]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/proto.c
The MRT protocol
[thirdparty/bird.git] / nest / proto.c
1 /*
2 * BIRD -- Protocols
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #undef LOCAL_DEBUG
10
11 #include "nest/bird.h"
12 #include "nest/protocol.h"
13 #include "lib/resource.h"
14 #include "lib/lists.h"
15 #include "lib/event.h"
16 #include "lib/timer.h"
17 #include "lib/string.h"
18 #include "conf/conf.h"
19 #include "nest/route.h"
20 #include "nest/iface.h"
21 #include "nest/cli.h"
22 #include "filter/filter.h"
23
24 pool *proto_pool;
25 list proto_list;
26
27 static list protocol_list;
28 struct protocol *class_to_protocol[PROTOCOL__MAX];
29
30 #define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)
31
32 static timer *proto_shutdown_timer;
33 static timer *gr_wait_timer;
34
35 #define GRS_NONE 0
36 #define GRS_INIT 1
37 #define GRS_ACTIVE 2
38 #define GRS_DONE 3
39
40 static int graceful_restart_state;
41 static u32 graceful_restart_locks;
42
43 static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
44 static char *c_states[] = { "DOWN", "START", "UP", "FLUSHING" };
45
46 extern struct protocol proto_unix_iface;
47
48 static void proto_shutdown_loop(timer *);
49 static void proto_rethink_goal(struct proto *p);
50 static char *proto_state_name(struct proto *p);
51 static void channel_verify_limits(struct channel *c);
52 static inline void channel_reset_limit(struct channel_limit *l);
53
54
55 static inline int proto_is_done(struct proto *p)
56 { return (p->proto_state == PS_DOWN) && (p->active_channels == 0); }
57
58 static inline int channel_is_active(struct channel *c)
59 { return (c->channel_state == CS_START) || (c->channel_state == CS_UP); }
60
61 static void
62 proto_log_state_change(struct proto *p)
63 {
64 if (p->debug & D_STATES)
65 {
66 char *name = proto_state_name(p);
67 if (name != p->last_state_name_announced)
68 {
69 p->last_state_name_announced = name;
70 PD(p, "State changed to %s", proto_state_name(p));
71 }
72 }
73 else
74 p->last_state_name_announced = NULL;
75 }
76
77
78 struct channel_config *
79 proto_cf_find_channel(struct proto_config *pc, uint net_type)
80 {
81 struct channel_config *cc;
82
83 WALK_LIST(cc, pc->channels)
84 if (cc->net_type == net_type)
85 return cc;
86
87 return NULL;
88 }
89
90 /**
91 * proto_find_channel_by_table - find channel connected to a routing table
92 * @p: protocol instance
93 * @t: routing table
94 *
95 * Returns pointer to channel or NULL
96 */
97 struct channel *
98 proto_find_channel_by_table(struct proto *p, struct rtable *t)
99 {
100 struct channel *c;
101
102 WALK_LIST(c, p->channels)
103 if (c->table == t)
104 return c;
105
106 return NULL;
107 }
108
109 /**
110 * proto_find_channel_by_name - find channel by its name
111 * @p: protocol instance
112 * @n: channel name
113 *
114 * Returns pointer to channel or NULL
115 */
116 struct channel *
117 proto_find_channel_by_name(struct proto *p, const char *n)
118 {
119 struct channel *c;
120
121 WALK_LIST(c, p->channels)
122 if (!strcmp(c->name, n))
123 return c;
124
125 return NULL;
126 }
127
128 /**
129 * proto_add_channel - connect protocol to a routing table
130 * @p: protocol instance
131 * @cf: channel configuration
132 *
133 * This function creates a channel between the protocol instance @p and the
134 * routing table specified in the configuration @cf, making the protocol hear
135 * all changes in the table and allowing the protocol to update routes in the
136 * table.
137 *
138 * The channel is linked in the protocol channel list and when active also in
139 * the table channel list. Channels are allocated from the global resource pool
140 * (@proto_pool) and they are automatically freed when the protocol is removed.
141 */
142
143 struct channel *
144 proto_add_channel(struct proto *p, struct channel_config *cf)
145 {
146 struct channel *c = mb_allocz(proto_pool, cf->channel->channel_size);
147
148 c->name = cf->name;
149 c->channel = cf->channel;
150 c->proto = p;
151 c->table = cf->table->table;
152
153 c->in_filter = cf->in_filter;
154 c->out_filter = cf->out_filter;
155 c->rx_limit = cf->rx_limit;
156 c->in_limit = cf->in_limit;
157 c->out_limit = cf->out_limit;
158
159 c->net_type = cf->net_type;
160 c->ra_mode = cf->ra_mode;
161 c->preference = cf->preference;
162 c->merge_limit = cf->merge_limit;
163 c->in_keep_filtered = cf->in_keep_filtered;
164
165 c->channel_state = CS_DOWN;
166 c->export_state = ES_DOWN;
167 c->last_state_change = current_time();
168 c->last_tx_filter_change = current_time();
169 c->reloadable = 1;
170
171 CALL(c->channel->init, c, cf);
172
173 add_tail(&p->channels, &c->n);
174
175 PD(p, "Channel %s connected to table %s", c->name, c->table->name);
176
177 return c;
178 }
179
180 void
181 proto_remove_channel(struct proto *p, struct channel *c)
182 {
183 ASSERT(c->channel_state == CS_DOWN);
184
185 PD(p, "Channel %s removed", c->name);
186
187 rem_node(&c->n);
188 mb_free(c);
189 }
190
191
192 static void
193 proto_start_channels(struct proto *p)
194 {
195 struct channel *c;
196 WALK_LIST(c, p->channels)
197 if (!c->disabled)
198 channel_set_state(c, CS_UP);
199 }
200
201 static void
202 proto_pause_channels(struct proto *p)
203 {
204 struct channel *c;
205 WALK_LIST(c, p->channels)
206 if (!c->disabled && channel_is_active(c))
207 channel_set_state(c, CS_START);
208 }
209
210 static void
211 proto_stop_channels(struct proto *p)
212 {
213 struct channel *c;
214 WALK_LIST(c, p->channels)
