]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blobdiff - zlib/examples/enough.c
Rebase the zlib sources to the 1.2.12 release
[thirdparty/binutils-gdb.git] / zlib / examples / enough.c
index b991144305253c58e3397d7ff7737aa93d4a136b..19cf08c1f970e5b01d0b1234dba03dfa3b0272b3 100644 (file)
@@ -1,7 +1,7 @@
 /* enough.c -- determine the maximum size of inflate's Huffman code tables over
- * all possible valid and complete Huffman codes, subject to a length limit.
- * Copyright (C) 2007, 2008, 2012 Mark Adler
- * Version 1.4  18 August 2012  Mark Adler
+ * all possible valid and complete prefix codes, subject to a length limit.
+ * Copyright (C) 2007, 2008, 2012, 2018 Mark Adler
+ * Version 1.5  5 August 2018  Mark Adler
  */
 
 /* Version history:
    1.4  18 Aug 2012  Avoid shifts more than bits in type (caused endless loop!)
                      Clean up comparisons of different types
                      Clean up code indentation
+   1.5   5 Aug 2018  Clean up code style, formatting, and comments
+                     Show all the codes for the maximum, and only the maximum
  */
 
 /*
-   Examine all possible Huffman codes for a given number of symbols and a
-   maximum code length in bits to determine the maximum table size for zilb's
-   inflate.  Only complete Huffman codes are counted.
+   Examine all possible prefix codes for a given number of symbols and a
+   maximum code length in bits to determine the maximum table size for zlib's
+   inflate. Only complete prefix codes are counted.
 
    Two codes are considered distinct if the vectors of the number of codes per
-   length are not identical.  So permutations of the symbol assignments result
+   length are not identical. So permutations of the symbol assignments result
    in the same code for the counting, as do permutations of the assignments of
    the bit values to the codes (i.e. only canonical codes are counted).
 
    We build a code from shorter to longer lengths, determining how many symbols
-   are coded at each length.  At each step, we have how many symbols remain to
+   are coded at each length. At each step, we have how many symbols remain to
    be coded, what the last code length used was, and how many bit patterns of
    that length remain unused. Then we add one to the code length and double the
-   number of unused patterns to graduate to the next code length.  We then
+   number of unused patterns to graduate to the next code length. We then
    assign all portions of the remaining symbols to that code length that
-   preserve the properties of a correct and eventually complete code.  Those
+   preserve the properties of a correct and eventually complete code. Those
    properties are: we cannot use more bit patterns than are available; and when
-   all the symbols are used, there are exactly zero possible bit patterns
-   remaining.
+   all the symbols are used, there are exactly zero possible bit patterns left
+   unused.
 
    The inflate Huffman decoding algorithm uses two-level lookup tables for
-   speed.  There is a single first-level table to decode codes up to root bits
-   in length (root == 9 in the current inflate implementation).  The table
-   has 1 << root entries and is indexed by the next root bits of input.  Codes
-   shorter than root bits have replicated table entries, so that the correct
-   entry is pointed to regardless of the bits that follow the short code.  If
-   the code is longer than root bits, then the table entry points to a second-
-   level table.  The size of that table is determined by the longest code with
-   that root-bit prefix.  If that longest code has length len, then the table
-   has size 1 << (len - root), to index the remaining bits in that set of
-   codes.  Each subsequent root-bit prefix then has its own sub-table.  The
-   total number of table entries required by the code is calculated
-   incrementally as the number of codes at each bit length is populated.  When
-   all of the codes are shorter than root bits, then root is reduced to the
-   longest code length, resulting in a single, smaller, one-level table.
+   speed. There is a single first-level table to decode codes up to root bits
+   in length (root == 9 for literal/length codes and root == 6 for distance
+   codes, in the current inflate implementation). The base table has 1 << root
+   entries and is indexed by the next root bits of input. Codes shorter than
+   root bits have replicated table entries, so that the correct entry is
+   pointed to regardless of the bits that follow the short code. If the code is
+   longer than root bits, then the table entry points to a second-level table.
+   The size of that table is determined by the longest code with that root-bit
+   prefix. If that longest code has length len, then the table has size 1 <<
+   (len - root), to index the remaining bits in that set of codes. Each
+   subsequent root-bit prefix then has its own sub-table. The total number of
+   table entries required by the code is calculated incrementally as the number
+   of codes at each bit length is populated. When all of the codes are shorter
+   than root bits, then root is reduced to the longest code length, resulting
+   in a single, smaller, one-level table.
 
    The inflate algorithm also provides for small values of root (relative to
    the log2 of the number of symbols), where the shortest code has more bits
-   than root.  In that case, root is increased to the length of the shortest
-   code.  This program, by design, does not handle that case, so it is verified
-   that the number of symbols is less than 2^(root + 1).
+   than root. In that case, root is increased to the length of the shortest
+   code. This program, by design, does not handle that case, so it is verified
+   that the number of symbols is less than 1 << (root + 1).
 
