]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/route.h
BGP: implement Adj-RIB-In
[thirdparty/bird.git] / nest / route.h
1 /*
2 * BIRD Internet Routing Daemon -- Routing Table
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #ifndef _BIRD_ROUTE_H_
10 #define _BIRD_ROUTE_H_
11
12 #include "lib/lists.h"
13 #include "lib/resource.h"
14 #include "lib/net.h"
15
16 struct ea_list;
17 struct protocol;
18 struct proto;
19 struct rte_src;
20 struct symbol;
21 struct filter;
22 struct cli;
23
24 /*
25 * Generic data structure for storing network prefixes. Also used
26 * for the master routing table. Currently implemented as a hash
27 * table.
28 *
29 * Available operations:
30 * - insertion of new entry
31 * - deletion of entry
32 * - searching for entry by network prefix
33 * - asynchronous retrieval of fib contents
34 */
35
36 struct fib_node {
37 struct fib_node *next; /* Next in hash chain */
38 struct fib_iterator *readers; /* List of readers of this node */
39 byte flags; /* User-defined, will be removed */
40 net_addr addr[0];
41 };
42
43 struct fib_iterator { /* See lib/slists.h for an explanation */
44 struct fib_iterator *prev, *next; /* Must be synced with struct fib_node! */
45 byte efef; /* 0xff to distinguish between iterator and node */
46 byte pad[3];
47 struct fib_node *node; /* Or NULL if freshly merged */
48 uint hash;
49 };
50
51 typedef void (*fib_init_fn)(void *);
52
53 struct fib {
54 pool *fib_pool; /* Pool holding all our data */
55 slab *fib_slab; /* Slab holding all fib nodes */
56 struct fib_node **hash_table; /* Node hash table */
57 uint hash_size; /* Number of hash table entries (a power of two) */
58 uint hash_order; /* Binary logarithm of hash_size */
59 uint hash_shift; /* 32 - hash_order */
60 uint addr_type; /* Type of address data stored in fib (NET_*) */
61 uint node_size; /* FIB node size, 0 for nonuniform */
62 uint node_offset; /* Offset of fib_node struct inside of user data */
63 uint entries; /* Number of entries */
64 uint entries_min, entries_max; /* Entry count limits (else start rehashing) */
65 fib_init_fn init; /* Constructor */
66 };
67
68 static inline void * fib_node_to_user(struct fib *f, struct fib_node *e)
69 { return e ? (void *) ((char *) e - f->node_offset) : NULL; }
70
71 static inline struct fib_node * fib_user_to_node(struct fib *f, void *e)
72 { return e ? (void *) ((char *) e + f->node_offset) : NULL; }
73
74 void fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init);
75 void *fib_find(struct fib *, const net_addr *); /* Find or return NULL if doesn't exist */
76 void *fib_get_chain(struct fib *f, const net_addr *a); /* Find first node in linked list from hash table */
77 void *fib_get(struct fib *, const net_addr *); /* Find or create new if nonexistent */
78 void *fib_route(struct fib *, const net_addr *); /* Longest-match routing lookup */
79 void fib_delete(struct fib *, void *); /* Remove fib entry */
80 void fib_free(struct fib *); /* Destroy the fib */
81 void fib_check(struct fib *); /* Consistency check for debugging */
82
83 void fit_init(struct fib_iterator *, struct fib *); /* Internal functions, don't call */
84 struct fib_node *fit_get(struct fib *, struct fib_iterator *);
85 void fit_put(struct fib_iterator *, struct fib_node *);
86 void fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos);
87
88
89 #define FIB_WALK(fib, type, z) do { \
90 struct fib_node *fn_, **ff_ = (fib)->hash_table; \
91 uint count_ = (fib)->hash_size; \
92 type *z; \
93 while (count_--) \
94 for (fn_ = *ff_++; z = fib_node_to_user(fib, fn_); fn_=fn_->next)
95
96 #define FIB_WALK_END } while (0)
97
98 #define FIB_ITERATE_INIT(it, fib) fit_init(it, fib)
99
100 #define FIB_ITERATE_START(fib, it, type, z) do { \
101 struct fib_node *fn_ = fit_get(fib, it); \
102 uint count_ = (fib)->hash_size; \
103 uint hpos_ = (it)->hash; \
104 type *z; \
105 for(;;) { \
106 if (!fn_) \
107 { \
108 if (++hpos_ >= count_) \
109 break; \
110 fn_ = (fib)->hash_table[hpos_]; \
111 continue; \
112 } \
113 z = fib_node_to_user(fib, fn_);
114
115 #define FIB_ITERATE_END fn_ = fn_->next; } } while(0)
116
117 #define FIB_ITERATE_PUT(it) fit_put(it, fn_)
118
119 #define FIB_ITERATE_PUT_NEXT(it, fib) fit_put_next(fib, it, fn_, hpos_)
120
121 #define FIB_ITERATE_UNLINK(it, fib) fit_get(fib, it)
122
123
124 /*
125 * Master Routing Tables. Generally speaking, each of them contains a FIB
126 * with each entry pointing to a list of route entries representing routes
127 * to given network (with the selected one at the head).
