]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - libctf/ctf-open.c
[PATCH] fix windmc typedef bug
[thirdparty/binutils-gdb.git] / libctf / ctf-open.c
CommitLineData
72f33921 1/* Opening CTF files.
b3adc24a 2 Copyright (C) 2019-2020 Free Software Foundation, Inc.
72f33921
NA
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20#include <ctf-impl.h>
21#include <stddef.h>
22#include <string.h>
23#include <sys/types.h>
24#include <elf.h>
25#include <assert.h>
26#include "swap.h"
27#include <bfd.h>
28#include <zlib.h>
29
30#include "elf-bfd.h"
31
32static const ctf_dmodel_t _libctf_models[] = {
33 {"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
34 {"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
35 {NULL, 0, 0, 0, 0, 0, 0}
36};
37
38const char _CTF_SECTION[] = ".ctf";
39const char _CTF_NULLSTR[] = "";
40
41/* Version-sensitive accessors. */
42
43static uint32_t
44get_kind_v1 (uint32_t info)
45{
46 return (CTF_V1_INFO_KIND (info));
47}
48
49static uint32_t
50get_root_v1 (uint32_t info)
51{
52 return (CTF_V1_INFO_ISROOT (info));
53}
54
55static uint32_t
56get_vlen_v1 (uint32_t info)
57{
58 return (CTF_V1_INFO_VLEN (info));
59}
60
61static uint32_t
62get_kind_v2 (uint32_t info)
63{
64 return (CTF_V2_INFO_KIND (info));
65}
66
67static uint32_t
68get_root_v2 (uint32_t info)
69{
70 return (CTF_V2_INFO_ISROOT (info));
71}
72
73static uint32_t
74get_vlen_v2 (uint32_t info)
75{
76 return (CTF_V2_INFO_VLEN (info));
77}
78
79static inline ssize_t
80get_ctt_size_common (const ctf_file_t *fp _libctf_unused_,
81 const ctf_type_t *tp _libctf_unused_,
82 ssize_t *sizep, ssize_t *incrementp, size_t lsize,
83 size_t csize, size_t ctf_type_size,
84 size_t ctf_stype_size, size_t ctf_lsize_sent)
85{
86 ssize_t size, increment;
87
88 if (csize == ctf_lsize_sent)
89 {
90 size = lsize;
91 increment = ctf_type_size;
92 }
93 else
94 {
95 size = csize;
96 increment = ctf_stype_size;
97 }
98
99 if (sizep)
100 *sizep = size;
101 if (incrementp)
102 *incrementp = increment;
103
104 return size;
105}
106
107static ssize_t
108get_ctt_size_v1 (const ctf_file_t *fp, const ctf_type_t *tp,
109 ssize_t *sizep, ssize_t *incrementp)
110{
111 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
112
113 return (get_ctt_size_common (fp, tp, sizep, incrementp,
114 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
115 sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
116 CTF_LSIZE_SENT_V1));
117}
118
119/* Return the size that a v1 will be once it is converted to v2. */
120
121static ssize_t
122get_ctt_size_v2_unconverted (const ctf_file_t *fp, const ctf_type_t *tp,
123 ssize_t *sizep, ssize_t *incrementp)
124{
125 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
126
127 return (get_ctt_size_common (fp, tp, sizep, incrementp,
128 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
129 sizeof (ctf_type_t), sizeof (ctf_stype_t),
130 CTF_LSIZE_SENT));
131}
132
133static ssize_t
134get_ctt_size_v2 (const ctf_file_t *fp, const ctf_type_t *tp,
135 ssize_t *sizep, ssize_t *incrementp)
136{
137 return (get_ctt_size_common (fp, tp, sizep, incrementp,
138 CTF_TYPE_LSIZE (tp), tp->ctt_size,
139 sizeof (ctf_type_t), sizeof (ctf_stype_t),
140 CTF_LSIZE_SENT));
141}
142
143static ssize_t
144get_vbytes_common (unsigned short kind, ssize_t size _libctf_unused_,
145 size_t vlen)
146{
147 switch (kind)
148 {
149 case CTF_K_INTEGER:
150 case CTF_K_FLOAT:
151 return (sizeof (uint32_t));
152 case CTF_K_SLICE:
7cee1826 153 return (sizeof (ctf_slice_t));
72f33921
NA
154 case CTF_K_ENUM:
155 return (sizeof (ctf_enum_t) * vlen);
156 case CTF_K_FORWARD:
157 case CTF_K_UNKNOWN:
158 case CTF_K_POINTER:
159 case CTF_K_TYPEDEF:
160 case CTF_K_VOLATILE:
161 case CTF_K_CONST:
162 case CTF_K_RESTRICT:
163 return 0;
164 default:
165 ctf_dprintf ("detected invalid CTF kind -- %x\n", kind);
166 return ECTF_CORRUPT;
167 }
168}
169
170static ssize_t
171get_vbytes_v1 (unsigned short kind, ssize_t size, size_t vlen)
172{
173 switch (kind)
174 {
175 case CTF_K_ARRAY:
176 return (sizeof (ctf_array_v1_t));
177 case CTF_K_FUNCTION:
178 return (sizeof (unsigned short) * (vlen + (vlen & 1)));
179 case CTF_K_STRUCT:
180 case CTF_K_UNION:
181 if (size < CTF_LSTRUCT_THRESH_V1)
182 return (sizeof (ctf_member_v1_t) * vlen);
183 else
184 return (sizeof (ctf_lmember_v1_t) * vlen);
185 }
186
187 return (get_vbytes_common (kind, size, vlen));
188}
189
190static ssize_t
191get_vbytes_v2 (unsigned short kind, ssize_t size, size_t vlen)
192{
193 switch (kind)
194 {
195 case CTF_K_ARRAY:
196 return (sizeof (ctf_array_t));
197 case CTF_K_FUNCTION:
198 return (sizeof (uint32_t) * (vlen + (vlen & 1)));
199 case CTF_K_STRUCT:
200 case CTF_K_UNION:
201 if (size < CTF_LSTRUCT_THRESH)
202 return (sizeof (ctf_member_t) * vlen);
203 else
204 return (sizeof (ctf_lmember_t) * vlen);
205 }
206
207 return (get_vbytes_common (kind, size, vlen));
208}
209
210static const ctf_fileops_t ctf_fileops[] = {
211 {NULL, NULL, NULL, NULL, NULL},
212 /* CTF_VERSION_1 */
213 {get_kind_v1, get_root_v1, get_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
214 /* CTF_VERSION_1_UPGRADED_3 */
215 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
216 /* CTF_VERSION_2 */
217 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
218 /* CTF_VERSION_3, identical to 2: only new type kinds */
219 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
220};
221
222/* Initialize the symtab translation table by filling each entry with the
223 offset of the CTF type or function data corresponding to each STT_FUNC or
224 STT_OBJECT entry in the symbol table. */
225
226static int
227init_symtab (ctf_file_t *fp, const ctf_header_t *hp,
228 const ctf_sect_t *sp, const ctf_sect_t *strp)
229{
230 const unsigned char *symp = sp->cts_data;
231 uint32_t *xp = fp->ctf_sxlate;
232 uint32_t *xend = xp + fp->ctf_nsyms;
233
234 uint32_t objtoff = hp->cth_objtoff;
235 uint32_t funcoff = hp->cth_funcoff;
236
237 uint32_t info, vlen;
238 Elf64_Sym sym, *gsp;
239 const char *name;
240
241 /* The CTF data object and function type sections are ordered to match
242 the relative order of the respective symbol types in the symtab.
243 If no type information is available for a symbol table entry, a
244 pad is inserted in the CTF section. As a further optimization,
245 anonymous or undefined symbols are omitted from the CTF data. */
246
247 for (; xp < xend; xp++, symp += sp->cts_entsize)
248 {
249 if (sp->cts_entsize == sizeof (Elf32_Sym))
250 gsp = ctf_sym_to_elf64 ((Elf32_Sym *) (uintptr_t) symp, &sym);
251 else
252 gsp = (Elf64_Sym *) (uintptr_t) symp;
253
254 if (gsp->st_name < strp->cts_size)
255 name = (const char *) strp->cts_data + gsp->st_name;
256 else
257 name = _CTF_NULLSTR;
258
259 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF
260 || strcmp (name, "_START_") == 0 || strcmp (name, "_END_") == 0)
261 {
262 *xp = -1u;
263 continue;
264 }
265
266 switch (ELF64_ST_TYPE (gsp->st_info))
267 {
268 case STT_OBJECT:
269 if (objtoff >= hp->cth_funcoff
270 || (gsp->st_shndx == SHN_EXTABS && gsp->st_value == 0))
271 {
272 *xp = -1u;
273 break;
274 }
275
276 *xp = objtoff;
277 objtoff += sizeof (uint32_t);
278 break;
279
280 case STT_FUNC:
2db912ba 281 if (funcoff >= hp->cth_objtidxoff)
72f33921
NA
282 {
283 *xp = -1u;
284 break;
285 }
286
287 *xp = funcoff;
288
289 info = *(uint32_t *) ((uintptr_t) fp->ctf_buf + funcoff);
290 vlen = LCTF_INFO_VLEN (fp, info);
291
292 /* If we encounter a zero pad at the end, just skip it. Otherwise
293 skip over the function and its return type (+2) and the argument
294 list (vlen).
