]> git.ipfire.org Git - thirdparty/bird.git/blob - filter/f-inst.c
Filter: Fix function comparison
[thirdparty/bird.git] / filter / f-inst.c
1 /*
2 * Filters: Instructions themselves
3 *
4 * Copyright 1998 Pavel Machek <pavel@ucw.cz>
5 * Copyright 2018 Maria Matejka <mq@jmq.cz>
6 * Copyright 2018 CZ.NIC z.s.p.o.
7 *
8 * Can be freely distributed and used under the terms of the GNU GPL.
9 *
10 * The filter code goes through several phases:
11 *
12 * 1 Parsing
13 * Flex- and Bison-generated parser decodes the human-readable data into
14 * a struct f_inst tree. This is an infix tree that was interpreted by
15 * depth-first search execution in previous versions of the interpreter.
16 * All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
17 * translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
18 * compile time. If the result of the instruction is always the same,
19 * it's reduced to FI_CONSTANT directly in constructor. This phase also
20 * counts how many instructions are underlying in means of f_line_item
21 * fields to know how much we have to allocate in the next phase.
22 *
23 * 2 Linearize before interpreting
24 * The infix tree is always interpreted in the same order. Therefore we
25 * sort the instructions one after another into struct f_line. Results
26 * and arguments of these instructions are implicitly put on a value
27 * stack; e.g. the + operation just takes two arguments from the value
28 * stack and puts the result on there.
29 *
30 * 3 Interpret
31 * The given line is put on a custom execution stack. If needed (FI_CALL,
32 * FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
33 * of the stack; when that line finishes, the execution continues on the
34 * older lines on the stack where it stopped before.
35 *
36 * 4 Same
37 * On config reload, the filters have to be compared whether channel
38 * reload is needed or not. The comparison is done by comparing the
39 * struct f_line's recursively.
40 *
41 * The main purpose of this rework was to improve filter performance
42 * by making the interpreter non-recursive.
43 *
44 * The other outcome is concentration of instruction definitions to
45 * one place -- right here. You shall define your instruction only here
46 * and nowhere else.
47 *
48 * Beware. This file is interpreted by M4 macros. These macros
49 * may be more stupid than you could imagine. If something strange
50 * happens after changing this file, compare the results before and
51 * after your change (see the Makefile to find out where the results are)
52 * and see what really happened.
53 *
54 * This file is not directly a C source code -> it is a generator input
55 * for several C sources; every instruction block gets expanded into many
56 * different places.
57 *
58 * All the arguments are processed literally; if you need an argument including comma,
59 * you have to quote it by [[ ... ]]
60 *
61 * What is the syntax here?
62 * m4_dnl INST(FI_NOP, in, out) { enum value, input args, output args
63 * m4_dnl ARG(num, type); argument, its id (in data fields) and type accessible by v1, v2, v3
64 * m4_dnl ARG_ANY(num); argument with no type check accessible by v1, v2, v3
65 * m4_dnl VARARG; variable-length argument list; accessible by vv(i) and whati->varcount
66 * m4_dnl LINE(num, unused); this argument has to be converted to its own f_line
67 * m4_dnl SYMBOL; symbol handed from config
68 * m4_dnl STATIC_ATTR; static attribute definition
69 * m4_dnl DYNAMIC_ATTR; dynamic attribute definition
70 * m4_dnl RTC; route table config
71 * m4_dnl ACCESS_RTE; this instruction needs route
72 * m4_dnl ACCESS_EATTRS; this instruction needs extended attributes
73 *
74 * m4_dnl FID_MEMBER( custom instruction member
75 * m4_dnl C type, for storage in structs
76 * m4_dnl name, how the member is named
77 * m4_dnl comparator for same(), if different, this should be TRUE (CAVEAT)
78 * m4_dnl dump format string debug -> format string for bvsnprintf
79 * m4_dnl dump format args appropriate args
80 * m4_dnl )
81 *
82 * m4_dnl RESULT(type, union-field, value); putting this on value stack
83 * m4_dnl RESULT_VAL(value-struct); pass the struct f_val directly
84 * m4_dnl RESULT_VOID; return undef
85 * m4_dnl }
86 *
87 * Also note that the { ... } blocks are not respected by M4 at all.
88 * If you get weird unmatched-brace-pair errors, check what it generated and why.
89 * What is really considered as one instruction is not the { ... } block
90 * after m4_dnl INST() but all the code between them.
91 *
92 * Other code is just copied into the interpreter part.
93 *
94 * If you are satisfied with this, you don't need to read the following
95 * detailed description of what is really done with the instruction definitions.
96 *
97 * m4_dnl Now let's look under the cover. The code between each INST()
98 * m4_dnl is copied to several places, namely these (numbered by the M4 diversions
99 * m4_dnl used in filter/decl.m4):
100 *
101 * m4_dnl (102) struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
102 * m4_dnl {
103 * m4_dnl ... (common code)
104 * m4_dnl (103) [[ put it here ]]
105 * m4_dnl ...
106 * m4_dnl if (all arguments are constant)
107 * m4_dnl (108) [[ put it here ]]
108 * m4_dnl }
109 * m4_dnl For writing directly to constructor argument list, use FID_NEW_ARGS.
110 * m4_dnl For computing something in constructor (103), use FID_NEW_BODY.
