]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/rt-attr.c
Merge branch 'add-path'
[thirdparty/bird.git] / nest / rt-attr.c
1 /*
2 * BIRD -- Route Attribute Cache
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Route attribute cache
11 *
12 * Each route entry carries a set of route attributes. Several of them
13 * vary from route to route, but most attributes are usually common
14 * for a large number of routes. To conserve memory, we've decided to
15 * store only the varying ones directly in the &rte and hold the rest
16 * in a special structure called &rta which is shared among all the
17 * &rte's with these attributes.
18 *
19 * Each &rta contains all the static attributes of the route (i.e.,
20 * those which are always present) as structure members and a list of
21 * dynamic attributes represented by a linked list of &ea_list
22 * structures, each of them consisting of an array of &eattr's containing
23 * the individual attributes. An attribute can be specified more than once
24 * in the &ea_list chain and in such case the first occurrence overrides
25 * the others. This semantics is used especially when someone (for example
26 * a filter) wishes to alter values of several dynamic attributes, but
27 * it wants to preserve the original attribute lists maintained by
28 * another module.
29 *
30 * Each &eattr contains an attribute identifier (split to protocol ID and
31 * per-protocol attribute ID), protocol dependent flags, a type code (consisting
32 * of several bit fields describing attribute characteristics) and either an
33 * embedded 32-bit value or a pointer to a &adata structure holding attribute
34 * contents.
35 *
36 * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
37 * &rta's can have arbitrarily complex structure of &ea_list's and they
38 * can be modified by any module in the route processing chain. Cached
39 * &rta's have their attribute lists normalized (that means at most one
40 * &ea_list is present and its values are sorted in order to speed up
41 * searching), they are stored in a hash table to make fast lookup possible
42 * and they are provided with a use count to allow sharing.
43 *
44 * Routing tables always contain only cached &rta's.
45 */
46
47 #include "nest/bird.h"
48 #include "nest/route.h"
49 #include "nest/protocol.h"
50 #include "nest/iface.h"
51 #include "nest/cli.h"
52 #include "nest/attrs.h"
53 #include "lib/alloca.h"
54 #include "lib/resource.h"
55 #include "lib/string.h"
56
57 pool *rta_pool;
58
59 static slab *rta_slab;
60 static slab *mpnh_slab;
61 static slab *rte_src_slab;
62
63 /* rte source ID bitmap */
64 static u32 *src_ids;
65 static u32 src_id_size, src_id_used, src_id_pos;
66 #define SRC_ID_SIZE_DEF 4
67
68 /* rte source hash */
69 static struct rte_src **src_table;
70 static u32 src_hash_order, src_hash_size, src_hash_count;
71 #define SRC_HASH_ORDER_DEF 6
72 #define SRC_HASH_ORDER_MAX 18
73 #define SRC_HASH_ORDER_MIN 10
74
75 struct protocol *attr_class_to_protocol[EAP_MAX];
76
77
78 static void
79 rte_src_init(void)
80 {
81 rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
82
83 src_id_pos = 0;
84 src_id_size = SRC_ID_SIZE_DEF;
85 src_ids = mb_allocz(rta_pool, src_id_size * sizeof(u32));
86
87 /* ID 0 is reserved */
88 src_ids[0] = 1;
89 src_id_used = 1;
90
91 src_hash_count = 0;
92 src_hash_order = SRC_HASH_ORDER_DEF;
93 src_hash_size = 1 << src_hash_order;
94 src_table = mb_allocz(rta_pool, src_hash_size * sizeof(struct rte_src *));
95 }
96
97 static inline int u32_cto(unsigned int x) { return ffs(~x) - 1; }
98
99 static inline u32
100 rte_src_alloc_id(void)
101 {
102 int i, j;
103 for (i = src_id_pos; i < src_id_size; i++)
104 if (src_ids[i] != 0xffffffff)