295 */
296 if (LCTF_INFO_KIND (fp, info) == CTF_K_UNKNOWN && vlen == 0)
297 funcoff += sizeof (uint32_t); /* Skip pad. */
298 else
299 funcoff += sizeof (uint32_t) * (vlen + 2);
300 break;
301
302 default:
303 *xp = -1u;
304 break;
305 }
306 }
307
308 ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
309 return 0;
310}
311
fd55eae8
NA
312/* Reset the CTF base pointer and derive the buf pointer from it, initializing
313 everything in the ctf_file that depends on the base or buf pointers.
314
315 The original gap between the buf and base pointers, if any -- the original,
316 unconverted CTF header -- is kept, but its contents are not specified and are
317 never used. */
72f33921
NA
318
319static void
fd55eae8 320ctf_set_base (ctf_file_t *fp, const ctf_header_t *hp, unsigned char *base)
72f33921 321{
fd55eae8 322 fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
72f33921 323 fp->ctf_base = base;
72f33921
NA
324 fp->ctf_vars = (ctf_varent_t *) ((const char *) fp->ctf_buf +
325 hp->cth_varoff);
326 fp->ctf_nvars = (hp->cth_typeoff - hp->cth_varoff) / sizeof (ctf_varent_t);
327
328 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
329 + hp->cth_stroff;
330 fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
331
332 /* If we have a parent container name and label, store the relocated
333 string pointers in the CTF container for easy access later. */
334
335 /* Note: before conversion, these will be set to values that will be
336 immediately invalidated by the conversion process, but the conversion
337 process will call ctf_set_base() again to fix things up. */
338
339 if (hp->cth_parlabel != 0)
340 fp->ctf_parlabel = ctf_strptr (fp, hp->cth_parlabel);
341 if (hp->cth_parname != 0)
342 fp->ctf_parname = ctf_strptr (fp, hp->cth_parname);
fd55eae8
NA
343 if (hp->cth_cuname != 0)
344 fp->ctf_cuname = ctf_strptr (fp, hp->cth_cuname);
345
346 if (fp->ctf_cuname)
347 ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cuname);
348 if (fp->ctf_parname)
349 ctf_dprintf ("ctf_set_base: parent name %s (label %s)\n",
350 fp->ctf_parname,
72f33921
NA
351 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
352}
353
72f33921
NA
354/* Set the version of the CTF file. */
355
356/* When this is reset, LCTF_* changes behaviour, but there is no guarantee that
357 the variable data list associated with each type has been upgraded: the
358 caller must ensure this has been done in advance. */
359
360static void
fd55eae8 361ctf_set_version (ctf_file_t *fp, ctf_header_t *cth, int ctf_version)
72f33921
NA
362{
363 fp->ctf_version = ctf_version;
364 cth->cth_version = ctf_version;
365 fp->ctf_fileops = &ctf_fileops[ctf_version];
366}
367
fd55eae8
NA
368
369/* Upgrade the header to CTF_VERSION_3. The upgrade is done in-place. */
370static void
371upgrade_header (ctf_header_t *hp)
372{
373 ctf_header_v2_t *oldhp = (ctf_header_v2_t *) hp;
374
375 hp->cth_strlen = oldhp->cth_strlen;
376 hp->cth_stroff = oldhp->cth_stroff;
377 hp->cth_typeoff = oldhp->cth_typeoff;
378 hp->cth_varoff = oldhp->cth_varoff;
2db912ba
NA
379 hp->cth_funcidxoff = hp->cth_varoff; /* No index sections. */
380 hp->cth_objtidxoff = hp->cth_funcidxoff;
fd55eae8
NA
381 hp->cth_funcoff = oldhp->cth_funcoff;
382 hp->cth_objtoff = oldhp->cth_objtoff;
383 hp->cth_lbloff = oldhp->cth_lbloff;
384 hp->cth_cuname = 0; /* No CU name. */
385}
386
387/* Upgrade the type table to CTF_VERSION_3 (really CTF_VERSION_1_UPGRADED_3)
388 from CTF_VERSION_1.
72f33921
NA
389
390 The upgrade is not done in-place: the ctf_base is moved. ctf_strptr() must
391 not be called before reallocation is complete.
392
2db912ba
NA
393 Sections not checked here due to nonexistence or nonpopulated state in older
394 formats: objtidx, funcidx.
395
72f33921
NA
396 Type kinds not checked here due to nonexistence in older formats:
397 CTF_K_SLICE. */
398static int
fd55eae8 399upgrade_types_v1 (ctf_file_t *fp, ctf_header_t *cth)
72f33921
NA
400{
401 const ctf_type_v1_t *tbuf;
402 const ctf_type_v1_t *tend;
fd55eae8 403 unsigned char *ctf_base, *old_ctf_base = (unsigned char *) fp->ctf_dynbase;
72f33921
NA
404 ctf_type_t *t2buf;
405
406 ssize_t increase = 0, size, increment, v2increment, vbytes, v2bytes;
407 const ctf_type_v1_t *tp;
408 ctf_type_t *t2p;
72f33921
NA
409
410 tbuf = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_typeoff);
411 tend = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_stroff);
412
413 /* Much like init_types(), this is a two-pass process.
414
415 First, figure out the new type-section size needed. (It is possible,
416 in theory, for it to be less than the old size, but this is very
417 unlikely. It cannot be so small that cth_typeoff ends up of negative
418 size. We validate this with an assertion below.)
419
420 We must cater not only for changes in vlen and types sizes but also
421 for changes in 'increment', which happen because v2 places some types
422 into ctf_stype_t where v1 would be forced to use the larger non-stype. */
423
424 for (tp = tbuf; tp < tend;
425 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes))
426 {
427 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
428 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
429
430 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
431 vbytes = get_vbytes_v1 (kind, size, vlen);
432
433 get_ctt_size_v2_unconverted (fp, (const ctf_type_t *) tp, NULL,
434 &v2increment);
435 v2bytes = get_vbytes_v2 (kind, size, vlen);
436
437 if ((vbytes < 0) || (size < 0))
438 return ECTF_CORRUPT;
439
440 increase += v2increment - increment; /* May be negative. */
441 increase += v2bytes - vbytes;
442 }
443
fd55eae8
NA
444 /* Allocate enough room for the new buffer, then copy everything but the type
445 section into place, and reset the base accordingly. Leave the version
446 number unchanged, so that LCTF_INFO_* still works on the
72f33921
NA
447 as-yet-untranslated type info. */
448
de07e349 449 if ((ctf_base = malloc (fp->ctf_size + increase)) == NULL)
72f33921
NA
450 return ECTF_ZALLOC;
451
fd55eae8
NA
452 /* Start at ctf_buf, not ctf_base, to squeeze out the original header: we
453 never use it and it is unconverted. */
72f33921 454
fd55eae8
NA
455 memcpy (ctf_base, fp->ctf_buf, cth->cth_typeoff);
456 memcpy (ctf_base + cth->cth_stroff + increase,
457 fp->ctf_buf + cth->cth_stroff, cth->cth_strlen);
72f33921 458
fd55eae8
NA
459 memset (ctf_base + cth->cth_typeoff, 0, cth->cth_stroff - cth->cth_typeoff
460 + increase);
72f33921 461
fd55eae8 462 cth->cth_stroff += increase;
72f33921 463 fp->ctf_size += increase;
fd55eae8
NA
464 assert (cth->cth_stroff >= cth->cth_typeoff);
465 fp->ctf_base = ctf_base;
466 fp->ctf_buf = ctf_base;
467 fp->ctf_dynbase = ctf_base;
468 ctf_set_base (fp, cth, ctf_base);
72f33921 469
fd55eae8 470 t2buf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
72f33921
NA
471
472 /* Iterate through all the types again, upgrading them.
