]> git.ipfire.org Git - thirdparty/bird.git/blob - filter/decl.m4
Filter: Dropped some more irrelevant whitespace from generated files
[thirdparty/bird.git] / filter / decl.m4
1 m4_divert(-1)m4_dnl
2 #
3 # BIRD -- Construction of per-instruction structures
4 #
5 # (c) 2018 Maria Matejka <mq@jmq.cz>
6 #
7 # Can be freely distributed and used under the terms of the GNU GPL.
8 #
9 # THIS IS A M4 MACRO FILE GENERATING 3 FILES ALTOGETHER.
10 # KEEP YOUR HANDS OFF UNLESS YOU KNOW WHAT YOU'RE DOING.
11 # EDITING AND DEBUGGING THIS FILE MAY DAMAGE YOUR BRAIN SERIOUSLY.
12 #
13 # But you're welcome to read and edit and debug if you aren't scared.
14 #
15 # Uncomment the following line to get exhaustive debug output.
16 # m4_debugmode(aceflqtx)
17 #
18 # How it works:
19 # 1) Instruction to code conversion (uses diversions 100..199)
20 # 2) Code wrapping (uses diversions 1..99)
21 # 3) Final preparation (uses diversions 200..299)
22 # 4) Shipout
23 #
24 # See below for detailed description.
25 #
26 #
27 # 1) Instruction to code conversion
28 # The code provided in f-inst.c between consecutive INST() calls
29 # is interleaved for many different places. It is here processed
30 # and split into separate instances where split-by-instruction
31 # happens. These parts are stored in temporary diversions listed:
32 #
33 # 101 content of per-inst struct
34 # 102 constructor arguments
35 # 103 constructor body
36 # 104 dump line item content
37 # (there may be nothing in dump-line content and
38 # it must be handled specially in phase 2)
39 # 105 linearize body
40 # 106 comparator body
41 # 107 struct f_line_item content
42 # 108 interpreter body
43 #
44 # Here are macros to allow you to _divert to the right directions.
45 m4_define(FID_STRUCT_IN, `m4_divert(101)')
46 m4_define(FID_NEW_ARGS, `m4_divert(102)')
47 m4_define(FID_NEW_BODY, `m4_divert(103)')
48 m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])')
49 m4_define(FID_LINEARIZE_BODY, `m4_divert(105)')
50 m4_define(FID_SAME_BODY, `m4_divert(106)')
51 m4_define(FID_LINE_IN, `m4_divert(107)')
52 m4_define(FID_INTERPRET_BODY, `m4_divert(108)')
53
54 # Sometimes you want slightly different code versions in different
55 # outputs.
56 # Use FID_HIC(code for inst-gen.h, code for inst-gen.c, code for inst-interpret.c)
57 # and put it into [[ ]] quotes if it shall contain commas.
58 m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])')
59
60 # In interpreter code, this is quite common.
61 m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])')
62 m4_define(FID_INTERPRET_NEW, `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])')
63
64 # If the instruction is never converted to constant, the interpret
65 # code is not produced at all for constructor
66 m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])')
67 m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])')
68
69 # If the instruction has some attributes (here called members),
70 # these are typically carried with the instruction from constructor
71 # to interpreter. This yields a line of code everywhere on the path.
72 # FID_MEMBER is a macro to help with this task.
73 m4_define(FID_MEMBER, `m4_dnl
74 FID_LINE_IN()m4_dnl
75 $1 $2;
76 FID_STRUCT_IN()m4_dnl
77 $1 $2;
78 FID_NEW_ARGS()m4_dnl
79 , $1 $2
80 FID_NEW_BODY()m4_dnl
81 whati->$2 = $2;
82 FID_LINEARIZE_BODY()m4_dnl
83 item->$2 = whati->$2;
84 m4_ifelse($3,,,[[
85 FID_SAME_BODY()m4_dnl
86 if ($3) return 0;
87 ]])
88 m4_ifelse($4,,,[[
89 FID_DUMP_BODY()m4_dnl
90 debug("%s$4\n", INDENT, $5);
91 ]])
92 FID_INTERPRET_EXEC()m4_dnl
93 const $1 $2 = whati->$2
94 FID_INTERPRET_BODY')
95
96 # Instruction arguments are needed only until linearization is done.
