3678 r_type);
3679 break;
3680
3681 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable
3682 case elfcpp::R_390_TLS_GOTIE20:
3683 case elfcpp::R_390_TLS_IEENT:
3684 case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable
3685 case elfcpp::R_390_TLS_GOTIE64:
3686 case elfcpp::R_390_TLS_IE32:
3687 case elfcpp::R_390_TLS_IE64:
3688 if (gsym != NULL
3689 && gsym->is_undefined()
3690 && parameters->options().output_is_executable()
3691 // These three cannot be optimized to LE, no matter what
3692 && r_type != elfcpp::R_390_TLS_GOTIE12
3693 && r_type != elfcpp::R_390_TLS_GOTIE20
3694 && r_type != elfcpp::R_390_TLS_IEENT)
3695 {
3696 return value;
3697 }
3698 else if (optimized_type == tls::TLSOPT_TO_LE)
3699 {
3700 if (tls_segment == NULL)
3701 {
3702 gold_assert(parameters->errors()->error_count() > 0
3703 || issue_undefined_symbol_error(gsym));
3704 return 0;
3705 }
3706 return value - tls_segment->memsz();
3707 }
3708 else if (optimized_type == tls::TLSOPT_NONE)
3709 {
3710 // Relocate the field with the offset of the GOT entry for
3711 // the tp-relative offset of the symbol.
3712 unsigned int got_offset;
3713 if (gsym != NULL)
3714 {
3715 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3716 got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3717 }
3718 else
3719 {
3720 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3721 gold_assert(object->local_has_got_offset(r_sym,
3722 GOT_TYPE_TLS_OFFSET));
3723 got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3724 }
3725 got_offset += target->got_main_offset();
3726 if (r_type == elfcpp::R_390_TLS_IE32
3727 || r_type == elfcpp::R_390_TLS_IE64)
3728 return target->got_address() + got_offset + addend;
3729 else
3730 return got_offset + addend;
3731 }
3732 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3733 _("unsupported reloc type %u"),
3734 r_type);
3735 break;
3736
3737 case elfcpp::R_390_TLS_LE32: // Local-exec
3738 case elfcpp::R_390_TLS_LE64:
3739 if (tls_segment == NULL)
3740 {
3741 gold_assert(parameters->errors()->error_count() > 0
3742 || issue_undefined_symbol_error(gsym));
3743 return 0;
3744 }
3745 return value - tls_segment->memsz();
3746 }
3747 return 0;
3748}
3749
3750// Do a relocation in which we convert a TLS General-Dynamic to an
3751// Initial-Exec.
3752
3753template<int size>
3754inline void
3755Target_s390<size>::Relocate::tls_gd_to_ie(
3756 const Relocate_info<size, true>* relinfo,
3757 size_t relnum,
3758 const elfcpp::Rela<size, true>& rela,
3759 unsigned char* view,
3760 section_size_type view_size)
3761{
3762 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3763 if (view[0] == 0x4d)
3764 {
3765 // bas, don't care about details
3766 // Change to l %r2, 0(%r2, %r12)
3767 view[0] = 0x58;
3768 view[1] = 0x22;
3769 view[2] = 0xc0;
3770 view[3] = 0x00;
3771 return;
3772 }
3773 else if (view[0] == 0xc0)
3774 {
3775 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3776 // brasl %r14, __tls_get_offset@plt
3777 if (view[1] == 0xe5)
3778 {
3779 // Change to l/lg %r2, 0(%r2, %r12)
3780 // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3781 if (size == 32)
3782 {
3783 // l
3784 view[0] = 0x58;
3785 view[1] = 0x22;
3786 view[2] = 0xc0;
3787 view[3] = 0x00;
3788 // nop
3789 view[4] = 0x07;
3790 view[5] = 0x07;
3791 }
3792 else
3793 {
3794 // lg
3795 view[0] = 0xe3;
3796 view[1] = 0x22;
3797 view[2] = 0xc0;
3798 view[3] = 0;
3799 view[4] = 0;
3800 view[5] = 0x04;
3801 }
3802 return;
3803 }
3804 }
3805 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3806 _("unsupported op for GD to IE"));
3807}
3808
3809// Do a relocation in which we convert a TLS General-Dynamic to a
3810// Local-Exec.
3811
3812template<int size>
3813inline void
3814Target_s390<size>::Relocate::tls_gd_to_le(
3815 const Relocate_info<size, true>* relinfo,
3816 size_t relnum,
3817 const elfcpp::Rela<size, true>& rela,
3818 unsigned char* view,
3819 section_size_type view_size)
3820{
3821 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3822 if (view[0] == 0x0d)
3823 {
3824 // basr, change to nop
3825 view[0] = 0x07;
3826 view[1] = 0x07;
3827 }
3828 else if (view[0] == 0x4d)
3829 {
3830 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3831 // bas, don't care about details, change to nop
3832 view[0] = 0x47;
3833 view[1] = 0;
3834 view[2] = 0;
3835 view[3] = 0;
3836 return;
3837 }
3838 else if (view[0] == 0xc0)
3839 {
3840 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3841 // brasl %r14, __tls_get_offset@plt
3842 if (view[1] == 0xe5)
3843 {
3844 // Change to nop jump. There was a PLT32DBL reloc at the last
3845 // 4 bytes, overwrite its result.