473
474 Everything that hasn't changed can just be outright memcpy()ed.
475 Things that have changed need field-by-field consideration. */
476
477 for (tp = tbuf, t2p = t2buf; tp < tend;
478 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes),
479 t2p = (ctf_type_t *) ((uintptr_t) t2p + v2increment + v2bytes))
480 {
481 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
482 int isroot = CTF_V1_INFO_ISROOT (tp->ctt_info);
483 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
484 ssize_t v2size;
485 void *vdata, *v2data;
486
487 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
488 vbytes = get_vbytes_v1 (kind, size, vlen);
489
490 t2p->ctt_name = tp->ctt_name;
491 t2p->ctt_info = CTF_TYPE_INFO (kind, isroot, vlen);
492
493 switch (kind)
494 {
495 case CTF_K_FUNCTION:
496 case CTF_K_FORWARD:
497 case CTF_K_TYPEDEF:
498 case CTF_K_POINTER:
499 case CTF_K_VOLATILE:
500 case CTF_K_CONST:
501 case CTF_K_RESTRICT:
502 t2p->ctt_type = tp->ctt_type;
503 break;
504 case CTF_K_INTEGER:
505 case CTF_K_FLOAT:
506 case CTF_K_ARRAY:
507 case CTF_K_STRUCT:
508 case CTF_K_UNION:
509 case CTF_K_ENUM:
510 case CTF_K_UNKNOWN:
a0486bac 511 if ((size_t) size <= CTF_MAX_SIZE)
72f33921
NA
512 t2p->ctt_size = size;
513 else
514 {
515 t2p->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
516 t2p->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
517 }
518 break;
519 }
520
521 v2size = get_ctt_size_v2 (fp, t2p, NULL, &v2increment);
522 v2bytes = get_vbytes_v2 (kind, v2size, vlen);
523
524 /* Catch out-of-sync get_ctt_size_*(). The count goes wrong if
525 these are not identical (and having them different makes no
526 sense semantically). */
527
528 assert (size == v2size);
529
530 /* Now the varlen info. */
531
532 vdata = (void *) ((uintptr_t) tp + increment);
533 v2data = (void *) ((uintptr_t) t2p + v2increment);
534
535 switch (kind)
536 {
537 case CTF_K_ARRAY:
538 {
539 const ctf_array_v1_t *ap = (const ctf_array_v1_t *) vdata;
540 ctf_array_t *a2p = (ctf_array_t *) v2data;
541
542 a2p->cta_contents = ap->cta_contents;
543 a2p->cta_index = ap->cta_index;
544 a2p->cta_nelems = ap->cta_nelems;
545 break;
546 }
547 case CTF_K_STRUCT:
548 case CTF_K_UNION:
549 {
550 ctf_member_t tmp;
551 const ctf_member_v1_t *m1 = (const ctf_member_v1_t *) vdata;
552 const ctf_lmember_v1_t *lm1 = (const ctf_lmember_v1_t *) m1;
553 ctf_member_t *m2 = (ctf_member_t *) v2data;
554 ctf_lmember_t *lm2 = (ctf_lmember_t *) m2;
555 unsigned long i;
556
557 /* We walk all four pointers forward, but only reference the two
558 that are valid for the given size, to avoid quadruplicating all
559 the code. */
560
561 for (i = vlen; i != 0; i--, m1++, lm1++, m2++, lm2++)
562 {
563 size_t offset;
564 if (size < CTF_LSTRUCT_THRESH_V1)
565 {
566 offset = m1->ctm_offset;
567 tmp.ctm_name = m1->ctm_name;
568 tmp.ctm_type = m1->ctm_type;
569 }
570 else
571 {
572 offset = CTF_LMEM_OFFSET (lm1);
573 tmp.ctm_name = lm1->ctlm_name;
574 tmp.ctm_type = lm1->ctlm_type;
575 }
576 if (size < CTF_LSTRUCT_THRESH)
577 {
578 m2->ctm_name = tmp.ctm_name;
579 m2->ctm_type = tmp.ctm_type;
580 m2->ctm_offset = offset;
581 }
582 else
583 {
584 lm2->ctlm_name = tmp.ctm_name;
585 lm2->ctlm_type = tmp.ctm_type;
586 lm2->ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (offset);
587 lm2->ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (offset);
588 }
589 }
590 break;
591 }
592 case CTF_K_FUNCTION:
593 {
594 unsigned long i;
595 unsigned short *a1 = (unsigned short *) vdata;
596 uint32_t *a2 = (uint32_t *) v2data;
597
598 for (i = vlen; i != 0; i--, a1++, a2++)
599 *a2 = *a1;
600 }
601 /* FALLTHRU */
602 default:
603 /* Catch out-of-sync get_vbytes_*(). */
604 assert (vbytes == v2bytes);
605 memcpy (v2data, vdata, vbytes);
606 }
607 }
608
609 /* Verify that the entire region was converted. If not, we are either
610 converting too much, or too little (leading to a buffer overrun either here
611 or at read time, in init_types().) */
612
fd55eae8 613 assert ((size_t) t2p - (size_t) fp->ctf_buf == cth->cth_stroff);
72f33921 614
fd55eae8 615 ctf_set_version (fp, cth, CTF_VERSION_1_UPGRADED_3);
de07e349 616 free (old_ctf_base);
72f33921
NA
617
618 return 0;
619}
620
fd55eae8
NA
621/* Upgrade from any earlier version. */
622static int
623upgrade_types (ctf_file_t *fp, ctf_header_t *cth)
624{
625 switch (cth->cth_version)
626 {
627 /* v1 requires a full pass and reformatting. */
628 case CTF_VERSION_1:
629 upgrade_types_v1 (fp, cth);
630 /* FALLTHRU */
631 /* Already-converted v1 is just like later versions except that its
632 parent/child boundary is unchanged (and much lower). */
633
634 case CTF_VERSION_1_UPGRADED_3:
635 fp->ctf_parmax = CTF_MAX_PTYPE_V1;
636
637 /* v2 is just the same as v3 except for new types and sections:
638 no upgrading required. */
639 case CTF_VERSION_2: ;
640 /* FALLTHRU */
641 }
642 return 0;
643}
644
72f33921
NA
645/* Initialize the type ID translation table with the byte offset of each type,
646 and initialize the hash tables of each named type. Upgrade the type table to
647 the latest supported representation in the process, if needed, and if this
648 recension of libctf supports upgrading. */
649
650static int
651init_types (ctf_file_t *fp, ctf_header_t *cth)
652{
653 const ctf_type_t *tbuf;
654 const ctf_type_t *tend;
655
656 unsigned long pop[CTF_K_MAX + 1] = { 0 };
657 const ctf_type_t *tp;
72f33921
NA
658 uint32_t id, dst;
659 uint32_t *xp;
660
661 /* We determine whether the container is a child or a parent based on
662 the value of cth_parname. */
663
664 int child = cth->cth_parname != 0;
665 int nlstructs = 0, nlunions = 0;
666 int err;
667
676c3ecb
NA
668 assert (!(fp->ctf_flags & LCTF_RDWR));
669
72f33921
NA
670 if (_libctf_unlikely_ (fp->ctf_version == CTF_VERSION_1))
671 {
672 int err;
673 if ((err = upgrade_types (fp, cth)) != 0)
674 return err; /* Upgrade failed. */
675 }
676
677 tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
678 tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);
679
680 /* We make two passes through the entire type section. In this first
681 pass, we count the number of each type and the total number of types. */
682
683 for (tp = tbuf; tp < tend; fp->ctf_typemax++)
684 {
685 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
686 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
687 ssize_t size, increment, vbytes;
688
689 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
690 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
691
692 if (vbytes < 0)
693 return ECTF_CORRUPT;
694
695 if (kind == CTF_K_FORWARD)
696 {
697 /* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
698 so bump that population count too. If ctt_type is unknown, treat
699 the tag as a struct. */
700
701 if (tp->ctt_type == CTF_K_UNKNOWN || tp->ctt_type >= CTF_K_MAX)
702 pop[CTF_K_STRUCT]++;
703 else
704 pop[tp->ctt_type]++;
705 }
706 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
707 pop[kind]++;
708 }
709
710 if (child)
711 {
712 ctf_dprintf ("CTF container %p is a child\n", (void *) fp);
713 fp->ctf_flags |= LCTF_CHILD;
714 }
715 else
716 ctf_dprintf ("CTF container %p is a parent\n", (void *) fp);
717
718 /* Now that we've counted up the number of each type, we can allocate