97 # This puts the arguments into the filter line to be executed before
98 # the instruction itself.
99 #
100 # To achieve this, ARG_ANY must be called before anything writes into
101 # the instruction line as it moves the instruction pointer forward.
102 m4_define(ARG_ANY, `
103 FID_STRUCT_IN()m4_dnl
104 struct f_inst * f$1;
105 FID_NEW_ARGS()m4_dnl
106 , struct f_inst * f$1
107 FID_NEW_BODY
108 whati->f$1 = f$1;
109 for (const struct f_inst *child = f$1; child; child = child->next) {
110 what->size += child->size;
111 FID_IFCONST([[
112 if (child->fi_code != FI_CONSTANT)
113 constargs = 0;
114 ]])
115 }
116 FID_LINEARIZE_BODY
117 pos = linearize(dest, whati->f$1, pos);
118 FID_INTERPRET_BODY()')
119
120 # Some arguments need to check their type. After that, ARG_ANY is called.
121 m4_define(ARG, `ARG_ANY($1)
122 FID_INTERPRET_EXEC()m4_dnl
123 if (v$1.type != $2) runtime("Argument $1 of instruction %s must be of type $2, got 0x%02x", f_instruction_name(what->fi_code), v$1.type)m4_dnl
124 FID_INTERPRET_BODY()')
125
126 # Executing another filter line. This replaces the recursion
127 # that was needed in the former implementation.
128 m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_INTERPRET_BODY()')
129 m4_define(LINEX_, `do {
130 fstk->estk[fstk->ecnt].pos = 0;
131 fstk->estk[fstk->ecnt].line = $1;
132 fstk->estk[fstk->ecnt].ventry = fstk->vcnt;
133 fstk->estk[fstk->ecnt].vbase = fstk->estk[fstk->ecnt-1].vbase;
134 fstk->estk[fstk->ecnt].emask = 0;
135 fstk->ecnt++;
136 } while (0)')
137
138 m4_define(LINE, `
139 FID_LINE_IN()m4_dnl
140 const struct f_line * fl$1;
141 FID_STRUCT_IN()m4_dnl
142 struct f_inst * f$1;
143 FID_NEW_ARGS()m4_dnl
144 , struct f_inst * f$1
145 FID_NEW_BODY()m4_dnl
146 whati->f$1 = f$1;
147 FID_DUMP_BODY()m4_dnl
148 f_dump_line(item->fl$1, indent + 1);
149 FID_LINEARIZE_BODY()m4_dnl
150 item->fl$1 = f_linearize(whati->f$1);
151 FID_SAME_BODY()m4_dnl
152 if (!f_same(f1->fl$1, f2->fl$1)) return 0;
153 FID_INTERPRET_EXEC()m4_dnl
154 do { if (whati->fl$1) {
155 LINEX_(whati->fl$1);
156 } } while(0)
157 FID_INTERPRET_NEW()m4_dnl
158 return whati->f$1
159 FID_INTERPRET_BODY()')
160
161 # Some of the instructions have a result. These constructions
162 # state the result and put it to the right place.
163 m4_define(RESULT, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])')
164 m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]],
165 [[return fi_constant(what, $1)]])')
166 m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])')
167
168 # Some common filter instruction members
169 m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym, [[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], symbol %s, item->sym->name)')
170 m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], route table %s, item->rtc->name)')
171 m4_define(STATIC_ATTR, `FID_MEMBER(struct f_static_attr, sa, f1->sa.sa_code != f2->sa.sa_code,,)')
172 m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)')
173 m4_define(ACCESS_RTE, `NEVER_CONSTANT()')
174
175 # 2) Code wrapping
176 # The code produced in 1xx temporary diversions is a raw code without
177 # any auxiliary commands and syntactical structures around. When the
178 # instruction is done, INST_FLUSH is called. More precisely, it is called
179 # at the beginning of INST() call and at the end of file.
