]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/proto.c
Merge branch 'mq-filter-stack' of gitlab.labs.nic.cz:labs/bird into mq-filter-stack
[thirdparty/bird.git] / nest / proto.c
1 /*
2 * BIRD -- Protocols
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #undef LOCAL_DEBUG
10
11 #include "nest/bird.h"
12 #include "nest/protocol.h"
13 #include "lib/resource.h"
14 #include "lib/lists.h"
15 #include "lib/event.h"
16 #include "lib/timer.h"
17 #include "lib/string.h"
18 #include "conf/conf.h"
19 #include "nest/route.h"
20 #include "nest/iface.h"
21 #include "nest/cli.h"
22 #include "filter/filter.h"
23
24 pool *proto_pool;
25 list proto_list;
26
27 static list protocol_list;
28 struct protocol *class_to_protocol[PROTOCOL__MAX];
29
30 #define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)
31
32 static timer *proto_shutdown_timer;
33 static timer *gr_wait_timer;
34
35 #define GRS_NONE 0
36 #define GRS_INIT 1
37 #define GRS_ACTIVE 2
38 #define GRS_DONE 3
39
40 static int graceful_restart_state;
41 static u32 graceful_restart_locks;
42
43 static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
44 static char *c_states[] = { "DOWN", "START", "UP", "FLUSHING" };
45
46 extern struct protocol proto_unix_iface;
47
48 static void proto_shutdown_loop(timer *);
49 static void proto_rethink_goal(struct proto *p);
50 static char *proto_state_name(struct proto *p);
51 static void channel_verify_limits(struct channel *c);
52 static inline void channel_reset_limit(struct channel_limit *l);
53
54
55 static inline int proto_is_done(struct proto *p)
56 { return (p->proto_state == PS_DOWN) && (p->active_channels == 0); }
57
58 static inline int channel_is_active(struct channel *c)
59 { return (c->channel_state == CS_START) || (c->channel_state == CS_UP); }
60
61 static void
62 proto_log_state_change(struct proto *p)
63 {
64 if (p->debug & D_STATES)
65 {
66 char *name = proto_state_name(p);
67 if (name != p->last_state_name_announced)
68 {
69 p->last_state_name_announced = name;
70 PD(p, "State changed to %s", proto_state_name(p));
71 }
72 }
73 else
74 p->last_state_name_announced = NULL;
75 }
76
77
78 struct channel_config *
79 proto_cf_find_channel(struct proto_config *pc, uint net_type)
80 {
81 struct channel_config *cc;
82
83 WALK_LIST(cc, pc->channels)
84 if (cc->net_type == net_type)
85 return cc;
86
87 return NULL;
88 }
89
90 /**
91 * proto_find_channel_by_table - find channel connected to a routing table
92 * @p: protocol instance
93 * @t: routing table
94 *
95 * Returns pointer to channel or NULL
96 */
97 struct channel *
98 proto_find_channel_by_table(struct proto *p, struct rtable *t)
99 {
100 struct channel *c;
101
102 WALK_LIST(c, p->channels)
103 if (c->table == t)
104 return c;
105
106 return NULL;
107 }
108
109 /**
110 * proto_find_channel_by_name - find channel by its name
111 * @p: protocol instance
112 * @n: channel name
113 *
114 * Returns pointer to channel or NULL
115 */
116 struct channel *
117 proto_find_channel_by_name(struct proto *p, const char *n)
118 {
119 struct channel *c;
120
121 WALK_LIST(c, p->channels)
122 if (!strcmp(c->name, n))
123 return c;
124
125 return NULL;
126 }
127
128 /**
129 * proto_add_channel - connect protocol to a routing table
130 * @p: protocol instance
131 * @cf: channel configuration
132 *
133 * This function creates a channel between the protocol instance @p and the
134 * routing table specified in the configuration @cf, making the protocol hear
135 * all changes in the table and allowing the protocol to update routes in the
136 * table.
137 *
138 * The channel is linked in the protocol channel list and when active also in
139 * the table channel list. Channels are allocated from the global resource pool
140 * (@proto_pool) and they are automatically freed when the protocol is removed.
141 */
142
143 struct channel *
144 proto_add_channel(struct proto *p, struct channel_config *cf)
145 {
146 struct channel *c = mb_allocz(proto_pool, cf->channel->channel_size);
147
148 c->name = cf->name;
149 c->channel = cf->channel;
150 c->proto = p;
151 c->table = cf->table->table;
152
153 c->in_filter = cf->in_filter;
154 c->out_filter = cf->out_filter;
155 c->rx_limit = cf->rx_limit;
156 c->in_limit = cf->in_limit;
157 c->out_limit = cf->out_limit;
158
159 c->net_type = cf->net_type;
160 c->ra_mode = cf->ra_mode;
161 c->preference = cf->preference;
162 c->merge_limit = cf->merge_limit;
163 c->in_keep_filtered = cf->in_keep_filtered;
164
165 c->channel_state = CS_DOWN;
166 c->export_state = ES_DOWN;
167 c->last_state_change = current_time();
168 c->last_tx_filter_change = current_time();
169 c->reloadable = 1;
170
171 CALL(c->channel->init, c, cf);
172
173 add_tail(&p->channels, &c->n);
174
175 PD(p, "Channel %s connected to table %s", c->name, c->table->name);
176
177 return c;
178 }
179
180 void
181 proto_remove_channel(struct proto *p, struct channel *c)
182 {
183 ASSERT(c->channel_state == CS_DOWN);
184
185 PD(p, "Channel %s removed", c->name);
186
187 rem_node(&c->n);
188 mb_free(c);
189 }
190
191
192 static void
193 proto_start_channels(struct proto *p)
194 {
195 struct channel *c;
196 WALK_LIST(c, p->channels)
197 if (!c->disabled)
198 channel_set_state(c, CS_UP);
199 }
200
201 static void
202 proto_pause_channels(struct proto *p)
203 {
204 struct channel *c;
205 WALK_LIST(c, p->channels)
206 if (!c->disabled && channel_is_active(c))
207 channel_set_state(c, CS_START);
208 }
209
210 static void
211 proto_stop_channels(struct proto *p)
212 {
213 struct channel *c;
214 WALK_LIST(c, p->channels)
215 if (!c->disabled && channel_is_active(c))
216 channel_set_state(c, CS_FLUSHING);
217 }
218
219 static void
220 proto_remove_channels(struct proto *p)
221 {
222 struct channel *c;
223 WALK_LIST_FIRST(c, p->channels)
224 proto_remove_channel(p, c);
225 }
226
227 static void
228 channel_schedule_feed(struct channel *c, int initial)
229 {
230 // DBG("%s: Scheduling meal\n", p->name);
231 ASSERT(c->channel_state == CS_UP);
232
233 c->export_state = ES_FEEDING;
234 c->refeeding = !initial;
235
236 ev_schedule(c->feed_event);
237 }
238
239 static void
240 channel_feed_loop(void *ptr)
241 {
242 struct channel *c = ptr;
243
244 if (c->export_state != ES_FEEDING)
