]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/rt-attr.c
KRT: Add support for plenty of kernel route metrics
[thirdparty/bird.git] / nest / rt-attr.c
1 /*
2 * BIRD -- Route Attribute Cache
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Route attribute cache
11 *
12 * Each route entry carries a set of route attributes. Several of them
13 * vary from route to route, but most attributes are usually common
14 * for a large number of routes. To conserve memory, we've decided to
15 * store only the varying ones directly in the &rte and hold the rest
16 * in a special structure called &rta which is shared among all the
17 * &rte's with these attributes.
18 *
19 * Each &rta contains all the static attributes of the route (i.e.,
20 * those which are always present) as structure members and a list of
21 * dynamic attributes represented by a linked list of &ea_list
22 * structures, each of them consisting of an array of &eattr's containing
23 * the individual attributes. An attribute can be specified more than once
24 * in the &ea_list chain and in such case the first occurrence overrides
25 * the others. This semantics is used especially when someone (for example
26 * a filter) wishes to alter values of several dynamic attributes, but
27 * it wants to preserve the original attribute lists maintained by
28 * another module.
29 *
30 * Each &eattr contains an attribute identifier (split to protocol ID and
31 * per-protocol attribute ID), protocol dependent flags, a type code (consisting
32 * of several bit fields describing attribute characteristics) and either an
33 * embedded 32-bit value or a pointer to a &adata structure holding attribute
34 * contents.
35 *
36 * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
37 * &rta's can have arbitrarily complex structure of &ea_list's and they
38 * can be modified by any module in the route processing chain. Cached
39 * &rta's have their attribute lists normalized (that means at most one
40 * &ea_list is present and its values are sorted in order to speed up
41 * searching), they are stored in a hash table to make fast lookup possible
42 * and they are provided with a use count to allow sharing.
43 *
44 * Routing tables always contain only cached &rta's.
45 */
46
47 #include "nest/bird.h"
48 #include "nest/route.h"
49 #include "nest/protocol.h"
50 #include "nest/iface.h"
51 #include "nest/cli.h"
52 #include "nest/attrs.h"
53 #include "lib/alloca.h"
54 #include "lib/hash.h"
55 #include "lib/resource.h"
56 #include "lib/string.h"
57
58 pool *rta_pool;
59
60 static slab *rta_slab;
61 static slab *mpnh_slab;
62 static slab *rte_src_slab;
63
64 /* rte source ID bitmap */
65 static u32 *src_ids;
66 static u32 src_id_size, src_id_used, src_id_pos;
67 #define SRC_ID_INIT_SIZE 4
68
69 /* rte source hash */
70
71 #define RSH_KEY(n) n->proto, n->private_id
72 #define RSH_NEXT(n) n->next
73 #define RSH_EQ(p1,n1,p2,n2) p1 == p2 && n1 == n2
74 #define RSH_FN(p,n) p->hash_key ^ u32_hash(n)
75
76 #define RSH_REHASH rte_src_rehash
77 #define RSH_PARAMS /2, *2, 1, 1, 8, 20
78 #define RSH_INIT_ORDER 6
79
80 static HASH(struct rte_src) src_hash;
81
82 struct protocol *attr_class_to_protocol[EAP_MAX];
83
84
85 static void
86 rte_src_init(void)
87 {
88 rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
89
90 src_id_pos = 0;
91 src_id_size = SRC_ID_INIT_SIZE;
92 src_ids = mb_allocz(rta_pool, src_id_size * sizeof(u32));
93
94 /* ID 0 is reserved */
95 src_ids[0] = 1;
96 src_id_used = 1;
97
98 HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
99 }
100
101 static inline int u32_cto(unsigned int x) { return ffs(~x) - 1; }
102
103 static inline u32
104 rte_src_alloc_id(void)
105 {
106 int i, j;