    In order to speed up the examination (by about ten orders of magnitude for
    the default arguments), the intermediate states in the build-up of a code
-   are remembered and previously visited branches are pruned.  The memory
+   are remembered and previously visited branches are pruned. The memory
    required for this will increase rapidly with the total number of symbols and
-   the maximum code length in bits.  However this is a very small price to pay
+   the maximum code length in bits. However this is a very small price to pay
    for the vast speedup.
 
-   First, all of the possible Huffman codes are counted, and reachable
+   First, all of the possible prefix codes are counted, and reachable
    intermediate states are noted by a non-zero count in a saved-results array.
    Second, the intermediate states that lead to (root + 1) bit or longer codes
    are used to look at all sub-codes from those junctures for their inflate
-   memory usage.  (The amount of memory used is not affected by the number of
+   memory usage. (The amount of memory used is not affected by the number of
    codes of root bits or less in length.)  Third, the visited states in the
    construction of those sub-codes and the associated calculation of the table
    size is recalled in order to avoid recalculating from the same juncture.
    Beginning the code examination at (root + 1) bit codes, which is enabled by
    identifying the reachable nodes, accounts for about six of the orders of
-   magnitude of improvement for the default arguments.  About another four
-   orders of magnitude come from not revisiting previous states.  Out of
-   approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
+   magnitude of improvement for the default arguments. About another four
+   orders of magnitude come from not revisiting previous states. Out of
+   approximately 2x10^16 possible prefix codes, only about 2x10^6 sub-codes
    need to be examined to cover all of the possible table memory usage cases
    for the default arguments of 286 symbols limited to 15-bit codes.
 
-   Note that an unsigned long long type is used for counting.  It is quite easy
-   to exceed the capacity of an eight-byte integer with a large number of
-   symbols and a large maximum code length, so multiple-precision arithmetic
-   would need to replace the unsigned long long arithmetic in that case.  This
-   program will abort if an overflow occurs.  The big_t type identifies where
-   the counting takes place.
-
-   An unsigned long long type is also used for calculating the number of
-   possible codes remaining at the maximum length.  This limits the maximum
-   code length to the number of bits in a long long minus the number of bits
-   needed to represent the symbols in a flat code.  The code_t type identifies
-   where the bit pattern counting takes place.
+   Note that the uintmax_t type is used for counting. It is quite easy to
+   exceed the capacity of an eight-byte integer with a large number of symbols
+   and a large maximum code length, so multiple-precision arithmetic would need
+   to replace the integer arithmetic in that case. This program will abort if
+   an overflow occurs. The big_t type identifies where the counting takes
+   place.
+
+   The uintmax_t type is also used for calculating the number of possible codes
+   remaining at the maximum length. This limits the maximum code length to the
+   number of bits in a long long minus the number of bits needed to represent
+   the symbols in a flat code. The code_t type identifies where the bit-pattern
+   counting takes place.
  */
 
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdarg.h>
+#include <stdint.h>
 #include <assert.h>
 
 #define local static
 
-/* special data types */
-typedef unsigned long long big_t;   /* type for code counting */
-typedef unsigned long long code_t;  /* type for bit pattern counting */
-struct tab {                        /* type for been here check */
-    size_t len;         /* length of bit vector in char's */
-    char *vec;          /* allocated bit vector */
+// Special data types.
+typedef uintmax_t big_t;    // type for code counting
+#define PRIbig "ju"         // printf format for big_t
+typedef uintmax_t code_t;   // type for bit pattern counting
+struct tab {                // type for been-here check
+    size_t len;             // allocated length of bit vector in octets
+    char *vec;              // allocated bit vector
 };
 
 /* The array for saving results, num[], is indexed with this triplet:
@@ -126,447 +132,466 @@ struct tab {                        /* type for been here check */
       left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
       len: 1..max - 1 (max == maximum code length in bits)
 
-   syms == 2 is not saved since that immediately leads to a single code.  left
+   syms == 2 is not saved since that immediately leads to a single code. left
    must be even, since it represents the number of available bit patterns at
-   the current length, which is double the number at the previous length.
-   left ends at syms-1 since left == syms immediately results in a single code.
+   the current length, which is double the number at the previous length. left
+   ends at syms-1 since left == syms immediately results in a single code.
    (left > sym is not allowed since that would result in an incomplete code.)
    len is less than max, since the code completes immediately when len == max.
 