3846 view[1] = 0x04;
3847 view[2] = 0;
3848 view[3] = 0;
3849 view[4] = 0;
3850 view[5] = 0;
3851 return;
3852 }
3853 }
3854 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3855 _("unsupported op for GD to LE"));
3856}
3857
3858template<int size>
3859inline void
3860Target_s390<size>::Relocate::tls_ld_to_le(
3861 const Relocate_info<size, true>* relinfo,
3862 size_t relnum,
3863 const elfcpp::Rela<size, true>& rela,
3864 unsigned char* view,
3865 section_size_type view_size)
3866{
3867 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3868
3869 if (view[0] == 0x0d)
3870 {
3871 // basr, change to nop
3872 view[0] = 0x07;
3873 view[1] = 0x07;
3874 }
3875 else if (view[0] == 0x4d)
3876 {
3877 // bas, don't care about details, change to nop
3878 view[0] = 0x47;
3879 view[1] = 0;
3880 view[2] = 0;
3881 view[3] = 0;
3882 return;
3883 }
3884 else if (view[0] == 0xc0)
3885 {
3886 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3887 // brasl %r14, __tls_get_offset@plt
3888 if (view[1] == 0xe5)
3889 {
3890 // Change to nop jump. There was a PLT32DBL reloc at the last
3891 // 4 bytes, overwrite its result.
3892 view[1] = 0x04;
3893 view[2] = 0;
3894 view[3] = 0;
3895 view[4] = 0;
3896 view[5] = 0;
3897 return;
3898 }
3899 }
3900 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3901 _("unsupported op for LD to LE"));
3902}
3903
3904// Do a relocation in which we convert a TLS Initial-Exec to a
3905// Local-Exec.
3906
3907template<int size>
3908inline void
3909Target_s390<size>::Relocate::tls_ie_to_le(
3910 const Relocate_info<size, true>* relinfo,
3911 size_t relnum,
3912 const elfcpp::Rela<size, true>& rela,
3913 unsigned char* view,
3914 section_size_type view_size)
3915{
3916 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3917
3918 if (view[0] == 0x58)
3919 {
3920 // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3921 if ((view[2] & 0x0f) != 0 || view[3] != 0)
3922 goto err;
3923 int rx = view[1] >> 4 & 0xf;
3924 int ry = view[1] & 0xf;
3925 int rz = view[2] >> 4 & 0xf;
3926 if (rz == 0)
3927 {
3928 }
3929 else if (ry == 0)
3930 {
3931 ry = rz;
3932 }
3933 else if (rz == 12)
3934 {
3935 }
3936 else if (ry == 12)
3937 {
3938 ry = rz;
3939 }
3940 else
3941 goto err;
3942 // to lr %rX, $rY
3943 view[0] = 0x18;
3944 view[1] = rx << 4 | ry;
3945 // and insert a nop
3946 view[2] = 0x07;
3947 view[3] = 0x00;
3948 }
3949 else if (view[0] == 0xe3)
3950 {
3951 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3952 // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3953 if ((view[2] & 0x0f) != 0 ||
3954 view[3] != 0 ||
3955 view[4] != 0 ||
3956 view[5] != 0x04)
3957 goto err;
3958 int rx = view[1] >> 4 & 0xf;
3959 int ry = view[1] & 0xf;
3960 int rz = view[2] >> 4 & 0xf;
3961 if (rz == 0)
3962 {
3963 }
3964 else if (ry == 0)
3965 {
3966 ry = rz;
3967 }
3968 else if (rz == 12)
3969 {
3970 }
3971 else if (ry == 12)
3972 {
3973 ry = rz;
3974 }
3975 else
3976 goto err;
3977 // to sllg %rX, $rY, 0
3978 view[0] = 0xeb;
3979 view[1] = rx << 4 | ry;
3980 view[2] = 0x00;
3981 view[3] = 0x00;
3982 view[4] = 0x00;
3983 view[5] = 0x0d;
3984 }
3985 else
3986 {
3987err:
3988 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3989 _("unsupported op for IE to LE"));
3990 }
3991}
3992
3993// Scan relocations for a section.
3994
3995template<int size>
3996void
3997Target_s390<size>::scan_relocs(Symbol_table* symtab,
3998 Layout* layout,
3999 Sized_relobj_file<size, true>* object,
4000 unsigned int data_shndx,
4001 unsigned int sh_type,
4002 const unsigned char* prelocs,
4003 size_t reloc_count,
4004 Output_section* output_section,
4005 bool needs_special_offset_handling,
4006 size_t local_symbol_count,
4007 const unsigned char* plocal_symbols)
4008{
4d625b70
CC
4009 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4010 Classify_reloc;
4011
e79a4bad
MK
4012 if (sh_type == elfcpp::SHT_REL)
4013 {
4014 gold_error(_("%s: unsupported REL reloc section"),
4015 object->name().c_str());
4016 return;
4017 }
4018
4d625b70 4019 gold::scan_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
4020 symtab,
4021 layout,
4022 this,
4023 object,
4024 data_shndx,
4025 prelocs,
4026 reloc_count,
4027 output_section,
4028 needs_special_offset_handling,
4029 local_symbol_count,
4030 plocal_symbols);
4031}
4032
4033// Finalize the sections.
4034
4035template<int size>
4036void
4037Target_s390<size>::do_finalize_sections(
4038 Layout* layout,
4039 const Input_objects*,
4040 Symbol_table* symtab)
4041{
4042 const Reloc_section* rel_plt = (this->plt_ == NULL
4043 ? NULL
4044 : this->plt_->rela_plt());
4045 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4046 this->rela_dyn_, true, size == 32);
4047
4048 this->layout_ = layout;
4049
4050 // Emit any relocs we saved in an attempt to avoid generating COPY
4051 // relocs.
