]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch4.adb
[Ada] Address potentially uninitialized variables and dead code
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 4 --
59262ebb 6-- --
70482933
RK
7-- B o d y --
8-- --
1d005acc 9-- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
bded454f 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Aggr; use Exp_Aggr;
0669bebe 33with Exp_Atag; use Exp_Atag;
6cce2156 34with Exp_Ch2; use Exp_Ch2;
70482933 35with Exp_Ch3; use Exp_Ch3;
20b5d666 36with Exp_Ch6; use Exp_Ch6;
70482933
RK
37with Exp_Ch7; use Exp_Ch7;
38with Exp_Ch9; use Exp_Ch9;
20b5d666 39with Exp_Disp; use Exp_Disp;
70482933 40with Exp_Fixd; use Exp_Fixd;
437f8c1e 41with Exp_Intr; use Exp_Intr;
70482933
RK
42with Exp_Pakd; use Exp_Pakd;
43with Exp_Tss; use Exp_Tss;
44with Exp_Util; use Exp_Util;
f02b8bb8 45with Freeze; use Freeze;
70482933 46with Inline; use Inline;
26bff3d9 47with Namet; use Namet;
70482933
RK
48with Nlists; use Nlists;
49with Nmake; use Nmake;
50with Opt; use Opt;
25adc5fb 51with Par_SCO; use Par_SCO;
0669bebe
GB
52with Restrict; use Restrict;
53with Rident; use Rident;
70482933
RK
54with Rtsfind; use Rtsfind;
55with Sem; use Sem;
a4100e55 56with Sem_Aux; use Sem_Aux;
70482933 57with Sem_Cat; use Sem_Cat;
5d09245e 58with Sem_Ch3; use Sem_Ch3;
70482933
RK
59with Sem_Ch13; use Sem_Ch13;
60with Sem_Eval; use Sem_Eval;
61with Sem_Res; use Sem_Res;
62with Sem_Type; use Sem_Type;
63with Sem_Util; use Sem_Util;
07fc65c4 64with Sem_Warn; use Sem_Warn;
70482933 65with Sinfo; use Sinfo;
70482933
RK
66with Snames; use Snames;
67with Stand; use Stand;
7665e4bd 68with SCIL_LL; use SCIL_LL;
07fc65c4 69with Targparm; use Targparm;
70482933
RK
70with Tbuild; use Tbuild;
71with Ttypes; use Ttypes;
72with Uintp; use Uintp;
73with Urealp; use Urealp;
74with Validsw; use Validsw;
b3889fff 75with Warnsw; use Warnsw;
70482933
RK
76
77package body Exp_Ch4 is
78
15ce9ca2
AC
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
70482933
RK
82
83 procedure Binary_Op_Validity_Checks (N : Node_Id);
84 pragma Inline (Binary_Op_Validity_Checks);
85 -- Performs validity checks for a binary operator
86
fbf5a39b
AC
87 procedure Build_Boolean_Array_Proc_Call
88 (N : Node_Id;
89 Op1 : Node_Id;
90 Op2 : Node_Id);
303b4d58 91 -- If a boolean array assignment can be done in place, build call to
fbf5a39b
AC
92 -- corresponding library procedure.
93
26bff3d9
JM
94 procedure Displace_Allocator_Pointer (N : Node_Id);
95 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
96 -- Expand_Allocator_Expression. Allocating class-wide interface objects
97 -- this routine displaces the pointer to the allocated object to reference
98 -- the component referencing the corresponding secondary dispatch table.
99
fbf5a39b
AC
100 procedure Expand_Allocator_Expression (N : Node_Id);
101 -- Subsidiary to Expand_N_Allocator, for the case when the expression
102 -- is a qualified expression or an aggregate.
103
70482933
RK
104 procedure Expand_Array_Comparison (N : Node_Id);
105 -- This routine handles expansion of the comparison operators (N_Op_Lt,
106 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
107 -- code for these operators is similar, differing only in the details of
fbf5a39b
AC
108 -- the actual comparison call that is made. Special processing (call a
109 -- run-time routine)
70482933
RK
110
111 function Expand_Array_Equality
112 (Nod : Node_Id;
70482933
RK
113 Lhs : Node_Id;
114 Rhs : Node_Id;
0da2c8ac
AC
115 Bodies : List_Id;
116 Typ : Entity_Id) return Node_Id;
70482933 117 -- Expand an array equality into a call to a function implementing this
685094bf
RD
118 -- equality, and a call to it. Loc is the location for the generated nodes.
119 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
120 -- on which to attach bodies of local functions that are created in the
121 -- process. It is the responsibility of the caller to insert those bodies
122 -- at the right place. Nod provides the Sloc value for the generated code.
123 -- Normally the types used for the generated equality routine are taken
124 -- from Lhs and Rhs. However, in some situations of generated code, the
125 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
126 -- the type to be used for the formal parameters.
70482933
RK
127
128 procedure Expand_Boolean_Operator (N : Node_Id);
685094bf
RD
129 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
130 -- case of array type arguments.
70482933 131
c7a494c9
AC
132 procedure Expand_Nonbinary_Modular_Op (N : Node_Id);
133 -- When generating C code, convert nonbinary modular arithmetic operations
134 -- into code that relies on the front-end expansion of operator Mod. No
135 -- expansion is performed if N is not a nonbinary modular operand.
05dbb83f 136
5875f8d6
AC
137 procedure Expand_Short_Circuit_Operator (N : Node_Id);
138 -- Common expansion processing for short-circuit boolean operators
139
456cbfa5 140 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
141 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
142 -- where we allow comparison of "out of range" values.
456cbfa5 143
70482933
RK
144 function Expand_Composite_Equality
145 (Nod : Node_Id;
146 Typ : Entity_Id;
147 Lhs : Node_Id;
148 Rhs : Node_Id;
2e071734 149 Bodies : List_Id) return Node_Id;
685094bf
RD
150 -- Local recursive function used to expand equality for nested composite
151 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
d26d790d
AC
152 -- to attach bodies of local functions that are created in the process. It
153 -- is the responsibility of the caller to insert those bodies at the right
154 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
155 -- the left and right sides for the comparison, and Typ is the type of the
156 -- objects to compare.
70482933 157
fdac1f80
AC
158 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
159 -- Routine to expand concatenation of a sequence of two or more operands
160 -- (in the list Operands) and replace node Cnode with the result of the
161 -- concatenation. The operands can be of any appropriate type, and can
162 -- include both arrays and singleton elements.
70482933 163
f6194278 164 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
5707e389
AC
165 -- N is an N_In membership test mode, with the overflow check mode set to
166 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
167 -- integer type. This is a case where top level processing is required to
168 -- handle overflow checks in subtrees.
f6194278 169
70482933 170 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
685094bf
RD
171 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
172 -- fixed. We do not have such a type at runtime, so the purpose of this
173 -- routine is to find the real type by looking up the tree. We also
174 -- determine if the operation must be rounded.
70482933 175
5d09245e
AC
176 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
177 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
178 -- discriminants if it has a constrained nominal type, unless the object
179 -- is a component of an enclosing Unchecked_Union object that is subject
180 -- to a per-object constraint and the enclosing object lacks inferable
181 -- discriminants.
182 --
183 -- An expression of an Unchecked_Union type has inferable discriminants
184 -- if it is either a name of an object with inferable discriminants or a
185 -- qualified expression whose subtype mark denotes a constrained subtype.
186
70482933 187 procedure Insert_Dereference_Action (N : Node_Id);
e6f69614
AC
188 -- N is an expression whose type is an access. When the type of the
189 -- associated storage pool is derived from Checked_Pool, generate a
190 -- call to the 'Dereference' primitive operation.
70482933
RK
191
192 function Make_Array_Comparison_Op
2e071734
AC
193 (Typ : Entity_Id;
194 Nod : Node_Id) return Node_Id;
685094bf
RD
195 -- Comparisons between arrays are expanded in line. This function produces
196 -- the body of the implementation of (a > b), where a and b are one-
197 -- dimensional arrays of some discrete type. The original node is then
198 -- expanded into the appropriate call to this function. Nod provides the
199 -- Sloc value for the generated code.
70482933
RK
200
201 function Make_Boolean_Array_Op
2e071734
AC
202 (Typ : Entity_Id;
203 N : Node_Id) return Node_Id;
685094bf
RD
204 -- Boolean operations on boolean arrays are expanded in line. This function
205 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
206 -- b). It is used only the normal case and not the packed case. The type
207 -- involved, Typ, is the Boolean array type, and the logical operations in
208 -- the body are simple boolean operations. Note that Typ is always a
209 -- constrained type (the caller has ensured this by using
210 -- Convert_To_Actual_Subtype if necessary).
70482933 211
b6b5cca8 212 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
a7f1b24f
RD
213 -- For signed arithmetic operations when the current overflow mode is
214 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
215 -- as the first thing we do. We then return. We count on the recursive
216 -- apparatus for overflow checks to call us back with an equivalent
217 -- operation that is in CHECKED mode, avoiding a recursive entry into this
218 -- routine, and that is when we will proceed with the expansion of the
219 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
220 -- these optimizations without first making this check, since there may be
221 -- operands further down the tree that are relying on the recursive calls
222 -- triggered by the top level nodes to properly process overflow checking
223 -- and remaining expansion on these nodes. Note that this call back may be
224 -- skipped if the operation is done in Bignum mode but that's fine, since
225 -- the Bignum call takes care of everything.
b6b5cca8 226
0580d807
AC
227 procedure Optimize_Length_Comparison (N : Node_Id);
228 -- Given an expression, if it is of the form X'Length op N (or the other
229 -- way round), where N is known at compile time to be 0 or 1, and X is a
230 -- simple entity, and op is a comparison operator, optimizes it into a
231 -- comparison of First and Last.
232
0da343bc
AC
233 procedure Process_If_Case_Statements (N : Node_Id; Stmts : List_Id);
234 -- Inspect and process statement list Stmt of if or case expression N for
937e9676
AC
235 -- transient objects. If such objects are found, the routine generates code
236 -- to clean them up when the context of the expression is evaluated.
237
238 procedure Process_Transient_In_Expression
239 (Obj_Decl : Node_Id;
240 Expr : Node_Id;
241 Stmts : List_Id);
0da343bc
AC
242 -- Subsidiary routine to the expansion of expression_with_actions, if and
243 -- case expressions. Generate all necessary code to finalize a transient
937e9676
AC
244 -- object when the enclosing context is elaborated or evaluated. Obj_Decl
245 -- denotes the declaration of the transient object, which is usually the
246 -- result of a controlled function call. Expr denotes the expression with
247 -- actions, if expression, or case expression node. Stmts denotes the
248 -- statement list which contains Decl, either at the top level or within a
249 -- nested construct.
b2c28399 250
70482933 251 procedure Rewrite_Comparison (N : Node_Id);
20b5d666 252 -- If N is the node for a comparison whose outcome can be determined at
d26dc4b5
AC
253 -- compile time, then the node N can be rewritten with True or False. If
254 -- the outcome cannot be determined at compile time, the call has no
255 -- effect. If N is a type conversion, then this processing is applied to
256 -- its expression. If N is neither comparison nor a type conversion, the
257 -- call has no effect.
70482933 258
82878151
AC
259 procedure Tagged_Membership
260 (N : Node_Id;
261 SCIL_Node : out Node_Id;
262 Result : out Node_Id);
70482933
RK
263 -- Construct the expression corresponding to the tagged membership test.
264 -- Deals with a second operand being (or not) a class-wide type.
265
fbf5a39b 266 function Safe_In_Place_Array_Op
2e071734
AC
267 (Lhs : Node_Id;
268 Op1 : Node_Id;
269 Op2 : Node_Id) return Boolean;
685094bf
RD
270 -- In the context of an assignment, where the right-hand side is a boolean
271 -- operation on arrays, check whether operation can be performed in place.
fbf5a39b 272
70482933
RK
273 procedure Unary_Op_Validity_Checks (N : Node_Id);
274 pragma Inline (Unary_Op_Validity_Checks);
275 -- Performs validity checks for a unary operator
276
277 -------------------------------
278 -- Binary_Op_Validity_Checks --
279 -------------------------------
280
281 procedure Binary_Op_Validity_Checks (N : Node_Id) is
282 begin
283 if Validity_Checks_On and Validity_Check_Operands then
284 Ensure_Valid (Left_Opnd (N));
285 Ensure_Valid (Right_Opnd (N));
286 end if;
287 end Binary_Op_Validity_Checks;
288
fbf5a39b
AC
289 ------------------------------------
290 -- Build_Boolean_Array_Proc_Call --
291 ------------------------------------
292
293 procedure Build_Boolean_Array_Proc_Call
294 (N : Node_Id;
295 Op1 : Node_Id;
296 Op2 : Node_Id)
297 is
298 Loc : constant Source_Ptr := Sloc (N);
299 Kind : constant Node_Kind := Nkind (Expression (N));
300 Target : constant Node_Id :=
301 Make_Attribute_Reference (Loc,
302 Prefix => Name (N),
303 Attribute_Name => Name_Address);
304
bed8af19 305 Arg1 : Node_Id := Op1;
fbf5a39b
AC
306 Arg2 : Node_Id := Op2;
307 Call_Node : Node_Id;
308 Proc_Name : Entity_Id;
309
310 begin
311 if Kind = N_Op_Not then
312 if Nkind (Op1) in N_Binary_Op then
313
5e1c00fa 314 -- Use negated version of the binary operators
fbf5a39b
AC
315
316 if Nkind (Op1) = N_Op_And then
317 Proc_Name := RTE (RE_Vector_Nand);
318
319 elsif Nkind (Op1) = N_Op_Or then
320 Proc_Name := RTE (RE_Vector_Nor);
321
322 else pragma Assert (Nkind (Op1) = N_Op_Xor);
323 Proc_Name := RTE (RE_Vector_Xor);
324 end if;
325
326 Call_Node :=
327 Make_Procedure_Call_Statement (Loc,
328 Name => New_Occurrence_Of (Proc_Name, Loc),
329
330 Parameter_Associations => New_List (
331 Target,
332 Make_Attribute_Reference (Loc,
333 Prefix => Left_Opnd (Op1),
334 Attribute_Name => Name_Address),
335
336 Make_Attribute_Reference (Loc,
337 Prefix => Right_Opnd (Op1),
338 Attribute_Name => Name_Address),
339
340 Make_Attribute_Reference (Loc,
341 Prefix => Left_Opnd (Op1),
342 Attribute_Name => Name_Length)));
343
344 else
345 Proc_Name := RTE (RE_Vector_Not);
346
347 Call_Node :=
348 Make_Procedure_Call_Statement (Loc,
349 Name => New_Occurrence_Of (Proc_Name, Loc),
350 Parameter_Associations => New_List (
351 Target,
352
353 Make_Attribute_Reference (Loc,
354 Prefix => Op1,
355 Attribute_Name => Name_Address),
356
357 Make_Attribute_Reference (Loc,
358 Prefix => Op1,
359 Attribute_Name => Name_Length)));
360 end if;
361
362 else
363 -- We use the following equivalences:
364
365 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
366 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
367 -- (not X) xor (not Y) = X xor Y
368 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
369
370 if Nkind (Op1) = N_Op_Not then
bed8af19
AC
371 Arg1 := Right_Opnd (Op1);
372 Arg2 := Right_Opnd (Op2);
533369aa 373
fbf5a39b
AC
374 if Kind = N_Op_And then
375 Proc_Name := RTE (RE_Vector_Nor);
fbf5a39b
AC
376 elsif Kind = N_Op_Or then
377 Proc_Name := RTE (RE_Vector_Nand);
fbf5a39b
AC
378 else
379 Proc_Name := RTE (RE_Vector_Xor);
380 end if;
381
382 else
383 if Kind = N_Op_And then
384 Proc_Name := RTE (RE_Vector_And);
fbf5a39b
AC
385 elsif Kind = N_Op_Or then
386 Proc_Name := RTE (RE_Vector_Or);
fbf5a39b
AC
387 elsif Nkind (Op2) = N_Op_Not then
388 Proc_Name := RTE (RE_Vector_Nxor);
389 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
390 else
391 Proc_Name := RTE (RE_Vector_Xor);
392 end if;
393 end if;
394
395 Call_Node :=
396 Make_Procedure_Call_Statement (Loc,
397 Name => New_Occurrence_Of (Proc_Name, Loc),
398 Parameter_Associations => New_List (
399 Target,
955871d3
AC
400 Make_Attribute_Reference (Loc,
401 Prefix => Arg1,
402 Attribute_Name => Name_Address),
403 Make_Attribute_Reference (Loc,
404 Prefix => Arg2,
405 Attribute_Name => Name_Address),
406 Make_Attribute_Reference (Loc,
a8ef12e5 407 Prefix => Arg1,
955871d3 408 Attribute_Name => Name_Length)));
fbf5a39b
AC
409 end if;
410
411 Rewrite (N, Call_Node);
412 Analyze (N);
413
414 exception
415 when RE_Not_Available =>
416 return;
417 end Build_Boolean_Array_Proc_Call;
418
eedc5882
HK
419 -----------------------
420 -- Build_Eq_Call --
421 -----------------------
422
423 function Build_Eq_Call
424 (Typ : Entity_Id;
425 Loc : Source_Ptr;
426 Lhs : Node_Id;
427 Rhs : Node_Id) return Node_Id
428 is
429 Prim : Node_Id;
430 Prim_E : Elmt_Id;
431
432 begin
433 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
434 while Present (Prim_E) loop
435 Prim := Node (Prim_E);
436
437 -- Locate primitive equality with the right signature
438
439 if Chars (Prim) = Name_Op_Eq
440 and then Etype (First_Formal (Prim)) =
441 Etype (Next_Formal (First_Formal (Prim)))
442 and then Etype (Prim) = Standard_Boolean
443 then
444 if Is_Abstract_Subprogram (Prim) then
445 return
446 Make_Raise_Program_Error (Loc,
447 Reason => PE_Explicit_Raise);
448
449 else
450 return
451 Make_Function_Call (Loc,
452 Name => New_Occurrence_Of (Prim, Loc),
453 Parameter_Associations => New_List (Lhs, Rhs));
454 end if;
455 end if;
456
457 Next_Elmt (Prim_E);
458 end loop;
459
460 -- If not found, predefined operation will be used
461
462 return Empty;
463 end Build_Eq_Call;
464
26bff3d9
JM
465 --------------------------------
466 -- Displace_Allocator_Pointer --
467 --------------------------------
468
469 procedure Displace_Allocator_Pointer (N : Node_Id) is
470 Loc : constant Source_Ptr := Sloc (N);
471 Orig_Node : constant Node_Id := Original_Node (N);
472 Dtyp : Entity_Id;
473 Etyp : Entity_Id;
474 PtrT : Entity_Id;
475
476 begin
303b4d58
AC
477 -- Do nothing in case of VM targets: the virtual machine will handle
478 -- interfaces directly.
479
1f110335 480 if not Tagged_Type_Expansion then
303b4d58
AC
481 return;
482 end if;
483
26bff3d9
JM
484 pragma Assert (Nkind (N) = N_Identifier
485 and then Nkind (Orig_Node) = N_Allocator);
486
487 PtrT := Etype (Orig_Node);
d6a24cdb 488 Dtyp := Available_View (Designated_Type (PtrT));
26bff3d9
JM
489 Etyp := Etype (Expression (Orig_Node));
490
533369aa
AC
491 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
492
26bff3d9
JM
493 -- If the type of the allocator expression is not an interface type
494 -- we can generate code to reference the record component containing
495 -- the pointer to the secondary dispatch table.
496
497 if not Is_Interface (Etyp) then
498 declare
499 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
500
501 begin
502 -- 1) Get access to the allocated object
503
504 Rewrite (N,
5972791c 505 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
26bff3d9
JM
506 Set_Etype (N, Etyp);
507 Set_Analyzed (N);
508
509 -- 2) Add the conversion to displace the pointer to reference
510 -- the secondary dispatch table.
511
512 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
513 Analyze_And_Resolve (N, Dtyp);
514
515 -- 3) The 'access to the secondary dispatch table will be used
516 -- as the value returned by the allocator.
517
518 Rewrite (N,
519 Make_Attribute_Reference (Loc,
520 Prefix => Relocate_Node (N),
521 Attribute_Name => Name_Access));
522 Set_Etype (N, Saved_Typ);
523 Set_Analyzed (N);
524 end;
525
526 -- If the type of the allocator expression is an interface type we
527 -- generate a run-time call to displace "this" to reference the
528 -- component containing the pointer to the secondary dispatch table
529 -- or else raise Constraint_Error if the actual object does not
533369aa 530 -- implement the target interface. This case corresponds to the
26bff3d9
JM
531 -- following example:
532
8fc789c8 533 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
26bff3d9
JM
534 -- begin
535 -- return new Iface_2'Class'(Obj);
536 -- end Op;
537
538 else
539 Rewrite (N,
540 Unchecked_Convert_To (PtrT,
541 Make_Function_Call (Loc,
e4494292 542 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
26bff3d9
JM
543 Parameter_Associations => New_List (
544 Unchecked_Convert_To (RTE (RE_Address),
545 Relocate_Node (N)),
546
547 New_Occurrence_Of
548 (Elists.Node
549 (First_Elmt
550 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
551 Loc)))));
552 Analyze_And_Resolve (N, PtrT);
553 end if;
554 end if;
555 end Displace_Allocator_Pointer;
556
fbf5a39b
AC
557 ---------------------------------
558 -- Expand_Allocator_Expression --
559 ---------------------------------
560
561 procedure Expand_Allocator_Expression (N : Node_Id) is
f02b8bb8
RD
562 Loc : constant Source_Ptr := Sloc (N);
563 Exp : constant Node_Id := Expression (Expression (N));
f02b8bb8
RD
564 PtrT : constant Entity_Id := Etype (N);
565 DesigT : constant Entity_Id := Designated_Type (PtrT);
26bff3d9
JM
566
567 procedure Apply_Accessibility_Check
568 (Ref : Node_Id;
569 Built_In_Place : Boolean := False);
570 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
685094bf
RD
571 -- type, generate an accessibility check to verify that the level of the
572 -- type of the created object is not deeper than the level of the access
50878404 573 -- type. If the type of the qualified expression is class-wide, then
685094bf
RD
574 -- always generate the check (except in the case where it is known to be
575 -- unnecessary, see comment below). Otherwise, only generate the check
576 -- if the level of the qualified expression type is statically deeper
577 -- than the access type.
578 --
579 -- Although the static accessibility will generally have been performed
580 -- as a legality check, it won't have been done in cases where the
581 -- allocator appears in generic body, so a run-time check is needed in
582 -- general. One special case is when the access type is declared in the
583 -- same scope as the class-wide allocator, in which case the check can
584 -- never fail, so it need not be generated.
585 --
586 -- As an open issue, there seem to be cases where the static level
587 -- associated with the class-wide object's underlying type is not
588 -- sufficient to perform the proper accessibility check, such as for
589 -- allocators in nested subprograms or accept statements initialized by
590 -- class-wide formals when the actual originates outside at a deeper
591 -- static level. The nested subprogram case might require passing
592 -- accessibility levels along with class-wide parameters, and the task
593 -- case seems to be an actual gap in the language rules that needs to
594 -- be fixed by the ARG. ???
26bff3d9
JM
595
596 -------------------------------
597 -- Apply_Accessibility_Check --
598 -------------------------------
599
600 procedure Apply_Accessibility_Check
601 (Ref : Node_Id;
602 Built_In_Place : Boolean := False)
603 is
a98838ff
HK
604 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
605 Cond : Node_Id;
606 Fin_Call : Node_Id;
607 Free_Stmt : Node_Id;
608 Obj_Ref : Node_Id;
609 Stmts : List_Id;
26bff3d9
JM
610
611 begin
0791fbe9 612 if Ada_Version >= Ada_2005
26bff3d9 613 and then Is_Class_Wide_Type (DesigT)
535a8637 614 and then Tagged_Type_Expansion
3217f71e 615 and then not Scope_Suppress.Suppress (Accessibility_Check)
26bff3d9
JM
616 and then
617 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
618 or else
619 (Is_Class_Wide_Type (Etype (Exp))
620 and then Scope (PtrT) /= Current_Scope))
621 then
e761d11c 622 -- If the allocator was built in place, Ref is already a reference
26bff3d9 623 -- to the access object initialized to the result of the allocator
e761d11c
AC
624 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
625 -- Remove_Side_Effects for cases where the build-in-place call may
626 -- still be the prefix of the reference (to avoid generating
627 -- duplicate calls). Otherwise, it is the entity associated with
628 -- the object containing the address of the allocated object.
26bff3d9
JM
629
630 if Built_In_Place then
e761d11c 631 Remove_Side_Effects (Ref);
a98838ff 632 Obj_Ref := New_Copy_Tree (Ref);
26bff3d9 633 else
e4494292 634 Obj_Ref := New_Occurrence_Of (Ref, Loc);
50878404
AC
635 end if;
636
b6c8e5be
AC
637 -- For access to interface types we must generate code to displace
638 -- the pointer to the base of the object since the subsequent code
639 -- references components located in the TSD of the object (which
640 -- is associated with the primary dispatch table --see a-tags.ads)
641 -- and also generates code invoking Free, which requires also a
642 -- reference to the base of the unallocated object.
643
cc6f5d75 644 if Is_Interface (DesigT) and then Tagged_Type_Expansion then
b6c8e5be
AC
645 Obj_Ref :=
646 Unchecked_Convert_To (Etype (Obj_Ref),
647 Make_Function_Call (Loc,
662c2ad4
RD
648 Name =>
649 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
b6c8e5be
AC
650 Parameter_Associations => New_List (
651 Unchecked_Convert_To (RTE (RE_Address),
652 New_Copy_Tree (Obj_Ref)))));
653 end if;
654
50878404
AC
655 -- Step 1: Create the object clean up code
656
657 Stmts := New_List;
658
a98838ff
HK
659 -- Deallocate the object if the accessibility check fails. This
660 -- is done only on targets or profiles that support deallocation.
661
662 -- Free (Obj_Ref);
663
664 if RTE_Available (RE_Free) then
665 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
666 Set_Storage_Pool (Free_Stmt, Pool_Id);
667
668 Append_To (Stmts, Free_Stmt);
669
670 -- The target or profile cannot deallocate objects
671
672 else
673 Free_Stmt := Empty;
674 end if;
675
676 -- Finalize the object if applicable. Generate:
a530b8bb
AC
677
678 -- [Deep_]Finalize (Obj_Ref.all);
679
7cc7f3aa
PMR
680 if Needs_Finalization (DesigT)
681 and then not No_Heap_Finalization (PtrT)
682 then
a98838ff 683 Fin_Call :=
cc6f5d75
AC
684 Make_Final_Call
685 (Obj_Ref =>
686 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
687 Typ => DesigT);
a98838ff 688
2168d7cc
AC
689 -- Guard against a missing [Deep_]Finalize when the designated
690 -- type was not properly frozen.
691
692 if No (Fin_Call) then
693 Fin_Call := Make_Null_Statement (Loc);
694 end if;
695
a98838ff
HK
696 -- When the target or profile supports deallocation, wrap the
697 -- finalization call in a block to ensure proper deallocation
698 -- even if finalization fails. Generate:
699
700 -- begin
701 -- <Fin_Call>
702 -- exception
703 -- when others =>
704 -- <Free_Stmt>
705 -- raise;
706 -- end;
707
708 if Present (Free_Stmt) then
709 Fin_Call :=
710 Make_Block_Statement (Loc,
711 Handled_Statement_Sequence =>
712 Make_Handled_Sequence_Of_Statements (Loc,
713 Statements => New_List (Fin_Call),
714
715 Exception_Handlers => New_List (
716 Make_Exception_Handler (Loc,
717 Exception_Choices => New_List (
718 Make_Others_Choice (Loc)),
a98838ff
HK
719 Statements => New_List (
720 New_Copy_Tree (Free_Stmt),
721 Make_Raise_Statement (Loc))))));
722 end if;
723
724 Prepend_To (Stmts, Fin_Call);
f46faa08
AC
725 end if;
726
50878404
AC
727 -- Signal the accessibility failure through a Program_Error
728
729 Append_To (Stmts,
730 Make_Raise_Program_Error (Loc,
e4494292 731 Condition => New_Occurrence_Of (Standard_True, Loc),
50878404
AC
732 Reason => PE_Accessibility_Check_Failed));
733
734 -- Step 2: Create the accessibility comparison
735
736 -- Generate:
737 -- Ref'Tag
738
b6c8e5be
AC
739 Obj_Ref :=
740 Make_Attribute_Reference (Loc,
741 Prefix => Obj_Ref,
742 Attribute_Name => Name_Tag);
f46faa08 743
50878404
AC
744 -- For tagged types, determine the accessibility level by looking
745 -- at the type specific data of the dispatch table. Generate:
746
747 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
748
f46faa08 749 if Tagged_Type_Expansion then
50878404 750 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
f46faa08 751
50878404
AC
752 -- Use a runtime call to determine the accessibility level when
753 -- compiling on virtual machine targets. Generate:
f46faa08 754
50878404 755 -- Get_Access_Level (Ref'Tag)
f46faa08
AC
756
757 else
50878404
AC
758 Cond :=
759 Make_Function_Call (Loc,
760 Name =>
e4494292 761 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
50878404 762 Parameter_Associations => New_List (Obj_Ref));
26bff3d9
JM
763 end if;
764
50878404
AC
765 Cond :=
766 Make_Op_Gt (Loc,
767 Left_Opnd => Cond,
768 Right_Opnd =>
769 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
770
771 -- Due to the complexity and side effects of the check, utilize an
772 -- if statement instead of the regular Program_Error circuitry.
773
26bff3d9 774 Insert_Action (N,
8b1011c0 775 Make_Implicit_If_Statement (N,
50878404
AC
776 Condition => Cond,
777 Then_Statements => Stmts));
26bff3d9
JM
778 end if;
779 end Apply_Accessibility_Check;
780
781 -- Local variables
782
df3e68b1
HK
783 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
784 Indic : constant Node_Id := Subtype_Mark (Expression (N));
785 T : constant Entity_Id := Entity (Indic);
2168d7cc 786 Adj_Call : Node_Id;
df3e68b1
HK
787 Node : Node_Id;
788 Tag_Assign : Node_Id;
789 Temp : Entity_Id;
790 Temp_Decl : Node_Id;
fbf5a39b 791
d26dc4b5
AC
792 TagT : Entity_Id := Empty;
793 -- Type used as source for tag assignment
794
795 TagR : Node_Id := Empty;
796 -- Target reference for tag assignment
797
26bff3d9
JM
798 -- Start of processing for Expand_Allocator_Expression
799
fbf5a39b 800 begin
3bfb3c03
JM
801 -- Handle call to C++ constructor
802
803 if Is_CPP_Constructor_Call (Exp) then
804 Make_CPP_Constructor_Call_In_Allocator
805 (Allocator => N,
806 Function_Call => Exp);
807 return;
808 end if;
809
885c4871 810 -- In the case of an Ada 2012 allocator whose initial value comes from a
63585f75
SB
811 -- function call, pass "the accessibility level determined by the point
812 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
813 -- Expand_Call but it couldn't be done there (because the Etype of the
814 -- allocator wasn't set then) so we generate the parameter here. See
815 -- the Boolean variable Defer in (a block within) Expand_Call.
816
817 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
818 declare
819 Subp : Entity_Id;
820
821 begin
822 if Nkind (Name (Exp)) = N_Explicit_Dereference then
823 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
824 else
825 Subp := Entity (Name (Exp));
826 end if;
827
57a3fca9
AC
828 Subp := Ultimate_Alias (Subp);
829
63585f75
SB
830 if Present (Extra_Accessibility_Of_Result (Subp)) then
831 Add_Extra_Actual_To_Call
832 (Subprogram_Call => Exp,
833 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
834 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
835 end if;
836 end;
837 end if;
838
f6194278 839 -- Case of tagged type or type requiring finalization
63585f75
SB
840
841 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
fadcf313 842
685094bf
RD
843 -- Ada 2005 (AI-318-02): If the initialization expression is a call
844 -- to a build-in-place function, then access to the allocated object
d4dfb005 845 -- must be passed to the function.
20b5d666 846
d4dfb005 847 if Is_Build_In_Place_Function_Call (Exp) then
20b5d666 848 Make_Build_In_Place_Call_In_Allocator (N, Exp);
26bff3d9
JM
849 Apply_Accessibility_Check (N, Built_In_Place => True);
850 return;
4ac62786
AC
851
852 -- Ada 2005 (AI-318-02): Specialization of the previous case for
853 -- expressions containing a build-in-place function call whose
854 -- returned object covers interface types, and Expr has calls to
855 -- Ada.Tags.Displace to displace the pointer to the returned build-
856 -- in-place object to reference the secondary dispatch table of a
857 -- covered interface type.
858
d4dfb005 859 elsif Present (Unqual_BIP_Iface_Function_Call (Exp)) then
4ac62786
AC
860 Make_Build_In_Place_Iface_Call_In_Allocator (N, Exp);
861 Apply_Accessibility_Check (N, Built_In_Place => True);
862 return;
20b5d666
JM
863 end if;
864
ca5af305
AC
865 -- Actions inserted before:
866 -- Temp : constant ptr_T := new T'(Expression);
867 -- Temp._tag = T'tag; -- when not class-wide
868 -- [Deep_]Adjust (Temp.all);
fbf5a39b 869
ca5af305 870 -- We analyze by hand the new internal allocator to avoid any
6b6041ec 871 -- recursion and inappropriate call to Initialize.
7324bf49 872
20b5d666
JM
873 -- We don't want to remove side effects when the expression must be
874 -- built in place. In the case of a build-in-place function call,
875 -- that could lead to a duplication of the call, which was already
876 -- substituted for the allocator.
877
26bff3d9 878 if not Aggr_In_Place then
fbf5a39b
AC
879 Remove_Side_Effects (Exp);
880 end if;
881
e86a3a7e 882 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
883
884 -- For a class wide allocation generate the following code:
885
886 -- type Equiv_Record is record ... end record;
887 -- implicit subtype CW is <Class_Wide_Subytpe>;
888 -- temp : PtrT := new CW'(CW!(expr));
889
890 if Is_Class_Wide_Type (T) then
891 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
892
26bff3d9
JM
893 -- Ada 2005 (AI-251): If the expression is a class-wide interface
894 -- object we generate code to move up "this" to reference the
895 -- base of the object before allocating the new object.
896
897 -- Note that Exp'Address is recursively expanded into a call
898 -- to Base_Address (Exp.Tag)
899
900 if Is_Class_Wide_Type (Etype (Exp))
901 and then Is_Interface (Etype (Exp))
1f110335 902 and then Tagged_Type_Expansion
26bff3d9
JM
903 then
904 Set_Expression
905 (Expression (N),
906 Unchecked_Convert_To (Entity (Indic),
907 Make_Explicit_Dereference (Loc,
908 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
909 Make_Attribute_Reference (Loc,
910 Prefix => Exp,
911 Attribute_Name => Name_Address)))));
26bff3d9
JM
912 else
913 Set_Expression
914 (Expression (N),
915 Unchecked_Convert_To (Entity (Indic), Exp));
916 end if;
fbf5a39b
AC
917
918 Analyze_And_Resolve (Expression (N), Entity (Indic));
919 end if;
920
df3e68b1 921 -- Processing for allocators returning non-interface types
fbf5a39b 922
26bff3d9
JM
923 if not Is_Interface (Directly_Designated_Type (PtrT)) then
924 if Aggr_In_Place then
df3e68b1 925 Temp_Decl :=
26bff3d9
JM
926 Make_Object_Declaration (Loc,
927 Defining_Identifier => Temp,
e4494292 928 Object_Definition => New_Occurrence_Of (PtrT, Loc),
26bff3d9
JM
929 Expression =>
930 Make_Allocator (Loc,
df3e68b1 931 Expression =>
e4494292 932 New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 933
fad0600d
AC
934 -- Copy the Comes_From_Source flag for the allocator we just
935 -- built, since logically this allocator is a replacement of
936 -- the original allocator node. This is for proper handling of
937 -- restriction No_Implicit_Heap_Allocations.
938
26bff3d9 939 Set_Comes_From_Source
df3e68b1 940 (Expression (Temp_Decl), Comes_From_Source (N));
fbf5a39b 941
df3e68b1
HK
942 Set_No_Initialization (Expression (Temp_Decl));
943 Insert_Action (N, Temp_Decl);
fbf5a39b 944
ca5af305 945 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 946 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fad0600d 947
26bff3d9
JM
948 else
949 Node := Relocate_Node (N);
950 Set_Analyzed (Node);
df3e68b1
HK
951
952 Temp_Decl :=
26bff3d9
JM
953 Make_Object_Declaration (Loc,
954 Defining_Identifier => Temp,
955 Constant_Present => True,
e4494292 956 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
957 Expression => Node);
958
959 Insert_Action (N, Temp_Decl);
ca5af305 960 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
fbf5a39b
AC
961 end if;
962
26bff3d9
JM
963 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
964 -- interface type. In this case we use the type of the qualified
965 -- expression to allocate the object.
966
fbf5a39b 967 else
26bff3d9 968 declare
191fcb3a 969 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
26bff3d9 970 New_Decl : Node_Id;
fbf5a39b 971
26bff3d9
JM
972 begin
973 New_Decl :=
974 Make_Full_Type_Declaration (Loc,
975 Defining_Identifier => Def_Id,
cc6f5d75 976 Type_Definition =>
26bff3d9
JM
977 Make_Access_To_Object_Definition (Loc,
978 All_Present => True,
979 Null_Exclusion_Present => False,
0929eaeb
AC
980 Constant_Present =>
981 Is_Access_Constant (Etype (N)),
26bff3d9 982 Subtype_Indication =>
e4494292 983 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9
JM
984
985 Insert_Action (N, New_Decl);
986
df3e68b1
HK
987 -- Inherit the allocation-related attributes from the original
988 -- access type.
26bff3d9 989
24d4b3d5
AC
990 Set_Finalization_Master
991 (Def_Id, Finalization_Master (PtrT));
df3e68b1 992
24d4b3d5
AC
993 Set_Associated_Storage_Pool
994 (Def_Id, Associated_Storage_Pool (PtrT));
758c442c 995
26bff3d9
JM
996 -- Declare the object using the previous type declaration
997
998 if Aggr_In_Place then
df3e68b1 999 Temp_Decl :=
26bff3d9
JM
1000 Make_Object_Declaration (Loc,
1001 Defining_Identifier => Temp,
e4494292 1002 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
26bff3d9
JM
1003 Expression =>
1004 Make_Allocator (Loc,
e4494292 1005 New_Occurrence_Of (Etype (Exp), Loc)));
26bff3d9 1006
fad0600d
AC
1007 -- Copy the Comes_From_Source flag for the allocator we just
1008 -- built, since logically this allocator is a replacement of
1009 -- the original allocator node. This is for proper handling
1010 -- of restriction No_Implicit_Heap_Allocations.
1011
26bff3d9 1012 Set_Comes_From_Source
df3e68b1 1013 (Expression (Temp_Decl), Comes_From_Source (N));
26bff3d9 1014
df3e68b1
HK
1015 Set_No_Initialization (Expression (Temp_Decl));
1016 Insert_Action (N, Temp_Decl);
26bff3d9 1017
ca5af305 1018 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1019 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
26bff3d9 1020
26bff3d9
JM
1021 else
1022 Node := Relocate_Node (N);
1023 Set_Analyzed (Node);
df3e68b1
HK
1024
1025 Temp_Decl :=
26bff3d9
JM
1026 Make_Object_Declaration (Loc,
1027 Defining_Identifier => Temp,
1028 Constant_Present => True,
e4494292 1029 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
df3e68b1
HK
1030 Expression => Node);
1031
1032 Insert_Action (N, Temp_Decl);
ca5af305 1033 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
26bff3d9
JM
1034 end if;
1035
1036 -- Generate an additional object containing the address of the
1037 -- returned object. The type of this second object declaration
685094bf
RD
1038 -- is the correct type required for the common processing that
1039 -- is still performed by this subprogram. The displacement of
1040 -- this pointer to reference the component associated with the
1041 -- interface type will be done at the end of common processing.
26bff3d9
JM
1042
1043 New_Decl :=
1044 Make_Object_Declaration (Loc,
243cae0a 1045 Defining_Identifier => Make_Temporary (Loc, 'P'),
e4494292 1046 Object_Definition => New_Occurrence_Of (PtrT, Loc),
243cae0a 1047 Expression =>
df3e68b1 1048 Unchecked_Convert_To (PtrT,
e4494292 1049 New_Occurrence_Of (Temp, Loc)));
26bff3d9
JM
1050
1051 Insert_Action (N, New_Decl);
1052
df3e68b1
HK
1053 Temp_Decl := New_Decl;
1054 Temp := Defining_Identifier (New_Decl);
26bff3d9 1055 end;
758c442c
GD
1056 end if;
1057
26bff3d9
JM
1058 -- Generate the tag assignment
1059
535a8637 1060 -- Suppress the tag assignment for VM targets because VM tags are
26bff3d9
JM
1061 -- represented implicitly in objects.
1062
1f110335 1063 if not Tagged_Type_Expansion then
26bff3d9 1064 null;
fbf5a39b 1065
26bff3d9
JM
1066 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1067 -- interface objects because in this case the tag does not change.
d26dc4b5 1068
26bff3d9
JM
1069 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1070 pragma Assert (Is_Class_Wide_Type
1071 (Directly_Designated_Type (Etype (N))));
d26dc4b5
AC
1072 null;
1073
1074 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1075 TagT := T;
e4494292 1076 TagR := New_Occurrence_Of (Temp, Loc);
d26dc4b5
AC
1077
1078 elsif Is_Private_Type (T)
1079 and then Is_Tagged_Type (Underlying_Type (T))
fbf5a39b 1080 then
d26dc4b5 1081 TagT := Underlying_Type (T);
dfd99a80
TQ
1082 TagR :=
1083 Unchecked_Convert_To (Underlying_Type (T),
1084 Make_Explicit_Dereference (Loc,
e4494292 1085 Prefix => New_Occurrence_Of (Temp, Loc)));
d26dc4b5
AC
1086 end if;
1087
1088 if Present (TagT) then
38171f43
AC
1089 declare
1090 Full_T : constant Entity_Id := Underlying_Type (TagT);
e4494292 1091
38171f43
AC
1092 begin
1093 Tag_Assign :=
1094 Make_Assignment_Statement (Loc,
cc6f5d75 1095 Name =>
38171f43 1096 Make_Selected_Component (Loc,
cc6f5d75 1097 Prefix => TagR,
38171f43 1098 Selector_Name =>
e4494292
RD
1099 New_Occurrence_Of
1100 (First_Tag_Component (Full_T), Loc)),
1101
38171f43
AC
1102 Expression =>
1103 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 1104 New_Occurrence_Of
38171f43
AC
1105 (Elists.Node
1106 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1107 end;
fbf5a39b
AC
1108
1109 -- The previous assignment has to be done in any case
1110
1111 Set_Assignment_OK (Name (Tag_Assign));
1112 Insert_Action (N, Tag_Assign);
fbf5a39b
AC
1113 end if;
1114
18431dc5
AC
1115 -- Generate an Adjust call if the object will be moved. In Ada 2005,
1116 -- the object may be inherently limited, in which case there is no
1117 -- Adjust procedure, and the object is built in place. In Ada 95, the
1118 -- object can be limited but not inherently limited if this allocator
1119 -- came from a return statement (we're allocating the result on the
1120 -- secondary stack). In that case, the object will be moved, so we do
3a248f7c
BD
1121 -- want to Adjust. However, if it's a nonlimited build-in-place
1122 -- function call, Adjust is not wanted.
