]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/rt-attr.c
Nexthop: Fixed hostentry
[thirdparty/bird.git] / nest / rt-attr.c
1 /*
2 * BIRD -- Route Attribute Cache
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Route attribute cache
11 *
12 * Each route entry carries a set of route attributes. Several of them
13 * vary from route to route, but most attributes are usually common
14 * for a large number of routes. To conserve memory, we've decided to
15 * store only the varying ones directly in the &rte and hold the rest
16 * in a special structure called &rta which is shared among all the
17 * &rte's with these attributes.
18 *
19 * Each &rta contains all the static attributes of the route (i.e.,
20 * those which are always present) as structure members and a list of
21 * dynamic attributes represented by a linked list of &ea_list
22 * structures, each of them consisting of an array of &eattr's containing
23 * the individual attributes. An attribute can be specified more than once
24 * in the &ea_list chain and in such case the first occurrence overrides
25 * the others. This semantics is used especially when someone (for example
26 * a filter) wishes to alter values of several dynamic attributes, but
27 * it wants to preserve the original attribute lists maintained by
28 * another module.
29 *
30 * Each &eattr contains an attribute identifier (split to protocol ID and
31 * per-protocol attribute ID), protocol dependent flags, a type code (consisting
32 * of several bit fields describing attribute characteristics) and either an
33 * embedded 32-bit value or a pointer to a &adata structure holding attribute
34 * contents.
35 *
36 * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
37 * &rta's can have arbitrarily complex structure of &ea_list's and they
38 * can be modified by any module in the route processing chain. Cached
39 * &rta's have their attribute lists normalized (that means at most one
40 * &ea_list is present and its values are sorted in order to speed up
41 * searching), they are stored in a hash table to make fast lookup possible
42 * and they are provided with a use count to allow sharing.
43 *
44 * Routing tables always contain only cached &rta's.
45 */
46
47 #include "nest/bird.h"
48 #include "nest/route.h"
49 #include "nest/protocol.h"
50 #include "nest/iface.h"
51 #include "nest/cli.h"
52 #include "nest/attrs.h"
53 #include "lib/alloca.h"
54 #include "lib/hash.h"
55 #include "lib/idm.h"
56 #include "lib/resource.h"
57 #include "lib/string.h"
58
59 #include <stddef.h>
60
61 pool *rta_pool;
62
63 static slab *rta_slab_[4];
64 static slab *nexthop_slab_[4];
65 static slab *rte_src_slab;
66
67 static struct idm src_ids;
68 #define SRC_ID_INIT_SIZE 4
69
70 /* rte source hash */
71
72 #define RSH_KEY(n) n->proto, n->private_id
73 #define RSH_NEXT(n) n->next
74 #define RSH_EQ(p1,n1,p2,n2) p1 == p2 && n1 == n2
75 #define RSH_FN(p,n) p->hash_key ^ u32_hash(n)
76
77 #define RSH_REHASH rte_src_rehash
78 #define RSH_PARAMS /2, *2, 1, 1, 8, 20
79 #define RSH_INIT_ORDER 6
80
81 static HASH(struct rte_src) src_hash;
82
83 struct protocol *attr_class_to_protocol[EAP_MAX];
84
85
86 static void
87 rte_src_init(void)
88 {
89 rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
90
91 idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
92
93 HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
94 }
95
96
97 HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
98
99 struct rte_src *
100 rt_find_source(struct proto *p, u32 id)
101 {
102 return HASH_FIND(src_hash, RSH, p, id);
103 }
104
105 struct rte_src *
106 rt_get_source(struct proto *p, u32 id)
107 {
108 struct rte_src *src = rt_find_source(p, id);
109
110 if (src)
111 return src;
112
113 src = sl_alloc(rte_src_slab);
114 src->proto = p;
115 src->private_id = id;
116 src->global_id = idm_alloc(&src_ids);
117 src->uc = 0;
118
119 HASH_INSERT2(src_hash, RSH, rta_pool, src);
120
121 return src;
122 }
123
124 void
125 rt_prune_sources(void)
126 {
127 HASH_WALK_FILTER(src_hash, next, src, sp)
128 {
129 if (src->uc == 0)
130 {
131 HASH_DO_REMOVE(src_hash, RSH, sp);
132 idm_free(&src_ids, src->global_id);
133 sl_free(rte_src_slab, src);
134 }
135 }
136 HASH_WALK_FILTER_END;
137
138 HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
139 }
140
141
142 /*
143 * Multipath Next Hop
144 */
145
146 static inline u32
147 nexthop_hash(struct nexthop *x)
148 {
149 u32 h = 0;
150 for (; x; x = x->next)
151 {
152 h ^= ipa_hash(x->gw) ^ (h << 5) ^ (h >> 9);
153
154 for (int i = 0; i < x->labels; i++)
155 h ^= x->label[i] ^ (h << 6) ^ (h >> 7);
156 }
157
158 return h;
159 }
160
161 int
162 nexthop__same(struct nexthop *x, struct nexthop *y)
163 {
164 for (; x && y; x = x->next, y = y->next)
165 {
166 if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) || (x->weight != y->weight) || (x->labels != y->labels))