105 goto found;
106
107 /* If we are at least 7/8 full, expand */
108 if (src_id_used > (src_id_size * 28))
109 {
110 src_id_size *= 2;
111 src_ids = mb_realloc(src_ids, src_id_size * sizeof(u32));
112 bzero(src_ids + i, (src_id_size - i) * sizeof(u32));
113 goto found;
114 }
115
116 for (i = 0; i < src_id_pos; i++)
117 if (src_ids[i] != 0xffffffff)
118 goto found;
119
120 ASSERT(0);
121
122 found:
123 ASSERT(i < 0x8000000);
124
125 src_id_pos = i;
126 j = u32_cto(src_ids[i]);
127
128 src_ids[i] |= (1 << j);
129 src_id_used++;
130 return 32 * i + j;
131 }
132
133 static inline void
134 rte_src_free_id(u32 id)
135 {
136 int i = id / 32;
137 int j = id % 32;
138
139 ASSERT((i < src_id_size) && (src_ids[i] & (1 << j)));
140 src_ids[i] &= ~(1 << j);
141 src_id_used--;
142 }
143
144 static inline u32 rte_src_hash(struct proto *p, u32 x, u32 order)
145 { return (x * 2902958171u) >> (32 - order); }
146
147 static void
148 rte_src_rehash(int step)
149 {
150 struct rte_src **old_tab, *src, *src_next;
151 u32 old_size, hash, i;
152
153 old_tab = src_table;
154 old_size = src_hash_size;
155
156 src_hash_order += step;
157 src_hash_size = 1 << src_hash_order;
158 src_table = mb_allocz(rta_pool, src_hash_size * sizeof(struct rte_src *));
159
160 for (i = 0; i < old_size; i++)
161 for (src = old_tab[i]; src; src = src_next)
162 {
163 src_next = src->next;
164 hash = rte_src_hash(src->proto, src->private_id, src_hash_order);
165 src->next = src_table[hash];
166 src_table[hash] = src;
167 }
168
169 mb_free(old_tab);
170 }
171
172 struct rte_src *
173 rt_find_source(struct proto *p, u32 id)
174 {
175 struct rte_src *src;
176 u32 hash = rte_src_hash(p, id, src_hash_order);
177
178 for (src = src_table[hash]; src; src = src->next)
179 if ((src->proto == p) && (src->private_id == id))
180 return src;
181
182 return NULL;
183 }
184
185 struct rte_src *
186 rt_get_source(struct proto *p, u32 id)
187 {
188 struct rte_src *src;
189 u32 hash = rte_src_hash(p, id, src_hash_order);
190
191 for (src = src_table[hash]; src; src = src->next)
192 if ((src->proto == p) && (src->private_id == id))
193 return src;
194
195 src = sl_alloc(rte_src_slab);
196 src->proto = p;
197 src->private_id = id;
198 src->global_id = rte_src_alloc_id();
199 src->uc = 0;
200
201 src->next = src_table[hash];
202 src_table[hash] = src;
203
204 src_hash_count++;
205 if ((src_hash_count > src_hash_size) && (src_hash_order < SRC_HASH_ORDER_MAX))
206 rte_src_rehash(1);
207
208 return src;
209 }
210
211 static inline void
212 rt_remove_source(struct rte_src **sp)
213 {
214 struct rte_src *src = *sp;
215
216 *sp = src->next;
217 rte_src_free_id(src->global_id);
218 sl_free(rte_src_slab, src);
219 src_hash_count--;
220 }
221
222 void
223 rt_prune_sources(void)
224 {
225 struct rte_src **sp;
226 int i;
227
228 for (i = 0; i < src_hash_size; i++)
229 {
230 sp = &src_table[i];
231 while (*sp)
232 {
233 if ((*sp)->uc == 0)
234 rt_remove_source(sp);
235 else
236 sp = &(*sp)->next;
237 }
238 }
239
240 while ((src_hash_count < (src_hash_size / 4)) && (src_hash_order > SRC_HASH_ORDER_MIN))
241 rte_src_rehash(-1);
242 }
243
244
245 /*
246 * Multipath Next Hop
247 */
248
249 static inline unsigned int
250 mpnh_hash(struct mpnh *x)
251 {
252 unsigned int h = 0;
253 for (; x; x = x->next)
254 h ^= ipa_hash(x->gw);
255
256 return h;
257 }
258
259 int
260 mpnh__same(struct mpnh *x, struct mpnh *y)
261 {
262 for (; x && y; x = x->next, y = y->next)
263 if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) || (x->weight != y->weight))
264 return 0;
265
266 return x == y;
267 }
268
269 static struct mpnh *
270 mpnh_copy(struct mpnh *o)
271 {
272 struct mpnh *first = NULL;