-   The offset into the array is calculated for the three indices with the
-   first one (syms) being outermost, and the last one (len) being innermost.
-   We build the array with length max-1 lists for the len index, with syms-3
-   of those for each symbol.  There are totsym-2 of those, with each one
-   varying in length as a function of sym.  See the calculation of index in
-   count() for the index, and the calculation of size in main() for the size
-   of the array.
+   The offset into the array is calculated for the three indices with the first
+   one (syms) being outermost, and the last one (len) being innermost. We build
+   the array with length max-1 lists for the len index, with syms-3 of those
+   for each symbol. There are totsym-2 of those, with each one varying in
+   length as a function of sym. See the calculation of index in map() for the
+   index, and the calculation of size in main() for the size of the array.
 
    For the deflate example of 286 symbols limited to 15-bit codes, the array
-   has 284,284 entries, taking up 2.17 MB for an 8-byte big_t.  More than
-   half of the space allocated for saved results is actually used -- not all
-   possible triplets are reached in the generation of valid Huffman codes.
+   has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than half
+   of the space allocated for saved results is actually used -- not all
+   possible triplets are reached in the generation of valid prefix codes.
  */
 
 /* The array for tracking visited states, done[], is itself indexed identically
    to the num[] array as described above for the (syms, left, len) triplet.
    Each element in the array is further indexed by the (mem, rem) doublet,
    where mem is the amount of inflate table space used so far, and rem is the
-   remaining unused entries in the current inflate sub-table.  Each indexed
+   remaining unused entries in the current inflate sub-table. Each indexed
    element is simply one bit indicating whether the state has been visited or
-   not.  Since the ranges for mem and rem are not known a priori, each bit
+   not. Since the ranges for mem and rem are not known a priori, each bit
    vector is of a variable size, and grows as needed to accommodate the visited
-   states.  mem and rem are used to calculate a single index in a triangular
-   array.  Since the range of mem is expected in the default case to be about
+   states. mem and rem are used to calculate a single index in a triangular
+   array. Since the range of mem is expected in the default case to be about
    ten times larger than the range of rem, the array is skewed to reduce the
-   memory usage, with eight times the range for mem than for rem.  See the
-   calculations for offset and bit in beenhere() for the details.
+   memory usage, with eight times the range for mem than for rem. See the
+   calculations for offset and bit in been_here() for the details.
 
    For the deflate example of 286 symbols limited to 15-bit codes, the bit
-   vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
-   array itself.
+   vectors grow to total 5.5 MB, in addition to the 4.3 MB done array itself.
  */
 
-/* Globals to avoid propagating constants or constant pointers recursively */
-local int max;          /* maximum allowed bit length for the codes */
-local int root;         /* size of base code table in bits */
-local int large;        /* largest code table so far */
-local size_t size;      /* number of elements in num and done */
-local int *code;        /* number of symbols assigned to each bit length */
-local big_t *num;       /* saved results array for code counting */
-local struct tab *done; /* states already evaluated array */
-
-/* Index function for num[] and done[] */
-#define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
-
-/* Free allocated space.  Uses globals code, num, and done. */
-local void cleanup(void)
-{
-    size_t n;
-
-    if (done != NULL) {
-        for (n = 0; n < size; n++)
-            if (done[n].len)
-                free(done[n].vec);
-        free(done);
+// Type for a variable-length, allocated string.
+typedef struct {
+    char *str;          // pointer to allocated string
+    size_t size;        // size of allocation
+    size_t len;         // length of string, not including terminating zero
+} string_t;
+
+// Clear a string_t.
+local void string_clear(string_t *s) {
+    s->str[0] = 0;
+    s->len = 0;
+}
+
+// Initialize a string_t.
+local void string_init(string_t *s) {
+    s->size = 16;
+    s->str = malloc(s->size);
+    assert(s->str != NULL && "out of memory");
+    string_clear(s);
+}
+
+// Release the allocation of a string_t.
+local void string_free(string_t *s) {
+    free(s->str);
+    s->str = NULL;
+    s->size = 0;
+    s->len = 0;
+}
+
+// Save the results of printf with fmt and the subsequent argument list to s.
+// Each call appends to s. The allocated space for s is increased as needed.
+local void string_printf(string_t *s, char *fmt, ...) {
+    va_list ap;
+    va_start(ap, fmt);
+    size_t len = s->len;
+    int ret = vsnprintf(s->str + len, s->size - len, fmt, ap);
+    assert(ret >= 0 && "out of memory");
+    s->len += ret;
+    if (s->size < s->len + 1) {
+        do {
+            s->size <<= 1;
+            assert(s->size != 0 && "overflow");
+        } while (s->size < s->len + 1);
+        s->str = realloc(s->str, s->size);
+        assert(s->str != NULL && "out of memory");
+        vsnprintf(s->str + len, s->size - len, fmt, ap);
     }
-    if (num != NULL)
-        free(num);
-    if (code != NULL)
-        free(code);
+    va_end(ap);
 }
 