128 *
129 * Each of the RTE's contains variable data (the preference and protocol-dependent
130 * metrics) and a pointer to a route attribute block common for many routes).
131 *
132 * It's guaranteed that there is at most one RTE for every (prefix,proto) pair.
133 */
134
135 struct rtable_config {
136 node n;
137 char *name;
138 struct rtable *table;
139 struct proto_config *krt_attached; /* Kernel syncer attached to this table */
140 uint addr_type; /* Type of address data stored in table (NET_*) */
141 int gc_max_ops; /* Maximum number of operations before GC is run */
142 int gc_min_time; /* Minimum time between two consecutive GC runs */
143 byte sorted; /* Routes of network are sorted according to rte_better() */
144 };
145
146 typedef struct rtable {
147 node n; /* Node in list of all tables */
148 struct fib fib;
149 char *name; /* Name of this table */
150 list channels; /* List of attached channels (struct channel) */
151 uint addr_type; /* Type of address data stored in table (NET_*) */
152 int pipe_busy; /* Pipe loop detection */
153 int use_count; /* Number of protocols using this table */
154 struct hostcache *hostcache;
155 struct rtable_config *config; /* Configuration of this table */
156 struct config *deleted; /* Table doesn't exist in current configuration,
157 * delete as soon as use_count becomes 0 and remove
158 * obstacle from this routing table.
159 */
160 struct event *rt_event; /* Routing table event */
161 btime gc_time; /* Time of last GC */
162 int gc_counter; /* Number of operations since last GC */
163 byte prune_state; /* Table prune state, 1 -> scheduled, 2-> running */
164 byte hcu_scheduled; /* Hostcache update is scheduled */
165 byte nhu_state; /* Next Hop Update state */
166 struct fib_iterator prune_fit; /* Rtable prune FIB iterator */
167 struct fib_iterator nhu_fit; /* Next Hop Update FIB iterator */
168 } rtable;
169
170 #define NHU_CLEAN 0
171 #define NHU_SCHEDULED 1
172 #define NHU_RUNNING 2
173 #define NHU_DIRTY 3
174
175 typedef struct network {
176 struct rte *routes; /* Available routes for this network */
177 struct fib_node n; /* FIB flags reserved for kernel syncer */
178 } net;
179
180 struct hostcache {
181 slab *slab; /* Slab holding all hostentries */
182 struct hostentry **hash_table; /* Hash table for hostentries */
183 unsigned hash_order, hash_shift;
184 unsigned hash_max, hash_min;
185 unsigned hash_items;
186 linpool *lp; /* Linpool for trie */
187 struct f_trie *trie; /* Trie of prefixes that might affect hostentries */
188 list hostentries; /* List of all hostentries */
189 byte update_hostcache;
190 };
191
192 struct hostentry {
193 node ln;
194 ip_addr addr; /* IP address of host, part of key */
195 ip_addr link; /* (link-local) IP address of host, used as gw
196 if host is directly attached */
197 struct rtable *tab; /* Dependent table, part of key */
198 struct hostentry *next; /* Next in hash chain */
199 unsigned hash_key; /* Hash key */
200 unsigned uc; /* Use count */
201 struct rta *src; /* Source rta entry */
202 byte dest; /* Chosen route destination type (RTD_...) */
203 byte nexthop_linkable; /* Nexthop list is completely non-device */
204 u32 igp_metric; /* Chosen route IGP metric */
205 };
206
207 typedef struct rte {
208 struct rte *next;
209 net *net; /* Network this RTE belongs to */
210 struct channel *sender; /* Channel used to send the route to the routing table */
211 struct rta *attrs; /* Attributes of this route */