111 * m4_dnl For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
112 *
113 * m4_dnl struct f_inst {
114 * m4_dnl ... (common fields)
115 * m4_dnl union {
116 * m4_dnl struct {
117 * m4_dnl (101) [[ put it here ]]
118 * m4_dnl } i_FI_EXAMPLE;
119 * m4_dnl ...
120 * m4_dnl };
121 * m4_dnl };
122 * m4_dnl This structure is returned from constructor.
123 * m4_dnl For writing directly to this structure, use FID_STRUCT_IN.
124 *
125 * m4_dnl linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
126 * m4_dnl ...
127 * m4_dnl switch (what->fi_code) {
128 * m4_dnl case FI_EXAMPLE:
129 * m4_dnl (105) [[ put it here ]]
130 * m4_dnl break;
131 * m4_dnl }
132 * m4_dnl }
133 * m4_dnl This is called when translating from struct f_inst to struct f_line_item.
134 * m4_dnl For accessing your custom instruction data, use following macros:
135 * m4_dnl whati -> for accessing (struct f_inst).i_FI_EXAMPLE
136 * m4_dnl item -> for accessing (struct f_line)[pos].i_FI_EXAMPLE
137 * m4_dnl For writing directly here, use FID_LINEARIZE_BODY.
138 *
139 * m4_dnl (107) struct f_line_item {
140 * m4_dnl ... (common fields)
141 * m4_dnl union {
142 * m4_dnl struct {
143 * m4_dnl (101) [[ put it here ]]
144 * m4_dnl } i_FI_EXAMPLE;
145 * m4_dnl ...
146 * m4_dnl };
147 * m4_dnl };
148 * m4_dnl The same as FID_STRUCT_IN (101) but for the other structure.
149 * m4_dnl This structure is returned from the linearizer (105).
150 * m4_dnl For writing directly to this structure, use FID_LINE_IN.
151 *
152 * m4_dnl f_dump_line_item_FI_EXAMPLE(const struct f_line_item *item, const int indent)
153 * m4_dnl {
154 * m4_dnl (104) [[ put it here ]]
155 * m4_dnl }
156 * m4_dnl This code dumps the instruction on debug. Note that the argument
157 * m4_dnl is the linearized instruction; if the instruction has arguments,
158 * m4_dnl their code has already been linearized and their value is taken
159 * m4_dnl from the value stack.
160 * m4_dnl For writing directly here, use FID_DUMP_BODY.
161 *
162 * m4_dnl f_same(...)
163 * m4_dnl {
164 * m4_dnl switch (f1_->fi_code) {
165 * m4_dnl case FI_EXAMPLE:
166 * m4_dnl (106) [[ put it here ]]
167 * m4_dnl break;
168 * m4_dnl }
169 * m4_dnl }
170 * m4_dnl This code compares the two given instrucions (f1_ and f2_)
171 * m4_dnl on reconfigure. For accessing your custom instruction data,
172 * m4_dnl use macros f1 and f2.
173 * m4_dnl For writing directly here, use FID_SAME_BODY.
174 *
175 * m4_dnl interpret(...)
176 * m4_dnl {
177 * m4_dnl switch (what->fi_code) {
178 * m4_dnl case FI_EXAMPLE:
179 * m4_dnl (108) [[ put it here ]]
180 * m4_dnl break;
181 * m4_dnl }
182 * m4_dnl }
183 * m4_dnl This code executes the instruction. Every pre-defined macro
184 * m4_dnl resets the output here. For setting it explicitly,
185 * m4_dnl use FID_INTERPRET_BODY.
186 * m4_dnl This code is put on two places; one is the interpreter, the other
187 * m4_dnl is instruction constructor. If you need to distinguish between
188 * m4_dnl these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
189 * m4_dnl To address the difference between interpreter and constructor
190 * m4_dnl environments, there are several convenience macros defined:
191 * m4_dnl runtime() -> for spitting out runtime error like division by zero
192 * m4_dnl RESULT(...) -> declare result; may overwrite arguments
193 * m4_dnl v1, v2, v3 -> positional arguments, may be overwritten by RESULT()
194 * m4_dnl falloc(size) -> allocate memory from the appropriate linpool
195 * m4_dnl fpool -> the current linpool
196 * m4_dnl NEVER_CONSTANT-> don't generate pre-interpretation code at all
197 * m4_dnl ACCESS_RTE -> check that route is available, also NEVER_CONSTANT
198 * m4_dnl ACCESS_EATTRS -> pre-cache the eattrs; use only with ACCESS_RTE
199 * m4_dnl f_rta_cow(fs) -> function to call before any change to route should be done
200 *
201 * m4_dnl If you are stymied, see FI_CALL or FI_CONSTANT or just search for
202 * m4_dnl the mentioned macros in this file to see what is happening there in wild.
