]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - include/ctf.h
[gdb/symtab] Make gold index workaround more precise
[thirdparty/binutils-gdb.git] / include / ctf.h
CommitLineData
fceac76e 1/* CTF format description.
b3adc24a 2 Copyright (C) 2019-2020 Free Software Foundation, Inc.
fceac76e
NA
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20#ifndef _CTF_H
21#define _CTF_H
22
23#include <sys/types.h>
24#include <limits.h>
25#include <stdint.h>
26
27
28#ifdef __cplusplus
29extern "C"
30{
31#endif
32
33/* CTF - Compact ANSI-C Type Format
34
35 This file format can be used to compactly represent the information needed
36 by a debugger to interpret the ANSI-C types used by a given program.
37 Traditionally, this kind of information is generated by the compiler when
38 invoked with the -g flag and is stored in "stabs" strings or in the more
39 modern DWARF format. CTF provides a representation of only the information
40 that is relevant to debugging a complex, optimized C program such as the
41 operating system kernel in a form that is significantly more compact than
42 the equivalent stabs or DWARF representation. The format is data-model
43 independent, so consumers do not need different code depending on whether
44 they are 32-bit or 64-bit programs; libctf automatically compensates for
45 endianness variations. CTF assumes that a standard ELF symbol table is
46 available for use in the debugger, and uses the structure and data of the
47 symbol table to avoid storing redundant information. The CTF data may be
48 compressed on disk or in memory, indicated by a bit in the header. CTF may
49 be interpreted in a raw disk file, or it may be stored in an ELF section,
50 typically named .ctf. Data structures are aligned so that a raw CTF file or
51 CTF ELF section may be manipulated using mmap(2).
52
53 The CTF file or section itself has the following structure:
54
2db912ba
NA
55 +--------+--------+---------+----------+--------+----------+...
56 | file | type | data | function | object | function |...
57 | header | labels | objects | info | index | index |...
58 +--------+--------+---------+----------+--------+----------+...
59
60 ...+----------+-------+--------+
61 ...| variable | data | string |
62 ...| info | types | table |
63 +----------+-------+--------+
fceac76e
NA
64
65 The file header stores a magic number and version information, encoding
66 flags, and the byte offset of each of the sections relative to the end of the
67 header itself. If the CTF data has been uniquified against another set of
68 CTF data, a reference to that data also appears in the the header. This
69 reference is the name of the label corresponding to the types uniquified
70 against.
71
72 Following the header is a list of labels, used to group the types included in
73 the data types section. Each label is accompanied by a type ID i. A given
74 label refers to the group of types whose IDs are in the range [0, i].
75
76 Data object and function records are stored in the same order as they appear
77 in the corresponding symbol table, except that symbols marked SHN_UNDEF are
78 not stored and symbols that have no type data are padded out with zeroes.
79 For each data object, the type ID (a small integer) is recorded. For each
80 function, the type ID of the return type and argument types is recorded.
81
2db912ba
NA
82 For situations in which the order of the symbols in the symtab is not known,
83 a pair of optional indexes follow the data object and function info sections:
84 each of these is an array of strtab indexes, mapped 1:1 to the corresponding
85 data object / function info section, giving each entry in those sections a
86 name so that the linker can correlate them with final symtab entries and
87 reorder them accordingly (dropping the indexes in the process).
88
fceac76e
NA
89 Variable records (as distinct from data objects) provide a modicum of support
90 for non-ELF systems, mapping a variable name to a CTF type ID. The variable
2db912ba
NA
91 names are sorted into ASCIIbetical order, permitting binary searching. We do
92 not define how the consumer maps these variable names to addresses or
93 anything else, or indeed what these names represent: they might be names
94 looked up at runtime via dlsym() or names extracted at runtime by a debugger
95 or anything else the consumer likes.
fceac76e
NA
96
97 The data types section is a list of variable size records that represent each
98 type, in order by their ID. The types themselves form a directed graph,
99 where each node may contain one or more outgoing edges to other type nodes,
2db912ba
NA
100 denoted by their ID. Most type nodes are standalone or point backwards to
101 earlier nodes, but this is not required: nodes can point to later nodes,
102 particularly structure and union members.
fceac76e
NA
103
104 Strings are recorded as a string table ID (0 or 1) and a byte offset into the
105 string table. String table 0 is the internal CTF string table. String table
106 1 is the external string table, which is the string table associated with the
107 ELF symbol table for this object. CTF does not record any strings that are
108 already in the symbol table, and the CTF string table does not contain any
109 duplicated strings.