212 byte flags; /* Flags (REF_...) */
213 byte pflags; /* Protocol-specific flags */
214 word pref; /* Route preference */
215 btime lastmod; /* Last modified */
216 union { /* Protocol-dependent data (metrics etc.) */
217 #ifdef CONFIG_RIP
218 struct {
219 struct iface *from; /* Incoming iface */
220 u8 metric; /* RIP metric */
221 u16 tag; /* External route tag */
222 } rip;
223 #endif
224 #ifdef CONFIG_OSPF
225 struct {
226 u32 metric1, metric2; /* OSPF Type 1 and Type 2 metrics */
227 u32 tag; /* External route tag */
228 u32 router_id; /* Router that originated this route */
229 } ospf;
230 #endif
231 #ifdef CONFIG_BGP
232 struct {
233 u8 suppressed; /* Used for deterministic MED comparison */
234 s8 stale; /* Route is LLGR_STALE, -1 if unknown */
235 } bgp;
236 #endif
237 #ifdef CONFIG_BABEL
238 struct {
239 u16 seqno; /* Babel seqno */
240 u16 metric; /* Babel metric */
241 u64 router_id; /* Babel router id */
242 } babel;
243 #endif
244 struct { /* Routes generated by krt sync (both temporary and inherited ones) */
245 s8 src; /* Alleged route source (see krt.h) */
246 u8 proto; /* Kernel source protocol ID */
247 u8 seen; /* Seen during last scan */
248 u8 best; /* Best route in network, propagated to core */
249 u32 metric; /* Kernel metric */
250 } krt;
251 } u;
252 } rte;
253
254 #define REF_COW 1 /* Copy this rte on write */
255 #define REF_FILTERED 2 /* Route is rejected by import filter */
256 #define REF_STALE 4 /* Route is stale in a refresh cycle */
257 #define REF_DISCARD 8 /* Route is scheduled for discard */
258 #define REF_MODIFY 16 /* Route is scheduled for modify */
259
260 /* Route is valid for propagation (may depend on other flags in the future), accepts NULL */
261 static inline int rte_is_valid(rte *r) { return r && !(r->flags & REF_FILTERED); }
262
263 /* Route just has REF_FILTERED flag */
264 static inline int rte_is_filtered(rte *r) { return !!(r->flags & REF_FILTERED); }
265
266
267 /* Types of route announcement, also used as flags */
268 #define RA_UNDEF 0 /* Undefined RA type */
269 #define RA_OPTIMAL 1 /* Announcement of optimal route change */
270 #define RA_ACCEPTED 2 /* Announcement of first accepted route */
271 #define RA_ANY 3 /* Announcement of any route change */
272 #define RA_MERGED 4 /* Announcement of optimal route merged with next ones */
273
274 /* Return value of preexport() callback */
275 #define RIC_ACCEPT 1 /* Accepted by protocol */
276 #define RIC_PROCESS 0 /* Process it through import filter */
277 #define RIC_REJECT -1 /* Rejected by protocol */
278 #define RIC_DROP -2 /* Silently dropped by protocol */
279
280 extern list routing_tables;
281 struct config;
282
283 void rt_init(void);
284 void rt_preconfig(struct config *);
285 void rt_commit(struct config *new, struct config *old);
286 void rt_lock_table(rtable *);
287 void rt_unlock_table(rtable *);
288 void rt_setup(pool *, rtable *, struct rtable_config *);
289 static inline net *net_find(rtable *tab, const net_addr *addr) { return (net *) fib_find(&tab->fib, addr); }
290 static inline net *net_find_valid(rtable *tab, const net_addr *addr)
291 { net *n = net_find(tab, addr); return (n && rte_is_valid(n->routes)) ? n : NULL; }
292 static inline net *net_get(rtable *tab, const net_addr *addr) { return (net *) fib_get(&tab->fib, addr); }
293 void *net_route(rtable *tab, const net_addr *n);
294 int net_roa_check(rtable *tab, const net_addr *n, u32 asn);