215 if (!c->disabled && channel_is_active(c))
216 channel_set_state(c, CS_FLUSHING);
217 }
218
219 static void
220 proto_remove_channels(struct proto *p)
221 {
222 struct channel *c;
223 WALK_LIST_FIRST(c, p->channels)
224 proto_remove_channel(p, c);
225 }
226
227 static void
228 channel_schedule_feed(struct channel *c, int initial)
229 {
230 // DBG("%s: Scheduling meal\n", p->name);
231 ASSERT(c->channel_state == CS_UP);
232
233 c->export_state = ES_FEEDING;
234 c->refeeding = !initial;
235
236 ev_schedule(c->feed_event);
237 }
238
239 static void
240 channel_feed_loop(void *ptr)
241 {
242 struct channel *c = ptr;
243
244 if (c->export_state != ES_FEEDING)
245 return;
246
247 if (!c->feed_active)
248 if (c->proto->feed_begin)
249 c->proto->feed_begin(c, !c->refeeding);
250
251 // DBG("Feeding protocol %s continued\n", p->name);
252 if (!rt_feed_channel(c))
253 {
254 ev_schedule(c->feed_event);
255 return;
256 }
257
258 // DBG("Feeding protocol %s finished\n", p->name);
259 c->export_state = ES_READY;
260 // proto_log_state_change(p);
261
262 if (c->proto->feed_end)
263 c->proto->feed_end(c);
264 }
265
266
267 static void
268 channel_start_export(struct channel *c)
269 {
270 ASSERT(c->channel_state == CS_UP);
271 ASSERT(c->export_state == ES_DOWN);
272
273 channel_schedule_feed(c, 1); /* Sets ES_FEEDING */
274 }
275
276 static void
277 channel_stop_export(struct channel *c)
278 {
279 /* Need to abort feeding */
280 if (c->export_state == ES_FEEDING)
281 rt_feed_channel_abort(c);
282
283 c->export_state = ES_DOWN;
284 c->stats.exp_routes = 0;
285 }
286
287 static void
288 channel_do_start(struct channel *c)
289 {
290 rt_lock_table(c->table);
291 add_tail(&c->table->channels, &c->table_node);
292 c->proto->active_channels++;
293
294 c->feed_event = ev_new_init(c->proto->pool, channel_feed_loop, c);
295
296 channel_reset_limit(&c->rx_limit);
297 channel_reset_limit(&c->in_limit);
298 channel_reset_limit(&c->out_limit);
299
300 CALL(c->channel->start, c);
301 }
302
303 static void
304 channel_do_flush(struct channel *c)
305 {
306 rt_schedule_prune(c->table);
307
308 c->gr_wait = 0;
309 if (c->gr_lock)
310 channel_graceful_restart_unlock(c);
311
312 CALL(c->channel->shutdown, c);
313 }
314
315 static void
316 channel_do_down(struct channel *c)
317 {
318 rem_node(&c->table_node);
319 rt_unlock_table(c->table);
320 c->proto->active_channels--;
321
322 if ((c->stats.imp_routes + c->stats.filt_routes) != 0)
323 log(L_ERR "%s: Channel %s is down but still has some routes", c->proto->name, c->name);
324
325 memset(&c->stats, 0, sizeof(struct proto_stats));
326
327 CALL(c->channel->cleanup, c);
328
329 /* Schedule protocol shutddown */
330 if (proto_is_done(c->proto))
331 ev_schedule(c->proto->event);
332 }
333
334 void
335 channel_set_state(struct channel *c, uint state)
336 {
337 uint cs = c->channel_state;
338 uint es = c->export_state;
339
340 DBG("%s reporting channel %s state transition %s -> %s\n", c->proto->name, c->name, c_states[cs], c_states[state]);
341 if (state == cs)
342 return;
343
344 c->channel_state = state;
345 c->last_state_change = current_time();
346
347 switch (state)
348 {
349 case CS_START:
350 ASSERT(cs == CS_DOWN || cs == CS_UP);
351
352 if (cs == CS_DOWN)
353 channel_do_start(c);
354
355 if (es != ES_DOWN)
356 channel_stop_export(c);
357
358 break;
359
360 case CS_UP:
361 ASSERT(cs == CS_DOWN || cs == CS_START);
362
363 if (cs == CS_DOWN)
364 channel_do_start(c);
365
366 if (!c->gr_wait && c->proto->rt_notify)
367 channel_start_export(c);
368
369 break;
370
371 case CS_FLUSHING:
372 ASSERT(cs == CS_START || cs == CS_UP);
373
374 if (es != ES_DOWN)
375 channel_stop_export(c);
376
377 channel_do_flush(c);
378 break;
379
380 case CS_DOWN:
381 ASSERT(cs == CS_FLUSHING);
382
383 channel_do_down(c);
384 break;
385
386 default:
387 ASSERT(0);
388 }
389 // XXXX proto_log_state_change(c);
390 }
391
392 /**
393 * channel_request_feeding - request feeding routes to the channel
394 * @c: given channel
395 *
396 * Sometimes it is needed to send again all routes to the channel. This is
397 * called feeding and can be requested by this function. This would cause
398 * channel export state transition to ES_FEEDING (during feeding) and when
399 * completed, it will switch back to ES_READY. This function can be called
400 * even when feeding is already running, in that case it is restarted.
401 */
402 void
403 channel_request_feeding(struct channel *c)
404 {
405 ASSERT(c->channel_state == CS_UP);
406
407 /* Do nothing if we are still waiting for feeding */
408 if (c->export_state == ES_DOWN)
409 return;
410
411 /* If we are already feeding, we want to restart it */
412 if (c->export_state == ES_FEEDING)
413 {
414 /* Unless feeding is in initial state */
415 if (!c->feed_active)
416 return;
417
418 rt_feed_channel_abort(c);
419 }
420
421 channel_reset_limit(&c->out_limit);
422
423 /* Hack: reset exp_routes during refeed, and do not decrease it later */
424 c->stats.exp_routes = 0;
425
426 channel_schedule_feed(c, 0); /* Sets ES_FEEDING */
427 // proto_log_state_change(c);
428 }
429
430 static inline int
431 channel_reloadable(struct channel *c)
432 {
433 return c->proto->reload_routes && c->reloadable;
434 }
435
436 static void
437 channel_request_reload(struct channel *c)
438 {
439 ASSERT(c->channel_state == CS_UP);
440 ASSERT(channel_reloadable(c));
441
442 c->proto->reload_routes(c);
443
444 /*
445 * Should this be done before reload_routes() hook?
446 * Perhaps, but routes are updated asynchronously.