245 return;
246
247 if (!c->feed_active)
248 if (c->proto->feed_begin)
249 c->proto->feed_begin(c, !c->refeeding);
250
251 // DBG("Feeding protocol %s continued\n", p->name);
252 if (!rt_feed_channel(c))
253 {
254 ev_schedule(c->feed_event);
255 return;
256 }
257
258 // DBG("Feeding protocol %s finished\n", p->name);
259 c->export_state = ES_READY;
260 // proto_log_state_change(p);
261
262 if (c->proto->feed_end)
263 c->proto->feed_end(c);
264 }
265
266
267 static void
268 channel_start_export(struct channel *c)
269 {
270 ASSERT(c->channel_state == CS_UP);
271 ASSERT(c->export_state == ES_DOWN);
272
273 channel_schedule_feed(c, 1); /* Sets ES_FEEDING */
274 }
275
276 static void
277 channel_stop_export(struct channel *c)
278 {
279 /* Need to abort feeding */
280 if (c->export_state == ES_FEEDING)
281 rt_feed_channel_abort(c);
282
283 c->export_state = ES_DOWN;
284 c->stats.exp_routes = 0;
285 }
286
287
288 /* Called by protocol for reload from in_table */
289 void
290 channel_schedule_reload(struct channel *c)
291 {
292 ASSERT(c->channel_state == CS_UP);
293
294 rt_reload_channel_abort(c);
295 ev_schedule(c->reload_event);
296 }
297
298 static void
299 channel_reload_loop(void *ptr)
300 {
301 struct channel *c = ptr;
302
303 if (!rt_reload_channel(c))
304 {
305 ev_schedule(c->reload_event);
306 return;
307 }
308 }
309
310 static void
311 channel_reset_import(struct channel *c)
312 {
313 /* Need to abort feeding */
314 ev_postpone(c->reload_event);
315 rt_reload_channel_abort(c);
316
317 rt_prune_sync(c->in_table, 1);
318 }
319
320 /* Called by protocol to activate in_table */
321 void
322 channel_setup_in_table(struct channel *c)
323 {
324 struct rtable_config *cf = mb_allocz(c->proto->pool, sizeof(struct rtable_config));
325 cf->name = "import";
326 cf->addr_type = c->net_type;
327
328 c->in_table = mb_allocz(c->proto->pool, sizeof(struct rtable));
329 rt_setup(c->proto->pool, c->in_table, cf);
330
331 c->reload_event = ev_new_init(c->proto->pool, channel_reload_loop, c);
332 }
333
334
335 static void
336 channel_do_start(struct channel *c)
337 {
338 rt_lock_table(c->table);
339 add_tail(&c->table->channels, &c->table_node);
340 c->proto->active_channels++;
341
342 c->feed_event = ev_new_init(c->proto->pool, channel_feed_loop, c);
343
344 channel_reset_limit(&c->rx_limit);
345 channel_reset_limit(&c->in_limit);
346 channel_reset_limit(&c->out_limit);
347
348 CALL(c->channel->start, c);
349 }
350
351 static void
352 channel_do_flush(struct channel *c)
353 {
354 rt_schedule_prune(c->table);
355
356 c->gr_wait = 0;
357 if (c->gr_lock)
358 channel_graceful_restart_unlock(c);
359
360 CALL(c->channel->shutdown, c);
361 }
362
363 static void
364 channel_do_down(struct channel *c)
365 {
366 ASSERT(!c->feed_active && !c->reload_active);
367
368 rem_node(&c->table_node);
369 rt_unlock_table(c->table);
370 c->proto->active_channels--;
371
372 if ((c->stats.imp_routes + c->stats.filt_routes) != 0)
373 log(L_ERR "%s: Channel %s is down but still has some routes", c->proto->name, c->name);
374
375 memset(&c->stats, 0, sizeof(struct proto_stats));
376
377 c->in_table = NULL;
378 c->reload_event = NULL;
379
380 CALL(c->channel->cleanup, c);
381
382 /* Schedule protocol shutddown */
383 if (proto_is_done(c->proto))
384 ev_schedule(c->proto->event);
385 }
386
387 void
388 channel_set_state(struct channel *c, uint state)
389 {
390 uint cs = c->channel_state;
391 uint es = c->export_state;
392
393 DBG("%s reporting channel %s state transition %s -> %s\n", c->proto->name, c->name, c_states[cs], c_states[state]);
394 if (state == cs)
395 return;
396
397 c->channel_state = state;
398 c->last_state_change = current_time();
399
400 switch (state)
401 {
402 case CS_START:
403 ASSERT(cs == CS_DOWN || cs == CS_UP);
404
405 if (cs == CS_DOWN)
406 channel_do_start(c);
407
408 if (es != ES_DOWN)
409 channel_stop_export(c);
410
411 if (c->in_table && (cs == CS_UP))
412 channel_reset_import(c);
413
414 break;
415
416 case CS_UP:
417 ASSERT(cs == CS_DOWN || cs == CS_START);
418
419 if (cs == CS_DOWN)
420 channel_do_start(c);
421
422 if (!c->gr_wait && c->proto->rt_notify)
423 channel_start_export(c);
424
425 break;
426
427 case CS_FLUSHING:
428 ASSERT(cs == CS_START || cs == CS_UP);
429
430 if (es != ES_DOWN)
431 channel_stop_export(c);
432
433 if (c->in_table && (cs == CS_UP))
434 channel_reset_import(c);
435
436 channel_do_flush(c);
437 break;
438
439 case CS_DOWN:
440 ASSERT(cs == CS_FLUSHING);
441
442 channel_do_down(c);
443 break;
444
445 default:
446 ASSERT(0);
447 }
448 // XXXX proto_log_state_change(c);
449 }
450
451 /**
452 * channel_request_feeding - request feeding routes to the channel
453 * @c: given channel
454 *
455 * Sometimes it is needed to send again all routes to the channel. This is
456 * called feeding and can be requested by this function. This would cause
457 * channel export state transition to ES_FEEDING (during feeding) and when
458 * completed, it will switch back to ES_READY. This function can be called
459 * even when feeding is already running, in that case it is restarted.
460 */
461 void
462 channel_request_feeding(struct channel *c)
463 {
464 ASSERT(c->channel_state == CS_UP);
465
466 /* Do nothing if we are still waiting for feeding */
467 if (c->export_state == ES_DOWN)
468 return;
469
470 /* If we are already feeding, we want to restart it */
471 if (c->export_state == ES_FEEDING)
472 {
473 /* Unless feeding is in initial state */
474 if (!c->feed_active)
475 return;
476
477 rt_feed_channel_abort(c);
478 }
479
480 channel_reset_limit(&c->out_limit);
481
482 /* Hack: reset exp_routes during refeed, and do not decrease it later */
483 c->stats.exp_routes = 0;
484
485 channel_schedule_feed(c, 0); /* Sets ES_FEEDING */
486 // proto_log_state_change(c);
487 }
488
489 static inline int
490 channel_reloadable(struct channel *c)
491 {
492 return c->proto->reload_routes && c->reloadable;
493 }
494
495 static void
496 channel_request_reload(struct channel *c)
497 {
498 ASSERT(c->channel_state == CS_UP);
499 ASSERT(channel_reloadable(c));
500
501 c->proto->reload_routes(c);
502
503 /*
504 * Should this be done before reload_routes() hook?
505 * Perhaps, but routes are updated asynchronously.