203 */
204
205 /* Binary operators */
206 INST(FI_ADD, 2, 1) {
207 ARG(1,T_INT);
208 ARG(2,T_INT);
209 RESULT(T_INT, i, v1.val.i + v2.val.i);
210 }
211 INST(FI_SUBTRACT, 2, 1) {
212 ARG(1,T_INT);
213 ARG(2,T_INT);
214 RESULT(T_INT, i, v1.val.i - v2.val.i);
215 }
216 INST(FI_MULTIPLY, 2, 1) {
217 ARG(1,T_INT);
218 ARG(2,T_INT);
219 RESULT(T_INT, i, v1.val.i * v2.val.i);
220 }
221 INST(FI_DIVIDE, 2, 1) {
222 ARG(1,T_INT);
223 ARG(2,T_INT);
224 if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
225 RESULT(T_INT, i, v1.val.i / v2.val.i);
226 }
227 INST(FI_AND, 1, 1) {
228 ARG(1,T_BOOL);
229 ARG_TYPE(2,T_BOOL);
230 RESULT_TYPE(T_BOOL);
231
232 if (v1.val.i)
233 LINE(2,0);
234 else
235 RESULT_VAL(v1);
236 }
237 INST(FI_OR, 1, 1) {
238 ARG(1,T_BOOL);
239 ARG_TYPE(2,T_BOOL);
240 RESULT_TYPE(T_BOOL);
241
242 if (!v1.val.i)
243 LINE(2,0);
244 else
245 RESULT_VAL(v1);
246 }
247
248 INST(FI_PAIR_CONSTRUCT, 2, 1) {
249 ARG(1,T_INT);
250 ARG(2,T_INT);
251 uint u1 = v1.val.i;
252 uint u2 = v2.val.i;
253 if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
254 runtime( "Can't operate with value out of bounds in pair constructor" );
255 RESULT(T_PAIR, i, (u1 << 16) | u2);
256 }
257
258 INST(FI_EC_CONSTRUCT, 2, 1) {
259 ARG_ANY(1);
260 ARG(2, T_INT);
261
262 FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
263
264 int check, ipv4_used;
265 u32 key, val;
266
267 if (v1.type == T_INT) {
268 ipv4_used = 0; key = v1.val.i;
269 }
270 else if (v1.type == T_QUAD) {
271 ipv4_used = 1; key = v1.val.i;
272 }
273 /* IP->Quad implicit conversion */
274 else if (val_is_ip4(&v1)) {
275 ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
276 }
277 else
278 runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
279
280 val = v2.val.i;
281
282 if (ecs == EC_GENERIC) {
283 check = 0; RESULT(T_EC, ec, ec_generic(key, val));
284 }
285 else if (ipv4_used) {
286 check = 1; RESULT(T_EC, ec, ec_ip4(ecs, key, val));
287 }
288 else if (key < 0x10000) {
289 check = 0; RESULT(T_EC, ec, ec_as2(ecs, key, val));
290 }
291 else {
292 check = 1; RESULT(T_EC, ec, ec_as4(ecs, key, val));
293 }
294
295 if (check && (val > 0xFFFF))
296 runtime("Value %u > %u out of bounds in EC constructor", val, 0xFFFF);
297 }
298
299 INST(FI_LC_CONSTRUCT, 3, 1) {
300 ARG(1, T_INT);
301 ARG(2, T_INT);
302 ARG(3, T_INT);
303 RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
304 }
305
306 INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
307 VARARG;
308
309 struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
310 pm->len = whati->varcount;
311
312 for (uint i=0; i<whati->varcount; i++) {
313 switch (vv(i).type) {
314 case T_PATH_MASK_ITEM:
315 pm->item[i] = vv(i).val.pmi;
316 break;
317
318 case T_INT:
319 pm->item[i] = (struct f_path_mask_item) {
320 .asn = vv(i).val.i,
321 .kind = PM_ASN,
322 };
323 break;
324
325 case T_SET:
326 if (vv(i).val.t->from.type != T_INT)
327 runtime("Only integer sets allowed in path mask");
328
329 pm->item[i] = (struct f_path_mask_item) {
330 .set = vv(i).val.t,
331 .kind = PM_ASN_SET,
332 };
333 break;
334
335 default:
336 runtime( "Error resolving path mask template: value not an integer" );
337 }
338 }
339
340 RESULT(T_PATH_MASK, path_mask, pm);
341 }
342
343 /* Relational operators */
344
345 INST(FI_NEQ, 2, 1) {
346 ARG_ANY(1);
347 ARG_ANY(2);
348 RESULT(T_BOOL, i, !val_same(&v1, &v2));
349 }
350
351 INST(FI_EQ, 2, 1) {
352 ARG_ANY(1);
353 ARG_ANY(2);
354 RESULT(T_BOOL, i, val_same(&v1, &v2));
355 }
356
357 INST(FI_LT, 2, 1) {
358 ARG_ANY(1);
359 ARG_ANY(2);
360 ARG_SAME_TYPE(1, 2);
361
362 int i = val_compare(&v1, &v2);
363 if (i == F_CMP_ERROR)
364 runtime( "Can't compare values of incompatible types" );
365 RESULT(T_BOOL, i, (i == -1));
366 }
367
368 INST(FI_LTE, 2, 1) {
369 ARG_ANY(1);
370 ARG_ANY(2);
371 ARG_SAME_TYPE(1, 2);
372
373 int i = val_compare(&v1, &v2);
374 if (i == F_CMP_ERROR)
375 runtime( "Can't compare values of incompatible types" );
376 RESULT(T_BOOL, i, (i != 1));
377 }
378
379 INST(FI_NOT, 1, 1) {
380 ARG(1,T_BOOL);
381 RESULT(T_BOOL, i, !v1.val.i);
382 }
383
384 INST(FI_MATCH, 2, 1) {
385 ARG_ANY(1);
386 ARG_ANY(2);
387 int i = val_in_range(&v1, &v2);
388 if (i == F_CMP_ERROR)
389 runtime( "~ applied on unknown type pair" );
390 RESULT(T_BOOL, i, !!i);
391 }
392
393 INST(FI_NOT_MATCH, 2, 1) {
394 ARG_ANY(1);
395 ARG_ANY(2);