107 for (i = src_id_pos; i < src_id_size; i++)
108 if (src_ids[i] != 0xffffffff)
109 goto found;
110
111 /* If we are at least 7/8 full, expand */
112 if (src_id_used > (src_id_size * 28))
113 {
114 src_id_size *= 2;
115 src_ids = mb_realloc(src_ids, src_id_size * sizeof(u32));
116 bzero(src_ids + i, (src_id_size - i) * sizeof(u32));
117 goto found;
118 }
119
120 for (i = 0; i < src_id_pos; i++)
121 if (src_ids[i] != 0xffffffff)
122 goto found;
123
124 ASSERT(0);
125
126 found:
127 ASSERT(i < 0x8000000);
128
129 src_id_pos = i;
130 j = u32_cto(src_ids[i]);
131
132 src_ids[i] |= (1 << j);
133 src_id_used++;
134 return 32 * i + j;
135 }
136
137 static inline void
138 rte_src_free_id(u32 id)
139 {
140 int i = id / 32;
141 int j = id % 32;
142
143 ASSERT((i < src_id_size) && (src_ids[i] & (1 << j)));
144 src_ids[i] &= ~(1 << j);
145 src_id_used--;
146 }
147
148
149 HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
150
151 struct rte_src *
152 rt_find_source(struct proto *p, u32 id)
153 {
154 return HASH_FIND(src_hash, RSH, p, id);
155 }
156
157 struct rte_src *
158 rt_get_source(struct proto *p, u32 id)
159 {
160 struct rte_src *src = rt_find_source(p, id);
161
162 if (src)
163 return src;
164
165 src = sl_alloc(rte_src_slab);
166 src->proto = p;
167 src->private_id = id;
168 src->global_id = rte_src_alloc_id();
169 src->uc = 0;
170
171 HASH_INSERT2(src_hash, RSH, rta_pool, src);
172
173 return src;
174 }
175
176 void
177 rt_prune_sources(void)
178 {
179 HASH_WALK_FILTER(src_hash, next, src, sp)
180 {
181 if (src->uc == 0)
182 {
183 HASH_DO_REMOVE(src_hash, RSH, sp);
184 rte_src_free_id(src->global_id);
185 sl_free(rte_src_slab, src);
186 }
187 }
188 HASH_WALK_FILTER_END;
189
190 HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
191 }
192
193
194 /*
195 * Multipath Next Hop
196 */
197
198 static inline unsigned int
199 mpnh_hash(struct mpnh *x)
200 {
201 unsigned int h = 0;
202 for (; x; x = x->next)
203 h ^= ipa_hash(x->gw);
204
205 return h;
206 }
207
208 int
209 mpnh__same(struct mpnh *x, struct mpnh *y)
210 {
211 for (; x && y; x = x->next, y = y->next)
212 if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) || (x->weight != y->weight))
213 return 0;
214
215 return x == y;
216 }
217
218 static struct mpnh *
219 mpnh_copy(struct mpnh *o)
220 {
221 struct mpnh *first = NULL;
222 struct mpnh **last = &first;
223
224 for (; o; o = o->next)
225 {
226 struct mpnh *n = sl_alloc(mpnh_slab);
227 n->gw = o->gw;
228 n->iface = o->iface;
229 n->next = NULL;
230 n->weight = o->weight;
231
232 *last = n;
233 last = &(n->next);
234 }
235
236 return first;
237 }
238
239 static void
240 mpnh_free(struct mpnh *o)
241 {
242 struct mpnh *n;
243
244 while (o)
245 {
246 n = o->next;
247 sl_free(mpnh_slab, o);
248 o = n;
249 }
250 }
251
252
253 /*
254 * Extended Attributes
255 */
256
257 static inline eattr *
258 ea__find(ea_list *e, unsigned id)
259 {
260 eattr *a;
261 int l, r, m;
262
263 while (e)
264 {
265 if (e->flags & EALF_BISECT)
266 {
267 l = 0;
268 r = e->count - 1;
269 while (l <= r)
270 {
271 m = (l+r) / 2;
272 a = &e->attrs[m];
273 if (a->id == id)
274 return a;
275 else if (a->id < id)
276 l = m+1;
277 else
278 r = m-1;
279 }
280 }
281 else
282 for(m=0; m<e->count; m++)
283 if (e->attrs[m].id == id)
284 return &e->attrs[m];
285 e = e->next;
286 }
287 return NULL;
288 }
289
290 /**
291 * ea_find - find an extended attribute
292 * @e: attribute list to search in
293 * @id: attribute ID to search for
294 *
295 * Given an extended attribute list, ea_find() searches for a first
296 * occurrence of an attribute with specified ID, returning either a pointer
297 * to its &eattr structure or %NULL if no such attribute exists.