506 */
507 channel_reset_limit(&c->rx_limit);
508 channel_reset_limit(&c->in_limit);
509 }
510
511 const struct channel_class channel_basic = {
512 .channel_size = sizeof(struct channel),
513 .config_size = sizeof(struct channel_config)
514 };
515
516 void *
517 channel_config_new(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
518 {
519 struct channel_config *cf = NULL;
520 struct rtable_config *tab = NULL;
521
522 if (net_type)
523 {
524 if (!net_val_match(net_type, proto->protocol->channel_mask))
525 cf_error("Unsupported channel type");
526
527 if (proto->net_type && (net_type != proto->net_type))
528 cf_error("Different channel type");
529
530 tab = new_config->def_tables[net_type];
531 }
532
533 if (!cc)
534 cc = &channel_basic;
535
536 cf = cfg_allocz(cc->config_size);
537 cf->name = name;
538 cf->channel = cc;
539 cf->parent = proto;
540 cf->table = tab;
541 cf->out_filter = FILTER_REJECT;
542
543 cf->net_type = net_type;
544 cf->ra_mode = RA_OPTIMAL;
545 cf->preference = proto->protocol->preference;
546
547 add_tail(&proto->channels, &cf->n);
548
549 return cf;
550 }
551
552 void *
553 channel_config_get(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
554 {
555 struct channel_config *cf;
556
557 /* We are using name as token, so no strcmp() */
558 WALK_LIST(cf, proto->channels)
559 if (cf->name == name)
560 {
561 /* Allow to redefine channel only if inherited from template */
562 if (cf->parent == proto)
563 cf_error("Multiple %s channels", name);
564
565 cf->parent = proto;
566 return cf;
567 }
568
569 return channel_config_new(cc, name, net_type, proto);
570 }
571
572 struct channel_config *
573 channel_copy_config(struct channel_config *src, struct proto_config *proto)
574 {
575 struct channel_config *dst = cfg_alloc(src->channel->config_size);
576
577 memcpy(dst, src, src->channel->config_size);
578 add_tail(&proto->channels, &dst->n);
579 CALL(src->channel->copy_config, dst, src);
580
581 return dst;
582 }
583
584
585 static int reconfigure_type; /* Hack to propagate type info to channel_reconfigure() */
586
587 int
588 channel_reconfigure(struct channel *c, struct channel_config *cf)
589 {
590 /* FIXME: better handle these changes, also handle in_keep_filtered */
591 if ((c->table != cf->table->table) || (cf->ra_mode && (c->ra_mode != cf->ra_mode)))
592 return 0;
593
594 /* Note that filter_same() requires arguments in (new, old) order */
595 int import_changed = !filter_same(cf->in_filter, c->in_filter);
596 int export_changed = !filter_same(cf->out_filter, c->out_filter);
597
598 if (c->preference != cf->preference)
599 import_changed = 1;
600
601 if (c->merge_limit != cf->merge_limit)
602 export_changed = 1;
603
604 /* Reconfigure channel fields */
605 c->in_filter = cf->in_filter;
606 c->out_filter = cf->out_filter;
607 c->rx_limit = cf->rx_limit;
608 c->in_limit = cf->in_limit;
609 c->out_limit = cf->out_limit;
610
611 // c->ra_mode = cf->ra_mode;
612 c->merge_limit = cf->merge_limit;
613 c->preference = cf->preference;
614 c->in_keep_filtered = cf->in_keep_filtered;
615
616 channel_verify_limits(c);
617
618 if (export_changed)
619 c->last_tx_filter_change = current_time();
620
621 /* Execute channel-specific reconfigure hook */
622 if (c->channel->reconfigure && !c->channel->reconfigure(c, cf))
623 return 0;
624
625 /* If the channel is not open, it has no routes and we cannot reload it anyways */
626 if (c->channel_state != CS_UP)
627 return 1;
628
629 if (reconfigure_type == RECONFIG_SOFT)
630 {
631 if (import_changed)
632 log(L_INFO "Channel %s.%s changed import", c->proto->name, c->name);
633
634 if (export_changed)
635 log(L_INFO "Channel %s.%s changed export", c->proto->name, c->name);
636
637 return 1;
638 }
639
640 /* Route reload may be not supported */
641 if (import_changed && !channel_reloadable(c))
642 return 0;
643
644 if (import_changed || export_changed)
645 log(L_INFO "Reloading channel %s.%s", c->proto->name, c->name);
646
647 if (import_changed)
648 channel_request_reload(c);
649
650 if (export_changed)
651 channel_request_feeding(c);
652
653 return 1;
654 }
655
656
657 int
658 proto_configure_channel(struct proto *p, struct channel **pc, struct channel_config *cf)
659 {
660 struct channel *c = *pc;
661
662 if (!c && cf)
663 {
664 /* We could add the channel, but currently it would just stay in down state
665 until protocol is restarted, so it is better to force restart anyways. */
666 if (p->proto_state != PS_DOWN)
667 {
668 log(L_INFO "Cannot add channel %s.%s", p->name, cf->name);
669 return 0;
670 }
671
672 *pc = proto_add_channel(p, cf);
673 }
674 else if (c && !cf)
675 {
676 if (c->channel_state != CS_DOWN)
677 {
678 log(L_INFO "Cannot remove channel %s.%s", c->proto->name, c->name);
679 return 0;
680 }
681
682 proto_remove_channel(p, c);
683 *pc = NULL;
684 }
685 else if (c && cf)
686 {
687 if (!channel_reconfigure(c, cf))
688 {
689 log(L_INFO "Cannot reconfigure channel %s.%s", c->proto->name, c->name);
690 return 0;
691 }
692 }
693
694 return 1;
695 }
696
697
698 static void
699 proto_event(void *ptr)
700 {
701 struct proto *p = ptr;
702
703 if (p->do_start)
704 {
705 if_feed_baby(p);
706 p->do_start = 0;
707 }
708
709 if (p->do_stop)
710 {
711 if (p->proto == &proto_unix_iface)
712 if_flush_ifaces(p);
713 p->do_stop = 0;
714 }
715
716 if (proto_is_done(p))
717 {
718 if (p->proto->cleanup)
719 p->proto->cleanup(p);
720
721 p->active = 0;
722 proto_log_state_change(p);
723 proto_rethink_goal(p);
724 }
725 }
726
727
728 /**
729 * proto_new - create a new protocol instance
730 * @c: protocol configuration
731 *
732 * When a new configuration has been read in, the core code starts
733 * initializing all the protocol instances configured by calling their
734 * init() hooks with the corresponding instance configuration. The initialization
735 * code of the protocol is expected to create a new instance according to the
736 * configuration by calling this function and then modifying the default settings
737 * to values wanted by the protocol.
738 */
739 void *
740 proto_new(struct proto_config *cf)
741 {
742 struct proto *p = mb_allocz(proto_pool, cf->protocol->proto_size);
743
744 p->cf = cf;
745 p->debug = cf->debug;
746 p->mrtdump = cf->mrtdump;
747 p->name = cf->name;
748 p->proto = cf->protocol;
749 p->net_type = cf->net_type;
750 p->disabled = cf->disabled;
751 p->hash_key = random_u32();
752 cf->proto = p;
753
754 init_list(&p->channels);
755
756 return p;
757 }
758
759 static struct proto *
760 proto_init(struct proto_config *c, node *n)
761 {
762 struct protocol *pr = c->protocol;
763 struct proto *p = pr->init(c);
764
765 p->proto_state = PS_DOWN;
766 p->last_state_change = current_time();
767 p->vrf = c->vrf;
768 insert_node(&p->n, n);
769
770 p->event = ev_new_init(proto_pool, proto_event, p);
771
772 PD(p, "Initializing%s", p->disabled ? " [disabled]" : "");
773
774 return p;
775 }
776
777 static void
778 proto_start(struct proto *p)
779 {
780 /* Here we cannot use p->cf->name since it won't survive reconfiguration */
781 p->pool = rp_new(proto_pool, p->proto->name);
782
783 if (graceful_restart_state == GRS_INIT)
784 p->gr_recovery = 1;
785 }
786
787
788 /**
789 * proto_config_new - create a new protocol configuration
790 * @pr: protocol the configuration will belong to
791 * @class: SYM_PROTO or SYM_TEMPLATE
792 *
793 * Whenever the configuration file says that a new instance
794 * of a routing protocol should be created, the parser calls
795 * proto_config_new() to create a configuration entry for this
796 * instance (a structure staring with the &proto_config header
797 * containing all the generic items followed by protocol-specific
798 * ones). Also, the configuration entry gets added to the list
799 * of protocol instances kept in the configuration.