-/* Return the number of possible Huffman codes using bit patterns of lengths
-   len through max inclusive, coding syms symbols, with left bit patterns of
-   length len unused -- return -1 if there is an overflow in the counting.
-   Keep a record of previous results in num to prevent repeating the same
-   calculation.  Uses the globals max and num. */
-local big_t count(int syms, int len, int left)
-{
-    big_t sum;          /* number of possible codes from this juncture */
-    big_t got;          /* value returned from count() */
-    int least;          /* least number of syms to use at this juncture */
-    int most;           /* most number of syms to use at this juncture */
-    int use;            /* number of bit patterns to use in next call */
-    size_t index;       /* index of this case in *num */
-
-    /* see if only one possible code */
+// Globals to avoid propagating constants or constant pointers recursively.
+struct {
+    int max;            // maximum allowed bit length for the codes
+    int root;           // size of base code table in bits
+    int large;          // largest code table so far
+    size_t size;        // number of elements in num and done
+    big_t tot;          // total number of codes with maximum tables size
+    string_t out;       // display of subcodes for maximum tables size
+    int *code;          // number of symbols assigned to each bit length
+    big_t *num;         // saved results array for code counting
+    struct tab *done;   // states already evaluated array
+} g;
+
+// Index function for num[] and done[].
+local inline size_t map(int syms, int left, int len) {
+    return ((size_t)((syms - 1) >> 1) * ((syms - 2) >> 1) +
+            (left >> 1) - 1) * (g.max - 1) +
+           len - 1;
+}
+
+// Free allocated space in globals.
+local void cleanup(void) {
+    if (g.done != NULL) {
+        for (size_t n = 0; n < g.size; n++)
+            if (g.done[n].len)
+                free(g.done[n].vec);
+        g.size = 0;
+        free(g.done);   g.done = NULL;
+    }
+    free(g.num);    g.num = NULL;
+    free(g.code);   g.code = NULL;
+    string_free(&g.out);
+}
+
+// Return the number of possible prefix codes using bit patterns of lengths len
+// through max inclusive, coding syms symbols, with left bit patterns of length
+// len unused -- return -1 if there is an overflow in the counting. Keep a
+// record of previous results in num to prevent repeating the same calculation.
+local big_t count(int syms, int left, int len) {
+    // see if only one possible code
     if (syms == left)
         return 1;
 
-    /* note and verify the expected state */
-    assert(syms > left && left > 0 && len < max);
+    // note and verify the expected state
+    assert(syms > left && left > 0 && len < g.max);
 
-    /* see if we've done this one already */
-    index = INDEX(syms, left, len);
-    got = num[index];
+    // see if we've done this one already
+    size_t index = map(syms, left, len);
+    big_t got = g.num[index];
     if (got)
-        return got;         /* we have -- return the saved result */
+        return got;         // we have -- return the saved result
 
-    /* we need to use at least this many bit patterns so that the code won't be
-       incomplete at the next length (more bit patterns than symbols) */
-    least = (left << 1) - syms;
+    // we need to use at least this many bit patterns so that the code won't be
+    // incomplete at the next length (more bit patterns than symbols)
+    int least = (left << 1) - syms;
     if (least < 0)
         least = 0;
 
-    /* we can use at most this many bit patterns, lest there not be enough
-       available for the remaining symbols at the maximum length (if there were
-       no limit to the code length, this would become: most = left - 1) */
-    most = (((code_t)left << (max - len)) - syms) /
-            (((code_t)1 << (max - len)) - 1);
+    // we can use at most this many bit patterns, lest there not be enough
+    // available for the remaining symbols at the maximum length (if there were
+    // no limit to the code length, this would become: most = left - 1)
+    int most = (((code_t)left << (g.max - len)) - syms) /
+               (((code_t)1 << (g.max - len)) - 1);
 
-    /* count all possible codes from this juncture and add them up */
-    sum = 0;
-    for (use = least; use <= most; use++) {
-        got = count(syms - use, len + 1, (left - use) << 1);
+    // count all possible codes from this juncture and add them up
+    big_t sum = 0;
+    for (int use = least; use <= most; use++) {
+        got = count(syms - use, (left - use) << 1, len + 1);
         sum += got;
-        if (got == (big_t)0 - 1 || sum < got)   /* overflow */
-            return (big_t)0 - 1;
+        if (got == (big_t)-1 || sum < got)      // overflow
+            return (big_t)-1;
     }
 
-    /* verify that all recursive calls are productive */
+    // verify that all recursive calls are productive
     assert(sum != 0);
 
-    /* save the result and return it */
-    num[index] = sum;
+    // save the result and return it
+    g.num[index] = sum;
     return sum;
 }
 