110
111 If the CTF data has been merged with another parent CTF object, some outgoing
112 edges may refer to type nodes that exist in another CTF object. The debugger
113 and libctf library are responsible for connecting the appropriate objects
114 together so that the full set of types can be explored and manipulated.
115
116 This connection is done purely using the ctf_import() function. There is no
117 notation anywhere in the child CTF file indicating which parent it is
118 connected to: it is the debugger's responsibility to track this. */
119
120#define CTF_MAX_TYPE 0xfffffffe /* Max type identifier value. */
121#define CTF_MAX_PTYPE 0x7fffffff /* Max parent type identifier value. */
122#define CTF_MAX_NAME 0x7fffffff /* Max offset into a string table. */
123#define CTF_MAX_VLEN 0xffffff /* Max struct, union, enum members or args. */
124
125/* See ctf_type_t */
126#define CTF_MAX_SIZE 0xfffffffe /* Max size of a v2 type in bytes. */
127#define CTF_LSIZE_SENT 0xffffffff /* Sentinel for v2 ctt_size. */
128
129# define CTF_MAX_TYPE_V1 0xffff /* Max type identifier value. */
130# define CTF_MAX_PTYPE_V1 0x7fff /* Max parent type identifier value. */
131# define CTF_MAX_VLEN_V1 0x3ff /* Max struct, union, enums or args. */
132# define CTF_MAX_SIZE_V1 0xfffe /* Max size of a type in bytes. */
133# define CTF_LSIZE_SENT_V1 0xffff /* Sentinel for v1 ctt_size. */
134
135 /* Start of actual data structure definitions.
136
137 Every field in these structures must have corresponding code in the
138 endianness-swapping machinery in libctf/ctf-open.c. */
139
140typedef struct ctf_preamble
141{
142 unsigned short ctp_magic; /* Magic number (CTF_MAGIC). */
143 unsigned char ctp_version; /* Data format version number (CTF_VERSION). */
144 unsigned char ctp_flags; /* Flags (see below). */
145} ctf_preamble_t;
146
fd55eae8
NA
147typedef struct ctf_header_v2
148{
149 ctf_preamble_t cth_preamble;
150 uint32_t cth_parlabel; /* Ref to name of parent lbl uniq'd against. */
151 uint32_t cth_parname; /* Ref to basename of parent. */
152 uint32_t cth_lbloff; /* Offset of label section. */
153 uint32_t cth_objtoff; /* Offset of object section. */
154 uint32_t cth_funcoff; /* Offset of function section. */
155 uint32_t cth_varoff; /* Offset of variable section. */
156 uint32_t cth_typeoff; /* Offset of type section. */
157 uint32_t cth_stroff; /* Offset of string section. */
158 uint32_t cth_strlen; /* Length of string section in bytes. */
159} ctf_header_v2_t;
160
fceac76e
NA
161typedef struct ctf_header
162{
163 ctf_preamble_t cth_preamble;
164 uint32_t cth_parlabel; /* Ref to name of parent lbl uniq'd against. */
165 uint32_t cth_parname; /* Ref to basename of parent. */
fd55eae8 166 uint32_t cth_cuname; /* Ref to CU name (may be 0). */
fceac76e
NA
167 uint32_t cth_lbloff; /* Offset of label section. */
168 uint32_t cth_objtoff; /* Offset of object section. */
169 uint32_t cth_funcoff; /* Offset of function section. */
2db912ba
NA
170 uint32_t cth_objtidxoff; /* Offset of object index section. */
171 uint32_t cth_funcidxoff; /* Offset of function index section. */
fceac76e
NA
172 uint32_t cth_varoff; /* Offset of variable section. */