4052 if (this->copy_relocs_.any_saved_relocs())
4053 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4054
4055 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4056 // the .got section.
4057 Symbol* sym = this->global_offset_table_;
4058 if (sym != NULL)
4059 {
4060 uint64_t data_size = this->got_->current_data_size();
4061 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4062 }
4063
4064 if (parameters->doing_static_link()
4065 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4066 {
4067 // If linking statically, make sure that the __rela_iplt symbols
4068 // were defined if necessary, even if we didn't create a PLT.
4069 static const Define_symbol_in_segment syms[] =
4070 {
4071 {
4072 "__rela_iplt_start", // name
4073 elfcpp::PT_LOAD, // segment_type
4074 elfcpp::PF_W, // segment_flags_set
4075 elfcpp::PF(0), // segment_flags_clear
4076 0, // value
4077 0, // size
4078 elfcpp::STT_NOTYPE, // type
4079 elfcpp::STB_GLOBAL, // binding
4080 elfcpp::STV_HIDDEN, // visibility
4081 0, // nonvis
4082 Symbol::SEGMENT_START, // offset_from_base
4083 true // only_if_ref
4084 },
4085 {
4086 "__rela_iplt_end", // name
4087 elfcpp::PT_LOAD, // segment_type
4088 elfcpp::PF_W, // segment_flags_set
4089 elfcpp::PF(0), // segment_flags_clear
4090 0, // value
4091 0, // size
4092 elfcpp::STT_NOTYPE, // type
4093 elfcpp::STB_GLOBAL, // binding
4094 elfcpp::STV_HIDDEN, // visibility
4095 0, // nonvis
4096 Symbol::SEGMENT_START, // offset_from_base
4097 true // only_if_ref
4098 }
4099 };
4100
4101 symtab->define_symbols(layout, 2, syms,
4102 layout->script_options()->saw_sections_clause());
4103 }
4104}
4105
4d625b70 4106// Scan the relocs during a relocatable link.
e79a4bad
MK
4107
4108template<int size>
4d625b70
CC
4109void
4110Target_s390<size>::scan_relocatable_relocs(
4111 Symbol_table* symtab,
4112 Layout* layout,
4113 Sized_relobj_file<size, true>* object,
4114 unsigned int data_shndx,
4115 unsigned int sh_type,
4116 const unsigned char* prelocs,
4117 size_t reloc_count,
4118 Output_section* output_section,
4119 bool needs_special_offset_handling,
4120 size_t local_symbol_count,
4121 const unsigned char* plocal_symbols,
4122 Relocatable_relocs* rr)
e79a4bad 4123{
4d625b70
CC
4124 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4125 Classify_reloc;
4126 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4127 Scan_relocatable_relocs;
e79a4bad 4128
4d625b70 4129 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4130
4d625b70
CC
4131 gold::scan_relocatable_relocs<size, true, Scan_relocatable_relocs>(
4132 symtab,
4133 layout,
4134 object,
4135 data_shndx,
4136 prelocs,
4137 reloc_count,
4138 output_section,
4139 needs_special_offset_handling,
4140 local_symbol_count,
4141 plocal_symbols,
4142 rr);
e79a4bad
MK
4143}
4144
4d625b70 4145// Scan the relocs for --emit-relocs.
e79a4bad
MK
4146
4147template<int size>
4148void
4d625b70 4149Target_s390<size>::emit_relocs_scan(
e79a4bad
MK
4150 Symbol_table* symtab,
4151 Layout* layout,
4152 Sized_relobj_file<size, true>* object,
4153 unsigned int data_shndx,
4154 unsigned int sh_type,
4155 const unsigned char* prelocs,
4156 size_t reloc_count,
4157 Output_section* output_section,
4158 bool needs_special_offset_handling,
4159 size_t local_symbol_count,
4d625b70 4160 const unsigned char* plocal_syms,
e79a4bad
MK
4161 Relocatable_relocs* rr)
4162{
4d625b70
CC
4163 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4164 Classify_reloc;
4165 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4166 Emit_relocs_strategy;
e79a4bad 4167
4d625b70 4168 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4169
4d625b70 4170 gold::scan_relocatable_relocs<size, true, Emit_relocs_strategy>(
e79a4bad
MK
4171 symtab,
4172 layout,
4173 object,
4174 data_shndx,
4175 prelocs,
4176 reloc_count,
4177 output_section,
4178 needs_special_offset_handling,
4179 local_symbol_count,
4d625b70 4180 plocal_syms,
e79a4bad
MK
4181 rr);
4182}
4183
4184// Relocate a section during a relocatable link.
4185
4186template<int size>
4187void
4188Target_s390<size>::relocate_relocs(
4189 const Relocate_info<size, true>* relinfo,
4190 unsigned int sh_type,
4191 const unsigned char* prelocs,
4192 size_t reloc_count,
4193 Output_section* output_section,
4194 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
4195 unsigned char* view,
4196 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4197 section_size_type view_size,
4198 unsigned char* reloc_view,
4199 section_size_type reloc_view_size)
4200{
4d625b70
CC
4201 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4202 Classify_reloc;
4203
e79a4bad
MK
4204 gold_assert(sh_type == elfcpp::SHT_RELA);
4205
4d625b70 4206 gold::relocate_relocs<size, true, Classify_reloc>(
e79a4bad
MK
4207 relinfo,
4208 prelocs,
4209 reloc_count,
4210 output_section,
4211 offset_in_output_section,
e79a4bad
MK
4212 view,
4213 view_address,
4214 view_size,
4215 reloc_view,
4216 reloc_view_size);
4217}
4218
4219// Return the offset to use for the GOT_INDX'th got entry which is
4220// for a local tls symbol specified by OBJECT, SYMNDX.