298 */
299 eattr *
300 ea_find(ea_list *e, unsigned id)
301 {
302 eattr *a = ea__find(e, id & EA_CODE_MASK);
303
304 if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
305 !(id & EA_ALLOW_UNDEF))
306 return NULL;
307 return a;
308 }
309
310 /**
311 * ea_walk - walk through extended attributes
312 * @s: walk state structure
313 * @id: start of attribute ID interval
314 * @max: length of attribute ID interval
315 *
316 * Given an extended attribute list, ea_walk() walks through the list looking
317 * for first occurrences of attributes with ID in specified interval from @id to
318 * (@id + @max - 1), returning pointers to found &eattr structures, storing its
319 * walk state in @s for subsequent calls.
320
321 * The function ea_walk() is supposed to be called in a loop, with initially
322 * zeroed walk state structure @s with filled the initial extended attribute
323 * list, returning one found attribute in each call or %NULL when no other
324 * attribute exists. The extended attribute list or the arguments should not be
325 * modified between calls. The maximum value of @max is 128.
326 */
327 eattr *
328 ea_walk(struct ea_walk_state *s, uint id, uint max)
329 {
330 ea_list *e = s->eattrs;
331 eattr *a = s->ea;
332 eattr *a_max;
333
334 max = id + max;
335
336 if (a)
337 goto step;
338
339 for (; e; e = e->next)
340 {
341 if (e->flags & EALF_BISECT)
342 {
343 int l, r, m;
344
345 l = 0;
346 r = e->count - 1;
347 while (l < r)
348 {
349 m = (l+r) / 2;
350 if (e->attrs[m].id < id)
351 l = m + 1;
352 else
353 r = m;
354 }
355 a = e->attrs + l;
356 }
357 else
358 a = e->attrs;
359
360 step:
361 a_max = e->attrs + e->count;
362 for (; a < a_max; a++)
363 if ((a->id >= id) && (a->id < max))
364 {
365 int n = a->id - id;
366
367 if (BIT32_TEST(s->visited, n))
368 continue;
369
370 BIT32_SET(s->visited, n);
371
372 if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
373 continue;
374
375 s->eattrs = e;
376 s->ea = a;
377 return a;
378 }
379 else if (e->flags & EALF_BISECT)
380 break;
381 }
382
383 return NULL;
384 }
385
386 /**
387 * ea_get_int - fetch an integer attribute
388 * @e: attribute list
389 * @id: attribute ID
390 * @def: default value
391 *
392 * This function is a shortcut for retrieving a value of an integer attribute
393 * by calling ea_find() to find the attribute, extracting its value or returning
394 * a provided default if no such attribute is present.
395 */
396 int
397 ea_get_int(ea_list *e, unsigned id, int def)
398 {
399 eattr *a = ea_find(e, id);
400 if (!a)
401 return def;
402 return a->u.data;
403 }
404
405 static inline void
406 ea_do_sort(ea_list *e)
407 {
408 unsigned n = e->count;
409 eattr *a = e->attrs;
410 eattr *b = alloca(n * sizeof(eattr));
411 unsigned s, ss;
412
413 /* We need to use a stable sorting algorithm, hence mergesort */
414 do
415 {
416 s = ss = 0;
417 while (s < n)
418 {
419 eattr *p, *q, *lo, *hi;
420 p = b;
421 ss = s;
422 *p++ = a[s++];
423 while (s < n && p[-1].id <= a[s].id)
424 *p++ = a[s++];
425 if (s < n)
426 {
427 q = p;
428 *p++ = a[s++];
429 while (s < n && p[-1].id <= a[s].id)
430 *p++ = a[s++];
431 lo = b;
432 hi = q;
433 s = ss;
434 while (lo < q && hi < p)
435 if (lo->id <= hi->id)
436 a[s++] = *lo++;
437 else
438 a[s++] = *hi++;
439 while (lo < q)
440 a[s++] = *lo++;
441 while (hi < p)
442 a[s++] = *hi++;
443 }
444 }
445 }
446 while (ss);
447 }
448
449 static inline void
450 ea_do_prune(ea_list *e)
451 {
452 eattr *s, *d, *l, *s0;
453 int i = 0;
454
455 /* Discard duplicates and undefs. Do you remember sorting was stable? */
456 s = d = e->attrs;
457 l = e->attrs + e->count;
458 while (s < l)
459 {
460 s0 = s++;
461 while (s < l && s->id == s[-1].id)
462 s++;
463 /* s0 is the most recent version, s[-1] the oldest one */
464 if ((s0->type & EAF_TYPE_MASK) != EAF_TYPE_UNDEF)
465 {
466 *d = *s0;
467 d->type = (d->type & ~EAF_ORIGINATED) | (s[-1].type & EAF_ORIGINATED);
468 d++;
469 i++;
470 }
471 }
472 e->count = i;
473 }
474
475 /**
476 * ea_sort - sort an attribute list
477 * @e: list to be sorted
478 *
479 * This function takes a &ea_list chain and sorts the attributes
480 * within each of its entries.