447 */
448 channel_reset_limit(&c->rx_limit);
449 channel_reset_limit(&c->in_limit);
450 }
451
452 const struct channel_class channel_basic = {
453 .channel_size = sizeof(struct channel),
454 .config_size = sizeof(struct channel_config)
455 };
456
457 void *
458 channel_config_new(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
459 {
460 struct channel_config *cf = NULL;
461 struct rtable_config *tab = NULL;
462
463 if (net_type)
464 {
465 if (!net_val_match(net_type, proto->protocol->channel_mask))
466 cf_error("Unsupported channel type");
467
468 if (proto->net_type && (net_type != proto->net_type))
469 cf_error("Different channel type");
470
471 tab = new_config->def_tables[net_type];
472 }
473
474 if (!cc)
475 cc = &channel_basic;
476
477 cf = cfg_allocz(cc->config_size);
478 cf->name = name;
479 cf->channel = cc;
480 cf->parent = proto;
481 cf->table = tab;
482 cf->out_filter = FILTER_REJECT;
483
484 cf->net_type = net_type;
485 cf->ra_mode = RA_OPTIMAL;
486 cf->preference = proto->protocol->preference;
487
488 add_tail(&proto->channels, &cf->n);
489
490 return cf;
491 }
492
493 void *
494 channel_config_get(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
495 {
496 struct channel_config *cf;
497
498 /* We are using name as token, so no strcmp() */
499 WALK_LIST(cf, proto->channels)
500 if (cf->name == name)
501 {
502 /* Allow to redefine channel only if inherited from template */
503 if (cf->parent == proto)
504 cf_error("Multiple %s channels", name);
505
506 cf->parent = proto;
507 return cf;
508 }
509
510 return channel_config_new(cc, name, net_type, proto);
511 }
512
513 struct channel_config *
514 channel_copy_config(struct channel_config *src, struct proto_config *proto)
515 {
516 struct channel_config *dst = cfg_alloc(src->channel->config_size);
517
518 memcpy(dst, src, src->channel->config_size);
519 add_tail(&proto->channels, &dst->n);
520 CALL(src->channel->copy_config, dst, src);
521
522 return dst;
523 }
524
525
526 static int reconfigure_type; /* Hack to propagate type info to channel_reconfigure() */
527
528 int
529 channel_reconfigure(struct channel *c, struct channel_config *cf)
530 {
531 /* FIXME: better handle these changes, also handle in_keep_filtered */
532 if ((c->table != cf->table->table) || (cf->ra_mode && (c->ra_mode != cf->ra_mode)))
533 return 0;
534
535 /* Note that filter_same() requires arguments in (new, old) order */
536 int import_changed = !filter_same(cf->in_filter, c->in_filter);
537 int export_changed = !filter_same(cf->out_filter, c->out_filter);
538
539 if (c->preference != cf->preference)
540 import_changed = 1;
541
542 if (c->merge_limit != cf->merge_limit)
543 export_changed = 1;
544
545 /* Reconfigure channel fields */
546 c->in_filter = cf->in_filter;
547 c->out_filter = cf->out_filter;
548 c->rx_limit = cf->rx_limit;
549 c->in_limit = cf->in_limit;
550 c->out_limit = cf->out_limit;
551
552 // c->ra_mode = cf->ra_mode;
553 c->merge_limit = cf->merge_limit;
554 c->preference = cf->preference;
555 c->in_keep_filtered = cf->in_keep_filtered;
556
557 channel_verify_limits(c);
558
559 if (export_changed)
560 c->last_tx_filter_change = current_time();
561
562 /* Execute channel-specific reconfigure hook */
563 if (c->channel->reconfigure && !c->channel->reconfigure(c, cf))
564 return 0;
565
566 /* If the channel is not open, it has no routes and we cannot reload it anyways */
567 if (c->channel_state != CS_UP)
568 return 1;
569
570 if (reconfigure_type == RECONFIG_SOFT)
571 {
572 if (import_changed)
573 log(L_INFO "Channel %s.%s changed import", c->proto->name, c->name);
574
575 if (export_changed)
576 log(L_INFO "Channel %s.%s changed export", c->proto->name, c->name);
577
578 return 1;
579 }
580
581 /* Route reload may be not supported */
582 if (import_changed && !channel_reloadable(c))
583 return 0;
584
585 if (import_changed || export_changed)
586 log(L_INFO "Reloading channel %s.%s", c->proto->name, c->name);
587
588 if (import_changed)
589 channel_request_reload(c);
590
591 if (export_changed)
592 channel_request_feeding(c);
593
594 return 1;
595 }
596
597
598 int
599 proto_configure_channel(struct proto *p, struct channel **pc, struct channel_config *cf)
600 {
601 struct channel *c = *pc;
602
603 if (!c && cf)
604 {
605 *pc = proto_add_channel(p, cf);
606 }
607 else if (c && !cf)
608 {
609 if (c->channel_state != CS_DOWN)
610 {
611 log(L_INFO "Cannot remove channel %s.%s", c->proto->name, c->name);
612 return 0;
613 }
614
615 proto_remove_channel(p, c);
616 *pc = NULL;
617 }
618 else if (c && cf)
619 {
620 if (!channel_reconfigure(c, cf))
621 {
622 log(L_INFO "Cannot reconfigure channel %s.%s", c->proto->name, c->name);
623 return 0;
624 }
625 }
626
627 return 1;
628 }
629
630
631 static void
632 proto_event(void *ptr)
633 {
634 struct proto *p = ptr;
635
636 if (p->do_start)
637 {
638 if_feed_baby(p);
639 p->do_start = 0;
640 }
641
642 if (p->do_stop)
643 {
644 if (p->proto == &proto_unix_iface)
645 if_flush_ifaces(p);
646 p->do_stop = 0;
647 }
648
649 if (proto_is_done(p))
650 {
651 if (p->proto->cleanup)
652 p->proto->cleanup(p);
653
654 p->active = 0;
655 proto_log_state_change(p);
656 proto_rethink_goal(p);
657 }
658 }
659
660
661 /**
662 * proto_new - create a new protocol instance
663 * @c: protocol configuration
664 *
665 * When a new configuration has been read in, the core code starts
666 * initializing all the protocol instances configured by calling their
667 * init() hooks with the corresponding instance configuration. The initialization
668 * code of the protocol is expected to create a new instance according to the
669 * configuration by calling this function and then modifying the default settings
670 * to values wanted by the protocol.
671 */
672 void *
673 proto_new(struct proto_config *cf)
674 {
675 struct proto *p = mb_allocz(proto_pool, cf->protocol->proto_size);
676
677 p->cf = cf;
678 p->debug = cf->debug;
679 p->mrtdump = cf->mrtdump;
680 p->name = cf->name;
681 p->proto = cf->protocol;
682 p->net_type = cf->net_type;
683 p->disabled = cf->disabled;
684 p->hash_key = random_u32();
685 cf->proto = p;
686
687 init_list(&p->channels);
688
689 return p;
690 }
691
692 static struct proto *
693 proto_init(struct proto_config *c, node *n)
694 {
695 struct protocol *pr = c->protocol;
696 struct proto *p = pr->init(c);
697
698 p->proto_state = PS_DOWN;
699 p->last_state_change = current_time();
700 p->vrf = c->vrf;
701 insert_node(&p->n, n);
702
703 p->event = ev_new_init(proto_pool, proto_event, p);
704
705 PD(p, "Initializing%s", p->disabled ? " [disabled]" : "");
706
707 return p;
708 }
709
710 static void
711 proto_start(struct proto *p)
712 {
713 /* Here we cannot use p->cf->name since it won't survive reconfiguration */
714 p->pool = rp_new(proto_pool, p->proto->name);
715
716 if (graceful_restart_state == GRS_INIT)
717 p->gr_recovery = 1;
718 }
719
720
721 /**
722 * proto_config_new - create a new protocol configuration
723 * @pr: protocol the configuration will belong to
724 * @class: SYM_PROTO or SYM_TEMPLATE
725 *
726 * Whenever the configuration file says that a new instance
727 * of a routing protocol should be created, the parser calls
728 * proto_config_new() to create a configuration entry for this
729 * instance (a structure staring with the &proto_config header
730 * containing all the generic items followed by protocol-specific
731 * ones). Also, the configuration entry gets added to the list
732 * of protocol instances kept in the configuration.
733 *
734 * The function is also used to create protocol templates (when class
735 * SYM_TEMPLATE is specified), the only difference is that templates
736 * are not added to the list of protocol instances and therefore not
737 * initialized during protos_commit()).
738 */
739 void *
740 proto_config_new(struct protocol *pr, int class)
741 {
742 struct proto_config *cf = cfg_allocz(pr->config_size);
743
744 if (class == SYM_PROTO)
745 add_tail(&new_config->protos, &cf->n);
746
747 cf->global = new_config;
748 cf->protocol = pr;
749 cf->name = pr->name;
750 cf->class = class;
751 cf->debug = new_config->proto_default_debug;
752 cf->mrtdump = new_config->proto_default_mrtdump;
753
754 init_list(&cf->channels);
755
756 return cf;
757 }
758
759
760 /**
761 * proto_copy_config - copy a protocol configuration
762 * @dest: destination protocol configuration
763 * @src: source protocol configuration
764 *
765 * Whenever a new instance of a routing protocol is created from the
766 * template, proto_copy_config() is called to copy a content of
767 * the source protocol configuration to the new protocol configuration.