4221template<int size>
4222int64_t
4223Target_s390<size>::do_tls_offset_for_local(
4224 const Relobj*,
4225 unsigned int,
f19c3684 4226 Output_data_got_base*,
e4d49a0f
AM
4227 unsigned int,
4228 uint64_t) const
e79a4bad
MK
4229{
4230 // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4231 // couldn't be optimised to LE.
4232 Output_segment* tls_segment = layout_->tls_segment();
4233 return -tls_segment->memsz();
4234}
4235
4236// Return the offset to use for the GOT_INDX'th got entry which is
4237// for global tls symbol GSYM.
4238template<int size>
4239int64_t
4240Target_s390<size>::do_tls_offset_for_global(
4241 Symbol*,
f19c3684 4242 Output_data_got_base*,
e4d49a0f
AM
4243 unsigned int,
4244 uint64_t) const
e79a4bad
MK
4245{
4246 Output_segment* tls_segment = layout_->tls_segment();
4247 return -tls_segment->memsz();
4248}
4249
4250// Return the value to use for a dynamic which requires special
4251// treatment. This is how we support equality comparisons of function
4252// pointers across shared library boundaries, as described in the
4253// processor specific ABI supplement.
4254
4255template<int size>
4256uint64_t
4257Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4258{
4259 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4260 return this->plt_address_for_global(gsym);
4261}
4262
4263// Return a string used to fill a code section with nops to take up
4264// the specified length.
4265
4266template<int size>
4267std::string
4268Target_s390<size>::do_code_fill(section_size_type length) const
4269{
4270 if (length & 1)
4271 gold_warning(_("S/390 code fill of odd length requested"));
4272 return std::string(length, static_cast<char>(0x07));
4273}
4274
2b63aca3
MK
4275// Return whether SYM should be treated as a call to a non-split
4276// function. We don't want that to be true of a larl instruction
4277// that merely loads its address.
4278
4279template<int size>
4280bool
4281Target_s390<size>::do_is_call_to_non_split(const Symbol* sym,
4282 const unsigned char* preloc,
4283 const unsigned char* view,
4284 section_size_type view_size) const
4285{
4286 if (sym->type() != elfcpp::STT_FUNC)
4287 return false;
4288 typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc reloc(preloc);
4289 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4290 = reloc.get_r_info();
4291 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4292 section_offset_type offset = reloc.get_r_offset();
4293 switch (r_type)
4294 {
4295 // PLT refs always involve calling the function.
4296 case elfcpp::R_390_PLT12DBL:
4297 case elfcpp::R_390_PLT16DBL:
4298 case elfcpp::R_390_PLT24DBL:
4299 case elfcpp::R_390_PLT32:
4300 case elfcpp::R_390_PLT32DBL:
4301 case elfcpp::R_390_PLT64:
4302 case elfcpp::R_390_PLTOFF16:
4303 case elfcpp::R_390_PLTOFF32:
4304 case elfcpp::R_390_PLTOFF64:
4305 // Could be used for calls for -msmall-exec.
4306 case elfcpp::R_390_PC16DBL:
4307 return true;
4308
4309 // Tricky case. When used in a brasl, jg, and other branch instructions,
4310 // it's a call or a sibcall. However, when used in larl, it only loads
4311 // the function's address - not a call.
4312 case elfcpp::R_390_PC32DBL:
4313 {
4314 if (offset < 2
4315 || offset + 4 > static_cast<section_offset_type>(view_size))
4316 {
4317 // Should not happen.
4318 gold_error(_("instruction with PC32DBL not wholly within section"));
4319 return false;
4320 }
4321
4322 uint8_t op0 = view[offset-2];
4323 uint8_t op1 = view[offset-1] & 0xf;
4324
4325 // LARL
4326 if (op0 == 0xc0 && op1 == 0)
4327 return false;
4328
4329 // Otherwise, it's either a call instruction, a branch instruction
4330 // (used as a sibcall), or a data manipulation instruction (which
4331 // has no business being used on a function, and can be ignored).
4332 return true;
4333 }
4334
4335 // Otherwise, it's probably not a call.
4336 default:
4337 return false;
4338 }
4339}
4340
4341// Code sequences to match below.
4342
2b63aca3
MK
4343template<int size>
4344const unsigned char
4345Target_s390<size>::ss_code_bras_8[] = {
4346 0xa7, 0x15, 0x00, 0x06, // bras %r1, .+0xc
4347};
4348
4349template<int size>
4350const unsigned char
4351Target_s390<size>::ss_code_l_basr[] = {
4352 0x58, 0xe0, 0x10, 0x00, // l %r14, 0(%r1)
4353 0x58, 0x10, 0x10, 0x04, // l %r1, 4(%r1)
4354 0x0d, 0xee, // basr %r14, %r14
4355};
4356
4357template<int size>
4358const unsigned char
4359Target_s390<size>::ss_code_a_basr[] = {
4360 0x18, 0xe1, // lr %r14, %r1
4361 0x5a, 0xe0, 0x10, 0x00, // a %r14, 0(%r1)
4362 0x5a, 0x10, 0x10, 0x04, // a %r1, 4(%r1)
4363 0x0d, 0xee, // basr %r14, %r14
4364};
4365
2b63aca3
MK
4366template<int size>
4367const unsigned char
4368Target_s390<size>::ss_code_larl[] = {
4369 0xc0, 0x10, // larl %r1, ...