173 uint32_t cth_typeoff; /* Offset of type section. */
174 uint32_t cth_stroff; /* Offset of string section. */
175 uint32_t cth_strlen; /* Length of string section in bytes. */
176} ctf_header_t;
177
178#define cth_magic cth_preamble.ctp_magic
179#define cth_version cth_preamble.ctp_version
180#define cth_flags cth_preamble.ctp_flags
181
182#define CTF_MAGIC 0xdff2 /* Magic number identifying header. */
183
184/* Data format version number. */
185
fd55eae8
NA
186/* v1 upgraded to a later version is not quite the same as the native form,
187 because the boundary between parent and child types is different but not
188 recorded anywhere, and you can write it out again via ctf_compress_write(),
189 so we must track whether the thing was originally v1 or not. If we were
190 writing the header from scratch, we would add a *pair* of version number
191 fields to allow for this, but this will do for now. (A flag will not do,
192 because we need to encode both the version we came from and the version we
193 went to, not just "we were upgraded".) */
fceac76e
NA
194
195# define CTF_VERSION_1 1
196# define CTF_VERSION_1_UPGRADED_3 2
197# define CTF_VERSION_2 3
198
199#define CTF_VERSION_3 4
200#define CTF_VERSION CTF_VERSION_3 /* Current version. */
201
202#define CTF_F_COMPRESS 0x1 /* Data buffer is compressed by libctf. */
203
204typedef struct ctf_lblent
205{
206 uint32_t ctl_label; /* Ref to name of label. */
207 uint32_t ctl_type; /* Last type associated with this label. */
208} ctf_lblent_t;
209
210typedef struct ctf_varent
211{
212 uint32_t ctv_name; /* Reference to name in string table. */
213 uint32_t ctv_type; /* Index of type of this variable. */
214} ctf_varent_t;
215
216/* In format v2, type sizes, measured in bytes, come in two flavours. Nearly
217 all of them fit into a (UINT_MAX - 1), and thus can be stored in the ctt_size
218 member of a ctf_stype_t. The maximum value for these sizes is CTF_MAX_SIZE.
219 Types larger than this must be stored in the ctf_lsize member of a
220 ctf_type_t. Use of this member is indicated by the presence of
221 CTF_LSIZE_SENT in ctt_size. */
222
223/* In v1, the same applies, only the limit is (USHRT_MAX - 1) and
224 CTF_MAX_SIZE_V1, and CTF_LSIZE_SENT_V1 is the sentinel. */
225
226typedef struct ctf_stype_v1
227{
228 uint32_t ctt_name; /* Reference to name in string table. */
229 unsigned short ctt_info; /* Encoded kind, variant length (see below). */
230#ifndef __GNUC__
231 union
232 {
233 unsigned short _size; /* Size of entire type in bytes. */
234 unsigned short _type; /* Reference to another type. */
235 } _u;
236#else
237 __extension__
238 union
239 {
240 unsigned short ctt_size; /* Size of entire type in bytes. */
241 unsigned short ctt_type; /* Reference to another type. */
242 };
243#endif
244} ctf_stype_v1_t;
245
246typedef struct ctf_type_v1
247{
248 uint32_t ctt_name; /* Reference to name in string table. */
249 unsigned short ctt_info; /* Encoded kind, variant length (see below). */
250#ifndef __GNUC__
251 union
252 {
253 unsigned short _size; /* Always CTF_LSIZE_SENT_V1. */
254 unsigned short _type; /* Do not use. */
255 } _u;
256#else
257 __extension__