295 rte *rte_find(net *net, struct rte_src *src);
296 rte *rte_get_temp(struct rta *);
297 void rte_update2(struct channel *c, const net_addr *n, rte *new, struct rte_src *src);
298 /* rte_update() moved to protocol.h to avoid dependency conflicts */
299 int rt_examine(rtable *t, net_addr *a, struct proto *p, struct filter *filter);
300 rte *rt_export_merged(struct channel *c, net *net, rte **rt_free, linpool *pool, int silent);
301 void rt_refresh_begin(rtable *t, struct channel *c);
302 void rt_refresh_end(rtable *t, struct channel *c);
303 void rt_modify_stale(rtable *t, struct channel *c);
304 void rt_schedule_prune(rtable *t);
305 void rte_dump(rte *);
306 void rte_free(rte *);
307 rte *rte_do_cow(rte *);
308 static inline rte * rte_cow(rte *r) { return (r->flags & REF_COW) ? rte_do_cow(r) : r; }
309 rte *rte_cow_rta(rte *r, linpool *lp);
310 void rt_dump(rtable *);
311 void rt_dump_all(void);
312 int rt_feed_channel(struct channel *c);
313 void rt_feed_channel_abort(struct channel *c);
314 int rte_update_in(struct channel *c, const net_addr *n, rte *new, struct rte_src *src);
315 int rt_reload_channel(struct channel *c);
316 void rt_reload_channel_abort(struct channel *c);
317 void rt_prune_sync(rtable *t, int all);
318 struct rtable_config *rt_new_table(struct symbol *s, uint addr_type);
319
320
321 /* Default limit for ECMP next hops, defined in sysdep code */
322 extern const int rt_default_ecmp;
323
324 struct rt_show_data_rtable {
325 node n;
326 rtable *table;
327 struct channel *export_channel;
328 };
329
330 struct rt_show_data {
331 net_addr *addr;
332 list tables;
333 struct rt_show_data_rtable *tab; /* Iterator over table list */
334 struct rt_show_data_rtable *last_table; /* Last table in output */
335 struct fib_iterator fit; /* Iterator over networks in table */
336 int verbose, tables_defined_by;
337 struct filter *filter;
338 struct proto *show_protocol;
339 struct proto *export_protocol;
340 struct channel *export_channel;
341 struct config *running_on_config;
342 int export_mode, primary_only, filtered, stats, show_for;
343
344 int table_open; /* Iteration (fit) is open */
345 int net_counter, rt_counter, show_counter, table_counter;
346 int net_counter_last, rt_counter_last, show_counter_last;
347 };
348
349 void rt_show(struct rt_show_data *);
350 struct rt_show_data_rtable * rt_show_add_table(struct rt_show_data *d, rtable *t);
351
352 /* Value of table definition mode in struct rt_show_data */
353 #define RSD_TDB_DEFAULT 0 /* no table specified */
354 #define RSD_TDB_INDIRECT 0 /* show route ... protocol P ... */
355 #define RSD_TDB_ALL RSD_TDB_SET /* show route ... table all ... */
356 #define RSD_TDB_DIRECT RSD_TDB_SET | RSD_TDB_NMN /* show route ... table X table Y ... */
357
358 #define RSD_TDB_SET 0x1 /* internal: show empty tables */
359 #define RSD_TDB_NMN 0x2 /* internal: need matching net */
360
361 /* Value of export_mode in struct rt_show_data */
362 #define RSEM_NONE 0 /* Export mode not used */
363 #define RSEM_PREEXPORT 1 /* Routes ready for export, before filtering */
364 #define RSEM_EXPORT 2 /* Routes accepted by export filter */
365 #define RSEM_NOEXPORT 3 /* Routes rejected by export filter */
366
367 /*
368 * Route Attributes
369 *
370 * Beware: All standard BGP attributes must be represented here instead
371 * of making them local to the route. This is needed to ensure proper
372 * construction of BGP route attribute lists.