396 int i = val_in_range(&v1, &v2);
397 if (i == F_CMP_ERROR)
398 runtime( "!~ applied on unknown type pair" );
399 RESULT(T_BOOL, i, !i);
400 }
401
402 INST(FI_DEFINED, 1, 1) {
403 ARG_ANY(1);
404 RESULT(T_BOOL, i, (v1.type != T_VOID) && !undef_value(v1));
405 }
406
407 INST(FI_TYPE, 1, 1) {
408 ARG_ANY(1); /* There may be more types supporting this operation */
409 switch (v1.type)
410 {
411 case T_NET:
412 RESULT(T_ENUM_NETTYPE, i, v1.val.net->type);
413 break;
414 default:
415 runtime( "Can't determine type of this item" );
416 }
417 }
418
419 INST(FI_IS_V4, 1, 1) {
420 ARG(1, T_IP);
421 RESULT(T_BOOL, i, ipa_is_ip4(v1.val.ip));
422 }
423
424 /* Set to indirect value prepared in v1 */
425 INST(FI_VAR_SET, 1, 0) {
426 NEVER_CONSTANT;
427 ARG_ANY(1);
428 SYMBOL;
429 ARG_TYPE(1, sym->class & 0xff);
430
431 fstk->vstk[curline.vbase + sym->offset] = v1;
432 }
433
434 INST(FI_VAR_GET, 0, 1) {
435 SYMBOL;
436 NEVER_CONSTANT;
437 RESULT_TYPE(sym->class & 0xff);
438 RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
439 }
440
441 INST(FI_CONSTANT, 0, 1) {
442 FID_MEMBER(
443 struct f_val,
444 val,
445 [[ !val_same(&(f1->val), &(f2->val)) ]],
446 "value %s",
447 val_dump(&(item->val))
448 );
449
450 RESULT_TYPE(val.type);
451 RESULT_VAL(val);
452 }
453
454 INST(FI_CONDITION, 1, 0) {
455 ARG(1, T_BOOL);
456 if (v1.val.i)
457 LINE(2,0);
458 else
459 LINE(3,1);
460 }
461
462 INST(FI_PRINT, 0, 0) {
463 NEVER_CONSTANT;
464 VARARG;
465
466 if (whati->varcount && !(fs->flags & FF_SILENT))
467 for (uint i=0; i<whati->varcount; i++)
468 val_format(&(vv(i)), &fs->buf);
469 }
470
471 INST(FI_FLUSH, 0, 0) {
472 NEVER_CONSTANT;
473 if (!(fs->flags & FF_SILENT))
474 /* After log_commit, the buffer is reset */
475 log_commit(*L_INFO, &fs->buf);
476 }
477
478 INST(FI_DIE, 0, 0) {
479 NEVER_CONSTANT;
480 FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
481
482 switch (whati->fret) {
483 case F_QUITBIRD:
484 die( "Filter asked me to die" );
485 case F_ACCEPT: /* Should take care about turning ACCEPT into MODIFY */
486 case F_ERROR:
487 case F_REJECT: /* Maybe print complete route along with reason to reject route? */
488 return fret; /* We have to return now, no more processing. */
489 default:
490 bug( "unknown return type: Can't happen");
491 }
492 }
493
494 INST(FI_RTA_GET, 0, 1) {
495 {
496 STATIC_ATTR;
497 ACCESS_RTE;
498 struct rta *rta = (*fs->rte)->attrs;
499
500 switch (sa.sa_code)
501 {
502 case SA_FROM: RESULT(sa.f_type, ip, rta->from); break;
503 case SA_GW: RESULT(sa.f_type, ip, rta->nh.gw); break;
504 case SA_NET: RESULT(sa.f_type, net, (*fs->rte)->net->n.addr); break;
505 case SA_PROTO: RESULT(sa.f_type, s, rta->src->proto->name); break;
506 case SA_SOURCE: RESULT(sa.f_type, i, rta->source); break;
507 case SA_SCOPE: RESULT(sa.f_type, i, rta->scope); break;
508 case SA_DEST: RESULT(sa.f_type, i, rta->dest); break;
509 case SA_IFNAME: RESULT(sa.f_type, s, rta->nh.iface ? rta->nh.iface->name : ""); break;
510 case SA_IFINDEX: RESULT(sa.f_type, i, rta->nh.iface ? rta->nh.iface->index : 0); break;
511
512 default:
513 bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
514 }
515 }
516 }
517
518 INST(FI_RTA_SET, 1, 0) {
519 ACCESS_RTE;
520 ARG_ANY(1);
521 STATIC_ATTR;
522 ARG_TYPE(1, sa.f_type);
523
524 f_rta_cow(fs);
525 {
526 struct rta *rta = (*fs->rte)->attrs;
527
528 switch (sa.sa_code)
529 {
530 case SA_FROM:
531 rta->from = v1.val.ip;
532 break;
533
534 case SA_GW:
535 {
536 ip_addr ip = v1.val.ip;
537 neighbor *n = neigh_find(rta->src->proto, ip, NULL, 0);
538 if (!n || (n->scope == SCOPE_HOST))
539 runtime( "Invalid gw address" );
540
541 rta->dest = RTD_UNICAST;
542 rta->nh.gw = ip;
543 rta->nh.iface = n->iface;
544 rta->nh.next = NULL;
545 rta->hostentry = NULL;
546 }
547 break;
548
549 case SA_SCOPE:
550 rta->scope = v1.val.i;
551 break;
552
553 case SA_DEST:
554 {
555 int i = v1.val.i;
556 if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
557 runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
558
559 rta->dest = i;
560 rta->nh.gw = IPA_NONE;
561 rta->nh.iface = NULL;
562 rta->nh.next = NULL;
563 rta->hostentry = NULL;
564 }
565 break;
566
567 case SA_IFNAME:
568 {
569 struct iface *ifa = if_find_by_name(v1.val.s);
570 if (!ifa)
571 runtime( "Invalid iface name" );
572
573 rta->dest = RTD_UNICAST;
574 rta->nh.gw = IPA_NONE;
575 rta->nh.iface = ifa;