800 *
801 * The function is also used to create protocol templates (when class
802 * SYM_TEMPLATE is specified), the only difference is that templates
803 * are not added to the list of protocol instances and therefore not
804 * initialized during protos_commit()).
805 */
806 void *
807 proto_config_new(struct protocol *pr, int class)
808 {
809 struct proto_config *cf = cfg_allocz(pr->config_size);
810
811 if (class == SYM_PROTO)
812 add_tail(&new_config->protos, &cf->n);
813
814 cf->global = new_config;
815 cf->protocol = pr;
816 cf->name = pr->name;
817 cf->class = class;
818 cf->debug = new_config->proto_default_debug;
819 cf->mrtdump = new_config->proto_default_mrtdump;
820
821 init_list(&cf->channels);
822
823 return cf;
824 }
825
826
827 /**
828 * proto_copy_config - copy a protocol configuration
829 * @dest: destination protocol configuration
830 * @src: source protocol configuration
831 *
832 * Whenever a new instance of a routing protocol is created from the
833 * template, proto_copy_config() is called to copy a content of
834 * the source protocol configuration to the new protocol configuration.
835 * Name, class and a node in protos list of @dest are kept intact.
836 * copy_config() protocol hook is used to copy protocol-specific data.
837 */
838 void
839 proto_copy_config(struct proto_config *dest, struct proto_config *src)
840 {
841 struct channel_config *cc;
842 node old_node;
843 int old_class;
844 char *old_name;
845
846 if (dest->protocol != src->protocol)
847 cf_error("Can't copy configuration from a different protocol type");
848
849 if (dest->protocol->copy_config == NULL)
850 cf_error("Inheriting configuration for %s is not supported", src->protocol->name);
851
852 DBG("Copying configuration from %s to %s\n", src->name, dest->name);
853
854 /*
855 * Copy struct proto_config here. Keep original node, class and name.
856 * protocol-specific config copy is handled by protocol copy_config() hook
857 */
858
859 old_node = dest->n;
860 old_class = dest->class;
861 old_name = dest->name;
862
863 memcpy(dest, src, src->protocol->config_size);
864
865 dest->n = old_node;
866 dest->class = old_class;
867 dest->name = old_name;
868 init_list(&dest->channels);
869
870 WALK_LIST(cc, src->channels)
871 channel_copy_config(cc, dest);
872
873 /* FIXME: allow for undefined copy_config */
874 dest->protocol->copy_config(dest, src);
875 }
876
877 /**
878 * protos_preconfig - pre-configuration processing
879 * @c: new configuration
880 *
881 * This function calls the preconfig() hooks of all routing
882 * protocols available to prepare them for reading of the new
883 * configuration.
884 */
885 void
886 protos_preconfig(struct config *c)
887 {
888 struct protocol *p;
889
890 init_list(&c->protos);
891 DBG("Protocol preconfig:");
892 WALK_LIST(p, protocol_list)
893 {
894 DBG(" %s", p->name);
895 p->name_counter = 0;
896 if (p->preconfig)
897 p->preconfig(p, c);
898 }
899 DBG("\n");
900 }
901
902 static int
903 proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
904 {
905 /* If the protocol is DOWN, we just restart it */
906 if (p->proto_state == PS_DOWN)
907 return 0;
908
909 /* If there is a too big change in core attributes, ... */
910 if ((nc->protocol != oc->protocol) ||
911 (nc->net_type != oc->net_type) ||
912 (nc->disabled != p->disabled) ||
913 (nc->vrf != oc->vrf))
914 return 0;
915
916 p->name = nc->name;
917 p->debug = nc->debug;
918 p->mrtdump = nc->mrtdump;
919 reconfigure_type = type;
920
921 /* Execute protocol specific reconfigure hook */
922 if (!p->proto->reconfigure || !p->proto->reconfigure(p, nc))
923 return 0;
924
925 DBG("\t%s: same\n", oc->name);
926 PD(p, "Reconfigured");
927 p->cf = nc;
928
929 return 1;
930 }
931
932 /**
933 * protos_commit - commit new protocol configuration
934 * @new: new configuration
935 * @old: old configuration or %NULL if it's boot time config
936 * @force_reconfig: force restart of all protocols (used for example
937 * when the router ID changes)
938 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
939 *
940 * Scan differences between @old and @new configuration and adjust all
941 * protocol instances to conform to the new configuration.
942 *
943 * When a protocol exists in the new configuration, but it doesn't in the
944 * original one, it's immediately started. When a collision with the other
945 * running protocol would arise, the new protocol will be temporarily stopped
946 * by the locking mechanism.
947 *
948 * When a protocol exists in the old configuration, but it doesn't in the
949 * new one, it's shut down and deleted after the shutdown completes.
950 *
951 * When a protocol exists in both configurations, the core decides
952 * whether it's possible to reconfigure it dynamically - it checks all
953 * the core properties of the protocol (changes in filters are ignored
954 * if type is RECONFIG_SOFT) and if they match, it asks the
955 * reconfigure() hook of the protocol to see if the protocol is able
956 * to switch to the new configuration. If it isn't possible, the
957 * protocol is shut down and a new instance is started with the new
958 * configuration after the shutdown is completed.