481 *
482 * If an attribute occurs multiple times in a single &ea_list,
483 * ea_sort() leaves only the first (the only significant) occurrence.
484 */
485 void
486 ea_sort(ea_list *e)
487 {
488 while (e)
489 {
490 if (!(e->flags & EALF_SORTED))
491 {
492 ea_do_sort(e);
493 ea_do_prune(e);
494 e->flags |= EALF_SORTED;
495 }
496 if (e->count > 5)
497 e->flags |= EALF_BISECT;
498 e = e->next;
499 }
500 }
501
502 /**
503 * ea_scan - estimate attribute list size
504 * @e: attribute list
505 *
506 * This function calculates an upper bound of the size of
507 * a given &ea_list after merging with ea_merge().
508 */
509 unsigned
510 ea_scan(ea_list *e)
511 {
512 unsigned cnt = 0;
513
514 while (e)
515 {
516 cnt += e->count;
517 e = e->next;
518 }
519 return sizeof(ea_list) + sizeof(eattr)*cnt;
520 }
521
522 /**
523 * ea_merge - merge segments of an attribute list
524 * @e: attribute list
525 * @t: buffer to store the result to
526 *
527 * This function takes a possibly multi-segment attribute list
528 * and merges all of its segments to one.
529 *
530 * The primary use of this function is for &ea_list normalization:
531 * first call ea_scan() to determine how much memory will the result
532 * take, then allocate a buffer (usually using alloca()), merge the
533 * segments with ea_merge() and finally sort and prune the result
534 * by calling ea_sort().
535 */
536 void
537 ea_merge(ea_list *e, ea_list *t)
538 {
539 eattr *d = t->attrs;
540
541 t->flags = 0;
542 t->count = 0;
543 t->next = NULL;
544 while (e)
545 {
546 memcpy(d, e->attrs, sizeof(eattr)*e->count);
547 t->count += e->count;
548 d += e->count;
549 e = e->next;
550 }
551 }
552
553 /**
554 * ea_same - compare two &ea_list's
555 * @x: attribute list
556 * @y: attribute list
557 *
558 * ea_same() compares two normalized attribute lists @x and @y and returns
559 * 1 if they contain the same attributes, 0 otherwise.
560 */
561 int
562 ea_same(ea_list *x, ea_list *y)
563 {
564 int c;
565
566 if (!x || !y)
567 return x == y;
568 ASSERT(!x->next && !y->next);
569 if (x->count != y->count)
570 return 0;
571 for(c=0; c<x->count; c++)
572 {
573 eattr *a = &x->attrs[c];
574 eattr *b = &y->attrs[c];
575
576 if (a->id != b->id ||
577 a->flags != b->flags ||
578 a->type != b->type ||
579 ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
580 return 0;
581 }
582 return 1;
583 }
584
585 static inline ea_list *
586 ea_list_copy(ea_list *o)
587 {
588 ea_list *n;
589 unsigned i, len;
590
591 if (!o)
592 return NULL;
593 ASSERT(!o->next);
594 len = sizeof(ea_list) + sizeof(eattr) * o->count;
595 n = mb_alloc(rta_pool, len);
596 memcpy(n, o, len);
597 n->flags |= EALF_CACHED;
598 for(i=0; i<o->count; i++)
599 {
600 eattr *a = &n->attrs[i];
601 if (!(a->type & EAF_EMBEDDED))
602 {
603 unsigned size = sizeof(struct adata) + a->u.ptr->length;
604 struct adata *d = mb_alloc(rta_pool, size);
605 memcpy(d, a->u.ptr, size);
606 a->u.ptr = d;
607 }
608 }
609 return n;
610 }
611
612 static inline void
613 ea_free(ea_list *o)
614 {
615 int i;
616
617 if (o)
618 {
619 ASSERT(!o->next);
620 for(i=0; i<o->count; i++)
621 {
622 eattr *a = &o->attrs[i];
623 if (!(a->type & EAF_EMBEDDED))
624 mb_free(a->u.ptr);
625 }
626 mb_free(o);
627 }
628 }
629
630 static int
631 get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
632 {
633 if (a->id == EA_GEN_IGP_METRIC)
634 {
635 *buf += bsprintf(*buf, "igp_metric");
636 return GA_NAME;
637 }
638
639 return GA_UNKNOWN;
640 }
641
642 void
643 ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
644 {