576 rta->nh.next = NULL;
577 rta->hostentry = NULL;
578 }
579 break;
580
581 default:
582 bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
583 }
584 }
585 }
586
587 INST(FI_EA_GET, 0, 1) { /* Access to extended attributes */
588 DYNAMIC_ATTR;
589 ACCESS_RTE;
590 ACCESS_EATTRS;
591 RESULT_TYPE(da.f_type);
592 {
593 eattr *e = ea_find(*fs->eattrs, da.ea_code);
594
595 if (!e) {
596 /* A special case: undefined as_path looks like empty as_path */
597 if (da.type == EAF_TYPE_AS_PATH) {
598 RESULT_(T_PATH, ad, &null_adata);
599 break;
600 }
601
602 /* The same special case for int_set */
603 if (da.type == EAF_TYPE_INT_SET) {
604 RESULT_(T_CLIST, ad, &null_adata);
605 break;
606 }
607
608 /* The same special case for ec_set */
609 if (da.type == EAF_TYPE_EC_SET) {
610 RESULT_(T_ECLIST, ad, &null_adata);
611 break;
612 }
613
614 /* The same special case for lc_set */
615 if (da.type == EAF_TYPE_LC_SET) {
616 RESULT_(T_LCLIST, ad, &null_adata);
617 break;
618 }
619
620 /* Undefined value */
621 RESULT_VOID;
622 break;
623 }
624
625 switch (e->type & EAF_TYPE_MASK) {
626 case EAF_TYPE_INT:
627 RESULT_(da.f_type, i, e->u.data);
628 break;
629 case EAF_TYPE_ROUTER_ID:
630 RESULT_(T_QUAD, i, e->u.data);
631 break;
632 case EAF_TYPE_OPAQUE:
633 RESULT_(T_ENUM_EMPTY, i, 0);
634 break;
635 case EAF_TYPE_IP_ADDRESS:
636 RESULT_(T_IP, ip, *((ip_addr *) e->u.ptr->data));
637 break;
638 case EAF_TYPE_AS_PATH:
639 RESULT_(T_PATH, ad, e->u.ptr);
640 break;
641 case EAF_TYPE_BITFIELD:
642 RESULT_(T_BOOL, i, !!(e->u.data & (1u << da.bit)));
643 break;
644 case EAF_TYPE_INT_SET:
645 RESULT_(T_CLIST, ad, e->u.ptr);
646 break;
647 case EAF_TYPE_EC_SET:
648 RESULT_(T_ECLIST, ad, e->u.ptr);
649 break;
650 case EAF_TYPE_LC_SET:
651 RESULT_(T_LCLIST, ad, e->u.ptr);
652 break;
653 case EAF_TYPE_UNDEF:
654 RESULT_VOID;
655 break;
656 default:
657 bug("Unknown dynamic attribute type");
658 }
659 }
660 }
661
662 INST(FI_EA_SET, 1, 0) {
663 ACCESS_RTE;
664 ACCESS_EATTRS;
665 ARG_ANY(1);
666 DYNAMIC_ATTR;
667 ARG_TYPE(1, da.f_type);
668 {
669 struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
670
671 l->next = NULL;
672 l->flags = EALF_SORTED;
673 l->count = 1;
674 l->attrs[0].id = da.ea_code;
675 l->attrs[0].flags = 0;
676 l->attrs[0].type = da.type | EAF_ORIGINATED | EAF_FRESH;
677
678 switch (da.type) {
679 case EAF_TYPE_INT:
680 case EAF_TYPE_ROUTER_ID:
681 l->attrs[0].u.data = v1.val.i;
682 break;
683
684 case EAF_TYPE_OPAQUE:
685 runtime( "Setting opaque attribute is not allowed" );
686 break;
687
688 case EAF_TYPE_IP_ADDRESS:;
689 int len = sizeof(ip_addr);
690 struct adata *ad = lp_alloc(fs->pool, sizeof(struct adata) + len);
691 ad->length = len;
692 (* (ip_addr *) ad->data) = v1.val.ip;
693 l->attrs[0].u.ptr = ad;
694 break;
695
696 case EAF_TYPE_AS_PATH:
697 case EAF_TYPE_INT_SET:
698 case EAF_TYPE_EC_SET:
699 case EAF_TYPE_LC_SET:
700 l->attrs[0].u.ptr = v1.val.ad;
701 break;
702
703 case EAF_TYPE_BITFIELD:
704 {
705 /* First, we have to find the old value */
706 eattr *e = ea_find(*fs->eattrs, da.ea_code);
707 u32 data = e ? e->u.data : 0;
708
709 if (v1.val.i)
710 l->attrs[0].u.data = data | (1u << da.bit);
711 else
712 l->attrs[0].u.data = data & ~(1u << da.bit);
713 }
714 break;
715
716 default:
717 bug("Unknown dynamic attribute type");
718 }
719
720 f_rta_cow(fs);
721 l->next = *fs->eattrs;
722 *fs->eattrs = l;
723 }
724 }
725
726 INST(FI_EA_UNSET, 0, 0) {
727 DYNAMIC_ATTR;
728 ACCESS_RTE;
729 ACCESS_EATTRS;
730
731 {
732 struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
733
734 l->next = NULL;
735 l->flags = EALF_SORTED;
736 l->count = 1;
737 l->attrs[0].id = da.ea_code;
738 l->attrs[0].flags = 0;
739 l->attrs[0].type = EAF_TYPE_UNDEF | EAF_ORIGINATED | EAF_FRESH;
740 l->attrs[0].u.data = 0;
741
742 f_rta_cow(fs);
743 l->next = *fs->eattrs;
744 *fs->eattrs = l;
745 }
746 }
747
748 INST(FI_PREF_GET, 0, 1) {
749 ACCESS_RTE;
750 RESULT(T_INT, i, (*fs->rte)->pref);
751 }
752
753 INST(FI_PREF_SET, 1, 0) {
754 ACCESS_RTE;
755 ARG(1,T_INT);
756 if (v1.val.i > 0xFFFF)
757 runtime( "Setting preference value out of bounds" );
758 f_rte_cow(fs);
759 (*fs->rte)->pref = v1.val.i;
760 }
761
762 INST(FI_LENGTH, 1, 1) { /* Get length of */
763 ARG_ANY(1);
764 switch(v1.type) {
765 case T_NET: RESULT(T_INT, i, net_pxlen(v1.val.net)); break;