180 #
181 # INST_FLUSH picks all the temporary diversions, wraps their content
182 # into appropriate headers and structures and saves them into global
183 # diversions listed:
184 #
185 # 4 enum fi_code
186 # 5 enum fi_code to string
187 # 6 dump line item
188 # 7 dump line item callers
189 # 8 linearize
190 # 9 same (filter comparator)
191 # 1 union in struct f_inst
192 # 3 constructors + interpreter
193 #
194 # These global diversions contain blocks of code that can be directly
195 # put into the final file, yet it still can't be written out now as
196 # every instruction writes to all of these diversions.
197
198 # Code wrapping diversion names. Here we want an explicit newline
199 # after the C comment.
200 m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */
201 ')
202 m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
203 m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
204 m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
205 m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
206 m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
207 m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
208 m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
209 m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
210 m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
211
212 # This macro does all the code wrapping. See inline comments.
213 m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[
214 FID_ENUM()m4_dnl Contents of enum fi_code { ... }
215 INST_NAME(),
216 FID_ENUM_STR()m4_dnl Contents of const char * indexed by enum fi_code
217 [INST_NAME()] = "INST_NAME()",
218 FID_INST()m4_dnl Anonymous structure inside struct f_inst
219 struct {
220 m4_undivert(101)m4_dnl
221 } i_[[]]INST_NAME();
222 FID_LINE()m4_dnl Anonymous structure inside struct f_line_item
223 struct {
224 m4_undivert(107)m4_dnl
225 } i_[[]]INST_NAME();
226 FID_NEW()m4_dnl Constructor and interpreter code together
227 FID_HIC(
228 [[m4_dnl Public declaration of constructor in H file
229 struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
230 m4_undivert(102)m4_dnl
231 );]],
232 [[m4_dnl The one case in The Big Switch inside interpreter
233 case INST_NAME():
234 #define whati (&(what->i_]]INST_NAME()[[))
235 m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
236 m4_undivert(108)m4_dnl
237 #undef whati
238 break;
239 ]],
240 [[m4_dnl Constructor itself
241 struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
242 m4_undivert(102)m4_dnl
243 )
244 {
245 /* Allocate the structure */
246 struct f_inst *what = fi_new(fi_code);
247 FID_IFCONST([[uint constargs = 1;]])
248
249 /* Initialize all the members */
250 #define whati (&(what->i_]]INST_NAME()[[))
251 m4_undivert(103)m4_dnl
252
253 /* If not constant, return the instruction itself */
254 FID_IFCONST([[if (!constargs)]])
255 return what;
256
257 /* Try to pre-calculate the result */
258 FID_IFCONST([[m4_undivert(108)]])m4_dnl
259 #undef whati
260 }
261 ]])
262
263 FID_DUMP_CALLER()m4_dnl Case in another big switch used in instruction dumping (debug)
264 case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;
265
266 FID_DUMP()m4_dnl The dumper itself
267 m4_ifdef([[FID_DUMP_BODY_EXISTS]],
268 [[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
269 [[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
270 m4_undefine([[FID_DUMP_BODY_EXISTS]])
271 {
272 #define item (&(item_->i_]]INST_NAME()[[))
273 m4_undivert(104)m4_dnl
274 #undef item
275 }
276
277 FID_LINEARIZE()m4_dnl The linearizer
278 case INST_NAME(): {
279 #define whati (&(what->i_]]INST_NAME()[[))
280 #define item (&(dest->items[pos].i_]]INST_NAME()[[))
281 m4_undivert(105)m4_dnl
282 #undef whati
283 #undef item
284 dest->items[pos].fi_code = what->fi_code;
285 dest->items[pos].lineno = what->lineno;
286 break;
287 }
288
289 FID_SAME()m4_dnl This code compares two f_line"s while reconfiguring
290 case INST_NAME():
291 #define f1 (&(f1_->i_]]INST_NAME()[[))
292 #define f2 (&(f2_->i_]]INST_NAME()[[))
293 m4_undivert(106)m4_dnl
294 #undef f1
295 #undef f2
296 break;
297
298 m4_divert(-1)FID_FLUSH(101,200)m4_dnl And finally this flushes all the unused diversions
299 ]])')
300
301 m4_define(INST, `m4_dnl This macro is called on beginning of each instruction.