167 return 0;
168
169 for (int i = 0; i < x->labels; i++)
170 if (x->label[i] != y->label[i])
171 return 0;
172 }
173
174 return x == y;
175 }
176
177 static int
178 nexthop_compare_node(struct nexthop *x, struct nexthop *y)
179 {
180 int r;
181
182 if (!x)
183 return 1;
184
185 if (!y)
186 return -1;
187
188 r = ((int) y->weight) - ((int) x->weight);
189 if (r)
190 return r;
191
192 r = ipa_compare(x->gw, y->gw);
193 if (r)
194 return r;
195
196 r = ((int) y->labels) - ((int) x->labels);
197 if (r)
198 return r;
199
200 for (int i = 0; i < y->labels; i++)
201 {
202 r = ((int) y->label[i]) - ((int) x->label[i]);
203 if (r)
204 return r;
205 }
206
207 return ((int) x->iface->index) - ((int) y->iface->index);
208 }
209
210 static inline struct nexthop *
211 nexthop_copy_node(const struct nexthop *src, linpool *lp)
212 {
213 struct nexthop *n = lp_alloc(lp, nexthop_size(src));
214
215 memcpy(n, src, nexthop_size(src));
216 n->next = NULL;
217
218 return n;
219 }
220
221 /**
222 * nexthop_merge - merge nexthop lists
223 * @x: list 1
224 * @y: list 2
225 * @rx: reusability of list @x
226 * @ry: reusability of list @y
227 * @max: max number of nexthops
228 * @lp: linpool for allocating nexthops
229 *
230 * The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
231 * eliminating possible duplicates. The input lists must be sorted and the
232 * result is sorted too. The number of nexthops in result is limited by @max.
233 * New nodes are allocated from linpool @lp.
234 *
235 * The arguments @rx and @ry specify whether corresponding input lists may be
236 * consumed by the function (i.e. their nodes reused in the resulting list), in
237 * that case the caller should not access these lists after that. To eliminate
238 * issues with deallocation of these lists, the caller should use some form of
239 * bulk deallocation (e.g. stack or linpool) to free these nodes when the
240 * resulting list is no longer needed. When reusability is not set, the
241 * corresponding lists are not modified nor linked from the resulting list.
242 */
243 struct nexthop *
244 nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp)
245 {
246 struct nexthop *root = NULL;
247 struct nexthop **n = &root;
248
249 while ((x || y) && max--)
250 {
251 int cmp = nexthop_compare_node(x, y);
252 if (cmp < 0)
253 {
254 *n = rx ? x : nexthop_copy_node(x, lp);
255 x = x->next;
256 }
257 else if (cmp > 0)
258 {
259 *n = ry ? y : nexthop_copy_node(y, lp);
260 y = y->next;
261 }
262 else
263 {
264 *n = rx ? x : (ry ? y : nexthop_copy_node(x, lp));
265 x = x->next;
266 y = y->next;
267 }
268 n = &((*n)->next);
269 }
270 *n = NULL;
271
272 return root;
273 }
274
275 void
276 nexthop_insert(struct nexthop **n, struct nexthop *x)
277 {
278 for (; *n; n = &((*n)->next))
279 {
280 int cmp = nexthop_compare_node(*n, x);
281
282 if (cmp < 0)
283 continue;
284 else if (cmp > 0)
285 break;
286 else
287 return;
288 }
289
290 x->next = *n;
291 *n = x;
292 }
293
294 int
295 nexthop_is_sorted(struct nexthop *x)
296 {
297 for (; x && x->next; x = x->next)
298 if (nexthop_compare_node(x, x->next) >= 0)
299 return 0;
300
301 return 1;
302 }
303
304 static inline slab *
305 nexthop_slab(struct nexthop *nh)
306 {
307 return nexthop_slab_[MIN(nh->labels, 3)];
308 }
309
310 static struct nexthop *
311 nexthop_copy(struct nexthop *o)
312 {
313 struct nexthop *first = NULL;
314 struct nexthop **last = &first;
315
316 for (; o; o = o->next)
317 {
318 struct nexthop *n = sl_alloc(nexthop_slab(o));
319 n->gw = o->gw;
320 n->iface = o->iface;
321 n->next = NULL;
322 n->weight = o->weight;
323 n->labels = o->labels;
324 for (int i=0; i<o->labels; i++)
325 n->label[i] = o->label[i];
326
327 *last = n;
328 last = &(n->next);
329 }
330
331 return first;
332 }
333
334 static void
335 nexthop_free(struct nexthop *o)
336 {
337 struct nexthop *n;
338
339 while (o)
340 {
341 n = o->next;
342 sl_free(nexthop_slab(o), o);
343 o = n;
344 }
345 }
346
347
348 /*
349 * Extended Attributes
350 */
351
352 static inline eattr *
353 ea__find(ea_list *e, unsigned id)
354 {
355 eattr *a;
356 int l, r, m;
357
358 while (e)
359 {
360 if (e->flags & EALF_BISECT)
361 {
362 l = 0;
363 r = e->count - 1;
364 while (l <= r)
365 {
366 m = (l+r) / 2;
367 a = &e->attrs[m];
368 if (a->id == id)
369 return a;
370 else if (a->id < id)
371 l = m+1;
372 else
373 r = m-1;
374 }
375 }
376 else
377 for(m=0; m<e->count; m++)
378 if (e->attrs[m].id == id)
379 return &e->attrs[m];
380 e = e->next;
381 }
382 return NULL;
383 }
384
385 /**
386 * ea_find - find an extended attribute
387 * @e: attribute list to search in
388 * @id: attribute ID to search for
389 *
390 * Given an extended attribute list, ea_find() searches for a first
391 * occurrence of an attribute with specified ID, returning either a pointer
392 * to its &eattr structure or %NULL if no such attribute exists.