719 the hash tables, type translation table, and pointer table. */
720
676c3ecb
NA
721 if ((fp->ctf_structs.ctn_readonly
722 = ctf_hash_create (pop[CTF_K_STRUCT], ctf_hash_string,
723 ctf_hash_eq_string)) == NULL)
72f33921
NA
724 return ENOMEM;
725
676c3ecb
NA
726 if ((fp->ctf_unions.ctn_readonly
727 = ctf_hash_create (pop[CTF_K_UNION], ctf_hash_string,
728 ctf_hash_eq_string)) == NULL)
72f33921
NA
729 return ENOMEM;
730
676c3ecb
NA
731 if ((fp->ctf_enums.ctn_readonly
732 = ctf_hash_create (pop[CTF_K_ENUM], ctf_hash_string,
733 ctf_hash_eq_string)) == NULL)
72f33921
NA
734 return ENOMEM;
735
676c3ecb
NA
736 if ((fp->ctf_names.ctn_readonly
737 = ctf_hash_create (pop[CTF_K_INTEGER] +
738 pop[CTF_K_FLOAT] +
739 pop[CTF_K_FUNCTION] +
740 pop[CTF_K_TYPEDEF] +
741 pop[CTF_K_POINTER] +
742 pop[CTF_K_VOLATILE] +
743 pop[CTF_K_CONST] +
744 pop[CTF_K_RESTRICT],
745 ctf_hash_string,
746 ctf_hash_eq_string)) == NULL)
72f33921
NA
747 return ENOMEM;
748
de07e349 749 fp->ctf_txlate = malloc (sizeof (uint32_t) * (fp->ctf_typemax + 1));
676c3ecb 750 fp->ctf_ptrtab_len = fp->ctf_typemax + 1;
de07e349 751 fp->ctf_ptrtab = malloc (sizeof (uint32_t) * fp->ctf_ptrtab_len);
72f33921
NA
752
753 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
754 return ENOMEM; /* Memory allocation failed. */
755
756 xp = fp->ctf_txlate;
757 *xp++ = 0; /* Type id 0 is used as a sentinel value. */
758
759 memset (fp->ctf_txlate, 0, sizeof (uint32_t) * (fp->ctf_typemax + 1));
760 memset (fp->ctf_ptrtab, 0, sizeof (uint32_t) * (fp->ctf_typemax + 1));
761
762 /* In the second pass through the types, we fill in each entry of the
763 type and pointer tables and add names to the appropriate hashes. */
764
765 for (id = 1, tp = tbuf; tp < tend; xp++, id++)
766 {
767 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
768 unsigned short flag = LCTF_INFO_ISROOT (fp, tp->ctt_info);
769 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
770 ssize_t size, increment, vbytes;
771
772 const char *name;
773
774 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
775 name = ctf_strptr (fp, tp->ctt_name);
776 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
777
778 switch (kind)
779 {
780 case CTF_K_INTEGER:
781 case CTF_K_FLOAT:
782 /* Names are reused by bit-fields, which are differentiated by their
783 encodings, and so typically we'd record only the first instance of
784 a given intrinsic. However, we replace an existing type with a
785 root-visible version so that we can be sure to find it when
786 checking for conflicting definitions in ctf_add_type(). */
787
676c3ecb
NA
788 if (((ctf_hash_lookup_type (fp->ctf_names.ctn_readonly,
789 fp, name)) == 0)
72f33921
NA
790 || (flag & CTF_ADD_ROOT))
791 {
676c3ecb 792 err = ctf_hash_define_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
793 LCTF_INDEX_TO_TYPE (fp, id, child),
794 tp->ctt_name);
d851ecd3 795 if (err != 0)
72f33921
NA
796 return err;
797 }
798 break;
799
800 /* These kinds have no name, so do not need interning into any
801 hashtables. */
802 case CTF_K_ARRAY:
803 case CTF_K_SLICE:
804 break;
805
806 case CTF_K_FUNCTION:
676c3ecb 807 err = ctf_hash_insert_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
808 LCTF_INDEX_TO_TYPE (fp, id, child),
809 tp->ctt_name);
d851ecd3 810 if (err != 0)
72f33921
NA
811 return err;
812 break;
813
814 case CTF_K_STRUCT:
676c3ecb 815 err = ctf_hash_define_type (fp->ctf_structs.ctn_readonly, fp,
72f33921
NA
816 LCTF_INDEX_TO_TYPE (fp, id, child),
817 tp->ctt_name);
818
d851ecd3 819 if (err != 0)
72f33921
NA
820 return err;
821
822 if (size >= CTF_LSTRUCT_THRESH)
823 nlstructs++;
824 break;
825
826 case CTF_K_UNION:
676c3ecb 827 err = ctf_hash_define_type (fp->ctf_unions.ctn_readonly, fp,
72f33921
NA
828 LCTF_INDEX_TO_TYPE (fp, id, child),
829 tp->ctt_name);
830
d851ecd3 831 if (err != 0)
72f33921
NA
832 return err;
833
834 if (size >= CTF_LSTRUCT_THRESH)
835 nlunions++;
836 break;
837
838 case CTF_K_ENUM:
676c3ecb 839 err = ctf_hash_define_type (fp->ctf_enums.ctn_readonly, fp,
72f33921
NA
840 LCTF_INDEX_TO_TYPE (fp, id, child),
841 tp->ctt_name);
842
d851ecd3 843 if (err != 0)
72f33921
NA
844 return err;
845 break;
846
847 case CTF_K_TYPEDEF:
676c3ecb 848 err = ctf_hash_insert_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
849 LCTF_INDEX_TO_TYPE (fp, id, child),
850 tp->ctt_name);
d851ecd3 851 if (err != 0)
72f33921
NA
852 return err;
853 break;
854
855 case CTF_K_FORWARD:
676c3ecb
NA
856 {
857 ctf_names_t *np = ctf_name_table (fp, tp->ctt_type);
858 /* Only insert forward tags into the given hash if the type or tag
859 name is not already present. */
860 if (ctf_hash_lookup_type (np->ctn_readonly, fp, name) == 0)
861 {
862 err = ctf_hash_insert_type (np->ctn_readonly, fp,
863 LCTF_INDEX_TO_TYPE (fp, id, child),
864 tp->ctt_name);
865 if (err != 0)
866 return err;
867 }
868 break;
869 }
72f33921
NA
870
871 case CTF_K_POINTER:
872 /* If the type referenced by the pointer is in this CTF container,
873 then store the index of the pointer type in
874 fp->ctf_ptrtab[ index of referenced type ]. */
875
876 if (LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
877 && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
878 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = id;
879 /*FALLTHRU*/
880
881 case CTF_K_VOLATILE:
882 case CTF_K_CONST:
883 case CTF_K_RESTRICT:
676c3ecb 884 err = ctf_hash_insert_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
885 LCTF_INDEX_TO_TYPE (fp, id, child),
886 tp->ctt_name);
d851ecd3 887 if (err != 0)
72f33921
NA
888 return err;
889 break;
0b4fa56e
NA
890 default:
891 ctf_dprintf ("unhandled CTF kind in endianness conversion -- %x\n",
892 kind);
893 return ECTF_CORRUPT;
72f33921
NA
894 }
895
896 *xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);
897 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
898 }
899
900 ctf_dprintf ("%lu total types processed\n", fp->ctf_typemax);
676c3ecb
NA
901 ctf_dprintf ("%u enum names hashed\n",
902 ctf_hash_size (fp->ctf_enums.ctn_readonly));
72f33921 903 ctf_dprintf ("%u struct names hashed (%d long)\n",
676c3ecb 904 ctf_hash_size (fp->ctf_structs.ctn_readonly), nlstructs);
72f33921 905 ctf_dprintf ("%u union names hashed (%d long)\n",
676c3ecb
NA
906 ctf_hash_size (fp->ctf_unions.ctn_readonly), nlunions);
907 ctf_dprintf ("%u base type names hashed\n",
908 ctf_hash_size (fp->ctf_names.ctn_readonly));
72f33921
NA
909
910 /* Make an additional pass through the pointer table to find pointers that
911 point to anonymous typedef nodes. If we find one, modify the pointer table
912 so that the pointer is also known to point to the node that is referenced
913 by the anonymous typedef node. */
914
915 for (id = 1; id <= fp->ctf_typemax; id++)
916 {
917 if ((dst = fp->ctf_ptrtab[id]) != 0)
918 {
919 tp = LCTF_INDEX_TO_TYPEPTR (fp, id);
920
676c3ecb
NA
921 if (LCTF_INFO_KIND (fp, tp->ctt_info) == CTF_K_TYPEDEF
922 && strcmp (ctf_strptr (fp, tp->ctt_name), "") == 0
923 && LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
924 && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
925 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = dst;
72f33921
NA
926 }
927 }
928
929 return 0;
930}
931
932/* Endianness-flipping routines.
