]> git.ipfire.org Git - thirdparty/bird.git/blob - filter/trie.c
Add NET ROA4/6 structures
[thirdparty/bird.git] / filter / trie.c
1 /*
2 * Filters: Trie for prefix sets
3 *
4 * Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Trie for prefix sets
11 *
12 * We use a (compressed) trie to represent prefix sets. Every node
13 * in the trie represents one prefix (&addr/&plen) and &plen also
14 * indicates the index of the bit in the address that is used to
15 * branch at the node. If we need to represent just a set of
16 * prefixes, it would be simple, but we have to represent a
17 * set of prefix patterns. Each prefix pattern consists of
18 * &ppaddr/&pplen and two integers: &low and &high, and a prefix
19 * &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
20 * bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
21 *
22 * We use a bitmask (&accept) to represent accepted prefix lengths
23 * at a node. As there are 33 prefix lengths (0..32 for IPv4), but
24 * there is just one prefix of zero length in the whole trie so we
25 * have &zero flag in &f_trie (indicating whether the trie accepts
26 * prefix 0.0.0.0/0) as a special case, and &accept bitmask
27 * represents accepted prefix lengths from 1 to 32.
28 *
29 * There are two cases in prefix matching - a match when the length
30 * of the prefix is smaller that the length of the prefix pattern,
31 * (&plen < &pplen) and otherwise. The second case is simple - we
32 * just walk through the trie and look at every visited node
33 * whether that prefix accepts our prefix length (&plen). The
34 * first case is tricky - we don't want to examine every descendant
35 * of a final node, so (when we create the trie) we have to propagate
36 * that information from nodes to their ascendants.
37 *
38 * Suppose that we have two masks (M1 and M2) for a node. Mask M1
39 * represents accepted prefix lengths by just the node and mask M2
40 * represents accepted prefix lengths by the node or any of its
41 * descendants. Therefore M2 is a bitwise or of M1 and children's
42 * M2 and this is a maintained invariant during trie building.
43 * Basically, when we want to match a prefix, we walk through the trie,
44 * check mask M1 for our prefix length and when we came to
45 * final node, we check mask M2.
46 *
47 * There are two differences in the real implementation. First,
48 * we use a compressed trie so there is a case that we skip our
49 * final node (if it is not in the trie) and we came to node that
50 * is either extension of our prefix, or completely out of path
51 * In the first case, we also have to check M2.
52 *
53 * Second, we really need not to maintain two separate bitmasks.
54 * Checks for mask M1 are always larger than &applen and we need
55 * just the first &pplen bits of mask M2 (if trie compression
56 * hadn't been used it would suffice to know just $applen-th bit),
57 * so we have to store them together in &accept mask - the first
58 * &pplen bits of mask M2 and then mask M1.
59 *
60 * There are four cases when we walk through a trie:
61 *
62 * - we are in NULL
63 * - we are out of path (prefixes are inconsistent)
64 * - we are in the wanted (final) node (node length == &plen)
65 * - we are beyond the end of path (node length > &plen)
66 * - we are still on path and keep walking (node length < &plen)
67 *
68 * The walking code in trie_match_prefix() is structured according to
69 * these cases.
70 */
71
72 #include "nest/bird.h"
73 #include "lib/string.h"
74 #include "conf/conf.h"
75 #include "filter/filter.h"
76
77
78 /*
79 * In the trie code, the prefix length is internally treated as for the whole
80 * ip_addr, regardless whether it contains an IPv4 or IPv6 address. Therefore,
81 * remaining definitions make sense.
82 */
83
84 #define ipa_mkmask(x) ip6_mkmask(x)
85 #define ipa_masklen(x) ip6_masklen(&x)
86 #define ipa_pxlen(x,y) ip6_pxlen(x,y)
87 #define ipa_getbit(x,n) ip6_getbit(x,n)
88
89
90 /**
91 * f_new_trie - allocates and returns a new empty trie
92 * @lp: linear pool to allocate items from
93 * @node_size: node size to be used (&f_trie_node and user data)
94 */
95 struct f_trie *
96 f_new_trie(linpool *lp, uint node_size)
97 {
98 struct f_trie * ret;
99 ret = lp_allocz(lp, sizeof(struct f_trie) + node_size);
100 ret->lp = lp;
101 ret->node_size = node_size;
102 return ret;
103 }
104
105 static inline struct f_trie_node *
106 new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
107 {
108 struct f_trie_node *n = lp_allocz(t->lp, t->node_size);
109 n->plen = plen;
110 n->addr = paddr;
111 n->mask = pmask;
112 n->accept = amask;
113 return n;
114 }
115
116 static inline void
117 attach_node(struct f_trie_node *parent, struct f_trie_node *child)
118 {
119 parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
120 }
121
122 /**
123 * trie_add_prefix
124 * @t: trie to add to
125 * @net: IP network prefix
126 * @l: prefix lower bound
127 * @h: prefix upper bound
128 *
129 * Adds prefix (prefix pattern) @n to trie @t. @l and @h are lower
130 * and upper bounds on accepted prefix lengths, both inclusive.
131 * 0 <= l, h <= 32 (128 for IPv6).
132 *
133 * Returns a pointer to the allocated node. The function can return a pointer to
134 * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
135 * a pointer to the root node is returned.