18431dc5
AC
1123
1124 if Needs_Finalization (DesigT)
1125 and then Needs_Finalization (T)
1126 and then not Aggr_In_Place
1127 and then not Is_Limited_View (T)
3a248f7c
BD
1128 and then not Alloc_For_BIP_Return (N)
1129 and then not Is_Build_In_Place_Function_Call (Expression (N))
18431dc5
AC
1130 then
1131 -- An unchecked conversion is needed in the classwide case because
1132 -- the designated type can be an ancestor of the subtype mark of
1133 -- the allocator.
df3e68b1 1134
2168d7cc 1135 Adj_Call :=
18431dc5
AC
1136 Make_Adjust_Call
1137 (Obj_Ref =>
1138 Unchecked_Convert_To (T,
1139 Make_Explicit_Dereference (Loc,
1140 Prefix => New_Occurrence_Of (Temp, Loc))),
2168d7cc
AC
1141 Typ => T);
1142
1143 if Present (Adj_Call) then
1144 Insert_Action (N, Adj_Call);
1145 end if;
18431dc5 1146 end if;
fbf5a39b 1147
18431dc5
AC
1148 -- Note: the accessibility check must be inserted after the call to
1149 -- [Deep_]Adjust to ensure proper completion of the assignment.
fbf5a39b 1150
18431dc5 1151 Apply_Accessibility_Check (Temp);
fbf5a39b 1152
e4494292 1153 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1154 Analyze_And_Resolve (N, PtrT);
1155
685094bf
RD
1156 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1157 -- component containing the secondary dispatch table of the interface
1158 -- type.
26bff3d9
JM
1159
1160 if Is_Interface (Directly_Designated_Type (PtrT)) then
1161 Displace_Allocator_Pointer (N);
1162 end if;
1163
dfbc6cbe
AC
1164 -- Always force the generation of a temporary for aggregates when
1165 -- generating C code, to simplify the work in the code generator.
1166
1167 elsif Aggr_In_Place
c63a2ad6 1168 or else (Modify_Tree_For_C and then Nkind (Exp) = N_Aggregate)
dfbc6cbe 1169 then
e86a3a7e 1170 Temp := Make_Temporary (Loc, 'P', N);
df3e68b1 1171 Temp_Decl :=
fbf5a39b
AC
1172 Make_Object_Declaration (Loc,
1173 Defining_Identifier => Temp,
e4494292 1174 Object_Definition => New_Occurrence_Of (PtrT, Loc),
df3e68b1
HK
1175 Expression =>
1176 Make_Allocator (Loc,
e4494292 1177 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
fbf5a39b 1178
fad0600d
AC
1179 -- Copy the Comes_From_Source flag for the allocator we just built,
1180 -- since logically this allocator is a replacement of the original
1181 -- allocator node. This is for proper handling of restriction
1182 -- No_Implicit_Heap_Allocations.
1183
fbf5a39b 1184 Set_Comes_From_Source
df3e68b1
HK
1185 (Expression (Temp_Decl), Comes_From_Source (N));
1186
1187 Set_No_Initialization (Expression (Temp_Decl));
1188 Insert_Action (N, Temp_Decl);
1189
ca5af305 1190 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1191 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fbf5a39b 1192
e4494292 1193 Rewrite (N, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1194 Analyze_And_Resolve (N, PtrT);
1195
533369aa 1196 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
51e4c4b9
AC
1197 Install_Null_Excluding_Check (Exp);
1198
f02b8bb8 1199 elsif Is_Access_Type (DesigT)
fbf5a39b
AC
1200 and then Nkind (Exp) = N_Allocator
1201 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1202 then
0da2c8ac 1203 -- Apply constraint to designated subtype indication
fbf5a39b 1204
cc6f5d75
AC
1205 Apply_Constraint_Check
1206 (Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
fbf5a39b
AC
1207
1208 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1209
1210 -- Propagate constraint_error to enclosing allocator
1211
1212 Rewrite (Exp, New_Copy (Expression (Exp)));
1213 end if;
1df4f514 1214
fbf5a39b 1215 else
14f0f659
AC
1216 Build_Allocate_Deallocate_Proc (N, True);
1217
36c73552
AC
1218 -- If we have:
1219 -- type A is access T1;
1220 -- X : A := new T2'(...);
1221 -- T1 and T2 can be different subtypes, and we might need to check
1222 -- both constraints. First check against the type of the qualified
1223 -- expression.
1224
1225 Apply_Constraint_Check (Exp, T, No_Sliding => True);
fbf5a39b 1226
d79e621a 1227 if Do_Range_Check (Exp) then
d79e621a
GD
1228 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1229 end if;
1230
685094bf
RD
1231 -- A check is also needed in cases where the designated subtype is
1232 -- constrained and differs from the subtype given in the qualified
1233 -- expression. Note that the check on the qualified expression does
1234 -- not allow sliding, but this check does (a relaxation from Ada 83).
fbf5a39b 1235
f02b8bb8 1236 if Is_Constrained (DesigT)
9450205a 1237 and then not Subtypes_Statically_Match (T, DesigT)
fbf5a39b
AC
1238 then
1239 Apply_Constraint_Check
f02b8bb8 1240 (Exp, DesigT, No_Sliding => False);
d79e621a
GD
1241
1242 if Do_Range_Check (Exp) then
d79e621a
GD
1243 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1244 end if;
f02b8bb8
RD
1245 end if;
1246
685094bf
RD
1247 -- For an access to unconstrained packed array, GIGI needs to see an
1248 -- expression with a constrained subtype in order to compute the
1249 -- proper size for the allocator.
f02b8bb8
RD
1250
1251 if Is_Array_Type (T)
1252 and then not Is_Constrained (T)
1253 and then Is_Packed (T)
1254 then
1255 declare
191fcb3a 1256 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
f02b8bb8
RD
1257 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1258 begin
1259 Insert_Action (Exp,
1260 Make_Subtype_Declaration (Loc,
1261 Defining_Identifier => ConstrT,
25ebc085
AC
1262 Subtype_Indication =>
1263 Make_Subtype_From_Expr (Internal_Exp, T)));
f02b8bb8
RD
1264 Freeze_Itype (ConstrT, Exp);
1265 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1266 end;
fbf5a39b 1267 end if;
f02b8bb8 1268
685094bf
RD
1269 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1270 -- to a build-in-place function, then access to the allocated object
d4dfb005 1271 -- must be passed to the function.
20b5d666 1272
d4dfb005 1273 if Is_Build_In_Place_Function_Call (Exp) then
20b5d666
JM
1274 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1275 end if;
fbf5a39b
AC
1276 end if;
1277
1278 exception
1279 when RE_Not_Available =>
1280 return;
1281 end Expand_Allocator_Expression;
1282
70482933
RK
1283 -----------------------------
1284 -- Expand_Array_Comparison --
1285 -----------------------------
1286
685094bf
RD
1287 -- Expansion is only required in the case of array types. For the unpacked
1288 -- case, an appropriate runtime routine is called. For packed cases, and
1289 -- also in some other cases where a runtime routine cannot be called, the
1290 -- form of the expansion is:
70482933
RK
1291
1292 -- [body for greater_nn; boolean_expression]
1293
1294 -- The body is built by Make_Array_Comparison_Op, and the form of the
1295 -- Boolean expression depends on the operator involved.
1296
1297 procedure Expand_Array_Comparison (N : Node_Id) is
1298 Loc : constant Source_Ptr := Sloc (N);
1299 Op1 : Node_Id := Left_Opnd (N);
1300 Op2 : Node_Id := Right_Opnd (N);
1301 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
fbf5a39b 1302 Ctyp : constant Entity_Id := Component_Type (Typ1);
70482933
RK
1303
1304 Expr : Node_Id;
1305 Func_Body : Node_Id;
1306 Func_Name : Entity_Id;
1307
fbf5a39b
AC
1308 Comp : RE_Id;
1309
9bc43c53
AC
1310 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1311 -- True for byte addressable target
91b1417d 1312
fbf5a39b 1313 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
685094bf
RD
1314 -- Returns True if the length of the given operand is known to be less
1315 -- than 4. Returns False if this length is known to be four or greater
1316 -- or is not known at compile time.
fbf5a39b
AC
1317
1318 ------------------------
1319 -- Length_Less_Than_4 --
1320 ------------------------
1321
1322 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1323 Otyp : constant Entity_Id := Etype (Opnd);
1324
1325 begin
1326 if Ekind (Otyp) = E_String_Literal_Subtype then
1327 return String_Literal_Length (Otyp) < 4;
1328
1329 else
1330 declare
1331 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1332 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1333 Hi : constant Node_Id := Type_High_Bound (Ityp);
1334 Lov : Uint;
1335 Hiv : Uint;
1336
1337 begin
1338 if Compile_Time_Known_Value (Lo) then
1339 Lov := Expr_Value (Lo);
1340 else
1341 return False;
1342 end if;
1343
1344 if Compile_Time_Known_Value (Hi) then
1345 Hiv := Expr_Value (Hi);
1346 else
1347 return False;
1348 end if;
1349
1350 return Hiv < Lov + 3;
1351 end;
1352 end if;
1353 end Length_Less_Than_4;
1354
1355 -- Start of processing for Expand_Array_Comparison
1356
70482933 1357 begin
fbf5a39b
AC
1358 -- Deal first with unpacked case, where we can call a runtime routine
1359 -- except that we avoid this for targets for which are not addressable
535a8637 1360 -- by bytes.
fbf5a39b
AC
1361
1362 if not Is_Bit_Packed_Array (Typ1)
9bc43c53 1363 and then Byte_Addressable
fbf5a39b
AC
1364 then
1365 -- The call we generate is:
1366
1367 -- Compare_Array_xn[_Unaligned]
1368 -- (left'address, right'address, left'length, right'length) <op> 0
1369
1370 -- x = U for unsigned, S for signed
1371 -- n = 8,16,32,64 for component size
1372 -- Add _Unaligned if length < 4 and component size is 8.
1373 -- <op> is the standard comparison operator
1374
1375 if Component_Size (Typ1) = 8 then
1376 if Length_Less_Than_4 (Op1)
1377 or else
1378 Length_Less_Than_4 (Op2)
1379 then
1380 if Is_Unsigned_Type (Ctyp) then
1381 Comp := RE_Compare_Array_U8_Unaligned;
1382 else
1383 Comp := RE_Compare_Array_S8_Unaligned;
1384 end if;
1385
1386 else
1387 if Is_Unsigned_Type (Ctyp) then
1388 Comp := RE_Compare_Array_U8;
1389 else
1390 Comp := RE_Compare_Array_S8;
1391 end if;
1392 end if;
1393
1394 elsif Component_Size (Typ1) = 16 then
1395 if Is_Unsigned_Type (Ctyp) then
1396 Comp := RE_Compare_Array_U16;
1397 else
1398 Comp := RE_Compare_Array_S16;
1399 end if;
1400
1401 elsif Component_Size (Typ1) = 32 then
1402 if Is_Unsigned_Type (Ctyp) then
1403 Comp := RE_Compare_Array_U32;
1404 else
1405 Comp := RE_Compare_Array_S32;
1406 end if;
1407
1408 else pragma Assert (Component_Size (Typ1) = 64);
1409 if Is_Unsigned_Type (Ctyp) then
1410 Comp := RE_Compare_Array_U64;
1411 else
1412 Comp := RE_Compare_Array_S64;
1413 end if;
1414 end if;
1415
9fe696a3 1416 if RTE_Available (Comp) then
fbf5a39b 1417
9fe696a3 1418 -- Expand to a call only if the runtime function is available,
744c73a5 1419 -- otherwise fall back to inline code.
fbf5a39b 1420
9fe696a3
AC
1421 Remove_Side_Effects (Op1, Name_Req => True);
1422 Remove_Side_Effects (Op2, Name_Req => True);
fbf5a39b 1423
9fe696a3
AC
1424 Rewrite (Op1,
1425 Make_Function_Call (Sloc (Op1),
1426 Name => New_Occurrence_Of (RTE (Comp), Loc),
fbf5a39b 1427
9fe696a3
AC
1428 Parameter_Associations => New_List (
1429 Make_Attribute_Reference (Loc,
1430 Prefix => Relocate_Node (Op1),
1431 Attribute_Name => Name_Address),
fbf5a39b 1432
9fe696a3
AC
1433 Make_Attribute_Reference (Loc,
1434 Prefix => Relocate_Node (Op2),
1435 Attribute_Name => Name_Address),
fbf5a39b 1436
9fe696a3
AC
1437 Make_Attribute_Reference (Loc,
1438 Prefix => Relocate_Node (Op1),
1439 Attribute_Name => Name_Length),
fbf5a39b 1440
9fe696a3
AC
1441 Make_Attribute_Reference (Loc,
1442 Prefix => Relocate_Node (Op2),
1443 Attribute_Name => Name_Length))));
1444
1445 Rewrite (Op2,
1446 Make_Integer_Literal (Sloc (Op2),
1447 Intval => Uint_0));
1448
1449 Analyze_And_Resolve (Op1, Standard_Integer);
1450 Analyze_And_Resolve (Op2, Standard_Integer);
1451 return;
1452 end if;
fbf5a39b
AC
1453 end if;
1454
1455 -- Cases where we cannot make runtime call
1456
70482933
RK
1457 -- For (a <= b) we convert to not (a > b)
1458
1459 if Chars (N) = Name_Op_Le then
1460 Rewrite (N,
1461 Make_Op_Not (Loc,
1462 Right_Opnd =>
1463 Make_Op_Gt (Loc,
1464 Left_Opnd => Op1,
1465 Right_Opnd => Op2)));
1466 Analyze_And_Resolve (N, Standard_Boolean);
1467 return;
1468
1469 -- For < the Boolean expression is
1470 -- greater__nn (op2, op1)
1471
1472 elsif Chars (N) = Name_Op_Lt then
1473 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1474
1475 -- Switch operands
1476
1477 Op1 := Right_Opnd (N);
1478 Op2 := Left_Opnd (N);
1479
1480 -- For (a >= b) we convert to not (a < b)
1481
1482 elsif Chars (N) = Name_Op_Ge then
1483 Rewrite (N,
1484 Make_Op_Not (Loc,
1485 Right_Opnd =>
1486 Make_Op_Lt (Loc,
1487 Left_Opnd => Op1,
1488 Right_Opnd => Op2)));
1489 Analyze_And_Resolve (N, Standard_Boolean);
1490 return;
1491
1492 -- For > the Boolean expression is
1493 -- greater__nn (op1, op2)
1494
1495 else
1496 pragma Assert (Chars (N) = Name_Op_Gt);
1497 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1498 end if;
1499
1500 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1501 Expr :=
1502 Make_Function_Call (Loc,
e4494292 1503 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
1504 Parameter_Associations => New_List (Op1, Op2));
1505
1506 Insert_Action (N, Func_Body);
1507 Rewrite (N, Expr);
1508 Analyze_And_Resolve (N, Standard_Boolean);
70482933
RK
1509 end Expand_Array_Comparison;
1510
1511 ---------------------------
1512 -- Expand_Array_Equality --
1513 ---------------------------
1514
685094bf
RD
1515 -- Expand an equality function for multi-dimensional arrays. Here is an
1516 -- example of such a function for Nb_Dimension = 2
70482933 1517
0da2c8ac 1518 -- function Enn (A : atyp; B : btyp) return boolean is
70482933 1519 -- begin
fbf5a39b
AC
1520 -- if (A'length (1) = 0 or else A'length (2) = 0)
1521 -- and then
1522 -- (B'length (1) = 0 or else B'length (2) = 0)
1523 -- then
1524 -- return True; -- RM 4.5.2(22)
1525 -- end if;
0da2c8ac 1526
fbf5a39b
AC
1527 -- if A'length (1) /= B'length (1)
1528 -- or else
1529 -- A'length (2) /= B'length (2)
1530 -- then
1531 -- return False; -- RM 4.5.2(23)
1532 -- end if;
0da2c8ac 1533
fbf5a39b 1534 -- declare
523456db
AC
1535 -- A1 : Index_T1 := A'first (1);
1536 -- B1 : Index_T1 := B'first (1);
fbf5a39b 1537 -- begin
523456db 1538 -- loop
fbf5a39b 1539 -- declare
523456db
AC
1540 -- A2 : Index_T2 := A'first (2);
1541 -- B2 : Index_T2 := B'first (2);
fbf5a39b 1542 -- begin
523456db 1543 -- loop
fbf5a39b
AC
1544 -- if A (A1, A2) /= B (B1, B2) then
1545 -- return False;
70482933 1546 -- end if;
0da2c8ac 1547
523456db
AC
1548 -- exit when A2 = A'last (2);
1549 -- A2 := Index_T2'succ (A2);
0da2c8ac 1550 -- B2 := Index_T2'succ (B2);
70482933 1551 -- end loop;
fbf5a39b 1552 -- end;
0da2c8ac 1553
523456db
AC
1554 -- exit when A1 = A'last (1);
1555 -- A1 := Index_T1'succ (A1);
0da2c8ac 1556 -- B1 := Index_T1'succ (B1);
70482933 1557 -- end loop;
fbf5a39b 1558 -- end;
0da2c8ac 1559
70482933
RK
1560 -- return true;
1561 -- end Enn;
1562
685094bf
RD
1563 -- Note on the formal types used (atyp and btyp). If either of the arrays
1564 -- is of a private type, we use the underlying type, and do an unchecked
1565 -- conversion of the actual. If either of the arrays has a bound depending
1566 -- on a discriminant, then we use the base type since otherwise we have an
1567 -- escaped discriminant in the function.
0da2c8ac 1568
685094bf
RD
1569 -- If both arrays are constrained and have the same bounds, we can generate
1570 -- a loop with an explicit iteration scheme using a 'Range attribute over
1571 -- the first array.
523456db 1572
70482933
RK
1573 function Expand_Array_Equality
1574 (Nod : Node_Id;
70482933
RK
1575 Lhs : Node_Id;
1576 Rhs : Node_Id;
0da2c8ac
AC
1577 Bodies : List_Id;
1578 Typ : Entity_Id) return Node_Id
70482933
RK
1579 is
1580 Loc : constant Source_Ptr := Sloc (Nod);
fbf5a39b
AC
1581 Decls : constant List_Id := New_List;
1582 Index_List1 : constant List_Id := New_List;
1583 Index_List2 : constant List_Id := New_List;
1584
1dd3915b 1585 First_Idx : Node_Id;
fbf5a39b
AC
1586 Formals : List_Id;
1587 Func_Name : Entity_Id;
1588 Func_Body : Node_Id;
70482933
RK
1589
1590 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1591 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1592
0da2c8ac
AC
1593 Ltyp : Entity_Id;
1594 Rtyp : Entity_Id;
1595 -- The parameter types to be used for the formals
1596
1dd3915b
EB
1597 New_Lhs : Node_Id;
1598 New_Rhs : Node_Id;
1599 -- The LHS and RHS converted to the parameter types
1600
fbf5a39b
AC
1601 function Arr_Attr
1602 (Arr : Entity_Id;
1603 Nam : Name_Id;
2e071734 1604 Num : Int) return Node_Id;
5e1c00fa 1605 -- This builds the attribute reference Arr'Nam (Expr)
fbf5a39b 1606
70482933 1607 function Component_Equality (Typ : Entity_Id) return Node_Id;
685094bf 1608 -- Create one statement to compare corresponding components, designated
3b42c566 1609 -- by a full set of indexes.
70482933 1610
0da2c8ac 1611 function Get_Arg_Type (N : Node_Id) return Entity_Id;
685094bf
RD
1612 -- Given one of the arguments, computes the appropriate type to be used
1613 -- for that argument in the corresponding function formal
0da2c8ac 1614
fbf5a39b 1615 function Handle_One_Dimension
70482933 1616 (N : Int;
2e071734 1617 Index : Node_Id) return Node_Id;
0da2c8ac 1618 -- This procedure returns the following code
fbf5a39b
AC
1619 --
1620 -- declare
523456db 1621 -- Bn : Index_T := B'First (N);
fbf5a39b 1622 -- begin
523456db 1623 -- loop
fbf5a39b 1624 -- xxx
523456db
AC
1625 -- exit when An = A'Last (N);
1626 -- An := Index_T'Succ (An)
0da2c8ac 1627 -- Bn := Index_T'Succ (Bn)
fbf5a39b
AC
1628 -- end loop;
1629 -- end;
1630 --
3b42c566 1631 -- If both indexes are constrained and identical, the procedure
523456db
AC
1632 -- returns a simpler loop:
1633 --
1634 -- for An in A'Range (N) loop
1635 -- xxx
1636 -- end loop
0da2c8ac 1637 --
523456db 1638 -- N is the dimension for which we are generating a loop. Index is the
685094bf
RD
1639 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1640 -- xxx statement is either the loop or declare for the next dimension
1641 -- or if this is the last dimension the comparison of corresponding
1642 -- components of the arrays.
fbf5a39b 1643 --
685094bf 1644 -- The actual way the code works is to return the comparison of
a90bd866 1645 -- corresponding components for the N+1 call. That's neater.
fbf5a39b
AC
1646
1647 function Test_Empty_Arrays return Node_Id;
1648 -- This function constructs the test for both arrays being empty
1649 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1650 -- and then
1651 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1652
1653 function Test_Lengths_Correspond return Node_Id;
685094bf
RD
1654 -- This function constructs the test for arrays having different lengths
1655 -- in at least one index position, in which case the resulting code is:
fbf5a39b
AC
1656
1657 -- A'length (1) /= B'length (1)
1658 -- or else
1659 -- A'length (2) /= B'length (2)
1660 -- or else
1661 -- ...
1662
1663 --------------
1664 -- Arr_Attr --
1665 --------------
1666
1667 function Arr_Attr
1668 (Arr : Entity_Id;
1669 Nam : Name_Id;
2e071734 1670 Num : Int) return Node_Id
fbf5a39b
AC
1671 is
1672 begin
1673 return
1674 Make_Attribute_Reference (Loc,
cc6f5d75
AC
1675 Attribute_Name => Nam,
1676 Prefix => New_Occurrence_Of (Arr, Loc),
1677 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
fbf5a39b 1678 end Arr_Attr;
70482933
RK
1679
1680 ------------------------
1681 -- Component_Equality --
1682 ------------------------
1683
1684 function Component_Equality (Typ : Entity_Id) return Node_Id is
1685 Test : Node_Id;
1686 L, R : Node_Id;
1687
1688 begin
1689 -- if a(i1...) /= b(j1...) then return false; end if;
1690
1691 L :=
1692 Make_Indexed_Component (Loc,
7675ad4f 1693 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
1694 Expressions => Index_List1);
1695
1696 R :=
1697 Make_Indexed_Component (Loc,
7675ad4f 1698 Prefix => Make_Identifier (Loc, Chars (B)),
70482933
RK
1699 Expressions => Index_List2);
1700
1701 Test := Expand_Composite_Equality
1702 (Nod, Component_Type (Typ), L, R, Decls);
1703
a9d8907c
JM
1704 -- If some (sub)component is an unchecked_union, the whole operation
1705 -- will raise program error.
8aceda64
AC
1706
1707 if Nkind (Test) = N_Raise_Program_Error then
a9d8907c
JM
1708
1709 -- This node is going to be inserted at a location where a
685094bf
RD
1710 -- statement is expected: clear its Etype so analysis will set
1711 -- it to the expected Standard_Void_Type.
a9d8907c
JM
1712
1713 Set_Etype (Test, Empty);
8aceda64
AC
1714 return Test;
1715
1716 else
1717 return
1718 Make_Implicit_If_Statement (Nod,
cc6f5d75 1719 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
8aceda64 1720 Then_Statements => New_List (
d766cee3 1721 Make_Simple_Return_Statement (Loc,
8aceda64
AC
1722 Expression => New_Occurrence_Of (Standard_False, Loc))));
1723 end if;
70482933
RK
1724 end Component_Equality;
1725
0da2c8ac
AC
1726 ------------------
1727 -- Get_Arg_Type --
1728 ------------------
1729
1730 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1731 T : Entity_Id;
1732 X : Node_Id;
1733
1734 begin
1735 T := Etype (N);
1736
1737 if No (T) then
1738 return Typ;
1739
1740 else
1741 T := Underlying_Type (T);
1742
1743 X := First_Index (T);
1744 while Present (X) loop
761f7dcb
AC
1745 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1746 or else
1747 Denotes_Discriminant (Type_High_Bound (Etype (X)))
0da2c8ac
AC
1748 then
1749 T := Base_Type (T);
1750 exit;
1751 end if;
1752
1753 Next_Index (X);
1754 end loop;
1755
1756 return T;
1757 end if;
1758 end Get_Arg_Type;
1759
fbf5a39b
AC
1760 --------------------------
1761 -- Handle_One_Dimension --
1762 ---------------------------
70482933 1763
fbf5a39b 1764 function Handle_One_Dimension
70482933 1765 (N : Int;
2e071734 1766 Index : Node_Id) return Node_Id
70482933 1767 is
0da2c8ac 1768 Need_Separate_Indexes : constant Boolean :=
761f7dcb 1769 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
0da2c8ac 1770 -- If the index types are identical, and we are working with
685094bf
RD
1771 -- constrained types, then we can use the same index for both
1772 -- of the arrays.
0da2c8ac 1773
191fcb3a 1774 An : constant Entity_Id := Make_Temporary (Loc, 'A');
0da2c8ac
AC
1775
1776 Bn : Entity_Id;
1777 Index_T : Entity_Id;
1778 Stm_List : List_Id;
1779 Loop_Stm : Node_Id;
70482933
RK
1780
1781 begin
0da2c8ac
AC
1782 if N > Number_Dimensions (Ltyp) then
1783 return Component_Equality (Ltyp);
fbf5a39b 1784 end if;
70482933 1785
0da2c8ac
AC
1786 -- Case where we generate a loop
1787
1788 Index_T := Base_Type (Etype (Index));
1789
1790 if Need_Separate_Indexes then
191fcb3a 1791 Bn := Make_Temporary (Loc, 'B');
0da2c8ac
AC
1792 else
1793 Bn := An;
1794 end if;
70482933 1795
e4494292
RD
1796 Append (New_Occurrence_Of (An, Loc), Index_List1);
1797 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
70482933 1798
0da2c8ac
AC
1799 Stm_List := New_List (
1800 Handle_One_Dimension (N + 1, Next_Index (Index)));
70482933 1801
0da2c8ac 1802 if Need_Separate_Indexes then
a9d8907c 1803
3b42c566 1804 -- Generate guard for loop, followed by increments of indexes
523456db
AC
1805
1806 Append_To (Stm_List,
1807 Make_Exit_Statement (Loc,
1808 Condition =>
1809 Make_Op_Eq (Loc,
cc6f5d75 1810 Left_Opnd => New_Occurrence_Of (An, Loc),
523456db
AC
1811 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1812
1813 Append_To (Stm_List,
1814 Make_Assignment_Statement (Loc,
e4494292 1815 Name => New_Occurrence_Of (An, Loc),
523456db
AC
1816 Expression =>
1817 Make_Attribute_Reference (Loc,
e4494292 1818 Prefix => New_Occurrence_Of (Index_T, Loc),
523456db 1819 Attribute_Name => Name_Succ,
e4494292
RD
1820 Expressions => New_List (
1821 New_Occurrence_Of (An, Loc)))));
523456db 1822
0da2c8ac
AC
1823 Append_To (Stm_List,
1824 Make_Assignment_Statement (Loc,
e4494292 1825 Name => New_Occurrence_Of (Bn, Loc),
0da2c8ac
AC
1826 Expression =>
1827 Make_Attribute_Reference (Loc,
e4494292 1828 Prefix => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 1829 Attribute_Name => Name_Succ,
e4494292
RD
1830 Expressions => New_List (
1831 New_Occurrence_Of (Bn, Loc)))));
0da2c8ac
AC
1832 end if;
1833
a9d8907c
JM
1834 -- If separate indexes, we need a declare block for An and Bn, and a
1835 -- loop without an iteration scheme.
0da2c8ac
AC
1836
1837 if Need_Separate_Indexes then
523456db
AC
1838 Loop_Stm :=
1839 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1840
0da2c8ac
AC
1841 return
1842 Make_Block_Statement (Loc,
1843 Declarations => New_List (
523456db
AC
1844 Make_Object_Declaration (Loc,
1845 Defining_Identifier => An,
e4494292 1846 Object_Definition => New_Occurrence_Of (Index_T, Loc),
523456db
AC
1847 Expression => Arr_Attr (A, Name_First, N)),
1848
0da2c8ac
AC
1849 Make_Object_Declaration (Loc,
1850 Defining_Identifier => Bn,
e4494292 1851 Object_Definition => New_Occurrence_Of (Index_T, Loc),
0da2c8ac 1852 Expression => Arr_Attr (B, Name_First, N))),
523456db 1853
0da2c8ac
AC
1854 Handled_Statement_Sequence =>
1855 Make_Handled_Sequence_Of_Statements (Loc,
1856 Statements => New_List (Loop_Stm)));
1857
523456db 1858 -- If no separate indexes, return loop statement with explicit
31fde973 1859 -- iteration scheme on its own.
0da2c8ac
AC
1860
1861 else
523456db
AC
1862 Loop_Stm :=
1863 Make_Implicit_Loop_Statement (Nod,
1864 Statements => Stm_List,
1865 Iteration_Scheme =>
1866 Make_Iteration_Scheme (Loc,
1867 Loop_Parameter_Specification =>
1868 Make_Loop_Parameter_Specification (Loc,
1869 Defining_Identifier => An,
1870 Discrete_Subtype_Definition =>
1871 Arr_Attr (A, Name_Range, N))));
0da2c8ac
AC
1872 return Loop_Stm;
1873 end if;
fbf5a39b
AC
1874 end Handle_One_Dimension;
1875
1876 -----------------------
1877 -- Test_Empty_Arrays --
1878 -----------------------
1879
1880 function Test_Empty_Arrays return Node_Id is
1881 Alist : Node_Id;
1882 Blist : Node_Id;
1883
1884 Atest : Node_Id;
1885 Btest : Node_Id;
70482933 1886
fbf5a39b
AC
1887 begin
1888 Alist := Empty;
1889 Blist := Empty;
0da2c8ac 1890 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
1891 Atest :=
1892 Make_Op_Eq (Loc,
1893 Left_Opnd => Arr_Attr (A, Name_Length, J),
1894 Right_Opnd => Make_Integer_Literal (Loc, 0));
1895
1896 Btest :=
1897 Make_Op_Eq (Loc,
1898 Left_Opnd => Arr_Attr (B, Name_Length, J),
1899 Right_Opnd => Make_Integer_Literal (Loc, 0));
1900
1901 if No (Alist) then
1902 Alist := Atest;
1903 Blist := Btest;
70482933 1904
fbf5a39b
AC
1905 else
1906 Alist :=
1907 Make_Or_Else (Loc,
1908 Left_Opnd => Relocate_Node (Alist),
1909 Right_Opnd => Atest);
1910
1911 Blist :=
1912 Make_Or_Else (Loc,
1913 Left_Opnd => Relocate_Node (Blist),
1914 Right_Opnd => Btest);
1915 end if;
1916 end loop;
70482933 1917
fbf5a39b
AC
1918 return
1919 Make_And_Then (Loc,
1920 Left_Opnd => Alist,
1921 Right_Opnd => Blist);
1922 end Test_Empty_Arrays;
70482933 1923
fbf5a39b
AC
1924 -----------------------------
1925 -- Test_Lengths_Correspond --
1926 -----------------------------
70482933 1927
fbf5a39b
AC
1928 function Test_Lengths_Correspond return Node_Id is
1929 Result : Node_Id;
1930 Rtest : Node_Id;
1931
1932 begin
1933 Result := Empty;
0da2c8ac 1934 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
1935 Rtest :=
1936 Make_Op_Ne (Loc,
1937 Left_Opnd => Arr_Attr (A, Name_Length, J),
1938 Right_Opnd => Arr_Attr (B, Name_Length, J));
1939
1940 if No (Result) then
1941 Result := Rtest;
1942 else
1943 Result :=
1944 Make_Or_Else (Loc,
1945 Left_Opnd => Relocate_Node (Result),
1946 Right_Opnd => Rtest);
1947 end if;
1948 end loop;
1949
1950 return Result;
1951 end Test_Lengths_Correspond;
70482933
RK
1952
1953 -- Start of processing for Expand_Array_Equality
1954
1955 begin
0da2c8ac
AC
1956 Ltyp := Get_Arg_Type (Lhs);
1957 Rtyp := Get_Arg_Type (Rhs);
1958
685094bf
RD
1959 -- For now, if the argument types are not the same, go to the base type,
1960 -- since the code assumes that the formals have the same type. This is
1961 -- fixable in future ???
0da2c8ac
AC
1962
1963 if Ltyp /= Rtyp then
1964 Ltyp := Base_Type (Ltyp);
1965 Rtyp := Base_Type (Rtyp);
1966 pragma Assert (Ltyp = Rtyp);
1967 end if;
1968
1dd3915b
EB
1969 -- If the array type is distinct from the type of the arguments, it
1970 -- is the full view of a private type. Apply an unchecked conversion
1971 -- to ensure that analysis of the code below succeeds.
1972
1973 if No (Etype (Lhs))
1974 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
1975 then
1976 New_Lhs := OK_Convert_To (Ltyp, Lhs);
1977 else
1978 New_Lhs := Lhs;
1979 end if;
1980
1981 if No (Etype (Rhs))
1982 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
1983 then
1984 New_Rhs := OK_Convert_To (Rtyp, Rhs);
1985 else
1986 New_Rhs := Rhs;
1987 end if;
1988
1989 First_Idx := First_Index (Ltyp);
1990
1991 -- If optimization is enabled and the array boils down to a couple of
1992 -- consecutive elements, generate a simple conjunction of comparisons
1993 -- which should be easier to optimize by the code generator.
1994
1995 if Optimization_Level > 0
1996 and then Ltyp = Rtyp
1997 and then Is_Constrained (Ltyp)
1998 and then Number_Dimensions (Ltyp) = 1
1999 and then Nkind (First_Idx) = N_Range
2000 and then Compile_Time_Known_Value (Low_Bound (First_Idx))
2001 and then Compile_Time_Known_Value (High_Bound (First_Idx))
2002 and then Expr_Value (High_Bound (First_Idx)) =
2003 Expr_Value (Low_Bound (First_Idx)) + 1
2004 then
2005 declare
2006 Ctyp : constant Entity_Id := Component_Type (Ltyp);
2007 L, R : Node_Id;
2008 TestL, TestH : Node_Id;
2009 Index_List : List_Id;
2010
2011 begin
2012 Index_List := New_List (New_Copy_Tree (Low_Bound (First_Idx)));
2013
2014 L :=
2015 Make_Indexed_Component (Loc,
2016 Prefix => New_Copy_Tree (New_Lhs),
2017 Expressions => Index_List);
2018
2019 R :=
2020 Make_Indexed_Component (Loc,
2021 Prefix => New_Copy_Tree (New_Rhs),
2022 Expressions => Index_List);
2023
2024 TestL := Expand_Composite_Equality (Nod, Ctyp, L, R, Bodies);
2025
2026 Index_List := New_List (New_Copy_Tree (High_Bound (First_Idx)));
2027
2028 L :=
2029 Make_Indexed_Component (Loc,
2030 Prefix => New_Lhs,
2031 Expressions => Index_List);
2032
2033 R :=
2034 Make_Indexed_Component (Loc,
2035 Prefix => New_Rhs,
2036 Expressions => Index_List);
2037
2038 TestH := Expand_Composite_Equality (Nod, Ctyp, L, R, Bodies);
2039
2040 return
2041 Make_And_Then (Loc, Left_Opnd => TestL, Right_Opnd => TestH);
2042 end;
2043 end if;
2044
0da2c8ac
AC
2045 -- Build list of formals for function
2046
70482933
RK
2047 Formals := New_List (
2048 Make_Parameter_Specification (Loc,
2049 Defining_Identifier => A,
e4494292 2050 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
70482933
RK
2051
2052 Make_Parameter_Specification (Loc,
2053 Defining_Identifier => B,
e4494292 2054 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
70482933 2055
191fcb3a 2056 Func_Name := Make_Temporary (Loc, 'E');
70482933 2057
fbf5a39b 2058 -- Build statement sequence for function
70482933
RK
2059
2060 Func_Body :=
2061 Make_Subprogram_Body (Loc,
2062 Specification =>
2063 Make_Function_Specification (Loc,
2064 Defining_Unit_Name => Func_Name,
2065 Parameter_Specifications => Formals,
e4494292 2066 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
fbf5a39b 2067
eedc5882 2068 Declarations => Decls,
fbf5a39b 2069
70482933
RK
2070 Handled_Statement_Sequence =>
2071 Make_Handled_Sequence_Of_Statements (Loc,
2072 Statements => New_List (
fbf5a39b
AC
2073
2074 Make_Implicit_If_Statement (Nod,
cc6f5d75 2075 Condition => Test_Empty_Arrays,
fbf5a39b 2076 Then_Statements => New_List (
d766cee3 2077 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2078 Expression =>
2079 New_Occurrence_Of (Standard_True, Loc)))),
2080
2081 Make_Implicit_If_Statement (Nod,
cc6f5d75 2082 Condition => Test_Lengths_Correspond,
fbf5a39b 2083 Then_Statements => New_List (
d766cee3 2084 Make_Simple_Return_Statement (Loc,
cc6f5d75 2085 Expression => New_Occurrence_Of (Standard_False, Loc)))),
fbf5a39b 2086
1dd3915b 2087 Handle_One_Dimension (1, First_Idx),
fbf5a39b 2088
d766cee3 2089 Make_Simple_Return_Statement (Loc,
70482933
RK
2090 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2091
1dd3915b
EB
2092 Set_Has_Completion (Func_Name, True);
2093 Set_Is_Inlined (Func_Name);
70482933 2094
1dd3915b 2095 Append_To (Bodies, Func_Body);
70482933 2096
1dd3915b
EB
2097 return
2098 Make_Function_Call (Loc,
2099 Name => New_Occurrence_Of (Func_Name, Loc),
2100 Parameter_Associations => New_List (New_Lhs, New_Rhs));
70482933
RK
2101 end Expand_Array_Equality;
2102
2103 -----------------------------
2104 -- Expand_Boolean_Operator --
2105 -----------------------------
2106
685094bf
RD
2107 -- Note that we first get the actual subtypes of the operands, since we
2108 -- always want to deal with types that have bounds.
70482933
RK
2109
2110 procedure Expand_Boolean_Operator (N : Node_Id) is
fbf5a39b 2111 Typ : constant Entity_Id := Etype (N);
70482933
RK
2112
2113 begin
685094bf
RD
2114 -- Special case of bit packed array where both operands are known to be
2115 -- properly aligned. In this case we use an efficient run time routine
2116 -- to carry out the operation (see System.Bit_Ops).
a9d8907c
JM
2117
2118 if Is_Bit_Packed_Array (Typ)
2119 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2120 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2121 then
70482933 2122 Expand_Packed_Boolean_Operator (N);
a9d8907c
JM
2123 return;
2124 end if;
70482933 2125
a9d8907c
JM
2126 -- For the normal non-packed case, the general expansion is to build
2127 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2128 -- and then inserting it into the tree. The original operator node is
2129 -- then rewritten as a call to this function. We also use this in the
2130 -- packed case if either operand is a possibly unaligned object.
70482933 2131
a9d8907c
JM
2132 declare
2133 Loc : constant Source_Ptr := Sloc (N);
2134 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
076bbec1 2135 R : Node_Id := Relocate_Node (Right_Opnd (N));
a9d8907c
JM
2136 Func_Body : Node_Id;
2137 Func_Name : Entity_Id;
fbf5a39b 2138
a9d8907c
JM
2139 begin
2140 Convert_To_Actual_Subtype (L);
2141 Convert_To_Actual_Subtype (R);
2142 Ensure_Defined (Etype (L), N);
2143 Ensure_Defined (Etype (R), N);
2144 Apply_Length_Check (R, Etype (L));
2145
b4592168 2146 if Nkind (N) = N_Op_Xor then
076bbec1
ES
2147 R := Duplicate_Subexpr (R);
2148 Silly_Boolean_Array_Xor_Test (N, R, Etype (L));
b4592168
GD
2149 end if;
2150
a9d8907c
JM
2151 if Nkind (Parent (N)) = N_Assignment_Statement
2152 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2153 then
2154 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
fbf5a39b 2155
a9d8907c
JM
2156 elsif Nkind (Parent (N)) = N_Op_Not
2157 and then Nkind (N) = N_Op_And
39f0fa29 2158 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
cc6f5d75 2159 and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
a9d8907c
JM
2160 then
2161 return;
2162 else
fbf5a39b 2163
a9d8907c
JM
2164 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2165 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2166 Insert_Action (N, Func_Body);
70482933 2167
a9d8907c 2168 -- Now rewrite the expression with a call
70482933 2169
a9d8907c
JM
2170 Rewrite (N,
2171 Make_Function_Call (Loc,
e4494292 2172 Name => New_Occurrence_Of (Func_Name, Loc),
a9d8907c
JM
2173 Parameter_Associations =>
2174 New_List (
2175 L,
2176 Make_Type_Conversion
e4494292 2177 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
70482933 2178
a9d8907c
JM
2179 Analyze_And_Resolve (N, Typ);
2180 end if;
2181 end;
70482933
RK
2182 end Expand_Boolean_Operator;
2183
456cbfa5
AC
2184 ------------------------------------------------
2185 -- Expand_Compare_Minimize_Eliminate_Overflow --
2186 ------------------------------------------------
2187
2188 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2189 Loc : constant Source_Ptr := Sloc (N);
2190
71fb4dc8
AC
2191 Result_Type : constant Entity_Id := Etype (N);
2192 -- Capture result type (could be a derived boolean type)
2193
456cbfa5
AC
2194 Llo, Lhi : Uint;
2195 Rlo, Rhi : Uint;
2196
2197 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2198 -- Entity for Long_Long_Integer'Base
2199
15c94a55 2200 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
a7f1b24f 2201 -- Current overflow checking mode
456cbfa5
AC
2202
2203 procedure Set_True;
2204 procedure Set_False;
2205 -- These procedures rewrite N with an occurrence of Standard_True or
2206 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2207
2208 ---------------
2209 -- Set_False --
2210 ---------------
2211
2212 procedure Set_False is
2213 begin
2214 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2215 Warn_On_Known_Condition (N);
2216 end Set_False;
2217
2218 --------------
2219 -- Set_True --
2220 --------------
2221
2222 procedure Set_True is
2223 begin
2224 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2225 Warn_On_Known_Condition (N);
2226 end Set_True;
2227
2228 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2229
2230 begin
2231 -- Nothing to do unless we have a comparison operator with operands
2232 -- that are signed integer types, and we are operating in either
2233 -- MINIMIZED or ELIMINATED overflow checking mode.
2234
2235 if Nkind (N) not in N_Op_Compare
2236 or else Check not in Minimized_Or_Eliminated
2237 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2238 then
2239 return;
2240 end if;
2241
2242 -- OK, this is the case we are interested in. First step is to process
2243 -- our operands using the Minimize_Eliminate circuitry which applies
2244 -- this processing to the two operand subtrees.
2245
a7f1b24f 2246 Minimize_Eliminate_Overflows
c7e152b5 2247 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
a7f1b24f 2248 Minimize_Eliminate_Overflows
c7e152b5 2249 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
456cbfa5 2250
65f7ed64
AC
2251 -- See if the range information decides the result of the comparison.