768 * Name, class and a node in protos list of @dest are kept intact.
769 * copy_config() protocol hook is used to copy protocol-specific data.
770 */
771 void
772 proto_copy_config(struct proto_config *dest, struct proto_config *src)
773 {
774 struct channel_config *cc;
775 node old_node;
776 int old_class;
777 char *old_name;
778
779 if (dest->protocol != src->protocol)
780 cf_error("Can't copy configuration from a different protocol type");
781
782 if (dest->protocol->copy_config == NULL)
783 cf_error("Inheriting configuration for %s is not supported", src->protocol->name);
784
785 DBG("Copying configuration from %s to %s\n", src->name, dest->name);
786
787 /*
788 * Copy struct proto_config here. Keep original node, class and name.
789 * protocol-specific config copy is handled by protocol copy_config() hook
790 */
791
792 old_node = dest->n;
793 old_class = dest->class;
794 old_name = dest->name;
795
796 memcpy(dest, src, src->protocol->config_size);
797
798 dest->n = old_node;
799 dest->class = old_class;
800 dest->name = old_name;
801 init_list(&dest->channels);
802
803 WALK_LIST(cc, src->channels)
804 channel_copy_config(cc, dest);
805
806 /* FIXME: allow for undefined copy_config */
807 dest->protocol->copy_config(dest, src);
808 }
809
810 /**
811 * protos_preconfig - pre-configuration processing
812 * @c: new configuration
813 *
814 * This function calls the preconfig() hooks of all routing
815 * protocols available to prepare them for reading of the new
816 * configuration.
817 */
818 void
819 protos_preconfig(struct config *c)
820 {
821 struct protocol *p;
822
823 init_list(&c->protos);
824 DBG("Protocol preconfig:");
825 WALK_LIST(p, protocol_list)
826 {
827 DBG(" %s", p->name);
828 p->name_counter = 0;
829 if (p->preconfig)
830 p->preconfig(p, c);
831 }
832 DBG("\n");
833 }
834
835 static int
836 proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
837 {
838 /* If the protocol is DOWN, we just restart it */
839 if (p->proto_state == PS_DOWN)
840 return 0;
841
842 /* If there is a too big change in core attributes, ... */
843 if ((nc->protocol != oc->protocol) ||
844 (nc->net_type != oc->net_type) ||
845 (nc->disabled != p->disabled) ||
846 (nc->vrf != oc->vrf))
847 return 0;
848
849 p->name = nc->name;
850 p->debug = nc->debug;
851 p->mrtdump = nc->mrtdump;
852 reconfigure_type = type;
853
854 /* Execute protocol specific reconfigure hook */
855 if (!p->proto->reconfigure || !p->proto->reconfigure(p, nc))
856 return 0;
857
858 DBG("\t%s: same\n", oc->name);
859 PD(p, "Reconfigured");
860 p->cf = nc;
861
862 return 1;
863 }
864
865 /**
866 * protos_commit - commit new protocol configuration
867 * @new: new configuration
868 * @old: old configuration or %NULL if it's boot time config
869 * @force_reconfig: force restart of all protocols (used for example
870 * when the router ID changes)
871 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
872 *
873 * Scan differences between @old and @new configuration and adjust all
874 * protocol instances to conform to the new configuration.
875 *
876 * When a protocol exists in the new configuration, but it doesn't in the
877 * original one, it's immediately started. When a collision with the other
878 * running protocol would arise, the new protocol will be temporarily stopped
879 * by the locking mechanism.
880 *
881 * When a protocol exists in the old configuration, but it doesn't in the
882 * new one, it's shut down and deleted after the shutdown completes.
883 *
884 * When a protocol exists in both configurations, the core decides
885 * whether it's possible to reconfigure it dynamically - it checks all
886 * the core properties of the protocol (changes in filters are ignored
887 * if type is RECONFIG_SOFT) and if they match, it asks the
888 * reconfigure() hook of the protocol to see if the protocol is able
889 * to switch to the new configuration. If it isn't possible, the
890 * protocol is shut down and a new instance is started with the new
891 * configuration after the shutdown is completed.
892 */
893 void
894 protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
895 {
896 struct proto_config *oc, *nc;
897 struct symbol *sym;
898 struct proto *p;
899 node *n;
900
901
902 DBG("protos_commit:\n");
903 if (old)
904 {
905 WALK_LIST(oc, old->protos)
906 {
907 p = oc->proto;
908 sym = cf_find_symbol(new, oc->name);
909 if (sym && sym->class == SYM_PROTO && !new->shutdown)
910 {
911 /* Found match, let's check if we can smoothly switch to new configuration */
912 /* No need to check description */
913 nc = sym->def;
914 nc->proto = p;
915
916 /* We will try to reconfigure protocol p */
917 if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
918 continue;
919
920 /* Unsuccessful, we will restart it */
921 if (!p->disabled && !nc->disabled)
922 log(L_INFO "Restarting protocol %s", p->name);
923 else if (p->disabled && !nc->disabled)
924 log(L_INFO "Enabling protocol %s", p->name);
925 else if (!p->disabled && nc->disabled)
926 log(L_INFO "Disabling protocol %s", p->name);
927
928 p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
929 p->cf_new = nc;
930 }
931 else if (!new->shutdown)
932 {
933 log(L_INFO "Removing protocol %s", p->name);
934 p->down_code = PDC_CF_REMOVE;
935 p->cf_new = NULL;
936 }
937 else /* global shutdown */
938 {
939 p->down_code = PDC_CMD_SHUTDOWN;
940 p->cf_new = NULL;
941 }
942
943 p->reconfiguring = 1;
944 config_add_obstacle(old);
945 proto_rethink_goal(p);
946 }
947 }
948
949 struct proto *first_dev_proto = NULL;
950
951 n = NODE &(proto_list.head);
952 WALK_LIST(nc, new->protos)
953 if (!nc->proto)
954 {
955 /* Not a first-time configuration */
956 if (old)
957 log(L_INFO "Adding protocol %s", nc->name);
958
959 p = proto_init(nc, n);
960 n = NODE p;
961
962 if (p->proto == &proto_unix_iface)
963 first_dev_proto = p;
964 }
965 else
966 n = NODE nc->proto;
967
968 DBG("Protocol start\n");
969
970 /* Start device protocol first */
971 if (first_dev_proto)
972 proto_rethink_goal(first_dev_proto);
973
974 /* Determine router ID for the first time - it has to be here and not in
975 global_commit() because it is postponed after start of device protocol */
976 if (!config->router_id)
977 {
978 config->router_id = if_choose_router_id(config->router_id_from, 0);
979 if (!config->router_id)
980 die("Cannot determine router ID, please configure it manually");
981 }
982
983 /* Start all new protocols */
984 WALK_LIST_DELSAFE(p, n, proto_list)
985 proto_rethink_goal(p);
986 }
987
988 static void
989 proto_rethink_goal(struct proto *p)
990 {
991 struct protocol *q;
992 byte goal;
993
994 if (p->reconfiguring && !p->active)
995 {
996 struct proto_config *nc = p->cf_new;
997 node *n = p->n.prev;
998 DBG("%s has shut down for reconfiguration\n", p->name);
999 p->cf->proto = NULL;
1000 config_del_obstacle(p->cf->global);
1001 proto_remove_channels(p);
1002 rem_node(&p->n);
1003 rfree(p->event);
1004 mb_free(p->message);
1005 mb_free(p);
1006 if (!nc)
1007 return;
1008 p = proto_init(nc, n);
1009 }
1010
1011 /* Determine what state we want to reach */
1012 if (p->disabled || p->reconfiguring)
1013 goal = PS_DOWN;
1014 else
1015 goal = PS_UP;
1016
1017 q = p->proto;
1018 if (goal == PS_UP)
1019 {
1020 if (!p->active)
1021 {
1022 /* Going up */
1023 DBG("Kicking %s up\n", p->name);
1024 PD(p, "Starting");
1025 proto_start(p);
1026 proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
1027 }
1028 }
1029 else
1030 {
1031 if (p->proto_state == PS_START || p->proto_state == PS_UP)
1032 {
1033 /* Going down */
1034 DBG("Kicking %s down\n", p->name);
1035 PD(p, "Shutting down");
1036 proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
1037 }
1038 }
1039 }
1040
1041
1042 /**
1043 * DOC: Graceful restart recovery
1044 *
1045 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
1046 * restarts but both the forwarding plane (e.g kernel routing table) and routing
1047 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
1048 * is maintained.