-/* Return true if we've been here before, set to true if not.  Set a bit in a
-   bit vector to indicate visiting this state.  Each (syms,len,left) state
-   has a variable size bit vector indexed by (mem,rem).  The bit vector is
-   lengthened if needed to allow setting the (mem,rem) bit. */
-local int beenhere(int syms, int len, int left, int mem, int rem)
-{
-    size_t index;       /* index for this state's bit vector */
-    size_t offset;      /* offset in this state's bit vector */
-    int bit;            /* mask for this state's bit */
-    size_t length;      /* length of the bit vector in bytes */
-    char *vector;       /* new or enlarged bit vector */
-
-    /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
-    index = INDEX(syms, left, len);
-    mem -= 1 << root;
-    offset = (mem >> 3) + rem;
+// Return true if we've been here before, set to true if not. Set a bit in a
+// bit vector to indicate visiting this state. Each (syms,len,left) state has a
+// variable size bit vector indexed by (mem,rem). The bit vector is lengthened
+// as needed to allow setting the (mem,rem) bit.
+local int been_here(int syms, int left, int len, int mem, int rem) {
+    // point to vector for (syms,left,len), bit in vector for (mem,rem)
+    size_t index = map(syms, left, len);
+    mem -= 1 << g.root;             // mem always includes the root table
+    mem >>= 1;                      // mem and rem are always even
+    rem >>= 1;
+    size_t offset = (mem >> 3) + rem;
     offset = ((offset * (offset + 1)) >> 1) + rem;
-    bit = 1 << (mem & 7);
+    int bit = 1 << (mem & 7);
 
-    /* see if we've been here */
-    length = done[index].len;
-    if (offset < length && (done[index].vec[offset] & bit) != 0)
-        return 1;       /* done this! */
+    // see if we've been here
+    size_t length = g.done[index].len;
+    if (offset < length && (g.done[index].vec[offset] & bit) != 0)
+        return 1;       // done this!
 
-    /* we haven't been here before -- set the bit to show we have now */
+    // we haven't been here before -- set the bit to show we have now
 
-    /* see if we need to lengthen the vector in order to set the bit */
+    // see if we need to lengthen the vector in order to set the bit
     if (length <= offset) {
-        /* if we have one already, enlarge it, zero out the appended space */
+        // if we have one already, enlarge it, zero out the appended space
+        char *vector;
         if (length) {
             do {
                 length <<= 1;
             } while (length <= offset);
-            vector = realloc(done[index].vec, length);
-            if (vector != NULL)
-                memset(vector + done[index].len, 0, length - done[index].len);
+            vector = realloc(g.done[index].vec, length);
+            assert(vector != NULL && "out of memory");
+            memset(vector + g.done[index].len, 0, length - g.done[index].len);
         }
 
-        /* otherwise we need to make a new vector and zero it out */
+        // otherwise we need to make a new vector and zero it out
         else {
-            length = 1 << (len - root);
+            length = 16;
             while (length <= offset)
                 length <<= 1;
-            vector = calloc(length, sizeof(char));
-        }
-
-        /* in either case, bail if we can't get the memory */
-        if (vector == NULL) {
-            fputs("abort: unable to allocate enough memory\n", stderr);
-            cleanup();
-            exit(1);
+            vector = calloc(length, 1);
+            assert(vector != NULL && "out of memory");
         }
 
-        /* install the new vector */
-        done[index].len = length;
-        done[index].vec = vector;
+        // install the new vector
+        g.done[index].len = length;
+        g.done[index].vec = vector;
     }
 
-    /* set the bit */
-    done[index].vec[offset] |= bit;
+    // set the bit
+    g.done[index].vec[offset] |= bit;
     return 0;
 }
 
-/* Examine all possible codes from the given node (syms, len, left).  Compute
-   the amount of memory required to build inflate's decoding tables, where the
-   number of code structures used so far is mem, and the number remaining in
-   the current sub-table is rem.  Uses the globals max, code, root, large, and
-   done. */
-local void examine(int syms, int len, int left, int mem, int rem)
-{
-    int least;          /* least number of syms to use at this juncture */
-    int most;           /* most number of syms to use at this juncture */
-    int use;            /* number of bit patterns to use in next call */
-
-    /* see if we have a complete code */
+// Examine all possible codes from the given node (syms, len, left). Compute
+// the amount of memory required to build inflate's decoding tables, where the
+// number of code structures used so far is mem, and the number remaining in
+// the current sub-table is rem.
+local void examine(int syms, int left, int len, int mem, int rem) {
+    // see if we have a complete code
     if (syms == left) {
-        /* set the last code entry */
-        code[len] = left;
+        // set the last code entry
+        g.code[len] = left;
 
-        /* complete computation of memory used by this code */
+        // complete computation of memory used by this code
         while (rem < left) {
             left -= rem;
-            rem = 1 << (len - root);
+            rem = 1 << (len - g.root);
             mem += rem;
         }
         assert(rem == left);
 