393 */
394 eattr *
395 ea_find(ea_list *e, unsigned id)
396 {
397 eattr *a = ea__find(e, id & EA_CODE_MASK);
398
399 if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
400 !(id & EA_ALLOW_UNDEF))
401 return NULL;
402 return a;
403 }
404
405 /**
406 * ea_walk - walk through extended attributes
407 * @s: walk state structure
408 * @id: start of attribute ID interval
409 * @max: length of attribute ID interval
410 *
411 * Given an extended attribute list, ea_walk() walks through the list looking
412 * for first occurrences of attributes with ID in specified interval from @id to
413 * (@id + @max - 1), returning pointers to found &eattr structures, storing its
414 * walk state in @s for subsequent calls.
415 *
416 * The function ea_walk() is supposed to be called in a loop, with initially
417 * zeroed walk state structure @s with filled the initial extended attribute
418 * list, returning one found attribute in each call or %NULL when no other
419 * attribute exists. The extended attribute list or the arguments should not be
420 * modified between calls. The maximum value of @max is 128.
421 */
422 eattr *
423 ea_walk(struct ea_walk_state *s, uint id, uint max)
424 {
425 ea_list *e = s->eattrs;
426 eattr *a = s->ea;
427 eattr *a_max;
428
429 max = id + max;
430
431 if (a)
432 goto step;
433
434 for (; e; e = e->next)
435 {
436 if (e->flags & EALF_BISECT)
437 {
438 int l, r, m;
439
440 l = 0;
441 r = e->count - 1;
442 while (l < r)
443 {
444 m = (l+r) / 2;
445 if (e->attrs[m].id < id)
446 l = m + 1;
447 else
448 r = m;
449 }
450 a = e->attrs + l;
451 }
452 else
453 a = e->attrs;
454
455 step:
456 a_max = e->attrs + e->count;
457 for (; a < a_max; a++)
458 if ((a->id >= id) && (a->id < max))
459 {
460 int n = a->id - id;
461
462 if (BIT32_TEST(s->visited, n))
463 continue;
464
465 BIT32_SET(s->visited, n);
466
467 if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
468 continue;
469
470 s->eattrs = e;
471 s->ea = a;
472 return a;
473 }
474 else if (e->flags & EALF_BISECT)
475 break;
476 }
477
478 return NULL;
479 }
480
481 /**
482 * ea_get_int - fetch an integer attribute
483 * @e: attribute list
484 * @id: attribute ID
485 * @def: default value
486 *
487 * This function is a shortcut for retrieving a value of an integer attribute
488 * by calling ea_find() to find the attribute, extracting its value or returning
489 * a provided default if no such attribute is present.