933
934 We flip everything, mindlessly, even 1-byte entities, so that future
935 expansions do not require changes to this code. */
936
937/* < C11? define away static assertions. */
938
939#if !defined (__STDC_VERSION__) || __STDC_VERSION__ < 201112L
940#define _Static_assert(cond, err)
941#endif
942
943/* Swap the endianness of something. */
944
945#define swap_thing(x) \
946 do { \
947 _Static_assert (sizeof (x) == 1 || (sizeof (x) % 2 == 0 \
948 && sizeof (x) <= 8), \
949 "Invalid size, update endianness code"); \
950 switch (sizeof (x)) { \
951 case 2: x = bswap_16 (x); break; \
952 case 4: x = bswap_32 (x); break; \
953 case 8: x = bswap_64 (x); break; \
954 case 1: /* Nothing needs doing */ \
955 break; \
956 } \
957 } while (0);
958
959/* Flip the endianness of the CTF header. */
960
961static void
962flip_header (ctf_header_t *cth)
963{
964 swap_thing (cth->cth_preamble.ctp_magic);
965 swap_thing (cth->cth_preamble.ctp_version);
966 swap_thing (cth->cth_preamble.ctp_flags);
967 swap_thing (cth->cth_parlabel);
968 swap_thing (cth->cth_parname);
fd55eae8 969 swap_thing (cth->cth_cuname);
72f33921
NA
970 swap_thing (cth->cth_objtoff);
971 swap_thing (cth->cth_funcoff);
2db912ba
NA
972 swap_thing (cth->cth_objtidxoff);
973 swap_thing (cth->cth_funcidxoff);
72f33921
NA
974 swap_thing (cth->cth_varoff);
975 swap_thing (cth->cth_typeoff);
976 swap_thing (cth->cth_stroff);
977 swap_thing (cth->cth_strlen);
978}
979
980/* Flip the endianness of the label section, an array of ctf_lblent_t. */
981
982static void
983flip_lbls (void *start, size_t len)
984{
985 ctf_lblent_t *lbl = start;
5ae6af75 986 ssize_t i;
72f33921 987
5ae6af75 988 for (i = len / sizeof (struct ctf_lblent); i > 0; lbl++, i--)
72f33921
NA
989 {
990 swap_thing (lbl->ctl_label);
991 swap_thing (lbl->ctl_type);
992 }
993}
994
2db912ba
NA
995/* Flip the endianness of the data-object or function sections or their indexes,
996 all arrays of uint32_t. (The function section has more internal structure,
997 but that structure is an array of uint32_t, so can be treated as one big
998 array for byte-swapping.) */
72f33921
NA
999
1000static void
1001flip_objts (void *start, size_t len)
1002{
1003 uint32_t *obj = start;
5ae6af75 1004 ssize_t i;
72f33921 1005
5ae6af75 1006 for (i = len / sizeof (uint32_t); i > 0; obj++, i--)
72f33921
NA
1007 swap_thing (*obj);
1008}
1009
1010/* Flip the endianness of the variable section, an array of ctf_varent_t. */
1011
1012static void
1013flip_vars (void *start, size_t len)
1014{
1015 ctf_varent_t *var = start;
5ae6af75 1016 ssize_t i;
72f33921 1017
5ae6af75 1018 for (i = len / sizeof (struct ctf_varent); i > 0; var++, i--)
72f33921
NA
1019 {
1020 swap_thing (var->ctv_name);
1021 swap_thing (var->ctv_type);
1022 }
1023}
1024
1025/* Flip the endianness of the type section, a tagged array of ctf_type or
1026 ctf_stype followed by variable data. */
1027
1028static int
1029flip_types (void *start, size_t len)
1030{
1031 ctf_type_t *t = start;
1032
1033 while ((uintptr_t) t < ((uintptr_t) start) + len)
1034 {
1035 swap_thing (t->ctt_name);
1036 swap_thing (t->ctt_info);
1037 swap_thing (t->ctt_size);
1038
1039 uint32_t kind = CTF_V2_INFO_KIND (t->ctt_info);
1040 size_t size = t->ctt_size;
1041 uint32_t vlen = CTF_V2_INFO_VLEN (t->ctt_info);
1042 size_t vbytes = get_vbytes_v2 (kind, size, vlen);
1043
1044 if (_libctf_unlikely_ (size == CTF_LSIZE_SENT))
1045 {
1046 swap_thing (t->ctt_lsizehi);
1047 swap_thing (t->ctt_lsizelo);
1048 size = CTF_TYPE_LSIZE (t);
1049 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_type_t));
1050 }
1051 else
1052 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_stype_t));
1053
1054 switch (kind)
1055 {
1056 case CTF_K_FORWARD:
1057 case CTF_K_UNKNOWN:
1058 case CTF_K_POINTER:
1059 case CTF_K_TYPEDEF:
1060 case CTF_K_VOLATILE:
1061 case CTF_K_CONST:
1062 case CTF_K_RESTRICT:
1063 /* These types have no vlen data to swap. */
1064 assert (vbytes == 0);
1065 break;
1066
1067 case CTF_K_INTEGER:
1068 case CTF_K_FLOAT:
1069 {
1070 /* These types have a single uint32_t. */
1071
1072 uint32_t *item = (uint32_t *) t;
1073
1074 swap_thing (*item);
1075 break;
1076 }
1077
1078 case CTF_K_FUNCTION:
1079 {
1080 /* This type has a bunch of uint32_ts. */
1081
1082 uint32_t *item = (uint32_t *) t;
5ae6af75 1083 ssize_t i;
72f33921 1084
5ae6af75 1085 for (i = vlen; i > 0; item++, i--)
72f33921
NA
1086 swap_thing (*item);
1087 break;
1088 }
1089
1090 case CTF_K_ARRAY:
1091 {
1092 /* This has a single ctf_array_t. */
1093
1094 ctf_array_t *a = (ctf_array_t *) t;
1095
1096 assert (vbytes == sizeof (ctf_array_t));
1097 swap_thing (a->cta_contents);
1098 swap_thing (a->cta_index);
1099 swap_thing (a->cta_nelems);
1100
1101 break;
1102 }
1103
1104 case CTF_K_SLICE:
1105 {
1106 /* This has a single ctf_slice_t. */
1107
1108 ctf_slice_t *s = (ctf_slice_t *) t;
1109
1110 assert (vbytes == sizeof (ctf_slice_t));
1111 swap_thing (s->cts_type);
1112 swap_thing (s->cts_offset);
1113 swap_thing (s->cts_bits);
1114
1115 break;
1116 }
1117
1118 case CTF_K_STRUCT:
1119 case CTF_K_UNION:
1120 {
1121 /* This has an array of ctf_member or ctf_lmember, depending on
1122 size. We could consider it to be a simple array of uint32_t,
1123 but for safety's sake in case these structures ever acquire
1124 non-uint32_t members, do it member by member. */
1125
1126 if (_libctf_unlikely_ (size >= CTF_LSTRUCT_THRESH))
1127 {
1128 ctf_lmember_t *lm = (ctf_lmember_t *) t;
5ae6af75
NA
1129 ssize_t i;
1130 for (i = vlen; i > 0; i--, lm++)
72f33921
NA
1131 {
1132 swap_thing (lm->ctlm_name);
1133 swap_thing (lm->ctlm_offsethi);
1134 swap_thing (lm->ctlm_type);
1135 swap_thing (lm->ctlm_offsetlo);
1136 }
1137 }
1138 else
1139 {
1140 ctf_member_t *m = (ctf_member_t *) t;
5ae6af75
NA
1141 ssize_t i;
1142 for (i = vlen; i > 0; i--, m++)
72f33921
NA
1143 {
1144 swap_thing (m->ctm_name);
1145 swap_thing (m->ctm_offset);
1146 swap_thing (m->ctm_type);
1147 }
1148 }
1149 break;
1150 }
1151
1152 case CTF_K_ENUM:
1153 {
1154 /* This has an array of ctf_enum_t. */
1155
1156 ctf_enum_t *item = (ctf_enum_t *) t;
5ae6af75 1157 ssize_t i;
72f33921 1158
5ae6af75 1159 for (i = vlen; i > 0; item++, i--)
72f33921
NA
1160 {
1161 swap_thing (item->cte_name);
1162 swap_thing (item->cte_value);
1163 }
1164 break;
1165 }
1166 default:
1167 ctf_dprintf ("unhandled CTF kind in endianness conversion -- %x\n",
1168 kind);
1169 return ECTF_CORRUPT;
1170 }
1171
1172 t = (ctf_type_t *) ((uintptr_t) t + vbytes);
1173 }
1174
1175 return 0;
1176}
1177
fd55eae8 1178/* Flip the endianness of BUF, given the offsets in the (already endian-
72f33921
NA
1179 converted) CTH.