-        /* if this is a new maximum, show the entries used and the sub-code */
-        if (mem > large) {
-            large = mem;
-            printf("max %d: ", mem);
-            for (use = root + 1; use <= max; use++)
-                if (code[use])
-                    printf("%d[%d] ", code[use], use);
-            putchar('\n');
-            fflush(stdout);
+        // if this is at the maximum, show the sub-code
+        if (mem >= g.large) {
+            // if this is a new maximum, update the maximum and clear out the
+            // printed sub-codes from the previous maximum
+            if (mem > g.large) {
+                g.large = mem;
+                string_clear(&g.out);
+            }
+
+            // compute the starting state for this sub-code
+            syms = 0;
+            left = 1 << g.max;
+            for (int bits = g.max; bits > g.root; bits--) {
+                syms += g.code[bits];
+                left -= g.code[bits];
+                assert((left & 1) == 0);
+                left >>= 1;
+            }
+
+            // print the starting state and the resulting sub-code to g.out
+            string_printf(&g.out, "<%u, %u, %u>:",
+                          syms, g.root + 1, ((1 << g.root) - left) << 1);
+            for (int bits = g.root + 1; bits <= g.max; bits++)
+                if (g.code[bits])
+                    string_printf(&g.out, " %d[%d]", g.code[bits], bits);
+            string_printf(&g.out, "\n");
         }
 
-        /* remove entries as we drop back down in the recursion */
-        code[len] = 0;
+        // remove entries as we drop back down in the recursion
+        g.code[len] = 0;
         return;
     }
 
-    /* prune the tree if we can */
-    if (beenhere(syms, len, left, mem, rem))
+    // prune the tree if we can
+    if (been_here(syms, left, len, mem, rem))
         return;
 
-    /* we need to use at least this many bit patterns so that the code won't be
-       incomplete at the next length (more bit patterns than symbols) */
-    least = (left << 1) - syms;
+    // we need to use at least this many bit patterns so that the code won't be
+    // incomplete at the next length (more bit patterns than symbols)
+    int least = (left << 1) - syms;
     if (least < 0)
         least = 0;
 
-    /* we can use at most this many bit patterns, lest there not be enough
-       available for the remaining symbols at the maximum length (if there were
-       no limit to the code length, this would become: most = left - 1) */
-    most = (((code_t)left << (max - len)) - syms) /
-            (((code_t)1 << (max - len)) - 1);
+    // we can use at most this many bit patterns, lest there not be enough
+    // available for the remaining symbols at the maximum length (if there were
+    // no limit to the code length, this would become: most = left - 1)
+    int most = (((code_t)left << (g.max - len)) - syms) /
+               (((code_t)1 << (g.max - len)) - 1);
 
-    /* occupy least table spaces, creating new sub-tables as needed */
-    use = least;
+    // occupy least table spaces, creating new sub-tables as needed
+    int use = least;
     while (rem < use) {
         use -= rem;
-        rem = 1 << (len - root);
+        rem = 1 << (len - g.root);
         mem += rem;
     }
     rem -= use;
 
-    /* examine codes from here, updating table space as we go */
+    // examine codes from here, updating table space as we go
     for (use = least; use <= most; use++) {
-        code[len] = use;
-        examine(syms - use, len + 1, (left - use) << 1,
-                mem + (rem ? 1 << (len - root) : 0), rem << 1);
+        g.code[len] = use;
+        examine(syms - use, (left - use) << 1, len + 1,
+                mem + (rem ? 1 << (len - g.root) : 0), rem << 1);
         if (rem == 0) {
-            rem = 1 << (len - root);
+            rem = 1 << (len - g.root);
             mem += rem;
         }
         rem--;
     }
 
-    /* remove entries as we drop back down in the recursion */
-    code[len] = 0;
+    // remove entries as we drop back down in the recursion
+    g.code[len] = 0;
 }
 