2252 -- We can only do this if we in fact have full range information (which
2253 -- won't be the case if either operand is bignum at this stage).
456cbfa5 2254
65f7ed64
AC
2255 if Llo /= No_Uint and then Rlo /= No_Uint then
2256 case N_Op_Compare (Nkind (N)) is
d8f43ee6
HK
2257 when N_Op_Eq =>
2258 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2259 Set_True;
2260 elsif Llo > Rhi or else Lhi < Rlo then
2261 Set_False;
2262 end if;
456cbfa5 2263
d8f43ee6
HK
2264 when N_Op_Ge =>
2265 if Llo >= Rhi then
2266 Set_True;
2267 elsif Lhi < Rlo then
2268 Set_False;
2269 end if;
456cbfa5 2270
d8f43ee6
HK
2271 when N_Op_Gt =>
2272 if Llo > Rhi then
2273 Set_True;
2274 elsif Lhi <= Rlo then
2275 Set_False;
2276 end if;
456cbfa5 2277
d8f43ee6
HK
2278 when N_Op_Le =>
2279 if Llo > Rhi then
2280 Set_False;
2281 elsif Lhi <= Rlo then
2282 Set_True;
2283 end if;
456cbfa5 2284
d8f43ee6
HK
2285 when N_Op_Lt =>
2286 if Llo >= Rhi then
2287 Set_False;
2288 elsif Lhi < Rlo then
2289 Set_True;
2290 end if;
456cbfa5 2291
d8f43ee6
HK
2292 when N_Op_Ne =>
2293 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2294 Set_False;
2295 elsif Llo > Rhi or else Lhi < Rlo then
2296 Set_True;
2297 end if;
65f7ed64 2298 end case;
456cbfa5 2299
65f7ed64 2300 -- All done if we did the rewrite
456cbfa5 2301
65f7ed64
AC
2302 if Nkind (N) not in N_Op_Compare then
2303 return;
2304 end if;
456cbfa5
AC
2305 end if;
2306
2307 -- Otherwise, time to do the comparison
2308
2309 declare
2310 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2311 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2312
2313 begin
2314 -- If the two operands have the same signed integer type we are
2315 -- all set, nothing more to do. This is the case where either
2316 -- both operands were unchanged, or we rewrote both of them to
2317 -- be Long_Long_Integer.
2318
2319 -- Note: Entity for the comparison may be wrong, but it's not worth
2320 -- the effort to change it, since the back end does not use it.
2321
2322 if Is_Signed_Integer_Type (Ltype)
2323 and then Base_Type (Ltype) = Base_Type (Rtype)
2324 then
2325 return;
2326
2327 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2328
2329 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2330 declare
2331 Left : Node_Id := Left_Opnd (N);
2332 Right : Node_Id := Right_Opnd (N);
2333 -- Bignum references for left and right operands
2334
2335 begin
2336 if not Is_RTE (Ltype, RE_Bignum) then
2337 Left := Convert_To_Bignum (Left);
2338 elsif not Is_RTE (Rtype, RE_Bignum) then
2339 Right := Convert_To_Bignum (Right);
2340 end if;
2341
71fb4dc8 2342 -- We rewrite our node with:
456cbfa5 2343
71fb4dc8
AC
2344 -- do
2345 -- Bnn : Result_Type;
2346 -- declare
2347 -- M : Mark_Id := SS_Mark;
2348 -- begin
2349 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2350 -- SS_Release (M);
2351 -- end;
2352 -- in
2353 -- Bnn
2354 -- end
456cbfa5
AC
2355
2356 declare
71fb4dc8 2357 Blk : constant Node_Id := Make_Bignum_Block (Loc);
456cbfa5
AC
2358 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2359 Ent : RE_Id;
2360
2361 begin
2362 case N_Op_Compare (Nkind (N)) is
2363 when N_Op_Eq => Ent := RE_Big_EQ;
2364 when N_Op_Ge => Ent := RE_Big_GE;
2365 when N_Op_Gt => Ent := RE_Big_GT;
2366 when N_Op_Le => Ent := RE_Big_LE;
2367 when N_Op_Lt => Ent := RE_Big_LT;
2368 when N_Op_Ne => Ent := RE_Big_NE;
2369 end case;
2370
71fb4dc8 2371 -- Insert assignment to Bnn into the bignum block
456cbfa5
AC
2372
2373 Insert_Before
2374 (First (Statements (Handled_Statement_Sequence (Blk))),
2375 Make_Assignment_Statement (Loc,
2376 Name => New_Occurrence_Of (Bnn, Loc),
2377 Expression =>
2378 Make_Function_Call (Loc,
2379 Name =>
2380 New_Occurrence_Of (RTE (Ent), Loc),
2381 Parameter_Associations => New_List (Left, Right))));
2382
71fb4dc8
AC
2383 -- Now do the rewrite with expression actions
2384
2385 Rewrite (N,
2386 Make_Expression_With_Actions (Loc,
2387 Actions => New_List (
2388 Make_Object_Declaration (Loc,
2389 Defining_Identifier => Bnn,
2390 Object_Definition =>
2391 New_Occurrence_Of (Result_Type, Loc)),
2392 Blk),
2393 Expression => New_Occurrence_Of (Bnn, Loc)));
2394 Analyze_And_Resolve (N, Result_Type);
456cbfa5
AC
2395 end;
2396 end;
2397
2398 -- No bignums involved, but types are different, so we must have
2399 -- rewritten one of the operands as a Long_Long_Integer but not
2400 -- the other one.
2401
2402 -- If left operand is Long_Long_Integer, convert right operand
2403 -- and we are done (with a comparison of two Long_Long_Integers).
2404
2405 elsif Ltype = LLIB then
2406 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2407 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2408 return;
2409
2410 -- If right operand is Long_Long_Integer, convert left operand
2411 -- and we are done (with a comparison of two Long_Long_Integers).
2412
2413 -- This is the only remaining possibility
2414
2415 else pragma Assert (Rtype = LLIB);
2416 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2417 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2418 return;
2419 end if;
2420 end;
2421 end Expand_Compare_Minimize_Eliminate_Overflow;
2422
70482933
RK
2423 -------------------------------
2424 -- Expand_Composite_Equality --
2425 -------------------------------
2426
2427 -- This function is only called for comparing internal fields of composite
2428 -- types when these fields are themselves composites. This is a special
2429 -- case because it is not possible to respect normal Ada visibility rules.
2430
2431 function Expand_Composite_Equality
2432 (Nod : Node_Id;
2433 Typ : Entity_Id;
2434 Lhs : Node_Id;
2435 Rhs : Node_Id;
2e071734 2436 Bodies : List_Id) return Node_Id
70482933
RK
2437 is
2438 Loc : constant Source_Ptr := Sloc (Nod);
2439 Full_Type : Entity_Id;
70482933
RK
2440 Eq_Op : Entity_Id;
2441
7efc3f2d
AC
2442 -- Start of processing for Expand_Composite_Equality
2443
70482933
RK
2444 begin
2445 if Is_Private_Type (Typ) then
2446 Full_Type := Underlying_Type (Typ);
2447 else
2448 Full_Type := Typ;
2449 end if;
2450
ced8450b
ES
2451 -- If the private type has no completion the context may be the
2452 -- expansion of a composite equality for a composite type with some
2453 -- still incomplete components. The expression will not be analyzed
2454 -- until the enclosing type is completed, at which point this will be
2455 -- properly expanded, unless there is a bona fide completion error.
70482933
RK
2456
2457 if No (Full_Type) then
ced8450b 2458 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933
RK
2459 end if;
2460
2461 Full_Type := Base_Type (Full_Type);
2462
da1b76c1
HK
2463 -- When the base type itself is private, use the full view to expand
2464 -- the composite equality.
2465
2466 if Is_Private_Type (Full_Type) then
2467 Full_Type := Underlying_Type (Full_Type);
2468 end if;
2469
16788d44
RD
2470 -- Case of array types
2471
70482933
RK
2472 if Is_Array_Type (Full_Type) then
2473
2474 -- If the operand is an elementary type other than a floating-point
2475 -- type, then we can simply use the built-in block bitwise equality,
2476 -- since the predefined equality operators always apply and bitwise
2477 -- equality is fine for all these cases.
2478
2479 if Is_Elementary_Type (Component_Type (Full_Type))
2480 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2481 then
39ade2f9 2482 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933 2483
685094bf
RD
2484 -- For composite component types, and floating-point types, use the
2485 -- expansion. This deals with tagged component types (where we use
0c386027 2486 -- the applicable equality routine) and floating-point (where we
685094bf
RD
2487 -- need to worry about negative zeroes), and also the case of any
2488 -- composite type recursively containing such fields.
70482933
RK
2489
2490 else
0c386027
EB
2491 declare
2492 Comp_Typ : Entity_Id;
f537fc00 2493 Hi : Node_Id;
bcad5029
EB
2494 Indx : Node_Id;
2495 Ityp : Entity_Id;
2496 Lo : Node_Id;
0c386027
EB
2497
2498 begin
2499 -- Do the comparison in the type (or its full view) and not in
2500 -- its unconstrained base type, because the latter operation is
2501 -- more complex and would also require an unchecked conversion.
2502
2503 if Is_Private_Type (Typ) then
2504 Comp_Typ := Underlying_Type (Typ);
2505 else
2506 Comp_Typ := Typ;
2507 end if;
2508
2509 -- Except for the case where the bounds of the type depend on a
2510 -- discriminant, or else we would run into scoping issues.
2511
bcad5029
EB
2512 Indx := First_Index (Comp_Typ);
2513 while Present (Indx) loop
2514 Ityp := Etype (Indx);
2515
2516 Lo := Type_Low_Bound (Ityp);
2517 Hi := Type_High_Bound (Ityp);
2518
2519 if (Nkind (Lo) = N_Identifier
2520 and then Ekind (Entity (Lo)) = E_Discriminant)
2521 or else
2522 (Nkind (Hi) = N_Identifier
2523 and then Ekind (Entity (Hi)) = E_Discriminant)
2524 then
2525 Comp_Typ := Full_Type;
2526 exit;
2527 end if;
2528
2529 Next_Index (Indx);
2530 end loop;
0c386027
EB
2531
2532 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Comp_Typ);
2533 end;
70482933
RK
2534 end if;
2535
16788d44
RD
2536 -- Case of tagged record types
2537
70482933 2538 elsif Is_Tagged_Type (Full_Type) then
59f7c716
JM
2539 Eq_Op := Find_Primitive_Eq (Typ);
2540 pragma Assert (Present (Eq_Op));
70482933
RK
2541
2542 return
2543 Make_Function_Call (Loc,
e4494292 2544 Name => New_Occurrence_Of (Eq_Op, Loc),
70482933
RK
2545 Parameter_Associations =>
2546 New_List
2547 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2548 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2549
16788d44
RD
2550 -- Case of untagged record types
2551
70482933 2552 elsif Is_Record_Type (Full_Type) then
fbf5a39b 2553 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
70482933
RK
2554
2555 if Present (Eq_Op) then
2556 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2557
685094bf
RD
2558 -- Inherited equality from parent type. Convert the actuals to
2559 -- match signature of operation.
70482933
RK
2560
2561 declare
fbf5a39b 2562 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
70482933
RK
2563
2564 begin
2565 return
2566 Make_Function_Call (Loc,
e4494292 2567 Name => New_Occurrence_Of (Eq_Op, Loc),
39ade2f9
AC
2568 Parameter_Associations => New_List (
2569 OK_Convert_To (T, Lhs),
2570 OK_Convert_To (T, Rhs)));
70482933
RK
2571 end;
2572
2573 else
5d09245e
AC
2574 -- Comparison between Unchecked_Union components
2575
2576 if Is_Unchecked_Union (Full_Type) then
2577 declare
2578 Lhs_Type : Node_Id := Full_Type;
2579 Rhs_Type : Node_Id := Full_Type;
2580 Lhs_Discr_Val : Node_Id;
2581 Rhs_Discr_Val : Node_Id;
2582
2583 begin
2584 -- Lhs subtype
2585
2586 if Nkind (Lhs) = N_Selected_Component then
2587 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2588 end if;
2589
2590 -- Rhs subtype
2591
2592 if Nkind (Rhs) = N_Selected_Component then
2593 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2594 end if;
2595
2596 -- Lhs of the composite equality
2597
2598 if Is_Constrained (Lhs_Type) then
2599
685094bf 2600 -- Since the enclosing record type can never be an
5d09245e
AC
2601 -- Unchecked_Union (this code is executed for records
2602 -- that do not have variants), we may reference its
2603 -- discriminant(s).
2604
2605 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
2606 and then Has_Per_Object_Constraint
2607 (Entity (Selector_Name (Lhs)))
5d09245e
AC
2608 then
2609 Lhs_Discr_Val :=
2610 Make_Selected_Component (Loc,
39ade2f9 2611 Prefix => Prefix (Lhs),
5d09245e 2612 Selector_Name =>
39ade2f9
AC
2613 New_Copy
2614 (Get_Discriminant_Value
2615 (First_Discriminant (Lhs_Type),
2616 Lhs_Type,
2617 Stored_Constraint (Lhs_Type))));
5d09245e
AC
2618
2619 else
39ade2f9
AC
2620 Lhs_Discr_Val :=
2621 New_Copy
2622 (Get_Discriminant_Value
2623 (First_Discriminant (Lhs_Type),
2624 Lhs_Type,
2625 Stored_Constraint (Lhs_Type)));
5d09245e
AC
2626
2627 end if;
2628 else
2629 -- It is not possible to infer the discriminant since
2630 -- the subtype is not constrained.
2631
8aceda64 2632 return
5d09245e 2633 Make_Raise_Program_Error (Loc,
8aceda64 2634 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2635 end if;
2636
2637 -- Rhs of the composite equality
2638
2639 if Is_Constrained (Rhs_Type) then
2640 if Nkind (Rhs) = N_Selected_Component
39ade2f9
AC
2641 and then Has_Per_Object_Constraint
2642 (Entity (Selector_Name (Rhs)))
5d09245e
AC
2643 then
2644 Rhs_Discr_Val :=
2645 Make_Selected_Component (Loc,
39ade2f9 2646 Prefix => Prefix (Rhs),
5d09245e 2647 Selector_Name =>
39ade2f9
AC
2648 New_Copy
2649 (Get_Discriminant_Value
2650 (First_Discriminant (Rhs_Type),
2651 Rhs_Type,
2652 Stored_Constraint (Rhs_Type))));
5d09245e
AC
2653
2654 else
39ade2f9
AC
2655 Rhs_Discr_Val :=
2656 New_Copy
2657 (Get_Discriminant_Value
2658 (First_Discriminant (Rhs_Type),
2659 Rhs_Type,
2660 Stored_Constraint (Rhs_Type)));
5d09245e
AC
2661
2662 end if;
2663 else
8aceda64 2664 return
5d09245e 2665 Make_Raise_Program_Error (Loc,
8aceda64 2666 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2667 end if;
2668
2669 -- Call the TSS equality function with the inferred
2670 -- discriminant values.
2671
2672 return
2673 Make_Function_Call (Loc,
e4494292 2674 Name => New_Occurrence_Of (Eq_Op, Loc),
5d09245e
AC
2675 Parameter_Associations => New_List (
2676 Lhs,
2677 Rhs,
2678 Lhs_Discr_Val,
2679 Rhs_Discr_Val));
2680 end;
d151d6a3 2681
316e3a13
RD
2682 -- All cases other than comparing Unchecked_Union types
2683
d151d6a3 2684 else
7f1a5156
EB
2685 declare
2686 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
7f1a5156
EB
2687 begin
2688 return
2689 Make_Function_Call (Loc,
316e3a13
RD
2690 Name =>
2691 New_Occurrence_Of (Eq_Op, Loc),
7f1a5156
EB
2692 Parameter_Associations => New_List (
2693 OK_Convert_To (T, Lhs),
2694 OK_Convert_To (T, Rhs)));
2695 end;
5d09245e 2696 end if;
d151d6a3 2697 end if;
5d09245e 2698
3058f181
BD
2699 -- Equality composes in Ada 2012 for untagged record types. It also
2700 -- composes for bounded strings, because they are part of the
2701 -- predefined environment. We could make it compose for bounded
2702 -- strings by making them tagged, or by making sure all subcomponents
2703 -- are set to the same value, even when not used. Instead, we have
2704 -- this special case in the compiler, because it's more efficient.
2705
2706 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
5d09245e 2707
08daa782 2708 -- If no TSS has been created for the type, check whether there is
7efc3f2d 2709 -- a primitive equality declared for it.
d151d6a3
AC
2710
2711 declare
bdbb2a40 2712 Op : constant Node_Id := Build_Eq_Call (Typ, Loc, Lhs, Rhs);
d151d6a3
AC
2713
2714 begin
a1fc903a
AC
2715 -- Use user-defined primitive if it exists, otherwise use
2716 -- predefined equality.
2717
3058f181
BD
2718 if Present (Op) then
2719 return Op;
7efc3f2d 2720 else
7efc3f2d
AC
2721 return Make_Op_Eq (Loc, Lhs, Rhs);
2722 end if;
d151d6a3
AC
2723 end;
2724
70482933
RK
2725 else
2726 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2727 end if;
2728
16788d44 2729 -- Non-composite types (always use predefined equality)
70482933 2730
16788d44 2731 else
70482933
RK
2732 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2733 end if;
2734 end Expand_Composite_Equality;
2735
fdac1f80
AC
2736 ------------------------
2737 -- Expand_Concatenate --
2738 ------------------------
70482933 2739
fdac1f80
AC
2740 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2741 Loc : constant Source_Ptr := Sloc (Cnode);
70482933 2742
fdac1f80
AC
2743 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2744 -- Result type of concatenation
70482933 2745
fdac1f80
AC
2746 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2747 -- Component type. Elements of this component type can appear as one
2748 -- of the operands of concatenation as well as arrays.
70482933 2749
ecc4ddde
AC
2750 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2751 -- Index subtype
2752
2753 Ityp : constant Entity_Id := Base_Type (Istyp);
2754 -- Index type. This is the base type of the index subtype, and is used
2755 -- for all computed bounds (which may be out of range of Istyp in the
2756 -- case of null ranges).
70482933 2757
46ff89f3 2758 Artyp : Entity_Id;
fdac1f80
AC
2759 -- This is the type we use to do arithmetic to compute the bounds and
2760 -- lengths of operands. The choice of this type is a little subtle and
2761 -- is discussed in a separate section at the start of the body code.
70482933 2762
fdac1f80
AC
2763 Concatenation_Error : exception;
2764 -- Raised if concatenation is sure to raise a CE
70482933 2765
0ac73189
AC
2766 Result_May_Be_Null : Boolean := True;
2767 -- Reset to False if at least one operand is encountered which is known
2768 -- at compile time to be non-null. Used for handling the special case
2769 -- of setting the high bound to the last operand high bound for a null
2770 -- result, thus ensuring a proper high bound in the super-flat case.
2771
df46b832 2772 N : constant Nat := List_Length (Opnds);
fdac1f80 2773 -- Number of concatenation operands including possibly null operands
df46b832
AC
2774
2775 NN : Nat := 0;
a29262fd
AC
2776 -- Number of operands excluding any known to be null, except that the
2777 -- last operand is always retained, in case it provides the bounds for
2778 -- a null result.
2779
a6d25cad 2780 Opnd : Node_Id := Empty;
a29262fd
AC
2781 -- Current operand being processed in the loop through operands. After
2782 -- this loop is complete, always contains the last operand (which is not
2783 -- the same as Operands (NN), since null operands are skipped).
df46b832
AC
2784
2785 -- Arrays describing the operands, only the first NN entries of each
2786 -- array are set (NN < N when we exclude known null operands).
2787
2788 Is_Fixed_Length : array (1 .. N) of Boolean;
2789 -- True if length of corresponding operand known at compile time
2790
2791 Operands : array (1 .. N) of Node_Id;
a29262fd
AC
2792 -- Set to the corresponding entry in the Opnds list (but note that null
2793 -- operands are excluded, so not all entries in the list are stored).
df46b832
AC
2794
2795 Fixed_Length : array (1 .. N) of Uint;
fdac1f80
AC
2796 -- Set to length of operand. Entries in this array are set only if the
2797 -- corresponding entry in Is_Fixed_Length is True.
df46b832 2798
0ac73189
AC
2799 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2800 -- Set to lower bound of operand. Either an integer literal in the case
2801 -- where the bound is known at compile time, else actual lower bound.
2802 -- The operand low bound is of type Ityp.
2803
df46b832
AC
2804 Var_Length : array (1 .. N) of Entity_Id;
2805 -- Set to an entity of type Natural that contains the length of an
2806 -- operand whose length is not known at compile time. Entries in this
2807 -- array are set only if the corresponding entry in Is_Fixed_Length
46ff89f3 2808 -- is False. The entity is of type Artyp.
df46b832
AC
2809
2810 Aggr_Length : array (0 .. N) of Node_Id;
fdac1f80
AC
2811 -- The J'th entry in an expression node that represents the total length
2812 -- of operands 1 through J. It is either an integer literal node, or a
2813 -- reference to a constant entity with the right value, so it is fine
31fde973 2814 -- to just do a Copy_Node to get an appropriate copy. The extra zeroth
46ff89f3 2815 -- entry always is set to zero. The length is of type Artyp.
df46b832 2816
a6b13d32 2817 Low_Bound : Node_Id := Empty;
0ac73189
AC
2818 -- A tree node representing the low bound of the result (of type Ityp).
2819 -- This is either an integer literal node, or an identifier reference to
2820 -- a constant entity initialized to the appropriate value.
2821
a6d25cad 2822 Last_Opnd_Low_Bound : Node_Id := Empty;
88a27b18
AC
2823 -- A tree node representing the low bound of the last operand. This
2824 -- need only be set if the result could be null. It is used for the
2825 -- special case of setting the right low bound for a null result.
2826 -- This is of type Ityp.
2827
a6d25cad 2828 Last_Opnd_High_Bound : Node_Id := Empty;
a29262fd
AC
2829 -- A tree node representing the high bound of the last operand. This
2830 -- need only be set if the result could be null. It is used for the
2831 -- special case of setting the right high bound for a null result.
2832 -- This is of type Ityp.
2833
dcd5fd67 2834 High_Bound : Node_Id := Empty;
0ac73189 2835 -- A tree node representing the high bound of the result (of type Ityp)
df46b832 2836
a6b13d32 2837 Result : Node_Id := Empty;
0ac73189 2838 -- Result of the concatenation (of type Ityp)
df46b832 2839
d0f8d157 2840 Actions : constant List_Id := New_List;
4c9fe6c7 2841 -- Collect actions to be inserted
d0f8d157 2842
fa969310 2843 Known_Non_Null_Operand_Seen : Boolean;
308e6f3a 2844 -- Set True during generation of the assignments of operands into
fa969310
AC
2845 -- result once an operand known to be non-null has been seen.
2846
2df23f66
AC
2847 function Library_Level_Target return Boolean;
2848 -- Return True if the concatenation is within the expression of the
2849 -- declaration of a library-level object.
2850
fa969310
AC
2851 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2852 -- This function makes an N_Integer_Literal node that is returned in
2853 -- analyzed form with the type set to Artyp. Importantly this literal
2854 -- is not flagged as static, so that if we do computations with it that
2855 -- result in statically detected out of range conditions, we will not
2856 -- generate error messages but instead warning messages.
2857
46ff89f3 2858 function To_Artyp (X : Node_Id) return Node_Id;
fdac1f80 2859 -- Given a node of type Ityp, returns the corresponding value of type
76c597a1
AC
2860 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2861 -- For enum types, the Pos of the value is returned.
fdac1f80
AC
2862
2863 function To_Ityp (X : Node_Id) return Node_Id;
0ac73189 2864 -- The inverse function (uses Val in the case of enumeration types)
fdac1f80 2865
2df23f66
AC
2866 --------------------------
2867 -- Library_Level_Target --
2868 --------------------------
2869
2870 function Library_Level_Target return Boolean is
2871 P : Node_Id := Parent (Cnode);
2872
2873 begin
2874 while Present (P) loop
2875 if Nkind (P) = N_Object_Declaration then
2876 return Is_Library_Level_Entity (Defining_Identifier (P));
2877
2878 -- Prevent the search from going too far
2879
2880 elsif Is_Body_Or_Package_Declaration (P) then
2881 return False;
2882 end if;
2883
2884 P := Parent (P);
2885 end loop;
2886
2887 return False;
2888 end Library_Level_Target;
2889
fa969310
AC
2890 ------------------------
2891 -- Make_Artyp_Literal --
2892 ------------------------
2893
2894 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2895 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2896 begin
2897 Set_Etype (Result, Artyp);
2898 Set_Analyzed (Result, True);
2899 Set_Is_Static_Expression (Result, False);
2900 return Result;
2901 end Make_Artyp_Literal;
76c597a1 2902
fdac1f80 2903 --------------
46ff89f3 2904 -- To_Artyp --
fdac1f80
AC
2905 --------------
2906
46ff89f3 2907 function To_Artyp (X : Node_Id) return Node_Id is
fdac1f80 2908 begin
46ff89f3 2909 if Ityp = Base_Type (Artyp) then
fdac1f80
AC
2910 return X;
2911
2912 elsif Is_Enumeration_Type (Ityp) then
2913 return
2914 Make_Attribute_Reference (Loc,
2915 Prefix => New_Occurrence_Of (Ityp, Loc),
2916 Attribute_Name => Name_Pos,
2917 Expressions => New_List (X));
2918
2919 else
46ff89f3 2920 return Convert_To (Artyp, X);
fdac1f80 2921 end if;
46ff89f3 2922 end To_Artyp;
fdac1f80
AC
2923
2924 -------------
2925 -- To_Ityp --
2926 -------------
2927
2928 function To_Ityp (X : Node_Id) return Node_Id is
2929 begin
2fc05e3d 2930 if Is_Enumeration_Type (Ityp) then
fdac1f80
AC
2931 return
2932 Make_Attribute_Reference (Loc,
2933 Prefix => New_Occurrence_Of (Ityp, Loc),
2934 Attribute_Name => Name_Val,
2935 Expressions => New_List (X));
2936
2937 -- Case where we will do a type conversion
2938
2939 else
76c597a1
AC
2940 if Ityp = Base_Type (Artyp) then
2941 return X;
fdac1f80 2942 else
76c597a1 2943 return Convert_To (Ityp, X);
fdac1f80
AC
2944 end if;
2945 end if;
2946 end To_Ityp;
2947
2948 -- Local Declarations
2949
0ac73189
AC
2950 Opnd_Typ : Entity_Id;
2951 Ent : Entity_Id;
2952 Len : Uint;
2953 J : Nat;
2954 Clen : Node_Id;
2955 Set : Boolean;
70482933 2956
f46faa08
AC
2957 -- Start of processing for Expand_Concatenate
2958
70482933 2959 begin
fdac1f80
AC
2960 -- Choose an appropriate computational type
2961
2962 -- We will be doing calculations of lengths and bounds in this routine
2963 -- and computing one from the other in some cases, e.g. getting the high
2964 -- bound by adding the length-1 to the low bound.
2965
2966 -- We can't just use the index type, or even its base type for this
2967 -- purpose for two reasons. First it might be an enumeration type which
308e6f3a
RW
2968 -- is not suitable for computations of any kind, and second it may
2969 -- simply not have enough range. For example if the index type is
2970 -- -128..+127 then lengths can be up to 256, which is out of range of
2971 -- the type.
fdac1f80
AC
2972
2973 -- For enumeration types, we can simply use Standard_Integer, this is
2974 -- sufficient since the actual number of enumeration literals cannot
2975 -- possibly exceed the range of integer (remember we will be doing the
0ac73189 2976 -- arithmetic with POS values, not representation values).
fdac1f80
AC
2977
2978 if Is_Enumeration_Type (Ityp) then
46ff89f3 2979 Artyp := Standard_Integer;
fdac1f80 2980
59262ebb
AC
2981 -- If index type is Positive, we use the standard unsigned type, to give
2982 -- more room on the top of the range, obviating the need for an overflow
2983 -- check when creating the upper bound. This is needed to avoid junk
2984 -- overflow checks in the common case of String types.
2985
2986 -- ??? Disabled for now
2987
2988 -- elsif Istyp = Standard_Positive then
2989 -- Artyp := Standard_Unsigned;
2990
2fc05e3d
AC
2991 -- For modular types, we use a 32-bit modular type for types whose size
2992 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2993 -- identity type, and for larger unsigned types we use 64-bits.
fdac1f80 2994
2fc05e3d 2995 elsif Is_Modular_Integer_Type (Ityp) then
ecc4ddde 2996 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
46ff89f3 2997 Artyp := Standard_Unsigned;
ecc4ddde 2998 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
46ff89f3 2999 Artyp := Ityp;
fdac1f80 3000 else
46ff89f3 3001 Artyp := RTE (RE_Long_Long_Unsigned);
fdac1f80
AC
3002 end if;
3003
2fc05e3d 3004 -- Similar treatment for signed types
fdac1f80
AC
3005
3006 else
ecc4ddde 3007 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
46ff89f3 3008 Artyp := Standard_Integer;
ecc4ddde 3009 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
46ff89f3 3010 Artyp := Ityp;
fdac1f80 3011 else
46ff89f3 3012 Artyp := Standard_Long_Long_Integer;
fdac1f80
AC
3013 end if;
3014 end if;
3015
fa969310
AC
3016 -- Supply dummy entry at start of length array
3017
3018 Aggr_Length (0) := Make_Artyp_Literal (0);
3019
fdac1f80 3020 -- Go through operands setting up the above arrays
70482933 3021
df46b832
AC
3022 J := 1;
3023 while J <= N loop
3024 Opnd := Remove_Head (Opnds);
0ac73189 3025 Opnd_Typ := Etype (Opnd);
fdac1f80
AC
3026
3027 -- The parent got messed up when we put the operands in a list,
d347f572
AC
3028 -- so now put back the proper parent for the saved operand, that
3029 -- is to say the concatenation node, to make sure that each operand
3030 -- is seen as a subexpression, e.g. if actions must be inserted.
fdac1f80 3031
d347f572 3032 Set_Parent (Opnd, Cnode);
fdac1f80
AC
3033
3034 -- Set will be True when we have setup one entry in the array
3035
df46b832
AC
3036 Set := False;
3037
fdac1f80 3038 -- Singleton element (or character literal) case
df46b832 3039
0ac73189 3040 if Base_Type (Opnd_Typ) = Ctyp then
df46b832
AC
3041 NN := NN + 1;
3042 Operands (NN) := Opnd;
3043 Is_Fixed_Length (NN) := True;
3044 Fixed_Length (NN) := Uint_1;
0ac73189 3045 Result_May_Be_Null := False;
fdac1f80 3046
a29262fd
AC
3047 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3048 -- since we know that the result cannot be null).
fdac1f80 3049
0ac73189
AC
3050 Opnd_Low_Bound (NN) :=
3051 Make_Attribute_Reference (Loc,
e4494292 3052 Prefix => New_Occurrence_Of (Istyp, Loc),
0ac73189
AC
3053 Attribute_Name => Name_First);
3054
df46b832
AC
3055 Set := True;
3056
fdac1f80 3057 -- String literal case (can only occur for strings of course)
df46b832
AC
3058
3059 elsif Nkind (Opnd) = N_String_Literal then
0ac73189 3060 Len := String_Literal_Length (Opnd_Typ);
df46b832 3061
a29262fd
AC
3062 if Len /= 0 then
3063 Result_May_Be_Null := False;
3064 end if;
3065
88a27b18 3066 -- Capture last operand low and high bound if result could be null
a29262fd
AC
3067
3068 if J = N and then Result_May_Be_Null then
88a27b18
AC
3069 Last_Opnd_Low_Bound :=
3070 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3071
a29262fd 3072 Last_Opnd_High_Bound :=
88a27b18 3073 Make_Op_Subtract (Loc,
a29262fd
AC
3074 Left_Opnd =>
3075 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
59262ebb 3076 Right_Opnd => Make_Integer_Literal (Loc, 1));
a29262fd
AC
3077 end if;
3078
3079 -- Skip null string literal
fdac1f80 3080
0ac73189 3081 if J < N and then Len = 0 then
df46b832
AC
3082 goto Continue;
3083 end if;
3084
3085 NN := NN + 1;
3086 Operands (NN) := Opnd;
3087 Is_Fixed_Length (NN) := True;
0ac73189
AC
3088
3089 -- Set length and bounds
3090
df46b832 3091 Fixed_Length (NN) := Len;
0ac73189
AC
3092
3093 Opnd_Low_Bound (NN) :=
3094 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3095
df46b832
AC
3096 Set := True;
3097
3098 -- All other cases
3099
3100 else
3101 -- Check constrained case with known bounds
3102
0ac73189 3103 if Is_Constrained (Opnd_Typ) then
df46b832 3104 declare
df46b832
AC
3105 Index : constant Node_Id := First_Index (Opnd_Typ);
3106 Indx_Typ : constant Entity_Id := Etype (Index);
3107 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3108 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3109
3110 begin
fdac1f80
AC
3111 -- Fixed length constrained array type with known at compile
3112 -- time bounds is last case of fixed length operand.
df46b832
AC
3113
3114 if Compile_Time_Known_Value (Lo)
3115 and then
3116 Compile_Time_Known_Value (Hi)
3117 then
3118 declare
3119 Loval : constant Uint := Expr_Value (Lo);
3120 Hival : constant Uint := Expr_Value (Hi);
3121 Len : constant Uint :=
3122 UI_Max (Hival - Loval + 1, Uint_0);
3123
3124 begin
0ac73189
AC
3125 if Len > 0 then
3126 Result_May_Be_Null := False;
df46b832 3127 end if;
0ac73189 3128
88a27b18 3129 -- Capture last operand bounds if result could be null
a29262fd
AC
3130
3131 if J = N and then Result_May_Be_Null then
88a27b18
AC
3132 Last_Opnd_Low_Bound :=
3133 Convert_To (Ityp,
3134 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3135
a29262fd
AC
3136 Last_Opnd_High_Bound :=
3137 Convert_To (Ityp,
39ade2f9 3138 Make_Integer_Literal (Loc, Expr_Value (Hi)));
a29262fd
AC
3139 end if;
3140
3141 -- Exclude null length case unless last operand
0ac73189 3142
a29262fd 3143 if J < N and then Len = 0 then
0ac73189
AC
3144 goto Continue;
3145 end if;
3146
3147 NN := NN + 1;
3148 Operands (NN) := Opnd;
3149 Is_Fixed_Length (NN) := True;
3150 Fixed_Length (NN) := Len;
3151
39ade2f9
AC
3152 Opnd_Low_Bound (NN) :=
3153 To_Ityp
3154 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
0ac73189 3155 Set := True;
df46b832
AC
3156 end;
3157 end if;
3158 end;
3159 end if;
3160
0ac73189
AC
3161 -- All cases where the length is not known at compile time, or the
3162 -- special case of an operand which is known to be null but has a
3163 -- lower bound other than 1 or is other than a string type.
df46b832
AC
3164
3165 if not Set then
3166 NN := NN + 1;
0ac73189
AC
3167
3168 -- Capture operand bounds
3169
3170 Opnd_Low_Bound (NN) :=
3171 Make_Attribute_Reference (Loc,
3172 Prefix =>
3173 Duplicate_Subexpr (Opnd, Name_Req => True),
3174 Attribute_Name => Name_First);
3175
88a27b18
AC
3176 -- Capture last operand bounds if result could be null
3177
a29262fd 3178 if J = N and Result_May_Be_Null then
88a27b18
AC
3179 Last_Opnd_Low_Bound :=
3180 Convert_To (Ityp,
3181 Make_Attribute_Reference (Loc,
3182 Prefix =>
3183 Duplicate_Subexpr (Opnd, Name_Req => True),
3184 Attribute_Name => Name_First));
3185
a29262fd
AC
3186 Last_Opnd_High_Bound :=
3187 Convert_To (Ityp,
3188 Make_Attribute_Reference (Loc,
3189 Prefix =>
3190 Duplicate_Subexpr (Opnd, Name_Req => True),
3191 Attribute_Name => Name_Last));
3192 end if;
0ac73189
AC
3193
3194 -- Capture length of operand in entity
3195
df46b832
AC
3196 Operands (NN) := Opnd;
3197 Is_Fixed_Length (NN) := False;
3198
191fcb3a 3199 Var_Length (NN) := Make_Temporary (Loc, 'L');
df46b832 3200
d0f8d157 3201 Append_To (Actions,
df46b832
AC
3202 Make_Object_Declaration (Loc,
3203 Defining_Identifier => Var_Length (NN),
3204 Constant_Present => True,
39ade2f9 3205 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3206 Expression =>
3207 Make_Attribute_Reference (Loc,
3208 Prefix =>
3209 Duplicate_Subexpr (Opnd, Name_Req => True),
d0f8d157 3210 Attribute_Name => Name_Length)));
df46b832
AC
3211 end if;
3212 end if;
3213
3214 -- Set next entry in aggregate length array
3215
3216 -- For first entry, make either integer literal for fixed length
0ac73189 3217 -- or a reference to the saved length for variable length.
df46b832
AC
3218
3219 if NN = 1 then
3220 if Is_Fixed_Length (1) then
39ade2f9 3221 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
df46b832 3222 else
e4494292 3223 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
df46b832
AC
3224 end if;
3225
3226 -- If entry is fixed length and only fixed lengths so far, make
3227 -- appropriate new integer literal adding new length.
3228
3229 elsif Is_Fixed_Length (NN)
3230 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3231 then
3232 Aggr_Length (NN) :=
3233 Make_Integer_Literal (Loc,
3234 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3235
d0f8d157
AC
3236 -- All other cases, construct an addition node for the length and
3237 -- create an entity initialized to this length.
df46b832
AC
3238
3239 else
191fcb3a 3240 Ent := Make_Temporary (Loc, 'L');
df46b832
AC
3241
3242 if Is_Fixed_Length (NN) then
3243 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3244 else
e4494292 3245 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
df46b832
AC
3246 end if;
3247
d0f8d157 3248 Append_To (Actions,
df46b832
AC
3249 Make_Object_Declaration (Loc,
3250 Defining_Identifier => Ent,
3251 Constant_Present => True,
39ade2f9 3252 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
3253 Expression =>
3254 Make_Op_Add (Loc,
683af98c 3255 Left_Opnd => New_Copy_Tree (Aggr_Length (NN - 1)),
d0f8d157 3256 Right_Opnd => Clen)));
df46b832 3257
76c597a1 3258 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
df46b832
AC
3259 end if;
3260
3261 <<Continue>>
3262 J := J + 1;
3263 end loop;
3264
a29262fd 3265 -- If we have only skipped null operands, return the last operand
df46b832
AC
3266
3267 if NN = 0 then
a29262fd 3268 Result := Opnd;
df46b832
AC
3269 goto Done;
3270 end if;
3271
3272 -- If we have only one non-null operand, return it and we are done.
3273 -- There is one case in which this cannot be done, and that is when
fdac1f80
AC
3274 -- the sole operand is of the element type, in which case it must be
3275 -- converted to an array, and the easiest way of doing that is to go
df46b832
AC
3276 -- through the normal general circuit.
3277
533369aa 3278 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
df46b832
AC
3279 Result := Operands (1);
3280 goto Done;
3281 end if;
3282
3283 -- Cases where we have a real concatenation
3284
fdac1f80
AC
3285 -- Next step is to find the low bound for the result array that we
3286 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3287
3288 -- If the ultimate ancestor of the index subtype is a constrained array
3289 -- definition, then the lower bound is that of the index subtype as
3290 -- specified by (RM 4.5.3(6)).
3291
3292 -- The right test here is to go to the root type, and then the ultimate
3293 -- ancestor is the first subtype of this root type.
3294
3295 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
0ac73189 3296 Low_Bound :=
fdac1f80
AC
3297 Make_Attribute_Reference (Loc,
3298 Prefix =>
3299 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
0ac73189 3300 Attribute_Name => Name_First);
df46b832
AC
3301
3302 -- If the first operand in the list has known length we know that
3303 -- the lower bound of the result is the lower bound of this operand.
3304
fdac1f80 3305 elsif Is_Fixed_Length (1) then
0ac73189 3306 Low_Bound := Opnd_Low_Bound (1);
df46b832
AC
3307
3308 -- OK, we don't know the lower bound, we have to build a horrible
9b16cb57 3309 -- if expression node of the form
df46b832
AC
3310
3311 -- if Cond1'Length /= 0 then
0ac73189 3312 -- Opnd1 low bound
df46b832
AC
3313 -- else
3314 -- if Opnd2'Length /= 0 then
0ac73189 3315 -- Opnd2 low bound
df46b832
AC
3316 -- else
3317 -- ...
3318
3319 -- The nesting ends either when we hit an operand whose length is known
3320 -- at compile time, or on reaching the last operand, whose low bound we
3321 -- take unconditionally whether or not it is null. It's easiest to do
3322 -- this with a recursive procedure:
3323
3324 else
3325 declare
3326 function Get_Known_Bound (J : Nat) return Node_Id;
3327 -- Returns the lower bound determined by operands J .. NN
3328
3329 ---------------------
3330 -- Get_Known_Bound --
3331 ---------------------
3332
3333 function Get_Known_Bound (J : Nat) return Node_Id is
df46b832 3334 begin
0ac73189 3335 if Is_Fixed_Length (J) or else J = NN then
683af98c 3336 return New_Copy_Tree (Opnd_Low_Bound (J));
70482933
RK
3337
3338 else
df46b832 3339 return
9b16cb57 3340 Make_If_Expression (Loc,
df46b832
AC
3341 Expressions => New_List (
3342
3343 Make_Op_Ne (Loc,
e4494292
RD
3344 Left_Opnd =>
3345 New_Occurrence_Of (Var_Length (J), Loc),
3346 Right_Opnd =>
3347 Make_Integer_Literal (Loc, 0)),
df46b832 3348
683af98c 3349 New_Copy_Tree (Opnd_Low_Bound (J)),
df46b832 3350 Get_Known_Bound (J + 1)));
70482933 3351 end if;
df46b832 3352 end Get_Known_Bound;
70482933 3353
df46b832 3354 begin
191fcb3a 3355 Ent := Make_Temporary (Loc, 'L');
df46b832 3356
d0f8d157 3357 Append_To (Actions,
df46b832
AC
3358 Make_Object_Declaration (Loc,
3359 Defining_Identifier => Ent,
3360 Constant_Present => True,
0ac73189 3361 Object_Definition => New_Occurrence_Of (Ityp, Loc),
d0f8d157 3362 Expression => Get_Known_Bound (1)));
df46b832 3363
e4494292 3364 Low_Bound := New_Occurrence_Of (Ent, Loc);
df46b832
AC
3365 end;
3366 end if;
70482933 3367
a6b13d32
AC
3368 pragma Assert (Present (Low_Bound));
3369
76c597a1
AC
3370 -- Now we can safely compute the upper bound, normally
3371 -- Low_Bound + Length - 1.
0ac73189
AC
3372
3373 High_Bound :=
cc6f5d75
AC
3374 To_Ityp
3375 (Make_Op_Add (Loc,
683af98c 3376 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
cc6f5d75
AC
3377 Right_Opnd =>
3378 Make_Op_Subtract (Loc,
683af98c 3379 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
cc6f5d75 3380 Right_Opnd => Make_Artyp_Literal (1))));
0ac73189 3381
59262ebb 3382 -- Note that calculation of the high bound may cause overflow in some
bded454f
RD
3383 -- very weird cases, so in the general case we need an overflow check on
3384 -- the high bound. We can avoid this for the common case of string types
3385 -- and other types whose index is Positive, since we chose a wider range
54740d7d
AC
3386 -- for the arithmetic type. If checks are suppressed we do not set the
3387 -- flag, and possibly superfluous warnings will be omitted.