490 */
491 int
492 ea_get_int(ea_list *e, unsigned id, int def)
493 {
494 eattr *a = ea_find(e, id);
495 if (!a)
496 return def;
497 return a->u.data;
498 }
499
500 static inline void
501 ea_do_sort(ea_list *e)
502 {
503 unsigned n = e->count;
504 eattr *a = e->attrs;
505 eattr *b = alloca(n * sizeof(eattr));
506 unsigned s, ss;
507
508 /* We need to use a stable sorting algorithm, hence mergesort */
509 do
510 {
511 s = ss = 0;
512 while (s < n)
513 {
514 eattr *p, *q, *lo, *hi;
515 p = b;
516 ss = s;
517 *p++ = a[s++];
518 while (s < n && p[-1].id <= a[s].id)
519 *p++ = a[s++];
520 if (s < n)
521 {
522 q = p;
523 *p++ = a[s++];
524 while (s < n && p[-1].id <= a[s].id)
525 *p++ = a[s++];
526 lo = b;
527 hi = q;
528 s = ss;
529 while (lo < q && hi < p)
530 if (lo->id <= hi->id)
531 a[s++] = *lo++;
532 else
533 a[s++] = *hi++;
534 while (lo < q)
535 a[s++] = *lo++;
536 while (hi < p)
537 a[s++] = *hi++;
538 }
539 }
540 }
541 while (ss);
542 }
543
544 static inline void
545 ea_do_prune(ea_list *e)
546 {
547 eattr *s, *d, *l, *s0;
548 int i = 0;
549
550 /* Discard duplicates and undefs. Do you remember sorting was stable? */
551 s = d = e->attrs;
552 l = e->attrs + e->count;
553 while (s < l)
554 {
555 s0 = s++;
556 while (s < l && s->id == s[-1].id)
557 s++;
558 /* s0 is the most recent version, s[-1] the oldest one */
559 if ((s0->type & EAF_TYPE_MASK) != EAF_TYPE_UNDEF)
560 {
561 *d = *s0;
562 d->type = (d->type & ~(EAF_ORIGINATED|EAF_FRESH)) | (s[-1].type & EAF_ORIGINATED);
563 d++;
564 i++;
565 }
566 }
567 e->count = i;
568 }
569
570 /**
571 * ea_sort - sort an attribute list
572 * @e: list to be sorted
573 *
574 * This function takes a &ea_list chain and sorts the attributes
575 * within each of its entries.
576 *
577 * If an attribute occurs multiple times in a single &ea_list,
578 * ea_sort() leaves only the first (the only significant) occurrence.
579 */
580 void
581 ea_sort(ea_list *e)
582 {
583 while (e)
584 {
585 if (!(e->flags & EALF_SORTED))
586 {
587 ea_do_sort(e);
588 ea_do_prune(e);
589 e->flags |= EALF_SORTED;
590 }
591 if (e->count > 5)
592 e->flags |= EALF_BISECT;
593 e = e->next;
594 }
595 }
596
597 /**
598 * ea_scan - estimate attribute list size
599 * @e: attribute list
600 *
601 * This function calculates an upper bound of the size of
602 * a given &ea_list after merging with ea_merge().
603 */
604 unsigned
605 ea_scan(ea_list *e)
606 {
607 unsigned cnt = 0;
608
609 while (e)
610 {
611 cnt += e->count;
612 e = e->next;
613 }
614 return sizeof(ea_list) + sizeof(eattr)*cnt;
615 }
616
617 /**
618 * ea_merge - merge segments of an attribute list
619 * @e: attribute list
620 * @t: buffer to store the result to
621 *
622 * This function takes a possibly multi-segment attribute list
623 * and merges all of its segments to one.
624 *
625 * The primary use of this function is for &ea_list normalization:
626 * first call ea_scan() to determine how much memory will the result
627 * take, then allocate a buffer (usually using alloca()), merge the
628 * segments with ea_merge() and finally sort and prune the result
629 * by calling ea_sort().
630 */
631 void
632 ea_merge(ea_list *e, ea_list *t)
633 {
634 eattr *d = t->attrs;
635
636 t->flags = 0;
637 t->count = 0;
638 t->next = NULL;
639 while (e)
640 {
641 memcpy(d, e->attrs, sizeof(eattr)*e->count);
642 t->count += e->count;
643 d += e->count;
644 e = e->next;
645 }
646 }
647
648 /**
649 * ea_same - compare two &ea_list's
650 * @x: attribute list
651 * @y: attribute list
652 *
653 * ea_same() compares two normalized attribute lists @x and @y and returns
654 * 1 if they contain the same attributes, 0 otherwise.