645 byte *bound = buf + bufsize - 32;
646 u32 data = a->u.data;
647 int i;
648
649 for (i = min; i < max; i++)
650 if ((data & (1u << i)) && names[i])
651 {
652 if (buf > bound)
653 {
654 strcpy(buf, " ...");
655 return;
656 }
657
658 buf += bsprintf(buf, " %s", names[i]);
659 data &= ~(1u << i);
660 }
661
662 if (data)
663 bsprintf(buf, " %08x", data);
664
665 return;
666 }
667
668 static inline void
669 opaque_format(struct adata *ad, byte *buf, unsigned int size)
670 {
671 byte *bound = buf + size - 10;
672 int i;
673
674 for(i = 0; i < ad->length; i++)
675 {
676 if (buf > bound)
677 {
678 strcpy(buf, " ...");
679 return;
680 }
681 if (i)
682 *buf++ = ' ';
683
684 buf += bsprintf(buf, "%02x", ad->data[i]);
685 }
686
687 *buf = 0;
688 return;
689 }
690
691 static inline void
692 ea_show_int_set(struct cli *c, struct adata *ad, int way, byte *pos, byte *buf, byte *end)
693 {
694 int i = int_set_format(ad, way, 0, pos, end - pos);
695 cli_printf(c, -1012, "\t%s", buf);
696 while (i)
697 {
698 i = int_set_format(ad, way, i, buf, end - buf - 1);
699 cli_printf(c, -1012, "\t\t%s", buf);
700 }
701 }
702
703 static inline void
704 ea_show_ec_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
705 {
706 int i = ec_set_format(ad, 0, pos, end - pos);
707 cli_printf(c, -1012, "\t%s", buf);
708 while (i)
709 {
710 i = ec_set_format(ad, i, buf, end - buf - 1);
711 cli_printf(c, -1012, "\t\t%s", buf);
712 }
713 }
714
715 /**
716 * ea_show - print an &eattr to CLI
717 * @c: destination CLI
718 * @e: attribute to be printed
719 *
720 * This function takes an extended attribute represented by its &eattr
721 * structure and prints it to the CLI according to the type information.
722 *
723 * If the protocol defining the attribute provides its own
724 * get_attr() hook, it's consulted first.
725 */
726 void
727 ea_show(struct cli *c, eattr *e)
728 {
729 struct protocol *p;
730 int status = GA_UNKNOWN;
731 struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
732 byte buf[CLI_MSG_SIZE];
733 byte *pos = buf, *end = buf + sizeof(buf);
734
735 if (p = attr_class_to_protocol[EA_PROTO(e->id)])
736 {
737 pos += bsprintf(pos, "%s.", p->name);
738 if (p->get_attr)
739 status = p->get_attr(e, pos, end - pos);
740 pos += strlen(pos);
741 }
742 else if (EA_PROTO(e->id))
743 pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
744 else
745 status = get_generic_attr(e, &pos, end - pos);
746
747 if (status < GA_NAME)
748 pos += bsprintf(pos, "%02x", EA_ID(e->id));
749 if (status < GA_FULL)
750 {
751 *pos++ = ':';
752 *pos++ = ' ';
753 switch (e->type & EAF_TYPE_MASK)
754 {
755 case EAF_TYPE_INT:
756 bsprintf(pos, "%u", e->u.data);
757 break;
758 case EAF_TYPE_OPAQUE:
759 opaque_format(ad, pos, end - pos);
760 break;
761 case EAF_TYPE_IP_ADDRESS:
762 bsprintf(pos, "%I", *(ip_addr *) ad->data);
763 break;
764 case EAF_TYPE_ROUTER_ID:
765 bsprintf(pos, "%R", e->u.data);
766 break;
767 case EAF_TYPE_AS_PATH:
768 as_path_format(ad, pos, end - pos);
769 break;
770 case EAF_TYPE_BITFIELD:
771 bsprintf(pos, "%08x", e->u.data);
772 break;
773 case EAF_TYPE_INT_SET:
774 ea_show_int_set(c, ad, 1, pos, buf, end);
775 return;
776 case EAF_TYPE_EC_SET:
777 ea_show_ec_set(c, ad, pos, buf, end);
778 return;
779 case EAF_TYPE_UNDEF:
780 default:
781 bsprintf(pos, "<type %02x>", e->type);
782 }
783 }
784 cli_printf(c, -1012, "\t%s", buf);
785 }
786
787 /**
788 * ea_dump - dump an extended attribute
789 * @e: attribute to be dumped
790 *
791 * ea_dump() dumps contents of the extended attribute given to
792 * the debug output.