302 INST_FLUSH()m4_dnl First, old data is flushed
303 m4_define([[INST_NAME]], [[$1]])m4_dnl Then we store instruction name,
304 m4_define([[INST_INVAL]], [[$2]])m4_dnl instruction input value count
305 m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl and reset NEVER_CONSTANT trigger.
306 FID_INTERPRET_BODY()m4_dnl By default, every code is interpreter code.
307 ')
308
309 # 3) Final preparation
310 #
311 # Now we prepare all the code around the global diversions.
312 # It must be here, not in m4wrap, as we want M4 to mark the code
313 # by #line directives correctly, not to claim that every single line
314 # is at the beginning of the m4wrap directive.
315 #
316 # This part is split by the final file.
317 # H for inst-gen.h
318 # I for inst-interpret.c
319 # C for inst-gen.c
320 #
321 # So we in cycle:
322 # A. open a diversion
323 # B. send there some code
324 # C. close that diversion
325 # D. flush a global diversion
326 # E. open another diversion and goto B.
327 #
328 # Final diversions
329 # 200+ completed text before it is flushed to output
330
331 # This is a list of output diversions
332 m4_define(FID_WR_PUT_LIST)
333
334 # This macro does the steps C to E, see before.
335 m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)')
336
337 # These macros do the splitting between H/I/C
338 m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])')
339 m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)')
340 m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)')
341
342 # Here is the direct code to be put into the output files
343 # together with the undiversions, being hidden under FID_WR_PUT()
344
345 m4_changequote([[,]])
346 FID_WR_DIRECT(I)
347 FID_WR_PUT(3)
348 FID_WR_DIRECT(C)
349 #include "nest/bird.h"
350 #include "filter/filter.h"
351 #include "filter/f-inst.h"
352
353 /* Instruction codes to string */
354 static const char * const f_instruction_name_str[] = {
355 FID_WR_PUT(5)
356 };
357
358 const char *
359 f_instruction_name(enum f_instruction_code fi)
360 {
361 if (fi < (sizeof(f_instruction_name_str) / sizeof(f_instruction_name_str[0])))
362 return f_instruction_name_str[fi];
363 else
364 bug("Got unknown instruction code: %d", fi);
365 }
366
367 static inline struct f_inst *
368 fi_new(enum f_instruction_code fi_code)
369 {
370 struct f_inst *what = cfg_allocz(sizeof(struct f_inst));
371 what->lineno = ifs->lino;
372 what->size = 1;
373 what->fi_code = fi_code;
374 return what;
375 }
376
377 static inline struct f_inst *
378 fi_constant(struct f_inst *what, struct f_val val)
379 {
380 what->fi_code = FI_CONSTANT;
381 what->i_FI_CONSTANT.val = val;
382 return what;
383 }
384
385 #define v1 whati->f1->i_FI_CONSTANT.val
386 #define v2 whati->f2->i_FI_CONSTANT.val
387 #define v3 whati->f3->i_FI_CONSTANT.val
388 #define runtime(fmt, ...) cf_error("filter preevaluation, line %d: " fmt, ifs->lino, ##__VA_ARGS__)
389 #define fpool cfg_mem
390 #define falloc(size) cfg_alloc(size)
391 /* Instruction constructors */
392 FID_WR_PUT(3)
393 #undef v1
394 #undef v2
395 #undef v3
396
397 /* Line dumpers */
398 #define INDENT (((const char *) f_dump_line_indent_str) + sizeof(f_dump_line_indent_str) - (indent) - 1)
399 static const char f_dump_line_indent_str[] = " ";
400
401 FID_WR_PUT(6)
402