655 */
656 int
657 ea_same(ea_list *x, ea_list *y)
658 {
659 int c;
660
661 if (!x || !y)
662 return x == y;
663 ASSERT(!x->next && !y->next);
664 if (x->count != y->count)
665 return 0;
666 for(c=0; c<x->count; c++)
667 {
668 eattr *a = &x->attrs[c];
669 eattr *b = &y->attrs[c];
670
671 if (a->id != b->id ||
672 a->flags != b->flags ||
673 a->type != b->type ||
674 ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
675 return 0;
676 }
677 return 1;
678 }
679
680 static inline ea_list *
681 ea_list_copy(ea_list *o)
682 {
683 ea_list *n;
684 unsigned i, len;
685
686 if (!o)
687 return NULL;
688 ASSERT(!o->next);
689 len = sizeof(ea_list) + sizeof(eattr) * o->count;
690 n = mb_alloc(rta_pool, len);
691 memcpy(n, o, len);
692 n->flags |= EALF_CACHED;
693 for(i=0; i<o->count; i++)
694 {
695 eattr *a = &n->attrs[i];
696 if (!(a->type & EAF_EMBEDDED))
697 {
698 unsigned size = sizeof(struct adata) + a->u.ptr->length;
699 struct adata *d = mb_alloc(rta_pool, size);
700 memcpy(d, a->u.ptr, size);
701 a->u.ptr = d;
702 }
703 }
704 return n;
705 }
706
707 static inline void
708 ea_free(ea_list *o)
709 {
710 int i;
711
712 if (o)
713 {
714 ASSERT(!o->next);
715 for(i=0; i<o->count; i++)
716 {
717 eattr *a = &o->attrs[i];
718 if (!(a->type & EAF_EMBEDDED))
719 mb_free(a->u.ptr);
720 }
721 mb_free(o);
722 }
723 }
724
725 static int
726 get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
727 {
728 if (a->id == EA_GEN_IGP_METRIC)
729 {
730 *buf += bsprintf(*buf, "igp_metric");
731 return GA_NAME;
732 }
733
734 return GA_UNKNOWN;
735 }
736
737 void
738 ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
739 {
740 byte *bound = buf + bufsize - 32;
741 u32 data = a->u.data;
742 int i;
743
744 for (i = min; i < max; i++)
745 if ((data & (1u << i)) && names[i])
746 {
747 if (buf > bound)
748 {
749 strcpy(buf, " ...");
750 return;
751 }
752
753 buf += bsprintf(buf, " %s", names[i]);
754 data &= ~(1u << i);
755 }
756
757 if (data)
758 bsprintf(buf, " %08x", data);
759
760 return;
761 }
762
763 static inline void
764 opaque_format(struct adata *ad, byte *buf, uint size)
765 {
766 byte *bound = buf + size - 10;
767 uint i;
768
769 for(i = 0; i < ad->length; i++)
770 {
771 if (buf > bound)
772 {
773 strcpy(buf, " ...");
774 return;
775 }
776 if (i)
777 *buf++ = ' ';
778
779 buf += bsprintf(buf, "%02x", ad->data[i]);
780 }
781
782 *buf = 0;
783 return;
784 }
785
786 static inline void
787 ea_show_int_set(struct cli *c, struct adata *ad, int way, byte *pos, byte *buf, byte *end)
788 {
789 int i = int_set_format(ad, way, 0, pos, end - pos);
790 cli_printf(c, -1012, "\t%s", buf);
791 while (i)
792 {
793 i = int_set_format(ad, way, i, buf, end - buf - 1);
794 cli_printf(c, -1012, "\t\t%s", buf);
795 }
796 }
797
798 static inline void
799 ea_show_ec_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
800 {
801 int i = ec_set_format(ad, 0, pos, end - pos);
802 cli_printf(c, -1012, "\t%s", buf);
803 while (i)
804 {
805 i = ec_set_format(ad, i, buf, end - buf - 1);
806 cli_printf(c, -1012, "\t\t%s", buf);
807 }
808 }
809
810 static inline void
811 ea_show_lc_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
812 {
813 int i = lc_set_format(ad, 0, pos, end - pos);
814 cli_printf(c, -1012, "\t%s", buf);
815 while (i)
816 {
817 i = lc_set_format(ad, i, buf, end - buf - 1);
818 cli_printf(c, -1012, "\t\t%s", buf);
819 }
820 }
821
822 /**
823 * ea_show - print an &eattr to CLI
824 * @c: destination CLI
825 * @e: attribute to be printed
826 *
827 * This function takes an extended attribute represented by its &eattr
828 * structure and prints it to the CLI according to the type information.
829 *
830 * If the protocol defining the attribute provides its own
831 * get_attr() hook, it's consulted first.