373 */
374
375 /* Nexthop structure */
376 struct nexthop {
377 ip_addr gw; /* Next hop */
378 struct iface *iface; /* Outgoing interface */
379 struct nexthop *next;
380 byte flags;
381 byte weight;
382 byte labels_orig; /* Number of labels before hostentry was applied */
383 byte labels; /* Number of all labels */
384 u32 label[0];
385 };
386
387 #define RNF_ONLINK 0x1 /* Gateway is onlink regardless of IP ranges */
388
389
390 struct rte_src {
391 struct rte_src *next; /* Hash chain */
392 struct proto *proto; /* Protocol the source is based on */
393 u32 private_id; /* Private ID, assigned by the protocol */
394 u32 global_id; /* Globally unique ID of the source */
395 unsigned uc; /* Use count */
396 };
397
398
399 typedef struct rta {
400 struct rta *next, **pprev; /* Hash chain */
401 u32 uc; /* Use count */
402 u32 hash_key; /* Hash over important fields */
403 struct ea_list *eattrs; /* Extended Attribute chain */
404 struct rte_src *src; /* Route source that created the route */
405 struct hostentry *hostentry; /* Hostentry for recursive next-hops */
406 ip_addr from; /* Advertising router */
407 u32 igp_metric; /* IGP metric to next hop (for iBGP routes) */
408 u8 source; /* Route source (RTS_...) */
409 u8 scope; /* Route scope (SCOPE_... -- see ip.h) */
410 u8 dest; /* Route destination type (RTD_...) */
411 u8 aflags;
412 struct nexthop nh; /* Next hop */
413 } rta;
414
415 #define RTS_DUMMY 0 /* Dummy route to be removed soon */
416 #define RTS_STATIC 1 /* Normal static route */
417 #define RTS_INHERIT 2 /* Route inherited from kernel */
418 #define RTS_DEVICE 3 /* Device route */
419 #define RTS_STATIC_DEVICE 4 /* Static device route */
420 #define RTS_REDIRECT 5 /* Learned via redirect */
421 #define RTS_RIP 6 /* RIP route */
422 #define RTS_OSPF 7 /* OSPF route */
423 #define RTS_OSPF_IA 8 /* OSPF inter-area route */
424 #define RTS_OSPF_EXT1 9 /* OSPF external route type 1 */
425 #define RTS_OSPF_EXT2 10 /* OSPF external route type 2 */
426 #define RTS_BGP 11 /* BGP route */
427 #define RTS_PIPE 12 /* Inter-table wormhole */
428 #define RTS_BABEL 13 /* Babel route */
429 #define RTS_RPKI 14 /* Route Origin Authorization */
430 #define RTS_MAX 15
431
432
433 #define RTC_UNICAST 0
434 #define RTC_BROADCAST 1
435 #define RTC_MULTICAST 2
436 #define RTC_ANYCAST 3 /* IPv6 Anycast */
437
438 #define RTD_NONE 0 /* Undefined next hop */
439 #define RTD_UNICAST 1 /* Next hop is neighbor router */
440 #define RTD_BLACKHOLE 2 /* Silently drop packets */
441 #define RTD_UNREACHABLE 3 /* Reject as unreachable */
442 #define RTD_PROHIBIT 4 /* Administratively prohibited */
443 #define RTD_MAX 5
444
445 /* Flags for net->n.flags, used by kernel syncer */
446 #define KRF_INSTALLED 0x80 /* This route should be installed in the kernel */
447 #define KRF_SYNC_ERROR 0x40 /* Error during kernel table synchronization */
448
449 #define RTAF_CACHED 1 /* This is a cached rta */
450
451 #define IGP_METRIC_UNKNOWN 0x80000000 /* Default igp_metric used when no other
452 protocol-specific metric is availabe */
453
454
455 const char * rta_dest_names[RTD_MAX];
456
457 static inline const char *rta_dest_name(uint n)
458 { return (n < RTD_MAX) ? rta_dest_names[n] : "???"; }
459
460 /* Route has regular, reachable nexthop (i.e. not RTD_UNREACHABLE and like) */