1180
1181 All of this stuff happens before the header is fully initialized, so the
1182 LCTF_*() macros cannot be used yet. Since we do not try to endian-convert v1
1183 data, this is no real loss. */
1184
1185static int
fd55eae8 1186flip_ctf (ctf_header_t *cth, unsigned char *buf)
72f33921 1187{
fd55eae8
NA
1188 flip_lbls (buf + cth->cth_lbloff, cth->cth_objtoff - cth->cth_lbloff);
1189 flip_objts (buf + cth->cth_objtoff, cth->cth_funcoff - cth->cth_objtoff);
2db912ba
NA
1190 flip_objts (buf + cth->cth_funcoff, cth->cth_objtidxoff - cth->cth_funcoff);
1191 flip_objts (buf + cth->cth_objtidxoff, cth->cth_funcidxoff - cth->cth_objtidxoff);
1192 flip_objts (buf + cth->cth_funcidxoff, cth->cth_varoff - cth->cth_funcidxoff);
fd55eae8
NA
1193 flip_vars (buf + cth->cth_varoff, cth->cth_typeoff - cth->cth_varoff);
1194 return flip_types (buf + cth->cth_typeoff, cth->cth_stroff - cth->cth_typeoff);
72f33921
NA
1195}
1196
676c3ecb
NA
1197/* Set up the ctl hashes in a ctf_file_t. Called by both writable and
1198 non-writable dictionary initialization. */
1199void ctf_set_ctl_hashes (ctf_file_t *fp)
1200{
1201 /* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
1202 array of type name prefixes and the corresponding ctf_hash to use. */
1203 fp->ctf_lookups[0].ctl_prefix = "struct";
1204 fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
1205 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
1206 fp->ctf_lookups[1].ctl_prefix = "union";
1207 fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
1208 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
1209 fp->ctf_lookups[2].ctl_prefix = "enum";
1210 fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
1211 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
1212 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
1213 fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
1214 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
1215 fp->ctf_lookups[4].ctl_prefix = NULL;
1216 fp->ctf_lookups[4].ctl_len = 0;
1217 fp->ctf_lookups[4].ctl_hash = NULL;
1218}
1219
72f33921 1220/* Open a CTF file, mocking up a suitable ctf_sect. */
d851ecd3 1221
72f33921
NA
1222ctf_file_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
1223 const char *symsect, size_t symsect_size,
1224 size_t symsect_entsize,
1225 const char *strsect, size_t strsect_size,
1226 int *errp)
d851ecd3
NA
1227{
1228 return ctf_simple_open_internal (ctfsect, ctfsect_size, symsect, symsect_size,
1229 symsect_entsize, strsect, strsect_size, NULL,
676c3ecb 1230 0, errp);
d851ecd3
NA
1231}
1232
1233/* Open a CTF file, mocking up a suitable ctf_sect and overriding the external
1234 strtab with a synthetic one. */
1235
1236ctf_file_t *ctf_simple_open_internal (const char *ctfsect, size_t ctfsect_size,
1237 const char *symsect, size_t symsect_size,
1238 size_t symsect_entsize,
1239 const char *strsect, size_t strsect_size,
676c3ecb
NA
1240 ctf_dynhash_t *syn_strtab, int writable,
1241 int *errp)
72f33921
NA
1242{
1243 ctf_sect_t skeleton;
1244
1245 ctf_sect_t ctf_sect, sym_sect, str_sect;
1246 ctf_sect_t *ctfsectp = NULL;
1247 ctf_sect_t *symsectp = NULL;
1248 ctf_sect_t *strsectp = NULL;
1249
1250 skeleton.cts_name = _CTF_SECTION;
72f33921 1251 skeleton.cts_entsize = 1;
72f33921
NA
1252
1253 if (ctfsect)
1254 {
1255 memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
1256 ctf_sect.cts_data = ctfsect;
1257 ctf_sect.cts_size = ctfsect_size;
1258 ctfsectp = &ctf_sect;
1259 }
1260
1261 if (symsect)
1262 {
1263 memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
1264 sym_sect.cts_data = symsect;
1265 sym_sect.cts_size = symsect_size;
1266 sym_sect.cts_entsize = symsect_entsize;
1267 symsectp = &sym_sect;
1268 }
1269
1270 if (strsect)
1271 {
1272 memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
1273 str_sect.cts_data = strsect;
1274 str_sect.cts_size = strsect_size;
1275 strsectp = &str_sect;
1276 }
1277
676c3ecb
NA
1278 return ctf_bufopen_internal (ctfsectp, symsectp, strsectp, syn_strtab,
1279 writable, errp);
72f33921
NA
1280}
1281
1282/* Decode the specified CTF buffer and optional symbol table, and create a new
1283 CTF container representing the symbolic debugging information. This code can
1284 be used directly by the debugger, or it can be used as the engine for
1285 ctf_fdopen() or ctf_open(), below. */
1286
1287ctf_file_t *
1288ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1289 const ctf_sect_t *strsect, int *errp)
d851ecd3 1290{
676c3ecb 1291 return ctf_bufopen_internal (ctfsect, symsect, strsect, NULL, 0, errp);
d851ecd3
NA
1292}
1293
1294/* Like ctf_bufopen, but overriding the external strtab with a synthetic one. */
1295
1296ctf_file_t *
1297ctf_bufopen_internal (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1298 const ctf_sect_t *strsect, ctf_dynhash_t *syn_strtab,
676c3ecb 1299 int writable, int *errp)
72f33921
NA
1300{
1301 const ctf_preamble_t *pp;
fd55eae8
NA
1302 size_t hdrsz = sizeof (ctf_header_t);
1303 ctf_header_t *hp;
72f33921 1304 ctf_file_t *fp;
72f33921
NA
1305 int foreign_endian = 0;
1306 int err;
1307
1308 libctf_init_debug();
1309
d851ecd3
NA
1310 if ((ctfsect == NULL) || ((symsect != NULL) &&
1311 ((strsect == NULL) && syn_strtab == NULL)))
72f33921
NA
1312 return (ctf_set_open_errno (errp, EINVAL));
1313
1314 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
1315 symsect->cts_entsize != sizeof (Elf64_Sym))
1316 return (ctf_set_open_errno (errp, ECTF_SYMTAB));
1317
1318 if (symsect != NULL && symsect->cts_data == NULL)
1319 return (ctf_set_open_errno (errp, ECTF_SYMBAD));
1320
1321 if (strsect != NULL && strsect->cts_data == NULL)
1322 return (ctf_set_open_errno (errp, ECTF_STRBAD));
1323
1324 if (ctfsect->cts_size < sizeof (ctf_preamble_t))
1325 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1326
1327 pp = (const ctf_preamble_t *) ctfsect->cts_data;
1328
1329 ctf_dprintf ("ctf_bufopen: magic=0x%x version=%u\n",
1330 pp->ctp_magic, pp->ctp_version);
1331
1332 /* Validate each part of the CTF header.
1333
1334 First, we validate the preamble (common to all versions). At that point,
1335 we know the endianness and specific header version, and can validate the
1336 version-specific parts including section offsets and alignments.
1337
1338 We specifically do not support foreign-endian old versions. */
1339
1340 if (_libctf_unlikely_ (pp->ctp_magic != CTF_MAGIC))
1341 {
1342 if (pp->ctp_magic == bswap_16 (CTF_MAGIC))
1343 {
1344 if (pp->ctp_version != CTF_VERSION_3)
1345 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1346 foreign_endian = 1;
1347 }
1348 else
1349 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1350 }
1351
1352 if (_libctf_unlikely_ ((pp->ctp_version < CTF_VERSION_1)
1353 || (pp->ctp_version > CTF_VERSION_3)))
1354 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1355
1356 if ((symsect != NULL) && (pp->ctp_version < CTF_VERSION_2))
1357 {
1358 /* The symtab can contain function entries which contain embedded ctf
1359 info. We do not support dynamically upgrading such entries (none
1360 should exist in any case, since dwarf2ctf does not create them). */
1361
1362 ctf_dprintf ("ctf_bufopen: CTF version %d symsect not "
1363 "supported\n", pp->ctp_version);
1364 return (ctf_set_open_errno (errp, ECTF_NOTSUP));
1365 }
1366
fd55eae8
NA
1367 if (pp->ctp_version < CTF_VERSION_3)
1368 hdrsz = sizeof (ctf_header_v2_t);
1369
1370 if (ctfsect->cts_size < hdrsz)
72f33921
NA
1371 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1372
de07e349 1373 if ((fp = malloc (sizeof (ctf_file_t))) == NULL)
fd55eae8
NA
1374 return (ctf_set_open_errno (errp, ENOMEM));
1375
1376 memset (fp, 0, sizeof (ctf_file_t));
1377
676c3ecb
NA
1378 if (writable)
1379 fp->ctf_flags |= LCTF_RDWR;
1380
de07e349 1381 if ((fp->ctf_header = malloc (sizeof (struct ctf_header))) == NULL)