1049 *
1050 * BIRD implements graceful restart recovery by deferring export of routes to
1051 * protocols until routing tables are refilled with the expected content. After
1052 * start, protocols generate routes as usual, but routes are not propagated to
1053 * them, until protocols report that they generated all routes. After that,
1054 * graceful restart recovery is finished and the export (and the initial feed)
1055 * to protocols is enabled.
1056 *
1057 * When graceful restart recovery need is detected during initialization, then
1058 * enabled protocols are marked with @gr_recovery flag before start. Such
1059 * protocols then decide how to proceed with graceful restart, participation is
1060 * voluntary. Protocols could lock the recovery for each channel by function
1061 * channel_graceful_restart_lock() (state stored in @gr_lock flag), which means
1062 * that they want to postpone the end of the recovery until they converge and
1063 * then unlock it. They also could set @gr_wait before advancing to %PS_UP,
1064 * which means that the core should defer route export to that channel until
1065 * the end of the recovery. This should be done by protocols that expect their
1066 * neigbors to keep the proper routes (kernel table, BGP sessions with BGP
1067 * graceful restart capability).
1068 *
1069 * The graceful restart recovery is finished when either all graceful restart
1070 * locks are unlocked or when graceful restart wait timer fires.
1071 *
1072 */
1073
1074 static void graceful_restart_done(timer *t);
1075
1076 /**
1077 * graceful_restart_recovery - request initial graceful restart recovery
1078 *
1079 * Called by the platform initialization code if the need for recovery
1080 * after graceful restart is detected during boot. Have to be called
1081 * before protos_commit().
1082 */
1083 void
1084 graceful_restart_recovery(void)
1085 {
1086 graceful_restart_state = GRS_INIT;
1087 }
1088
1089 /**
1090 * graceful_restart_init - initialize graceful restart
1091 *
1092 * When graceful restart recovery was requested, the function starts an active
1093 * phase of the recovery and initializes graceful restart wait timer. The
1094 * function have to be called after protos_commit().
1095 */
1096 void
1097 graceful_restart_init(void)
1098 {
1099 if (!graceful_restart_state)
1100 return;
1101
1102 log(L_INFO "Graceful restart started");
1103
1104 if (!graceful_restart_locks)
1105 {
1106 graceful_restart_done(NULL);
1107 return;
1108 }
1109
1110 graceful_restart_state = GRS_ACTIVE;
1111 gr_wait_timer = tm_new_init(proto_pool, graceful_restart_done, NULL, 0, 0);
1112 tm_start(gr_wait_timer, config->gr_wait S);
1113 }
1114
1115 /**
1116 * graceful_restart_done - finalize graceful restart
1117 * @t: unused
1118 *
1119 * When there are no locks on graceful restart, the functions finalizes the
1120 * graceful restart recovery. Protocols postponing route export until the end of
1121 * the recovery are awakened and the export to them is enabled. All other
1122 * related state is cleared. The function is also called when the graceful
1123 * restart wait timer fires (but there are still some locks).
1124 */
1125 static void
1126 graceful_restart_done(timer *t UNUSED)
1127 {
1128 log(L_INFO "Graceful restart done");
1129 graceful_restart_state = GRS_DONE;
1130
1131 struct proto *p;
1132 WALK_LIST(p, proto_list)
1133 {
1134 if (!p->gr_recovery)
1135 continue;
1136
1137 struct channel *c;
1138 WALK_LIST(c, p->channels)
1139 {
1140 /* Resume postponed export of routes */
1141 if ((c->channel_state == CS_UP) && c->gr_wait && c->proto->rt_notify)
1142 channel_start_export(c);
1143
1144 /* Cleanup */
1145 c->gr_wait = 0;
1146 c->gr_lock = 0;
1147 }
1148
1149 p->gr_recovery = 0;
1150 }
1151
1152 graceful_restart_locks = 0;
1153 }
1154
1155 void
1156 graceful_restart_show_status(void)
1157 {
1158 if (graceful_restart_state != GRS_ACTIVE)
1159 return;
1160
1161 cli_msg(-24, "Graceful restart recovery in progress");
1162 cli_msg(-24, " Waiting for %d channels to recover", graceful_restart_locks);
1163 cli_msg(-24, " Wait timer is %t/%u", tm_remains(gr_wait_timer), config->gr_wait);
1164 }
1165
1166 /**
1167 * channel_graceful_restart_lock - lock graceful restart by channel
1168 * @p: channel instance
1169 *
1170 * This function allows a protocol to postpone the end of graceful restart
1171 * recovery until it converges. The lock is removed when the protocol calls
1172 * channel_graceful_restart_unlock() or when the channel is closed.
1173 *
1174 * The function have to be called during the initial phase of graceful restart
1175 * recovery and only for protocols that are part of graceful restart (i.e. their
1176 * @gr_recovery is set), which means it should be called from protocol start
1177 * hooks.
1178 */
1179 void
1180 channel_graceful_restart_lock(struct channel *c)
1181 {
1182 ASSERT(graceful_restart_state == GRS_INIT);
1183 ASSERT(c->proto->gr_recovery);
1184
1185 if (c->gr_lock)
1186 return;
1187
1188 c->gr_lock = 1;
1189 graceful_restart_locks++;
1190 }
1191
1192 /**
1193 * channel_graceful_restart_unlock - unlock graceful restart by channel
1194 * @p: channel instance
1195 *
1196 * This function unlocks a lock from channel_graceful_restart_lock(). It is also
1197 * automatically called when the lock holding protocol went down.
1198 */
1199 void
1200 channel_graceful_restart_unlock(struct channel *c)
1201 {
1202 if (!c->gr_lock)
1203 return;
1204
1205 c->gr_lock = 0;
1206 graceful_restart_locks--;
1207
1208 if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
1209 tm_start(gr_wait_timer, 0);
1210 }
1211
1212
1213
1214 /**
1215 * protos_dump_all - dump status of all protocols
1216 *
1217 * This function dumps status of all existing protocol instances to the
1218 * debug output. It involves printing of general status information
1219 * such as protocol states, its position on the protocol lists
1220 * and also calling of a dump() hook of the protocol to print
1221 * the internals.