832 */
833 void
834 ea_show(struct cli *c, eattr *e)
835 {
836 struct protocol *p;
837 int status = GA_UNKNOWN;
838 struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
839 byte buf[CLI_MSG_SIZE];
840 byte *pos = buf, *end = buf + sizeof(buf);
841
842 if (p = attr_class_to_protocol[EA_PROTO(e->id)])
843 {
844 pos += bsprintf(pos, "%s.", p->name);
845 if (p->get_attr)
846 status = p->get_attr(e, pos, end - pos);
847 pos += strlen(pos);
848 }
849 else if (EA_PROTO(e->id))
850 pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
851 else
852 status = get_generic_attr(e, &pos, end - pos);
853
854 if (status < GA_NAME)
855 pos += bsprintf(pos, "%02x", EA_ID(e->id));
856 if (status < GA_FULL)
857 {
858 *pos++ = ':';
859 *pos++ = ' ';
860 switch (e->type & EAF_TYPE_MASK)
861 {
862 case EAF_TYPE_INT:
863 bsprintf(pos, "%u", e->u.data);
864 break;
865 case EAF_TYPE_OPAQUE:
866 opaque_format(ad, pos, end - pos);
867 break;
868 case EAF_TYPE_IP_ADDRESS:
869 bsprintf(pos, "%I", *(ip_addr *) ad->data);
870 break;
871 case EAF_TYPE_ROUTER_ID:
872 bsprintf(pos, "%R", e->u.data);
873 break;
874 case EAF_TYPE_AS_PATH:
875 as_path_format(ad, pos, end - pos);
876 break;
877 case EAF_TYPE_BITFIELD:
878 bsprintf(pos, "%08x", e->u.data);
879 break;
880 case EAF_TYPE_INT_SET:
881 ea_show_int_set(c, ad, 1, pos, buf, end);
882 return;
883 case EAF_TYPE_EC_SET:
884 ea_show_ec_set(c, ad, pos, buf, end);
885 return;
886 case EAF_TYPE_LC_SET:
887 ea_show_lc_set(c, ad, pos, buf, end);
888 return;
889 case EAF_TYPE_UNDEF:
890 default:
891 bsprintf(pos, "<type %02x>", e->type);
892 }
893 }
894 cli_printf(c, -1012, "\t%s", buf);
895 }
896
897 /**
898 * ea_dump - dump an extended attribute
899 * @e: attribute to be dumped
900 *
901 * ea_dump() dumps contents of the extended attribute given to
902 * the debug output.
903 */
904 void
905 ea_dump(ea_list *e)
906 {
907 int i;
908
909 if (!e)
910 {
911 debug("NONE");
912 return;
913 }
914 while (e)
915 {
916 debug("[%c%c%c]",
917 (e->flags & EALF_SORTED) ? 'S' : 's',
918 (e->flags & EALF_BISECT) ? 'B' : 'b',
919 (e->flags & EALF_CACHED) ? 'C' : 'c');
920 for(i=0; i<e->count; i++)
921 {
922 eattr *a = &e->attrs[i];
923 debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
924 if (a->type & EAF_TEMP)
925 debug("T");
926 debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
927 if (a->type & EAF_ORIGINATED)
928 debug("o");
929 if (a->type & EAF_EMBEDDED)
930 debug(":%08x", a->u.data);
931 else
932 {
933 int j, len = a->u.ptr->length;
934 debug("[%d]:", len);
935 for(j=0; j<len; j++)
936 debug("%02x", a->u.ptr->data[j]);
937 }
938 }
939 if (e = e->next)
940 debug(" | ");
941 }
942 }
943
944 /**
945 * ea_hash - calculate an &ea_list hash key
946 * @e: attribute list
947 *
948 * ea_hash() takes an extended attribute list and calculated a hopefully
949 * uniformly distributed hash value from its contents.
950 */
951 inline uint
952 ea_hash(ea_list *e)
953 {
954 const u64 mul = 0x68576150f3d6847;
955 u64 h = 0xafcef24eda8b29;
956 int i;
957
958 if (e) /* Assuming chain of length 1 */
959 {
960 for(i=0; i<e->count; i++)
961 {
962 struct eattr *a = &e->attrs[i];
963 h ^= a->id; h *= mul;
964 if (a->type & EAF_EMBEDDED)
965 h ^= a->u.data;
966 else
967 {
968 struct adata *d = a->u.ptr;
969 h ^= mem_hash(d->data, d->length);
970 }
971 h *= mul;
972 }
973 }
974 return (h >> 32) ^ (h & 0xffffffff);
975 }
976
977 /**
978 * ea_append - concatenate &ea_list's
979 * @to: destination list (can be %NULL)
980 * @what: list to be appended (can be %NULL)
981 *
982 * This function appends the &ea_list @what at the end of
983 * &ea_list @to and returns a pointer to the resulting list.