fd55eae8 1382 {
de07e349 1383 free (fp);
fd55eae8
NA
1384 return (ctf_set_open_errno (errp, ENOMEM));
1385 }
1386 hp = fp->ctf_header;
1387 memcpy (hp, ctfsect->cts_data, hdrsz);
1388 if (pp->ctp_version < CTF_VERSION_3)
1389 upgrade_header (hp);
72f33921
NA
1390
1391 if (foreign_endian)
fd55eae8 1392 flip_header (hp);
9b32cba4 1393 fp->ctf_openflags = hp->cth_flags;
fd55eae8 1394 fp->ctf_size = hp->cth_stroff + hp->cth_strlen;
72f33921 1395
fd55eae8
NA
1396 ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
1397 (unsigned long) fp->ctf_size);
72f33921 1398
fd55eae8 1399 if (hp->cth_lbloff > fp->ctf_size || hp->cth_objtoff > fp->ctf_size
2db912ba
NA
1400 || hp->cth_funcoff > fp->ctf_size || hp->cth_objtidxoff > fp->ctf_size
1401 || hp->cth_funcidxoff > fp->ctf_size || hp->cth_typeoff > fp->ctf_size
fd55eae8 1402 || hp->cth_stroff > fp->ctf_size)
72f33921
NA
1403 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1404
fd55eae8
NA
1405 if (hp->cth_lbloff > hp->cth_objtoff
1406 || hp->cth_objtoff > hp->cth_funcoff
1407 || hp->cth_funcoff > hp->cth_typeoff
2db912ba
NA
1408 || hp->cth_funcoff > hp->cth_objtidxoff
1409 || hp->cth_objtidxoff > hp->cth_funcidxoff
1410 || hp->cth_funcidxoff > hp->cth_varoff
fd55eae8 1411 || hp->cth_varoff > hp->cth_typeoff || hp->cth_typeoff > hp->cth_stroff)
72f33921
NA
1412 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1413
fd55eae8 1414 if ((hp->cth_lbloff & 3) || (hp->cth_objtoff & 2)
2db912ba
NA
1415 || (hp->cth_funcoff & 2) || (hp->cth_objtidxoff & 2)
1416 || (hp->cth_funcidxoff & 2) || (hp->cth_varoff & 3)
fd55eae8 1417 || (hp->cth_typeoff & 3))
72f33921
NA
1418 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1419
1420 /* Once everything is determined to be valid, attempt to decompress the CTF
1421 data buffer if it is compressed, or copy it into new storage if it is not
1422 compressed but needs endian-flipping. Otherwise we just put the data
1423 section's buffer pointer into ctf_buf, below. */
1424
1425 /* Note: if this is a v1 buffer, it will be reallocated and expanded by
1426 init_types(). */
1427
fd55eae8 1428 if (hp->cth_flags & CTF_F_COMPRESS)
72f33921 1429 {
a0486bac
JM
1430 size_t srclen;
1431 uLongf dstlen;
72f33921
NA
1432 const void *src;
1433 int rc = Z_OK;
1434
fd55eae8
NA
1435 /* We are allocating this ourselves, so we can drop the ctf header
1436 copy in favour of ctf->ctf_header. */
72f33921 1437
de07e349 1438 if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
fd55eae8
NA
1439 {
1440 err = ECTF_ZALLOC;
1441 goto bad;
1442 }
1443 fp->ctf_dynbase = fp->ctf_base;
1444 hp->cth_flags &= ~CTF_F_COMPRESS;
72f33921
NA
1445
1446 src = (unsigned char *) ctfsect->cts_data + hdrsz;
1447 srclen = ctfsect->cts_size - hdrsz;
fd55eae8
NA
1448 dstlen = fp->ctf_size;
1449 fp->ctf_buf = fp->ctf_base;
72f33921 1450
fd55eae8 1451 if ((rc = uncompress (fp->ctf_base, &dstlen, src, srclen)) != Z_OK)
72f33921
NA
1452 {
1453 ctf_dprintf ("zlib inflate err: %s\n", zError (rc));
fd55eae8
NA
1454 err = ECTF_DECOMPRESS;
1455 goto bad;
72f33921
NA
1456 }
1457
fd55eae8 1458 if ((size_t) dstlen != fp->ctf_size)
72f33921
NA
1459 {
1460 ctf_dprintf ("zlib inflate short -- got %lu of %lu "
fd55eae8
NA
1461 "bytes\n", (unsigned long) dstlen,
1462 (unsigned long) fp->ctf_size);
1463 err = ECTF_CORRUPT;
1464 goto bad;
72f33921 1465 }
72f33921
NA
1466 }
1467 else if (foreign_endian)
1468 {
de07e349 1469 if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
fd55eae8
NA
1470 {
1471 err = ECTF_ZALLOC;
1472 goto bad;
1473 }
1474 fp->ctf_dynbase = fp->ctf_base;
1475 memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data) + hdrsz,
1476 fp->ctf_size);
1477 fp->ctf_buf = fp->ctf_base;
72f33921
NA
1478 }
1479 else
fd55eae8
NA
1480 {
1481 /* We are just using the section passed in -- but its header may be an old
1482 version. Point ctf_buf past the old header, and never touch it
1483 again. */
1484 fp->ctf_base = (unsigned char *) ctfsect->cts_data;
1485 fp->ctf_dynbase = NULL;
1486 fp->ctf_buf = fp->ctf_base + hdrsz;
1487 }
72f33921
NA
1488
1489 /* Once we have uncompressed and validated the CTF data buffer, we can
fd55eae8 1490 proceed with initializing the ctf_file_t we allocated above.
72f33921
NA
1491
1492 Nothing that depends on buf or base should be set directly in this function
1493 before the init_types() call, because it may be reallocated during
1494 transparent upgrade if this recension of libctf is so configured: see
fd55eae8 1495 ctf_set_base(). */
72f33921 1496
fd55eae8 1497 ctf_set_version (fp, hp, hp->cth_version);
f5e9c9bd 1498 ctf_str_create_atoms (fp);
fd55eae8 1499 fp->ctf_parmax = CTF_MAX_PTYPE;
72f33921
NA
1500 memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));
1501
1502 if (symsect != NULL)
1503 {
1504 memcpy (&fp->ctf_symtab, symsect, sizeof (ctf_sect_t));
1505 memcpy (&fp->ctf_strtab, strsect, sizeof (ctf_sect_t));
1506 }
1507
1508 if (fp->ctf_data.cts_name != NULL)
de07e349
NA
1509 if ((fp->ctf_data.cts_name = strdup (fp->ctf_data.cts_name)) == NULL)
1510 {
1511 err = ENOMEM;
1512 goto bad;
1513 }
72f33921 1514 if (fp->ctf_symtab.cts_name != NULL)
de07e349
NA
1515 if ((fp->ctf_symtab.cts_name = strdup (fp->ctf_symtab.cts_name)) == NULL)
1516 {
1517 err = ENOMEM;
1518 goto bad;
1519 }
72f33921 1520 if (fp->ctf_strtab.cts_name != NULL)
de07e349
NA
1521 if ((fp->ctf_strtab.cts_name = strdup (fp->ctf_strtab.cts_name)) == NULL)
1522 {
1523 err = ENOMEM;
1524 goto bad;
1525 }
72f33921
NA
1526
1527 if (fp->ctf_data.cts_name == NULL)
1528 fp->ctf_data.cts_name = _CTF_NULLSTR;
1529 if (fp->ctf_symtab.cts_name == NULL)
1530 fp->ctf_symtab.cts_name = _CTF_NULLSTR;
1531 if (fp->ctf_strtab.cts_name == NULL)
1532 fp->ctf_strtab.cts_name = _CTF_NULLSTR;
1533
1534 if (strsect != NULL)
1535 {
1536 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
1537 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
1538 }
d851ecd3 1539 fp->ctf_syn_ext_strtab = syn_strtab;
72f33921
NA
1540
1541 if (foreign_endian &&
fd55eae8 1542 (err = flip_ctf (hp, fp->ctf_buf)) != 0)
72f33921
NA
1543 {
1544 /* We can be certain that flip_ctf() will have endian-flipped everything
fa56cdcd
NA
1545 other than the types table when we return. In particular the header
1546 is fine, so set it, to allow freeing to use the usual code path. */
72f33921 1547
fd55eae8 1548 ctf_set_base (fp, hp, fp->ctf_base);
72f33921
NA
1549 goto bad;
1550 }
1551
fd55eae8 1552 ctf_set_base (fp, hp, fp->ctf_base);
72f33921 1553
676c3ecb
NA
1554 /* No need to do anything else for dynamic containers: they do not support
1555 symbol lookups, and the type table is maintained in the dthashes. */
1556 if (fp->ctf_flags & LCTF_RDWR)
1557 {
1558 fp->ctf_refcnt = 1;
1559 return fp;
1560 }
1561
fd55eae8
NA
1562 if ((err = init_types (fp, hp)) != 0)
1563 goto bad;
72f33921 1564
72f33921 1565 /* If we have a symbol table section, allocate and initialize
fd55eae8
NA
1566 the symtab translation table, pointed to by ctf_sxlate. This table may be
1567 too large for the actual size of the object and function info sections: if
1568 so, ctf_nsyms will be adjusted and the excess will never be used. */
72f33921
NA
1569
1570 if (symsect != NULL)
1571 {
1572 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
de07e349 1573 fp->ctf_sxlate = malloc (fp->ctf_nsyms * sizeof (uint32_t));
72f33921
NA
1574
1575 if (fp->ctf_sxlate == NULL)
1576 {
fd55eae8 1577 err = ENOMEM;
72f33921
NA
1578 goto bad;
1579 }
1580
fd55eae8
NA
1581 if ((err = init_symtab (fp, hp, symsect, strsect)) != 0)
1582 goto bad;
72f33921
NA
1583 }
1584
676c3ecb 1585 ctf_set_ctl_hashes (fp);
72f33921
NA
1586
1587 if (symsect != NULL)
1588 {
1589 if (symsect->cts_entsize == sizeof (Elf64_Sym))
1590 (void) ctf_setmodel (fp, CTF_MODEL_LP64);
1591 else
1592 (void) ctf_setmodel (fp, CTF_MODEL_ILP32);
1593 }