273 struct mpnh **last = &first;
274
275 for (; o; o = o->next)
276 {
277 struct mpnh *n = sl_alloc(mpnh_slab);
278 n->gw = o->gw;
279 n->iface = o->iface;
280 n->next = NULL;
281 n->weight = o->weight;
282
283 *last = n;
284 last = &(n->next);
285 }
286
287 return first;
288 }
289
290 static void
291 mpnh_free(struct mpnh *o)
292 {
293 struct mpnh *n;
294
295 while (o)
296 {
297 n = o->next;
298 sl_free(mpnh_slab, o);
299 o = n;
300 }
301 }
302
303
304 /*
305 * Extended Attributes
306 */
307
308 static inline eattr *
309 ea__find(ea_list *e, unsigned id)
310 {
311 eattr *a;
312 int l, r, m;
313
314 while (e)
315 {
316 if (e->flags & EALF_BISECT)
317 {
318 l = 0;
319 r = e->count - 1;
320 while (l <= r)
321 {
322 m = (l+r) / 2;
323 a = &e->attrs[m];
324 if (a->id == id)
325 return a;
326 else if (a->id < id)
327 l = m+1;
328 else
329 r = m-1;
330 }
331 }
332 else
333 for(m=0; m<e->count; m++)
334 if (e->attrs[m].id == id)
335 return &e->attrs[m];
336 e = e->next;
337 }
338 return NULL;
339 }
340
341 /**
342 * ea_find - find an extended attribute
343 * @e: attribute list to search in
344 * @id: attribute ID to search for
345 *
346 * Given an extended attribute list, ea_find() searches for a first
347 * occurrence of an attribute with specified ID, returning either a pointer
348 * to its &eattr structure or %NULL if no such attribute exists.
349 */
350 eattr *
351 ea_find(ea_list *e, unsigned id)
352 {
353 eattr *a = ea__find(e, id & EA_CODE_MASK);
354
355 if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
356 !(id & EA_ALLOW_UNDEF))
357 return NULL;
358 return a;
359 }
360
361 /**
362 * ea_get_int - fetch an integer attribute
363 * @e: attribute list
364 * @id: attribute ID
365 * @def: default value
366 *
367 * This function is a shortcut for retrieving a value of an integer attribute
368 * by calling ea_find() to find the attribute, extracting its value or returning
369 * a provided default if no such attribute is present.
370 */
371 int
372 ea_get_int(ea_list *e, unsigned id, int def)
373 {
374 eattr *a = ea_find(e, id);
375 if (!a)
376 return def;
377 return a->u.data;
378 }
379
380 static inline void
381 ea_do_sort(ea_list *e)
382 {
383 unsigned n = e->count;
384 eattr *a = e->attrs;
385 eattr *b = alloca(n * sizeof(eattr));
386 unsigned s, ss;
387
388 /* We need to use a stable sorting algorithm, hence mergesort */
389 do
390 {
391 s = ss = 0;
392 while (s < n)
393 {
394 eattr *p, *q, *lo, *hi;
395 p = b;
396 ss = s;
397 *p++ = a[s++];
398 while (s < n && p[-1].id <= a[s].id)
399 *p++ = a[s++];
400 if (s < n)
401 {
402 q = p;
403 *p++ = a[s++];
404 while (s < n && p[-1].id <= a[s].id)
405 *p++ = a[s++];
406 lo = b;
407 hi = q;
408 s = ss;
409 while (lo < q && hi < p)
410 if (lo->id <= hi->id)
411 a[s++] = *lo++;
412 else
413 a[s++] = *hi++;
414 while (lo < q)
415 a[s++] = *lo++;
416 while (hi < p)
417 a[s++] = *hi++;
418 }
419 }
420 }
421 while (ss);
422 }
423
424 static inline void
425 ea_do_prune(ea_list *e)
426 {
427 eattr *s, *d, *l, *s0;
428 int i = 0;
429
430 /* Discard duplicates and undefs. Do you remember sorting was stable? */
431 s = d = e->attrs;
432 l = e->attrs + e->count;
433 while (s < l)
434 {
435 s0 = s++;
436 while (s < l && s->id == s[-1].id)
437 s++;
438 /* s0 is the most recent version, s[-1] the oldest one */
439 if ((s0->type & EAF_TYPE_MASK) != EAF_TYPE_UNDEF)
440 {
441 *d = *s0;
442 d->type = (d->type & ~EAF_ORIGINATED) | (s[-1].type & EAF_ORIGINATED);
443 d++;
444 i++;
445 }
446 }
447 e->count = i;
448 }
449
450 /**
451 * ea_sort - sort an attribute list
452 * @e: list to be sorted
453 *
454 * This function takes a &ea_list chain and sorts the attributes
455 * within each of its entries.