959 */
960 void
961 protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
962 {
963 struct proto_config *oc, *nc;
964 struct symbol *sym;
965 struct proto *p;
966 node *n;
967
968
969 DBG("protos_commit:\n");
970 if (old)
971 {
972 WALK_LIST(oc, old->protos)
973 {
974 p = oc->proto;
975 sym = cf_find_symbol(new, oc->name);
976 if (sym && sym->class == SYM_PROTO && !new->shutdown)
977 {
978 /* Found match, let's check if we can smoothly switch to new configuration */
979 /* No need to check description */
980 nc = sym->proto;
981 nc->proto = p;
982
983 /* We will try to reconfigure protocol p */
984 if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
985 continue;
986
987 /* Unsuccessful, we will restart it */
988 if (!p->disabled && !nc->disabled)
989 log(L_INFO "Restarting protocol %s", p->name);
990 else if (p->disabled && !nc->disabled)
991 log(L_INFO "Enabling protocol %s", p->name);
992 else if (!p->disabled && nc->disabled)
993 log(L_INFO "Disabling protocol %s", p->name);
994
995 p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
996 p->cf_new = nc;
997 }
998 else if (!new->shutdown)
999 {
1000 log(L_INFO "Removing protocol %s", p->name);
1001 p->down_code = PDC_CF_REMOVE;
1002 p->cf_new = NULL;
1003 }
1004 else /* global shutdown */
1005 {
1006 p->down_code = PDC_CMD_SHUTDOWN;
1007 p->cf_new = NULL;
1008 }
1009
1010 p->reconfiguring = 1;
1011 config_add_obstacle(old);
1012 proto_rethink_goal(p);
1013 }
1014 }
1015
1016 struct proto *first_dev_proto = NULL;
1017
1018 n = NODE &(proto_list.head);
1019 WALK_LIST(nc, new->protos)
1020 if (!nc->proto)
1021 {
1022 /* Not a first-time configuration */
1023 if (old)
1024 log(L_INFO "Adding protocol %s", nc->name);
1025
1026 p = proto_init(nc, n);
1027 n = NODE p;
1028
1029 if (p->proto == &proto_unix_iface)
1030 first_dev_proto = p;
1031 }
1032 else
1033 n = NODE nc->proto;
1034
1035 DBG("Protocol start\n");
1036
1037 /* Start device protocol first */
1038 if (first_dev_proto)
1039 proto_rethink_goal(first_dev_proto);
1040
1041 /* Determine router ID for the first time - it has to be here and not in
1042 global_commit() because it is postponed after start of device protocol */
1043 if (!config->router_id)
1044 {
1045 config->router_id = if_choose_router_id(config->router_id_from, 0);
1046 if (!config->router_id)
1047 die("Cannot determine router ID, please configure it manually");
1048 }
1049
1050 /* Start all new protocols */
1051 WALK_LIST_DELSAFE(p, n, proto_list)
1052 proto_rethink_goal(p);
1053 }
1054
1055 static void
1056 proto_rethink_goal(struct proto *p)
1057 {
1058 struct protocol *q;
1059 byte goal;
1060
1061 if (p->reconfiguring && !p->active)
1062 {
1063 struct proto_config *nc = p->cf_new;
1064 node *n = p->n.prev;
1065 DBG("%s has shut down for reconfiguration\n", p->name);
1066 p->cf->proto = NULL;
1067 config_del_obstacle(p->cf->global);
1068 proto_remove_channels(p);
1069 rem_node(&p->n);
1070 rfree(p->event);
1071 mb_free(p->message);
1072 mb_free(p);
1073 if (!nc)
1074 return;
1075 p = proto_init(nc, n);
1076 }
1077
1078 /* Determine what state we want to reach */
1079 if (p->disabled || p->reconfiguring)
1080 goal = PS_DOWN;
1081 else
1082 goal = PS_UP;
1083
1084 q = p->proto;
1085 if (goal == PS_UP)
1086 {
1087 if (!p->active)
1088 {
1089 /* Going up */
1090 DBG("Kicking %s up\n", p->name);
1091 PD(p, "Starting");
1092 proto_start(p);
1093 proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
1094 }
1095 }
1096 else
1097 {
1098 if (p->proto_state == PS_START || p->proto_state == PS_UP)
1099 {
1100 /* Going down */
1101 DBG("Kicking %s down\n", p->name);
1102 PD(p, "Shutting down");
1103 proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
1104 }
1105 }
1106 }
1107
1108
1109 /**
1110 * DOC: Graceful restart recovery
1111 *
1112 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
1113 * restarts but both the forwarding plane (e.g kernel routing table) and routing
1114 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
1115 * is maintained.
1116 *
1117 * BIRD implements graceful restart recovery by deferring export of routes to
1118 * protocols until routing tables are refilled with the expected content. After
1119 * start, protocols generate routes as usual, but routes are not propagated to
1120 * them, until protocols report that they generated all routes. After that,
1121 * graceful restart recovery is finished and the export (and the initial feed)
1122 * to protocols is enabled.
1123 *
1124 * When graceful restart recovery need is detected during initialization, then
1125 * enabled protocols are marked with @gr_recovery flag before start. Such
1126 * protocols then decide how to proceed with graceful restart, participation is
1127 * voluntary. Protocols could lock the recovery for each channel by function
1128 * channel_graceful_restart_lock() (state stored in @gr_lock flag), which means
1129 * that they want to postpone the end of the recovery until they converge and
1130 * then unlock it. They also could set @gr_wait before advancing to %PS_UP,
1131 * which means that the core should defer route export to that channel until
1132 * the end of the recovery. This should be done by protocols that expect their
1133 * neigbors to keep the proper routes (kernel table, BGP sessions with BGP
1134 * graceful restart capability).
1135 *
1136 * The graceful restart recovery is finished when either all graceful restart
1137 * locks are unlocked or when graceful restart wait timer fires.
1138 *
1139 */
1140
1141 static void graceful_restart_done(timer *t);
1142
1143 /**
1144 * graceful_restart_recovery - request initial graceful restart recovery
1145 *
1146 * Called by the platform initialization code if the need for recovery
1147 * after graceful restart is detected during boot. Have to be called
1148 * before protos_commit().
1149 */
1150 void
1151 graceful_restart_recovery(void)
1152 {
1153 graceful_restart_state = GRS_INIT;
1154 }
1155
1156 /**
1157 * graceful_restart_init - initialize graceful restart
1158 *
1159 * When graceful restart recovery was requested, the function starts an active
1160 * phase of the recovery and initializes graceful restart wait timer. The
1161 * function have to be called after protos_commit().
1162 */
1163 void
1164 graceful_restart_init(void)
1165 {
1166 if (!graceful_restart_state)
1167 return;
1168
1169 log(L_INFO "Graceful restart started");
1170
1171 if (!graceful_restart_locks)
1172 {
1173 graceful_restart_done(NULL);
1174 return;
1175 }
1176
1177 graceful_restart_state = GRS_ACTIVE;
1178 gr_wait_timer = tm_new_init(proto_pool, graceful_restart_done, NULL, 0, 0);
1179 tm_start(gr_wait_timer, config->gr_wait S);
1180 }
1181
1182 /**
1183 * graceful_restart_done - finalize graceful restart
1184 * @t: unused
1185 *
1186 * When there are no locks on graceful restart, the functions finalizes the
1187 * graceful restart recovery. Protocols postponing route export until the end of
1188 * the recovery are awakened and the export to them is enabled. All other
1189 * related state is cleared. The function is also called when the graceful
1190 * restart wait timer fires (but there are still some locks).
1191 */
1192 static void
1193 graceful_restart_done(timer *t UNUSED)
1194 {
1195 log(L_INFO "Graceful restart done");
1196 graceful_restart_state = GRS_DONE;
1197
1198 struct proto *p;
1199 WALK_LIST(p, proto_list)
1200 {
1201 if (!p->gr_recovery)
1202 continue;
1203
1204 struct channel *c;
1205 WALK_LIST(c, p->channels)
1206 {
1207 /* Resume postponed export of routes */
1208 if ((c->channel_state == CS_UP) && c->gr_wait && c->proto->rt_notify)
1209 channel_start_export(c);
1210
1211 /* Cleanup */
1212 c->gr_wait = 0;
1213 c->gr_lock = 0;
1214 }
1215
1216 p->gr_recovery = 0;
1217 }
1218
1219 graceful_restart_locks = 0;
1220 }
1221
1222 void
1223 graceful_restart_show_status(void)
1224 {
1225 if (graceful_restart_state != GRS_ACTIVE)
1226 return;
1227
1228 cli_msg(-24, "Graceful restart recovery in progress");
1229 cli_msg(-24, " Waiting for %d channels to recover", graceful_restart_locks);
1230 cli_msg(-24, " Wait timer is %t/%u", tm_remains(gr_wait_timer), config->gr_wait);
1231 }
1232
1233 /**
1234 * channel_graceful_restart_lock - lock graceful restart by channel
1235 * @p: channel instance
1236 *
1237 * This function allows a protocol to postpone the end of graceful restart
1238 * recovery until it converges. The lock is removed when the protocol calls
1239 * channel_graceful_restart_unlock() or when the channel is closed.
1240 *
1241 * The function have to be called during the initial phase of graceful restart
1242 * recovery and only for protocols that are part of graceful restart (i.e. their
1243 * @gr_recovery is set), which means it should be called from protocol start
1244 * hooks.
1245 */
1246 void
1247 channel_graceful_restart_lock(struct channel *c)
1248 {
1249 ASSERT(graceful_restart_state == GRS_INIT);
1250 ASSERT(c->proto->gr_recovery);
1251
1252 if (c->gr_lock)
1253 return;
1254
1255 c->gr_lock = 1;
1256 graceful_restart_locks++;
1257 }
1258
1259 /**
1260 * channel_graceful_restart_unlock - unlock graceful restart by channel
1261 * @p: channel instance
1262 *
1263 * This function unlocks a lock from channel_graceful_restart_lock(). It is also
1264 * automatically called when the lock holding protocol went down.