793 */
794 void
795 ea_dump(ea_list *e)
796 {
797 int i;
798
799 if (!e)
800 {
801 debug("NONE");
802 return;
803 }
804 while (e)
805 {
806 debug("[%c%c%c]",
807 (e->flags & EALF_SORTED) ? 'S' : 's',
808 (e->flags & EALF_BISECT) ? 'B' : 'b',
809 (e->flags & EALF_CACHED) ? 'C' : 'c');
810 for(i=0; i<e->count; i++)
811 {
812 eattr *a = &e->attrs[i];
813 debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
814 if (a->type & EAF_TEMP)
815 debug("T");
816 debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
817 if (a->type & EAF_ORIGINATED)
818 debug("o");
819 if (a->type & EAF_EMBEDDED)
820 debug(":%08x", a->u.data);
821 else
822 {
823 int j, len = a->u.ptr->length;
824 debug("[%d]:", len);
825 for(j=0; j<len; j++)
826 debug("%02x", a->u.ptr->data[j]);
827 }
828 }
829 if (e = e->next)
830 debug(" | ");
831 }
832 }
833
834 /**
835 * ea_hash - calculate an &ea_list hash key
836 * @e: attribute list
837 *
838 * ea_hash() takes an extended attribute list and calculated a hopefully
839 * uniformly distributed hash value from its contents.
840 */
841 inline unsigned int
842 ea_hash(ea_list *e)
843 {
844 u32 h = 0;
845 int i;
846
847 if (e) /* Assuming chain of length 1 */
848 {
849 for(i=0; i<e->count; i++)
850 {
851 struct eattr *a = &e->attrs[i];
852 h ^= a->id;
853 if (a->type & EAF_EMBEDDED)
854 h ^= a->u.data;
855 else
856 {
857 struct adata *d = a->u.ptr;
858 int size = d->length;
859 byte *z = d->data;
860 while (size >= 4)
861 {
862 h ^= *(u32 *)z;
863 z += 4;
864 size -= 4;
865 }
866 while (size--)
867 h = (h >> 24) ^ (h << 8) ^ *z++;
868 }
869 }
870 h ^= h >> 16;
871 h ^= h >> 6;
872 h &= 0xffff;
873 }
874 return h;
875 }
876
877 /**
878 * ea_append - concatenate &ea_list's
879 * @to: destination list (can be %NULL)
880 * @what: list to be appended (can be %NULL)
881 *
882 * This function appends the &ea_list @what at the end of
883 * &ea_list @to and returns a pointer to the resulting list.