1594 else
1595 (void) ctf_setmodel (fp, CTF_MODEL_NATIVE);
1596
1597 fp->ctf_refcnt = 1;
1598 return fp;
1599
1600bad:
fd55eae8 1601 ctf_set_open_errno (errp, err);
72f33921
NA
1602 ctf_file_close (fp);
1603 return NULL;
1604}
1605
1606/* Close the specified CTF container and free associated data structures. Note
1607 that ctf_file_close() is a reference counted operation: if the specified file
1608 is the parent of other active containers, its reference count will be greater
1609 than one and it will be freed later when no active children exist. */
1610
1611void
1612ctf_file_close (ctf_file_t *fp)
1613{
1614 ctf_dtdef_t *dtd, *ntd;
1615 ctf_dvdef_t *dvd, *nvd;
1616
1617 if (fp == NULL)
1618 return; /* Allow ctf_file_close(NULL) to simplify caller code. */
1619
1620 ctf_dprintf ("ctf_file_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);
1621
1622 if (fp->ctf_refcnt > 1)
1623 {
1624 fp->ctf_refcnt--;
1625 return;
1626 }
1627
de07e349
NA
1628 free (fp->ctf_dyncuname);
1629 free (fp->ctf_dynparname);
fd55eae8 1630 ctf_file_close (fp->ctf_parent);
72f33921
NA
1631
1632 for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
1633 {
1634 ntd = ctf_list_next (dtd);
1635 ctf_dtd_delete (fp, dtd);
1636 }
1637 ctf_dynhash_destroy (fp->ctf_dthash);
676c3ecb
NA
1638 if (fp->ctf_flags & LCTF_RDWR)
1639 {
1640 ctf_dynhash_destroy (fp->ctf_structs.ctn_writable);
1641 ctf_dynhash_destroy (fp->ctf_unions.ctn_writable);
1642 ctf_dynhash_destroy (fp->ctf_enums.ctn_writable);
1643 ctf_dynhash_destroy (fp->ctf_names.ctn_writable);
1644 }
1645 else
1646 {
1647 ctf_hash_destroy (fp->ctf_structs.ctn_readonly);
1648 ctf_hash_destroy (fp->ctf_unions.ctn_readonly);
1649 ctf_hash_destroy (fp->ctf_enums.ctn_readonly);
1650 ctf_hash_destroy (fp->ctf_names.ctn_readonly);
1651 }
72f33921
NA
1652
1653 for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
1654 {
1655 nvd = ctf_list_next (dvd);
1656 ctf_dvd_delete (fp, dvd);
1657 }
1658 ctf_dynhash_destroy (fp->ctf_dvhash);
f5e9c9bd 1659 ctf_str_free_atoms (fp);
de07e349 1660 free (fp->ctf_tmp_typeslice);
72f33921 1661
fd55eae8 1662 if (fp->ctf_data.cts_name != _CTF_NULLSTR)
de07e349 1663 free ((char *) fp->ctf_data.cts_name);
72f33921 1664
fd55eae8 1665 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR)
de07e349 1666 free ((char *) fp->ctf_symtab.cts_name);
72f33921 1667
fd55eae8 1668 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR)
de07e349 1669 free ((char *) fp->ctf_strtab.cts_name);
72f33921
NA
1670 else if (fp->ctf_data_mmapped)
1671 ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);
1672
de07e349 1673 free (fp->ctf_dynbase);
72f33921 1674
d851ecd3 1675 ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
72c83edd
NA
1676 ctf_dynhash_destroy (fp->ctf_link_inputs);
1677 ctf_dynhash_destroy (fp->ctf_link_outputs);
886453cb 1678 ctf_dynhash_destroy (fp->ctf_link_type_mapping);
49ea9b45 1679 ctf_dynhash_destroy (fp->ctf_link_cu_mapping);
99dc3ebd 1680 ctf_dynhash_destroy (fp->ctf_add_processing);
d851ecd3 1681
de07e349
NA
1682 free (fp->ctf_sxlate);
1683 free (fp->ctf_txlate);
1684 free (fp->ctf_ptrtab);
72f33921 1685
de07e349
NA
1686 free (fp->ctf_header);
1687 free (fp);
72f33921
NA
1688}
1689
143dce84
NA
1690/* The converse of ctf_open(). ctf_open() disguises whatever it opens as an
1691 archive, so closing one is just like closing an archive. */
1692void
1693ctf_close (ctf_archive_t *arc)
1694{
1695 ctf_arc_close (arc);
1696}
1697
9402cc59
NA
1698/* Get the CTF archive from which this ctf_file_t is derived. */
1699ctf_archive_t *
1700ctf_get_arc (const ctf_file_t *fp)
1701{
1702 return fp->ctf_archive;
1703}
1704
72f33921
NA
1705/* Return the ctfsect out of the core ctf_impl. Useful for freeing the
1706 ctfsect's data * after ctf_file_close(), which is why we return the actual
1707 structure, not a pointer to it, since that is likely to become a pointer to
1708 freed data before the return value is used under the expected use case of
1709 ctf_getsect()/ ctf_file_close()/free(). */
676c3ecb 1710ctf_sect_t
72f33921
NA
1711ctf_getdatasect (const ctf_file_t *fp)
1712{
1713 return fp->ctf_data;
1714}
1715
1716/* Return the CTF handle for the parent CTF container, if one exists.
1717 Otherwise return NULL to indicate this container has no imported parent. */
1718ctf_file_t *
1719ctf_parent_file (ctf_file_t *fp)
1720{
1721 return fp->ctf_parent;
1722}
1723
1724/* Return the name of the parent CTF container, if one exists. Otherwise
1725 return NULL to indicate this container is a root container. */
1726const char *
1727ctf_parent_name (ctf_file_t *fp)
1728{
1729 return fp->ctf_parname;
1730}
1731
1732/* Set the parent name. It is an error to call this routine without calling
1733 ctf_import() at some point. */
de07e349 1734int
72f33921
NA
1735ctf_parent_name_set (ctf_file_t *fp, const char *name)
1736{
1737 if (fp->ctf_dynparname != NULL)
de07e349 1738 free (fp->ctf_dynparname);
72f33921 1739
de07e349
NA
1740 if ((fp->ctf_dynparname = strdup (name)) == NULL)
1741 return (ctf_set_errno (fp, ENOMEM));
72f33921 1742 fp->ctf_parname = fp->ctf_dynparname;
de07e349 1743 return 0;
72f33921
NA
1744}
1745
fd55eae8
NA
1746/* Return the name of the compilation unit this CTF file applies to. Usually
1747 non-NULL only for non-parent containers. */
1748const char *
1749ctf_cuname (ctf_file_t *fp)
1750{
1751 return fp->ctf_cuname;
1752}
1753
1754/* Set the compilation unit name. */
de07e349 1755int
fd55eae8
NA
1756ctf_cuname_set (ctf_file_t *fp, const char *name)
1757{
1758 if (fp->ctf_dyncuname != NULL)
de07e349 1759 free (fp->ctf_dyncuname);
fd55eae8 1760
de07e349
NA
1761 if ((fp->ctf_dyncuname = strdup (name)) == NULL)
1762 return (ctf_set_errno (fp, ENOMEM));
fd55eae8 1763 fp->ctf_cuname = fp->ctf_dyncuname;
de07e349 1764 return 0;
fd55eae8
NA
1765}
1766
72f33921
NA
1767/* Import the types from the specified parent container by storing a pointer
1768 to it in ctf_parent and incrementing its reference count. Only one parent
1769 is allowed: if a parent already exists, it is replaced by the new parent. */
1770int
1771ctf_import (ctf_file_t *fp, ctf_file_t *pfp)
1772{
1773 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1774 return (ctf_set_errno (fp, EINVAL));
1775
1776 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1777 return (ctf_set_errno (fp, ECTF_DMODEL));
1778
1779 if (fp->ctf_parent != NULL)
de07e349 1780 {
ad613f1d 1781 fp->ctf_parent->ctf_refcnt--;
de07e349
NA
1782 ctf_file_close (fp->ctf_parent);
1783 fp->ctf_parent = NULL;
1784 }
72f33921
NA
1785
1786 if (pfp != NULL)
1787 {
de07e349 1788 int err;
72f33921
NA
1789
1790 if (fp->ctf_parname == NULL)
de07e349
NA
1791 if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
1792 return err;
1793
1794 fp->ctf_flags |= LCTF_CHILD;
1795 pfp->ctf_refcnt++;
72f33921 1796 }
ad613f1d 1797
72f33921
NA
1798 fp->ctf_parent = pfp;
1799 return 0;
1800}
1801
1802/* Set the data model constant for the CTF container. */
1803int
1804ctf_setmodel (ctf_file_t *fp, int model)
1805{
1806 const ctf_dmodel_t *dp;
1807
1808 for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
1809 {
1810 if (dp->ctd_code == model)
1811 {
1812 fp->ctf_dmodel = dp;
1813 return 0;
1814 }
1815 }
1816
1817 return (ctf_set_errno (fp, EINVAL));
1818}
1819
1820/* Return the data model constant for the CTF container. */
1821int
1822ctf_getmodel (ctf_file_t *fp)
1823{
1824 return fp->ctf_dmodel->ctd_code;
1825}
1826
a0486bac
JM
1827/* The caller can hang an arbitrary pointer off each ctf_file_t using this
1828 function. */
72f33921
NA
1829void
1830ctf_setspecific (ctf_file_t *fp, void *data)
1831{
1832 fp->ctf_specific = data;
1833}
1834
a0486bac 1835/* Retrieve the arbitrary pointer again. */
72f33921
NA
1836void *
1837ctf_getspecific (ctf_file_t *fp)
1838{
1839 return fp->ctf_specific;
1840}