4370};
4371
4372template<int size>
4373const unsigned char
4374Target_s390<size>::ss_code_brasl[] = {
4375 0xc0, 0xe5, // brasl %r14, ...
4376};
4377
4378template<int size>
4379const unsigned char
4380Target_s390<size>::ss_code_jg[] = {
4381 0xc0, 0xf4, // jg ...
4382};
4383
4384template<int size>
4385const unsigned char
4386Target_s390<size>::ss_code_jgl[] = {
4387 0xc0, 0x44, // jgl ...
4388};
4389
40d85a7f
MK
4390template<>
4391bool
4392Target_s390<32>::ss_match_st_r14(unsigned char* view,
4393 section_size_type view_size,
4394 section_offset_type *offset) const
4395{
4396 static const unsigned char ss_code_st_r14[] = {
4397 0x50, 0xe0, 0xf0, 0x04, // st %r14, 4(%r15)
4398 };
4399 if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14,
4400 sizeof ss_code_st_r14))
4401 return false;
4402 *offset += sizeof ss_code_st_r14;
4403 return true;
4404}
4405
4406template<>
4407bool
4408Target_s390<64>::ss_match_st_r14(unsigned char* view,
4409 section_size_type view_size,
4410 section_offset_type *offset) const
4411{
4412 static const unsigned char ss_code_st_r14[] = {
4413 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x24 // stg %r14, 8(%r15)
4414 };
4415 if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14,
4416 sizeof ss_code_st_r14))
4417 return false;
4418 *offset += sizeof ss_code_st_r14;
4419 return true;
4420}
4421
4422template<>
4423bool
4424Target_s390<32>::ss_match_l_r14(unsigned char* view,
4425 section_size_type view_size,
4426 section_offset_type *offset) const
4427{
4428 static const unsigned char ss_code_l_r14[] = {
4429 0x58, 0xe0, 0xf0, 0x04, // l %r14, 4(%r15)
4430 };
4431 if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14,
4432 sizeof ss_code_l_r14))
4433 return false;
4434 *offset += sizeof ss_code_l_r14;
4435 return true;
4436}
4437
4438template<>
4439bool
4440Target_s390<64>::ss_match_l_r14(unsigned char* view,
4441 section_size_type view_size,
4442 section_offset_type *offset) const
4443{
4444 static const unsigned char ss_code_l_r14[] = {
4445 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x04 // lg %r14, 8(%r15)
4446 };
4447 if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14,
4448 sizeof ss_code_l_r14))
4449 return false;
4450 *offset += sizeof ss_code_l_r14;
4451 return true;
4452}
4453
2b63aca3
MK
4454template<int size>
4455bool
4456Target_s390<size>::ss_match_mcount(unsigned char* view,
4457 section_size_type view_size,
4458 section_offset_type *offset) const
4459{
4460 // Match the mcount call sequence.
4461 section_offset_type myoff = *offset;
4462
4463 // First, look for the store instruction saving %r14.
40d85a7f 4464 if (!this->ss_match_st_r14(view, view_size, &myoff))
2b63aca3 4465 return false;
2b63aca3
MK
4466
4467 // Now, param load and the actual call.
4468 if (this->match_view_u(view, view_size, myoff, ss_code_larl,
4469 sizeof ss_code_larl))
4470 {
4471 myoff += sizeof ss_code_larl + 4;
4472
4473 // After larl, expect a brasl.
4474 if (!this->match_view_u(view, view_size, myoff, ss_code_brasl,
4475 sizeof ss_code_brasl))
4476 return false;
4477 myoff += sizeof ss_code_brasl + 4;
4478 }
4479 else if (size == 32 &&
4480 this->match_view_u(view, view_size, myoff, ss_code_bras_8,
4481 sizeof ss_code_bras_8))
4482 {
4483 // The bras skips over a block of 8 bytes, loading its address
4484 // to %r1.
4485 myoff += sizeof ss_code_bras_8 + 8;
4486
4487 // Now, there are two sequences used for actual load and call,
4488 // absolute and PIC.
4489 if (this->match_view_u(view, view_size, myoff, ss_code_l_basr,
4490 sizeof ss_code_l_basr))
4491 myoff += sizeof ss_code_l_basr;
4492 else if (this->match_view_u(view, view_size, myoff, ss_code_a_basr,
4493 sizeof ss_code_a_basr))
4494 myoff += sizeof ss_code_a_basr;
4495 else
4496 return false;
4497 }
4498 else
4499 return false;
4500
4501 // Finally, a load bringing %r14 back.
40d85a7f 4502 if (!this->ss_match_l_r14(view, view_size, &myoff))
2b63aca3 4503 return false;
2b63aca3
MK
4504
4505 // Found it.