884 */
885 ea_list *
886 ea_append(ea_list *to, ea_list *what)
887 {
888 ea_list *res;
889
890 if (!to)
891 return what;
892 res = to;
893 while (to->next)
894 to = to->next;
895 to->next = what;
896 return res;
897 }
898
899 /*
900 * rta's
901 */
902
903 static unsigned int rta_cache_count;
904 static unsigned int rta_cache_size = 32;
905 static unsigned int rta_cache_limit;
906 static unsigned int rta_cache_mask;
907 static rta **rta_hash_table;
908
909 static void
910 rta_alloc_hash(void)
911 {
912 rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
913 if (rta_cache_size < 32768)
914 rta_cache_limit = rta_cache_size * 2;
915 else
916 rta_cache_limit = ~0;
917 rta_cache_mask = rta_cache_size - 1;
918 }
919
920 static inline unsigned int
921 rta_hash(rta *a)
922 {
923 return (((uint) (uintptr_t) a->src) ^ ipa_hash(a->gw) ^
924 mpnh_hash(a->nexthops) ^ ea_hash(a->eattrs)) & 0xffff;
925 }
926
927 static inline int
928 rta_same(rta *x, rta *y)
929 {
930 return (x->src == y->src &&
931 x->source == y->source &&
932 x->scope == y->scope &&
933 x->cast == y->cast &&
934 x->dest == y->dest &&
935 x->flags == y->flags &&
936 x->igp_metric == y->igp_metric &&
937 ipa_equal(x->gw, y->gw) &&
938 ipa_equal(x->from, y->from) &&
939 x->iface == y->iface &&
940 x->hostentry == y->hostentry &&
941 mpnh_same(x->nexthops, y->nexthops) &&
942 ea_same(x->eattrs, y->eattrs));
943 }
944
945 static rta *
946 rta_copy(rta *o)
947 {
948 rta *r = sl_alloc(rta_slab);
949
950 memcpy(r, o, sizeof(rta));
951 r->uc = 1;
952 r->nexthops = mpnh_copy(o->nexthops);
953 r->eattrs = ea_list_copy(o->eattrs);
954 return r;
955 }
956
957 static inline void
958 rta_insert(rta *r)
959 {
960 unsigned int h = r->hash_key & rta_cache_mask;
961 r->next = rta_hash_table[h];
962 if (r->next)
963 r->next->pprev = &r->next;
964 r->pprev = &rta_hash_table[h];
965 rta_hash_table[h] = r;
966 }
967
968 static void
969 rta_rehash(void)
970 {
971 unsigned int ohs = rta_cache_size;
972 unsigned int h;
973 rta *r, *n;
974 rta **oht = rta_hash_table;
975
976 rta_cache_size = 2*rta_cache_size;
977 DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
978 rta_alloc_hash();
979 for(h=0; h<ohs; h++)
980 for(r=oht[h]; r; r=n)
981 {
982 n = r->next;
983 rta_insert(r);
984 }
985 mb_free(oht);
986 }
987
988 /**
989 * rta_lookup - look up a &rta in attribute cache
990 * @o: a un-cached &rta
991 *
992 * rta_lookup() gets an un-cached &rta structure and returns its cached
993 * counterpart. It starts with examining the attribute cache to see whether
994 * there exists a matching entry. If such an entry exists, it's returned and
995 * its use count is incremented, else a new entry is created with use count
996 * set to 1.
997 *
998 * The extended attribute lists attached to the &rta are automatically
999 * converted to the normalized form.
1000 */
1001 rta *
1002 rta_lookup(rta *o)
1003 {
1004 rta *r;
1005 unsigned int h;
1006
1007 ASSERT(!(o->aflags & RTAF_CACHED));
1008 if (o->eattrs)
1009 {
1010 if (o->eattrs->next) /* Multiple ea_list's, need to merge them */
1011 {
1012 ea_list *ml = alloca(ea_scan(o->eattrs));
1013 ea_merge(o->eattrs, ml);
1014 o->eattrs = ml;
1015 }
1016 ea_sort(o->eattrs);
1017 }
1018
1019 h = rta_hash(o);
1020 for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
1021 if (r->hash_key == h && rta_same(r, o))
1022 return rta_clone(r);
1023
1024 r = rta_copy(o);
1025 r->hash_key = h;
1026 r->aflags = RTAF_CACHED;
1027 rt_lock_source(r->src);
1028 rt_lock_hostentry(r->hostentry);
1029 rta_insert(r);
1030
1031 if (++rta_cache_count > rta_cache_limit)
1032 rta_rehash();
1033
1034 return r;
1035 }
1036
1037 void
1038 rta__free(rta *a)
1039 {
1040 ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
1041 rta_cache_count--;
1042 *a->pprev = a->next;
1043 if (a->next)
1044 a->next->pprev = a->pprev;
1045 a->aflags = 0; /* Poison the entry */
1046 rt_unlock_hostentry(a->hostentry);
1047 rt_unlock_source(a->src);
1048 mpnh_free(a->nexthops);
1049 ea_free(a->eattrs);
1050 sl_free(rta_slab, a);
1051 }
1052
1053 /**
1054 * rta_dump - dump route attributes
1055 * @a: attribute structure to dump
1056 *
1057 * This function takes a &rta and dumps its contents to the debug output.