258 union
259 {
260 unsigned short ctt_size; /* Always CTF_LSIZE_SENT_V1. */
261 unsigned short ctt_type; /* Do not use. */
262 };
263#endif
264 uint32_t ctt_lsizehi; /* High 32 bits of type size in bytes. */
265 uint32_t ctt_lsizelo; /* Low 32 bits of type size in bytes. */
266} ctf_type_v1_t;
267
268
269typedef struct ctf_stype
270{
271 uint32_t ctt_name; /* Reference to name in string table. */
272 uint32_t ctt_info; /* Encoded kind, variant length (see below). */
273#ifndef __GNUC__
274 union
275 {
276 uint32_t _size; /* Size of entire type in bytes. */
277 uint32_t _type; /* Reference to another type. */
278 } _u;
279#else
280 __extension__
281 union
282 {
283 uint32_t ctt_size; /* Size of entire type in bytes. */
284 uint32_t ctt_type; /* Reference to another type. */
285 };
286#endif
287} ctf_stype_t;
288
289typedef struct ctf_type
290{
291 uint32_t ctt_name; /* Reference to name in string table. */
292 uint32_t ctt_info; /* Encoded kind, variant length (see below). */
293#ifndef __GNUC__
294union
295 {
296 uint32_t _size; /* Always CTF_LSIZE_SENT. */
297 uint32_t _type; /* Do not use. */
298 } _u;
299#else
300 __extension__
301 union
302 {
303 uint32_t ctt_size; /* Always CTF_LSIZE_SENT. */
304 uint32_t ctt_type; /* Do not use. */
305 };
306#endif
307 uint32_t ctt_lsizehi; /* High 32 bits of type size in bytes. */
308 uint32_t ctt_lsizelo; /* Low 32 bits of type size in bytes. */
309} ctf_type_t;
310
311#ifndef __GNUC__
312#define ctt_size _u._size /* For fundamental types that have a size. */
313#define ctt_type _u._type /* For types that reference another type. */
314#endif
315
316/* The following macros and inline functions compose and decompose values for
317 ctt_info and ctt_name, as well as other structures that contain name
318 references. Use outside libdtrace-ctf itself is explicitly for access to CTF
319 files directly: types returned from the library will always appear to be
320 CTF_V2.
321
322 v1: (transparently upgraded to v2 at open time: may be compiled out of the
323 library)
324 ------------------------
325 ctt_info: | kind | isroot | vlen |
326 ------------------------
327 15 11 10 9 0
328
329 v2:
330 ------------------------
331 ctt_info: | kind | isroot | vlen |
332 ------------------------
333 31 26 25 24 0
334
335 CTF_V1 and V2 _INFO_VLEN have the same interface:
336
337 kind = CTF_*_INFO_KIND(c.ctt_info); <-- CTF_K_* value (see below)
338 vlen = CTF_*_INFO_VLEN(fp, c.ctt_info); <-- length of variable data list
339
340 stid = CTF_NAME_STID(c.ctt_name); <-- string table id number (0 or 1)
341 offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset
342
343 c.ctt_info = CTF_TYPE_INFO(kind, vlen);
344 c.ctt_name = CTF_TYPE_NAME(stid, offset); */
345
346# define CTF_V1_INFO_KIND(info) (((info) & 0xf800) >> 11)
347# define CTF_V1_INFO_ISROOT(info) (((info) & 0x0400) >> 10)
348# define CTF_V1_INFO_VLEN(info) (((info) & CTF_MAX_VLEN_V1))
349
350#define CTF_V2_INFO_KIND(info) (((info) & 0xfc000000) >> 26)
351#define CTF_V2_INFO_ISROOT(info) (((info) & 0x2000000) >> 25)
352#define CTF_V2_INFO_VLEN(info) (((info) & CTF_MAX_VLEN))
353
354#define CTF_NAME_STID(name) ((name) >> 31)