461 static inline int rte_is_reachable(rte *r)
462 { return r->attrs->dest == RTD_UNICAST; }
463
464
465 /*
466 * Extended Route Attributes
467 */
468
469 typedef struct eattr {
470 word id; /* EA_CODE(PROTOCOL_..., protocol-dependent ID) */
471 byte flags; /* Protocol-dependent flags */
472 byte type; /* Attribute type and several flags (EAF_...) */
473 union {
474 u32 data;
475 struct adata *ptr; /* Attribute data elsewhere */
476 } u;
477 } eattr;
478
479
480 #define EA_CODE(proto,id) (((proto) << 8) | (id))
481 #define EA_ID(ea) ((ea) & 0xff)
482 #define EA_PROTO(ea) ((ea) >> 8)
483 #define EA_CUSTOM(id) ((id) | EA_CUSTOM_BIT)
484 #define EA_IS_CUSTOM(ea) ((ea) & EA_CUSTOM_BIT)
485 #define EA_CUSTOM_ID(ea) ((ea) & ~EA_CUSTOM_BIT)
486
487 const char *ea_custom_name(uint ea);
488
489 #define EA_GEN_IGP_METRIC EA_CODE(PROTOCOL_NONE, 0)
490
491 #define EA_CODE_MASK 0xffff
492 #define EA_CUSTOM_BIT 0x8000
493 #define EA_ALLOW_UNDEF 0x10000 /* ea_find: allow EAF_TYPE_UNDEF */
494 #define EA_BIT(n) ((n) << 24) /* Used in bitfield accessors */
495
496 #define EAF_TYPE_MASK 0x1f /* Mask with this to get type */
497 #define EAF_TYPE_INT 0x01 /* 32-bit unsigned integer number */
498 #define EAF_TYPE_OPAQUE 0x02 /* Opaque byte string (not filterable) */
499 #define EAF_TYPE_IP_ADDRESS 0x04 /* IP address */
500 #define EAF_TYPE_ROUTER_ID 0x05 /* Router ID (IPv4 address) */
501 #define EAF_TYPE_AS_PATH 0x06 /* BGP AS path (encoding per RFC 1771:4.3) */
502 #define EAF_TYPE_BITFIELD 0x09 /* 32-bit embedded bitfield */
503 #define EAF_TYPE_INT_SET 0x0a /* Set of u32's (e.g., a community list) */
504 #define EAF_TYPE_EC_SET 0x0e /* Set of pairs of u32's - ext. community list */
505 #define EAF_TYPE_LC_SET 0x12 /* Set of triplets of u32's - large community list */
506 #define EAF_TYPE_UNDEF 0x1f /* `force undefined' entry */
507 #define EAF_EMBEDDED 0x01 /* Data stored in eattr.u.data (part of type spec) */
508 #define EAF_VAR_LENGTH 0x02 /* Attribute length is variable (part of type spec) */
509 #define EAF_ORIGINATED 0x20 /* The attribute has originated locally */
510 #define EAF_FRESH 0x40 /* An uncached attribute (e.g. modified in export filter) */
511 #define EAF_TEMP 0x80 /* A temporary attribute (the one stored in the tmp attr list) */
512
513 typedef struct adata {
514 uint length; /* Length of data */
515 byte data[0];
516 } adata;
517
518 static inline struct adata *
519 lp_alloc_adata(struct linpool *pool, uint len)
520 {
521 struct adata *ad = lp_alloc(pool, sizeof(struct adata) + len);
522 ad->length = len;
523 return ad;
524 }
525
526 static inline int adata_same(struct adata *a, struct adata *b)
527 { return (a->length == b->length && !memcmp(a->data, b->data, a->length)); }
528
529
530 typedef struct ea_list {
531 struct ea_list *next; /* In case we have an override list */
532 byte flags; /* Flags: EALF_... */
533 byte rfu;
534 word count; /* Number of attributes */
535 eattr attrs[0]; /* Attribute definitions themselves */
536 } ea_list;
537
538 #define EALF_SORTED 1 /* Attributes are sorted by code */
539 #define EALF_BISECT 2 /* Use interval bisection for searching */
540 #define EALF_CACHED 4 /* Attributes belonging to cached rta */
541
542 struct rte_src *rt_find_source(struct proto *p, u32 id);