1058 */
1059 void
1060 rta_dump(rta *a)
1061 {
1062 static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
1063 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
1064 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
1065 "RTS_OSPF_EXT2", "RTS_BGP" };
1066 static char *rtc[] = { "", " BC", " MC", " AC" };
1067 static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
1068
1069 debug("p=%s uc=%d %s %s%s%s h=%04x",
1070 a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope), rtc[a->cast],
1071 rtd[a->dest], a->hash_key);
1072 if (!(a->aflags & RTAF_CACHED))
1073 debug(" !CACHED");
1074 debug(" <-%I", a->from);
1075 if (a->dest == RTD_ROUTER)
1076 debug(" ->%I", a->gw);
1077 if (a->dest == RTD_DEVICE || a->dest == RTD_ROUTER)
1078 debug(" [%s]", a->iface ? a->iface->name : "???" );
1079 if (a->eattrs)
1080 {
1081 debug(" EA: ");
1082 ea_dump(a->eattrs);
1083 }
1084 }
1085
1086 /**
1087 * rta_dump_all - dump attribute cache
1088 *
1089 * This function dumps the whole contents of route attribute cache
1090 * to the debug output.
1091 */
1092 void
1093 rta_dump_all(void)
1094 {
1095 rta *a;
1096 unsigned int h;
1097
1098 debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
1099 for(h=0; h<rta_cache_size; h++)
1100 for(a=rta_hash_table[h]; a; a=a->next)
1101 {
1102 debug("%p ", a);
1103 rta_dump(a);
1104 debug("\n");
1105 }
1106 debug("\n");
1107 }
1108
1109 void
1110 rta_show(struct cli *c, rta *a, ea_list *eal)
1111 {
1112 static char *src_names[] = { "dummy", "static", "inherit", "device", "static-device", "redirect",
1113 "RIP", "OSPF", "OSPF-IA", "OSPF-E1", "OSPF-E2", "BGP", "pipe" };
1114 static char *cast_names[] = { "unicast", "broadcast", "multicast", "anycast" };
1115 int i;
1116
1117 cli_printf(c, -1008, "\tType: %s %s %s", src_names[a->source], cast_names[a->cast], ip_scope_text(a->scope));
1118 if (!eal)
1119 eal = a->eattrs;
1120 for(; eal; eal=eal->next)
1121 for(i=0; i<eal->count; i++)
1122 ea_show(c, &eal->attrs[i]);
1123 }
1124
1125 /**
1126 * rta_init - initialize route attribute cache
1127 *
1128 * This function is called during initialization of the routing
1129 * table module to set up the internals of the attribute cache.
1130 */
1131 void
1132 rta_init(void)
1133 {
1134 rta_pool = rp_new(&root_pool, "Attributes");
1135 rta_slab = sl_new(rta_pool, sizeof(rta));
1136 mpnh_slab = sl_new(rta_pool, sizeof(struct mpnh));
1137 rta_alloc_hash();
1138 rte_src_init();
1139 }
1140
1141 /*
1142 * Documentation for functions declared inline in route.h
1143 */
1144 #if 0
1145
1146 /**
1147 * rta_clone - clone route attributes
1148 * @r: a &rta to be cloned
1149 *
1150 * rta_clone() takes a cached &rta and returns its identical cached
1151 * copy. Currently it works by just returning the original &rta with
1152 * its use count incremented.
1153 */
1154 static inline rta *rta_clone(rta *r)
1155 { DUMMY; }
1156
1157 /**
1158 * rta_free - free route attributes
1159 * @r: a &rta to be freed
1160 *
1161 * If you stop using a &rta (for example when deleting a route which uses
1162 * it), you need to call rta_free() to notify the attribute cache the
1163 * attribute is no longer in use and can be freed if you were the last
1164 * user (which rta_free() tests by inspecting the use count).
1165 */
1166 static inline void rta_free(rta *r)
1167 { DUMMY; }
1168
1169 #endif