456 *
457 * If an attribute occurs multiple times in a single &ea_list,
458 * ea_sort() leaves only the first (the only significant) occurrence.
459 */
460 void
461 ea_sort(ea_list *e)
462 {
463 while (e)
464 {
465 if (!(e->flags & EALF_SORTED))
466 {
467 ea_do_sort(e);
468 ea_do_prune(e);
469 e->flags |= EALF_SORTED;
470 }
471 if (e->count > 5)
472 e->flags |= EALF_BISECT;
473 e = e->next;
474 }
475 }
476
477 /**
478 * ea_scan - estimate attribute list size
479 * @e: attribute list
480 *
481 * This function calculates an upper bound of the size of
482 * a given &ea_list after merging with ea_merge().
483 */
484 unsigned
485 ea_scan(ea_list *e)
486 {
487 unsigned cnt = 0;
488
489 while (e)
490 {
491 cnt += e->count;
492 e = e->next;
493 }
494 return sizeof(ea_list) + sizeof(eattr)*cnt;
495 }
496
497 /**
498 * ea_merge - merge segments of an attribute list
499 * @e: attribute list
500 * @t: buffer to store the result to
501 *
502 * This function takes a possibly multi-segment attribute list
503 * and merges all of its segments to one.
504 *
505 * The primary use of this function is for &ea_list normalization:
506 * first call ea_scan() to determine how much memory will the result
507 * take, then allocate a buffer (usually using alloca()), merge the
508 * segments with ea_merge() and finally sort and prune the result
509 * by calling ea_sort().
510 */
511 void
512 ea_merge(ea_list *e, ea_list *t)
513 {
514 eattr *d = t->attrs;
515
516 t->flags = 0;
517 t->count = 0;
518 t->next = NULL;
519 while (e)
520 {
521 memcpy(d, e->attrs, sizeof(eattr)*e->count);
522 t->count += e->count;
523 d += e->count;
524 e = e->next;
525 }
526 }
527
528 /**
529 * ea_same - compare two &ea_list's
530 * @x: attribute list
531 * @y: attribute list
532 *
533 * ea_same() compares two normalized attribute lists @x and @y and returns
534 * 1 if they contain the same attributes, 0 otherwise.