766 case T_PATH: RESULT(T_INT, i, as_path_getlen(v1.val.ad)); break;
767 case T_CLIST: RESULT(T_INT, i, int_set_get_size(v1.val.ad)); break;
768 case T_ECLIST: RESULT(T_INT, i, ec_set_get_size(v1.val.ad)); break;
769 case T_LCLIST: RESULT(T_INT, i, lc_set_get_size(v1.val.ad)); break;
770 default: runtime( "Prefix, path, clist or eclist expected" );
771 }
772 }
773
774 INST(FI_NET_SRC, 1, 1) { /* Get src prefix */
775 ARG(1, T_NET);
776
777 net_addr_union *net = (void *) v1.val.net;
778 net_addr *src = falloc(sizeof(net_addr_ip6));
779 const byte *part;
780
781 switch(v1.val.net->type) {
782 case NET_FLOW4:
783 part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
784 if (part)
785 net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
786 else
787 net_fill_ip4(src, IP4_NONE, 0);
788 break;
789
790 case NET_FLOW6:
791 part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
792 if (part)
793 net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
794 else
795 net_fill_ip6(src, IP6_NONE, 0);
796 break;
797
798 case NET_IP6_SADR:
799 net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
800 break;
801
802 default:
803 runtime( "Flow or SADR expected" );
804 }
805
806 RESULT(T_NET, net, src);
807 }
808
809 INST(FI_NET_DST, 1, 1) { /* Get dst prefix */
810 ARG(1, T_NET);
811
812 net_addr_union *net = (void *) v1.val.net;
813 net_addr *dst = falloc(sizeof(net_addr_ip6));
814 const byte *part;
815
816 switch(v1.val.net->type) {
817 case NET_FLOW4:
818 part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
819 if (part)
820 net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
821 else
822 net_fill_ip4(dst, IP4_NONE, 0);
823 break;
824
825 case NET_FLOW6:
826 part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
827 if (part)
828 net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
829 else
830 net_fill_ip6(dst, IP6_NONE, 0);
831 break;
832
833 case NET_IP6_SADR:
834 net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
835 break;
836
837 default:
838 runtime( "Flow or SADR expected" );
839 }
840
841 RESULT(T_NET, net, dst);
842 }
843
844 INST(FI_ROA_MAXLEN, 1, 1) { /* Get ROA max prefix length */
845 ARG(1, T_NET);
846 if (!net_is_roa(v1.val.net))
847 runtime( "ROA expected" );
848
849 RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
850 ((net_addr_roa4 *) v1.val.net)->max_pxlen :
851 ((net_addr_roa6 *) v1.val.net)->max_pxlen);
852 }
853
854 INST(FI_ROA_ASN, 1, 1) { /* Get ROA ASN */
855 ARG(1, T_NET);
856 if (!net_is_roa(v1.val.net))
857 runtime( "ROA expected" );
858
859 RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
860 ((net_addr_roa4 *) v1.val.net)->asn :
861 ((net_addr_roa6 *) v1.val.net)->asn);
862 }
863
864 INST(FI_IP, 1, 1) { /* Convert prefix to ... */
865 ARG(1, T_NET);
866 RESULT(T_IP, ip, net_prefix(v1.val.net));
867 }
868
869 INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
870 ARG(1, T_NET);
871 if (!net_is_vpn(v1.val.net))
872 runtime( "VPN address expected" );
873 RESULT(T_RD, ec, net_rd(v1.val.net));
874 }
875
876 INST(FI_AS_PATH_FIRST, 1, 1) { /* Get first ASN from AS PATH */
877 ARG(1, T_PATH);
878 u32 as = 0;
879 as_path_get_first(v1.val.ad, &as);
880 RESULT(T_INT, i, as);
881 }
882
883 INST(FI_AS_PATH_LAST, 1, 1) { /* Get last ASN from AS PATH */
884 ARG(1, T_PATH);
885 u32 as = 0;
886 as_path_get_last(v1.val.ad, &as);
887 RESULT(T_INT, i, as);
888 }
889
890 INST(FI_AS_PATH_LAST_NAG, 1, 1) { /* Get last ASN from non-aggregated part of AS PATH */
891 ARG(1, T_PATH);
892 RESULT(T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
893 }
894
895 INST(FI_RETURN, 1, 1) {
896 NEVER_CONSTANT;
897 /* Acquire the return value */
898 ARG_ANY(1);
899 uint retpos = fstk->vcnt;
900
901 /* Drop every sub-block including ourselves */
902 while ((fstk->ecnt-- > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN))
903 ;
904
905 /* Now we are at the caller frame; if no such, try to convert to accept/reject. */
906 if (!fstk->ecnt)
907 if (fstk->vstk[retpos].type == T_BOOL)
908 if (fstk->vstk[retpos].val.i)
909 return F_ACCEPT;
910 else
911 return F_REJECT;
912 else
913 runtime("Can't return non-bool from non-function");
914
915 /* Set the value stack position, overwriting the former implicit void */
916 fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
917
918 /* Copy the return value */
919 RESULT_VAL(fstk->vstk[retpos]);