355#define CTF_NAME_OFFSET(name) ((name) & CTF_MAX_NAME)
d851ecd3 356#define CTF_SET_STID(name, stid) ((name) | (stid) << 31)
fceac76e
NA
357
358/* V2 only. */
359#define CTF_TYPE_INFO(kind, isroot, vlen) \
360 (((kind) << 26) | (((isroot) ? 1 : 0) << 25) | ((vlen) & CTF_MAX_VLEN))
361
362#define CTF_TYPE_NAME(stid, offset) \
363 (((stid) << 31) | ((offset) & CTF_MAX_NAME))
364
365/* The next set of macros are for public consumption only. Not used internally,
366 since the relevant type boundary is dependent upon the version of the file at
367 *opening* time, not the version after transparent upgrade. Use
368 ctf_type_isparent() / ctf_type_ischild() for that. */
369
370#define CTF_V2_TYPE_ISPARENT(fp, id) ((id) <= CTF_MAX_PTYPE)
371#define CTF_V2_TYPE_ISCHILD(fp, id) ((id) > CTF_MAX_PTYPE)
372#define CTF_V2_TYPE_TO_INDEX(id) ((id) & CTF_MAX_PTYPE)
373#define CTF_V2_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE+1)) : (id))
374
375# define CTF_V1_TYPE_ISPARENT(fp, id) ((id) <= CTF_MAX_PTYPE_V1)
376# define CTF_V1_TYPE_ISCHILD(fp, id) ((id) > CTF_MAX_PTYPE_V1)
377# define CTF_V1_TYPE_TO_INDEX(id) ((id) & CTF_MAX_PTYPE_V1)
378# define CTF_V1_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE_V1+1)) : (id))
379
380/* Valid for both V1 and V2. */
381#define CTF_TYPE_LSIZE(cttp) \
382 (((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo)
383#define CTF_SIZE_TO_LSIZE_HI(size) ((uint32_t)((uint64_t)(size) >> 32))
384#define CTF_SIZE_TO_LSIZE_LO(size) ((uint32_t)(size))
385
386#define CTF_STRTAB_0 0 /* String table id 0 (in-CTF). */
387#define CTF_STRTAB_1 1 /* String table id 1 (ELF strtab). */
388
389/* Values for CTF_TYPE_KIND(). If the kind has an associated data list,
390 CTF_INFO_VLEN() will extract the number of elements in the list, and
391 the type of each element is shown in the comments below. */
392
393#define CTF_K_UNKNOWN 0 /* Unknown type (used for padding). */
394#define CTF_K_INTEGER 1 /* Variant data is CTF_INT_DATA (see below). */
395#define CTF_K_FLOAT 2 /* Variant data is CTF_FP_DATA (see below). */
396#define CTF_K_POINTER 3 /* ctt_type is referenced type. */
397#define CTF_K_ARRAY 4 /* Variant data is single ctf_array_t. */
398#define CTF_K_FUNCTION 5 /* ctt_type is return type, variant data is
399 list of argument types (unsigned short's for v1,
400 uint32_t's for v2). */
401#define CTF_K_STRUCT 6 /* Variant data is list of ctf_member_t's. */
402#define CTF_K_UNION 7 /* Variant data is list of ctf_member_t's. */
403#define CTF_K_ENUM 8 /* Variant data is list of ctf_enum_t's. */
404#define CTF_K_FORWARD 9 /* No additional data; ctt_name is tag. */
405#define CTF_K_TYPEDEF 10 /* ctt_type is referenced type. */
406#define CTF_K_VOLATILE 11 /* ctt_type is base type. */
407#define CTF_K_CONST 12 /* ctt_type is base type. */
408#define CTF_K_RESTRICT 13 /* ctt_type is base type. */
409#define CTF_K_SLICE 14 /* Variant data is a ctf_slice_t. */
410
411#define CTF_K_MAX 63 /* Maximum possible (V2) CTF_K_* value. */
412
413/* Values for ctt_type when kind is CTF_K_INTEGER. The flags, offset in bits,
414 and size in bits are encoded as a single word using the following macros.