4506 *offset = myoff;
4507 return true;
4508}
4509
40d85a7f
MK
4510template<>
4511bool
4512Target_s390<32>::ss_match_ear(unsigned char* view,
4513 section_size_type view_size,
4514 section_offset_type *offset) const
4515{
4516 static const unsigned char ss_code_ear[] = {
4517 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4518 };
4519 if (!this->match_view_u(view, view_size, *offset, ss_code_ear,
4520 sizeof ss_code_ear))
4521 return false;
4522 *offset += sizeof ss_code_ear;
4523 return true;
4524}
4525
4526template<>
4527bool
4528Target_s390<64>::ss_match_ear(unsigned char* view,
4529 section_size_type view_size,
4530 section_offset_type *offset) const
4531{
4532 static const unsigned char ss_code_ear[] = {
4533 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4534 0xeb, 0x11, 0x00, 0x20, 0x00, 0x0d, // sllg %r1,%r1,32
4535 0xb2, 0x4f, 0x00, 0x11, // ear %r1, %a1
4536 };
4537 if (!this->match_view_u(view, view_size, *offset, ss_code_ear,
4538 sizeof ss_code_ear))
4539 return false;
4540 *offset += sizeof ss_code_ear;
4541 return true;
4542}
4543
4544template<>
4545bool
4546Target_s390<32>::ss_match_c(unsigned char* view,
4547 section_size_type view_size,
4548 section_offset_type *offset) const
4549{
4550 static const unsigned char ss_code_c[] = {
4551 0x59, 0xf0, 0x10, 0x20, // c %r15, 0x20(%r1)
4552 };
4553 if (!this->match_view_u(view, view_size, *offset, ss_code_c,
4554 sizeof ss_code_c))
4555 return false;
4556 *offset += sizeof ss_code_c;
4557 return true;
4558}
4559
4560template<>
4561bool
4562Target_s390<64>::ss_match_c(unsigned char* view,
4563 section_size_type view_size,
4564 section_offset_type *offset) const
4565{
4566 static const unsigned char ss_code_c[] = {
4567 0xe3, 0xf0, 0x10, 0x38, 0x00, 0x20, // cg %r15, 0x38(%r1)
4568 };
4569 if (!this->match_view_u(view, view_size, *offset, ss_code_c,
4570 sizeof ss_code_c))
4571 return false;
4572 *offset += sizeof ss_code_c;
4573 return true;
4574}
4575
2b63aca3
MK
4576template<>
4577bool
4578Target_s390<32>::ss_match_l(unsigned char* view,
4579 section_size_type view_size,
4580 section_offset_type *offset,
4581 int *guard_reg) const
4582{
4583 // l %guard_reg, 0x20(%r1)
4584 if (convert_to_section_size_type(*offset + 4) > view_size
4585 || view[*offset] != 0x58
4586 || (view[*offset + 1] & 0xf) != 0x0
4587 || view[*offset + 2] != 0x10
4588 || view[*offset + 3] != 0x20)
4589 return false;
4590 *offset += 4;
4591 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4592 return true;
4593}
4594
4595template<>
4596bool
4597Target_s390<64>::ss_match_l(unsigned char* view,
4598 section_size_type view_size,
4599 section_offset_type *offset,
4600 int *guard_reg) const
4601{
4602 // lg %guard_reg, 0x38(%r1)
4603 if (convert_to_section_size_type(*offset + 6) > view_size
4604 || view[*offset] != 0xe3
4605 || (view[*offset + 1] & 0xf) != 0x0
4606 || view[*offset + 2] != 0x10
4607 || view[*offset + 3] != 0x38
4608 || view[*offset + 4] != 0x00
4609 || view[*offset + 5] != 0x04)
4610 return false;
4611 *offset += 6;
4612 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4613 return true;
4614}
4615
4616template<int size>
4617bool
4618Target_s390<size>::ss_match_ahi(unsigned char* view,
4619 section_size_type view_size,
4620 section_offset_type *offset,
4621 int guard_reg,
4622 uint32_t *arg) const
4623{
4624 int op = size == 32 ? 0xa : 0xb;
4625 // a[g]hi %guard_reg, <arg>
4626 if (convert_to_section_size_type(*offset + 4) > view_size
4627 || view[*offset] != 0xa7
4628 || view[*offset + 1] != (guard_reg << 4 | op)
4629 // Disallow negative size.
4630 || view[*offset + 2] & 0x80)
4631 return false;
4632 *arg = elfcpp::Swap<16, true>::readval(view + *offset + 2);
4633 *offset += 4;
4634 return true;
4635}
4636
4637template<int size>
4638bool
4639Target_s390<size>::ss_match_alfi(unsigned char* view,
4640 section_size_type view_size,
4641 section_offset_type *offset,
4642 int guard_reg,
4643 uint32_t *arg) const
4644{
4645 int op = size == 32 ? 0xb : 0xa;
4646 // al[g]fi %guard_reg, <arg>
4647 if (convert_to_section_size_type(*offset + 6) > view_size
4648 || view[*offset] != 0xc2
4649 || view[*offset + 1] != (guard_reg << 4 | op))
4650 return false;
4651 *arg = elfcpp::Swap<32, true>::readval(view + *offset + 2);
4652 *offset += 6;
4653 return true;
4654}
4655
4656template<>
4657bool
4658Target_s390<32>::ss_match_cr(unsigned char* view,
4659 section_size_type view_size,
4660 section_offset_type *offset,
4661 int guard_reg) const
4662{
4663 // cr %r15, %guard_reg
4664 if (convert_to_section_size_type(*offset + 2) > view_size
4665 || view[*offset] != 0x19
4666 || view[*offset + 1] != (0xf0 | guard_reg))
4667 return false;
4668 *offset += 2;
4669 return true;
4670}
4671
4672template<>
4673bool
4674Target_s390<64>::ss_match_cr(unsigned char* view,
4675 section_size_type view_size,
4676 section_offset_type *offset,
4677 int guard_reg) const
4678{
4679 // cgr %r15, %guard_reg
4680 if (convert_to_section_size_type(*offset + 4) > view_size
4681 || view[*offset] != 0xb9
4682 || view[*offset + 1] != 0x20
4683 || view[*offset + 2] != 0x00
4684 || view[*offset + 3] != (0xf0 | guard_reg))
4685 return false;
4686 *offset += 4;
4687 return true;
4688}
4689
4690
4691// FNOFFSET in section SHNDX in OBJECT is the start of a function
4692// compiled with -fsplit-stack. The function calls non-split-stack
4693// code. We have to change the function so that it always ensures
4694// that it has enough stack space to run some random function.