1222 */
1223 void
1224 protos_dump_all(void)
1225 {
1226 debug("Protocols:\n");
1227
1228 struct proto *p;
1229 WALK_LIST(p, proto_list)
1230 {
1231 debug(" protocol %s state %s\n", p->name, p_states[p->proto_state]);
1232
1233 struct channel *c;
1234 WALK_LIST(c, p->channels)
1235 {
1236 debug("\tTABLE %s\n", c->table->name);
1237 if (c->in_filter)
1238 debug("\tInput filter: %s\n", filter_name(c->in_filter));
1239 if (c->out_filter)
1240 debug("\tOutput filter: %s\n", filter_name(c->out_filter));
1241 }
1242
1243 if (p->proto->dump && (p->proto_state != PS_DOWN))
1244 p->proto->dump(p);
1245 }
1246 }
1247
1248 /**
1249 * proto_build - make a single protocol available
1250 * @p: the protocol
1251 *
1252 * After the platform specific initialization code uses protos_build()
1253 * to add all the standard protocols, it should call proto_build() for
1254 * all platform specific protocols to inform the core that they exist.
1255 */
1256 void
1257 proto_build(struct protocol *p)
1258 {
1259 add_tail(&protocol_list, &p->n);
1260 ASSERT(p->class);
1261 ASSERT(!class_to_protocol[p->class]);
1262 class_to_protocol[p->class] = p;
1263 }
1264
1265 /* FIXME: convert this call to some protocol hook */
1266 extern void bfd_init_all(void);
1267
1268 /**
1269 * protos_build - build a protocol list
1270 *
1271 * This function is called during BIRD startup to insert
1272 * all standard protocols to the global protocol list. Insertion
1273 * of platform specific protocols (such as the kernel syncer)
1274 * is in the domain of competence of the platform dependent
1275 * startup code.
1276 */
1277 void
1278 protos_build(void)
1279 {
1280 init_list(&proto_list);
1281 init_list(&protocol_list);
1282
1283 proto_build(&proto_device);
1284 #ifdef CONFIG_RADV
1285 proto_build(&proto_radv);
1286 #endif
1287 #ifdef CONFIG_RIP
1288 proto_build(&proto_rip);
1289 #endif
1290 #ifdef CONFIG_STATIC
1291 proto_build(&proto_static);
1292 #endif
1293 #ifdef CONFIG_MRT
1294 proto_build(&proto_mrt);
1295 #endif
1296 #ifdef CONFIG_OSPF
1297 proto_build(&proto_ospf);
1298 #endif
1299 #ifdef CONFIG_PIPE
1300 proto_build(&proto_pipe);
1301 #endif
1302 #ifdef CONFIG_BGP
1303 proto_build(&proto_bgp);
1304 #endif
1305 #ifdef CONFIG_BFD
1306 proto_build(&proto_bfd);
1307 bfd_init_all();
1308 #endif
1309 #ifdef CONFIG_BABEL
1310 proto_build(&proto_babel);
1311 #endif
1312 #ifdef CONFIG_RPKI
1313 proto_build(&proto_rpki);
1314 #endif
1315
1316 proto_pool = rp_new(&root_pool, "Protocols");
1317 proto_shutdown_timer = tm_new(proto_pool);
1318 proto_shutdown_timer->hook = proto_shutdown_loop;
1319 }
1320
1321
1322 /* Temporary hack to propagate restart to BGP */
1323 int proto_restart;
1324
1325 static void
1326 proto_shutdown_loop(timer *t UNUSED)
1327 {
1328 struct proto *p, *p_next;
1329
1330 WALK_LIST_DELSAFE(p, p_next, proto_list)
1331 if (p->down_sched)
1332 {
1333 proto_restart = (p->down_sched == PDS_RESTART);
1334
1335 p->disabled = 1;
1336 proto_rethink_goal(p);
1337 if (proto_restart)
1338 {
1339 p->disabled = 0;
1340 proto_rethink_goal(p);
1341 }
1342 }
1343 }
1344
1345 static inline void
1346 proto_schedule_down(struct proto *p, byte restart, byte code)
1347 {
1348 /* Does not work for other states (even PS_START) */
1349 ASSERT(p->proto_state == PS_UP);
1350
1351 /* Scheduled restart may change to shutdown, but not otherwise */
1352 if (p->down_sched == PDS_DISABLE)
1353 return;
1354
1355 p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
1356 p->down_code = code;
1357 tm_start_max(proto_shutdown_timer, restart ? 250 MS : 0);
1358 }
1359
1360 /**
1361 * proto_set_message - set administrative message to protocol
1362 * @p: protocol
1363 * @msg: message
1364 * @len: message length (-1 for NULL-terminated string)
1365 *
1366 * The function sets administrative message (string) related to protocol state
1367 * change. It is called by the nest code for manual enable/disable/restart
1368 * commands all routes to the protocol, and by protocol-specific code when the
1369 * protocol state change is initiated by the protocol. Using NULL message clears
1370 * the last message. The message string may be either NULL-terminated or with an
1371 * explicit length.
1372 */
1373 void
1374 proto_set_message(struct proto *p, char *msg, int len)
1375 {
1376 mb_free(p->message);
1377 p->message = NULL;
1378
1379 if (!msg || !len)
1380 return;
1381
1382 if (len < 0)
1383 len = strlen(msg);
1384
1385 if (!len)
1386 return;
1387
1388 p->message = mb_alloc(proto_pool, len + 1);
1389 memcpy(p->message, msg, len);
1390 p->message[len] = 0;
1391 }
1392
1393
1394 static const char *
1395 channel_limit_name(struct channel_limit *l)
1396 {
1397 const char *actions[] = {
1398 [PLA_WARN] = "warn",
1399 [PLA_BLOCK] = "block",
1400 [PLA_RESTART] = "restart",
1401 [PLA_DISABLE] = "disable",
1402 };
1403
1404 return actions[l->action];
1405 }
1406
1407 /**
1408 * channel_notify_limit: notify about limit hit and take appropriate action
1409 * @c: channel
1410 * @l: limit being hit
1411 * @dir: limit direction (PLD_*)
1412 * @rt_count: the number of routes
1413 *
1414 * The function is called by the route processing core when limit @l
1415 * is breached. It activates the limit and tooks appropriate action
1416 * according to @l->action.