415 (However, you can also encode the offset and bitness in a slice.) */
416
417#define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24)
418#define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16)
419#define CTF_INT_BITS(data) (((data) & 0x0000ffff))
420
421#define CTF_INT_DATA(encoding, offset, bits) \
422 (((encoding) << 24) | ((offset) << 16) | (bits))
423
424#define CTF_INT_SIGNED 0x01 /* Integer is signed (otherwise unsigned). */
425#define CTF_INT_CHAR 0x02 /* Character display format. */
426#define CTF_INT_BOOL 0x04 /* Boolean display format. */
427#define CTF_INT_VARARGS 0x08 /* Varargs display format. */
428
429/* Use CTF_CHAR to produce a char that agrees with the system's native
430 char signedness. */
431#if CHAR_MIN == 0
432# define CTF_CHAR (CTF_INT_CHAR)
433#else
434# define CTF_CHAR (CTF_INT_CHAR | CTF_INT_SIGNED)
435#endif
436
437/* Values for ctt_type when kind is CTF_K_FLOAT. The encoding, offset in bits,
438 and size in bits are encoded as a single word using the following macros.
439 (However, you can also encode the offset and bitness in a slice.) */
440
441#define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24)
442#define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16)
443#define CTF_FP_BITS(data) (((data) & 0x0000ffff))
444
445#define CTF_FP_DATA(encoding, offset, bits) \
446 (((encoding) << 24) | ((offset) << 16) | (bits))
447
448/* Variant data when kind is CTF_K_FLOAT is an encoding in the top eight bits. */
449#define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24)
450
451#define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding. */
452#define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding. */
453#define CTF_FP_CPLX 3 /* Complex encoding. */
454#define CTF_FP_DCPLX 4 /* Double complex encoding. */
455#define CTF_FP_LDCPLX 5 /* Long double complex encoding. */
456#define CTF_FP_LDOUBLE 6 /* Long double encoding. */
457#define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding. */
458#define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding. */
459#define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding. */
460#define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding. */
461#define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding. */
462#define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding. */
463
464#define CTF_FP_MAX 12 /* Maximum possible CTF_FP_* value */
465
466/* A slice increases the offset and reduces the bitness of the referenced
467 ctt_type, which must be a type which has an encoding (fp, int, or enum). We
468 also store the referenced type in here, because it is easier to keep the
469 ctt_size correct for the slice than to shuffle the size into here and keep
7cee1826
NA
470 the ctt_type where it is for other types.
471
472 In a future version, where we loosen requirements on alignment in the CTF
473 file, the cts_offset and cts_bits will be chars: but for now they must be
474 shorts or everything after a slice will become unaligned. */
fceac76e
NA
475
476typedef struct ctf_slice
477{
478 uint32_t cts_type;
7cee1826
NA
479 unsigned short cts_offset;
480 unsigned short cts_bits;
fceac76e
NA
481} ctf_slice_t;
482
483typedef struct ctf_array_v1
484{
485 unsigned short cta_contents; /* Reference to type of array contents. */
486 unsigned short cta_index; /* Reference to type of array index. */
487 uint32_t cta_nelems; /* Number of elements. */
488} ctf_array_v1_t;
489
490typedef struct ctf_array
491{
492 uint32_t cta_contents; /* Reference to type of array contents. */
493 uint32_t cta_index; /* Reference to type of array index. */
494 uint32_t cta_nelems; /* Number of elements. */
495} ctf_array_t;
496
497/* Most structure members have bit offsets that can be expressed using a short.