76c597a1 3388
54740d7d
AC
3389 if Istyp /= Standard_Positive
3390 and then not Overflow_Checks_Suppressed (Istyp)
3391 then
59262ebb
AC
3392 Activate_Overflow_Check (High_Bound);
3393 end if;
76c597a1
AC
3394
3395 -- Handle the exceptional case where the result is null, in which case
a29262fd
AC
3396 -- case the bounds come from the last operand (so that we get the proper
3397 -- bounds if the last operand is super-flat).
3398
0ac73189 3399 if Result_May_Be_Null then
88a27b18 3400 Low_Bound :=
9b16cb57 3401 Make_If_Expression (Loc,
88a27b18
AC
3402 Expressions => New_List (
3403 Make_Op_Eq (Loc,
683af98c 3404 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
88a27b18
AC
3405 Right_Opnd => Make_Artyp_Literal (0)),
3406 Last_Opnd_Low_Bound,
3407 Low_Bound));
3408
0ac73189 3409 High_Bound :=
9b16cb57 3410 Make_If_Expression (Loc,
0ac73189
AC
3411 Expressions => New_List (
3412 Make_Op_Eq (Loc,
683af98c 3413 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
fa969310 3414 Right_Opnd => Make_Artyp_Literal (0)),
a29262fd 3415 Last_Opnd_High_Bound,
0ac73189
AC
3416 High_Bound));
3417 end if;
3418
d0f8d157
AC
3419 -- Here is where we insert the saved up actions
3420
3421 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3422
602a7ec0
AC
3423 -- Now we construct an array object with appropriate bounds. We mark
3424 -- the target as internal to prevent useless initialization when
e526d0c7
AC
3425 -- Initialize_Scalars is enabled. Also since this is the actual result
3426 -- entity, we make sure we have debug information for the result.
70482933 3427
191fcb3a 3428 Ent := Make_Temporary (Loc, 'S');
923ecd0e
HK
3429 Set_Is_Internal (Ent);
3430 Set_Debug_Info_Needed (Ent);
70482933 3431
76c597a1 3432 -- If the bound is statically known to be out of range, we do not want
fa969310
AC
3433 -- to abort, we want a warning and a runtime constraint error. Note that
3434 -- we have arranged that the result will not be treated as a static
3435 -- constant, so we won't get an illegality during this insertion.
76c597a1 3436
df46b832
AC
3437 Insert_Action (Cnode,
3438 Make_Object_Declaration (Loc,
3439 Defining_Identifier => Ent,
df46b832
AC
3440 Object_Definition =>
3441 Make_Subtype_Indication (Loc,
fdac1f80 3442 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
df46b832
AC
3443 Constraint =>
3444 Make_Index_Or_Discriminant_Constraint (Loc,
3445 Constraints => New_List (
3446 Make_Range (Loc,
0ac73189
AC
3447 Low_Bound => Low_Bound,
3448 High_Bound => High_Bound))))),
df46b832
AC
3449 Suppress => All_Checks);
3450
d1f453b7
RD
3451 -- If the result of the concatenation appears as the initializing
3452 -- expression of an object declaration, we can just rename the
3453 -- result, rather than copying it.
3454
3455 Set_OK_To_Rename (Ent);
3456
76c597a1
AC
3457 -- Catch the static out of range case now
3458
3459 if Raises_Constraint_Error (High_Bound) then
3460 raise Concatenation_Error;
3461 end if;
3462
df46b832
AC
3463 -- Now we will generate the assignments to do the actual concatenation
3464
bded454f
RD
3465 -- There is one case in which we will not do this, namely when all the
3466 -- following conditions are met:
3467
3468 -- The result type is Standard.String
3469
3470 -- There are nine or fewer retained (non-null) operands
3471
2df23f66
AC
3472 -- The optimization level is -O0 or the debug flag gnatd.C is set,
3473 -- and the debug flag gnatd.c is not set.
bded454f
RD
3474
3475 -- The corresponding System.Concat_n.Str_Concat_n routine is
3476 -- available in the run time.
3477
bded454f
RD
3478 -- If all these conditions are met then we generate a call to the
3479 -- relevant concatenation routine. The purpose of this is to avoid
3480 -- undesirable code bloat at -O0.
3481
2df23f66
AC
3482 -- If the concatenation is within the declaration of a library-level
3483 -- object, we call the built-in concatenation routines to prevent code
3484 -- bloat, regardless of the optimization level. This is space efficient
3485 -- and prevents linking problems when units are compiled with different
3486 -- optimization levels.
3487
bded454f
RD
3488 if Atyp = Standard_String
3489 and then NN in 2 .. 9
2df23f66
AC
3490 and then (((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3491 and then not Debug_Flag_Dot_C)
3492 or else Library_Level_Target)
bded454f
RD
3493 then
3494 declare
3495 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3496 (RE_Str_Concat_2,
3497 RE_Str_Concat_3,
3498 RE_Str_Concat_4,
3499 RE_Str_Concat_5,
3500 RE_Str_Concat_6,
3501 RE_Str_Concat_7,
3502 RE_Str_Concat_8,
3503 RE_Str_Concat_9);
3504
3505 begin
3506 if RTE_Available (RR (NN)) then
3507 declare
3508 Opnds : constant List_Id :=
3509 New_List (New_Occurrence_Of (Ent, Loc));
3510
3511 begin
3512 for J in 1 .. NN loop
3513 if Is_List_Member (Operands (J)) then
3514 Remove (Operands (J));
3515 end if;
3516
3517 if Base_Type (Etype (Operands (J))) = Ctyp then
3518 Append_To (Opnds,
3519 Make_Aggregate (Loc,
3520 Component_Associations => New_List (
3521 Make_Component_Association (Loc,
3522 Choices => New_List (
3523 Make_Integer_Literal (Loc, 1)),
3524 Expression => Operands (J)))));
3525
3526 else
3527 Append_To (Opnds, Operands (J));
3528 end if;
3529 end loop;
3530
3531 Insert_Action (Cnode,
3532 Make_Procedure_Call_Statement (Loc,
e4494292 3533 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
bded454f
RD
3534 Parameter_Associations => Opnds));
3535
e4494292 3536 Result := New_Occurrence_Of (Ent, Loc);
bded454f
RD
3537 goto Done;
3538 end;
3539 end if;
3540 end;
3541 end if;
3542
3543 -- Not special case so generate the assignments
3544
76c597a1
AC
3545 Known_Non_Null_Operand_Seen := False;
3546
df46b832
AC
3547 for J in 1 .. NN loop
3548 declare
3549 Lo : constant Node_Id :=
3550 Make_Op_Add (Loc,
683af98c 3551 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
df46b832
AC
3552 Right_Opnd => Aggr_Length (J - 1));
3553
3554 Hi : constant Node_Id :=
3555 Make_Op_Add (Loc,
683af98c 3556 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
df46b832
AC
3557 Right_Opnd =>
3558 Make_Op_Subtract (Loc,
3559 Left_Opnd => Aggr_Length (J),
fa969310 3560 Right_Opnd => Make_Artyp_Literal (1)));
70482933 3561
df46b832 3562 begin
fdac1f80
AC
3563 -- Singleton case, simple assignment
3564
3565 if Base_Type (Etype (Operands (J))) = Ctyp then
76c597a1 3566 Known_Non_Null_Operand_Seen := True;
df46b832
AC
3567 Insert_Action (Cnode,
3568 Make_Assignment_Statement (Loc,
3569 Name =>
3570 Make_Indexed_Component (Loc,
3571 Prefix => New_Occurrence_Of (Ent, Loc),
fdac1f80 3572 Expressions => New_List (To_Ityp (Lo))),
df46b832
AC
3573 Expression => Operands (J)),
3574 Suppress => All_Checks);
70482933 3575
76c597a1
AC
3576 -- Array case, slice assignment, skipped when argument is fixed
3577 -- length and known to be null.
fdac1f80 3578
76c597a1
AC
3579 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3580 declare
3581 Assign : Node_Id :=
3582 Make_Assignment_Statement (Loc,
3583 Name =>
3584 Make_Slice (Loc,
3585 Prefix =>
3586 New_Occurrence_Of (Ent, Loc),
3587 Discrete_Range =>
3588 Make_Range (Loc,
3589 Low_Bound => To_Ityp (Lo),
3590 High_Bound => To_Ityp (Hi))),
3591 Expression => Operands (J));
3592 begin
3593 if Is_Fixed_Length (J) then
3594 Known_Non_Null_Operand_Seen := True;
3595
3596 elsif not Known_Non_Null_Operand_Seen then
3597
3598 -- Here if operand length is not statically known and no
3599 -- operand known to be non-null has been processed yet.
3600 -- If operand length is 0, we do not need to perform the
3601 -- assignment, and we must avoid the evaluation of the
3602 -- high bound of the slice, since it may underflow if the
3603 -- low bound is Ityp'First.
3604
3605 Assign :=
3606 Make_Implicit_If_Statement (Cnode,
39ade2f9 3607 Condition =>
76c597a1 3608 Make_Op_Ne (Loc,
39ade2f9 3609 Left_Opnd =>
76c597a1
AC
3610 New_Occurrence_Of (Var_Length (J), Loc),
3611 Right_Opnd => Make_Integer_Literal (Loc, 0)),
39ade2f9 3612 Then_Statements => New_List (Assign));
76c597a1 3613 end if;
fa969310 3614
76c597a1
AC
3615 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3616 end;
df46b832
AC
3617 end if;
3618 end;
3619 end loop;
70482933 3620
0ac73189
AC
3621 -- Finally we build the result, which is a reference to the array object
3622
e4494292 3623 Result := New_Occurrence_Of (Ent, Loc);
70482933 3624
df46b832 3625 <<Done>>
a6b13d32 3626 pragma Assert (Present (Result));
df46b832 3627 Rewrite (Cnode, Result);
fdac1f80
AC
3628 Analyze_And_Resolve (Cnode, Atyp);
3629
3630 exception
3631 when Concatenation_Error =>
76c597a1
AC
3632
3633 -- Kill warning generated for the declaration of the static out of
3634 -- range high bound, and instead generate a Constraint_Error with
3635 -- an appropriate specific message.
3636
3637 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3638 Apply_Compile_Time_Constraint_Error
3639 (N => Cnode,
324ac540 3640 Msg => "concatenation result upper bound out of range??",
76c597a1 3641 Reason => CE_Range_Check_Failed);
fdac1f80 3642 end Expand_Concatenate;
70482933 3643
f6194278
RD
3644 ---------------------------------------------------
3645 -- Expand_Membership_Minimize_Eliminate_Overflow --
3646 ---------------------------------------------------
3647
3648 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3649 pragma Assert (Nkind (N) = N_In);
3650 -- Despite the name, this routine applies only to N_In, not to
3651 -- N_Not_In. The latter is always rewritten as not (X in Y).
3652
71fb4dc8
AC
3653 Result_Type : constant Entity_Id := Etype (N);
3654 -- Capture result type, may be a derived boolean type
3655
b6b5cca8
AC
3656 Loc : constant Source_Ptr := Sloc (N);
3657 Lop : constant Node_Id := Left_Opnd (N);
3658 Rop : constant Node_Id := Right_Opnd (N);
3659
3660 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3661 -- is thus tempting to capture these values, but due to the rewrites
3662 -- that occur as a result of overflow checking, these values change
3663 -- as we go along, and it is safe just to always use Etype explicitly.
f6194278
RD
3664
3665 Restype : constant Entity_Id := Etype (N);
3666 -- Save result type
3667
3668 Lo, Hi : Uint;
d8192289 3669 -- Bounds in Minimize calls, not used currently
f6194278
RD
3670
3671 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3672 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3673
3674 begin
a7f1b24f 3675 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
f6194278
RD
3676
3677 -- If right operand is a subtype name, and the subtype name has no
3678 -- predicate, then we can just replace the right operand with an
3679 -- explicit range T'First .. T'Last, and use the explicit range code.
3680
b6b5cca8
AC
3681 if Nkind (Rop) /= N_Range
3682 and then No (Predicate_Function (Etype (Rop)))
3683 then
3684 declare
3685 Rtyp : constant Entity_Id := Etype (Rop);
3686 begin
3687 Rewrite (Rop,
3688 Make_Range (Loc,
cc6f5d75 3689 Low_Bound =>
b6b5cca8
AC
3690 Make_Attribute_Reference (Loc,
3691 Attribute_Name => Name_First,
e4494292 3692 Prefix => New_Occurrence_Of (Rtyp, Loc)),
b6b5cca8
AC
3693 High_Bound =>
3694 Make_Attribute_Reference (Loc,
3695 Attribute_Name => Name_Last,
e4494292 3696 Prefix => New_Occurrence_Of (Rtyp, Loc))));
b6b5cca8
AC
3697 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3698 end;
f6194278
RD
3699 end if;
3700
3701 -- Here for the explicit range case. Note that the bounds of the range
3702 -- have not been processed for minimized or eliminated checks.
3703
3704 if Nkind (Rop) = N_Range then
a7f1b24f 3705 Minimize_Eliminate_Overflows
b6b5cca8 3706 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
a7f1b24f 3707 Minimize_Eliminate_Overflows
c7e152b5 3708 (High_Bound (Rop), Lo, Hi, Top_Level => False);
f6194278
RD
3709
3710 -- We have A in B .. C, treated as A >= B and then A <= C
3711
3712 -- Bignum case
3713
b6b5cca8 3714 if Is_RTE (Etype (Lop), RE_Bignum)
f6194278
RD
3715 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3716 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3717 then
3718 declare
3719 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3720 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
71fb4dc8
AC
3721 L : constant Entity_Id :=
3722 Make_Defining_Identifier (Loc, Name_uL);
f6194278
RD
3723 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3724 Lbound : constant Node_Id :=
3725 Convert_To_Bignum (Low_Bound (Rop));
3726 Hbound : constant Node_Id :=
3727 Convert_To_Bignum (High_Bound (Rop));
3728
71fb4dc8
AC
3729 -- Now we rewrite the membership test node to look like
3730
3731 -- do
3732 -- Bnn : Result_Type;
3733 -- declare
3734 -- M : Mark_Id := SS_Mark;
3735 -- L : Bignum := Lopnd;
3736 -- begin
3737 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3738 -- SS_Release (M);
3739 -- end;
3740 -- in
3741 -- Bnn
3742 -- end
f6194278
RD
3743
3744 begin
71fb4dc8
AC
3745 -- Insert declaration of L into declarations of bignum block
3746
f6194278
RD
3747 Insert_After
3748 (Last (Declarations (Blk)),
3749 Make_Object_Declaration (Loc,
71fb4dc8 3750 Defining_Identifier => L,
f6194278
RD
3751 Object_Definition =>
3752 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3753 Expression => Lopnd));
3754
71fb4dc8
AC
3755 -- Insert assignment to Bnn into expressions of bignum block
3756
f6194278
RD
3757 Insert_Before
3758 (First (Statements (Handled_Statement_Sequence (Blk))),
3759 Make_Assignment_Statement (Loc,
3760 Name => New_Occurrence_Of (Bnn, Loc),
3761 Expression =>
3762 Make_And_Then (Loc,
cc6f5d75 3763 Left_Opnd =>
f6194278
RD
3764 Make_Function_Call (Loc,
3765 Name =>
3766 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
71fb4dc8
AC
3767 Parameter_Associations => New_List (
3768 New_Occurrence_Of (L, Loc),
3769 Lbound)),
cc6f5d75 3770
f6194278
RD
3771 Right_Opnd =>
3772 Make_Function_Call (Loc,
3773 Name =>
71fb4dc8
AC
3774 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3775 Parameter_Associations => New_List (
3776 New_Occurrence_Of (L, Loc),
3777 Hbound)))));
f6194278 3778
71fb4dc8 3779 -- Now rewrite the node
f6194278 3780
71fb4dc8
AC
3781 Rewrite (N,
3782 Make_Expression_With_Actions (Loc,
3783 Actions => New_List (
3784 Make_Object_Declaration (Loc,
3785 Defining_Identifier => Bnn,
3786 Object_Definition =>
3787 New_Occurrence_Of (Result_Type, Loc)),
3788 Blk),
3789 Expression => New_Occurrence_Of (Bnn, Loc)));
3790 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
3791 return;
3792 end;
3793
3794 -- Here if no bignums around
3795
3796 else
3797 -- Case where types are all the same
3798
b6b5cca8 3799 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
f6194278 3800 and then
b6b5cca8 3801 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
f6194278
RD
3802 then
3803 null;
3804
3805 -- If types are not all the same, it means that we have rewritten
3806 -- at least one of them to be of type Long_Long_Integer, and we
3807 -- will convert the other operands to Long_Long_Integer.
3808
3809 else
3810 Convert_To_And_Rewrite (LLIB, Lop);
71fb4dc8
AC
3811 Set_Analyzed (Lop, False);
3812 Analyze_And_Resolve (Lop, LLIB);
3813
3814 -- For the right operand, avoid unnecessary recursion into
3815 -- this routine, we know that overflow is not possible.
f6194278
RD
3816
3817 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3818 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3819 Set_Analyzed (Rop, False);
71fb4dc8 3820 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
f6194278
RD
3821 end if;
3822
3823 -- Now the three operands are of the same signed integer type,
b6b5cca8
AC
3824 -- so we can use the normal expansion routine for membership,
3825 -- setting the flag to prevent recursion into this procedure.
f6194278
RD
3826
3827 Set_No_Minimize_Eliminate (N);
3828 Expand_N_In (N);
3829 end if;
3830
3831 -- Right operand is a subtype name and the subtype has a predicate. We
f6636994
AC
3832 -- have to make sure the predicate is checked, and for that we need to
3833 -- use the standard N_In circuitry with appropriate types.
f6194278
RD
3834
3835 else
b6b5cca8 3836 pragma Assert (Present (Predicate_Function (Etype (Rop))));
f6194278
RD
3837
3838 -- If types are "right", just call Expand_N_In preventing recursion
3839
b6b5cca8 3840 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
f6194278
RD
3841 Set_No_Minimize_Eliminate (N);
3842 Expand_N_In (N);
3843
3844 -- Bignum case
3845
b6b5cca8 3846 elsif Is_RTE (Etype (Lop), RE_Bignum) then
f6194278 3847
71fb4dc8 3848 -- For X in T, we want to rewrite our node as
f6194278 3849
71fb4dc8
AC
3850 -- do
3851 -- Bnn : Result_Type;
f6194278 3852
71fb4dc8
AC
3853 -- declare
3854 -- M : Mark_Id := SS_Mark;
3855 -- Lnn : Long_Long_Integer'Base
3856 -- Nnn : Bignum;
f6194278 3857
71fb4dc8
AC
3858 -- begin
3859 -- Nnn := X;
3860
3861 -- if not Bignum_In_LLI_Range (Nnn) then
3862 -- Bnn := False;
3863 -- else
3864 -- Lnn := From_Bignum (Nnn);
3865 -- Bnn :=
3866 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3867 -- and then T'Base (Lnn) in T;
3868 -- end if;
cc6f5d75
AC
3869
3870 -- SS_Release (M);
71fb4dc8
AC
3871 -- end
3872 -- in
3873 -- Bnn
3874 -- end
f6194278 3875
f6636994 3876 -- A bit gruesome, but there doesn't seem to be a simpler way
f6194278
RD
3877
3878 declare
b6b5cca8
AC
3879 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3880 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3881 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3882 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
71fb4dc8
AC
3883 T : constant Entity_Id := Etype (Rop);
3884 TB : constant Entity_Id := Base_Type (T);
b6b5cca8 3885 Nin : Node_Id;
f6194278
RD
3886
3887 begin
71fb4dc8 3888 -- Mark the last membership operation to prevent recursion
f6194278
RD
3889
3890 Nin :=
3891 Make_In (Loc,
f6636994
AC
3892 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
3893 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
3894 Set_No_Minimize_Eliminate (Nin);
3895
3896 -- Now decorate the block
3897
3898 Insert_After
3899 (Last (Declarations (Blk)),
3900 Make_Object_Declaration (Loc,
3901 Defining_Identifier => Lnn,
3902 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
3903
3904 Insert_After
3905 (Last (Declarations (Blk)),
3906 Make_Object_Declaration (Loc,
3907 Defining_Identifier => Nnn,
3908 Object_Definition =>
3909 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
3910
3911 Insert_List_Before
3912 (First (Statements (Handled_Statement_Sequence (Blk))),
3913 New_List (
3914 Make_Assignment_Statement (Loc,
3915 Name => New_Occurrence_Of (Nnn, Loc),
3916 Expression => Relocate_Node (Lop)),
3917
8b1011c0 3918 Make_Implicit_If_Statement (N,
f6194278 3919 Condition =>
71fb4dc8
AC
3920 Make_Op_Not (Loc,
3921 Right_Opnd =>
3922 Make_Function_Call (Loc,
3923 Name =>
3924 New_Occurrence_Of
3925 (RTE (RE_Bignum_In_LLI_Range), Loc),
3926 Parameter_Associations => New_List (
3927 New_Occurrence_Of (Nnn, Loc)))),
f6194278
RD
3928
3929 Then_Statements => New_List (
3930 Make_Assignment_Statement (Loc,
3931 Name => New_Occurrence_Of (Bnn, Loc),
3932 Expression =>
3933 New_Occurrence_Of (Standard_False, Loc))),
3934
3935 Else_Statements => New_List (
3936 Make_Assignment_Statement (Loc,
3937 Name => New_Occurrence_Of (Lnn, Loc),
3938 Expression =>
3939 Make_Function_Call (Loc,
3940 Name =>
3941 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
3942 Parameter_Associations => New_List (
3943 New_Occurrence_Of (Nnn, Loc)))),
3944
3945 Make_Assignment_Statement (Loc,
71fb4dc8 3946 Name => New_Occurrence_Of (Bnn, Loc),
f6194278
RD
3947 Expression =>
3948 Make_And_Then (Loc,
71fb4dc8 3949 Left_Opnd =>
f6194278 3950 Make_In (Loc,
71fb4dc8 3951 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
f6194278 3952 Right_Opnd =>
71fb4dc8
AC
3953 Make_Range (Loc,
3954 Low_Bound =>
3955 Convert_To (LLIB,
3956 Make_Attribute_Reference (Loc,
3957 Attribute_Name => Name_First,
3958 Prefix =>
3959 New_Occurrence_Of (TB, Loc))),
3960
3961 High_Bound =>
3962 Convert_To (LLIB,
3963 Make_Attribute_Reference (Loc,
3964 Attribute_Name => Name_Last,
3965 Prefix =>
3966 New_Occurrence_Of (TB, Loc))))),
3967
f6194278
RD
3968 Right_Opnd => Nin))))));
3969
71fb4dc8 3970 -- Now we can do the rewrite
f6194278 3971
71fb4dc8
AC
3972 Rewrite (N,
3973 Make_Expression_With_Actions (Loc,
3974 Actions => New_List (
3975 Make_Object_Declaration (Loc,
3976 Defining_Identifier => Bnn,
3977 Object_Definition =>
3978 New_Occurrence_Of (Result_Type, Loc)),
3979 Blk),
3980 Expression => New_Occurrence_Of (Bnn, Loc)));
3981 Analyze_And_Resolve (N, Result_Type);
f6194278
RD
3982 return;
3983 end;
3984
3985 -- Not bignum case, but types don't match (this means we rewrote the
b6b5cca8 3986 -- left operand to be Long_Long_Integer).
f6194278
RD
3987
3988 else
b6b5cca8 3989 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
f6194278 3990
71fb4dc8
AC
3991 -- We rewrite the membership test as (where T is the type with
3992 -- the predicate, i.e. the type of the right operand)
f6194278 3993
71fb4dc8
AC
3994 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3995 -- and then T'Base (Lop) in T
f6194278
RD
3996
3997 declare
71fb4dc8
AC
3998 T : constant Entity_Id := Etype (Rop);
3999 TB : constant Entity_Id := Base_Type (T);
f6194278
RD
4000 Nin : Node_Id;
4001
4002 begin
4003 -- The last membership test is marked to prevent recursion
4004
4005 Nin :=
4006 Make_In (Loc,
71fb4dc8
AC
4007 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4008 Right_Opnd => New_Occurrence_Of (T, Loc));
f6194278
RD
4009 Set_No_Minimize_Eliminate (Nin);
4010
4011 -- Now do the rewrite
4012
4013 Rewrite (N,
4014 Make_And_Then (Loc,
71fb4dc8 4015 Left_Opnd =>
f6194278
RD
4016 Make_In (Loc,
4017 Left_Opnd => Lop,
4018 Right_Opnd =>
71fb4dc8
AC
4019 Make_Range (Loc,
4020 Low_Bound =>
4021 Convert_To (LLIB,
4022 Make_Attribute_Reference (Loc,
4023 Attribute_Name => Name_First,
cc6f5d75
AC
4024 Prefix =>
4025 New_Occurrence_Of (TB, Loc))),
71fb4dc8
AC
4026 High_Bound =>
4027 Convert_To (LLIB,
4028 Make_Attribute_Reference (Loc,
4029 Attribute_Name => Name_Last,
cc6f5d75
AC
4030 Prefix =>
4031 New_Occurrence_Of (TB, Loc))))),
f6194278 4032 Right_Opnd => Nin));
71fb4dc8
AC
4033 Set_Analyzed (N, False);
4034 Analyze_And_Resolve (N, Restype);
f6194278
RD
4035 end;
4036 end if;
4037 end if;
4038 end Expand_Membership_Minimize_Eliminate_Overflow;
4039
c7a494c9
AC
4040 ---------------------------------
4041 -- Expand_Nonbinary_Modular_Op --
4042 ---------------------------------
05dbb83f 4043
c7a494c9 4044 procedure Expand_Nonbinary_Modular_Op (N : Node_Id) is
05dbb83f
AC
4045 Loc : constant Source_Ptr := Sloc (N);
4046 Typ : constant Entity_Id := Etype (N);
4047
4048 procedure Expand_Modular_Addition;
c7a494c9 4049 -- Expand the modular addition, handling the special case of adding a
05dbb83f
AC
4050 -- constant.
4051
4052 procedure Expand_Modular_Op;
4053 -- Compute the general rule: (lhs OP rhs) mod Modulus
4054
4055 procedure Expand_Modular_Subtraction;
c7a494c9 4056 -- Expand the modular addition, handling the special case of subtracting
05dbb83f
AC
4057 -- a constant.
4058
4059 -----------------------------
4060 -- Expand_Modular_Addition --
4061 -----------------------------
4062
4063 procedure Expand_Modular_Addition is
4064 begin
4065 -- If this is not the addition of a constant then compute it using
4066 -- the general rule: (lhs + rhs) mod Modulus
4067
4068 if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
4069 Expand_Modular_Op;
4070
4071 -- If this is an addition of a constant, convert it to a subtraction
4072 -- plus a conditional expression since we can compute it faster than
4073 -- computing the modulus.
4074
4075 -- modMinusRhs = Modulus - rhs
4076 -- if lhs < modMinusRhs then lhs + rhs
4077 -- else lhs - modMinusRhs
4078
4079 else
4080 declare
4081 Mod_Minus_Right : constant Uint :=
4082 Modulus (Typ) - Intval (Right_Opnd (N));
4083
4084 Exprs : constant List_Id := New_List;
4085 Cond_Expr : constant Node_Id := New_Op_Node (N_Op_Lt, Loc);
4086 Then_Expr : constant Node_Id := New_Op_Node (N_Op_Add, Loc);
4087 Else_Expr : constant Node_Id := New_Op_Node (N_Op_Subtract,
4088 Loc);
4089 begin
dfd2da00
ES
4090 -- To prevent spurious visibility issues, convert all
4091 -- operands to Standard.Unsigned.
4092
05dbb83f 4093 Set_Left_Opnd (Cond_Expr,
dfd2da00
ES
4094 Unchecked_Convert_To (Standard_Unsigned,
4095 New_Copy_Tree (Left_Opnd (N))));
05dbb83f
AC
4096 Set_Right_Opnd (Cond_Expr,
4097 Make_Integer_Literal (Loc, Mod_Minus_Right));
4098 Append_To (Exprs, Cond_Expr);
4099
4100 Set_Left_Opnd (Then_Expr,
4101 Unchecked_Convert_To (Standard_Unsigned,
4102 New_Copy_Tree (Left_Opnd (N))));
4103 Set_Right_Opnd (Then_Expr,
4104 Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
4105 Append_To (Exprs, Then_Expr);
4106
4107 Set_Left_Opnd (Else_Expr,
4108 Unchecked_Convert_To (Standard_Unsigned,
4109 New_Copy_Tree (Left_Opnd (N))));
4110 Set_Right_Opnd (Else_Expr,
4111 Make_Integer_Literal (Loc, Mod_Minus_Right));
4112 Append_To (Exprs, Else_Expr);
4113
4114 Rewrite (N,
4115 Unchecked_Convert_To (Typ,
4116 Make_If_Expression (Loc, Expressions => Exprs)));
4117 end;
4118 end if;
4119 end Expand_Modular_Addition;
4120
4121 -----------------------
4122 -- Expand_Modular_Op --
4123 -----------------------
4124
4125 procedure Expand_Modular_Op is
4126 Op_Expr : constant Node_Id := New_Op_Node (Nkind (N), Loc);
4127 Mod_Expr : constant Node_Id := New_Op_Node (N_Op_Mod, Loc);
4128
184d0451
ES
4129 Target_Type : Entity_Id;
4130
05dbb83f 4131 begin
c7a494c9
AC
4132 -- Convert nonbinary modular type operands into integer values. Thus
4133 -- we avoid never-ending loops expanding them, and we also ensure
4134 -- the back end never receives nonbinary modular type expressions.
05dbb83f 4135
9cd7bc5e 4136 if Nkind_In (Nkind (N), N_Op_And, N_Op_Or, N_Op_Xor) then
05dbb83f
AC
4137 Set_Left_Opnd (Op_Expr,
4138 Unchecked_Convert_To (Standard_Unsigned,
4139 New_Copy_Tree (Left_Opnd (N))));
4140 Set_Right_Opnd (Op_Expr,
4141 Unchecked_Convert_To (Standard_Unsigned,
4142 New_Copy_Tree (Right_Opnd (N))));
4143 Set_Left_Opnd (Mod_Expr,
4144 Unchecked_Convert_To (Standard_Integer, Op_Expr));
3e720c96 4145
05dbb83f 4146 else
c7862167
HK
4147 -- If the modulus of the type is larger than Integer'Last use a
4148 -- larger type for the operands, to prevent spurious constraint
4149 -- errors on large legal literals of the type.
184d0451
ES
4150
4151 if Modulus (Etype (N)) > UI_From_Int (Int (Integer'Last)) then
4152 Target_Type := Standard_Long_Integer;
4153 else
4154 Target_Type := Standard_Integer;
4155 end if;
4156
05dbb83f 4157 Set_Left_Opnd (Op_Expr,
184d0451 4158 Unchecked_Convert_To (Target_Type,
05dbb83f
AC
4159 New_Copy_Tree (Left_Opnd (N))));
4160 Set_Right_Opnd (Op_Expr,
184d0451 4161 Unchecked_Convert_To (Target_Type,
05dbb83f 4162 New_Copy_Tree (Right_Opnd (N))));
9fb1e654
AC
4163
4164 -- Link this node to the tree to analyze it
4165
a4f4dbdb
AC
4166 -- If the parent node is an expression with actions we link it to
4167 -- N since otherwise Force_Evaluation cannot identify if this node
4168 -- comes from the Expression and rejects generating the temporary.
9fb1e654
AC
4169
4170 if Nkind (Parent (N)) = N_Expression_With_Actions then
4171 Set_Parent (Op_Expr, N);
4172
4173 -- Common case
4174
4175 else
4176 Set_Parent (Op_Expr, Parent (N));
4177 end if;
4178
4179 Analyze (Op_Expr);
4180
4181 -- Force generating a temporary because in the expansion of this
4182 -- expression we may generate code that performs this computation
4183 -- several times.
4184
4185 Force_Evaluation (Op_Expr, Mode => Strict);
4186
05dbb83f
AC
4187 Set_Left_Opnd (Mod_Expr, Op_Expr);
4188 end if;
4189
4190 Set_Right_Opnd (Mod_Expr,
4191 Make_Integer_Literal (Loc, Modulus (Typ)));
4192
4193 Rewrite (N,
4194 Unchecked_Convert_To (Typ, Mod_Expr));
4195 end Expand_Modular_Op;
4196
4197 --------------------------------
4198 -- Expand_Modular_Subtraction --
4199 --------------------------------
4200
4201 procedure Expand_Modular_Subtraction is
4202 begin
4203 -- If this is not the addition of a constant then compute it using
4204 -- the general rule: (lhs + rhs) mod Modulus
4205
4206 if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
4207 Expand_Modular_Op;
4208
4209 -- If this is an addition of a constant, convert it to a subtraction
4210 -- plus a conditional expression since we can compute it faster than
4211 -- computing the modulus.
4212
4213 -- modMinusRhs = Modulus - rhs
4214 -- if lhs < rhs then lhs + modMinusRhs
4215 -- else lhs - rhs
4216
4217 else
4218 declare
4219 Mod_Minus_Right : constant Uint :=
4220 Modulus (Typ) - Intval (Right_Opnd (N));
4221
4222 Exprs : constant List_Id := New_List;
4223 Cond_Expr : constant Node_Id := New_Op_Node (N_Op_Lt, Loc);
4224 Then_Expr : constant Node_Id := New_Op_Node (N_Op_Add, Loc);
4225 Else_Expr : constant Node_Id := New_Op_Node (N_Op_Subtract,
4226 Loc);
4227 begin
4228 Set_Left_Opnd (Cond_Expr,
dfd2da00
ES
4229 Unchecked_Convert_To (Standard_Unsigned,
4230 New_Copy_Tree (Left_Opnd (N))));
05dbb83f
AC
4231 Set_Right_Opnd (Cond_Expr,
4232 Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
4233 Append_To (Exprs, Cond_Expr);
4234
4235 Set_Left_Opnd (Then_Expr,
4236 Unchecked_Convert_To (Standard_Unsigned,
4237 New_Copy_Tree (Left_Opnd (N))));
4238 Set_Right_Opnd (Then_Expr,
4239 Make_Integer_Literal (Loc, Mod_Minus_Right));
4240 Append_To (Exprs, Then_Expr);
4241
4242 Set_Left_Opnd (Else_Expr,
4243 Unchecked_Convert_To (Standard_Unsigned,
4244 New_Copy_Tree (Left_Opnd (N))));
4245 Set_Right_Opnd (Else_Expr,
4246 Unchecked_Convert_To (Standard_Unsigned,
4247 New_Copy_Tree (Right_Opnd (N))));
4248 Append_To (Exprs, Else_Expr);
4249
4250 Rewrite (N,
4251 Unchecked_Convert_To (Typ,
4252 Make_If_Expression (Loc, Expressions => Exprs)));
4253 end;
4254 end if;
4255 end Expand_Modular_Subtraction;
4256
c7a494c9 4257 -- Start of processing for Expand_Nonbinary_Modular_Op
05dbb83f
AC
4258
4259 begin
f4ac86dd
PMR
4260 -- No action needed if front-end expansion is not required or if we
4261 -- have a binary modular operand.
05dbb83f 4262
f4ac86dd 4263 if not Expand_Nonbinary_Modular_Ops
05dbb83f
AC
4264 or else not Non_Binary_Modulus (Typ)
4265 then
4266 return;
4267 end if;
4268
4269 case Nkind (N) is
4270 when N_Op_Add =>
4271 Expand_Modular_Addition;
4272
4273 when N_Op_Subtract =>
4274 Expand_Modular_Subtraction;
4275
4276 when N_Op_Minus =>
3e720c96 4277
05dbb83f
AC
4278 -- Expand -expr into (0 - expr)
4279
4280 Rewrite (N,
4281 Make_Op_Subtract (Loc,
4282 Left_Opnd => Make_Integer_Literal (Loc, 0),
4283 Right_Opnd => Right_Opnd (N)));
4284 Analyze_And_Resolve (N, Typ);
4285
4286 when others =>
4287 Expand_Modular_Op;
4288 end case;
4289
4290 Analyze_And_Resolve (N, Typ);
c7a494c9 4291 end Expand_Nonbinary_Modular_Op;
05dbb83f 4292
70482933
RK
4293 ------------------------
4294 -- Expand_N_Allocator --
4295 ------------------------
4296
4297 procedure Expand_N_Allocator (N : Node_Id) is
8b1011c0
AC
4298 Etyp : constant Entity_Id := Etype (Expression (N));
4299 Loc : constant Source_Ptr := Sloc (N);
4300 PtrT : constant Entity_Id := Etype (N);
70482933 4301
26bff3d9
JM
4302 procedure Rewrite_Coextension (N : Node_Id);
4303 -- Static coextensions have the same lifetime as the entity they
8fc789c8 4304 -- constrain. Such occurrences can be rewritten as aliased objects
26bff3d9 4305 -- and their unrestricted access used instead of the coextension.
0669bebe 4306
8aec446b 4307 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
507ed3fd 4308 -- Given a constrained array type E, returns a node representing the
22862ba6
JM
4309 -- code to compute a close approximation of the size in storage elements
4310 -- for the given type; for indexes that are modular types we compute
4311 -- 'Last - First (instead of 'Length) because for large arrays computing
4312 -- 'Last -'First + 1 causes overflow. This is done without using the
4313 -- attribute 'Size_In_Storage_Elements (which malfunctions for large
7c2a44ae 4314 -- sizes ???).
8aec446b 4315
26bff3d9
JM
4316 -------------------------
4317 -- Rewrite_Coextension --
4318 -------------------------
4319
4320 procedure Rewrite_Coextension (N : Node_Id) is
e5a22243
AC
4321 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4322 Temp_Decl : Node_Id;
26bff3d9 4323
df3e68b1 4324 begin
26bff3d9
JM
4325 -- Generate:
4326 -- Cnn : aliased Etyp;
4327
df3e68b1
HK
4328 Temp_Decl :=
4329 Make_Object_Declaration (Loc,
4330 Defining_Identifier => Temp_Id,
243cae0a
AC
4331 Aliased_Present => True,
4332 Object_Definition => New_Occurrence_Of (Etyp, Loc));
26bff3d9 4333
26bff3d9 4334 if Nkind (Expression (N)) = N_Qualified_Expression then
df3e68b1 4335 Set_Expression (Temp_Decl, Expression (Expression (N)));
0669bebe 4336 end if;
26bff3d9 4337
e5a22243 4338 Insert_Action (N, Temp_Decl);
26bff3d9
JM
4339 Rewrite (N,
4340 Make_Attribute_Reference (Loc,
243cae0a 4341 Prefix => New_Occurrence_Of (Temp_Id, Loc),
26bff3d9
JM
4342 Attribute_Name => Name_Unrestricted_Access));
4343
4344 Analyze_And_Resolve (N, PtrT);
4345 end Rewrite_Coextension;
0669bebe 4346
8aec446b
AC
4347 ------------------------------
4348 -- Size_In_Storage_Elements --
4349 ------------------------------
4350
4351 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4352 begin
4353 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4354 -- However, the reason for the existence of this function is
4355 -- to construct a test for sizes too large, which means near the
4356 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4357 -- is that we get overflows when sizes are greater than 2**31.
4358
507ed3fd 4359 -- So what we end up doing for array types is to use the expression:
8aec446b
AC
4360
4361 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4362
46202729 4363 -- which avoids this problem. All this is a bit bogus, but it does
8aec446b
AC
4364 -- mean we catch common cases of trying to allocate arrays that
4365 -- are too large, and which in the absence of a check results in
4366 -- undetected chaos ???
4367
ce532f42
AC
4368 -- Note in particular that this is a pessimistic estimate in the
4369 -- case of packed array types, where an array element might occupy
4370 -- just a fraction of a storage element???
4371
507ed3fd 4372 declare
22862ba6 4373 Idx : Node_Id := First_Index (E);
507ed3fd 4374 Len : Node_Id;
a6b13d32 4375 Res : Node_Id := Empty;
8aec446b 4376
507ed3fd
AC
4377 begin
4378 for J in 1 .. Number_Dimensions (E) loop
22862ba6
JM
4379
4380 if not Is_Modular_Integer_Type (Etype (Idx)) then
4381 Len :=
4382 Make_Attribute_Reference (Loc,
4383 Prefix => New_Occurrence_Of (E, Loc),
4384 Attribute_Name => Name_Length,
4385 Expressions => New_List
4386 (Make_Integer_Literal (Loc, J)));
4387
4388 -- For indexes that are modular types we cannot generate code
4389 -- to compute 'Length since for large arrays 'Last -'First + 1
4390 -- causes overflow; therefore we compute 'Last - 'First (which
4391 -- is not the exact number of components but it is valid for
7c2a44ae 4392 -- the purpose of this runtime check on 32-bit targets).
22862ba6
JM
4393
4394 else
4395 declare
4396 Len_Minus_1_Expr : Node_Id;
4397 Test_Gt : Node_Id;
4398
4399 begin
4400 Test_Gt :=
4401 Make_Op_Gt (Loc,
4402 Make_Attribute_Reference (Loc,
4403 Prefix => New_Occurrence_Of (E, Loc),
4404 Attribute_Name => Name_Last,
4405 Expressions =>
4406 New_List (Make_Integer_Literal (Loc, J))),
4407 Make_Attribute_Reference (Loc,
4408 Prefix => New_Occurrence_Of (E, Loc),
4409 Attribute_Name => Name_First,
4410 Expressions =>
4411 New_List (Make_Integer_Literal (Loc, J))));
4412
4413 Len_Minus_1_Expr :=
4414 Convert_To (Standard_Unsigned,
4415 Make_Op_Subtract (Loc,
4416 Make_Attribute_Reference (Loc,
4417 Prefix => New_Occurrence_Of (E, Loc),
4418 Attribute_Name => Name_Last,
4419 Expressions =>
4420 New_List
4421 (Make_Integer_Literal (Loc, J))),
4422 Make_Attribute_Reference (Loc,
4423 Prefix => New_Occurrence_Of (E, Loc),
4424 Attribute_Name => Name_First,
4425 Expressions =>
4426 New_List
4427 (Make_Integer_Literal (Loc, J)))));
4428
4429 -- Handle superflat arrays, i.e. arrays with such bounds
7c2a44ae 4430 -- as 4 .. 2, to ensure that the result is correct.