4695
4696template<int size>
4697void
4698Target_s390<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4699 section_offset_type fnoffset,
4700 section_size_type,
4701 const unsigned char *prelocs,
4702 size_t reloc_count,
4703 unsigned char* view,
4704 section_size_type view_size,
4705 std::string*,
4706 std::string*) const
4707{
4708 // true if there's a conditional call to __morestack in the function,
4709 // false if there's an unconditional one.
4710 bool conditional = false;
4711 // Offset of the byte after the compare insn, if conditional.
4712 section_offset_type cmpend = 0;
4713 // Type and immediate offset of the add instruction that adds frame size
4714 // to guard.
4715 enum {
4716 SS_ADD_NONE,
4717 SS_ADD_AHI,
4718 SS_ADD_ALFI,
4719 } fsadd_type = SS_ADD_NONE;
4720 section_offset_type fsadd_offset = 0;
4721 uint32_t fsadd_frame_size = 0;
4722 // Register used for loading guard. Usually r1, but can also be r0 or r2-r5.
4723 int guard_reg;
4724 // Offset of the conditional jump.
4725 section_offset_type jump_offset = 0;
4726 // Section view and offset of param block.
4727 section_offset_type param_offset = 0;
4728 unsigned char *param_view = 0;
4729 section_size_type param_view_size = 0;
4730 // Current position in function.
4731 section_offset_type curoffset = fnoffset;
4732 // And the position of split-stack prologue.
4733 section_offset_type ssoffset;
4734 // Frame size.
4735 typename elfcpp::Elf_types<size>::Elf_Addr frame_size;
4736 // Relocation parsing.
4737 typedef typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc Reltype;
4738 const int reloc_size = Reloc_types<elfcpp::SHT_RELA, size, true>::reloc_size;
4739 const unsigned char *pr = prelocs;
4740
4741 // If the function was compiled with -pg, the profiling code may come before
4742 // the split-stack prologue. Skip it.
4743
4744 this->ss_match_mcount(view, view_size, &curoffset);
4745 ssoffset = curoffset;
4746
4747 // First, figure out if there's a conditional call by looking for the
4748 // extract-tp, add, cmp sequence.
4749
40d85a7f 4750 if (this->ss_match_ear(view, view_size, &curoffset))
2b63aca3
MK
4751 {
4752 // Found extract-tp, now look for an add and compare.
2b63aca3 4753 conditional = true;
40d85a7f 4754 if (this->ss_match_c(view, view_size, &curoffset))
2b63aca3
MK
4755 {
4756 // Found a direct compare of stack pointer with the guard,
4757 // we're done here.
2b63aca3
MK
4758 }
4759 else if (this->ss_match_l(view, view_size, &curoffset, &guard_reg))
4760 {
4761 // Found a load of guard to register, look for an add and compare.
4762 if (this->ss_match_ahi(view, view_size, &curoffset, guard_reg,
4763 &fsadd_frame_size))
4764 {
4765 fsadd_type = SS_ADD_AHI;
4766 fsadd_offset = curoffset - 2;
4767 }
4768 else if (this->ss_match_alfi(view, view_size, &curoffset, guard_reg,
4769 &fsadd_frame_size))
4770 {
4771 fsadd_type = SS_ADD_ALFI;
4772 fsadd_offset = curoffset - 4;
4773 }
4774 else
4775 {
4776 goto bad;
4777 }
4778 // Now, there has to be a compare.
4779 if (!this->ss_match_cr(view, view_size, &curoffset, guard_reg))
4780 goto bad;
4781 }
4782 else
4783 {
4784 goto bad;
4785 }
4786 cmpend = curoffset;
4787 }
4788
4789 // Second, look for the call.
4790 if (!this->match_view_u(view, view_size, curoffset, ss_code_larl,
4791 sizeof ss_code_larl))
4792 goto bad;
4793 curoffset += sizeof ss_code_larl;
4794
4795 // Find out larl's operand. It should be a local symbol in .rodata
4796 // section.