920 }
921
922 INST(FI_CALL, 0, 1) {
923 NEVER_CONSTANT;
924 SYMBOL;
925
926 FID_SAME_BODY()
927 if (!(f1->sym->flags & SYM_FLAG_SAME))
928 return 0;
929 FID_INTERPRET_BODY()
930
931 /* Push the body on stack */
932 LINEX(sym->function);
933 curline.emask |= FE_RETURN;
934
935 /* Before this instruction was called, there was the T_VOID
936 * automatic return value pushed on value stack and also
937 * sym->function->args function arguments. Setting the
938 * vbase to point to first argument. */
939 ASSERT(curline.ventry >= sym->function->args);
940 curline.ventry -= sym->function->args;
941 curline.vbase = curline.ventry;
942
943 /* Storage for local variables */
944 memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
945 fstk->vcnt += sym->function->vars;
946 }
947
948 INST(FI_DROP_RESULT, 1, 0) {
949 NEVER_CONSTANT;
950 ARG_ANY(1);
951 }
952
953 INST(FI_SWITCH, 1, 0) {
954 ARG_ANY(1);
955
956 FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
957
958 const struct f_tree *t = find_tree(tree, &v1);
959 if (!t) {
960 v1.type = T_VOID;
961 t = find_tree(tree, &v1);
962 if (!t) {
963 debug( "No else statement?\n");
964 FID_HIC(,break,return NULL);
965 }
966 }
967 /* It is actually possible to have t->data NULL */
968
969 LINEX(t->data);
970 }
971
972 INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
973 ARG(1, T_IP);
974 ARG(2, T_INT);
975 RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
976 ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
977 ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
978 }
979
980 INST(FI_PATH_PREPEND, 2, 1) { /* Path prepend */
981 ARG(1, T_PATH);
982 ARG(2, T_INT);
983 RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
984 }
985
986 INST(FI_CLIST_ADD, 2, 1) { /* (Extended) Community list add */
987 ARG_ANY(1);
988 ARG_ANY(2);
989 RESULT_TYPE(f1->type);
990
991 if (v1.type == T_PATH)
992 runtime("Can't add to path");
993
994 else if (v1.type == T_CLIST)
995 {
996 /* Community (or cluster) list */
997 struct f_val dummy;
998
999 if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
1000 RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
1001 /* IP->Quad implicit conversion */
1002 else if (val_is_ip4(&v2))
1003 RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
1004 else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
1005 runtime("Can't add set");
1006 else if (v2.type == T_CLIST)
1007 RESULT_(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1008 else
1009 runtime("Can't add non-pair");
1010 }
1011
1012 else if (v1.type == T_ECLIST)
1013 {
1014 /* v2.val is either EC or EC-set */
1015 if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
1016 runtime("Can't add set");
1017 else if (v2.type == T_ECLIST)
1018 RESULT_(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1019 else if (v2.type != T_EC)
1020 runtime("Can't add non-ec");
1021 else
1022 RESULT_(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
1023 }
1024
1025 else if (v1.type == T_LCLIST)
1026 {
1027 /* v2.val is either LC or LC-set */
1028 if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
1029 runtime("Can't add set");
1030 else if (v2.type == T_LCLIST)
1031 RESULT_(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1032 else if (v2.type != T_LC)
1033 runtime("Can't add non-lc");
1034 else
1035 RESULT_(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
1036
1037 }
1038
1039 else
1040 runtime("Can't add to non-[e|l]clist");
1041 }
1042
1043 INST(FI_CLIST_DEL, 2, 1) { /* (Extended) Community list add or delete */
1044 ARG_ANY(1);
1045 ARG_ANY(2);
1046 RESULT_TYPE(f1->type);
1047
1048 if (v1.type == T_PATH)
1049 {
1050 const struct f_tree *set = NULL;
1051 u32 key = 0;
1052
1053 if (v2.type == T_INT)
1054 key = v2.val.i;
1055 else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
1056 set = v2.val.t;
1057 else
1058 runtime("Can't delete non-integer (set)");
1059
1060 RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, set, key, 0) ]]);
1061 }
1062
1063 else if (v1.type == T_CLIST)
1064 {
1065 /* Community (or cluster) list */
1066 struct f_val dummy;
1067
1068 if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
1069 RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
1070 /* IP->Quad implicit conversion */
1071 else if (val_is_ip4(&v2))
1072 RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