535 */
536 int
537 ea_same(ea_list *x, ea_list *y)
538 {
539 int c;
540
541 if (!x || !y)
542 return x == y;
543 ASSERT(!x->next && !y->next);
544 if (x->count != y->count)
545 return 0;
546 for(c=0; c<x->count; c++)
547 {
548 eattr *a = &x->attrs[c];
549 eattr *b = &y->attrs[c];
550
551 if (a->id != b->id ||
552 a->flags != b->flags ||
553 a->type != b->type ||
554 ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
555 return 0;
556 }
557 return 1;
558 }
559
560 static inline ea_list *
561 ea_list_copy(ea_list *o)
562 {
563 ea_list *n;
564 unsigned i, len;
565
566 if (!o)
567 return NULL;
568 ASSERT(!o->next);
569 len = sizeof(ea_list) + sizeof(eattr) * o->count;
570 n = mb_alloc(rta_pool, len);
571 memcpy(n, o, len);
572 n->flags |= EALF_CACHED;
573 for(i=0; i<o->count; i++)
574 {
575 eattr *a = &n->attrs[i];
576 if (!(a->type & EAF_EMBEDDED))
577 {
578 unsigned size = sizeof(struct adata) + a->u.ptr->length;
579 struct adata *d = mb_alloc(rta_pool, size);
580 memcpy(d, a->u.ptr, size);
581 a->u.ptr = d;
582 }
583 }
584 return n;
585 }
586
587 static inline void
588 ea_free(ea_list *o)
589 {
590 int i;
591
592 if (o)
593 {
594 ASSERT(!o->next);
595 for(i=0; i<o->count; i++)
596 {
597 eattr *a = &o->attrs[i];
598 if (!(a->type & EAF_EMBEDDED))
599 mb_free(a->u.ptr);
600 }
601 mb_free(o);
602 }
603 }
604
605 static int
606 get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
607 {
608 if (a->id == EA_GEN_IGP_METRIC)
609 {
610 *buf += bsprintf(*buf, "igp_metric");
611 return GA_NAME;
612 }
613
614 return GA_UNKNOWN;
615 }
616
617 static inline void
618 opaque_format(struct adata *ad, byte *buf, unsigned int size)
619 {
620 byte *bound = buf + size - 10;
621 int i;
622
623 for(i = 0; i < ad->length; i++)
624 {
625 if (buf > bound)
626 {
627 strcpy(buf, " ...");
628 return;
629 }
630 if (i)
631 *buf++ = ' ';
632
633 buf += bsprintf(buf, "%02x", ad->data[i]);
634 }
635
636 *buf = 0;
637 return;
638 }
639
640 static inline void
641 ea_show_int_set(struct cli *c, struct adata *ad, int way, byte *pos, byte *buf, byte *end)
642 {
643 int i = int_set_format(ad, way, 0, pos, end - pos);
644 cli_printf(c, -1012, "\t%s", buf);
645 while (i)
646 {
647 i = int_set_format(ad, way, i, buf, end - buf - 1);
648 cli_printf(c, -1012, "\t\t%s", buf);
649 }
650 }
651
652 static inline void
653 ea_show_ec_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
654 {
655 int i = ec_set_format(ad, 0, pos, end - pos);
656 cli_printf(c, -1012, "\t%s", buf);
657 while (i)
658 {
659 i = ec_set_format(ad, i, buf, end - buf - 1);
660 cli_printf(c, -1012, "\t\t%s", buf);
661 }
662 }
663
664 /**
665 * ea_show - print an &eattr to CLI
666 * @c: destination CLI
667 * @e: attribute to be printed
668 *
669 * This function takes an extended attribute represented by its &eattr
670 * structure and prints it to the CLI according to the type information.
671 *
672 * If the protocol defining the attribute provides its own
673 * get_attr() hook, it's consulted first.
674 */
675 void
676 ea_show(struct cli *c, eattr *e)
677 {
678 struct protocol *p;
679 int status = GA_UNKNOWN;
680 struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
681 byte buf[CLI_MSG_SIZE];
682 byte *pos = buf, *end = buf + sizeof(buf);
683
684 if (p = attr_class_to_protocol[EA_PROTO(e->id)])
685 {
686 pos += bsprintf(pos, "%s.", p->name);
687 if (p->get_attr)
688 status = p->get_attr(e, pos, end - pos);
689 pos += strlen(pos);
690 }
691 else if (EA_PROTO(e->id))
692 pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
693 else
694 status = get_generic_attr(e, &pos, end - pos);
695
696 if (status < GA_NAME)
697 pos += bsprintf(pos, "%02x", EA_ID(e->id));
698 if (status < GA_FULL)
699 {
700 *pos++ = ':';
701 *pos++ = ' ';
702 switch (e->type & EAF_TYPE_MASK)
703 {
704 case EAF_TYPE_INT:
705 bsprintf(pos, "%u", e->u.data);
706 break;
707 case EAF_TYPE_OPAQUE:
708 opaque_format(ad, pos, end - pos);
709 break;
710 case EAF_TYPE_IP_ADDRESS:
711 bsprintf(pos, "%I", *(ip_addr *) ad->data);
712 break;
713 case EAF_TYPE_ROUTER_ID:
714 bsprintf(pos, "%R", e->u.data);
715 break;
716 case EAF_TYPE_AS_PATH:
717 as_path_format(ad, pos, end - pos);
718 break;
719 case EAF_TYPE_INT_SET:
720 ea_show_int_set(c, ad, 1, pos, buf, end);
721 return;
722 case EAF_TYPE_EC_SET:
723 ea_show_ec_set(c, ad, pos, buf, end);
724 return;
725 case EAF_TYPE_UNDEF:
726 default:
727 bsprintf(pos, "<type %02x>", e->type);
728 }
729 }
730 cli_printf(c, -1012, "\t%s", buf);
731 }
732
733 /**
734 * ea_dump - dump an extended attribute
735 * @e: attribute to be dumped
736 *
737 * ea_dump() dumps contents of the extended attribute given to
738 * the debug output.