984 */
985 ea_list *
986 ea_append(ea_list *to, ea_list *what)
987 {
988 ea_list *res;
989
990 if (!to)
991 return what;
992 res = to;
993 while (to->next)
994 to = to->next;
995 to->next = what;
996 return res;
997 }
998
999 /*
1000 * rta's
1001 */
1002
1003 static uint rta_cache_count;
1004 static uint rta_cache_size = 32;
1005 static uint rta_cache_limit;
1006 static uint rta_cache_mask;
1007 static rta **rta_hash_table;
1008
1009 static void
1010 rta_alloc_hash(void)
1011 {
1012 rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
1013 if (rta_cache_size < 32768)
1014 rta_cache_limit = rta_cache_size * 2;
1015 else
1016 rta_cache_limit = ~0;
1017 rta_cache_mask = rta_cache_size - 1;
1018 }
1019
1020 static inline uint
1021 rta_hash(rta *a)
1022 {
1023 u64 h;
1024 mem_hash_init(&h);
1025 #define MIX(f) mem_hash_mix(&h, &(a->f), sizeof(a->f));
1026 MIX(src);
1027 MIX(hostentry);
1028 MIX(from);
1029 MIX(igp_metric);
1030 MIX(source);
1031 MIX(scope);
1032 MIX(dest);
1033 #undef MIX
1034
1035 return mem_hash_value(&h) ^ nexthop_hash(&(a->nh)) ^ ea_hash(a->eattrs);
1036 }
1037
1038 static inline int
1039 rta_same(rta *x, rta *y)
1040 {
1041 return (x->src == y->src &&
1042 x->source == y->source &&
1043 x->scope == y->scope &&
1044 x->dest == y->dest &&
1045 x->igp_metric == y->igp_metric &&
1046 ipa_equal(x->from, y->from) &&
1047 x->hostentry == y->hostentry &&
1048 nexthop_same(&(x->nh), &(y->nh)) &&
1049 ea_same(x->eattrs, y->eattrs));
1050 }
1051
1052 static inline slab *
1053 rta_slab(rta *a)
1054 {
1055 return rta_slab_[a->nh.labels > 2 ? 3 : a->nh.labels];
1056 }
1057
1058 static rta *
1059 rta_copy(rta *o)
1060 {
1061 rta *r = sl_alloc(rta_slab(o));
1062
1063 memcpy(r, o, rta_size(o));
1064 r->uc = 1;
1065 r->nh.next = nexthop_copy(o->nh.next);
1066 r->eattrs = ea_list_copy(o->eattrs);
1067 return r;
1068 }
1069
1070 static inline void
1071 rta_insert(rta *r)
1072 {
1073 uint h = r->hash_key & rta_cache_mask;
1074 r->next = rta_hash_table[h];
1075 if (r->next)
1076 r->next->pprev = &r->next;
1077 r->pprev = &rta_hash_table[h];
1078 rta_hash_table[h] = r;
1079 }
1080
1081 static void
1082 rta_rehash(void)
1083 {
1084 uint ohs = rta_cache_size;
1085 uint h;
1086 rta *r, *n;
1087 rta **oht = rta_hash_table;
1088
1089 rta_cache_size = 2*rta_cache_size;
1090 DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
1091 rta_alloc_hash();
1092 for(h=0; h<ohs; h++)
1093 for(r=oht[h]; r; r=n)
1094 {
1095 n = r->next;
1096 rta_insert(r);
1097 }
1098 mb_free(oht);
1099 }
1100
1101 /**
1102 * rta_lookup - look up a &rta in attribute cache
1103 * @o: a un-cached &rta
1104 *
1105 * rta_lookup() gets an un-cached &rta structure and returns its cached
1106 * counterpart. It starts with examining the attribute cache to see whether
1107 * there exists a matching entry. If such an entry exists, it's returned and
1108 * its use count is incremented, else a new entry is created with use count
1109 * set to 1.
1110 *
1111 * The extended attribute lists attached to the &rta are automatically
1112 * converted to the normalized form.
1113 */
1114 rta *
1115 rta_lookup(rta *o)
1116 {
1117 rta *r;
1118 uint h;
1119
1120 ASSERT(!(o->aflags & RTAF_CACHED));
1121 if (o->eattrs)
1122 {
1123 if (o->eattrs->next) /* Multiple ea_list's, need to merge them */
1124 {
1125 ea_list *ml = alloca(ea_scan(o->eattrs));
1126 ea_merge(o->eattrs, ml);
1127 o->eattrs = ml;
1128 }
1129 ea_sort(o->eattrs);
1130 }
1131
1132 h = rta_hash(o);
1133 for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
1134 if (r->hash_key == h && rta_same(r, o))
1135 return rta_clone(r);
1136
1137 r = rta_copy(o);
1138 r->hash_key = h;
1139 r->aflags = RTAF_CACHED;
1140 rt_lock_source(r->src);
1141 rt_lock_hostentry(r->hostentry);
1142 rta_insert(r);
1143
1144 if (++rta_cache_count > rta_cache_limit)
1145 rta_rehash();
1146
1147 return r;
1148 }
1149
1150 void
1151 rta__free(rta *a)
1152 {
1153 ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
1154 rta_cache_count--;
1155 *a->pprev = a->next;
1156 if (a->next)
1157 a->next->pprev = a->pprev;
1158 rt_unlock_hostentry(a->hostentry);
1159 rt_unlock_source(a->src);
1160 if (a->nh.next)
1161 nexthop_free(a->nh.next);
1162 ea_free(a->eattrs);
1163 a->aflags = 0; /* Poison the entry */
1164 sl_free(rta_slab(a), a);
1165 }
1166
1167 rta *
1168 rta_do_cow(rta *o, linpool *lp)
1169 {
1170 rta *r = lp_alloc(lp, rta_size(o));
1171 memcpy(r, o, rta_size(o));
1172 for (struct nexthop **nhn = &(r->nh.next), *nho = o->nh.next; nho; nho = nho->next)
1173 {
1174 *nhn = lp_alloc(lp, nexthop_size(nho));
1175 memcpy(*nhn, nho, nexthop_size(nho));
1176 nhn = &((*nhn)->next);
1177 }
1178 r->aflags = 0;
1179 r->uc = 0;
1180 return r;
1181 }
1182
1183 /**
1184 * rta_dump - dump route attributes
1185 * @a: attribute structure to dump
1186 *
1187 * This function takes a &rta and dumps its contents to the debug output.