1073 else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
1074 RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1075 else
1076 runtime("Can't delete non-pair");
1077 }
1078
1079 else if (v1.type == T_ECLIST)
1080 {
1081 /* v2.val is either EC or EC-set */
1082 if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
1083 RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1084 else if (v2.type != T_EC)
1085 runtime("Can't delete non-ec");
1086 else
1087 RESULT_(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
1088 }
1089
1090 else if (v1.type == T_LCLIST)
1091 {
1092 /* v2.val is either LC or LC-set */
1093 if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
1094 RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1095 else if (v2.type != T_LC)
1096 runtime("Can't delete non-lc");
1097 else
1098 RESULT_(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
1099 }
1100
1101 else
1102 runtime("Can't delete in non-[e|l]clist");
1103 }
1104
1105 INST(FI_CLIST_FILTER, 2, 1) { /* (Extended) Community list add or delete */
1106 ARG_ANY(1);
1107 ARG_ANY(2);
1108 RESULT_TYPE(f1->type);
1109
1110 if (v1.type == T_PATH)
1111 {
1112 u32 key = 0;
1113
1114 if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
1115 RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, v2.val.t, key, 1) ]]);
1116 else
1117 runtime("Can't filter integer");
1118 }
1119
1120 else if (v1.type == T_CLIST)
1121 {
1122 /* Community (or cluster) list */
1123 struct f_val dummy;
1124
1125 if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
1126 RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1127 else
1128 runtime("Can't filter pair");
1129 }
1130
1131 else if (v1.type == T_ECLIST)
1132 {
1133 /* v2.val is either EC or EC-set */
1134 if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
1135 RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1136 else
1137 runtime("Can't filter ec");
1138 }
1139
1140 else if (v1.type == T_LCLIST)
1141 {
1142 /* v2.val is either LC or LC-set */
1143 if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
1144 RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1145 else
1146 runtime("Can't filter lc");
1147 }
1148
1149 else
1150 runtime("Can't filter non-[e|l]clist");
1151 }
1152
1153 INST(FI_ROA_CHECK_IMPLICIT, 0, 1) { /* ROA Check */
1154 NEVER_CONSTANT;
1155 RTC(1);
1156 struct rtable *table = rtc->table;
1157 ACCESS_RTE;
1158 ACCESS_EATTRS;
1159 const net_addr *net = (*fs->rte)->net->n.addr;
1160
1161 /* We ignore temporary attributes, probably not a problem here */
1162 /* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
1163 eattr *e = ea_find(*fs->eattrs, EA_CODE(PROTOCOL_BGP, 0x02));
1164
1165 if (!e || ((e->type & EAF_TYPE_MASK) != EAF_TYPE_AS_PATH))
1166 runtime("Missing AS_PATH attribute");
1167
1168 u32 as = 0;
1169 as_path_get_last(e->u.ptr, &as);
1170
1171 if (!table)
1172 runtime("Missing ROA table");
1173
1174 if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
1175 runtime("Table type must be either ROA4 or ROA6");
1176
1177 if (table->addr_type != (net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
1178 RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
1179 else
1180 RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, net, as) ]]);
1181 }
1182
1183 INST(FI_ROA_CHECK_EXPLICIT, 2, 1) { /* ROA Check */
1184 NEVER_CONSTANT;
1185 ARG(1, T_NET);
1186 ARG(2, T_INT);
1187 RTC(3);
1188 struct rtable *table = rtc->table;
1189
1190 u32 as = v2.val.i;
1191
1192 if (!table)
1193 runtime("Missing ROA table");
1194
1195 if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
1196 runtime("Table type must be either ROA4 or ROA6");
1197
1198 if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
1199 RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
1200 else
1201 RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
1202
1203 }
1204
1205 INST(FI_FORMAT, 1, 0) { /* Format */
1206 ARG_ANY(1);
1207 RESULT(T_STRING, s, val_format_str(fpool, &v1));
1208 }
1209
1210 INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
1211 NEVER_CONSTANT;
1212 ARG(1, T_BOOL);
1213
1214 FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
1215
1216 ASSERT(s);
1217
1218 if (!bt_assert_hook)
1219 runtime("No bt_assert hook registered, can't assert");
1220
1221 bt_assert_hook(v1.val.i, what);
1222 }