4797 for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
4798 {
4799 Reltype reloc(pr);
4800 if (static_cast<section_offset_type>(reloc.get_r_offset())
4801 == curoffset)
4802 {
4803 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4804 = reloc.get_r_info();
4805 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
4806 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4807 if (r_type != elfcpp::R_390_PC32DBL)
4808 goto bad;
4809 if (r_sym >= object->local_symbol_count())
4810 goto bad;
4811 Sized_relobj_file<size, true> *object_sized =
4812 static_cast<Sized_relobj_file<size, true> *>(object);
4813 const Symbol_value<size>* sym = object_sized->local_symbol(r_sym);
4814 bool param_shndx_ordinary;
4815 const unsigned int param_shndx =
4816 sym->input_shndx(&param_shndx_ordinary);
4817 if (!param_shndx_ordinary)
4818 goto bad;
4819 param_offset = sym->input_value() + reloc.get_r_addend() - 2
4820 - object->output_section(param_shndx)->address()
4821 - object->output_section_offset(param_shndx);
4822 param_view = object->get_output_view(param_shndx,
4823 &param_view_size);
4824 break;
4825 }
4826 }
4827
4828 if (!param_view)
4829 goto bad;
4830
4831 curoffset += 4;
4832
4833 // Now, there has to be a jump to __morestack.
4834 jump_offset = curoffset;
4835
4836 if (this->match_view_u(view, view_size, curoffset,
4837 conditional ? ss_code_jgl : ss_code_jg,
4838 sizeof ss_code_jg))
4839 curoffset += sizeof ss_code_jg;
4840 else
4841 goto bad;
4842
4843 curoffset += 4;
4844
4845 // Read the frame size.
4846 if (convert_to_section_size_type(param_offset + size / 8) > param_view_size)
4847 goto bad;
4848 frame_size = elfcpp::Swap<size, true>::readval(param_view + param_offset);
4849
4850 // Sanity check.
4851 if (fsadd_type != SS_ADD_NONE && fsadd_frame_size != frame_size)
4852 goto bad;
4853
4854 // Bump the frame size.
4855 frame_size += parameters->options().split_stack_adjust_size();
4856
4857 // Store it to the param block.
4858 elfcpp::Swap<size, true>::writeval(param_view + param_offset, frame_size);
4859
4860 if (!conditional)
4861 {
4862 // If the call was already unconditional, we're done.
4863 }
4864 else if (frame_size <= 0xffffffff && fsadd_type == SS_ADD_ALFI)
4865 {
4866 // Using alfi to add the frame size, and it still fits. Adjust it.
4867 elfcpp::Swap_unaligned<32, true>::writeval(view + fsadd_offset,
4868 frame_size);
4869 }
4870 else
4871 {
4872 // We were either relying on the backoff area, or used ahi to load
4873 // frame size. This won't fly, as our new frame size is too large.
4874 // Convert the sequence to unconditional by nopping out the comparison,
4875 // and rewiring the jump.
4876 this->set_view_to_nop(view, view_size, ssoffset, cmpend - ssoffset);
4877
4878 // The jump is jgl, we'll mutate it to jg.
4879 view[jump_offset+1] = 0xf4;
4880 }
4881
4882 return;
4883
4884bad:
4885 if (!object->has_no_split_stack())
4886 object->error(_("failed to match split-stack sequence at "
4887 "section %u offset %0zx"),
4888 shndx, static_cast<size_t>(fnoffset));
4889}
4890
e79a4bad
MK
4891// Relocate section data.
4892
4893template<int size>
4894void
4895Target_s390<size>::relocate_section(
4896 const Relocate_info<size, true>* relinfo,
4897 unsigned int sh_type,
4898 const unsigned char* prelocs,
4899 size_t reloc_count,
4900 Output_section* output_section,
4901 bool needs_special_offset_handling,
4902 unsigned char* view,
4903 typename elfcpp::Elf_types<size>::Elf_Addr address,
4904 section_size_type view_size,
4905 const Reloc_symbol_changes* reloc_symbol_changes)
4906{
4d625b70
CC
4907 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4908 Classify_reloc;
4909
e79a4bad
MK
4910 gold_assert(sh_type == elfcpp::SHT_RELA);
4911
4d625b70
CC
4912 gold::relocate_section<size, true, Target_s390<size>, Relocate,
4913 gold::Default_comdat_behavior, Classify_reloc>(
e79a4bad
MK
4914 relinfo,
4915 this,
4916 prelocs,
4917 reloc_count,
4918 output_section,
4919 needs_special_offset_handling,
4920 view,
4921 address,
4922 view_size,
4923 reloc_symbol_changes);
4924}
4925
4926// Apply an incremental relocation. Incremental relocations always refer
4927// to global symbols.
4928
4929template<int size>
4930void
4931Target_s390<size>::apply_relocation(
4932 const Relocate_info<size, true>* relinfo,
4933 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4934 unsigned int r_type,
4935 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4936 const Symbol* gsym,
4937 unsigned char* view,
4938 typename elfcpp::Elf_types<size>::Elf_Addr address,
4939 section_size_type view_size)
4940{
4941 gold::apply_relocation<size, true, Target_s390<size>,
4942 typename Target_s390<size>::Relocate>(
4943 relinfo,
4944 this,
4945 r_offset,
4946 r_type,
4947 r_addend,
4948 gsym,
4949 view,
4950 address,
4951 view_size);
4952}
4953
4954// The selector for s390 object files.
4955
4956template<int size>
4957class Target_selector_s390 : public Target_selector
4958{
4959public:
4960 Target_selector_s390()
4961 : Target_selector(elfcpp::EM_S390, size, true,
4962 (size == 64 ? "elf64-s390" : "elf32-s390"),
4963 (size == 64 ? "elf64_s390" : "elf32_s390"))
4964 { }
4965
4966 virtual Target*
4967 do_instantiate_target()
4968 { return new Target_s390<size>(); }
4969};
4970
4971Target_selector_s390<32> target_selector_s390;
4972Target_selector_s390<64> target_selector_s390x;
4973
4974} // End anonymous namespace.