543 struct rte_src *rt_get_source(struct proto *p, u32 id);
544 static inline void rt_lock_source(struct rte_src *src) { src->uc++; }
545 static inline void rt_unlock_source(struct rte_src *src) { src->uc--; }
546 void rt_prune_sources(void);
547
548 struct ea_walk_state {
549 ea_list *eattrs; /* Ccurrent ea_list, initially set by caller */
550 eattr *ea; /* Current eattr, initially NULL */
551 u32 visited[4]; /* Bitfield, limiting max to 128 */
552 };
553
554 eattr *ea_find(ea_list *, unsigned ea);
555 eattr *ea_walk(struct ea_walk_state *s, uint id, uint max);
556 int ea_get_int(ea_list *, unsigned ea, int def);
557 void ea_dump(ea_list *);
558 void ea_sort(ea_list *); /* Sort entries in all sub-lists */
559 unsigned ea_scan(ea_list *); /* How many bytes do we need for merged ea_list */
560 void ea_merge(ea_list *from, ea_list *to); /* Merge sub-lists to allocated buffer */
561 int ea_same(ea_list *x, ea_list *y); /* Test whether two ea_lists are identical */
562 uint ea_hash(ea_list *e); /* Calculate 16-bit hash value */
563 ea_list *ea_append(ea_list *to, ea_list *what);
564 void ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max);
565
566 #define ea_normalize(ea) do { \
567 if (ea->next) { \
568 ea_list *t = alloca(ea_scan(ea)); \
569 ea_merge(ea, t); \
570 ea = t; \
571 } \
572 ea_sort(ea); \
573 } while(0) \
574
575 static inline eattr *
576 ea_set_attr(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, uintptr_t val)
577 {
578 ea_list *a = lp_alloc(pool, sizeof(ea_list) + sizeof(eattr));
579 eattr *e = &a->attrs[0];
580
581 a->flags = EALF_SORTED;
582 a->count = 1;
583 a->next = *to;
584 *to = a;
585
586 e->id = id;
587 e->type = type;
588 e->flags = flags;
589
590 if (type & EAF_EMBEDDED)
591 e->u.data = (u32) val;
592 else
593 e->u.ptr = (struct adata *) val;
594
595 return e;
596 }
597
598 static inline void
599 ea_set_attr_u32(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, u32 val)
600 { ea_set_attr(to, pool, id, flags, type, (uintptr_t) val); }
601
602 static inline void
603 ea_set_attr_ptr(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, struct adata *val)
604 { ea_set_attr(to, pool, id, flags, type, (uintptr_t) val); }
605
606 static inline void
607 ea_set_attr_data(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, void *data, uint len)
608 {
609 struct adata *a = lp_alloc_adata(pool, len);
610 memcpy(a->data, data, len);
611 ea_set_attr(to, pool, id, flags, type, (uintptr_t) a);
612 }
613
614
615 #define NEXTHOP_MAX_SIZE (sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK)
616
617 static inline size_t nexthop_size(const struct nexthop *nh)
618 { return sizeof(struct nexthop) + sizeof(u32)*nh->labels; }
619 int nexthop__same(struct nexthop *x, struct nexthop *y); /* Compare multipath nexthops */
620 static inline int nexthop_same(struct nexthop *x, struct nexthop *y)
621 { return (x == y) || nexthop__same(x, y); }
622 struct nexthop *nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp);
623 static inline void nexthop_link(struct rta *a, struct nexthop *from)
624 { memcpy(&a->nh, from, nexthop_size(from)); }
625 void nexthop_insert(struct nexthop **n, struct nexthop *y);
626 int nexthop_is_sorted(struct nexthop *x);
627
628 void rta_init(void);