22862ba6
JM
4431
4432 -- Generate:
4433 -- (if X'Last > X'First then X'Last - X'First else 0)
4434
4435 Len :=
4436 Make_If_Expression (Loc,
4437 Expressions => New_List (
4438 Test_Gt,
4439 Len_Minus_1_Expr,
4440 Make_Integer_Literal (Loc, Uint_0)));
4441 end;
4442 end if;
8aec446b 4443
507ed3fd
AC
4444 if J = 1 then
4445 Res := Len;
8aec446b 4446
507ed3fd 4447 else
a6b13d32 4448 pragma Assert (Present (Res));
507ed3fd
AC
4449 Res :=
4450 Make_Op_Multiply (Loc,
4451 Left_Opnd => Res,
4452 Right_Opnd => Len);
4453 end if;
22862ba6
JM
4454
4455 Next_Index (Idx);
507ed3fd 4456 end loop;
8aec446b 4457
8aec446b 4458 return
507ed3fd
AC
4459 Make_Op_Multiply (Loc,
4460 Left_Opnd => Len,
4461 Right_Opnd =>
4462 Make_Attribute_Reference (Loc,
4463 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4464 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4465 end;
8aec446b
AC
4466 end Size_In_Storage_Elements;
4467
8b1011c0
AC
4468 -- Local variables
4469
70861157 4470 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
8b1011c0
AC
4471 Desig : Entity_Id;
4472 Nod : Node_Id;
4473 Pool : Entity_Id;
4474 Rel_Typ : Entity_Id;
4475 Temp : Entity_Id;
4476
0669bebe
GB
4477 -- Start of processing for Expand_N_Allocator
4478
70482933 4479 begin
b3889fff 4480 -- Warn on the presence of an allocator of an anonymous access type when
31fde973 4481 -- enabled, except when it's an object declaration at library level.
b3889fff
JS
4482
4483 if Warn_On_Anonymous_Allocators
4484 and then Ekind (PtrT) = E_Anonymous_Access_Type
943c82d7
JS
4485 and then not (Is_Library_Level_Entity (PtrT)
4486 and then Nkind (Associated_Node_For_Itype (PtrT)) =
4487 N_Object_Declaration)
b3889fff
JS
4488 then
4489 Error_Msg_N ("?use of an anonymous access type allocator", N);
4490 end if;
4491
70482933
RK
4492 -- RM E.2.3(22). We enforce that the expected type of an allocator
4493 -- shall not be a remote access-to-class-wide-limited-private type
4494
4495 -- Why is this being done at expansion time, seems clearly wrong ???
4496
4497 Validate_Remote_Access_To_Class_Wide_Type (N);
4498
ca5af305
AC
4499 -- Processing for anonymous access-to-controlled types. These access
4500 -- types receive a special finalization master which appears in the
4501 -- declarations of the enclosing semantic unit. This expansion is done
84f4072a
JM
4502 -- now to ensure that any additional types generated by this routine or
4503 -- Expand_Allocator_Expression inherit the proper type attributes.
ca5af305 4504
84f4072a 4505 if (Ekind (PtrT) = E_Anonymous_Access_Type
533369aa 4506 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
ca5af305
AC
4507 and then Needs_Finalization (Dtyp)
4508 then
8b1011c0
AC
4509 -- Detect the allocation of an anonymous controlled object where the
4510 -- type of the context is named. For example:
4511
4512 -- procedure Proc (Ptr : Named_Access_Typ);
4513 -- Proc (new Designated_Typ);
4514
4515 -- Regardless of the anonymous-to-named access type conversion, the
4516 -- lifetime of the object must be associated with the named access
0088ba92 4517 -- type. Use the finalization-related attributes of this type.
8b1011c0
AC
4518
4519 if Nkind_In (Parent (N), N_Type_Conversion,
4520 N_Unchecked_Type_Conversion)
4521 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4522 E_Access_Type,
4523 E_General_Access_Type)
4524 then
4525 Rel_Typ := Etype (Parent (N));
4526 else
4527 Rel_Typ := Empty;
4528 end if;
4529
b254da66 4530 -- Anonymous access-to-controlled types allocate on the global pool.
535a8637 4531 -- Note that this is a "root type only" attribute.
ca5af305 4532
535a8637 4533 if No (Associated_Storage_Pool (PtrT)) then
8b1011c0 4534 if Present (Rel_Typ) then
7a5b62b0 4535 Set_Associated_Storage_Pool
24d4b3d5 4536 (Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
8b1011c0 4537 else
7a5b62b0 4538 Set_Associated_Storage_Pool
24d4b3d5 4539 (Root_Type (PtrT), RTE (RE_Global_Pool_Object));
8b1011c0 4540 end if;
ca5af305
AC
4541 end if;
4542
4543 -- The finalization master must be inserted and analyzed as part of
5114f3ff 4544 -- the current semantic unit. Note that the master is updated when
24d4b3d5
AC
4545 -- analysis changes current units. Note that this is a "root type
4546 -- only" attribute.
ca5af305 4547
5114f3ff 4548 if Present (Rel_Typ) then
24d4b3d5
AC
4549 Set_Finalization_Master
4550 (Root_Type (PtrT), Finalization_Master (Rel_Typ));
5114f3ff 4551 else
32b794c8 4552 Build_Anonymous_Master (Root_Type (PtrT));
ca5af305
AC
4553 end if;
4554 end if;
4555
4556 -- Set the storage pool and find the appropriate version of Allocate to
8417f4b2
AC
4557 -- call. Do not overwrite the storage pool if it is already set, which
4558 -- can happen for build-in-place function returns (see
200b7162 4559 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
70482933 4560
200b7162
BD
4561 if No (Storage_Pool (N)) then
4562 Pool := Associated_Storage_Pool (Root_Type (PtrT));
70482933 4563
200b7162
BD
4564 if Present (Pool) then
4565 Set_Storage_Pool (N, Pool);
fbf5a39b 4566
200b7162 4567 if Is_RTE (Pool, RE_SS_Pool) then
abbfd698 4568 Check_Restriction (No_Secondary_Stack, N);
535a8637 4569 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
fbf5a39b 4570
a8551b5f
AC
4571 -- In the case of an allocator for a simple storage pool, locate
4572 -- and save a reference to the pool type's Allocate routine.
4573
4574 elsif Present (Get_Rep_Pragma
f6205414 4575 (Etype (Pool), Name_Simple_Storage_Pool_Type))
a8551b5f
AC
4576 then
4577 declare
a8551b5f 4578 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
260359e3 4579 Alloc_Op : Entity_Id;
a8551b5f 4580 begin
260359e3 4581 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
a8551b5f
AC
4582 while Present (Alloc_Op) loop
4583 if Scope (Alloc_Op) = Scope (Pool_Type)
4584 and then Present (First_Formal (Alloc_Op))
4585 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4586 then
4587 Set_Procedure_To_Call (N, Alloc_Op);
a8551b5f 4588 exit;
260359e3
AC
4589 else
4590 Alloc_Op := Homonym (Alloc_Op);
a8551b5f 4591 end if;
a8551b5f
AC
4592 end loop;
4593 end;
4594
200b7162
BD
4595 elsif Is_Class_Wide_Type (Etype (Pool)) then
4596 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4597
4598 else
4599 Set_Procedure_To_Call (N,
4600 Find_Prim_Op (Etype (Pool), Name_Allocate));
4601 end if;
70482933
RK
4602 end if;
4603 end if;
4604
685094bf
RD
4605 -- Under certain circumstances we can replace an allocator by an access
4606 -- to statically allocated storage. The conditions, as noted in AARM
4607 -- 3.10 (10c) are as follows:
70482933
RK
4608
4609 -- Size and initial value is known at compile time
4610 -- Access type is access-to-constant
4611
fbf5a39b
AC
4612 -- The allocator is not part of a constraint on a record component,
4613 -- because in that case the inserted actions are delayed until the
4614 -- record declaration is fully analyzed, which is too late for the
4615 -- analysis of the rewritten allocator.
4616
70482933
RK
4617 if Is_Access_Constant (PtrT)
4618 and then Nkind (Expression (N)) = N_Qualified_Expression
4619 and then Compile_Time_Known_Value (Expression (Expression (N)))
243cae0a
AC
4620 and then Size_Known_At_Compile_Time
4621 (Etype (Expression (Expression (N))))
fbf5a39b 4622 and then not Is_Record_Type (Current_Scope)
70482933
RK
4623 then
4624 -- Here we can do the optimization. For the allocator
4625
4626 -- new x'(y)
4627
4628 -- We insert an object declaration
4629
4630 -- Tnn : aliased x := y;
4631
685094bf
RD
4632 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4633 -- marked as requiring static allocation.
70482933 4634
df3e68b1 4635 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
70482933
RK
4636 Desig := Subtype_Mark (Expression (N));
4637
4638 -- If context is constrained, use constrained subtype directly,
8fc789c8 4639 -- so that the constant is not labelled as having a nominally
70482933
RK
4640 -- unconstrained subtype.
4641
0da2c8ac
AC
4642 if Entity (Desig) = Base_Type (Dtyp) then
4643 Desig := New_Occurrence_Of (Dtyp, Loc);
70482933
RK
4644 end if;
4645
4646 Insert_Action (N,
4647 Make_Object_Declaration (Loc,
4648 Defining_Identifier => Temp,
4649 Aliased_Present => True,
4650 Constant_Present => Is_Access_Constant (PtrT),
4651 Object_Definition => Desig,
4652 Expression => Expression (Expression (N))));
4653
4654 Rewrite (N,
4655 Make_Attribute_Reference (Loc,
243cae0a 4656 Prefix => New_Occurrence_Of (Temp, Loc),
70482933
RK
4657 Attribute_Name => Name_Unrestricted_Access));
4658
4659 Analyze_And_Resolve (N, PtrT);
4660
685094bf 4661 -- We set the variable as statically allocated, since we don't want
a90bd866 4662 -- it going on the stack of the current procedure.
70482933
RK
4663
4664 Set_Is_Statically_Allocated (Temp);
4665 return;
4666 end if;
4667
0669bebe
GB
4668 -- Same if the allocator is an access discriminant for a local object:
4669 -- instead of an allocator we create a local value and constrain the
308e6f3a 4670 -- enclosing object with the corresponding access attribute.
0669bebe 4671
26bff3d9
JM
4672 if Is_Static_Coextension (N) then
4673 Rewrite_Coextension (N);
0669bebe
GB
4674 return;
4675 end if;
4676
8aec446b
AC
4677 -- Check for size too large, we do this because the back end misses
4678 -- proper checks here and can generate rubbish allocation calls when
4679 -- we are near the limit. We only do this for the 32-bit address case
4680 -- since that is from a practical point of view where we see a problem.
4681
4682 if System_Address_Size = 32
4683 and then not Storage_Checks_Suppressed (PtrT)
4684 and then not Storage_Checks_Suppressed (Dtyp)
4685 and then not Storage_Checks_Suppressed (Etyp)
4686 then
4687 -- The check we want to generate should look like
4688
4689 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4690 -- raise Storage_Error;
4691 -- end if;
4692
308e6f3a 4693 -- where 3.5 gigabytes is a constant large enough to accommodate any
507ed3fd
AC
4694 -- reasonable request for. But we can't do it this way because at
4695 -- least at the moment we don't compute this attribute right, and
4696 -- can silently give wrong results when the result gets large. Since
4697 -- this is all about large results, that's bad, so instead we only
205c14b0 4698 -- apply the check for constrained arrays, and manually compute the
507ed3fd 4699 -- value of the attribute ???
8aec446b 4700
22862ba6
JM
4701 -- The check on No_Initialization is used here to prevent generating
4702 -- this runtime check twice when the allocator is locally replaced by
7c2a44ae 4703 -- the expander with another one.
22862ba6
JM
4704
4705 if Is_Array_Type (Etyp) and then not No_Initialization (N) then
4706 declare
4707 Cond : Node_Id;
4708 Ins_Nod : Node_Id := N;
4709 Siz_Typ : Entity_Id := Etyp;
4710 Expr : Node_Id;
4711
4712 begin
4713 -- For unconstrained array types initialized with a qualified
4714 -- expression we use its type to perform this check
4715
4716 if not Is_Constrained (Etyp)
4717 and then not No_Initialization (N)
4718 and then Nkind (Expression (N)) = N_Qualified_Expression
4719 then
4720 Expr := Expression (Expression (N));
4721 Siz_Typ := Etype (Expression (Expression (N)));
4722
4723 -- If the qualified expression has been moved to an internal
4724 -- temporary (to remove side effects) then we must insert
4725 -- the runtime check before its declaration to ensure that
4726 -- the check is performed before the execution of the code
4727 -- computing the qualified expression.
4728
4729 if Nkind (Expr) = N_Identifier
4730 and then Is_Internal_Name (Chars (Expr))
4731 and then
4732 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
4733 then
4734 Ins_Nod := Parent (Entity (Expr));
4735 else
4736 Ins_Nod := Expr;
4737 end if;
4738 end if;
4739
4740 if Is_Constrained (Siz_Typ)
4741 and then Ekind (Siz_Typ) /= E_String_Literal_Subtype
4742 then
7c2a44ae
PT
4743 -- For CCG targets, the largest array may have up to 2**31-1
4744 -- components (i.e. 2 gigabytes if each array component is
4745 -- one byte). This ensures that fat pointer fields do not
22862ba6 4746 -- overflow, since they are 32-bit integer types, and also
7c2a44ae 4747 -- ensures that 'Length can be computed at run time.
22862ba6
JM
4748
4749 if Modify_Tree_For_C then
4750 Cond :=
4751 Make_Op_Gt (Loc,
4752 Left_Opnd => Size_In_Storage_Elements (Siz_Typ),
4753 Right_Opnd => Make_Integer_Literal (Loc,
4754 Uint_2 ** 31 - Uint_1));
4755
4756 -- For native targets the largest object is 3.5 gigabytes
4757
4758 else
4759 Cond :=
4760 Make_Op_Gt (Loc,
4761 Left_Opnd => Size_In_Storage_Elements (Siz_Typ),
4762 Right_Opnd => Make_Integer_Literal (Loc,
4763 Uint_7 * (Uint_2 ** 29)));
4764 end if;
4765
4766 Insert_Action (Ins_Nod,
4767 Make_Raise_Storage_Error (Loc,
4768 Condition => Cond,
4769 Reason => SE_Object_Too_Large));
4770
4771 if Entity (Cond) = Standard_True then
4772 Error_Msg_N
4773 ("object too large: Storage_Error will be raised at "
4774 & "run time??", N);
4775 end if;
4776 end if;
4777 end;
507ed3fd 4778 end if;
8aec446b
AC
4779 end if;
4780
b3181992
GD
4781 -- If no storage pool has been specified, or the storage pool
4782 -- is System.Pool_Global.Global_Pool_Object, and the restriction
b3b26ace
AC
4783 -- No_Standard_Allocators_After_Elaboration is present, then generate
4784 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4785
4786 if Nkind (N) = N_Allocator
b3181992
GD
4787 and then (No (Storage_Pool (N))
4788 or else Is_RTE (Storage_Pool (N), RE_Global_Pool_Object))
b3b26ace
AC
4789 and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
4790 then
4791 Insert_Action (N,
4792 Make_Procedure_Call_Statement (Loc,
4793 Name =>
4794 New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
4795 end if;
4796
0da2c8ac 4797 -- Handle case of qualified expression (other than optimization above)
cac5a801
AC
4798 -- First apply constraint checks, because the bounds or discriminants
4799 -- in the aggregate might not match the subtype mark in the allocator.
0da2c8ac 4800
70482933 4801 if Nkind (Expression (N)) = N_Qualified_Expression then
0026dd0a 4802 declare
f31dcd99 4803 Exp : constant Node_Id := Expression (Expression (N));
0026dd0a 4804 Typ : constant Entity_Id := Etype (Expression (N));
f31dcd99 4805
0026dd0a
AC
4806 begin
4807 Apply_Constraint_Check (Exp, Typ);
4808 Apply_Predicate_Check (Exp, Typ);
4809 end;
cac5a801 4810
fbf5a39b 4811 Expand_Allocator_Expression (N);
26bff3d9
JM
4812 return;
4813 end if;
fbf5a39b 4814
26bff3d9
JM
4815 -- If the allocator is for a type which requires initialization, and
4816 -- there is no initial value (i.e. operand is a subtype indication
685094bf
RD
4817 -- rather than a qualified expression), then we must generate a call to
4818 -- the initialization routine using an expressions action node:
70482933 4819
26bff3d9 4820 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
70482933 4821
26bff3d9
JM
4822 -- Here ptr_T is the pointer type for the allocator, and T is the
4823 -- subtype of the allocator. A special case arises if the designated
4824 -- type of the access type is a task or contains tasks. In this case
4825 -- the call to Init (Temp.all ...) is replaced by code that ensures
4826 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
6be44a9a 4827 -- for details). In addition, if the type T is a task type, then the
26bff3d9 4828 -- first argument to Init must be converted to the task record type.
70482933 4829
26bff3d9 4830 declare
529749b9 4831 T : constant Entity_Id := Etype (Expression (N));
df3e68b1
HK
4832 Args : List_Id;
4833 Decls : List_Id;
4834 Decl : Node_Id;
4835 Discr : Elmt_Id;
4836 Init : Entity_Id;
4837 Init_Arg1 : Node_Id;
2168d7cc 4838 Init_Call : Node_Id;
df3e68b1
HK
4839 Temp_Decl : Node_Id;
4840 Temp_Type : Entity_Id;
70482933 4841
26bff3d9
JM
4842 begin
4843 if No_Initialization (N) then
df3e68b1
HK
4844
4845 -- Even though this might be a simple allocation, create a custom
535a8637 4846 -- Allocate if the context requires it.
df3e68b1 4847
535a8637 4848 if Present (Finalization_Master (PtrT)) then
df3e68b1 4849 Build_Allocate_Deallocate_Proc
ca5af305 4850 (N => N,
df3e68b1
HK
4851 Is_Allocate => True);
4852 end if;
70482933 4853
40016fa7
HK
4854 -- Optimize the default allocation of an array object when pragma
4855 -- Initialize_Scalars or Normalize_Scalars is in effect. Construct an
4856 -- in-place initialization aggregate which may be convert into a fast
4857 -- memset by the backend.
529749b9
HK
4858
4859 elsif Init_Or_Norm_Scalars
4860 and then Is_Array_Type (T)
40016fa7
HK
4861
4862 -- The array must lack atomic components because they are treated
4863 -- as non-static, and as a result the backend will not initialize
4864 -- the memory in one go.
4865
529749b9 4866 and then not Has_Atomic_Components (T)
40016fa7
HK
4867
4868 -- The array must not be packed because the invalid values in
4869 -- System.Scalar_Values are multiples of Storage_Unit.
4870
529749b9 4871 and then not Is_Packed (T)
40016fa7
HK
4872
4873 -- The array must have static non-empty ranges, otherwise the
4874 -- backend cannot initialize the memory in one go.
4875
529749b9 4876 and then Has_Static_Non_Empty_Array_Bounds (T)
40016fa7
HK
4877
4878 -- The optimization is only relevant for arrays of scalar types
4879
529749b9 4880 and then Is_Scalar_Type (Component_Type (T))
40016fa7
HK
4881
4882 -- Similar to regular array initialization using a type init proc,
4883 -- predicate checks are not performed because the initialization
4884 -- values are intentionally invalid, and may violate the predicate.
4885
4886 and then not Has_Predicates (Component_Type (T))
4887
4888 -- The component type must have a single initialization value
4889
529749b9
HK
4890 and then Needs_Simple_Initialization
4891 (Typ => Component_Type (T),
4892 Consider_IS => True)
4893 then
4894 Set_Analyzed (N);
4895 Temp := Make_Temporary (Loc, 'P');
4896
4897 -- Generate:
4898 -- Temp : Ptr_Typ := new ...;
4899
4900 Insert_Action
4901 (Assoc_Node => N,
4902 Ins_Action =>
4903 Make_Object_Declaration (Loc,
4904 Defining_Identifier => Temp,
4905 Object_Definition => New_Occurrence_Of (PtrT, Loc),
4906 Expression => Relocate_Node (N)),
4907 Suppress => All_Checks);
4908
4909 -- Generate:
4910 -- Temp.all := (others => ...);
4911
4912 Insert_Action
4913 (Assoc_Node => N,
4914 Ins_Action =>
4915 Make_Assignment_Statement (Loc,
4916 Name =>
4917 Make_Explicit_Dereference (Loc,
4918 Prefix => New_Occurrence_Of (Temp, Loc)),
4919 Expression =>
4920 Get_Simple_Init_Val
4921 (Typ => T,
4922 N => N,
4923 Size => Esize (Component_Type (T)))),
4924 Suppress => All_Checks);
4925
4926 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4927 Analyze_And_Resolve (N, PtrT);
4928
26bff3d9 4929 -- Case of no initialization procedure present
70482933 4930
26bff3d9 4931 elsif not Has_Non_Null_Base_Init_Proc (T) then
70482933 4932
26bff3d9 4933 -- Case of simple initialization required
70482933 4934
26bff3d9 4935 if Needs_Simple_Initialization (T) then
b4592168 4936 Check_Restriction (No_Default_Initialization, N);
26bff3d9
JM
4937 Rewrite (Expression (N),
4938 Make_Qualified_Expression (Loc,
4939 Subtype_Mark => New_Occurrence_Of (T, Loc),
b4592168 4940 Expression => Get_Simple_Init_Val (T, N)));
70482933 4941
26bff3d9
JM
4942 Analyze_And_Resolve (Expression (Expression (N)), T);
4943 Analyze_And_Resolve (Expression (N), T);
4944 Set_Paren_Count (Expression (Expression (N)), 1);
4945 Expand_N_Allocator (N);
70482933 4946
26bff3d9 4947 -- No initialization required
70482933
RK
4948
4949 else
b2c3160c
AC
4950 Build_Allocate_Deallocate_Proc
4951 (N => N,
4952 Is_Allocate => True);
26bff3d9 4953 end if;
70482933 4954
26bff3d9 4955 -- Case of initialization procedure present, must be called
70482933 4956
fa528281
JS
4957 -- NOTE: There is a *huge* amount of code duplication here from
4958 -- Build_Initialization_Call. We should probably refactor???
4959
26bff3d9 4960 else
b4592168 4961 Check_Restriction (No_Default_Initialization, N);
70482933 4962
b4592168
GD
4963 if not Restriction_Active (No_Default_Initialization) then
4964 Init := Base_Init_Proc (T);
4965 Nod := N;
191fcb3a 4966 Temp := Make_Temporary (Loc, 'P');
70482933 4967
b4592168 4968 -- Construct argument list for the initialization routine call
70482933 4969
df3e68b1 4970 Init_Arg1 :=
b4592168 4971 Make_Explicit_Dereference (Loc,
df3e68b1 4972 Prefix =>
e4494292 4973 New_Occurrence_Of (Temp, Loc));
df3e68b1
HK
4974
4975 Set_Assignment_OK (Init_Arg1);
b4592168 4976 Temp_Type := PtrT;
26bff3d9 4977
b4592168
GD
4978 -- The initialization procedure expects a specific type. if the
4979 -- context is access to class wide, indicate that the object
4980 -- being allocated has the right specific type.
70482933 4981
b4592168 4982 if Is_Class_Wide_Type (Dtyp) then
df3e68b1 4983 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
b4592168 4984 end if;
70482933 4985
b4592168
GD
4986 -- If designated type is a concurrent type or if it is private
4987 -- type whose definition is a concurrent type, the first
4988 -- argument in the Init routine has to be unchecked conversion
4989 -- to the corresponding record type. If the designated type is
243cae0a 4990 -- a derived type, also convert the argument to its root type.
20b5d666 4991
b4592168 4992 if Is_Concurrent_Type (T) then
df3e68b1
HK
4993 Init_Arg1 :=
4994 Unchecked_Convert_To (
4995 Corresponding_Record_Type (T), Init_Arg1);
70482933 4996
b4592168
GD
4997 elsif Is_Private_Type (T)
4998 and then Present (Full_View (T))
4999 and then Is_Concurrent_Type (Full_View (T))
5000 then
df3e68b1 5001 Init_Arg1 :=
b4592168 5002 Unchecked_Convert_To
df3e68b1 5003 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
70482933 5004
b4592168
GD
5005 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
5006 declare
5007 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
df3e68b1 5008
b4592168 5009 begin
df3e68b1
HK
5010 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
5011 Set_Etype (Init_Arg1, Ftyp);
b4592168
GD
5012 end;
5013 end if;
70482933 5014
df3e68b1 5015 Args := New_List (Init_Arg1);
70482933 5016
b4592168
GD
5017 -- For the task case, pass the Master_Id of the access type as
5018 -- the value of the _Master parameter, and _Chain as the value
5019 -- of the _Chain parameter (_Chain will be defined as part of
5020 -- the generated code for the allocator).
70482933 5021
b4592168
GD
5022 -- In Ada 2005, the context may be a function that returns an
5023 -- anonymous access type. In that case the Master_Id has been
5024 -- created when expanding the function declaration.
70482933 5025
b4592168
GD
5026 if Has_Task (T) then
5027 if No (Master_Id (Base_Type (PtrT))) then
70482933 5028
b4592168
GD
5029 -- The designated type was an incomplete type, and the
5030 -- access type did not get expanded. Salvage it now.
70482933 5031
b941ae65 5032 if not Restriction_Active (No_Task_Hierarchy) then
3d67b239
AC
5033 if Present (Parent (Base_Type (PtrT))) then
5034 Expand_N_Full_Type_Declaration
5035 (Parent (Base_Type (PtrT)));
5036
0d5fbf52
AC
5037 -- The only other possibility is an itype. For this
5038 -- case, the master must exist in the context. This is
5039 -- the case when the allocator initializes an access
5040 -- component in an init-proc.
3d67b239 5041
0d5fbf52 5042 else
3d67b239
AC
5043 pragma Assert (Is_Itype (PtrT));
5044 Build_Master_Renaming (PtrT, N);
5045 end if;
b941ae65 5046 end if;
b4592168 5047 end if;
70482933 5048
b4592168
GD
5049 -- If the context of the allocator is a declaration or an
5050 -- assignment, we can generate a meaningful image for it,
5051 -- even though subsequent assignments might remove the
5052 -- connection between task and entity. We build this image
5053 -- when the left-hand side is a simple variable, a simple
5054 -- indexed assignment or a simple selected component.
5055
5056 if Nkind (Parent (N)) = N_Assignment_Statement then
5057 declare
5058 Nam : constant Node_Id := Name (Parent (N));
5059
5060 begin
5061 if Is_Entity_Name (Nam) then
5062 Decls :=
5063 Build_Task_Image_Decls
5064 (Loc,
5065 New_Occurrence_Of
5066 (Entity (Nam), Sloc (Nam)), T);
5067
243cae0a
AC
5068 elsif Nkind_In (Nam, N_Indexed_Component,
5069 N_Selected_Component)
b4592168
GD
5070 and then Is_Entity_Name (Prefix (Nam))
5071 then
5072 Decls :=
5073 Build_Task_Image_Decls
5074 (Loc, Nam, Etype (Prefix (Nam)));
5075 else
5076 Decls := Build_Task_Image_Decls (Loc, T, T);
5077 end if;
5078 end;
70482933 5079
b4592168
GD
5080 elsif Nkind (Parent (N)) = N_Object_Declaration then
5081 Decls :=
5082 Build_Task_Image_Decls
5083 (Loc, Defining_Identifier (Parent (N)), T);
70482933 5084
b4592168
GD
5085 else
5086 Decls := Build_Task_Image_Decls (Loc, T, T);
5087 end if;
26bff3d9 5088
87dc09cb 5089 if Restriction_Active (No_Task_Hierarchy) then
3c1ecd7e
AC
5090 Append_To (Args,
5091 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
87dc09cb
AC
5092 else
5093 Append_To (Args,
e4494292 5094 New_Occurrence_Of
87dc09cb
AC
5095 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
5096 end if;
5097
b4592168 5098 Append_To (Args, Make_Identifier (Loc, Name_uChain));
26bff3d9 5099
b4592168
GD
5100 Decl := Last (Decls);
5101 Append_To (Args,
5102 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
26bff3d9 5103
87dc09cb 5104 -- Has_Task is false, Decls not used
26bff3d9 5105
b4592168
GD
5106 else
5107 Decls := No_List;
26bff3d9
JM
5108 end if;
5109
b4592168
GD
5110 -- Add discriminants if discriminated type
5111
5112 declare
5113 Dis : Boolean := False;
dcd5fd67 5114 Typ : Entity_Id := Empty;
b4592168
GD
5115
5116 begin
5117 if Has_Discriminants (T) then
5118 Dis := True;
5119 Typ := T;
5120
bac5ba15
AC
5121 -- Type may be a private type with no visible discriminants
5122 -- in which case check full view if in scope, or the
5123 -- underlying_full_view if dealing with a type whose full
5124 -- view may be derived from a private type whose own full
5125 -- view has discriminants.
5126
5127 elsif Is_Private_Type (T) then
5128 if Present (Full_View (T))
5129 and then Has_Discriminants (Full_View (T))
5130 then
5131 Dis := True;
5132 Typ := Full_View (T);
5133
5134 elsif Present (Underlying_Full_View (T))
5135 and then Has_Discriminants (Underlying_Full_View (T))
5136 then
5137 Dis := True;
5138 Typ := Underlying_Full_View (T);
5139 end if;
20b5d666 5140 end if;
70482933 5141
b4592168 5142 if Dis then
26bff3d9 5143
b4592168 5144 -- If the allocated object will be constrained by the
685094bf
RD
5145 -- default values for discriminants, then build a subtype
5146 -- with those defaults, and change the allocated subtype
5147 -- to that. Note that this happens in fewer cases in Ada
5148 -- 2005 (AI-363).
26bff3d9 5149
b4592168
GD
5150 if not Is_Constrained (Typ)
5151 and then Present (Discriminant_Default_Value
df3e68b1 5152 (First_Discriminant (Typ)))
0791fbe9 5153 and then (Ada_Version < Ada_2005
cc96a1b8 5154 or else not
0fbcb11c
ES
5155 Object_Type_Has_Constrained_Partial_View
5156 (Typ, Current_Scope))
20b5d666 5157 then
b4592168 5158 Typ := Build_Default_Subtype (Typ, N);
e4494292 5159 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
20b5d666
JM
5160 end if;
5161
b4592168
GD
5162 Discr := First_Elmt (Discriminant_Constraint (Typ));
5163 while Present (Discr) loop
5164 Nod := Node (Discr);
5165 Append (New_Copy_Tree (Node (Discr)), Args);
20b5d666 5166
b4592168
GD
5167 -- AI-416: when the discriminant constraint is an
5168 -- anonymous access type make sure an accessibility
5169 -- check is inserted if necessary (3.10.2(22.q/2))
20b5d666 5170
0791fbe9 5171 if Ada_Version >= Ada_2005
b4592168
GD
5172 and then
5173 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
5174 then
e84e11ba
GD
5175 Apply_Accessibility_Check
5176 (Nod, Typ, Insert_Node => Nod);
b4592168 5177 end if;
20b5d666 5178
b4592168
GD
5179 Next_Elmt (Discr);
5180 end loop;
5181 end if;
5182 end;
70482933 5183
4b985e20 5184 -- We set the allocator as analyzed so that when we analyze
9b16cb57
RD
5185 -- the if expression node, we do not get an unwanted recursive
5186 -- expansion of the allocator expression.
70482933 5187
b4592168
GD
5188 Set_Analyzed (N, True);
5189 Nod := Relocate_Node (N);
70482933 5190
b4592168 5191 -- Here is the transformation:
ca5af305
AC
5192 -- input: new Ctrl_Typ
5193 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
5194 -- Ctrl_TypIP (Temp.all, ...);
5195 -- [Deep_]Initialize (Temp.all);
70482933 5196
ca5af305
AC
5197 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
5198 -- is the subtype of the allocator.
70482933 5199
b4592168
GD
5200 Temp_Decl :=
5201 Make_Object_Declaration (Loc,
5202 Defining_Identifier => Temp,
5203 Constant_Present => True,
e4494292 5204 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
b4592168 5205 Expression => Nod);
70482933 5206
b4592168
GD
5207 Set_Assignment_OK (Temp_Decl);
5208 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
70482933 5209
ca5af305 5210 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 5211
b4592168
GD
5212 -- If the designated type is a task type or contains tasks,
5213 -- create block to activate created tasks, and insert
5214 -- declaration for Task_Image variable ahead of call.
70482933 5215
b4592168
GD
5216 if Has_Task (T) then
5217 declare
5218 L : constant List_Id := New_List;
5219 Blk : Node_Id;
5220 begin
5221 Build_Task_Allocate_Block (L, Nod, Args);
5222 Blk := Last (L);
5223 Insert_List_Before (First (Declarations (Blk)), Decls);
5224 Insert_Actions (N, L);
5225 end;
70482933 5226
b4592168
GD
5227 else
5228 Insert_Action (N,
5229 Make_Procedure_Call_Statement (Loc,
e4494292 5230 Name => New_Occurrence_Of (Init, Loc),
b4592168
GD
5231 Parameter_Associations => Args));
5232 end if;
70482933 5233
048e5cef 5234 if Needs_Finalization (T) then
70482933 5235
df3e68b1
HK
5236 -- Generate:
5237 -- [Deep_]Initialize (Init_Arg1);
70482933 5238
2168d7cc 5239 Init_Call :=
243cae0a
AC
5240 Make_Init_Call
5241 (Obj_Ref => New_Copy_Tree (Init_Arg1),
2168d7cc
AC
5242 Typ => T);
5243
5244 -- Guard against a missing [Deep_]Initialize when the
5245 -- designated type was not properly frozen.
5246
5247 if Present (Init_Call) then
5248 Insert_Action (N, Init_Call);
5249 end if;
70482933
RK
5250 end if;
5251
e4494292 5252 Rewrite (N, New_Occurrence_Of (Temp, Loc));
b4592168
GD
5253 Analyze_And_Resolve (N, PtrT);
5254 end if;
26bff3d9
JM
5255 end if;
5256 end;
f82944b7 5257
26bff3d9
JM
5258 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
5259 -- object that has been rewritten as a reference, we displace "this"
5260 -- to reference properly its secondary dispatch table.
5261
533369aa 5262 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
26bff3d9 5263 Displace_Allocator_Pointer (N);
f82944b7
JM
5264 end if;
5265
fbf5a39b
AC
5266 exception
5267 when RE_Not_Available =>
5268 return;
70482933
RK
5269 end Expand_N_Allocator;
5270
5271 -----------------------
5272 -- Expand_N_And_Then --
5273 -----------------------
5274
5875f8d6
AC
5275 procedure Expand_N_And_Then (N : Node_Id)
5276 renames Expand_Short_Circuit_Operator;
70482933 5277
19d846a0
RD
5278 ------------------------------
5279 -- Expand_N_Case_Expression --
5280 ------------------------------
5281
5282 procedure Expand_N_Case_Expression (N : Node_Id) is
e44e8a5e
AC
5283 function Is_Copy_Type (Typ : Entity_Id) return Boolean;
5284 -- Return True if we can copy objects of this type when expanding a case
5285 -- expression.
5286
5287 ------------------
5288 -- Is_Copy_Type --
5289 ------------------
5290
5291 function Is_Copy_Type (Typ : Entity_Id) return Boolean is
5292 begin
e0666fc6 5293 -- If Minimize_Expression_With_Actions is True, we can afford to copy
e44e8a5e
AC
5294 -- large objects, as long as they are constrained and not limited.
5295
5296 return
5297 Is_Elementary_Type (Underlying_Type (Typ))
5298 or else
5299 (Minimize_Expression_With_Actions
5300 and then Is_Constrained (Underlying_Type (Typ))
5b4ce2a0 5301 and then not Is_Limited_Type (Underlying_Type (Typ)));
e44e8a5e
AC
5302 end Is_Copy_Type;
5303
5304 -- Local variables
5305
5306 Loc : constant Source_Ptr := Sloc (N);
5307 Par : constant Node_Id := Parent (N);
5308 Typ : constant Entity_Id := Etype (N);
5309
0da343bc
AC
5310 Acts : List_Id;
5311 Alt : Node_Id;
5312 Case_Stmt : Node_Id;
5313 Decl : Node_Id;
5314 Expr : Node_Id;
5315 Target : Entity_Id;
5316 Target_Typ : Entity_Id;
5317
5318 In_Predicate : Boolean := False;
5319 -- Flag set when the case expression appears within a predicate
5320
be035558 5321 Optimize_Return_Stmt : Boolean := False;
0da343bc
AC
5322 -- Flag set when the case expression can be optimized in the context of
5323 -- a simple return statement.
19d846a0 5324
e44e8a5e
AC
5325 -- Start of processing for Expand_N_Case_Expression
5326
19d846a0 5327 begin
b6b5cca8
AC
5328 -- Check for MINIMIZED/ELIMINATED overflow mode
5329
5330 if Minimized_Eliminated_Overflow_Check (N) then
4b1c4f20
RD
5331 Apply_Arithmetic_Overflow_Check (N);
5332 return;
5333 end if;
5334
21d7ef70
AC
5335 -- If the case expression is a predicate specification, and the type
5336 -- to which it applies has a static predicate aspect, do not expand,
5337 -- because it will be converted to the proper predicate form later.
ff1f1705
AC
5338
5339 if Ekind_In (Current_Scope, E_Function, E_Procedure)
5340 and then Is_Predicate_Function (Current_Scope)
5341 then
be035558
AC
5342 In_Predicate := True;
5343
5344 if Has_Static_Predicate_Aspect (Etype (First_Entity (Current_Scope)))
5345 then
5346 return;
5347 end if;
ff1f1705
AC
5348 end if;
5349
0da343bc 5350 -- When the type of the case expression is elementary, expand
19d846a0 5351
0da343bc 5352 -- (case X is when A => AX, when B => BX ...)
19d846a0 5353
0da343bc 5354 -- into
19d846a0
RD
5355
5356 -- do
0da343bc 5357 -- Target : Typ;
19d846a0
RD
5358 -- case X is
5359 -- when A =>
be035558 5360 -- Target := AX;
19d846a0 5361 -- when B =>
be035558 5362 -- Target := BX;
19d846a0
RD
5363 -- ...
5364 -- end case;
be035558
AC
5365 -- in Target end;
5366
0da343bc 5367 -- In all other cases expand into
19d846a0
RD
5368
5369 -- do
0da343bc 5370 -- type Ptr_Typ is access all Typ;
be035558 5371 -- Target : Ptr_Typ;
19d846a0
RD
5372 -- case X is
5373 -- when A =>
be035558 5374 -- Target := AX'Unrestricted_Access;
19d846a0 5375 -- when B =>
be035558 5376 -- Target := BX'Unrestricted_Access;
19d846a0
RD
5377 -- ...
5378 -- end case;
be035558 5379 -- in Target.all end;
19d846a0 5380
0da343bc
AC
5381 -- This approach avoids extra copies of potentially large objects. It
5382 -- also allows handling of values of limited or unconstrained types.
e0666fc6 5383 -- Note that we do the copy also for constrained, nonlimited types
e44e8a5e
AC
5384 -- when minimizing expressions with actions (e.g. when generating C
5385 -- code) since it allows us to do the optimization below in more cases.
0da343bc
AC
5386
5387 -- Small optimization: when the case expression appears in the context
5388 -- of a simple return statement, expand into
5389
5390 -- case X is
5391 -- when A =>
5392 -- return AX;
5393 -- when B =>
5394 -- return BX;
5395 -- ...
5396 -- end case;
5397
be035558 5398 Case_Stmt :=
19d846a0
RD
5399 Make_Case_Statement (Loc,
5400 Expression => Expression (N),
5401 Alternatives => New_List);
5402
414c6563
AC
5403 -- Preserve the original context for which the case statement is being
5404 -- generated. This is needed by the finalization machinery to prevent
5405 -- the premature finalization of controlled objects found within the
5406 -- case statement.
5407
be035558
AC
5408 Set_From_Conditional_Expression (Case_Stmt);
5409 Acts := New_List;
19d846a0 5410
e44e8a5e 5411 -- Scalar/Copy case
19d846a0 5412
e44e8a5e 5413 if Is_Copy_Type (Typ) then
be035558
AC
5414 Target_Typ := Typ;
5415
5416 -- ??? Do not perform the optimization when the return statement is
e0666fc6 5417 -- within a predicate function, as this causes spurious errors. Could
0da343bc
AC
5418 -- this be a possible mismatch in handling this case somewhere else
5419 -- in semantic analysis?
be035558 5420
0da343bc
AC
5421 Optimize_Return_Stmt :=
5422 Nkind (Par) = N_Simple_Return_Statement and then not In_Predicate;
5423
5424 -- Otherwise create an access type to handle the general case using
5425 -- 'Unrestricted_Access.
5426
5427 -- Generate:
5428 -- type Ptr_Typ is access all Typ;
19d846a0
RD
5429
5430 else
211e7410
AC
5431 if Generate_C_Code then
5432
0c3ef0cc
GD
5433 -- We cannot ensure that correct C code will be generated if any
5434 -- temporary is created down the line (to e.g. handle checks or
5435 -- capture values) since we might end up with dangling references
5436 -- to local variables, so better be safe and reject the construct.
211e7410
AC
5437
5438 Error_Msg_N
5439 ("case expression too complex, use case statement instead", N);
5440 end if;
5441
0da343bc
AC
5442 Target_Typ := Make_Temporary (Loc, 'P');
5443
be035558 5444 Append_To (Acts,
19d846a0 5445 Make_Full_Type_Declaration (Loc,
0da343bc 5446 Defining_Identifier => Target_Typ,
11d59a86 5447 Type_Definition =>
19d846a0 5448 Make_Access_To_Object_Definition (Loc,
11d59a86 5449 All_Present => True,
e4494292 5450 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
19d846a0
RD
5451 end if;
5452
0da343bc
AC
5453 -- Create the declaration of the target which captures the value of the
5454 -- expression.
5455
5456 -- Generate:
5457 -- Target : [Ptr_]Typ;
5458
be035558
AC
5459 if not Optimize_Return_Stmt then
5460 Target := Make_Temporary (Loc, 'T');
27a8f150 5461
be035558
AC
5462 Decl :=
5463 Make_Object_Declaration (Loc,
5464 Defining_Identifier => Target,
5465 Object_Definition => New_Occurrence_Of (Target_Typ, Loc));
5466 Set_No_Initialization (Decl);
0da343bc 5467
be035558
AC
5468 Append_To (Acts, Decl);
5469 end if;
19d846a0 5470
0da343bc 5471 -- Process the alternatives
19d846a0
RD
5472
5473 Alt := First (Alternatives (N));
5474 while Present (Alt) loop
5475 declare
be035558
AC
5476 Alt_Expr : Node_Id := Expression (Alt);
5477 Alt_Loc : constant Source_Ptr := Sloc (Alt_Expr);
5b4ce2a0 5478 LHS : Node_Id;
be035558 5479 Stmts : List_Id;
19d846a0
RD
5480
5481 begin
0da343bc
AC
5482 -- Take the unrestricted access of the expression value for non-
5483 -- scalar types. This approach avoids big copies and covers the
5484 -- limited and unconstrained cases.
5485
5486 -- Generate:
5487 -- AX'Unrestricted_Access
05dbd302 5488
e44e8a5e 5489 if not Is_Copy_Type (Typ) then
be035558
AC
5490 Alt_Expr :=
5491 Make_Attribute_Reference (Alt_Loc,
5492 Prefix => Relocate_Node (Alt_Expr),
19d846a0
RD
5493 Attribute_Name => Name_Unrestricted_Access);
5494 end if;
5495
0da343bc
AC
5496 -- Generate:
5497 -- return AX['Unrestricted_Access];
5498
be035558
AC
5499 if Optimize_Return_Stmt then
5500 Stmts := New_List (
5501 Make_Simple_Return_Statement (Alt_Loc,
5502 Expression => Alt_Expr));
0da343bc
AC
5503
5504 -- Generate:
5505 -- Target := AX['Unrestricted_Access];
5506
be035558 5507 else
5b4ce2a0
HK
5508 LHS := New_Occurrence_Of (Target, Loc);
5509 Set_Assignment_OK (LHS);
5510
be035558
AC
5511 Stmts := New_List (
5512 Make_Assignment_Statement (Alt_Loc,
5b4ce2a0 5513 Name => LHS,
be035558
AC
5514 Expression => Alt_Expr));
5515 end if;
eaed0c37
AC
5516
5517 -- Propagate declarations inserted in the node by Insert_Actions
5518 -- (for example, temporaries generated to remove side effects).