498 Some don't. ctf_member_t is used for structs which cannot contain any of
499 these large offsets, whereas ctf_lmember_t is used in the latter case. If
500 any member of a given struct has an offset that cannot be expressed using a
501 uint32_t, all members will be stored as type ctf_lmember_t. This is expected
502 to be very rare (but nonetheless possible). */
503
504#define CTF_LSTRUCT_THRESH 536870912
505
506/* In v1, the same is true, except that lmembers are used for structs >= 8192
507 bytes in size. (The ordering of members in the ctf_member_* structures is
508 different to improve padding.) */
509
510#define CTF_LSTRUCT_THRESH_V1 8192
511
512typedef struct ctf_member_v1
513{
514 uint32_t ctm_name; /* Reference to name in string table. */
515 unsigned short ctm_type; /* Reference to type of member. */
516 unsigned short ctm_offset; /* Offset of this member in bits. */
517} ctf_member_v1_t;
518
519typedef struct ctf_lmember_v1
520{
521 uint32_t ctlm_name; /* Reference to name in string table. */
522 unsigned short ctlm_type; /* Reference to type of member. */
523 unsigned short ctlm_pad; /* Padding. */
524 uint32_t ctlm_offsethi; /* High 32 bits of member offset in bits. */
525 uint32_t ctlm_offsetlo; /* Low 32 bits of member offset in bits. */
526} ctf_lmember_v1_t;
527
528typedef struct ctf_member_v2
529{
530 uint32_t ctm_name; /* Reference to name in string table. */
531 uint32_t ctm_offset; /* Offset of this member in bits. */
532 uint32_t ctm_type; /* Reference to type of member. */
533} ctf_member_t;
534
535typedef struct ctf_lmember_v2
536{
537 uint32_t ctlm_name; /* Reference to name in string table. */
538 uint32_t ctlm_offsethi; /* High 32 bits of member offset in bits. */
539 uint32_t ctlm_type; /* Reference to type of member. */
540 uint32_t ctlm_offsetlo; /* Low 32 bits of member offset in bits. */
541} ctf_lmember_t;
542
543#define CTF_LMEM_OFFSET(ctlmp) \
544 (((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo)
545#define CTF_OFFSET_TO_LMEMHI(offset) ((uint32_t)((uint64_t)(offset) >> 32))
546#define CTF_OFFSET_TO_LMEMLO(offset) ((uint32_t)(offset))
547
548typedef struct ctf_enum
549{
550 uint32_t cte_name; /* Reference to name in string table. */
a610aa4f 551 int32_t cte_value; /* Value associated with this name. */
fceac76e
NA
552} ctf_enum_t;
553
9402cc59
NA
554/* The ctf_archive is a collection of ctf_file_t's stored together. The format
555 is suitable for mmap()ing: this control structure merely describes the
556 mmap()ed archive (and overlaps the first few bytes of it), hence the
557 greater care taken with integral types. All CTF files in an archive
558 must have the same data model. (This is not validated.)
559
560 All integers in this structure are stored in little-endian byte order.
561
562 The code relies on the fact that everything in this header is a uint64_t
563 and thus the header needs no padding (in particular, that no padding is
564 needed between ctfa_ctfs and the unnamed ctfa_archive_modent array
565 that follows it).
566
567 This is *not* the same as the data structure returned by the ctf_arc_*()
568 functions: this is the low-level on-disk representation. */
569
570#define CTFA_MAGIC 0x8b47f2a4d7623eeb /* Random. */
571struct ctf_archive
572{
573 /* Magic number. (In loaded files, overwritten with the file size
574 so ctf_arc_close() knows how much to munmap()). */
575 uint64_t ctfa_magic;
576
577 /* CTF data model. */
578 uint64_t ctfa_model;
579
580 /* Number of CTF files in the archive. */
581 uint64_t ctfa_nfiles;
582
583 /* Offset of the name table. */
584 uint64_t ctfa_names;
585
586 /* Offset of the CTF table. Each element starts with a size (a uint64_t
587 in network byte order) then a ctf_file_t of that size. */
588 uint64_t ctfa_ctfs;
589};
590
591/* An array of ctfa_nnamed of this structure lies at
592 ctf_archive[ctf_archive->ctfa_modents] and gives the ctfa_ctfs or
593 ctfa_names-relative offsets of each name or ctf_file_t. */
594
595typedef struct ctf_archive_modent
596{
597 uint64_t name_offset;
598 uint64_t ctf_offset;
599} ctf_archive_modent_t;
600
fceac76e
NA
601#ifdef __cplusplus
602}
603#endif
604
605#endif /* _CTF_H */