629 static inline size_t rta_size(const rta *a) { return sizeof(rta) + sizeof(u32)*a->nh.labels; }
630 #define RTA_MAX_SIZE (sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK)
631 rta *rta_lookup(rta *); /* Get rta equivalent to this one, uc++ */
632 static inline int rta_is_cached(rta *r) { return r->aflags & RTAF_CACHED; }
633 static inline rta *rta_clone(rta *r) { r->uc++; return r; }
634 void rta__free(rta *r);
635 static inline void rta_free(rta *r) { if (r && !--r->uc) rta__free(r); }
636 rta *rta_do_cow(rta *o, linpool *lp);
637 static inline rta * rta_cow(rta *r, linpool *lp) { return rta_is_cached(r) ? rta_do_cow(r, lp) : r; }
638 void rta_dump(rta *);
639 void rta_dump_all(void);
640 void rta_show(struct cli *, rta *);
641
642 struct hostentry * rt_get_hostentry(rtable *tab, ip_addr a, ip_addr ll, rtable *dep);
643 void rta_apply_hostentry(rta *a, struct hostentry *he, mpls_label_stack *mls);
644
645 static inline void
646 rta_set_recursive_next_hop(rtable *dep, rta *a, rtable *tab, ip_addr gw, ip_addr ll, mpls_label_stack *mls)
647 {
648 rta_apply_hostentry(a, rt_get_hostentry(tab, gw, ll, dep), mls);
649 }
650
651 /*
652 * rta_set_recursive_next_hop() acquires hostentry from hostcache and fills
653 * rta->hostentry field. New hostentry has zero use count. Cached rta locks its
654 * hostentry (increases its use count), uncached rta does not lock it. Hostentry
655 * with zero use count is removed asynchronously during host cache update,
656 * therefore it is safe to hold such hostentry temorarily. Hostentry holds a
657 * lock for a 'source' rta, mainly to share multipath nexthops.
658 *
659 * There is no need to hold a lock for hostentry->dep table, because that table
660 * contains routes responsible for that hostentry, and therefore is non-empty if
661 * given hostentry has non-zero use count. If the hostentry has zero use count,
662 * the entry is removed before dep is referenced.
663 *
664 * The protocol responsible for routes with recursive next hops should hold a
665 * lock for a 'source' table governing that routes (argument tab to
666 * rta_set_recursive_next_hop()), because its routes reference hostentries
667 * (through rta) related to the governing table. When all such routes are
668 * removed, rtas are immediately removed achieving zero uc. Then the 'source'
669 * table lock could be immediately released, although hostentries may still
670 * exist - they will be freed together with the 'source' table.
671 */
672
673 static inline void rt_lock_hostentry(struct hostentry *he) { if (he) he->uc++; }
674 static inline void rt_unlock_hostentry(struct hostentry *he) { if (he) he->uc--; }
675
676 /*
677 * Default protocol preferences
678 */
679
680 #define DEF_PREF_DIRECT 240 /* Directly connected */
681 #define DEF_PREF_STATIC 200 /* Static route */
682 #define DEF_PREF_OSPF 150 /* OSPF intra-area, inter-area and type 1 external routes */
683 #define DEF_PREF_BABEL 130 /* Babel */
684 #define DEF_PREF_RIP 120 /* RIP */
685 #define DEF_PREF_BGP 100 /* BGP */
686 #define DEF_PREF_RPKI 100 /* RPKI */
687 #define DEF_PREF_INHERITED 10 /* Routes inherited from other routing daemons */
688
689 /*
690 * Route Origin Authorization
691 */
692
693 #define ROA_UNKNOWN 0
694 #define ROA_VALID 1
695 #define ROA_INVALID 2
696
697 #endif