739 */
740 void
741 ea_dump(ea_list *e)
742 {
743 int i;
744
745 if (!e)
746 {
747 debug("NONE");
748 return;
749 }
750 while (e)
751 {
752 debug("[%c%c%c]",
753 (e->flags & EALF_SORTED) ? 'S' : 's',
754 (e->flags & EALF_BISECT) ? 'B' : 'b',
755 (e->flags & EALF_CACHED) ? 'C' : 'c');
756 for(i=0; i<e->count; i++)
757 {
758 eattr *a = &e->attrs[i];
759 debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
760 if (a->type & EAF_TEMP)
761 debug("T");
762 debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
763 if (a->type & EAF_ORIGINATED)
764 debug("o");
765 if (a->type & EAF_EMBEDDED)
766 debug(":%08x", a->u.data);
767 else
768 {
769 int j, len = a->u.ptr->length;
770 debug("[%d]:", len);
771 for(j=0; j<len; j++)
772 debug("%02x", a->u.ptr->data[j]);
773 }
774 }
775 if (e = e->next)
776 debug(" | ");
777 }
778 }
779
780 /**
781 * ea_hash - calculate an &ea_list hash key
782 * @e: attribute list
783 *
784 * ea_hash() takes an extended attribute list and calculated a hopefully
785 * uniformly distributed hash value from its contents.
786 */
787 inline unsigned int
788 ea_hash(ea_list *e)
789 {
790 u32 h = 0;
791 int i;
792
793 if (e) /* Assuming chain of length 1 */
794 {
795 for(i=0; i<e->count; i++)
796 {
797 struct eattr *a = &e->attrs[i];
798 h ^= a->id;
799 if (a->type & EAF_EMBEDDED)
800 h ^= a->u.data;
801 else
802 {
803 struct adata *d = a->u.ptr;
804 int size = d->length;
805 byte *z = d->data;
806 while (size >= 4)
807 {
808 h ^= *(u32 *)z;
809 z += 4;
810 size -= 4;
811 }
812 while (size--)
813 h = (h >> 24) ^ (h << 8) ^ *z++;
814 }
815 }
816 h ^= h >> 16;
817 h ^= h >> 6;
818 h &= 0xffff;
819 }
820 return h;
821 }
822
823 /**
824 * ea_append - concatenate &ea_list's
825 * @to: destination list (can be %NULL)
826 * @what: list to be appended (can be %NULL)
827 *
828 * This function appends the &ea_list @what at the end of
829 * &ea_list @to and returns a pointer to the resulting list.