1265 */
1266 void
1267 channel_graceful_restart_unlock(struct channel *c)
1268 {
1269 if (!c->gr_lock)
1270 return;
1271
1272 c->gr_lock = 0;
1273 graceful_restart_locks--;
1274
1275 if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
1276 tm_start(gr_wait_timer, 0);
1277 }
1278
1279
1280
1281 /**
1282 * protos_dump_all - dump status of all protocols
1283 *
1284 * This function dumps status of all existing protocol instances to the
1285 * debug output. It involves printing of general status information
1286 * such as protocol states, its position on the protocol lists
1287 * and also calling of a dump() hook of the protocol to print
1288 * the internals.
1289 */
1290 void
1291 protos_dump_all(void)
1292 {
1293 debug("Protocols:\n");
1294
1295 struct proto *p;
1296 WALK_LIST(p, proto_list)
1297 {
1298 debug(" protocol %s state %s\n", p->name, p_states[p->proto_state]);
1299
1300 struct channel *c;
1301 WALK_LIST(c, p->channels)
1302 {
1303 debug("\tTABLE %s\n", c->table->name);
1304 if (c->in_filter)
1305 debug("\tInput filter: %s\n", filter_name(c->in_filter));
1306 if (c->out_filter)
1307 debug("\tOutput filter: %s\n", filter_name(c->out_filter));
1308 }
1309
1310 if (p->proto->dump && (p->proto_state != PS_DOWN))
1311 p->proto->dump(p);
1312 }
1313 }
1314
1315 /**
1316 * proto_build - make a single protocol available
1317 * @p: the protocol
1318 *
1319 * After the platform specific initialization code uses protos_build()
1320 * to add all the standard protocols, it should call proto_build() for
1321 * all platform specific protocols to inform the core that they exist.
1322 */
1323 void
1324 proto_build(struct protocol *p)
1325 {
1326 add_tail(&protocol_list, &p->n);
1327 ASSERT(p->class);
1328 ASSERT(!class_to_protocol[p->class]);
1329 class_to_protocol[p->class] = p;
1330 }
1331
1332 /* FIXME: convert this call to some protocol hook */
1333 extern void bfd_init_all(void);
1334
1335 /**
1336 * protos_build - build a protocol list
1337 *
1338 * This function is called during BIRD startup to insert
1339 * all standard protocols to the global protocol list. Insertion
1340 * of platform specific protocols (such as the kernel syncer)
1341 * is in the domain of competence of the platform dependent
1342 * startup code.
1343 */
1344 void
1345 protos_build(void)
1346 {
1347 init_list(&proto_list);
1348 init_list(&protocol_list);
1349
1350 proto_build(&proto_device);
1351 #ifdef CONFIG_RADV
1352 proto_build(&proto_radv);
1353 #endif
1354 #ifdef CONFIG_RIP
1355 proto_build(&proto_rip);
1356 #endif
1357 #ifdef CONFIG_STATIC
1358 proto_build(&proto_static);
1359 #endif
1360 #ifdef CONFIG_MRT
1361 proto_build(&proto_mrt);
1362 #endif
1363 #ifdef CONFIG_OSPF
1364 proto_build(&proto_ospf);
1365 #endif
1366 #ifdef CONFIG_PIPE
1367 proto_build(&proto_pipe);
1368 #endif
1369 #ifdef CONFIG_BGP
1370 proto_build(&proto_bgp);
1371 #endif
1372 #ifdef CONFIG_BFD
1373 proto_build(&proto_bfd);
1374 bfd_init_all();
1375 #endif
1376 #ifdef CONFIG_BABEL
1377 proto_build(&proto_babel);
1378 #endif
1379 #ifdef CONFIG_RPKI
1380 proto_build(&proto_rpki);
1381 #endif
1382 #ifdef CONFIG_PERF
1383 proto_build(&proto_perf);
1384 #endif
1385
1386 proto_pool = rp_new(&root_pool, "Protocols");
1387 proto_shutdown_timer = tm_new(proto_pool);
1388 proto_shutdown_timer->hook = proto_shutdown_loop;
1389 }
1390
1391
1392 /* Temporary hack to propagate restart to BGP */
1393 int proto_restart;
1394
1395 static void
1396 proto_shutdown_loop(timer *t UNUSED)
1397 {
1398 struct proto *p, *p_next;
1399
1400 WALK_LIST_DELSAFE(p, p_next, proto_list)
1401 if (p->down_sched)
1402 {
1403 proto_restart = (p->down_sched == PDS_RESTART);
1404
1405 p->disabled = 1;
1406 proto_rethink_goal(p);
1407 if (proto_restart)
1408 {
1409 p->disabled = 0;
1410 proto_rethink_goal(p);
1411 }
1412 }
1413 }
1414
1415 static inline void
1416 proto_schedule_down(struct proto *p, byte restart, byte code)
1417 {
1418 /* Does not work for other states (even PS_START) */
1419 ASSERT(p->proto_state == PS_UP);
1420
1421 /* Scheduled restart may change to shutdown, but not otherwise */
1422 if (p->down_sched == PDS_DISABLE)
1423 return;
1424
1425 p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
1426 p->down_code = code;
1427 tm_start_max(proto_shutdown_timer, restart ? 250 MS : 0);
1428 }
1429
1430 /**
1431 * proto_set_message - set administrative message to protocol
1432 * @p: protocol
1433 * @msg: message
1434 * @len: message length (-1 for NULL-terminated string)
1435 *
1436 * The function sets administrative message (string) related to protocol state
1437 * change. It is called by the nest code for manual enable/disable/restart
1438 * commands all routes to the protocol, and by protocol-specific code when the
1439 * protocol state change is initiated by the protocol. Using NULL message clears
1440 * the last message. The message string may be either NULL-terminated or with an
1441 * explicit length.
1442 */
1443 void
1444 proto_set_message(struct proto *p, char *msg, int len)
1445 {
1446 mb_free(p->message);
1447 p->message = NULL;
1448
1449 if (!msg || !len)
1450 return;
1451
1452 if (len < 0)
1453 len = strlen(msg);
1454
1455 if (!len)
1456 return;
1457
1458 p->message = mb_alloc(proto_pool, len + 1);
1459 memcpy(p->message, msg, len);
1460 p->message[len] = 0;
1461 }
1462
1463
1464 static const char *
1465 channel_limit_name(struct channel_limit *l)
1466 {
1467 const char *actions[] = {
1468 [PLA_WARN] = "warn",
1469 [PLA_BLOCK] = "block",
1470 [PLA_RESTART] = "restart",
1471 [PLA_DISABLE] = "disable",
1472 };
1473
1474 return actions[l->action];
1475 }
1476
1477 /**
1478 * channel_notify_limit: notify about limit hit and take appropriate action
1479 * @c: channel
1480 * @l: limit being hit
1481 * @dir: limit direction (PLD_*)
1482 * @rt_count: the number of routes
1483 *
1484 * The function is called by the route processing core when limit @l
1485 * is breached. It activates the limit and tooks appropriate action
1486 * according to @l->action.