-/* Look at all sub-codes starting with root + 1 bits.  Look at only the valid
-   intermediate code states (syms, left, len).  For each completed code,
-   calculate the amount of memory required by inflate to build the decoding
-   tables. Find the maximum amount of memory required and show the code that
-   requires that maximum.  Uses the globals max, root, and num. */
-local void enough(int syms)
-{
-    int n;              /* number of remaing symbols for this node */
-    int left;           /* number of unused bit patterns at this length */
-    size_t index;       /* index of this case in *num */
-
-    /* clear code */
-    for (n = 0; n <= max; n++)
-        code[n] = 0;
-
-    /* look at all (root + 1) bit and longer codes */
-    large = 1 << root;              /* base table */
-    if (root < max)                 /* otherwise, there's only a base table */
-        for (n = 3; n <= syms; n++)
-            for (left = 2; left < n; left += 2)
-            {
-                /* look at all reachable (root + 1) bit nodes, and the
-                   resulting codes (complete at root + 2 or more) */
-                index = INDEX(n, left, root + 1);
-                if (root + 1 < max && num[index])       /* reachable node */
-                    examine(n, root + 1, left, 1 << root, 0);
-
-                /* also look at root bit codes with completions at root + 1
-                   bits (not saved in num, since complete), just in case */
-                if (num[index - 1] && n <= left << 1)
-                    examine((n - left) << 1, root + 1, (n - left) << 1,
-                            1 << root, 0);
+// Look at all sub-codes starting with root + 1 bits. Look at only the valid
+// intermediate code states (syms, left, len). For each completed code,
+// calculate the amount of memory required by inflate to build the decoding
+// tables. Find the maximum amount of memory required and show the codes that
+// require that maximum.
+local void enough(int syms) {
+    // clear code
+    for (int n = 0; n <= g.max; n++)
+        g.code[n] = 0;
+
+    // look at all (root + 1) bit and longer codes
+    string_clear(&g.out);           // empty saved results
+    g.large = 1 << g.root;          // base table
+    if (g.root < g.max)             // otherwise, there's only a base table
+        for (int n = 3; n <= syms; n++)
+            for (int left = 2; left < n; left += 2) {
+                // look at all reachable (root + 1) bit nodes, and the
+                // resulting codes (complete at root + 2 or more)
+                size_t index = map(n, left, g.root + 1);
+                if (g.root + 1 < g.max && g.num[index]) // reachable node
+                    examine(n, left, g.root + 1, 1 << g.root, 0);
+
+                // also look at root bit codes with completions at root + 1
+                // bits (not saved in num, since complete), just in case
+                if (g.num[index - 1] && n <= left << 1)
+                    examine((n - left) << 1, (n - left) << 1, g.root + 1,
+                            1 << g.root, 0);
             }
 
-    /* done */
-    printf("done: maximum of %d table entries\n", large);
+    // done
+    printf("maximum of %d table entries for root = %d\n", g.large, g.root);
+    fputs(g.out.str, stdout);
 }
 
-/*
-   Examine and show the total number of possible Huffman codes for a given
-   maximum number of symbols, initial root table size, and maximum code length
-   in bits -- those are the command arguments in that order.  The default
-   values are 286, 9, and 15 respectively, for the deflate literal/length code.
-   The possible codes are counted for each number of coded symbols from two to
-   the maximum.  The counts for each of those and the total number of codes are
-   shown.  The maximum number of inflate table entires is then calculated
-   across all possible codes.  Each new maximum number of table entries and the
-   associated sub-code (starting at root + 1 == 10 bits) is shown.
-
-   To count and examine Huffman codes that are not length-limited, provide a
-   maximum length equal to the number of symbols minus one.
-
-   For the deflate literal/length code, use "enough".  For the deflate distance
-   code, use "enough 30 6".
-
-   This uses the %llu printf format to print big_t numbers, which assumes that
-   big_t is an unsigned long long.  If the big_t type is changed (for example
-   to a multiple precision type), the method of printing will also need to be
-   updated.
- */
-int main(int argc, char **argv)
-{
-    int syms;           /* total number of symbols to code */
-    int n;              /* number of symbols to code for this run */
-    big_t got;          /* return value of count() */
-    big_t sum;          /* accumulated number of codes over n */
-    code_t word;        /* for counting bits in code_t */
-
-    /* set up globals for cleanup() */
-    code = NULL;
-    num = NULL;
-    done = NULL;
-
-    /* get arguments -- default to the deflate literal/length code */
-    syms = 286;
-    root = 9;
-    max = 15;
+// Examine and show the total number of possible prefix codes for a given
+// maximum number of symbols, initial root table size, and maximum code length
+// in bits -- those are the command arguments in that order. The default values
+// are 286, 9, and 15 respectively, for the deflate literal/length code. The
+// possible codes are counted for each number of coded symbols from two to the
+// maximum. The counts for each of those and the total number of codes are
+// shown. The maximum number of inflate table entires is then calculated across
+// all possible codes. Each new maximum number of table entries and the
+// associated sub-code (starting at root + 1 == 10 bits) is shown.
+//
+// To count and examine prefix codes that are not length-limited, provide a
+// maximum length equal to the number of symbols minus one.
+//
+// For the deflate literal/length code, use "enough". For the deflate distance
+// code, use "enough 30 6".
+int main(int argc, char **argv) {
+    // set up globals for cleanup()
+    g.code = NULL;
+    g.num = NULL;
+    g.done = NULL;
+    string_init(&g.out);
+
+    // get arguments -- default to the deflate literal/length code
+    int syms = 286;
+    g.root = 9;
+    g.max = 15;
     if (argc > 1) {
         syms = atoi(argv[1]);
         if (argc > 2) {
-            root = atoi(argv[2]);
+            g.root = atoi(argv[2]);
             if (argc > 3)
-                max = atoi(argv[3]);
+                g.max = atoi(argv[3]);
         }
     }
-    if (argc > 4 || syms < 2 || root < 1 || max < 1) {
+    if (argc > 4 || syms < 2 || g.root < 1 || g.max < 1) {
         fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
               stderr);
         return 1;
     }
 