830 */
831 ea_list *
832 ea_append(ea_list *to, ea_list *what)
833 {
834 ea_list *res;
835
836 if (!to)
837 return what;
838 res = to;
839 while (to->next)
840 to = to->next;
841 to->next = what;
842 return res;
843 }
844
845 /*
846 * rta's
847 */
848
849 static unsigned int rta_cache_count;
850 static unsigned int rta_cache_size = 32;
851 static unsigned int rta_cache_limit;
852 static unsigned int rta_cache_mask;
853 static rta **rta_hash_table;
854
855 static void
856 rta_alloc_hash(void)
857 {
858 rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
859 if (rta_cache_size < 32768)
860 rta_cache_limit = rta_cache_size * 2;
861 else
862 rta_cache_limit = ~0;
863 rta_cache_mask = rta_cache_size - 1;
864 }
865
866 static inline unsigned int
867 rta_hash(rta *a)
868 {
869 return (((unsigned) a->src) ^ ipa_hash(a->gw) ^
870 mpnh_hash(a->nexthops) ^ ea_hash(a->eattrs)) & 0xffff;
871 }
872
873 static inline int
874 rta_same(rta *x, rta *y)
875 {
876 return (x->src == y->src &&
877 x->source == y->source &&
878 x->scope == y->scope &&
879 x->cast == y->cast &&
880 x->dest == y->dest &&
881 x->flags == y->flags &&
882 x->igp_metric == y->igp_metric &&
883 ipa_equal(x->gw, y->gw) &&
884 ipa_equal(x->from, y->from) &&
885 x->iface == y->iface &&
886 x->hostentry == y->hostentry &&
887 mpnh_same(x->nexthops, y->nexthops) &&
888 ea_same(x->eattrs, y->eattrs));
889 }
890
891 static rta *
892 rta_copy(rta *o)
893 {
894 rta *r = sl_alloc(rta_slab);
895
896 memcpy(r, o, sizeof(rta));
897 r->uc = 1;
898 r->nexthops = mpnh_copy(o->nexthops);
899 r->eattrs = ea_list_copy(o->eattrs);
900 return r;
901 }
902
903 static inline void
904 rta_insert(rta *r)
905 {
906 unsigned int h = r->hash_key & rta_cache_mask;
907 r->next = rta_hash_table[h];
908 if (r->next)
909 r->next->pprev = &r->next;
910 r->pprev = &rta_hash_table[h];
911 rta_hash_table[h] = r;
912 }
913
914 static void
915 rta_rehash(void)
916 {
917 unsigned int ohs = rta_cache_size;
918 unsigned int h;
919 rta *r, *n;
920 rta **oht = rta_hash_table;
921
922 rta_cache_size = 2*rta_cache_size;
923 DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
924 rta_alloc_hash();
925 for(h=0; h<ohs; h++)
926 for(r=oht[h]; r; r=n)
927 {
928 n = r->next;
929 rta_insert(r);
930 }
931 mb_free(oht);
932 }
933
934 /**
935 * rta_lookup - look up a &rta in attribute cache
936 * @o: a un-cached &rta
937 *
938 * rta_lookup() gets an un-cached &rta structure and returns its cached
939 * counterpart. It starts with examining the attribute cache to see whether
940 * there exists a matching entry. If such an entry exists, it's returned and
941 * its use count is incremented, else a new entry is created with use count
942 * set to 1.
943 *
944 * The extended attribute lists attached to the &rta are automatically
945 * converted to the normalized form.
946 */
947 rta *
948 rta_lookup(rta *o)
949 {
950 rta *r;
951 unsigned int h;
952
953 ASSERT(!(o->aflags & RTAF_CACHED));
954 if (o->eattrs)
955 {
956 if (o->eattrs->next) /* Multiple ea_list's, need to merge them */
957 {
958 ea_list *ml = alloca(ea_scan(o->eattrs));
959 ea_merge(o->eattrs, ml);
960 o->eattrs = ml;
961 }
962 ea_sort(o->eattrs);
963 }
964
965 h = rta_hash(o);
966 for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
967 if (r->hash_key == h && rta_same(r, o))
968 return rta_clone(r);
969
970 r = rta_copy(o);
971 r->hash_key = h;
972 r->aflags = RTAF_CACHED;
973 rt_lock_source(r->src);
974 rt_lock_hostentry(r->hostentry);
975 rta_insert(r);
976
977 if (++rta_cache_count > rta_cache_limit)
978 rta_rehash();
979
980 return r;
981 }
982
983 void
984 rta__free(rta *a)
985 {
986 ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
987 rta_cache_count--;
988 *a->pprev = a->next;
989 if (a->next)
990 a->next->pprev = a->pprev;
991 a->aflags = 0; /* Poison the entry */
992 rt_unlock_hostentry(a->hostentry);
993 rt_unlock_source(a->src);
994 mpnh_free(a->nexthops);
995 ea_free(a->eattrs);
996 sl_free(rta_slab, a);
997 }
998
999 /**
1000 * rta_dump - dump route attributes
1001 * @a: attribute structure to dump
1002 *
1003 * This function takes a &rta and dumps its contents to the debug output.