403 void f_dump_line(const struct f_line *dest, uint indent)
404 {
405 if (!dest) {
406 debug("%sNo filter line (NULL)\n", INDENT);
407 return;
408 }
409 debug("%sFilter line %p (len=%u)\n", INDENT, dest, dest->len);
410 for (uint i=0; i<dest->len; i++) {
411 const struct f_line_item *item = &dest->items[i];
412 debug("%sInstruction %s at line %u\n", INDENT, f_instruction_name(item->fi_code), item->lineno);
413 switch (item->fi_code) {
414 FID_WR_PUT(7)
415 default: bug("Unknown instruction %x in f_dump_line", item->fi_code);
416 }
417 }
418 debug("%sFilter line %p dump done\n", INDENT, dest);
419 }
420
421 /* Linearize */
422 static uint
423 linearize(struct f_line *dest, const struct f_inst *what, uint pos)
424 {
425 for ( ; what; what = what->next) {
426 switch (what->fi_code) {
427 FID_WR_PUT(8)
428 }
429 pos++;
430 }
431 return pos;
432 }
433
434 struct f_line *
435 f_linearize_concat(const struct f_inst * const inst[], uint count)
436 {
437 uint len = 0;
438 for (uint i=0; i<count; i++)
439 for (const struct f_inst *what = inst[i]; what; what = what->next)
440 len += what->size;
441
442 struct f_line *out = cfg_allocz(sizeof(struct f_line) + sizeof(struct f_line_item)*len);
443
444 for (uint i=0; i<count; i++)
445 out->len = linearize(out, inst[i], out->len);
446
447 #if DEBUGGING
448 f_dump_line(out, 0);
449 #endif
450 return out;
451 }
452
453 /* Filter line comparison */
454 int
455 f_same(const struct f_line *fl1, const struct f_line *fl2)
456 {
457 if ((!fl1) && (!fl2))
458 return 1;
459 if ((!fl1) || (!fl2))
460 return 0;
461 if (fl1->len != fl2->len)
462 return 0;
463 for (uint i=0; i<fl1->len; i++) {
464 #define f1_ (&(fl1->items[i]))
465 #define f2_ (&(fl2->items[i]))
466 if (f1_->fi_code != f2_->fi_code)
467 return 0;
468 if (f1_->flags != f2_->flags)
469 return 0;
470
471 switch(f1_->fi_code) {
472 FID_WR_PUT(9)
473 }
474 }
475 #undef f1_
476 #undef f2_
477 return 1;
478 }
479
480
481 FID_WR_DIRECT(H)
482 /* Filter instruction codes */
483 enum f_instruction_code {
484 FID_WR_PUT(4)m4_dnl
485 } PACKED;
486
487 /* Filter instruction structure for config */
488 struct f_inst {
489 struct f_inst *next; /* Next instruction */
490 enum f_instruction_code fi_code; /* Instruction code */
491 int size; /* How many instructions are underneath */
492 int lineno; /* Line number */
493 union {
494 FID_WR_PUT(1)m4_dnl
495 };
496 };
497
498 /* Filter line item */
499 struct f_line_item {
500 enum f_instruction_code fi_code; /* What to do */
501 enum f_instruction_flags flags; /* Flags, instruction-specific */
502 uint lineno; /* Where */
503 union {
504 FID_WR_PUT(2)m4_dnl
505 };
506 };
507
508 /* Instruction constructors */
509 FID_WR_PUT(3)
510 m4_divert(-1)
511
512 # 4) Shipout
513 #
514 # Everything is prepared in FID_WR_PUT_LIST now. Let's go!
515
516 m4_changequote(`,')
517
518 # Flusher auxiliary macro
519 m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])')
520
521 # Defining the macro used in FID_WR_PUT_LIST
522 m4_define(FID_WR_DPUT, `m4_undivert($1)')
523
524 # After the code is read and parsed, we:
525 m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)')
526
527 m4_changequote([[,]])
528 # And now M4 is going to parse f-inst.c, fill the diversions
529 # and after the file is done, the content of m4_m4wrap (see before)
530 # is executed.