1487 */
1488 void
1489 channel_notify_limit(struct channel *c, struct channel_limit *l, int dir, u32 rt_count)
1490 {
1491 const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
1492 const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1493 struct proto *p = c->proto;
1494
1495 if (l->state == PLS_BLOCKED)
1496 return;
1497
1498 /* For warning action, we want the log message every time we hit the limit */
1499 if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1500 log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1501 p->name, dir_name[dir], l->limit, channel_limit_name(l));
1502
1503 switch (l->action)
1504 {
1505 case PLA_WARN:
1506 l->state = PLS_ACTIVE;
1507 break;
1508
1509 case PLA_BLOCK:
1510 l->state = PLS_BLOCKED;
1511 break;
1512
1513 case PLA_RESTART:
1514 case PLA_DISABLE:
1515 l->state = PLS_BLOCKED;
1516 if (p->proto_state == PS_UP)
1517 proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
1518 break;
1519 }
1520 }
1521
1522 static void
1523 channel_verify_limits(struct channel *c)
1524 {
1525 struct channel_limit *l;
1526 u32 all_routes = c->stats.imp_routes + c->stats.filt_routes;
1527
1528 l = &c->rx_limit;
1529 if (l->action && (all_routes > l->limit))
1530 channel_notify_limit(c, l, PLD_RX, all_routes);
1531
1532 l = &c->in_limit;
1533 if (l->action && (c->stats.imp_routes > l->limit))
1534 channel_notify_limit(c, l, PLD_IN, c->stats.imp_routes);
1535
1536 l = &c->out_limit;
1537 if (l->action && (c->stats.exp_routes > l->limit))
1538 channel_notify_limit(c, l, PLD_OUT, c->stats.exp_routes);
1539 }
1540
1541 static inline void
1542 channel_reset_limit(struct channel_limit *l)
1543 {
1544 if (l->action)
1545 l->state = PLS_INITIAL;
1546 }
1547
1548 static inline void
1549 proto_do_start(struct proto *p)
1550 {
1551 p->active = 1;
1552 p->do_start = 1;
1553 ev_schedule(p->event);
1554 }
1555
1556 static void
1557 proto_do_up(struct proto *p)
1558 {
1559 if (!p->main_source)
1560 {
1561 p->main_source = rt_get_source(p, 0);
1562 rt_lock_source(p->main_source);
1563 }
1564
1565 proto_start_channels(p);
1566 }
1567
1568 static inline void
1569 proto_do_pause(struct proto *p)
1570 {
1571 proto_pause_channels(p);
1572 }
1573
1574 static void
1575 proto_do_stop(struct proto *p)
1576 {
1577 p->down_sched = 0;
1578 p->gr_recovery = 0;
1579
1580 p->do_stop = 1;
1581 ev_schedule(p->event);
1582
1583 if (p->main_source)
1584 {
1585 rt_unlock_source(p->main_source);
1586 p->main_source = NULL;
1587 }
1588
1589 proto_stop_channels(p);
1590 }
1591
1592 static void
1593 proto_do_down(struct proto *p)
1594 {
1595 p->down_code = 0;
1596 neigh_prune();
1597 rfree(p->pool);
1598 p->pool = NULL;
1599
1600 /* Shutdown is finished in the protocol event */
1601 if (proto_is_done(p))
1602 ev_schedule(p->event);
1603 }
1604
1605
1606
1607 /**
1608 * proto_notify_state - notify core about protocol state change
1609 * @p: protocol the state of which has changed
1610 * @ps: the new status
1611 *
1612 * Whenever a state of a protocol changes due to some event internal
1613 * to the protocol (i.e., not inside a start() or shutdown() hook),
1614 * it should immediately notify the core about the change by calling
1615 * proto_notify_state() which will write the new state to the &proto
1616 * structure and take all the actions necessary to adapt to the new
1617 * state. State change to PS_DOWN immediately frees resources of protocol
1618 * and might execute start callback of protocol; therefore,
1619 * it should be used at tail positions of protocol callbacks.
1620 */
1621 void
1622 proto_notify_state(struct proto *p, uint state)
1623 {
1624 uint ps = p->proto_state;
1625
1626 DBG("%s reporting state transition %s -> %s\n", p->name, p_states[ps], p_states[state]);
1627 if (state == ps)
1628 return;
1629
1630 p->proto_state = state;
1631 p->last_state_change = current_time();
1632
1633 switch (state)
1634 {
1635 case PS_START:
1636 ASSERT(ps == PS_DOWN || ps == PS_UP);
1637
1638 if (ps == PS_DOWN)
1639 proto_do_start(p);
1640 else
1641 proto_do_pause(p);
1642 break;
1643
1644 case PS_UP:
1645 ASSERT(ps == PS_DOWN || ps == PS_START);
1646
1647 if (ps == PS_DOWN)
1648 proto_do_start(p);
1649
1650 proto_do_up(p);
1651 break;
1652
1653 case PS_STOP:
1654 ASSERT(ps == PS_START || ps == PS_UP);
1655
1656 proto_do_stop(p);
1657 break;
1658
1659 case PS_DOWN:
1660 if (ps != PS_STOP)
1661 proto_do_stop(p);
1662
1663 proto_do_down(p);
1664 break;
1665
1666 default:
1667 bug("%s: Invalid state %d", p->name, ps);
1668 }
1669
1670 proto_log_state_change(p);
1671 }
1672
1673 /*
1674 * CLI Commands
1675 */
1676
1677 static char *
1678 proto_state_name(struct proto *p)
1679 {
1680 switch (p->proto_state)
1681 {
1682 case PS_DOWN: return p->active ? "flush" : "down";
1683 case PS_START: return "start";
1684 case PS_UP: return "up";
1685 case PS_STOP: return "stop";
1686 default: return "???";
1687 }
1688 }
1689
1690 static void
1691 channel_show_stats(struct channel *c)
1692 {
1693 struct proto_stats *s = &c->stats;
1694
1695 if (c->in_keep_filtered)
1696 cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported, %u preferred",
1697 s->imp_routes, s->filt_routes, s->exp_routes, s->pref_routes);
1698 else
1699 cli_msg(-1006, " Routes: %u imported, %u exported, %u preferred",
1700 s->imp_routes, s->exp_routes, s->pref_routes);
1701
1702 cli_msg(-1006, " Route change stats: received rejected filtered ignored accepted");
1703 cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u",
1704 s->imp_updates_received, s->imp_updates_invalid,
1705 s->imp_updates_filtered, s->imp_updates_ignored,
1706 s->imp_updates_accepted);
1707 cli_msg(-1006, " Import withdraws: %10u %10u --- %10u %10u",
1708 s->imp_withdraws_received, s->imp_withdraws_invalid,
1709 s->imp_withdraws_ignored, s->imp_withdraws_accepted);
1710 cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u",
1711 s->exp_updates_received, s->exp_updates_rejected,
1712 s->exp_updates_filtered, s->exp_updates_accepted);
1713 cli_msg(-1006, " Export withdraws: %10u --- --- --- %10u",
1714 s->exp_withdraws_received, s->exp_withdraws_accepted);
1715 }
1716
1717 void
1718 channel_show_limit(struct channel_limit *l, const char *dsc)
1719 {
1720 if (!l->action)
1721 return;
1722
1723 cli_msg(-1006, " %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : "");