1004 */
1005 void
1006 rta_dump(rta *a)
1007 {
1008 static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
1009 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
1010 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
1011 "RTS_OSPF_EXT2", "RTS_BGP" };
1012 static char *rtc[] = { "", " BC", " MC", " AC" };
1013 static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
1014
1015 debug("p=%s uc=%d %s %s%s%s h=%04x",
1016 a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope), rtc[a->cast],
1017 rtd[a->dest], a->hash_key);
1018 if (!(a->aflags & RTAF_CACHED))
1019 debug(" !CACHED");
1020 debug(" <-%I", a->from);
1021 if (a->dest == RTD_ROUTER)
1022 debug(" ->%I", a->gw);
1023 if (a->dest == RTD_DEVICE || a->dest == RTD_ROUTER)
1024 debug(" [%s]", a->iface ? a->iface->name : "???" );
1025 if (a->eattrs)
1026 {
1027 debug(" EA: ");
1028 ea_dump(a->eattrs);
1029 }
1030 }
1031
1032 /**
1033 * rta_dump_all - dump attribute cache
1034 *
1035 * This function dumps the whole contents of route attribute cache
1036 * to the debug output.
1037 */
1038 void
1039 rta_dump_all(void)
1040 {
1041 rta *a;
1042 unsigned int h;
1043
1044 debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
1045 for(h=0; h<rta_cache_size; h++)
1046 for(a=rta_hash_table[h]; a; a=a->next)
1047 {
1048 debug("%p ", a);
1049 rta_dump(a);
1050 debug("\n");
1051 }
1052 debug("\n");
1053 }
1054
1055 void
1056 rta_show(struct cli *c, rta *a, ea_list *eal)
1057 {
1058 static char *src_names[] = { "dummy", "static", "inherit", "device", "static-device", "redirect",
1059 "RIP", "OSPF", "OSPF-IA", "OSPF-E1", "OSPF-E2", "BGP", "pipe" };
1060 static char *cast_names[] = { "unicast", "broadcast", "multicast", "anycast" };
1061 int i;
1062
1063 cli_printf(c, -1008, "\tType: %s %s %s", src_names[a->source], cast_names[a->cast], ip_scope_text(a->scope));
1064 if (!eal)
1065 eal = a->eattrs;
1066 for(; eal; eal=eal->next)
1067 for(i=0; i<eal->count; i++)
1068 ea_show(c, &eal->attrs[i]);
1069 }
1070
1071 /**
1072 * rta_init - initialize route attribute cache
1073 *
1074 * This function is called during initialization of the routing
1075 * table module to set up the internals of the attribute cache.
1076 */
1077 void
1078 rta_init(void)
1079 {
1080 rta_pool = rp_new(&root_pool, "Attributes");
1081 rta_slab = sl_new(rta_pool, sizeof(rta));
1082 mpnh_slab = sl_new(rta_pool, sizeof(struct mpnh));
1083 rta_alloc_hash();
1084 rte_src_init();
1085 }
1086
1087 /*
1088 * Documentation for functions declared inline in route.h
1089 */
1090 #if 0
1091
1092 /**
1093 * rta_clone - clone route attributes
1094 * @r: a &rta to be cloned
1095 *
1096 * rta_clone() takes a cached &rta and returns its identical cached
1097 * copy. Currently it works by just returning the original &rta with
1098 * its use count incremented.
1099 */
1100 static inline rta *rta_clone(rta *r)
1101 { DUMMY; }
1102
1103 /**
1104 * rta_free - free route attributes
1105 * @r: a &rta to be freed
1106 *
1107 * If you stop using a &rta (for example when deleting a route which uses
1108 * it), you need to call rta_free() to notify the attribute cache the
1109 * attribute is no longer in use and can be freed if you were the last
1110 * user (which rta_free() tests by inspecting the use count).
1111 */
1112 static inline void rta_free(rta *r)
1113 { DUMMY; }
1114
1115 #endif