5519 -- These actions must remain attached to the alternative, given
5520 -- that they are generated by the corresponding expression.
5521
be035558
AC
5522 if Present (Actions (Alt)) then
5523 Prepend_List (Actions (Alt), Stmts);
eaed0c37
AC
5524 end if;
5525
937e9676
AC
5526 -- Finalize any transient objects on exit from the alternative.
5527 -- This is done only in the return optimization case because
5528 -- otherwise the case expression is converted into an expression
5529 -- with actions which already contains this form of processing.
0da343bc
AC
5530
5531 if Optimize_Return_Stmt then
5532 Process_If_Case_Statements (N, Stmts);
5533 end if;
5534
19d846a0 5535 Append_To
be035558 5536 (Alternatives (Case_Stmt),
19d846a0
RD
5537 Make_Case_Statement_Alternative (Sloc (Alt),
5538 Discrete_Choices => Discrete_Choices (Alt),
be035558 5539 Statements => Stmts));
19d846a0
RD
5540 end;
5541
5542 Next (Alt);
5543 end loop;
5544
0da343bc 5545 -- Rewrite the parent return statement as a case statement
be035558
AC
5546
5547 if Optimize_Return_Stmt then
be035558
AC
5548 Rewrite (Par, Case_Stmt);
5549 Analyze (Par);
be035558 5550
0da343bc 5551 -- Otherwise convert the case expression into an expression with actions
19d846a0 5552
19d846a0 5553 else
0da343bc 5554 Append_To (Acts, Case_Stmt);
19d846a0 5555
e44e8a5e 5556 if Is_Copy_Type (Typ) then
0da343bc 5557 Expr := New_Occurrence_Of (Target, Loc);
19d846a0 5558
0da343bc
AC
5559 else
5560 Expr :=
5561 Make_Explicit_Dereference (Loc,
5562 Prefix => New_Occurrence_Of (Target, Loc));
5563 end if;
5564
5565 -- Generate:
5566 -- do
5567 -- ...
5568 -- in Target[.all] end;
5569
5570 Rewrite (N,
5571 Make_Expression_With_Actions (Loc,
5572 Expression => Expr,
5573 Actions => Acts));
5574
5575 Analyze_And_Resolve (N, Typ);
5576 end if;
19d846a0
RD
5577 end Expand_N_Case_Expression;
5578
9b16cb57
RD
5579 -----------------------------------
5580 -- Expand_N_Explicit_Dereference --
5581 -----------------------------------
5582
5583 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5584 begin
5585 -- Insert explicit dereference call for the checked storage pool case
5586
5587 Insert_Dereference_Action (Prefix (N));
5588
5589 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5590 -- we set the atomic sync flag.
5591
5592 if Is_Atomic (Etype (N))
5593 and then not Atomic_Synchronization_Disabled (Etype (N))
5594 then
5595 Activate_Atomic_Synchronization (N);
5596 end if;
5597 end Expand_N_Explicit_Dereference;
5598
5599 --------------------------------------
5600 -- Expand_N_Expression_With_Actions --
5601 --------------------------------------
5602
5603 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
e3d9f448
AC
5604 Acts : constant List_Id := Actions (N);
5605
5606 procedure Force_Boolean_Evaluation (Expr : Node_Id);
5607 -- Force the evaluation of Boolean expression Expr
5608
4c7e0990 5609 function Process_Action (Act : Node_Id) return Traverse_Result;
b2c28399 5610 -- Inspect and process a single action of an expression_with_actions for
937e9676
AC
5611 -- transient objects. If such objects are found, the routine generates
5612 -- code to clean them up when the context of the expression is evaluated
5613 -- or elaborated.
9b16cb57 5614
e3d9f448
AC
5615 ------------------------------
5616 -- Force_Boolean_Evaluation --
5617 ------------------------------
5618
5619 procedure Force_Boolean_Evaluation (Expr : Node_Id) is
5620 Loc : constant Source_Ptr := Sloc (N);
5621 Flag_Decl : Node_Id;
5622 Flag_Id : Entity_Id;
5623
5624 begin
5625 -- Relocate the expression to the actions list by capturing its value
5626 -- in a Boolean flag. Generate:
5627 -- Flag : constant Boolean := Expr;
5628
5629 Flag_Id := Make_Temporary (Loc, 'F');
5630
5631 Flag_Decl :=
5632 Make_Object_Declaration (Loc,
5633 Defining_Identifier => Flag_Id,
5634 Constant_Present => True,
5635 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
5636 Expression => Relocate_Node (Expr));
5637
5638 Append (Flag_Decl, Acts);
5639 Analyze (Flag_Decl);
5640
5641 -- Replace the expression with a reference to the flag
5642
5643 Rewrite (Expression (N), New_Occurrence_Of (Flag_Id, Loc));
5644 Analyze (Expression (N));
5645 end Force_Boolean_Evaluation;
5646
4c7e0990
AC
5647 --------------------
5648 -- Process_Action --
5649 --------------------
5650
5651 function Process_Action (Act : Node_Id) return Traverse_Result is
4c7e0990
AC
5652 begin
5653 if Nkind (Act) = N_Object_Declaration
5654 and then Is_Finalizable_Transient (Act, N)
5655 then
937e9676 5656 Process_Transient_In_Expression (Act, N, Acts);
05344a33 5657 return Skip;
9b16cb57 5658
4c7e0990
AC
5659 -- Avoid processing temporary function results multiple times when
5660 -- dealing with nested expression_with_actions.
9b16cb57 5661
4c7e0990
AC
5662 elsif Nkind (Act) = N_Expression_With_Actions then
5663 return Abandon;
5664
b2c28399
AC
5665 -- Do not process temporary function results in loops. This is done
5666 -- by Expand_N_Loop_Statement and Build_Finalizer.
4c7e0990
AC
5667
5668 elsif Nkind (Act) = N_Loop_Statement then
5669 return Abandon;
9b16cb57
RD
5670 end if;
5671
4c7e0990
AC
5672 return OK;
5673 end Process_Action;
9b16cb57 5674
4c7e0990 5675 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
9b16cb57
RD
5676
5677 -- Local variables
5678
e3d9f448 5679 Act : Node_Id;
9b16cb57
RD
5680
5681 -- Start of processing for Expand_N_Expression_With_Actions
5682
5683 begin
4b17187f
AC
5684 -- Do not evaluate the expression when it denotes an entity because the
5685 -- expression_with_actions node will be replaced by the reference.
5686
e3d9f448 5687 if Is_Entity_Name (Expression (N)) then
4b17187f
AC
5688 null;
5689
5690 -- Do not evaluate the expression when there are no actions because the
5691 -- expression_with_actions node will be replaced by the expression.
5692
5693 elsif No (Acts) or else Is_Empty_List (Acts) then
5694 null;
5695
5696 -- Force the evaluation of the expression by capturing its value in a
937e9676
AC
5697 -- temporary. This ensures that aliases of transient objects do not leak
5698 -- to the expression of the expression_with_actions node:
4b17187f
AC
5699
5700 -- do
7782ff67 5701 -- Trans_Id : Ctrl_Typ := ...;
4b17187f
AC
5702 -- Alias : ... := Trans_Id;
5703 -- in ... Alias ... end;
5704
5705 -- In the example above, Trans_Id cannot be finalized at the end of the
5706 -- actions list because this may affect the alias and the final value of
5707 -- the expression_with_actions. Forcing the evaluation encapsulates the
5708 -- reference to the Alias within the actions list:
5709
5710 -- do
7782ff67 5711 -- Trans_Id : Ctrl_Typ := ...;
4b17187f
AC
5712 -- Alias : ... := Trans_Id;
5713 -- Val : constant Boolean := ... Alias ...;
5714 -- <finalize Trans_Id>
5715 -- in Val end;
e0f63680 5716
e3d9f448 5717 -- Once this transformation is performed, it is safe to finalize the
937e9676 5718 -- transient object at the end of the actions list.
e3d9f448
AC
5719
5720 -- Note that Force_Evaluation does not remove side effects in operators
5721 -- because it assumes that all operands are evaluated and side effect
5722 -- free. This is not the case when an operand depends implicitly on the
937e9676 5723 -- transient object through the use of access types.
e3d9f448
AC
5724
5725 elsif Is_Boolean_Type (Etype (Expression (N))) then
5726 Force_Boolean_Evaluation (Expression (N));
5727
6031f544 5728 -- The expression of an expression_with_actions node may not necessarily
e3d9f448
AC
5729 -- be Boolean when the node appears in an if expression. In this case do
5730 -- the usual forced evaluation to encapsulate potential aliasing.
4b17187f
AC
5731
5732 else
e3d9f448 5733 Force_Evaluation (Expression (N));
4b17187f
AC
5734 end if;
5735
937e9676
AC
5736 -- Process all transient objects found within the actions of the EWA
5737 -- node.
4b17187f
AC
5738
5739 Act := First (Acts);
e0f63680
AC
5740 while Present (Act) loop
5741 Process_Single_Action (Act);
5742 Next (Act);
5743 end loop;
5744
ebdaa81b 5745 -- Deal with case where there are no actions. In this case we simply
5a521b8a 5746 -- rewrite the node with its expression since we don't need the actions
ebdaa81b
AC
5747 -- and the specification of this node does not allow a null action list.
5748
5a521b8a
AC
5749 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5750 -- the expanded tree and relying on being able to retrieve the original
5751 -- tree in cases like this. This raises a whole lot of issues of whether
5752 -- we have problems elsewhere, which will be addressed in the future???
5753
4b17187f 5754 if Is_Empty_List (Acts) then
5a521b8a 5755 Rewrite (N, Relocate_Node (Expression (N)));
ebdaa81b 5756 end if;
9b16cb57
RD
5757 end Expand_N_Expression_With_Actions;
5758
5759 ----------------------------
5760 -- Expand_N_If_Expression --
5761 ----------------------------
70482933 5762
4b985e20 5763 -- Deal with limited types and condition actions
70482933 5764
9b16cb57 5765 procedure Expand_N_If_Expression (N : Node_Id) is
0da343bc
AC
5766 Cond : constant Node_Id := First (Expressions (N));
5767 Loc : constant Source_Ptr := Sloc (N);
5768 Thenx : constant Node_Id := Next (Cond);
5769 Elsex : constant Node_Id := Next (Thenx);
5770 Typ : constant Entity_Id := Etype (N);
c471e2da 5771
3cebd1c0 5772 Actions : List_Id;
602a7ec0 5773 Decl : Node_Id;
3cebd1c0 5774 Expr : Node_Id;
602a7ec0
AC
5775 New_If : Node_Id;
5776 New_N : Node_Id;
70482933
RK
5777
5778 begin
b6b5cca8
AC
5779 -- Check for MINIMIZED/ELIMINATED overflow mode
5780
5781 if Minimized_Eliminated_Overflow_Check (N) then
5782 Apply_Arithmetic_Overflow_Check (N);
5783 return;
5784 end if;
5785
602a7ec0 5786 -- Fold at compile time if condition known. We have already folded
9b16cb57
RD
5787 -- static if expressions, but it is possible to fold any case in which
5788 -- the condition is known at compile time, even though the result is
5789 -- non-static.
602a7ec0
AC
5790
5791 -- Note that we don't do the fold of such cases in Sem_Elab because
5792 -- it can cause infinite loops with the expander adding a conditional
5793 -- expression, and Sem_Elab circuitry removing it repeatedly.
5794
5795 if Compile_Time_Known_Value (Cond) then
f916243b
AC
5796 declare
5797 function Fold_Known_Value (Cond : Node_Id) return Boolean;
0da343bc
AC
5798 -- Fold at compile time. Assumes condition known. Return True if
5799 -- folding occurred, meaning we're done.
602a7ec0 5800
f916243b
AC
5801 ----------------------
5802 -- Fold_Known_Value --
5803 ----------------------
ae77c68b 5804
f916243b
AC
5805 function Fold_Known_Value (Cond : Node_Id) return Boolean is
5806 begin
5807 if Is_True (Expr_Value (Cond)) then
5808 Expr := Thenx;
5809 Actions := Then_Actions (N);
5810 else
5811 Expr := Elsex;
5812 Actions := Else_Actions (N);
5813 end if;
602a7ec0 5814
f916243b 5815 Remove (Expr);
602a7ec0 5816
f916243b
AC
5817 if Present (Actions) then
5818
7548f2cb
AC
5819 -- To minimize the use of Expression_With_Actions, just skip
5820 -- the optimization as it is not critical for correctness.
f916243b
AC
5821
5822 if Minimize_Expression_With_Actions then
5823 return False;
5824 end if;
5825
5826 Rewrite (N,
5827 Make_Expression_With_Actions (Loc,
5828 Expression => Relocate_Node (Expr),
5829 Actions => Actions));
5830 Analyze_And_Resolve (N, Typ);
5831
5832 else
5833 Rewrite (N, Relocate_Node (Expr));
5834 end if;
5835
5836 -- Note that the result is never static (legitimate cases of
5837 -- static if expressions were folded in Sem_Eval).
5838
5839 Set_Is_Static_Expression (N, False);
5840 return True;
5841 end Fold_Known_Value;
5842
5843 begin
5844 if Fold_Known_Value (Cond) then
5845 return;
5846 end if;
5847 end;
602a7ec0
AC
5848 end if;
5849
113a9fb6
AC
5850 -- If the type is limited, and the back end does not handle limited
5851 -- types, then we expand as follows to avoid the possibility of
5852 -- improper copying.
ac7120ce 5853
c471e2da
AC
5854 -- type Ptr is access all Typ;
5855 -- Cnn : Ptr;
ac7120ce
RD
5856 -- if cond then
5857 -- <<then actions>>
5858 -- Cnn := then-expr'Unrestricted_Access;
5859 -- else
5860 -- <<else actions>>
5861 -- Cnn := else-expr'Unrestricted_Access;
5862 -- end if;
5863
9b16cb57 5864 -- and replace the if expression by a reference to Cnn.all.
ac7120ce 5865
305caf42
AC
5866 -- This special case can be skipped if the back end handles limited
5867 -- types properly and ensures that no incorrect copies are made.
5868
5869 if Is_By_Reference_Type (Typ)
5870 and then not Back_End_Handles_Limited_Types
5871 then
b2c28399
AC
5872 -- When the "then" or "else" expressions involve controlled function
5873 -- calls, generated temporaries are chained on the corresponding list
5874 -- of actions. These temporaries need to be finalized after the if
5875 -- expression is evaluated.
3cebd1c0 5876
0da343bc
AC
5877 Process_If_Case_Statements (N, Then_Actions (N));
5878 Process_If_Case_Statements (N, Else_Actions (N));
3cebd1c0 5879
3fc40cd7
PMR
5880 declare
5881 Cnn : constant Entity_Id := Make_Temporary (Loc, 'C', N);
5882 Ptr_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
e201023c 5883
3fc40cd7
PMR
5884 begin
5885 -- Generate:
5886 -- type Ann is access all Typ;
3cebd1c0 5887
3fc40cd7
PMR
5888 Insert_Action (N,
5889 Make_Full_Type_Declaration (Loc,
5890 Defining_Identifier => Ptr_Typ,
5891 Type_Definition =>
5892 Make_Access_To_Object_Definition (Loc,
5893 All_Present => True,
5894 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
3cebd1c0 5895
3fc40cd7
PMR
5896 -- Generate:
5897 -- Cnn : Ann;
3cebd1c0 5898
3fc40cd7
PMR
5899 Decl :=
5900 Make_Object_Declaration (Loc,
5901 Defining_Identifier => Cnn,
5902 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
3cebd1c0 5903
3fc40cd7
PMR
5904 -- Generate:
5905 -- if Cond then
5906 -- Cnn := <Thenx>'Unrestricted_Access;
5907 -- else
5908 -- Cnn := <Elsex>'Unrestricted_Access;
5909 -- end if;
3cebd1c0 5910
3fc40cd7
PMR
5911 New_If :=
5912 Make_Implicit_If_Statement (N,
5913 Condition => Relocate_Node (Cond),
5914 Then_Statements => New_List (
5915 Make_Assignment_Statement (Sloc (Thenx),
5916 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5917 Expression =>
5918 Make_Attribute_Reference (Loc,
5919 Prefix => Relocate_Node (Thenx),
5920 Attribute_Name => Name_Unrestricted_Access))),
3cebd1c0 5921
3fc40cd7
PMR
5922 Else_Statements => New_List (
5923 Make_Assignment_Statement (Sloc (Elsex),
5924 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5925 Expression =>
5926 Make_Attribute_Reference (Loc,
5927 Prefix => Relocate_Node (Elsex),
5928 Attribute_Name => Name_Unrestricted_Access))));
5929
5930 -- Preserve the original context for which the if statement is
5931 -- being generated. This is needed by the finalization machinery
5932 -- to prevent the premature finalization of controlled objects
5933 -- found within the if statement.
5934
5935 Set_From_Conditional_Expression (New_If);
5936
5937 New_N :=
5938 Make_Explicit_Dereference (Loc,
5939 Prefix => New_Occurrence_Of (Cnn, Loc));
5940 end;
fb1949a0 5941
113a9fb6
AC
5942 -- If the result is an unconstrained array and the if expression is in a
5943 -- context other than the initializing expression of the declaration of
5944 -- an object, then we pull out the if expression as follows:
5945
5946 -- Cnn : constant typ := if-expression
5947
5948 -- and then replace the if expression with an occurrence of Cnn. This
5949 -- avoids the need in the back end to create on-the-fly variable length
5950 -- temporaries (which it cannot do!)
5951
5952 -- Note that the test for being in an object declaration avoids doing an
5953 -- unnecessary expansion, and also avoids infinite recursion.
5954
5955 elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
5956 and then (Nkind (Parent (N)) /= N_Object_Declaration
5957 or else Expression (Parent (N)) /= N)
5958 then
5959 declare
5960 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
e201023c 5961
113a9fb6
AC
5962 begin
5963 Insert_Action (N,
5964 Make_Object_Declaration (Loc,
5965 Defining_Identifier => Cnn,
5966 Constant_Present => True,
5967 Object_Definition => New_Occurrence_Of (Typ, Loc),
5968 Expression => Relocate_Node (N),
5969 Has_Init_Expression => True));
5970
5971 Rewrite (N, New_Occurrence_Of (Cnn, Loc));
5972 return;
5973 end;
5974
c471e2da
AC
5975 -- For other types, we only need to expand if there are other actions
5976 -- associated with either branch.
5977
5978 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
c471e2da 5979
0812b84e 5980 -- We now wrap the actions into the appropriate expression
fb1949a0 5981
9d4f9832
AC
5982 if Minimize_Expression_With_Actions
5983 and then (Is_Elementary_Type (Underlying_Type (Typ))
5984 or else Is_Constrained (Underlying_Type (Typ)))
5985 then
f916243b
AC
5986 -- If we can't use N_Expression_With_Actions nodes, then we insert
5987 -- the following sequence of actions (using Insert_Actions):
305caf42 5988
f916243b
AC
5989 -- Cnn : typ;
5990 -- if cond then
5991 -- <<then actions>>
5992 -- Cnn := then-expr;
5993 -- else
5994 -- <<else actions>>
5995 -- Cnn := else-expr
5996 -- end if;
b2c28399 5997
f916243b 5998 -- and replace the if expression by a reference to Cnn
305caf42 5999
3fc40cd7
PMR
6000 declare
6001 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
e201023c 6002
3fc40cd7
PMR
6003 begin
6004 Decl :=
6005 Make_Object_Declaration (Loc,
6006 Defining_Identifier => Cnn,
6007 Object_Definition => New_Occurrence_Of (Typ, Loc));
f916243b 6008
3fc40cd7
PMR
6009 New_If :=
6010 Make_Implicit_If_Statement (N,
6011 Condition => Relocate_Node (Cond),
f916243b 6012
3fc40cd7
PMR
6013 Then_Statements => New_List (
6014 Make_Assignment_Statement (Sloc (Thenx),
6015 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
6016 Expression => Relocate_Node (Thenx))),
f916243b 6017
3fc40cd7
PMR
6018 Else_Statements => New_List (
6019 Make_Assignment_Statement (Sloc (Elsex),
6020 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
6021 Expression => Relocate_Node (Elsex))));
f916243b 6022
3fc40cd7
PMR
6023 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
6024 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
f916243b 6025
3fc40cd7
PMR
6026 New_N := New_Occurrence_Of (Cnn, Loc);
6027 end;
f916243b
AC
6028
6029 -- Regular path using Expression_With_Actions
6030
6031 else
6032 if Present (Then_Actions (N)) then
6033 Rewrite (Thenx,
6034 Make_Expression_With_Actions (Sloc (Thenx),
6035 Actions => Then_Actions (N),
6036 Expression => Relocate_Node (Thenx)));
6037
6038 Set_Then_Actions (N, No_List);
6039 Analyze_And_Resolve (Thenx, Typ);
6040 end if;
6041
6042 if Present (Else_Actions (N)) then
6043 Rewrite (Elsex,
6044 Make_Expression_With_Actions (Sloc (Elsex),
6045 Actions => Else_Actions (N),
6046 Expression => Relocate_Node (Elsex)));
6047
6048 Set_Else_Actions (N, No_List);
6049 Analyze_And_Resolve (Elsex, Typ);
6050 end if;
6051
6052 return;
6053 end if;
0812b84e 6054
b2c28399
AC
6055 -- If no actions then no expansion needed, gigi will handle it using the
6056 -- same approach as a C conditional expression.
305caf42
AC
6057
6058 else
c471e2da
AC
6059 return;
6060 end if;
6061
305caf42 6062 -- Fall through here for either the limited expansion, or the case of
e0666fc6 6063 -- inserting actions for nonlimited types. In both these cases, we must
305caf42 6064 -- move the SLOC of the parent If statement to the newly created one and
3fc5d116
RD
6065 -- change it to the SLOC of the expression which, after expansion, will
6066 -- correspond to what is being evaluated.
c471e2da 6067
533369aa 6068 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
c471e2da
AC
6069 Set_Sloc (New_If, Sloc (Parent (N)));
6070 Set_Sloc (Parent (N), Loc);
6071 end if;
70482933 6072
3fc5d116
RD
6073 -- Make sure Then_Actions and Else_Actions are appropriately moved
6074 -- to the new if statement.
6075
c471e2da
AC
6076 if Present (Then_Actions (N)) then
6077 Insert_List_Before
6078 (First (Then_Statements (New_If)), Then_Actions (N));
70482933 6079 end if;
c471e2da
AC
6080
6081 if Present (Else_Actions (N)) then
6082 Insert_List_Before
6083 (First (Else_Statements (New_If)), Else_Actions (N));
6084 end if;
6085
6086 Insert_Action (N, Decl);
6087 Insert_Action (N, New_If);
6088 Rewrite (N, New_N);
6089 Analyze_And_Resolve (N, Typ);
9b16cb57 6090 end Expand_N_If_Expression;
35a1c212 6091
70482933
RK
6092 -----------------
6093 -- Expand_N_In --
6094 -----------------
6095
6096 procedure Expand_N_In (N : Node_Id) is
7324bf49 6097 Loc : constant Source_Ptr := Sloc (N);
4818e7b9 6098 Restyp : constant Entity_Id := Etype (N);
7324bf49
AC
6099 Lop : constant Node_Id := Left_Opnd (N);
6100 Rop : constant Node_Id := Right_Opnd (N);
6101 Static : constant Boolean := Is_OK_Static_Expression (N);
70482933 6102
630d30e9
RD
6103 procedure Substitute_Valid_Check;
6104 -- Replaces node N by Lop'Valid. This is done when we have an explicit
6105 -- test for the left operand being in range of its subtype.
6106
6107 ----------------------------
6108 -- Substitute_Valid_Check --
6109 ----------------------------
6110
6111 procedure Substitute_Valid_Check is
356ffab8
AC
6112 function Is_OK_Object_Reference (Nod : Node_Id) return Boolean;
6113 -- Determine whether arbitrary node Nod denotes a source object that
6114 -- may safely act as prefix of attribute 'Valid.
6115
6116 ----------------------------
6117 -- Is_OK_Object_Reference --
6118 ----------------------------
6119
6120 function Is_OK_Object_Reference (Nod : Node_Id) return Boolean is
6121 Obj_Ref : Node_Id;
6122
6123 begin
6124 -- Inspect the original operand
6125
6126 Obj_Ref := Original_Node (Nod);
6127
6128 -- The object reference must be a source construct, otherwise the
6129 -- codefix suggestion may refer to nonexistent code from a user
6130 -- perspective.
6131
6132 if Comes_From_Source (Obj_Ref) then
6133
6134 -- Recover the actual object reference. There may be more cases
6135 -- to consider???
6136
6137 loop
6138 if Nkind_In (Obj_Ref, N_Type_Conversion,
6139 N_Unchecked_Type_Conversion)
6140 then
6141 Obj_Ref := Expression (Obj_Ref);
6142 else
6143 exit;
6144 end if;
6145 end loop;
6146
6147 return Is_Object_Reference (Obj_Ref);
6148 end if;
6149
6150 return False;
6151 end Is_OK_Object_Reference;
6152
6153 -- Start of processing for Substitute_Valid_Check
6154
630d30e9 6155 begin
c7532b2d
AC
6156 Rewrite (N,
6157 Make_Attribute_Reference (Loc,
6158 Prefix => Relocate_Node (Lop),
6159 Attribute_Name => Name_Valid));
630d30e9 6160
c7532b2d 6161 Analyze_And_Resolve (N, Restyp);
630d30e9 6162
356ffab8
AC
6163 -- Emit a warning when the left-hand operand of the membership test
6164 -- is a source object, otherwise the use of attribute 'Valid would be
6165 -- illegal. The warning is not given when overflow checking is either
6166 -- MINIMIZED or ELIMINATED, as the danger of optimization has been
6167 -- eliminated above.
acad3c0a 6168
356ffab8
AC
6169 if Is_OK_Object_Reference (Lop)
6170 and then Overflow_Check_Mode not in Minimized_Or_Eliminated
6171 then
324ac540
AC
6172 Error_Msg_N
6173 ("??explicit membership test may be optimized away", N);
acad3c0a 6174 Error_Msg_N -- CODEFIX
324ac540 6175 ("\??use ''Valid attribute instead", N);
acad3c0a 6176 end if;
630d30e9
RD
6177 end Substitute_Valid_Check;
6178
356ffab8
AC
6179 -- Local variables
6180
6181 Ltyp : Entity_Id;
6182 Rtyp : Entity_Id;
6183
630d30e9
RD
6184 -- Start of processing for Expand_N_In
6185
70482933 6186 begin
308e6f3a 6187 -- If set membership case, expand with separate procedure
4818e7b9 6188
197e4514 6189 if Present (Alternatives (N)) then
a3068ca6 6190 Expand_Set_Membership (N);
197e4514
AC
6191 return;
6192 end if;
6193
4818e7b9
RD
6194 -- Not set membership, proceed with expansion
6195
6196 Ltyp := Etype (Left_Opnd (N));
6197 Rtyp := Etype (Right_Opnd (N));
6198
5707e389 6199 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
f6194278
RD
6200 -- type, then expand with a separate procedure. Note the use of the
6201 -- flag No_Minimize_Eliminate to prevent infinite recursion.
6202
a7f1b24f 6203 if Overflow_Check_Mode in Minimized_Or_Eliminated
f6194278
RD
6204 and then Is_Signed_Integer_Type (Ltyp)
6205 and then not No_Minimize_Eliminate (N)
6206 then
6207 Expand_Membership_Minimize_Eliminate_Overflow (N);
6208 return;
6209 end if;
6210
630d30e9
RD
6211 -- Check case of explicit test for an expression in range of its
6212 -- subtype. This is suspicious usage and we replace it with a 'Valid
b6b5cca8 6213 -- test and give a warning for scalar types.
630d30e9 6214
4818e7b9 6215 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
6216
6217 -- Only relevant for source comparisons
6218
6219 and then Comes_From_Source (N)
6220
6221 -- In floating-point this is a standard way to check for finite values
6222 -- and using 'Valid would typically be a pessimization.
6223
4818e7b9 6224 and then not Is_Floating_Point_Type (Ltyp)
b6b5cca8
AC
6225
6226 -- Don't give the message unless right operand is a type entity and
6227 -- the type of the left operand matches this type. Note that this
6228 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
6229 -- checks have changed the type of the left operand.
6230
630d30e9 6231 and then Nkind (Rop) in N_Has_Entity
4818e7b9 6232 and then Ltyp = Entity (Rop)
b6b5cca8 6233
b6b5cca8
AC
6234 -- Skip this for predicated types, where such expressions are a
6235 -- reasonable way of testing if something meets the predicate.
6236
3d6db7f8 6237 and then not Present (Predicate_Function (Ltyp))
630d30e9
RD
6238 then
6239 Substitute_Valid_Check;
6240 return;
6241 end if;
6242
20b5d666
JM
6243 -- Do validity check on operands
6244
6245 if Validity_Checks_On and Validity_Check_Operands then
6246 Ensure_Valid (Left_Opnd (N));
6247 Validity_Check_Range (Right_Opnd (N));
6248 end if;
6249
630d30e9 6250 -- Case of explicit range
fbf5a39b
AC
6251
6252 if Nkind (Rop) = N_Range then
6253 declare
630d30e9
RD
6254 Lo : constant Node_Id := Low_Bound (Rop);
6255 Hi : constant Node_Id := High_Bound (Rop);
6256
6257 Lo_Orig : constant Node_Id := Original_Node (Lo);
6258 Hi_Orig : constant Node_Id := Original_Node (Hi);
6259
c800f862
RD
6260 Lcheck : Compare_Result;
6261 Ucheck : Compare_Result;
fbf5a39b 6262
d766cee3
RD
6263 Warn1 : constant Boolean :=
6264 Constant_Condition_Warnings
c800f862
RD
6265 and then Comes_From_Source (N)
6266 and then not In_Instance;
d766cee3 6267 -- This must be true for any of the optimization warnings, we
9a0ddeee
AC
6268 -- clearly want to give them only for source with the flag on. We
6269 -- also skip these warnings in an instance since it may be the
6270 -- case that different instantiations have different ranges.
d766cee3
RD
6271
6272 Warn2 : constant Boolean :=
6273 Warn1
6274 and then Nkind (Original_Node (Rop)) = N_Range
6275 and then Is_Integer_Type (Etype (Lo));
6276 -- For the case where only one bound warning is elided, we also
6277 -- insist on an explicit range and an integer type. The reason is
6278 -- that the use of enumeration ranges including an end point is
9a0ddeee
AC
6279 -- common, as is the use of a subtype name, one of whose bounds is
6280 -- the same as the type of the expression.
d766cee3 6281
fbf5a39b 6282 begin
c95e0edc 6283 -- If test is explicit x'First .. x'Last, replace by valid check
630d30e9 6284
e606088a
AC
6285 -- Could use some individual comments for this complex test ???
6286
d766cee3 6287 if Is_Scalar_Type (Ltyp)
b6b5cca8
AC
6288
6289 -- And left operand is X'First where X matches left operand
6290 -- type (this eliminates cases of type mismatch, including
6291 -- the cases where ELIMINATED/MINIMIZED mode has changed the
6292 -- type of the left operand.
6293
630d30e9
RD
6294 and then Nkind (Lo_Orig) = N_Attribute_Reference
6295 and then Attribute_Name (Lo_Orig) = Name_First
6296 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
d766cee3 6297 and then Entity (Prefix (Lo_Orig)) = Ltyp
b6b5cca8 6298
cc6f5d75 6299 -- Same tests for right operand
b6b5cca8 6300
630d30e9
RD
6301 and then Nkind (Hi_Orig) = N_Attribute_Reference
6302 and then Attribute_Name (Hi_Orig) = Name_Last
6303 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
d766cee3 6304 and then Entity (Prefix (Hi_Orig)) = Ltyp
b6b5cca8
AC
6305
6306 -- Relevant only for source cases
6307
630d30e9
RD
6308 and then Comes_From_Source (N)
6309 then
6310 Substitute_Valid_Check;
4818e7b9 6311 goto Leave;
630d30e9
RD
6312 end if;
6313
d766cee3
RD
6314 -- If bounds of type are known at compile time, and the end points
6315 -- are known at compile time and identical, this is another case
6316 -- for substituting a valid test. We only do this for discrete
6317 -- types, since it won't arise in practice for float types.
6318
6319 if Comes_From_Source (N)
6320 and then Is_Discrete_Type (Ltyp)
6321 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
6322 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
6323 and then Compile_Time_Known_Value (Lo)
6324 and then Compile_Time_Known_Value (Hi)
6325 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
6326 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
94eefd2e 6327
f6194278
RD
6328 -- Kill warnings in instances, since they may be cases where we
6329 -- have a test in the generic that makes sense with some types
6330 -- and not with other types.
94eefd2e 6331
5b85ad7d
PMR
6332 -- Similarly, do not rewrite membership as a validity check if
6333 -- within the predicate function for the type.
6334
ad277369
ES
6335 -- Finally, if the original bounds are type conversions, even
6336 -- if they have been folded into constants, there are different
6337 -- types involved and 'Valid is not appropriate.
6338
d766cee3 6339 then
5b85ad7d
PMR
6340 if In_Instance
6341 or else (Ekind (Current_Scope) = E_Function
6342 and then Is_Predicate_Function (Current_Scope))
6343 then
6344 null;
6345
ad277369
ES
6346 elsif Nkind (Lo_Orig) = N_Type_Conversion
6347 or else Nkind (Hi_Orig) = N_Type_Conversion
6348 then
6349 null;
6350
5b85ad7d
PMR
6351 else
6352 Substitute_Valid_Check;
6353 goto Leave;
6354 end if;
d766cee3
RD
6355 end if;
6356
9a0ddeee
AC
6357 -- If we have an explicit range, do a bit of optimization based on
6358 -- range analysis (we may be able to kill one or both checks).
630d30e9 6359
c800f862
RD
6360 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
6361 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
6362
630d30e9
RD
6363 -- If either check is known to fail, replace result by False since
6364 -- the other check does not matter. Preserve the static flag for
6365 -- legality checks, because we are constant-folding beyond RM 4.9.
fbf5a39b
AC
6366
6367 if Lcheck = LT or else Ucheck = GT then
c800f862 6368 if Warn1 then
685bc70f
AC
6369 Error_Msg_N ("?c?range test optimized away", N);
6370 Error_Msg_N ("\?c?value is known to be out of range", N);
d766cee3
RD
6371 end if;
6372
e4494292 6373 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 6374 Analyze_And_Resolve (N, Restyp);
7324bf49 6375 Set_Is_Static_Expression (N, Static);
4818e7b9 6376 goto Leave;
fbf5a39b 6377
685094bf
RD
6378 -- If both checks are known to succeed, replace result by True,
6379 -- since we know we are in range.
fbf5a39b
AC
6380
6381 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
c800f862 6382 if Warn1 then
685bc70f
AC
6383 Error_Msg_N ("?c?range test optimized away", N);
6384 Error_Msg_N ("\?c?value is known to be in range", N);
d766cee3
RD
6385 end if;
6386
e4494292 6387 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 6388 Analyze_And_Resolve (N, Restyp);
7324bf49 6389 Set_Is_Static_Expression (N, Static);
4818e7b9 6390 goto Leave;
fbf5a39b 6391
d766cee3
RD
6392 -- If lower bound check succeeds and upper bound check is not
6393 -- known to succeed or fail, then replace the range check with
6394 -- a comparison against the upper bound.
fbf5a39b
AC
6395
6396 elsif Lcheck in Compare_GE then
94eefd2e 6397 if Warn2 and then not In_Instance then
324ac540
AC
6398 Error_Msg_N ("??lower bound test optimized away", Lo);
6399 Error_Msg_N ("\??value is known to be in range", Lo);
d766cee3
RD
6400 end if;
6401
fbf5a39b
AC
6402 Rewrite (N,
6403 Make_Op_Le (Loc,
6404 Left_Opnd => Lop,
6405 Right_Opnd => High_Bound (Rop)));
4818e7b9
RD
6406 Analyze_And_Resolve (N, Restyp);
6407 goto Leave;
fbf5a39b 6408
d766cee3
RD
6409 -- If upper bound check succeeds and lower bound check is not
6410 -- known to succeed or fail, then replace the range check with
6411 -- a comparison against the lower bound.
fbf5a39b
AC
6412
6413 elsif Ucheck in Compare_LE then
94eefd2e 6414 if Warn2 and then not In_Instance then
324ac540
AC
6415 Error_Msg_N ("??upper bound test optimized away", Hi);
6416 Error_Msg_N ("\??value is known to be in range", Hi);
d766cee3
RD
6417 end if;
6418
fbf5a39b
AC
6419 Rewrite (N,
6420 Make_Op_Ge (Loc,
6421 Left_Opnd => Lop,
6422 Right_Opnd => Low_Bound (Rop)));
4818e7b9
RD
6423 Analyze_And_Resolve (N, Restyp);
6424 goto Leave;
fbf5a39b 6425 end if;
c800f862
RD
6426
6427 -- We couldn't optimize away the range check, but there is one
6428 -- more issue. If we are checking constant conditionals, then we
6429 -- see if we can determine the outcome assuming everything is
6430 -- valid, and if so give an appropriate warning.
6431
6432 if Warn1 and then not Assume_No_Invalid_Values then
6433 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
6434 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
6435
6436 -- Result is out of range for valid value
6437
6438 if Lcheck = LT or else Ucheck = GT then
ed2233dc 6439 Error_Msg_N
685bc70f 6440 ("?c?value can only be in range if it is invalid", N);
c800f862
RD
6441
6442 -- Result is in range for valid value
6443
6444 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
ed2233dc 6445 Error_Msg_N
685bc70f 6446 ("?c?value can only be out of range if it is invalid", N);
c800f862
RD
6447
6448 -- Lower bound check succeeds if value is valid
6449
6450 elsif Warn2 and then Lcheck in Compare_GE then
ed2233dc 6451 Error_Msg_N
685bc70f 6452 ("?c?lower bound check only fails if it is invalid", Lo);
c800f862
RD
6453
6454 -- Upper bound check succeeds if value is valid
6455
6456 elsif Warn2 and then Ucheck in Compare_LE then
ed2233dc 6457 Error_Msg_N
685bc70f 6458 ("?c?upper bound check only fails for invalid values", Hi);
c800f862
RD
6459 end if;
6460 end if;
fbf5a39b
AC
6461 end;
6462
6463 -- For all other cases of an explicit range, nothing to be done
70482933 6464
4818e7b9 6465 goto Leave;
70482933
RK
6466
6467 -- Here right operand is a subtype mark
6468
6469 else
6470 declare
82878151
AC
6471 Typ : Entity_Id := Etype (Rop);
6472 Is_Acc : constant Boolean := Is_Access_Type (Typ);
6473 Cond : Node_Id := Empty;
6474 New_N : Node_Id;
6475 Obj : Node_Id := Lop;
6476 SCIL_Node : Node_Id;
70482933
RK
6477
6478 begin
6479 Remove_Side_Effects (Obj);
6480
6481 -- For tagged type, do tagged membership operation
6482
6483 if Is_Tagged_Type (Typ) then
fbf5a39b 6484
535a8637 6485 -- No expansion will be performed for VM targets, as the VM
c7a494c9 6486 -- back ends will handle the membership tests directly.
70482933 6487
1f110335 6488 if Tagged_Type_Expansion then
82878151
AC
6489 Tagged_Membership (N, SCIL_Node, New_N);
6490 Rewrite (N, New_N);
cc0b3bac 6491 Analyze_And_Resolve (N, Restyp, Suppress => All_Checks);
82878151
AC
6492
6493 -- Update decoration of relocated node referenced by the
6494 -- SCIL node.
6495
9a0ddeee 6496 if Generate_SCIL and then Present (SCIL_Node) then
7665e4bd 6497 Set_SCIL_Node (N, SCIL_Node);
82878151 6498 end if;
70482933
RK
6499 end if;
6500
4818e7b9 6501 goto Leave;
70482933 6502
c95e0edc 6503 -- If type is scalar type, rewrite as x in t'First .. t'Last.
70482933 6504 -- This reason we do this is that the bounds may have the wrong
c800f862
RD
6505 -- type if they come from the original type definition. Also this
6506 -- way we get all the processing above for an explicit range.
70482933 6507
f6194278 6508 -- Don't do this for predicated types, since in this case we
a90bd866 6509 -- want to check the predicate.
c0f136cd 6510
c7532b2d
AC
6511 elsif Is_Scalar_Type (Typ) then
6512 if No (Predicate_Function (Typ)) then
6513 Rewrite (Rop,
6514 Make_Range (Loc,
6515 Low_Bound =>
6516 Make_Attribute_Reference (Loc,
6517 Attribute_Name => Name_First,
e4494292 6518 Prefix => New_Occurrence_Of (Typ, Loc)),
c7532b2d
AC
6519
6520 High_Bound =>
6521 Make_Attribute_Reference (Loc,
6522 Attribute_Name => Name_Last,
e4494292 6523 Prefix => New_Occurrence_Of (Typ, Loc))));
c7532b2d
AC
6524 Analyze_And_Resolve (N, Restyp);
6525 end if;
70482933 6526
4818e7b9 6527 goto Leave;
5d09245e
AC
6528
6529 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6530 -- a membership test if the subtype mark denotes a constrained
6531 -- Unchecked_Union subtype and the expression lacks inferable
6532 -- discriminants.
6533
6534 elsif Is_Unchecked_Union (Base_Type (Typ))
6535 and then Is_Constrained (Typ)
6536 and then not Has_Inferable_Discriminants (Lop)
6537 then
6538 Insert_Action (N,
6539 Make_Raise_Program_Error (Loc,
6540 Reason => PE_Unchecked_Union_Restriction));
6541
9a0ddeee 6542 -- Prevent Gigi from generating incorrect code by rewriting the
f6194278 6543 -- test as False. What is this undocumented thing about ???
5d09245e 6544
9a0ddeee 6545 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 6546 goto Leave;
70482933
RK
6547 end if;
6548
fbf5a39b
AC
6549 -- Here we have a non-scalar type
6550
70482933
RK
6551 if Is_Acc then
6552 Typ := Designated_Type (Typ);
6553 end if;
6554
6555 if not Is_Constrained (Typ) then
e4494292 6556 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4818e7b9 6557 Analyze_And_Resolve (N, Restyp);
70482933 6558
685094bf
RD
6559 -- For the constrained array case, we have to check the subscripts
6560 -- for an exact match if the lengths are non-zero (the lengths
6561 -- must match in any case).