1724 cli_msg(-1006, " Action: %s", channel_limit_name(l));
1725 }
1726
1727 void
1728 channel_show_info(struct channel *c)
1729 {
1730 cli_msg(-1006, " Channel %s", c->name);
1731 cli_msg(-1006, " State: %s", c_states[c->channel_state]);
1732 cli_msg(-1006, " Table: %s", c->table->name);
1733 cli_msg(-1006, " Preference: %d", c->preference);
1734 cli_msg(-1006, " Input filter: %s", filter_name(c->in_filter));
1735 cli_msg(-1006, " Output filter: %s", filter_name(c->out_filter));
1736
1737 if (graceful_restart_state == GRS_ACTIVE)
1738 cli_msg(-1006, " GR recovery: %s%s",
1739 c->gr_lock ? " pending" : "",
1740 c->gr_wait ? " waiting" : "");
1741
1742 channel_show_limit(&c->rx_limit, "Receive limit:");
1743 channel_show_limit(&c->in_limit, "Import limit:");
1744 channel_show_limit(&c->out_limit, "Export limit:");
1745
1746 if (c->channel_state != CS_DOWN)
1747 channel_show_stats(c);
1748 }
1749
1750 void
1751 proto_cmd_show(struct proto *p, uintptr_t verbose, int cnt)
1752 {
1753 byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
1754
1755 /* First protocol - show header */
1756 if (!cnt)
1757 cli_msg(-2002, "%-10s %-10s %-10s %-6s %-12s %s",
1758 "Name", "Proto", "Table", "State", "Since", "Info");
1759
1760 buf[0] = 0;
1761 if (p->proto->get_status)
1762 p->proto->get_status(p, buf);
1763 tm_format_time(tbuf, &config->tf_proto, p->last_state_change);
1764 cli_msg(-1002, "%-10s %-10s %-10s %-6s %-12s %s",
1765 p->name,
1766 p->proto->name,
1767 p->main_channel ? p->main_channel->table->name : "---",
1768 proto_state_name(p),
1769 tbuf,
1770 buf);
1771
1772 if (verbose)
1773 {
1774 if (p->cf->dsc)
1775 cli_msg(-1006, " Description: %s", p->cf->dsc);
1776 if (p->message)
1777 cli_msg(-1006, " Message: %s", p->message);
1778 if (p->cf->router_id)
1779 cli_msg(-1006, " Router ID: %R", p->cf->router_id);
1780 if (p->vrf)
1781 cli_msg(-1006, " VRF: %s", p->vrf->name);
1782
1783 if (p->proto->show_proto_info)
1784 p->proto->show_proto_info(p);
1785 else
1786 {
1787 struct channel *c;
1788 WALK_LIST(c, p->channels)
1789 channel_show_info(c);
1790 }
1791
1792 cli_msg(-1006, "");
1793 }
1794 }
1795
1796 void
1797 proto_cmd_disable(struct proto *p, uintptr_t arg, int cnt UNUSED)
1798 {
1799 if (p->disabled)
1800 {
1801 cli_msg(-8, "%s: already disabled", p->name);
1802 return;
1803 }
1804
1805 log(L_INFO "Disabling protocol %s", p->name);
1806 p->disabled = 1;
1807 p->down_code = PDC_CMD_DISABLE;
1808 proto_set_message(p, (char *) arg, -1);
1809 proto_rethink_goal(p);
1810 cli_msg(-9, "%s: disabled", p->name);
1811 }
1812
1813 void
1814 proto_cmd_enable(struct proto *p, uintptr_t arg, int cnt UNUSED)
1815 {
1816 if (!p->disabled)
1817 {
1818 cli_msg(-10, "%s: already enabled", p->name);
1819 return;
1820 }
1821
1822 log(L_INFO "Enabling protocol %s", p->name);
1823 p->disabled = 0;
1824 proto_set_message(p, (char *) arg, -1);
1825 proto_rethink_goal(p);
1826 cli_msg(-11, "%s: enabled", p->name);
1827 }
1828
1829 void
1830 proto_cmd_restart(struct proto *p, uintptr_t arg, int cnt UNUSED)
1831 {
1832 if (p->disabled)
1833 {
1834 cli_msg(-8, "%s: already disabled", p->name);
1835 return;
1836 }
1837
1838 log(L_INFO "Restarting protocol %s", p->name);
1839 p->disabled = 1;
1840 p->down_code = PDC_CMD_RESTART;
1841 proto_set_message(p, (char *) arg, -1);
1842 proto_rethink_goal(p);
1843 p->disabled = 0;
1844 proto_rethink_goal(p);
1845 cli_msg(-12, "%s: restarted", p->name);
1846 }
1847
1848 void
1849 proto_cmd_reload(struct proto *p, uintptr_t dir, int cnt UNUSED)
1850 {
1851 struct channel *c;
1852
1853 if (p->disabled)
1854 {
1855 cli_msg(-8, "%s: already disabled", p->name);
1856 return;
1857 }
1858
1859 /* If the protocol in not UP, it has no routes */
1860 if (p->proto_state != PS_UP)
1861 return;
1862
1863 /* All channels must support reload */
1864 if (dir != CMD_RELOAD_OUT)
1865 WALK_LIST(c, p->channels)
1866 if (!channel_reloadable(c))
1867 {
1868 cli_msg(-8006, "%s: reload failed", p->name);
1869 return;
1870 }
1871
1872 log(L_INFO "Reloading protocol %s", p->name);
1873
1874 /* re-importing routes */
1875 if (dir != CMD_RELOAD_OUT)
1876 WALK_LIST(c, p->channels)
1877 channel_request_reload(c);
1878
1879 /* re-exporting routes */
1880 if (dir != CMD_RELOAD_IN)
1881 WALK_LIST(c, p->channels)
1882 channel_request_feeding(c);
1883
1884 cli_msg(-15, "%s: reloading", p->name);
1885 }
1886
1887 void
1888 proto_cmd_debug(struct proto *p, uintptr_t mask, int cnt UNUSED)
1889 {
1890 p->debug = mask;
1891 }
1892
1893 void
1894 proto_cmd_mrtdump(struct proto *p, uintptr_t mask, int cnt UNUSED)
1895 {
1896 p->mrtdump = mask;
1897 }
1898
1899 static void
1900 proto_apply_cmd_symbol(struct symbol *s, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
1901 {
1902 if (s->class != SYM_PROTO)
1903 {
1904 cli_msg(9002, "%s is not a protocol", s->name);
1905 return;
1906 }
1907
1908 cmd(s->proto->proto, arg, 0);
1909 cli_msg(0, "");
1910 }
1911
1912 static void
1913 proto_apply_cmd_patt(char *patt, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
1914 {
1915 struct proto *p;
1916 int cnt = 0;
1917
1918 WALK_LIST(p, proto_list)
1919 if (!patt || patmatch(patt, p->name))
1920 cmd(p, arg, cnt++);
1921
1922 if (!cnt)
1923 cli_msg(8003, "No protocols match");
1924 else
1925 cli_msg(0, "");
1926 }
1927
1928 void
1929 proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uintptr_t, int),
1930 int restricted, uintptr_t arg)
1931 {
1932 if (restricted && cli_access_restricted())
1933 return;
1934
1935 if (ps.patt)
1936 proto_apply_cmd_patt(ps.ptr, cmd, arg);
1937 else
1938 proto_apply_cmd_symbol(ps.ptr, cmd, arg);
1939 }
1940
1941 struct proto *
1942 proto_get_named(struct symbol *sym, struct protocol *pr)
1943 {
1944 struct proto *p, *q;
1945
1946 if (sym)
1947 {
1948 if (sym->class != SYM_PROTO)
1949 cf_error("%s: Not a protocol", sym->name);
1950
1951 p = sym->proto->proto;
1952 if (!p || p->proto != pr)
1953 cf_error("%s: Not a %s protocol", sym->name, pr->name);
1954 }
1955 else
1956 {
1957 p = NULL;
1958 WALK_LIST(q, proto_list)
1959 if ((q->proto == pr) && (q->proto_state != PS_DOWN))
1960 {
1961 if (p)
1962 cf_error("There are multiple %s protocols running", pr->name);
1963 p = q;
1964 }
1965 if (!p)
1966 cf_error("There is no %s protocol running", pr->name);
1967 }
1968
1969 return p;
1970 }