-    /* if not restricting the code length, the longest is syms - 1 */
-    if (max > syms - 1)
-        max = syms - 1;
+    // if not restricting the code length, the longest is syms - 1
+    if (g.max > syms - 1)
+        g.max = syms - 1;
 
-    /* determine the number of bits in a code_t */
-    for (n = 0, word = 1; word; n++, word <<= 1)
-        ;
+    // determine the number of bits in a code_t
+    int bits = 0;
+    for (code_t word = 1; word; word <<= 1)
+        bits++;
 
-    /* make sure that the calculation of most will not overflow */
-    if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
+    // make sure that the calculation of most will not overflow
+    if (g.max > bits || (code_t)(syms - 2) >= ((code_t)-1 >> (g.max - 1))) {
         fputs("abort: code length too long for internal types\n", stderr);
         return 1;
     }
 
-    /* reject impossible code requests */
-    if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
+    // reject impossible code requests
+    if ((code_t)(syms - 1) > ((code_t)1 << g.max) - 1) {
         fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
-                syms, max);
+                syms, g.max);
         return 1;
     }
 
-    /* allocate code vector */
-    code = calloc(max + 1, sizeof(int));
-    if (code == NULL) {
-        fputs("abort: unable to allocate enough memory\n", stderr);
-        return 1;
-    }
+    // allocate code vector
+    g.code = calloc(g.max + 1, sizeof(int));
+    assert(g.code != NULL && "out of memory");
 
-    /* determine size of saved results array, checking for overflows,
-       allocate and clear the array (set all to zero with calloc()) */
-    if (syms == 2)              /* iff max == 1 */
-        num = NULL;             /* won't be saving any results */
+    // determine size of saved results array, checking for overflows,
+    // allocate and clear the array (set all to zero with calloc())
+    if (syms == 2)              // iff max == 1
+        g.num = NULL;           // won't be saving any results
     else {
-        size = syms >> 1;
-        if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
-                (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
-                (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
-                (num = calloc(size, sizeof(big_t))) == NULL) {
-            fputs("abort: unable to allocate enough memory\n", stderr);
-            cleanup();
-            return 1;
-        }
+        g.size = syms >> 1;
+        int n = (syms - 1) >> 1;
+        assert(g.size <= (size_t)-1 / n && "overflow");
+        g.size *= n;
+        n = g.max - 1;
+        assert(g.size <= (size_t)-1 / n && "overflow");
+        g.size *= n;
+        g.num = calloc(g.size, sizeof(big_t));
+        assert(g.num != NULL && "out of memory");
     }
 
-    /* count possible codes for all numbers of symbols, add up counts */
-    sum = 0;
-    for (n = 2; n <= syms; n++) {
-        got = count(n, 1, 2);
+    // count possible codes for all numbers of symbols, add up counts
+    big_t sum = 0;
+    for (int n = 2; n <= syms; n++) {
+        big_t got = count(n, 2, 1);
         sum += got;
-        if (got == (big_t)0 - 1 || sum < got) {     /* overflow */
-            fputs("abort: can't count that high!\n", stderr);
-            cleanup();
-            return 1;
-        }
-        printf("%llu %d-codes\n", got, n);
+        assert(got != (big_t)-1 && sum >= got && "overflow");
     }
-    printf("%llu total codes for 2 to %d symbols", sum, syms);
-    if (max < syms - 1)
-        printf(" (%d-bit length limit)\n", max);
+    printf("%"PRIbig" total codes for 2 to %d symbols", sum, syms);
+    if (g.max < syms - 1)
+        printf(" (%d-bit length limit)\n", g.max);
     else
         puts(" (no length limit)");
 
-    /* allocate and clear done array for beenhere() */
+    // allocate and clear done array for been_here()
     if (syms == 2)
-        done = NULL;
-    else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
-             (done = calloc(size, sizeof(struct tab))) == NULL) {
-        fputs("abort: unable to allocate enough memory\n", stderr);
-        cleanup();
-        return 1;
+        g.done = NULL;
+    else {
+        g.done = calloc(g.size, sizeof(struct tab));
+        assert(g.done != NULL && "out of memory");
     }
 
-    /* find and show maximum inflate table usage */
-    if (root > max)                 /* reduce root to max length */
-        root = max;
-    if ((code_t)syms < ((code_t)1 << (root + 1)))
+    // find and show maximum inflate table usage
+    if (g.root > g.max)             // reduce root to max length
+        g.root = g.max;
+    if ((code_t)syms < ((code_t)1 << (g.root + 1)))
         enough(syms);
     else
-        puts("cannot handle minimum code lengths > root");
+        fputs("cannot handle minimum code lengths > root", stderr);
 
-    /* done */
+    // done
     cleanup();
     return 0;
 }