70482933
RK
6562
6563 elsif Is_Array_Type (Typ) then
fbf5a39b 6564 Check_Subscripts : declare
9a0ddeee 6565 function Build_Attribute_Reference
2e071734
AC
6566 (E : Node_Id;
6567 Nam : Name_Id;
6568 Dim : Nat) return Node_Id;
9a0ddeee 6569 -- Build attribute reference E'Nam (Dim)
70482933 6570
9a0ddeee
AC
6571 -------------------------------
6572 -- Build_Attribute_Reference --
6573 -------------------------------
fbf5a39b 6574
9a0ddeee 6575 function Build_Attribute_Reference
2e071734
AC
6576 (E : Node_Id;
6577 Nam : Name_Id;
6578 Dim : Nat) return Node_Id
70482933
RK
6579 is
6580 begin
6581 return
6582 Make_Attribute_Reference (Loc,
9a0ddeee 6583 Prefix => E,
70482933 6584 Attribute_Name => Nam,
9a0ddeee 6585 Expressions => New_List (
70482933 6586 Make_Integer_Literal (Loc, Dim)));
9a0ddeee 6587 end Build_Attribute_Reference;
70482933 6588
fad0600d 6589 -- Start of processing for Check_Subscripts
fbf5a39b 6590
70482933
RK
6591 begin
6592 for J in 1 .. Number_Dimensions (Typ) loop
6593 Evolve_And_Then (Cond,
6594 Make_Op_Eq (Loc,
6595 Left_Opnd =>
9a0ddeee 6596 Build_Attribute_Reference
fbf5a39b
AC
6597 (Duplicate_Subexpr_No_Checks (Obj),
6598 Name_First, J),
70482933 6599 Right_Opnd =>
9a0ddeee 6600 Build_Attribute_Reference
70482933
RK
6601 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
6602
6603 Evolve_And_Then (Cond,
6604 Make_Op_Eq (Loc,
6605 Left_Opnd =>
9a0ddeee 6606 Build_Attribute_Reference
fbf5a39b
AC
6607 (Duplicate_Subexpr_No_Checks (Obj),
6608 Name_Last, J),
70482933 6609 Right_Opnd =>
9a0ddeee 6610 Build_Attribute_Reference
70482933
RK
6611 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
6612 end loop;
6613
6614 if Is_Acc then
fbf5a39b
AC
6615 Cond :=
6616 Make_Or_Else (Loc,
cc6f5d75 6617 Left_Opnd =>
fbf5a39b
AC
6618 Make_Op_Eq (Loc,
6619 Left_Opnd => Obj,
6620 Right_Opnd => Make_Null (Loc)),
6621 Right_Opnd => Cond);
70482933
RK
6622 end if;
6623
6624 Rewrite (N, Cond);
4818e7b9 6625 Analyze_And_Resolve (N, Restyp);
fbf5a39b 6626 end Check_Subscripts;
70482933 6627
685094bf
RD
6628 -- These are the cases where constraint checks may be required,
6629 -- e.g. records with possible discriminants
70482933
RK
6630
6631 else
6632 -- Expand the test into a series of discriminant comparisons.
685094bf
RD
6633 -- The expression that is built is the negation of the one that
6634 -- is used for checking discriminant constraints.
70482933
RK
6635
6636 Obj := Relocate_Node (Left_Opnd (N));
6637
6638 if Has_Discriminants (Typ) then
6639 Cond := Make_Op_Not (Loc,
6640 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
6641
6642 if Is_Acc then
6643 Cond := Make_Or_Else (Loc,
cc6f5d75 6644 Left_Opnd =>
70482933
RK
6645 Make_Op_Eq (Loc,
6646 Left_Opnd => Obj,
6647 Right_Opnd => Make_Null (Loc)),
6648 Right_Opnd => Cond);
6649 end if;
6650
6651 else
6652 Cond := New_Occurrence_Of (Standard_True, Loc);
6653 end if;
6654
6655 Rewrite (N, Cond);
4818e7b9 6656 Analyze_And_Resolve (N, Restyp);
70482933 6657 end if;
6cce2156
GD
6658
6659 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
6660 -- expression of an anonymous access type. This can involve an
6661 -- accessibility test and a tagged type membership test in the
6662 -- case of tagged designated types.
6663
6664 if Ada_Version >= Ada_2012
6665 and then Is_Acc
6666 and then Ekind (Ltyp) = E_Anonymous_Access_Type
6667 then
6668 declare
6669 Expr_Entity : Entity_Id := Empty;
6670 New_N : Node_Id;
6671 Param_Level : Node_Id;
6672 Type_Level : Node_Id;
996c8821 6673
6cce2156
GD
6674 begin
6675 if Is_Entity_Name (Lop) then
6676 Expr_Entity := Param_Entity (Lop);
996c8821 6677
6cce2156
GD
6678 if not Present (Expr_Entity) then
6679 Expr_Entity := Entity (Lop);
6680 end if;
6681 end if;
6682
6683 -- If a conversion of the anonymous access value to the
6684 -- tested type would be illegal, then the result is False.
6685
6686 if not Valid_Conversion
6687 (Lop, Rtyp, Lop, Report_Errs => False)
6688 then
6689 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6690 Analyze_And_Resolve (N, Restyp);
6691
6692 -- Apply an accessibility check if the access object has an
6693 -- associated access level and when the level of the type is
6694 -- less deep than the level of the access parameter. This
6695 -- only occur for access parameters and stand-alone objects
6696 -- of an anonymous access type.
6697
6698 else
6699 if Present (Expr_Entity)
996c8821
RD
6700 and then
6701 Present
6702 (Effective_Extra_Accessibility (Expr_Entity))
6703 and then UI_Gt (Object_Access_Level (Lop),
6704 Type_Access_Level (Rtyp))
6cce2156
GD
6705 then
6706 Param_Level :=
6707 New_Occurrence_Of
d15f9422 6708 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6cce2156
GD
6709
6710 Type_Level :=
6711 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
6712
6713 -- Return True only if the accessibility level of the
6714 -- expression entity is not deeper than the level of
6715 -- the tested access type.
6716
6717 Rewrite (N,
6718 Make_And_Then (Loc,
6719 Left_Opnd => Relocate_Node (N),
6720 Right_Opnd => Make_Op_Le (Loc,
6721 Left_Opnd => Param_Level,
6722 Right_Opnd => Type_Level)));
6723
6724 Analyze_And_Resolve (N);
6725 end if;
6726
6727 -- If the designated type is tagged, do tagged membership
6728 -- operation.
6729
6730 -- *** NOTE: we have to check not null before doing the
6731 -- tagged membership test (but maybe that can be done
6732 -- inside Tagged_Membership?).
6733
6734 if Is_Tagged_Type (Typ) then
6735 Rewrite (N,
6736 Make_And_Then (Loc,
6737 Left_Opnd => Relocate_Node (N),
6738 Right_Opnd =>
6739 Make_Op_Ne (Loc,
6740 Left_Opnd => Obj,
6741 Right_Opnd => Make_Null (Loc))));
6742
535a8637 6743 -- No expansion will be performed for VM targets, as
c7a494c9 6744 -- the VM back ends will handle the membership tests
69d8d8b4 6745 -- directly.
6cce2156
GD
6746
6747 if Tagged_Type_Expansion then
6748
6749 -- Note that we have to pass Original_Node, because
6750 -- the membership test might already have been
6751 -- rewritten by earlier parts of membership test.
6752
6753 Tagged_Membership
6754 (Original_Node (N), SCIL_Node, New_N);
6755
6756 -- Update decoration of relocated node referenced
6757 -- by the SCIL node.
6758
6759 if Generate_SCIL and then Present (SCIL_Node) then
6760 Set_SCIL_Node (New_N, SCIL_Node);
6761 end if;
6762
6763 Rewrite (N,
6764 Make_And_Then (Loc,
6765 Left_Opnd => Relocate_Node (N),
6766 Right_Opnd => New_N));
6767
6768 Analyze_And_Resolve (N, Restyp);
6769 end if;
6770 end if;
6771 end if;
6772 end;
6773 end if;
70482933
RK
6774 end;
6775 end if;
4818e7b9
RD
6776
6777 -- At this point, we have done the processing required for the basic
6778 -- membership test, but not yet dealt with the predicate.
6779
6780 <<Leave>>
6781
c7532b2d
AC
6782 -- If a predicate is present, then we do the predicate test, but we
6783 -- most certainly want to omit this if we are within the predicate
a90bd866 6784 -- function itself, since otherwise we have an infinite recursion.
3d6db7f8
GD
6785 -- The check should also not be emitted when testing against a range
6786 -- (the check is only done when the right operand is a subtype; see
6787 -- RM12-4.5.2 (28.1/3-30/3)).
4818e7b9 6788
444656ce
ES
6789 Predicate_Check : declare
6790 function In_Range_Check return Boolean;
6791 -- Within an expanded range check that may raise Constraint_Error do
6792 -- not generate a predicate check as well. It is redundant because
6793 -- the context will add an explicit predicate check, and it will
6794 -- raise the wrong exception if it fails.
6795
6796 --------------------
6797 -- In_Range_Check --
6798 --------------------
6799
6800 function In_Range_Check return Boolean is
6801 P : Node_Id;
6802 begin
6803 P := Parent (N);
6804 while Present (P) loop
6805 if Nkind (P) = N_Raise_Constraint_Error then
6806 return True;
6807
6808 elsif Nkind (P) in N_Statement_Other_Than_Procedure_Call
6809 or else Nkind (P) = N_Procedure_Call_Statement
6810 or else Nkind (P) in N_Declaration
6811 then
6812 return False;
6813 end if;
6814
6815 P := Parent (P);
6816 end loop;
6817
6818 return False;
6819 end In_Range_Check;
6820
6821 -- Local variables
6822
c7532b2d 6823 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
444656ce
ES
6824 R_Op : Node_Id;
6825
6826 -- Start of processing for Predicate_Check
4818e7b9 6827
c7532b2d
AC
6828 begin
6829 if Present (PFunc)
6830 and then Current_Scope /= PFunc
3d6db7f8 6831 and then Nkind (Rop) /= N_Range
c7532b2d 6832 then
444656ce
ES
6833 if not In_Range_Check then
6834 R_Op := Make_Predicate_Call (Rtyp, Lop, Mem => True);
6835 else
6836 R_Op := New_Occurrence_Of (Standard_True, Loc);
6837 end if;
6838
c7532b2d
AC
6839 Rewrite (N,
6840 Make_And_Then (Loc,
6841 Left_Opnd => Relocate_Node (N),
444656ce 6842 Right_Opnd => R_Op));
4818e7b9 6843
c7532b2d 6844 -- Analyze new expression, mark left operand as analyzed to
b2009d46
AC
6845 -- avoid infinite recursion adding predicate calls. Similarly,
6846 -- suppress further range checks on the call.
4818e7b9 6847
c7532b2d 6848 Set_Analyzed (Left_Opnd (N));
b2009d46 6849 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
4818e7b9 6850
c7532b2d
AC
6851 -- All done, skip attempt at compile time determination of result
6852
6853 return;
6854 end if;
444656ce 6855 end Predicate_Check;
70482933
RK
6856 end Expand_N_In;
6857
6858 --------------------------------
6859 -- Expand_N_Indexed_Component --
6860 --------------------------------
6861
6862 procedure Expand_N_Indexed_Component (N : Node_Id) is
6863 Loc : constant Source_Ptr := Sloc (N);
6864 Typ : constant Entity_Id := Etype (N);
6865 P : constant Node_Id := Prefix (N);
6866 T : constant Entity_Id := Etype (P);
5972791c 6867 Atp : Entity_Id;
70482933
RK
6868
6869 begin
685094bf
RD
6870 -- A special optimization, if we have an indexed component that is
6871 -- selecting from a slice, then we can eliminate the slice, since, for
6872 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6873 -- the range check required by the slice. The range check for the slice
6874 -- itself has already been generated. The range check for the
6875 -- subscripting operation is ensured by converting the subject to
6876 -- the subtype of the slice.
6877
6878 -- This optimization not only generates better code, avoiding slice
6879 -- messing especially in the packed case, but more importantly bypasses
6880 -- some problems in handling this peculiar case, for example, the issue
6881 -- of dealing specially with object renamings.
70482933 6882
45ec05e1
RD
6883 if Nkind (P) = N_Slice
6884
6885 -- This optimization is disabled for CodePeer because it can transform
6886 -- an index-check constraint_error into a range-check constraint_error
6887 -- and CodePeer cares about that distinction.
6888
6889 and then not CodePeer_Mode
6890 then
70482933
RK
6891 Rewrite (N,
6892 Make_Indexed_Component (Loc,
cc6f5d75 6893 Prefix => Prefix (P),
70482933
RK
6894 Expressions => New_List (
6895 Convert_To
6896 (Etype (First_Index (Etype (P))),
6897 First (Expressions (N))))));
6898 Analyze_And_Resolve (N, Typ);
6899 return;
6900 end if;
6901
b4592168
GD
6902 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6903 -- function, then additional actuals must be passed.
6904
d4dfb005 6905 if Is_Build_In_Place_Function_Call (P) then
b4592168 6906 Make_Build_In_Place_Call_In_Anonymous_Context (P);
4ac62786
AC
6907
6908 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
6909 -- containing build-in-place function calls whose returned object covers
6910 -- interface types.
6911
d4dfb005 6912 elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
4ac62786 6913 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
b4592168
GD
6914 end if;
6915
685094bf 6916 -- If the prefix is an access type, then we unconditionally rewrite if
09494c32 6917 -- as an explicit dereference. This simplifies processing for several
685094bf
RD
6918 -- cases, including packed array cases and certain cases in which checks
6919 -- must be generated. We used to try to do this only when it was
6920 -- necessary, but it cleans up the code to do it all the time.
70482933
RK
6921
6922 if Is_Access_Type (T) then
2717634d 6923 Insert_Explicit_Dereference (P);
70482933 6924 Analyze_And_Resolve (P, Designated_Type (T));
5972791c
AC
6925 Atp := Designated_Type (T);
6926 else
6927 Atp := T;
70482933
RK
6928 end if;
6929
fbf5a39b
AC
6930 -- Generate index and validity checks
6931
6932 Generate_Index_Checks (N);
6933
70482933
RK
6934 if Validity_Checks_On and then Validity_Check_Subscripts then
6935 Apply_Subscript_Validity_Checks (N);
6936 end if;
6937
5972791c
AC
6938 -- If selecting from an array with atomic components, and atomic sync
6939 -- is not suppressed for this array type, set atomic sync flag.
6940
6941 if (Has_Atomic_Components (Atp)
6942 and then not Atomic_Synchronization_Disabled (Atp))
6943 or else (Is_Atomic (Typ)
6944 and then not Atomic_Synchronization_Disabled (Typ))
e2f0522e
EB
6945 or else (Is_Entity_Name (P)
6946 and then Has_Atomic_Components (Entity (P))
6947 and then not Atomic_Synchronization_Disabled (Entity (P)))
5972791c 6948 then
4c318253 6949 Activate_Atomic_Synchronization (N);
5972791c
AC
6950 end if;
6951
b3f75672 6952 -- All done if the prefix is not a packed array implemented specially
70482933 6953
b3f75672
EB
6954 if not (Is_Packed (Etype (Prefix (N)))
6955 and then Present (Packed_Array_Impl_Type (Etype (Prefix (N)))))
6956 then
70482933
RK
6957 return;
6958 end if;
6959
6960 -- For packed arrays that are not bit-packed (i.e. the case of an array
8fc789c8 6961 -- with one or more index types with a non-contiguous enumeration type),
70482933
RK
6962 -- we can always use the normal packed element get circuit.
6963
6964 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6965 Expand_Packed_Element_Reference (N);
6966 return;
6967 end if;
6968
8ca597af
RD
6969 -- For a reference to a component of a bit packed array, we convert it
6970 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6971 -- want to do this for simple references, and not for:
70482933 6972
685094bf
RD
6973 -- Left side of assignment, or prefix of left side of assignment, or
6974 -- prefix of the prefix, to handle packed arrays of packed arrays,
70482933
RK
6975 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6976
6977 -- Renaming objects in renaming associations
6978 -- This case is handled when a use of the renamed variable occurs
6979
d21328a0 6980 -- Actual parameters for a subprogram call
70482933
RK
6981 -- This case is handled in Exp_Ch6.Expand_Actuals
6982
6983 -- The second expression in a 'Read attribute reference
6984
47d3b920 6985 -- The prefix of an address or bit or size attribute reference
70482933 6986
e8c84c8f
AC
6987 -- The following circuit detects these exceptions. Note that we need to
6988 -- deal with implicit dereferences when climbing up the parent chain,
6989 -- with the additional difficulty that the type of parents may have yet
6990 -- to be resolved since prefixes are usually resolved first.
70482933
RK
6991
6992 declare
6993 Child : Node_Id := N;
6994 Parnt : Node_Id := Parent (N);
6995
6996 begin
6997 loop
6998 if Nkind (Parnt) = N_Unchecked_Expression then
6999 null;
7000
d21328a0
EB
7001 elsif Nkind (Parnt) = N_Object_Renaming_Declaration then
7002 return;
7003
7004 elsif Nkind (Parnt) in N_Subprogram_Call
70482933 7005 or else (Nkind (Parnt) = N_Parameter_Association
d21328a0 7006 and then Nkind (Parent (Parnt)) in N_Subprogram_Call)
70482933
RK
7007 then
7008 return;
7009
7010 elsif Nkind (Parnt) = N_Attribute_Reference
b69cd36a
AC
7011 and then Nam_In (Attribute_Name (Parnt), Name_Address,
7012 Name_Bit,
7013 Name_Size)
70482933
RK
7014 and then Prefix (Parnt) = Child
7015 then
7016 return;
7017
7018 elsif Nkind (Parnt) = N_Assignment_Statement
7019 and then Name (Parnt) = Child
7020 then
7021 return;
7022
685094bf
RD
7023 -- If the expression is an index of an indexed component, it must
7024 -- be expanded regardless of context.
fbf5a39b
AC
7025
7026 elsif Nkind (Parnt) = N_Indexed_Component
7027 and then Child /= Prefix (Parnt)
7028 then
7029 Expand_Packed_Element_Reference (N);
7030 return;
7031
7032 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
7033 and then Name (Parent (Parnt)) = Parnt
7034 then
7035 return;
7036
70482933
RK
7037 elsif Nkind (Parnt) = N_Attribute_Reference
7038 and then Attribute_Name (Parnt) = Name_Read
7039 and then Next (First (Expressions (Parnt))) = Child
7040 then
7041 return;
7042
e8c84c8f
AC
7043 elsif Nkind (Parnt) = N_Indexed_Component
7044 and then Prefix (Parnt) = Child
7045 then
7046 null;
7047
7048 elsif Nkind (Parnt) = N_Selected_Component
533369aa 7049 and then Prefix (Parnt) = Child
e8c84c8f
AC
7050 and then not (Present (Etype (Selector_Name (Parnt)))
7051 and then
7052 Is_Access_Type (Etype (Selector_Name (Parnt))))
70482933
RK
7053 then
7054 null;
7055
e8c84c8f
AC
7056 -- If the parent is a dereference, either implicit or explicit,
7057 -- then the packed reference needs to be expanded.
7058
70482933
RK
7059 else
7060 Expand_Packed_Element_Reference (N);
7061 return;
7062 end if;
7063
685094bf
RD
7064 -- Keep looking up tree for unchecked expression, or if we are the
7065 -- prefix of a possible assignment left side.
70482933
RK
7066
7067 Child := Parnt;
7068 Parnt := Parent (Child);
7069 end loop;
7070 end;
70482933
RK
7071 end Expand_N_Indexed_Component;
7072
7073 ---------------------
7074 -- Expand_N_Not_In --
7075 ---------------------
7076
7077 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
7078 -- can be done. This avoids needing to duplicate this expansion code.
7079
7080 procedure Expand_N_Not_In (N : Node_Id) is
630d30e9
RD
7081 Loc : constant Source_Ptr := Sloc (N);
7082 Typ : constant Entity_Id := Etype (N);
7083 Cfs : constant Boolean := Comes_From_Source (N);
70482933
RK
7084
7085 begin
7086 Rewrite (N,
7087 Make_Op_Not (Loc,
7088 Right_Opnd =>
7089 Make_In (Loc,
7090 Left_Opnd => Left_Opnd (N),
d766cee3 7091 Right_Opnd => Right_Opnd (N))));
630d30e9 7092
197e4514
AC
7093 -- If this is a set membership, preserve list of alternatives
7094
7095 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
7096
d766cee3 7097 -- We want this to appear as coming from source if original does (see
8fc789c8 7098 -- transformations in Expand_N_In).
630d30e9
RD
7099
7100 Set_Comes_From_Source (N, Cfs);
7101 Set_Comes_From_Source (Right_Opnd (N), Cfs);
7102
8fc789c8 7103 -- Now analyze transformed node
630d30e9 7104
70482933
RK
7105 Analyze_And_Resolve (N, Typ);
7106 end Expand_N_Not_In;
7107
7108 -------------------
7109 -- Expand_N_Null --
7110 -------------------
7111
a3f2babd
AC
7112 -- The only replacement required is for the case of a null of a type that
7113 -- is an access to protected subprogram, or a subtype thereof. We represent
7114 -- such access values as a record, and so we must replace the occurrence of
7115 -- null by the equivalent record (with a null address and a null pointer in
c7a494c9 7116 -- it), so that the back end creates the proper value.
70482933
RK
7117
7118 procedure Expand_N_Null (N : Node_Id) is
7119 Loc : constant Source_Ptr := Sloc (N);
a3f2babd 7120 Typ : constant Entity_Id := Base_Type (Etype (N));
70482933
RK
7121 Agg : Node_Id;
7122
7123 begin
26bff3d9 7124 if Is_Access_Protected_Subprogram_Type (Typ) then
70482933
RK
7125 Agg :=
7126 Make_Aggregate (Loc,
7127 Expressions => New_List (
7128 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
7129 Make_Null (Loc)));
7130
7131 Rewrite (N, Agg);
7132 Analyze_And_Resolve (N, Equivalent_Type (Typ));
7133
685094bf
RD
7134 -- For subsequent semantic analysis, the node must retain its type.
7135 -- Gigi in any case replaces this type by the corresponding record
7136 -- type before processing the node.
70482933
RK
7137
7138 Set_Etype (N, Typ);
7139 end if;
fbf5a39b
AC
7140
7141 exception
7142 when RE_Not_Available =>
7143 return;
70482933
RK
7144 end Expand_N_Null;
7145
7146 ---------------------
7147 -- Expand_N_Op_Abs --
7148 ---------------------
7149
7150 procedure Expand_N_Op_Abs (N : Node_Id) is
7151 Loc : constant Source_Ptr := Sloc (N);
cc6f5d75 7152 Expr : constant Node_Id := Right_Opnd (N);
70482933
RK
7153
7154 begin
7155 Unary_Op_Validity_Checks (N);
7156
b6b5cca8
AC
7157 -- Check for MINIMIZED/ELIMINATED overflow mode
7158
7159 if Minimized_Eliminated_Overflow_Check (N) then
7160 Apply_Arithmetic_Overflow_Check (N);
7161 return;
7162 end if;
7163
70482933
RK
7164 -- Deal with software overflow checking
7165
d8eb4ac4 7166 if Is_Signed_Integer_Type (Etype (N))
533369aa 7167 and then Do_Overflow_Check (N)
70482933 7168 then
685094bf
RD
7169 -- The only case to worry about is when the argument is equal to the
7170 -- largest negative number, so what we do is to insert the check:
70482933 7171
fbf5a39b 7172 -- [constraint_error when Expr = typ'Base'First]
70482933
RK
7173
7174 -- with the usual Duplicate_Subexpr use coding for expr
7175
fbf5a39b
AC
7176 Insert_Action (N,
7177 Make_Raise_Constraint_Error (Loc,
7178 Condition =>
7179 Make_Op_Eq (Loc,
70482933 7180 Left_Opnd => Duplicate_Subexpr (Expr),
fbf5a39b
AC
7181 Right_Opnd =>
7182 Make_Attribute_Reference (Loc,
cc6f5d75 7183 Prefix =>
fbf5a39b
AC
7184 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
7185 Attribute_Name => Name_First)),
7186 Reason => CE_Overflow_Check_Failed));
c35c40e7
RK
7187
7188 Set_Do_Overflow_Check (N, False);
fbf5a39b 7189 end if;
70482933
RK
7190 end Expand_N_Op_Abs;
7191
7192 ---------------------
7193 -- Expand_N_Op_Add --
7194 ---------------------
7195
7196 procedure Expand_N_Op_Add (N : Node_Id) is
7197 Typ : constant Entity_Id := Etype (N);
7198
7199 begin
7200 Binary_Op_Validity_Checks (N);
7201
b6b5cca8
AC
7202 -- Check for MINIMIZED/ELIMINATED overflow mode
7203
7204 if Minimized_Eliminated_Overflow_Check (N) then
7205 Apply_Arithmetic_Overflow_Check (N);
7206 return;
7207 end if;
7208
70482933
RK
7209 -- N + 0 = 0 + N = N for integer types
7210
7211 if Is_Integer_Type (Typ) then
7212 if Compile_Time_Known_Value (Right_Opnd (N))
7213 and then Expr_Value (Right_Opnd (N)) = Uint_0
7214 then
7215 Rewrite (N, Left_Opnd (N));
7216 return;
7217
7218 elsif Compile_Time_Known_Value (Left_Opnd (N))
7219 and then Expr_Value (Left_Opnd (N)) = Uint_0
7220 then
7221 Rewrite (N, Right_Opnd (N));
7222 return;
7223 end if;
7224 end if;
7225
fbf5a39b 7226 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 7227
761f7dcb 7228 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933
RK
7229 Apply_Arithmetic_Overflow_Check (N);
7230 return;
70482933 7231 end if;
dfaff97b
RD
7232
7233 -- Overflow checks for floating-point if -gnateF mode active
7234
7235 Check_Float_Op_Overflow (N);
05dbb83f 7236
f4ac86dd 7237 Expand_Nonbinary_Modular_Op (N);
70482933
RK
7238 end Expand_N_Op_Add;
7239
7240 ---------------------
7241 -- Expand_N_Op_And --
7242 ---------------------
7243
7244 procedure Expand_N_Op_And (N : Node_Id) is
7245 Typ : constant Entity_Id := Etype (N);
7246
7247 begin
7248 Binary_Op_Validity_Checks (N);
7249
7250 if Is_Array_Type (Etype (N)) then
7251 Expand_Boolean_Operator (N);
7252
7253 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
7254 Adjust_Condition (Left_Opnd (N));
7255 Adjust_Condition (Right_Opnd (N));
7256 Set_Etype (N, Standard_Boolean);
7257 Adjust_Result_Type (N, Typ);
437f8c1e
AC
7258
7259 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7260 Expand_Intrinsic_Call (N, Entity (N));
05dbb83f
AC
7261 end if;
7262
f4ac86dd 7263 Expand_Nonbinary_Modular_Op (N);
70482933
RK
7264 end Expand_N_Op_And;
7265
7266 ------------------------
7267 -- Expand_N_Op_Concat --
7268 ------------------------
7269
7270 procedure Expand_N_Op_Concat (N : Node_Id) is
70482933
RK
7271 Opnds : List_Id;
7272 -- List of operands to be concatenated
7273
70482933 7274 Cnode : Node_Id;
685094bf
RD
7275 -- Node which is to be replaced by the result of concatenating the nodes
7276 -- in the list Opnds.
70482933 7277
70482933 7278 begin
fbf5a39b
AC
7279 -- Ensure validity of both operands
7280
70482933
RK
7281 Binary_Op_Validity_Checks (N);
7282
685094bf
RD
7283 -- If we are the left operand of a concatenation higher up the tree,
7284 -- then do nothing for now, since we want to deal with a series of
7285 -- concatenations as a unit.
70482933
RK
7286
7287 if Nkind (Parent (N)) = N_Op_Concat
7288 and then N = Left_Opnd (Parent (N))
7289 then
7290 return;
7291 end if;
7292
7293 -- We get here with a concatenation whose left operand may be a
7294 -- concatenation itself with a consistent type. We need to process
7295 -- these concatenation operands from left to right, which means
7296 -- from the deepest node in the tree to the highest node.
7297
7298 Cnode := N;
7299 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
7300 Cnode := Left_Opnd (Cnode);
7301 end loop;
7302
64425dff
BD
7303 -- Now Cnode is the deepest concatenation, and its parents are the
7304 -- concatenation nodes above, so now we process bottom up, doing the
64425dff 7305 -- operands.
70482933 7306
df46b832
AC
7307 -- The outer loop runs more than once if more than one concatenation
7308 -- type is involved.
70482933
RK
7309
7310 Outer : loop
7311 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
7312 Set_Parent (Opnds, N);
7313
df46b832 7314 -- The inner loop gathers concatenation operands
70482933
RK
7315
7316 Inner : while Cnode /= N
70482933
RK
7317 and then Base_Type (Etype (Cnode)) =
7318 Base_Type (Etype (Parent (Cnode)))
7319 loop
7320 Cnode := Parent (Cnode);
7321 Append (Right_Opnd (Cnode), Opnds);
7322 end loop Inner;
7323
43c58950
AC
7324 -- Note: The following code is a temporary workaround for N731-034
7325 -- and N829-028 and will be kept until the general issue of internal
7326 -- symbol serialization is addressed. The workaround is kept under a
7327 -- debug switch to avoid permiating into the general case.
7328
7329 -- Wrap the node to concatenate into an expression actions node to
7330 -- keep it nicely packaged. This is useful in the case of an assert
7331 -- pragma with a concatenation where we want to be able to delete
7332 -- the concatenation and all its expansion stuff.
7333
7334 if Debug_Flag_Dot_H then
7335 declare
683af98c 7336 Cnod : constant Node_Id := New_Copy_Tree (Cnode);
43c58950
AC
7337 Typ : constant Entity_Id := Base_Type (Etype (Cnode));
7338
7339 begin
7340 -- Note: use Rewrite rather than Replace here, so that for
7341 -- example Why_Not_Static can find the original concatenation
7342 -- node OK!
7343
7344 Rewrite (Cnode,
7345 Make_Expression_With_Actions (Sloc (Cnode),
7346 Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
7347 Expression => Cnod));
7348
7349 Expand_Concatenate (Cnod, Opnds);
7350 Analyze_And_Resolve (Cnode, Typ);
7351 end;
7352
7353 -- Default case
7354
7355 else
7356 Expand_Concatenate (Cnode, Opnds);
7357 end if;
70482933
RK
7358
7359 exit Outer when Cnode = N;
7360 Cnode := Parent (Cnode);
7361 end loop Outer;
7362 end Expand_N_Op_Concat;
7363
7364 ------------------------
7365 -- Expand_N_Op_Divide --
7366 ------------------------
7367
7368 procedure Expand_N_Op_Divide (N : Node_Id) is
f82944b7
JM
7369 Loc : constant Source_Ptr := Sloc (N);
7370 Lopnd : constant Node_Id := Left_Opnd (N);
7371 Ropnd : constant Node_Id := Right_Opnd (N);
7372 Ltyp : constant Entity_Id := Etype (Lopnd);
7373 Rtyp : constant Entity_Id := Etype (Ropnd);
7374 Typ : Entity_Id := Etype (N);
7375 Rknow : constant Boolean := Is_Integer_Type (Typ)
7376 and then
7377 Compile_Time_Known_Value (Ropnd);
7378 Rval : Uint;
70482933
RK
7379
7380 begin
7381 Binary_Op_Validity_Checks (N);
7382
b6b5cca8
AC
7383 -- Check for MINIMIZED/ELIMINATED overflow mode
7384
7385 if Minimized_Eliminated_Overflow_Check (N) then
7386 Apply_Arithmetic_Overflow_Check (N);
7387 return;
7388 end if;
7389
7390 -- Otherwise proceed with expansion of division
7391
f82944b7
JM
7392 if Rknow then
7393 Rval := Expr_Value (Ropnd);
7394 end if;
7395
70482933
RK
7396 -- N / 1 = N for integer types
7397
f82944b7
JM
7398 if Rknow and then Rval = Uint_1 then
7399 Rewrite (N, Lopnd);
70482933
RK
7400 return;
7401 end if;
7402
7403 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
7404 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7405 -- operand is an unsigned integer, as required for this to work.
7406
f82944b7
JM
7407 if Nkind (Ropnd) = N_Op_Expon
7408 and then Is_Power_Of_2_For_Shift (Ropnd)
fbf5a39b
AC
7409
7410 -- We cannot do this transformation in configurable run time mode if we
51bf9bdf 7411 -- have 64-bit integers and long shifts are not available.
fbf5a39b 7412
761f7dcb 7413 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
70482933
RK
7414 then
7415 Rewrite (N,
7416 Make_Op_Shift_Right (Loc,
f82944b7 7417 Left_Opnd => Lopnd,
70482933 7418 Right_Opnd =>
f82944b7 7419 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
70482933
RK
7420 Analyze_And_Resolve (N, Typ);
7421 return;
7422 end if;
7423
7424 -- Do required fixup of universal fixed operation
7425
7426 if Typ = Universal_Fixed then
7427 Fixup_Universal_Fixed_Operation (N);
7428 Typ := Etype (N);
7429 end if;
7430
7431 -- Divisions with fixed-point results
7432
7433 if Is_Fixed_Point_Type (Typ) then
7434
8223b654
AC
7435 -- No special processing if Treat_Fixed_As_Integer is set, since
7436 -- from a semantic point of view such operations are simply integer
7437 -- operations and will be treated that way.
7438
7439 if not Treat_Fixed_As_Integer (N) then
7440 if Is_Integer_Type (Rtyp) then
7441 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
7442 else
7443 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
7444 end if;
7445 end if;
7446
21f30884
AC
7447 -- Deal with divide-by-zero check if back end cannot handle them
7448 -- and the flag is set indicating that we need such a check. Note
7449 -- that we don't need to bother here with the case of mixed-mode
7450 -- (Right operand an integer type), since these will be rewritten
7451 -- with conversions to a divide with a fixed-point right operand.
7452
8223b654
AC
7453 if Nkind (N) = N_Op_Divide
7454 and then Do_Division_Check (N)
21f30884
AC
7455 and then not Backend_Divide_Checks_On_Target
7456 and then not Is_Integer_Type (Rtyp)
7457 then
7458 Set_Do_Division_Check (N, False);
7459 Insert_Action (N,
7460 Make_Raise_Constraint_Error (Loc,
7461 Condition =>
7462 Make_Op_Eq (Loc,
7463 Left_Opnd => Duplicate_Subexpr_Move_Checks (Ropnd),
7464 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
7465 Reason => CE_Divide_By_Zero));
7466 end if;
7467
685094bf
RD
7468 -- Other cases of division of fixed-point operands. Again we exclude the
7469 -- case where Treat_Fixed_As_Integer is set.
70482933 7470
761f7dcb 7471 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
70482933
RK
7472 and then not Treat_Fixed_As_Integer (N)
7473 then
7474 if Is_Integer_Type (Typ) then
7475 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
7476 else
7477 pragma Assert (Is_Floating_Point_Type (Typ));
7478 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
7479 end if;
7480
685094bf
RD
7481 -- Mixed-mode operations can appear in a non-static universal context,
7482 -- in which case the integer argument must be converted explicitly.
70482933 7483
533369aa 7484 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
f82944b7
JM
7485 Rewrite (Ropnd,
7486 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
70482933 7487
f82944b7 7488 Analyze_And_Resolve (Ropnd, Universal_Real);
70482933 7489
533369aa 7490 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
f82944b7
JM
7491 Rewrite (Lopnd,
7492 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
70482933 7493
f82944b7 7494 Analyze_And_Resolve (Lopnd, Universal_Real);
70482933 7495
f02b8bb8 7496 -- Non-fixed point cases, do integer zero divide and overflow checks
70482933
RK
7497
7498 elsif Is_Integer_Type (Typ) then
a91e9ac7 7499 Apply_Divide_Checks (N);
70482933 7500 end if;
dfaff97b
RD
7501
7502 -- Overflow checks for floating-point if -gnateF mode active
7503
7504 Check_Float_Op_Overflow (N);
05dbb83f 7505
f4ac86dd 7506 Expand_Nonbinary_Modular_Op (N);
70482933
RK
7507 end Expand_N_Op_Divide;
7508
7509 --------------------
7510 -- Expand_N_Op_Eq --
7511 --------------------
7512
7513 procedure Expand_N_Op_Eq (N : Node_Id) is
fbf5a39b
AC
7514 Loc : constant Source_Ptr := Sloc (N);
7515 Typ : constant Entity_Id := Etype (N);
7516 Lhs : constant Node_Id := Left_Opnd (N);
7517 Rhs : constant Node_Id := Right_Opnd (N);
7518 Bodies : constant List_Id := New_List;
7519 A_Typ : constant Entity_Id := Etype (Lhs);
7520
70482933
RK
7521 procedure Build_Equality_Call (Eq : Entity_Id);
7522 -- If a constructed equality exists for the type or for its parent,
7523 -- build and analyze call, adding conversions if the operation is
7524 -- inherited.
7525
d7c37f45
SB
7526 function Is_Equality (Subp : Entity_Id;
7527 Typ : Entity_Id := Empty) return Boolean;
7528 -- Determine whether arbitrary Entity_Id denotes a function with the
7529 -- right name and profile for an equality op, specifically for the
7530 -- base type Typ if Typ is nonempty.
7531
e1a20c09
HK
7532 function Find_Equality (Prims : Elist_Id) return Entity_Id;
7533 -- Find a primitive equality function within primitive operation list
7534 -- Prims.
7535
d7c37f45
SB
7536 function User_Defined_Primitive_Equality_Op
7537 (Typ : Entity_Id) return Entity_Id;
7538 -- Find a user-defined primitive equality function for a given untagged
7539 -- record type, ignoring visibility. Return Empty if no such op found.
7540
e1a20c09 7541 function Has_Unconstrained_UU_Component (Typ : Entity_Id) return Boolean;
8fc789c8 7542 -- Determines whether a type has a subcomponent of an unconstrained
5d09245e
AC
7543 -- Unchecked_Union subtype. Typ is a record type.
7544
70482933
RK
7545 -------------------------
7546 -- Build_Equality_Call --
7547 -------------------------
7548
7549 procedure Build_Equality_Call (Eq : Entity_Id) is
7550 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
cc6f5d75
AC
7551 L_Exp : Node_Id := Relocate_Node (Lhs);
7552 R_Exp : Node_Id := Relocate_Node (Rhs);
70482933
RK
7553
7554 begin
dda38714
AC
7555 -- Adjust operands if necessary to comparison type
7556
70482933
RK
7557 if Base_Type (Op_Type) /= Base_Type (A_Typ)
7558 and then not Is_Class_Wide_Type (A_Typ)
7559 then
7560 L_Exp := OK_Convert_To (Op_Type, L_Exp);
7561 R_Exp := OK_Convert_To (Op_Type, R_Exp);
7562 end if;
7563
5d09245e
AC
7564 -- If we have an Unchecked_Union, we need to add the inferred
7565 -- discriminant values as actuals in the function call. At this
7566 -- point, the expansion has determined that both operands have
7567 -- inferable discriminants.
7568
7569 if Is_Unchecked_Union (Op_Type) then
7570 declare
fa1608c2
ES
7571 Lhs_Type : constant Node_Id := Etype (L_Exp);
7572 Rhs_Type : constant Node_Id := Etype (R_Exp);
7573
7574 Lhs_Discr_Vals : Elist_Id;
7575 -- List of inferred discriminant values for left operand.
7576
7577 Rhs_Discr_Vals : Elist_Id;
7578 -- List of inferred discriminant values for right operand.
7579
7580 Discr : Entity_Id;
5d09245e
AC
7581
7582 begin
fa1608c2
ES
7583 Lhs_Discr_Vals := New_Elmt_List;
7584 Rhs_Discr_Vals := New_Elmt_List;
7585
5d09245e
AC
7586 -- Per-object constrained selected components require special
7587 -- attention. If the enclosing scope of the component is an
f02b8bb8 7588 -- Unchecked_Union, we cannot reference its discriminants
fa1608c2
ES
7589 -- directly. This is why we use the extra parameters of the
7590 -- equality function of the enclosing Unchecked_Union.
5d09245e
AC
7591
7592 -- type UU_Type (Discr : Integer := 0) is
7593 -- . . .
7594 -- end record;
7595 -- pragma Unchecked_Union (UU_Type);
7596
7597 -- 1. Unchecked_Union enclosing record:
7598
7599 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
7600 -- . . .
7601 -- Comp : UU_Type (Discr);
7602 -- . . .
7603 -- end Enclosing_UU_Type;
7604 -- pragma Unchecked_Union (Enclosing_UU_Type);
7605
7606 -- Obj1 : Enclosing_UU_Type;
7607 -- Obj2 : Enclosing_UU_Type (1);
7608
2717634d 7609 -- [. . .] Obj1 = Obj2 [. . .]
5d09245e
AC
7610
7611 -- Generated code:
7612
7613 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
7614
7615 -- A and B are the formal parameters of the equality function
7616 -- of Enclosing_UU_Type. The function always has two extra
fa1608c2
ES
7617 -- formals to capture the inferred discriminant values for
7618 -- each discriminant of the type.
5d09245e
AC
7619
7620 -- 2. Non-Unchecked_Union enclosing record:
7621
7622 -- type
7623 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
7624 -- is record
7625 -- . . .
7626 -- Comp : UU_Type (Discr);
7627 -- . . .
7628 -- end Enclosing_Non_UU_Type;
7629
7630 -- Obj1 : Enclosing_Non_UU_Type;
7631 -- Obj2 : Enclosing_Non_UU_Type (1);
7632
64ac53f4 7633 -- ... Obj1 = Obj2 ...
5d09245e
AC
7634
7635 -- Generated code:
7636
7637 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
7638 -- obj1.discr, obj2.discr)) then
7639
7640 -- In this case we can directly reference the discriminants of
7641 -- the enclosing record.
7642
fa1608c2 7643 -- Process left operand of equality
5d09245e
AC
7644
7645 if Nkind (Lhs) = N_Selected_Component
533369aa
AC
7646 and then
7647 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
5d09245e 7648 then
fa1608c2
ES
7649 -- If enclosing record is an Unchecked_Union, use formals
7650 -- corresponding to each discriminant. The name of the
7651 -- formal is that of the discriminant, with added suffix,
7652 -- see Exp_Ch3.Build_Record_Equality for details.
5d09245e 7653
dda38714 7654 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
5d09245e 7655 then
fa1608c2
ES
7656 Discr :=
7657 First_Discriminant
7658 (Scope (Entity (Selector_Name (Lhs))));
7659 while Present (Discr) loop
cc6f5d75
AC
7660 Append_Elmt
7661 (Make_Identifier (Loc,
7662 Chars => New_External_Name (Chars (Discr), 'A')),
7663 To => Lhs_Discr_Vals);
fa1608c2
ES
7664 Next_Discriminant (Discr);
7665 end loop;
5d09245e 7666
fa1608c2
ES
7667 -- If enclosing record is of a non-Unchecked_Union type, it
7668 -- is possible to reference its discriminants directly.
5d09245e
AC
7669
7670 else
fa1608c2
ES
7671 Discr := First_Discriminant (Lhs_Type);
7672 while Present (Discr) loop
cc6f5d75
AC
7673 Append_Elmt
7674 (Make_Selected_Component (Loc,
7675 Prefix => Prefix (Lhs),
7676 Selector_Name =>
7677 New_Copy
7678 (Get_Discriminant_Value (Discr,
7679 Lhs_Type,
7680 Stored_Constraint (Lhs_Type)))),
7681 To => Lhs_Discr_Vals);
fa1608c2
ES
7682 Next_Discriminant (Discr);
7683 end loop;
5d09245e
AC
7684 end if;
7685
fa1608c2
ES
7686 -- Otherwise operand is on object with a constrained type.
7687 -- Infer the discriminant values from the constraint.