1188 */
1189 void
1190 rta_dump(rta *a)
1191 {
1192 static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
1193 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
1194 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
1195 "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
1196 static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
1197
1198 debug("p=%s uc=%d %s %s%s h=%04x",
1199 a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope),
1200 rtd[a->dest], a->hash_key);
1201 if (!(a->aflags & RTAF_CACHED))
1202 debug(" !CACHED");
1203 debug(" <-%I", a->from);
1204 if (a->dest == RTD_UNICAST)
1205 for (struct nexthop *nh = &(a->nh); nh; nh = nh->next)
1206 {
1207 if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
1208 if (nh->labels) debug(" L %d", nh->label[0]);
1209 for (int i=1; i<nh->labels; i++)
1210 debug("/%d", nh->label[i]);
1211 debug(" [%s]", nh->iface ? nh->iface->name : "???");
1212 }
1213 if (a->eattrs)
1214 {
1215 debug(" EA: ");
1216 ea_dump(a->eattrs);
1217 }
1218 }
1219
1220 /**
1221 * rta_dump_all - dump attribute cache
1222 *
1223 * This function dumps the whole contents of route attribute cache
1224 * to the debug output.
1225 */
1226 void
1227 rta_dump_all(void)
1228 {
1229 rta *a;
1230 uint h;
1231
1232 debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
1233 for(h=0; h<rta_cache_size; h++)
1234 for(a=rta_hash_table[h]; a; a=a->next)
1235 {
1236 debug("%p ", a);
1237 rta_dump(a);
1238 debug("\n");
1239 }
1240 debug("\n");
1241 }
1242
1243 void
1244 rta_show(struct cli *c, rta *a, ea_list *eal)
1245 {
1246 static char *src_names[] = { "dummy", "static", "inherit", "device", "static-device", "redirect",
1247 "RIP", "OSPF", "OSPF-IA", "OSPF-E1", "OSPF-E2", "BGP", "pipe" };
1248 int i;
1249
1250 cli_printf(c, -1008, "\tType: %s %s", src_names[a->source], ip_scope_text(a->scope));
1251 if (!eal)
1252 eal = a->eattrs;
1253 for(; eal; eal=eal->next)
1254 for(i=0; i<eal->count; i++)
1255 ea_show(c, &eal->attrs[i]);
1256 }
1257
1258 /**
1259 * rta_init - initialize route attribute cache
1260 *
1261 * This function is called during initialization of the routing
1262 * table module to set up the internals of the attribute cache.
1263 */
1264 void
1265 rta_init(void)
1266 {
1267 rta_pool = rp_new(&root_pool, "Attributes");
1268
1269 rta_slab_[0] = sl_new(rta_pool, sizeof(rta));
1270 rta_slab_[1] = sl_new(rta_pool, sizeof(rta) + sizeof(u32));
1271 rta_slab_[2] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*2);
1272 rta_slab_[3] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
1273
1274 nexthop_slab_[0] = sl_new(rta_pool, sizeof(struct nexthop));
1275 nexthop_slab_[1] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32));
1276 nexthop_slab_[2] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*2);
1277 nexthop_slab_[3] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
1278
1279 rta_alloc_hash();
1280 rte_src_init();
1281 }
1282
1283 /*
1284 * Documentation for functions declared inline in route.h
1285 */
1286 #if 0
1287
1288 /**
1289 * rta_clone - clone route attributes
1290 * @r: a &rta to be cloned
1291 *
1292 * rta_clone() takes a cached &rta and returns its identical cached
1293 * copy. Currently it works by just returning the original &rta with
1294 * its use count incremented.
1295 */
1296 static inline rta *rta_clone(rta *r)
1297 { DUMMY; }
1298
1299 /**
1300 * rta_free - free route attributes
1301 * @r: a &rta to be freed
1302 *
1303 * If you stop using a &rta (for example when deleting a route which uses
1304 * it), you need to call rta_free() to notify the attribute cache the
1305 * attribute is no longer in use and can be freed if you were the last
1306 * user (which rta_free() tests by inspecting the use count).
1307 */
1308 static inline void rta_free(rta *r)
1309 { DUMMY; }
1310
1311 #endif