1417 */
1418 void
1419 channel_notify_limit(struct channel *c, struct channel_limit *l, int dir, u32 rt_count)
1420 {
1421 const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
1422 const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1423 struct proto *p = c->proto;
1424
1425 if (l->state == PLS_BLOCKED)
1426 return;
1427
1428 /* For warning action, we want the log message every time we hit the limit */
1429 if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1430 log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1431 p->name, dir_name[dir], l->limit, channel_limit_name(l));
1432
1433 switch (l->action)
1434 {
1435 case PLA_WARN:
1436 l->state = PLS_ACTIVE;
1437 break;
1438
1439 case PLA_BLOCK:
1440 l->state = PLS_BLOCKED;
1441 break;
1442
1443 case PLA_RESTART:
1444 case PLA_DISABLE:
1445 l->state = PLS_BLOCKED;
1446 if (p->proto_state == PS_UP)
1447 proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
1448 break;
1449 }
1450 }
1451
1452 static void
1453 channel_verify_limits(struct channel *c)
1454 {
1455 struct channel_limit *l;
1456 u32 all_routes = c->stats.imp_routes + c->stats.filt_routes;
1457
1458 l = &c->rx_limit;
1459 if (l->action && (all_routes > l->limit))
1460 channel_notify_limit(c, l, PLD_RX, all_routes);
1461
1462 l = &c->in_limit;
1463 if (l->action && (c->stats.imp_routes > l->limit))
1464 channel_notify_limit(c, l, PLD_IN, c->stats.imp_routes);
1465
1466 l = &c->out_limit;
1467 if (l->action && (c->stats.exp_routes > l->limit))
1468 channel_notify_limit(c, l, PLD_OUT, c->stats.exp_routes);
1469 }
1470
1471 static inline void
1472 channel_reset_limit(struct channel_limit *l)
1473 {
1474 if (l->action)
1475 l->state = PLS_INITIAL;
1476 }
1477
1478 static inline void
1479 proto_do_start(struct proto *p)
1480 {
1481 p->active = 1;
1482 p->do_start = 1;
1483 ev_schedule(p->event);
1484 }
1485
1486 static void
1487 proto_do_up(struct proto *p)
1488 {
1489 if (!p->main_source)
1490 {
1491 p->main_source = rt_get_source(p, 0);
1492 rt_lock_source(p->main_source);
1493 }
1494
1495 proto_start_channels(p);
1496 }
1497
1498 static inline void
1499 proto_do_pause(struct proto *p)
1500 {
1501 proto_pause_channels(p);
1502 }
1503
1504 static void
1505 proto_do_stop(struct proto *p)
1506 {
1507 p->down_sched = 0;
1508 p->gr_recovery = 0;
1509
1510 p->do_stop = 1;
1511 ev_schedule(p->event);
1512
1513 if (p->main_source)
1514 {
1515 rt_unlock_source(p->main_source);
1516 p->main_source = NULL;
1517 }
1518
1519 proto_stop_channels(p);
1520 }
1521
1522 static void
1523 proto_do_down(struct proto *p)
1524 {
1525 p->down_code = 0;
1526 neigh_prune();
1527 rfree(p->pool);
1528 p->pool = NULL;
1529
1530 /* Shutdown is finished in the protocol event */
1531 if (proto_is_done(p))
1532 ev_schedule(p->event);
1533 }
1534
1535
1536
1537 /**
1538 * proto_notify_state - notify core about protocol state change
1539 * @p: protocol the state of which has changed
1540 * @ps: the new status
1541 *
1542 * Whenever a state of a protocol changes due to some event internal
1543 * to the protocol (i.e., not inside a start() or shutdown() hook),
1544 * it should immediately notify the core about the change by calling
1545 * proto_notify_state() which will write the new state to the &proto
1546 * structure and take all the actions necessary to adapt to the new
1547 * state. State change to PS_DOWN immediately frees resources of protocol
1548 * and might execute start callback of protocol; therefore,
1549 * it should be used at tail positions of protocol callbacks.
1550 */
1551 void
1552 proto_notify_state(struct proto *p, uint state)
1553 {
1554 uint ps = p->proto_state;
1555
1556 DBG("%s reporting state transition %s -> %s\n", p->name, p_states[ps], p_states[state]);
1557 if (state == ps)
1558 return;
1559
1560 p->proto_state = state;
1561 p->last_state_change = current_time();
1562
1563 switch (state)
1564 {
1565 case PS_START:
1566 ASSERT(ps == PS_DOWN || ps == PS_UP);
1567
1568 if (ps == PS_DOWN)
1569 proto_do_start(p);
1570 else
1571 proto_do_pause(p);
1572 break;
1573
1574 case PS_UP:
1575 ASSERT(ps == PS_DOWN || ps == PS_START);
1576
1577 if (ps == PS_DOWN)
1578 proto_do_start(p);
1579
1580 proto_do_up(p);
1581 break;
1582
1583 case PS_STOP:
1584 ASSERT(ps == PS_START || ps == PS_UP);
1585
1586 proto_do_stop(p);
1587 break;
1588
1589 case PS_DOWN:
1590 if (ps != PS_STOP)
1591 proto_do_stop(p);
1592
1593 proto_do_down(p);
1594 break;
1595
1596 default:
1597 bug("%s: Invalid state %d", p->name, ps);
1598 }
1599
1600 proto_log_state_change(p);
1601 }
1602
1603 /*
1604 * CLI Commands
1605 */
1606
1607 static char *
1608 proto_state_name(struct proto *p)
1609 {
1610 switch (p->proto_state)
1611 {
1612 case PS_DOWN: return p->active ? "flush" : "down";
1613 case PS_START: return "start";
1614 case PS_UP: return "up";
1615 case PS_STOP: return "stop";
1616 default: return "???";
1617 }
1618 }
1619
1620 static void
1621 channel_show_stats(struct channel *c)
1622 {
1623 struct proto_stats *s = &c->stats;
1624
1625 if (c->in_keep_filtered)
1626 cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported",
1627 s->imp_routes, s->filt_routes, s->exp_routes);
1628 else
1629 cli_msg(-1006, " Routes: %u imported, %u exported",
1630 s->imp_routes, s->exp_routes);
1631
1632 cli_msg(-1006, " Route change stats: received rejected filtered ignored accepted");
1633 cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u",
1634 s->imp_updates_received, s->imp_updates_invalid,
1635 s->imp_updates_filtered, s->imp_updates_ignored,
1636 s->imp_updates_accepted);
1637 cli_msg(-1006, " Import withdraws: %10u %10u --- %10u %10u",
1638 s->imp_withdraws_received, s->imp_withdraws_invalid,
1639 s->imp_withdraws_ignored, s->imp_withdraws_accepted);
1640 cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u",
1641 s->exp_updates_received, s->exp_updates_rejected,
1642 s->exp_updates_filtered, s->exp_updates_accepted);
1643 cli_msg(-1006, " Export withdraws: %10u --- --- --- %10u",
1644 s->exp_withdraws_received, s->exp_withdraws_accepted);
1645 }
1646
1647 void
1648 channel_show_limit(struct channel_limit *l, const char *dsc)
1649 {
1650 if (!l->action)
1651 return;
1652
1653 cli_msg(-1006, " %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : "");
1654 cli_msg(-1006, " Action: %s", channel_limit_name(l));