136 */
137
138 void *
139 trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
140 {
141 ip_addr px = net_prefix(net);
142 uint plen = net_pxlen(net);
143
144 if (net->type == NET_IP4)
145 {
146 const uint delta = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
147 plen += delta;
148 l += delta;
149 h += delta;
150 }
151
152 if (l == 0)
153 t->zero = 1;
154 else
155 l--;
156
157 if (h < plen)
158 plen = h;
159
160 ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
161 ip_addr pmask = ipa_mkmask(plen);
162 ip_addr paddr = ipa_and(px, pmask);
163 struct f_trie_node *o = NULL;
164 struct f_trie_node *n = t->root;
165
166 while (n)
167 {
168 ip_addr cmask = ipa_and(n->mask, pmask);
169
170 if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
171 {
172 /* We are out of path - we have to add branching node 'b'
173 between node 'o' and node 'n', and attach new node 'a'
174 as the other child of 'b'. */
175 int blen = ipa_pxlen(paddr, n->addr);
176 ip_addr bmask = ipa_mkmask(blen);
177 ip_addr baddr = ipa_and(px, bmask);
178
179 /* Merge accept masks from children to get accept mask for node 'b' */
180 ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);
181
182 struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
183 struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
184 attach_node(o, b);
185 attach_node(b, n);
186 attach_node(b, a);
187 return a;
188 }
189
190 if (plen < n->plen)
191 {
192 /* We add new node 'a' between node 'o' and node 'n' */
193 amask = ipa_or(amask, ipa_and(n->accept, pmask));
194 struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
195 attach_node(o, a);
196 attach_node(a, n);
197 return a;
198 }
199
200 if (plen == n->plen)
201 {
202 /* We already found added node in trie. Just update accept mask */
203 n->accept = ipa_or(n->accept, amask);
204 return n;
205 }
206
207 /* Update accept mask part M2 and go deeper */
208 n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));
209
210 /* n->plen < plen and plen <= 32 (128) */
211 o = n;
212 n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
213 }
214
215 /* We add new tail node 'a' after node 'o' */
216 struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
217 attach_node(o, a);
218
219 return a;
220 }
221
222 static int
223 trie_match_prefix(struct f_trie *t, ip_addr px, int plen)
224 {
225 ip_addr pmask = ipa_mkmask(plen);
226 ip_addr paddr = ipa_and(px, pmask);
227
228 if (plen == 0)
229 return t->zero;
230
231 int plentest = plen - 1;
232 struct f_trie_node *n = t->root;
233
234 while(n)
235 {
236 ip_addr cmask = ipa_and(n->mask, pmask);
237
238 /* We are out of path */
239 if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
240 return 0;
241
242 /* Check accept mask */
243 if (ipa_getbit(n->accept, plentest))
244 return 1;
245
246 /* We finished trie walk and still no match */
247 if (plen <= n->plen)
248 return 0;
249
250 /* Choose children */
251 n = n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
252 }
253
254 return 0;
255 }
256
257 /**
258 * trie_match_net
259 * @t: trie
260 * @n: net address
261 *
262 * Tries to find a matching net in the trie such that
263 * prefix @n matches that prefix pattern. Returns 1 if there
264 * is such prefix pattern in the trie.
265 */
266 int
267 trie_match_net(struct f_trie *t, const net_addr *n)
268 {
269 int add = 0;
270 switch (n->type) {
271 case NET_IP4:
272 case NET_VPN4:
273 case NET_ROA4:
274 add = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
275 }
276
277 return trie_match_prefix(t, net_prefix(n), net_pxlen(n) + add);
278 }
279
280 static int
281 trie_node_same(struct f_trie_node *t1, struct f_trie_node *t2)
282 {
283 if ((t1 == NULL) && (t2 == NULL))
284 return 1;
285
286 if ((t1 == NULL) || (t2 == NULL))
287 return 0;
288
289 if ((t1->plen != t2->plen) ||
290 (! ipa_equal(t1->addr, t2->addr)) ||
291 (! ipa_equal(t1->accept, t2->accept)))
292 return 0;
293
294 return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
295 }
296
297 /**
298 * trie_same
299 * @t1: first trie to be compared
300 * @t2: second one
301 *
302 * Compares two tries and returns 1 if they are same
303 */
304 int
305 trie_same(struct f_trie *t1, struct f_trie *t2)
306 {
307 return (t1->zero == t2->zero) && trie_node_same(t1->root, t2->root);
308 }
309
310 static void
311 trie_node_format(struct f_trie_node *t, buffer *buf)
312 {
313 if (t == NULL)
314 return;
315
316 if (ipa_nonzero(t->accept))
317 buffer_print(buf, "%I/%d{%I}, ", t->addr, t->plen, t->accept);
318
319 trie_node_format(t->c[0], buf);
320 trie_node_format(t->c[1], buf);
321 }
322
323 /**
324 * trie_format
325 * @t: trie to be formatted
326 * @buf: destination buffer
327 *
328 * Prints the trie to the supplied buffer.
329 */
330 void
331 trie_format(struct f_trie *t, buffer *buf)
332 {
333 buffer_puts(buf, "[");
334
335 if (t->zero)
336 buffer_print(buf, "%I/%d", IPA_NONE, 0);
337 trie_node_format(t->root, buf);
338
339 /* Undo last separator */
340 if (buf->pos[-1] != '[')
341 buf->pos -= 2;
342
343 buffer_puts(buf, "]");
344 }