1655 }
1656
1657 void
1658 channel_show_info(struct channel *c)
1659 {
1660 cli_msg(-1006, " Channel %s", c->name);
1661 cli_msg(-1006, " State: %s", c_states[c->channel_state]);
1662 cli_msg(-1006, " Table: %s", c->table->name);
1663 cli_msg(-1006, " Preference: %d", c->preference);
1664 cli_msg(-1006, " Input filter: %s", filter_name(c->in_filter));
1665 cli_msg(-1006, " Output filter: %s", filter_name(c->out_filter));
1666
1667 if (graceful_restart_state == GRS_ACTIVE)
1668 cli_msg(-1006, " GR recovery: %s%s",
1669 c->gr_lock ? " pending" : "",
1670 c->gr_wait ? " waiting" : "");
1671
1672 channel_show_limit(&c->rx_limit, "Receive limit:");
1673 channel_show_limit(&c->in_limit, "Import limit:");
1674 channel_show_limit(&c->out_limit, "Export limit:");
1675
1676 if (c->channel_state != CS_DOWN)
1677 channel_show_stats(c);
1678 }
1679
1680 void
1681 proto_cmd_show(struct proto *p, uintptr_t verbose, int cnt)
1682 {
1683 byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
1684
1685 /* First protocol - show header */
1686 if (!cnt)
1687 cli_msg(-2002, "%-10s %-10s %-10s %-6s %-12s %s",
1688 "Name", "Proto", "Table", "State", "Since", "Info");
1689
1690 buf[0] = 0;
1691 if (p->proto->get_status)
1692 p->proto->get_status(p, buf);
1693 tm_format_time(tbuf, &config->tf_proto, p->last_state_change);
1694 cli_msg(-1002, "%-10s %-10s %-10s %-6s %-12s %s",
1695 p->name,
1696 p->proto->name,
1697 p->main_channel ? p->main_channel->table->name : "---",
1698 proto_state_name(p),
1699 tbuf,
1700 buf);
1701
1702 if (verbose)
1703 {
1704 if (p->cf->dsc)
1705 cli_msg(-1006, " Description: %s", p->cf->dsc);
1706 if (p->message)
1707 cli_msg(-1006, " Message: %s", p->message);
1708 if (p->cf->router_id)
1709 cli_msg(-1006, " Router ID: %R", p->cf->router_id);
1710 if (p->vrf)
1711 cli_msg(-1006, " VRF: %s", p->vrf->name);
1712
1713 if (p->proto->show_proto_info)
1714 p->proto->show_proto_info(p);
1715 else
1716 {
1717 struct channel *c;
1718 WALK_LIST(c, p->channels)
1719 channel_show_info(c);
1720 }
1721
1722 cli_msg(-1006, "");
1723 }
1724 }
1725
1726 void
1727 proto_cmd_disable(struct proto *p, uintptr_t arg, int cnt UNUSED)
1728 {
1729 if (p->disabled)
1730 {
1731 cli_msg(-8, "%s: already disabled", p->name);
1732 return;
1733 }
1734
1735 log(L_INFO "Disabling protocol %s", p->name);
1736 p->disabled = 1;
1737 p->down_code = PDC_CMD_DISABLE;
1738 proto_set_message(p, (char *) arg, -1);
1739 proto_rethink_goal(p);
1740 cli_msg(-9, "%s: disabled", p->name);
1741 }
1742
1743 void
1744 proto_cmd_enable(struct proto *p, uintptr_t arg, int cnt UNUSED)
1745 {
1746 if (!p->disabled)
1747 {
1748 cli_msg(-10, "%s: already enabled", p->name);
1749 return;
1750 }
1751
1752 log(L_INFO "Enabling protocol %s", p->name);
1753 p->disabled = 0;
1754 proto_set_message(p, (char *) arg, -1);
1755 proto_rethink_goal(p);
1756 cli_msg(-11, "%s: enabled", p->name);
1757 }
1758
1759 void
1760 proto_cmd_restart(struct proto *p, uintptr_t arg, int cnt UNUSED)
1761 {
1762 if (p->disabled)
1763 {
1764 cli_msg(-8, "%s: already disabled", p->name);
1765 return;
1766 }
1767
1768 log(L_INFO "Restarting protocol %s", p->name);
1769 p->disabled = 1;
1770 p->down_code = PDC_CMD_RESTART;
1771 proto_set_message(p, (char *) arg, -1);
1772 proto_rethink_goal(p);
1773 p->disabled = 0;
1774 proto_rethink_goal(p);
1775 cli_msg(-12, "%s: restarted", p->name);
1776 }
1777
1778 void
1779 proto_cmd_reload(struct proto *p, uintptr_t dir, int cnt UNUSED)
1780 {
1781 struct channel *c;
1782
1783 if (p->disabled)
1784 {
1785 cli_msg(-8, "%s: already disabled", p->name);
1786 return;
1787 }
1788
1789 /* If the protocol in not UP, it has no routes */
1790 if (p->proto_state != PS_UP)
1791 return;
1792
1793 /* All channels must support reload */
1794 if (dir != CMD_RELOAD_OUT)
1795 WALK_LIST(c, p->channels)
1796 if (!channel_reloadable(c))
1797 {
1798 cli_msg(-8006, "%s: reload failed", p->name);
1799 return;
1800 }
1801
1802 log(L_INFO "Reloading protocol %s", p->name);
1803
1804 /* re-importing routes */
1805 if (dir != CMD_RELOAD_OUT)
1806 WALK_LIST(c, p->channels)
1807 channel_request_reload(c);
1808
1809 /* re-exporting routes */
1810 if (dir != CMD_RELOAD_IN)
1811 WALK_LIST(c, p->channels)
1812 channel_request_feeding(c);
1813
1814 cli_msg(-15, "%s: reloading", p->name);
1815 }
1816
1817 void
1818 proto_cmd_debug(struct proto *p, uintptr_t mask, int cnt UNUSED)
1819 {
1820 p->debug = mask;
1821 }
1822
1823 void
1824 proto_cmd_mrtdump(struct proto *p, uintptr_t mask, int cnt UNUSED)
1825 {
1826 p->mrtdump = mask;
1827 }
1828
1829 static void
1830 proto_apply_cmd_symbol(struct symbol *s, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
1831 {
1832 if (s->class != SYM_PROTO)
1833 {
1834 cli_msg(9002, "%s is not a protocol", s->name);
1835 return;
1836 }
1837
1838 cmd(((struct proto_config *)s->def)->proto, arg, 0);
1839 cli_msg(0, "");
1840 }
1841
1842 static void
1843 proto_apply_cmd_patt(char *patt, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
1844 {
1845 struct proto *p;
1846 int cnt = 0;
1847
1848 WALK_LIST(p, proto_list)
1849 if (!patt || patmatch(patt, p->name))
1850 cmd(p, arg, cnt++);
1851
1852 if (!cnt)
1853 cli_msg(8003, "No protocols match");
1854 else
1855 cli_msg(0, "");
1856 }
1857
1858 void
1859 proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uintptr_t, int),
1860 int restricted, uintptr_t arg)
1861 {
1862 if (restricted && cli_access_restricted())
1863 return;
1864
1865 if (ps.patt)
1866 proto_apply_cmd_patt(ps.ptr, cmd, arg);
1867 else
1868 proto_apply_cmd_symbol(ps.ptr, cmd, arg);
1869 }
1870
1871 struct proto *
1872 proto_get_named(struct symbol *sym, struct protocol *pr)
1873 {
1874 struct proto *p, *q;
1875
1876 if (sym)
1877 {
1878 if (sym->class != SYM_PROTO)
1879 cf_error("%s: Not a protocol", sym->name);
1880
1881 p = ((struct proto_config *) sym->def)->proto;
1882 if (!p || p->proto != pr)
1883 cf_error("%s: Not a %s protocol", sym->name, pr->name);
1884 }
1885 else
1886 {
1887 p = NULL;
1888 WALK_LIST(q, proto_list)
1889 if ((q->proto == pr) && (q->proto_state != PS_DOWN))
1890 {
1891 if (p)
1892 cf_error("There are multiple %s protocols running", pr->name);
1893 p = q;
1894 }
1895 if (!p)
1896 cf_error("There is no %s protocol running", pr->name);
1897 }
1898
1899 return p;
1900 }