5d09245e
AC
7688
7689 else
fa1608c2
ES
7690 Discr := First_Discriminant (Lhs_Type);
7691 while Present (Discr) loop
cc6f5d75
AC
7692 Append_Elmt
7693 (New_Copy
7694 (Get_Discriminant_Value (Discr,
fa1608c2
ES
7695 Lhs_Type,
7696 Stored_Constraint (Lhs_Type))),
cc6f5d75 7697 To => Lhs_Discr_Vals);
fa1608c2
ES
7698 Next_Discriminant (Discr);
7699 end loop;
5d09245e
AC
7700 end if;
7701
fa1608c2 7702 -- Similar processing for right operand of equality
5d09245e
AC
7703
7704 if Nkind (Rhs) = N_Selected_Component
533369aa
AC
7705 and then
7706 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
5d09245e 7707 then
5e1c00fa 7708 if Is_Unchecked_Union
cc6f5d75 7709 (Scope (Entity (Selector_Name (Rhs))))
5d09245e 7710 then
fa1608c2
ES
7711 Discr :=
7712 First_Discriminant
7713 (Scope (Entity (Selector_Name (Rhs))));
7714 while Present (Discr) loop
cc6f5d75
AC
7715 Append_Elmt
7716 (Make_Identifier (Loc,
7717 Chars => New_External_Name (Chars (Discr), 'B')),
7718 To => Rhs_Discr_Vals);
fa1608c2
ES
7719 Next_Discriminant (Discr);
7720 end loop;
5d09245e
AC
7721
7722 else
fa1608c2
ES
7723 Discr := First_Discriminant (Rhs_Type);
7724 while Present (Discr) loop
cc6f5d75
AC
7725 Append_Elmt
7726 (Make_Selected_Component (Loc,
7727 Prefix => Prefix (Rhs),
7728 Selector_Name =>
7729 New_Copy (Get_Discriminant_Value
7730 (Discr,
7731 Rhs_Type,
7732 Stored_Constraint (Rhs_Type)))),
7733 To => Rhs_Discr_Vals);
fa1608c2
ES
7734 Next_Discriminant (Discr);
7735 end loop;
5d09245e 7736 end if;
5d09245e 7737
fa1608c2
ES
7738 else
7739 Discr := First_Discriminant (Rhs_Type);
7740 while Present (Discr) loop
cc6f5d75
AC
7741 Append_Elmt
7742 (New_Copy (Get_Discriminant_Value
7743 (Discr,
7744 Rhs_Type,
7745 Stored_Constraint (Rhs_Type))),
7746 To => Rhs_Discr_Vals);
fa1608c2
ES
7747 Next_Discriminant (Discr);
7748 end loop;
5d09245e
AC
7749 end if;
7750
fa1608c2
ES
7751 -- Now merge the list of discriminant values so that values
7752 -- of corresponding discriminants are adjacent.
7753
7754 declare
7755 Params : List_Id;
7756 L_Elmt : Elmt_Id;
7757 R_Elmt : Elmt_Id;
7758
7759 begin
7760 Params := New_List (L_Exp, R_Exp);
7761 L_Elmt := First_Elmt (Lhs_Discr_Vals);
7762 R_Elmt := First_Elmt (Rhs_Discr_Vals);
7763 while Present (L_Elmt) loop
7764 Append_To (Params, Node (L_Elmt));
7765 Append_To (Params, Node (R_Elmt));
7766 Next_Elmt (L_Elmt);
7767 Next_Elmt (R_Elmt);
7768 end loop;
7769
7770 Rewrite (N,
7771 Make_Function_Call (Loc,
e4494292 7772 Name => New_Occurrence_Of (Eq, Loc),
fa1608c2
ES
7773 Parameter_Associations => Params));
7774 end;
5d09245e
AC
7775 end;
7776
7777 -- Normal case, not an unchecked union
7778
7779 else
7780 Rewrite (N,
7781 Make_Function_Call (Loc,
e4494292 7782 Name => New_Occurrence_Of (Eq, Loc),
5d09245e
AC
7783 Parameter_Associations => New_List (L_Exp, R_Exp)));
7784 end if;
70482933
RK
7785
7786 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7787 end Build_Equality_Call;
7788
d7c37f45
SB
7789 -----------------
7790 -- Is_Equality --
7791 -----------------
7792
7793 function Is_Equality (Subp : Entity_Id;
7794 Typ : Entity_Id := Empty) return Boolean is
7795 Formal_1 : Entity_Id;
7796 Formal_2 : Entity_Id;
7797 begin
7798 -- The equality function carries name "=", returns Boolean, and has
7799 -- exactly two formal parameters of an identical type.
7800
7801 if Ekind (Subp) = E_Function
7802 and then Chars (Subp) = Name_Op_Eq
7803 and then Base_Type (Etype (Subp)) = Standard_Boolean
7804 then
7805 Formal_1 := First_Formal (Subp);
7806 Formal_2 := Empty;
7807
7808 if Present (Formal_1) then
7809 Formal_2 := Next_Formal (Formal_1);
7810 end if;
7811
7812 return
7813 Present (Formal_1)
7814 and then Present (Formal_2)
7815 and then No (Next_Formal (Formal_2))
7816 and then Base_Type (Etype (Formal_1)) =
7817 Base_Type (Etype (Formal_2))
7818 and then
7819 (not Present (Typ)
7820 or else Implementation_Base_Type (Etype (Formal_1)) = Typ);
7821 end if;
7822
7823 return False;
7824 end Is_Equality;
7825
e1a20c09
HK
7826 -------------------
7827 -- Find_Equality --
7828 -------------------
7829
7830 function Find_Equality (Prims : Elist_Id) return Entity_Id is
0715a2a8
HK
7831 function Find_Aliased_Equality (Prim : Entity_Id) return Entity_Id;
7832 -- Find an equality in a possible alias chain starting from primitive
7833 -- operation Prim.
e1a20c09 7834
0715a2a8
HK
7835 ---------------------------
7836 -- Find_Aliased_Equality --
7837 ---------------------------
e1a20c09 7838
0715a2a8
HK
7839 function Find_Aliased_Equality (Prim : Entity_Id) return Entity_Id is
7840 Candid : Entity_Id;
e1a20c09 7841
0715a2a8
HK
7842 begin
7843 -- Inspect each candidate in the alias chain, checking whether it
7844 -- denotes an equality.
e1a20c09 7845
0715a2a8
HK
7846 Candid := Prim;
7847 while Present (Candid) loop
7848 if Is_Equality (Candid) then
7849 return Candid;
7850 end if;
e1a20c09 7851
0715a2a8
HK
7852 Candid := Alias (Candid);
7853 end loop;
e1a20c09 7854
0715a2a8
HK
7855 return Empty;
7856 end Find_Aliased_Equality;
e1a20c09 7857
0715a2a8
HK
7858 -- Local variables
7859
7860 Eq_Prim : Entity_Id;
7861 Prim_Elmt : Elmt_Id;
7862
7863 -- Start of processing for Find_Equality
7864
7865 begin
7866 -- Assume that the tagged type lacks an equality
7867
7868 Eq_Prim := Empty;
7869
7870 -- Inspect the list of primitives looking for a suitable equality
7871 -- within a possible chain of aliases.
7872
7873 Prim_Elmt := First_Elmt (Prims);
7874 while Present (Prim_Elmt) and then No (Eq_Prim) loop
7875 Eq_Prim := Find_Aliased_Equality (Node (Prim_Elmt));
7876
e1a20c09
HK
7877 Next_Elmt (Prim_Elmt);
7878 end loop;
7879
0715a2a8 7880 -- A tagged type should always have an equality
e1a20c09 7881
0715a2a8 7882 pragma Assert (Present (Eq_Prim));
e1a20c09 7883
0715a2a8 7884 return Eq_Prim;
e1a20c09
HK
7885 end Find_Equality;
7886
d7c37f45
SB
7887 ----------------------------------------
7888 -- User_Defined_Primitive_Equality_Op --
7889 ----------------------------------------
7890
7891 function User_Defined_Primitive_Equality_Op
7892 (Typ : Entity_Id) return Entity_Id
7893 is
7894 Enclosing_Scope : constant Node_Id := Scope (Typ);
7895 E : Entity_Id;
7896 begin
7897 -- Prune this search by somehow not looking at decls that precede
7898 -- the declaration of the first view of Typ (which might be a partial
7899 -- view)???
7900
7901 for Private_Entities in Boolean loop
7902 if Private_Entities then
7903 if Ekind (Enclosing_Scope) /= E_Package then
7904 exit;
7905 end if;
7906 E := First_Private_Entity (Enclosing_Scope);
7907
7908 else
7909 E := First_Entity (Enclosing_Scope);
7910 end if;
7911
7912 while Present (E) loop
7913 if Is_Equality (E, Typ) then
7914 return E;
7915 end if;
7916 E := Next_Entity (E);
7917 end loop;
7918 end loop;
7919
7920 if Is_Derived_Type (Typ) then
7921 return User_Defined_Primitive_Equality_Op
7922 (Implementation_Base_Type (Etype (Typ)));
7923 end if;
7924
7925 return Empty;
7926 end User_Defined_Primitive_Equality_Op;
7927
5d09245e
AC
7928 ------------------------------------
7929 -- Has_Unconstrained_UU_Component --
7930 ------------------------------------
7931
7932 function Has_Unconstrained_UU_Component
e1a20c09 7933 (Typ : Entity_Id) return Boolean
5d09245e
AC
7934 is
7935 Tdef : constant Node_Id :=
57848bf7 7936 Type_Definition (Declaration_Node (Base_Type (Typ)));
5d09245e
AC
7937 Clist : Node_Id;
7938 Vpart : Node_Id;
7939
7940 function Component_Is_Unconstrained_UU
7941 (Comp : Node_Id) return Boolean;
7942 -- Determines whether the subtype of the component is an
7943 -- unconstrained Unchecked_Union.
7944
7945 function Variant_Is_Unconstrained_UU
7946 (Variant : Node_Id) return Boolean;
7947 -- Determines whether a component of the variant has an unconstrained
7948 -- Unchecked_Union subtype.
7949
7950 -----------------------------------
7951 -- Component_Is_Unconstrained_UU --
7952 -----------------------------------
7953
7954 function Component_Is_Unconstrained_UU
7955 (Comp : Node_Id) return Boolean
7956 is
7957 begin
7958 if Nkind (Comp) /= N_Component_Declaration then
7959 return False;
7960 end if;
7961
7962 declare
7963 Sindic : constant Node_Id :=
7964 Subtype_Indication (Component_Definition (Comp));
7965
7966 begin
7967 -- Unconstrained nominal type. In the case of a constraint
7968 -- present, the node kind would have been N_Subtype_Indication.
7969
7970 if Nkind (Sindic) = N_Identifier then
7971 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
7972 end if;
7973
7974 return False;
7975 end;
7976 end Component_Is_Unconstrained_UU;
7977
7978 ---------------------------------
7979 -- Variant_Is_Unconstrained_UU --
7980 ---------------------------------
7981
7982 function Variant_Is_Unconstrained_UU
7983 (Variant : Node_Id) return Boolean
7984 is
7985 Clist : constant Node_Id := Component_List (Variant);
7986
7987 begin
7988 if Is_Empty_List (Component_Items (Clist)) then
7989 return False;
7990 end if;
7991
f02b8bb8
RD
7992 -- We only need to test one component
7993
5d09245e
AC
7994 declare
7995 Comp : Node_Id := First (Component_Items (Clist));
7996
7997 begin
7998 while Present (Comp) loop
5d09245e
AC
7999 if Component_Is_Unconstrained_UU (Comp) then
8000 return True;
8001 end if;
8002
8003 Next (Comp);
8004 end loop;
8005 end;
8006
8007 -- None of the components withing the variant were of
8008 -- unconstrained Unchecked_Union type.
8009
8010 return False;
8011 end Variant_Is_Unconstrained_UU;
8012
8013 -- Start of processing for Has_Unconstrained_UU_Component
8014
8015 begin
8016 if Null_Present (Tdef) then
8017 return False;
8018 end if;
8019
8020 Clist := Component_List (Tdef);
8021 Vpart := Variant_Part (Clist);
8022
8023 -- Inspect available components
8024
8025 if Present (Component_Items (Clist)) then
8026 declare
8027 Comp : Node_Id := First (Component_Items (Clist));
8028
8029 begin
8030 while Present (Comp) loop
8031
8fc789c8 8032 -- One component is sufficient
5d09245e
AC
8033
8034 if Component_Is_Unconstrained_UU (Comp) then
8035 return True;
8036 end if;
8037
8038 Next (Comp);
8039 end loop;
8040 end;
8041 end if;
8042
8043 -- Inspect available components withing variants
8044
8045 if Present (Vpart) then
8046 declare
8047 Variant : Node_Id := First (Variants (Vpart));
8048
8049 begin
8050 while Present (Variant) loop
8051
8fc789c8 8052 -- One component within a variant is sufficient
5d09245e
AC
8053
8054 if Variant_Is_Unconstrained_UU (Variant) then
8055 return True;
8056 end if;
8057
8058 Next (Variant);
8059 end loop;
8060 end;
8061 end if;
8062
8063 -- Neither the available components, nor the components inside the
8064 -- variant parts were of an unconstrained Unchecked_Union subtype.
8065
8066 return False;
8067 end Has_Unconstrained_UU_Component;
8068
e1a20c09
HK
8069 -- Local variables
8070
8071 Typl : Entity_Id;
8072
70482933
RK
8073 -- Start of processing for Expand_N_Op_Eq
8074
8075 begin
8076 Binary_Op_Validity_Checks (N);
8077
456cbfa5
AC
8078 -- Deal with private types
8079
e1a20c09
HK
8080 Typl := A_Typ;
8081
70482933
RK
8082 if Ekind (Typl) = E_Private_Type then
8083 Typl := Underlying_Type (Typl);
e1a20c09 8084
70482933
RK
8085 elsif Ekind (Typl) = E_Private_Subtype then
8086 Typl := Underlying_Type (Base_Type (Typl));
8087 end if;
8088
8089 -- It may happen in error situations that the underlying type is not
8090 -- set. The error will be detected later, here we just defend the
8091 -- expander code.
8092
8093 if No (Typl) then
8094 return;
8095 end if;
8096
a92230c5
AC
8097 -- Now get the implementation base type (note that plain Base_Type here
8098 -- might lead us back to the private type, which is not what we want!)
8099
8100 Typl := Implementation_Base_Type (Typl);
70482933 8101
dda38714
AC
8102 -- Equality between variant records results in a call to a routine
8103 -- that has conditional tests of the discriminant value(s), and hence
8104 -- violates the No_Implicit_Conditionals restriction.
8105
8106 if Has_Variant_Part (Typl) then
8107 declare
8108 Msg : Boolean;
8109
8110 begin
8111 Check_Restriction (Msg, No_Implicit_Conditionals, N);
8112
8113 if Msg then
8114 Error_Msg_N
8115 ("\comparison of variant records tests discriminants", N);
8116 return;
8117 end if;
8118 end;
8119 end if;
8120
456cbfa5 8121 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 8122 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
8123
8124 Expand_Compare_Minimize_Eliminate_Overflow (N);
8125
8126 if Nkind (N) /= N_Op_Eq then
8127 return;
8128 end if;
8129
70482933
RK
8130 -- Boolean types (requiring handling of non-standard case)
8131
f02b8bb8 8132 if Is_Boolean_Type (Typl) then
70482933
RK
8133 Adjust_Condition (Left_Opnd (N));
8134 Adjust_Condition (Right_Opnd (N));
8135 Set_Etype (N, Standard_Boolean);
8136 Adjust_Result_Type (N, Typ);
8137
8138 -- Array types
8139
8140 elsif Is_Array_Type (Typl) then
8141
1033834f
RD
8142 -- If we are doing full validity checking, and it is possible for the
8143 -- array elements to be invalid then expand out array comparisons to
8144 -- make sure that we check the array elements.
fbf5a39b 8145
1033834f
RD
8146 if Validity_Check_Operands
8147 and then not Is_Known_Valid (Component_Type (Typl))
8148 then
fbf5a39b
AC
8149 declare
8150 Save_Force_Validity_Checks : constant Boolean :=
8151 Force_Validity_Checks;
8152 begin
8153 Force_Validity_Checks := True;
8154 Rewrite (N,
0da2c8ac
AC
8155 Expand_Array_Equality
8156 (N,
8157 Relocate_Node (Lhs),
8158 Relocate_Node (Rhs),
8159 Bodies,
8160 Typl));
8161 Insert_Actions (N, Bodies);
fbf5a39b
AC
8162 Analyze_And_Resolve (N, Standard_Boolean);
8163 Force_Validity_Checks := Save_Force_Validity_Checks;
8164 end;
8165
a9d8907c 8166 -- Packed case where both operands are known aligned
70482933 8167
a9d8907c
JM
8168 elsif Is_Bit_Packed_Array (Typl)
8169 and then not Is_Possibly_Unaligned_Object (Lhs)
8170 and then not Is_Possibly_Unaligned_Object (Rhs)
8171 then
70482933
RK
8172 Expand_Packed_Eq (N);
8173
5e1c00fa
RD
8174 -- Where the component type is elementary we can use a block bit
8175 -- comparison (if supported on the target) exception in the case
8176 -- of floating-point (negative zero issues require element by
f280dd8f 8177 -- element comparison), and atomic/VFA types (where we must be sure
a9d8907c 8178 -- to load elements independently) and possibly unaligned arrays.
70482933 8179
70482933
RK
8180 elsif Is_Elementary_Type (Component_Type (Typl))
8181 and then not Is_Floating_Point_Type (Component_Type (Typl))
f280dd8f 8182 and then not Is_Atomic_Or_VFA (Component_Type (Typl))
a9d8907c 8183 and then not Is_Possibly_Unaligned_Object (Lhs)
00907026 8184 and then not Is_Possibly_Unaligned_Slice (Lhs)
a9d8907c 8185 and then not Is_Possibly_Unaligned_Object (Rhs)
00907026 8186 and then not Is_Possibly_Unaligned_Slice (Rhs)
fbf5a39b 8187 and then Support_Composite_Compare_On_Target
70482933
RK
8188 then
8189 null;
8190
685094bf
RD
8191 -- For composite and floating-point cases, expand equality loop to
8192 -- make sure of using proper comparisons for tagged types, and
8193 -- correctly handling the floating-point case.
70482933
RK
8194
8195 else
8196 Rewrite (N,
0da2c8ac
AC
8197 Expand_Array_Equality
8198 (N,
8199 Relocate_Node (Lhs),
8200 Relocate_Node (Rhs),
8201 Bodies,
8202 Typl));
70482933
RK
8203 Insert_Actions (N, Bodies, Suppress => All_Checks);
8204 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
8205 end if;
8206
8207 -- Record Types
8208
8209 elsif Is_Record_Type (Typl) then
8210
8211 -- For tagged types, use the primitive "="
8212
8213 if Is_Tagged_Type (Typl) then
8214
0669bebe
GB
8215 -- No need to do anything else compiling under restriction
8216 -- No_Dispatching_Calls. During the semantic analysis we
8217 -- already notified such violation.
8218
8219 if Restriction_Active (No_Dispatching_Calls) then
8220 return;
8221 end if;
8222
65641255
JM
8223 -- If this is an untagged private type completed with a derivation
8224 -- of an untagged private type whose full view is a tagged type,
8225 -- we use the primitive operations of the private type (since it
8226 -- does not have a full view, and also because its equality
8227 -- primitive may have been overridden in its untagged full view).
8228
8229 if Inherits_From_Tagged_Full_View (A_Typ) then
e1a20c09
HK
8230 Build_Equality_Call
8231 (Find_Equality (Collect_Primitive_Operations (A_Typ)));
fbf5a39b
AC
8232
8233 -- Find the type's predefined equality or an overriding
3dddb11e 8234 -- user-defined equality. The reason for not simply calling
fbf5a39b 8235 -- Find_Prim_Op here is that there may be a user-defined
3dddb11e
ES
8236 -- overloaded equality op that precedes the equality that we
8237 -- want, so we have to explicitly search (e.g., there could be
8238 -- an equality with two different parameter types).
fbf5a39b 8239
70482933 8240 else
fbf5a39b 8241 if Is_Class_Wide_Type (Typl) then
3dddb11e 8242 Typl := Find_Specific_Type (Typl);
fbf5a39b
AC
8243 end if;
8244
e1a20c09
HK
8245 Build_Equality_Call
8246 (Find_Equality (Primitive_Operations (Typl)));
70482933
RK
8247 end if;
8248
d7c37f45
SB
8249 -- See AI12-0101 (which only removes a legality rule) and then
8250 -- AI05-0123 (which then applies in the previously illegal case).
8251 -- AI12-0101 is a binding interpretation.
8252
8253 elsif Ada_Version >= Ada_2012
8254 and then Present (User_Defined_Primitive_Equality_Op (Typl))
8255 then
8256 Build_Equality_Call (User_Defined_Primitive_Equality_Op (Typl));
8257
5d09245e
AC
8258 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
8259 -- predefined equality operator for a type which has a subcomponent
8260 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
8261
8262 elsif Has_Unconstrained_UU_Component (Typl) then
8263 Insert_Action (N,
8264 Make_Raise_Program_Error (Loc,
8265 Reason => PE_Unchecked_Union_Restriction));
8266
8267 -- Prevent Gigi from generating incorrect code by rewriting the
6cb3037c 8268 -- equality as a standard False. (is this documented somewhere???)
5d09245e
AC
8269
8270 Rewrite (N,
8271 New_Occurrence_Of (Standard_False, Loc));
8272
8273 elsif Is_Unchecked_Union (Typl) then
8274
8275 -- If we can infer the discriminants of the operands, we make a
8276 -- call to the TSS equality function.
8277
8278 if Has_Inferable_Discriminants (Lhs)
8279 and then
8280 Has_Inferable_Discriminants (Rhs)
8281 then
8282 Build_Equality_Call
8283 (TSS (Root_Type (Typl), TSS_Composite_Equality));
8284
8285 else
8286 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
8287 -- the predefined equality operator for an Unchecked_Union type
8288 -- if either of the operands lack inferable discriminants.
8289
8290 Insert_Action (N,
8291 Make_Raise_Program_Error (Loc,
8292 Reason => PE_Unchecked_Union_Restriction));
8293
29ad9ea5
AC
8294 -- Emit a warning on source equalities only, otherwise the
8295 -- message may appear out of place due to internal use. The
8296 -- warning is unconditional because it is required by the
8297 -- language.
8298
8299 if Comes_From_Source (N) then
8300 Error_Msg_N
facfa165 8301 ("Unchecked_Union discriminants cannot be determined??",
29ad9ea5
AC
8302 N);
8303 Error_Msg_N
facfa165 8304 ("\Program_Error will be raised for equality operation??",
29ad9ea5
AC
8305 N);
8306 end if;
8307
5d09245e 8308 -- Prevent Gigi from generating incorrect code by rewriting
6cb3037c 8309 -- the equality as a standard False (documented where???).
5d09245e
AC
8310
8311 Rewrite (N,
8312 New_Occurrence_Of (Standard_False, Loc));
5d09245e
AC
8313 end if;
8314
70482933
RK
8315 -- If a type support function is present (for complex cases), use it
8316
fbf5a39b
AC
8317 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
8318 Build_Equality_Call
8319 (TSS (Root_Type (Typl), TSS_Composite_Equality));
70482933 8320
8d80ff64
AC
8321 -- When comparing two Bounded_Strings, use the primitive equality of
8322 -- the root Super_String type.
8323
8324 elsif Is_Bounded_String (Typl) then
e1a20c09
HK
8325 Build_Equality_Call
8326 (Find_Equality
8327 (Collect_Primitive_Operations (Root_Type (Typl))));
8d80ff64 8328
70482933 8329 -- Otherwise expand the component by component equality. Note that
8fc789c8 8330 -- we never use block-bit comparisons for records, because of the
c7a494c9 8331 -- problems with gaps. The back end will often be able to recombine
70482933
RK
8332 -- the separate comparisons that we generate here.
8333
8334 else
8335 Remove_Side_Effects (Lhs);
8336 Remove_Side_Effects (Rhs);
8337 Rewrite (N,
8338 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
8339
8340 Insert_Actions (N, Bodies, Suppress => All_Checks);
8341 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
8342 end if;
6bc08721
JM
8343
8344 -- If unnesting, handle elementary types whose Equivalent_Types are
8345 -- records because there may be padding or undefined fields.
8346
8347 elsif Unnest_Subprogram_Mode
8348 and then Ekind_In (Typl, E_Class_Wide_Type,
8349 E_Class_Wide_Subtype,
8350 E_Access_Subprogram_Type,
8351 E_Access_Protected_Subprogram_Type,
8352 E_Anonymous_Access_Protected_Subprogram_Type,
8353 E_Access_Subprogram_Type,
8354 E_Exception_Type)
8355 and then Present (Equivalent_Type (Typl))
8356 and then Is_Record_Type (Equivalent_Type (Typl))
8357 then
8358 Typl := Equivalent_Type (Typl);
8359 Remove_Side_Effects (Lhs);
8360 Remove_Side_Effects (Rhs);
8361 Rewrite (N,
8362 Expand_Record_Equality (N, Typl,
8363 Unchecked_Convert_To (Typl, Lhs),
8364 Unchecked_Convert_To (Typl, Rhs),
8365 Bodies));
8366
8367 Insert_Actions (N, Bodies, Suppress => All_Checks);
8368 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
70482933
RK
8369 end if;
8370
d26dc4b5 8371 -- Test if result is known at compile time
70482933 8372
d26dc4b5 8373 Rewrite_Comparison (N);
f02b8bb8 8374
878e58c8
RD
8375 -- Special optimization of length comparison
8376
0580d807 8377 Optimize_Length_Comparison (N);
878e58c8 8378
088c7e1b 8379 -- One more special case: if we have a comparison of X'Result = expr
878e58c8 8380 -- in floating-point, then if not already there, change expr to be
088c7e1b 8381 -- f'Machine (expr) to eliminate surprise from extra precision.
878e58c8
RD
8382
8383 if Is_Floating_Point_Type (Typl)
8384 and then Nkind (Original_Node (Lhs)) = N_Attribute_Reference
8385 and then Attribute_Name (Original_Node (Lhs)) = Name_Result
8386 then
8387 -- Stick in the Typ'Machine call if not already there
8388
8389 if Nkind (Rhs) /= N_Attribute_Reference
8390 or else Attribute_Name (Rhs) /= Name_Machine
8391 then
8392 Rewrite (Rhs,
8393 Make_Attribute_Reference (Loc,
8394 Prefix => New_Occurrence_Of (Typl, Loc),
8395 Attribute_Name => Name_Machine,
8396 Expressions => New_List (Relocate_Node (Rhs))));
8397 Analyze_And_Resolve (Rhs, Typl);
8398 end if;
8399 end if;
70482933
RK
8400 end Expand_N_Op_Eq;
8401
8402 -----------------------
8403 -- Expand_N_Op_Expon --
8404 -----------------------
8405
8406 procedure Expand_N_Op_Expon (N : Node_Id) is
0bcee275
AC
8407 Loc : constant Source_Ptr := Sloc (N);
8408 Ovflo : constant Boolean := Do_Overflow_Check (N);
8409 Typ : constant Entity_Id := Etype (N);
8410 Rtyp : constant Entity_Id := Root_Type (Typ);
8411
8412 Bastyp : Entity_Id;
70482933 8413
83496138
AC
8414 function Wrap_MA (Exp : Node_Id) return Node_Id;
8415 -- Given an expression Exp, if the root type is Float or Long_Float,
8416 -- then wrap the expression in a call of Bastyp'Machine, to stop any
8417 -- extra precision. This is done to ensure that X**A = X**B when A is
8418 -- a static constant and B is a variable with the same value. For any
8419 -- other type, the node Exp is returned unchanged.
8420
8421 -------------
8422 -- Wrap_MA --
8423 -------------
8424
8425 function Wrap_MA (Exp : Node_Id) return Node_Id is
8426 Loc : constant Source_Ptr := Sloc (Exp);
0bcee275 8427
83496138
AC
8428 begin
8429 if Rtyp = Standard_Float or else Rtyp = Standard_Long_Float then
8430 return
8431 Make_Attribute_Reference (Loc,
8432 Attribute_Name => Name_Machine,
8433 Prefix => New_Occurrence_Of (Bastyp, Loc),
8434 Expressions => New_List (Relocate_Node (Exp)));
8435 else
8436 return Exp;
8437 end if;
8438 end Wrap_MA;
8439
0bcee275
AC
8440 -- Local variables
8441
8442 Base : Node_Id;
8443 Ent : Entity_Id;
8444 Etyp : Entity_Id;
8445 Exp : Node_Id;
8446 Exptyp : Entity_Id;
8447 Expv : Uint;
8448 Rent : RE_Id;
8449 Temp : Node_Id;
8450 Xnode : Node_Id;
8451
904a2ae4 8452 -- Start of processing for Expand_N_Op_Expon
83496138 8453
70482933
RK
8454 begin
8455 Binary_Op_Validity_Checks (N);
8456
5114f3ff 8457 -- CodePeer wants to see the unexpanded N_Op_Expon node
8f66cda7 8458
5114f3ff 8459 if CodePeer_Mode then
8f66cda7
AC
8460 return;
8461 end if;
8462
904a2ae4
AC
8463 -- Relocation of left and right operands must be done after performing
8464 -- the validity checks since the generation of validation checks may
8465 -- remove side effects.
8466
8467 Base := Relocate_Node (Left_Opnd (N));
8468 Bastyp := Etype (Base);
8469 Exp := Relocate_Node (Right_Opnd (N));
8470 Exptyp := Etype (Exp);
8471
685094bf
RD
8472 -- If either operand is of a private type, then we have the use of an
8473 -- intrinsic operator, and we get rid of the privateness, by using root
8474 -- types of underlying types for the actual operation. Otherwise the
8475 -- private types will cause trouble if we expand multiplications or
8476 -- shifts etc. We also do this transformation if the result type is
8477 -- different from the base type.
07fc65c4
GB
8478
8479 if Is_Private_Type (Etype (Base))
8f66cda7
AC
8480 or else Is_Private_Type (Typ)
8481 or else Is_Private_Type (Exptyp)
8482 or else Rtyp /= Root_Type (Bastyp)
07fc65c4
GB
8483 then
8484 declare
8485 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
8486 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
07fc65c4
GB
8487 begin
8488 Rewrite (N,
8489 Unchecked_Convert_To (Typ,
8490 Make_Op_Expon (Loc,
8491 Left_Opnd => Unchecked_Convert_To (Bt, Base),
8492 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
8493 Analyze_And_Resolve (N, Typ);
8494 return;
8495 end;
8496 end if;
8497
b6b5cca8 8498 -- Check for MINIMIZED/ELIMINATED overflow mode
6cb3037c 8499
b6b5cca8 8500 if Minimized_Eliminated_Overflow_Check (N) then
6cb3037c
AC
8501 Apply_Arithmetic_Overflow_Check (N);
8502 return;
8503 end if;
8504
cb42ba5d
AC
8505 -- Test for case of known right argument where we can replace the
8506 -- exponentiation by an equivalent expression using multiplication.
70482933 8507
6c3c671e
AC
8508 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
8509 -- configurable run-time mode, we may not have the exponentiation
8510 -- routine available, and we don't want the legality of the program
8511 -- to depend on how clever the compiler is in knowing values.
8512
8513 if CRT_Safe_Compile_Time_Known_Value (Exp) then
70482933
RK
8514 Expv := Expr_Value (Exp);
8515
8516 -- We only fold small non-negative exponents. You might think we
8517 -- could fold small negative exponents for the real case, but we
8518 -- can't because we are required to raise Constraint_Error for
8519 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
83496138 8520 -- See ACVC test C4A012B, and it is not worth generating the test.
70482933 8521
00f45f30
AC
8522 -- For small negative exponents, we return the reciprocal of
8523 -- the folding of the exponentiation for the opposite (positive)
8524 -- exponent, as required by Ada RM 4.5.6(11/3).
8525
8526 if abs Expv <= 4 then
70482933
RK
8527
8528 -- X ** 0 = 1 (or 1.0)
8529
8530 if Expv = 0 then
abcbd24c
ST
8531
8532 -- Call Remove_Side_Effects to ensure that any side effects
8533 -- in the ignored left operand (in particular function calls
8534 -- to user defined functions) are properly executed.
8535
8536 Remove_Side_Effects (Base);
8537
70482933
RK
8538 if Ekind (Typ) in Integer_Kind then
8539 Xnode := Make_Integer_Literal (Loc, Intval => 1);
8540 else
8541 Xnode := Make_Real_Literal (Loc, Ureal_1);
8542 end if;
8543
8544 -- X ** 1 = X
8545
8546 elsif Expv = 1 then
8547 Xnode := Base;
8548
8549 -- X ** 2 = X * X
8550
8551 elsif Expv = 2 then
8552 Xnode :=
83496138
AC
8553 Wrap_MA (
8554 Make_Op_Multiply (Loc,
8555 Left_Opnd => Duplicate_Subexpr (Base),
8556 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
70482933
RK
8557
8558 -- X ** 3 = X * X * X
8559
8560 elsif Expv = 3 then
8561 Xnode :=
83496138
AC
8562 Wrap_MA (
8563 Make_Op_Multiply (Loc,
8564 Left_Opnd =>
8565 Make_Op_Multiply (Loc,
8566 Left_Opnd => Duplicate_Subexpr (Base),
8567 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
8568 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
70482933
RK
8569
8570 -- X ** 4 ->
cb42ba5d
AC
8571
8572 -- do
70482933 8573 -- En : constant base'type := base * base;
cb42ba5d 8574 -- in
70482933
RK
8575 -- En * En
8576
00f45f30 8577 elsif Expv = 4 then
191fcb3a 8578 Temp := Make_Temporary (Loc, 'E', Base);
70482933 8579
cb42ba5d
AC
8580 Xnode :=
8581 Make_Expression_With_Actions (Loc,
8582 Actions => New_List (
8583 Make_Object_Declaration (Loc,
8584 Defining_Identifier => Temp,
8585 Constant_Present => True,
e4494292 8586 Object_Definition => New_Occurrence_Of (Typ, Loc),
cb42ba5d 8587 Expression =>
83496138
AC
8588 Wrap_MA (
8589 Make_Op_Multiply (Loc,
8590 Left_Opnd =>
8591 Duplicate_Subexpr (Base),
8592 Right_Opnd =>
8593 Duplicate_Subexpr_No_Checks (Base))))),
cb42ba5d 8594
70482933 8595 Expression =>
83496138
AC
8596 Wrap_MA (
8597 Make_Op_Multiply (Loc,
8598 Left_Opnd => New_Occurrence_Of (Temp, Loc),
8599 Right_Opnd => New_Occurrence_Of (Temp, Loc))));
00f45f30
AC
8600
8601 -- X ** N = 1.0 / X ** (-N)
8602 -- N in -4 .. -1
8603
8604 else
8605 pragma Assert
8606 (Expv = -1 or Expv = -2 or Expv = -3 or Expv = -4);
72cdccfa 8607
00f45f30
AC
8608 Xnode :=
8609 Make_Op_Divide (Loc,
8610 Left_Opnd =>
8611 Make_Float_Literal (Loc,
8612 Radix => Uint_1,
8613 Significand => Uint_1,
8614 Exponent => Uint_0),
8615 Right_Opnd =>
8616 Make_Op_Expon (Loc,
8617 Left_Opnd => Duplicate_Subexpr (Base),
8618 Right_Opnd =>
8619 Make_Integer_Literal (Loc,
8620 Intval => -Expv)));
70482933
RK
8621 end if;
8622
8623 Rewrite (N, Xnode);
8624 Analyze_And_Resolve (N, Typ);
8625 return;
8626 end if;
8627 end if;
8628
b502ba3c 8629 -- Deal with optimizing 2 ** expression to shift where possible
685094bf 8630
8b4230c8
AC
8631 -- Note: we used to check that Exptyp was an unsigned type. But that is
8632 -- an unnecessary check, since if Exp is negative, we have a run-time
8633 -- error that is either caught (so we get the right result) or we have
8634 -- suppressed the check, in which case the code is erroneous anyway.
8635
b502ba3c
RD
8636 if Is_Integer_Type (Rtyp)
8637
c2b2b2d7 8638 -- The base value must be "safe compile-time known", and exactly 2
b502ba3c
RD
8639
8640 and then Nkind (Base) = N_Integer_Literal
6c3c671e
AC
8641 and then CRT_Safe_Compile_Time_Known_Value (Base)
8642 and then Expr_Value (Base) = Uint_2
b502ba3c
RD
8643
8644 -- We only handle cases where the right type is a integer
8645
70482933
RK
8646 and then Is_Integer_Type (Root_Type (Exptyp))
8647 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
b502ba3c
RD
8648
8649 -- This transformation is not applicable for a modular type with a
a95f708e 8650 -- nonbinary modulus because we do not handle modular reduction in
b502ba3c
RD
8651 -- a correct manner if we attempt this transformation in this case.
8652
8653 and then not Non_Binary_Modulus (Typ)
70482933 8654 then
b502ba3c
RD
8655 -- Handle the cases where our parent is a division or multiplication
8656 -- specially. In these cases we can convert to using a shift at the
8657 -- parent level if we are not doing overflow checking, since it is
8658 -- too tricky to combine the overflow check at the parent level.
70482933 8659
b502ba3c
RD
8660 if not Ovflo
8661 and then Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply)
8662 then
51bf9bdf
AC
8663 declare
8664 P : constant Node_Id := Parent (N);
8665 L : constant Node_Id := Left_Opnd (P);
8666 R : constant Node_Id := Right_Opnd (P);
8667
8668 begin
8669 if (Nkind (P) = N_Op_Multiply
eb9008b7
AC
8670 and then
8671 ((Is_Integer_Type (Etype (L)) and then R = N)
8672 or else
8673 (Is_Integer_Type (Etype (R)) and then L = N))
8674 and then not Do_Overflow_Check (P))
8675
51bf9bdf
AC
8676 or else
8677 (Nkind (P) = N_Op_Divide
533369aa
AC
8678 and then Is_Integer_Type (Etype (L))
8679 and then Is_Unsigned_Type (Etype (L))
8680 and then R = N
8681 and then not Do_Overflow_Check (P))
51bf9bdf
AC
8682 then
8683 Set_Is_Power_Of_2_For_Shift (N);
8684 return;
8685 end if;
8686 end;
8687
b502ba3c
RD
8688 -- Here we just have 2 ** N on its own, so we can convert this to a
8689 -- shift node. We are prepared to deal with overflow here, and we
8690 -- also have to handle proper modular reduction for binary modular.
51bf9bdf 8691
b502ba3c
RD
8692 else
8693 declare
8694 OK : Boolean;
8695 Lo : Uint;
8696 Hi : Uint;
8697
8698 MaxS : Uint;
8699 -- Maximum shift count with no overflow
8700
8701 TestS : Boolean;
8702 -- Set True if we must test the shift count
8703
5389e4ae
RD
8704 Test_Gt : Node_Id;
8705 -- Node for test against TestS
8706
b502ba3c
RD
8707 begin
8708 -- Compute maximum shift based on the underlying size. For a
8709 -- modular type this is one less than the size.
8710
8711 if Is_Modular_Integer_Type (Typ) then
8712
8713 -- For modular integer types, this is the size of the value
8714 -- being shifted minus one. Any larger values will cause
8715 -- modular reduction to a result of zero. Note that we do
8716 -- want the RM_Size here (e.g. mod 2 ** 7, we want a result
8717 -- of 6, since 2**7 should be reduced to zero).
8718
8719 MaxS := RM_Size (Rtyp) - 1;
8720
8721 -- For signed integer types, we use the size of the value
8722 -- being shifted minus 2. Larger values cause overflow.
8723
8724 else
8725 MaxS := Esize (Rtyp) - 2;
8726 end if;
8727
8728 -- Determine range to see if it can be larger than MaxS
8729
8730 Determine_Range
8731 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
8732 TestS := (not OK) or else Hi > MaxS;
8733
8734 -- Signed integer case
8735
8736 if Is_Signed_Integer_Type (Typ) then
8737
8738 -- Generate overflow check if overflow is active. Note that
8739 -- we can simply ignore the possibility of overflow if the
8740 -- flag is not set (means that overflow cannot happen or
8741 -- that overflow checks are suppressed).
8742
8743 if Ovflo and TestS then
8744 Insert_Action (N,
8745 Make_Raise_Constraint_Error (Loc,
8746 Condition =>
8747 Make_Op_Gt (Loc,
8748 Left_Opnd => Duplicate_Subexpr (Right_Opnd (N)),
8749 Right_Opnd => Make_Integer_Literal (Loc, MaxS)),
8750 Reason => CE_Overflow_Check_Failed));
8751 end if;
8752
8753 -- Now rewrite node as Shift_Left (1, right-operand)
8754
8755 Rewrite (N,
8756 Make_Op_Shift_Left (Loc,
8757 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8758 Right_Opnd => Right_Opnd (N)));
8759
8760 -- Modular integer case
8761
8762 else pragma Assert (Is_Modular_Integer_Type (Typ));
8763
8764 -- If shift count can be greater than MaxS, we need to wrap
8765 -- the shift in a test that will reduce the result value to
8766 -- zero if this shift count is exceeded.
8767
8768 if TestS then
5389e4ae
RD
8769
8770 -- Note: build node for the comparison first, before we
8771 -- reuse the Right_Opnd, so that we have proper parents
8772 -- in place for the Duplicate_Subexpr call.
8773
8774 Test_Gt :=
8775 Make_Op_Gt (Loc,
8776 Left_Opnd => Duplicate_Subexpr (Right_Opnd (N)),
8777 Right_Opnd => Make_Integer_Literal (Loc, MaxS));
8778
b502ba3c
RD
8779 Rewrite (N,
8780 Make_If_Expression (Loc,
8781 Expressions => New_List (
5389e4ae 8782 Test_Gt,
b502ba3c 8783 Make_Integer_Literal (Loc, Uint_0),
b502ba3c
RD
8784 Make_Op_Shift_Left (Loc,
8785 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8786 Right_Opnd => Right_Opnd (N)))));
8787
8788 -- If we know shift count cannot be greater than MaxS, then
8789 -- it is safe to just rewrite as a shift with no test.
8790
8791 else
8792 Rewrite (N,
8793 Make_Op_Shift_Left (Loc,
8794 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8795 Right_Opnd => Right_Opnd (N)));
8796 end if;
8797 end if;
8798
8799 Analyze_And_Resolve (N, Typ);
8800 return;
8801 end;
51bf9bdf 8802 end if;
70482933
RK
8803 end if;
8804
07fc65c4
GB
8805 -- Fall through if exponentiation must be done using a runtime routine
8806
07fc65c4 8807 -- First deal with modular case
70482933
RK
8808
8809 if Is_Modular_Integer_Type (Rtyp) then
8810
83496138
AC
8811 -- Nonbinary modular case, we call the special exponentiation
8812 -- routine for the nonbinary case, converting the argument to
8813 -- Long_Long_Integer and passing the modulus value. Then the
8814 -- result is converted back to the base type.
70482933
RK
8815
8816 if Non_Binary_Modulus (Rtyp) then
70482933
RK
8817 Rewrite (N,
8818 Convert_To (Typ,
8819 Make_Function_Call (Loc,
cc6f5d75
AC
8820 Name =>
8821 New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
70482933 8822 Parameter_Associations => New_List (
e9daba51 8823 Convert_To (RTE (RE_Unsigned), Base),
70482933
RK
8824 Make_Integer_Literal (Loc, Modulus (Rtyp)),
8825 Exp))));
8826
83496138
AC
8827 -- Binary modular case, in this case, we call one of two routines,
8828 -- either the unsigned integer case, or the unsigned long long
8829 -- integer case, with a final "and" operation to do the required mod.
70482933
RK
8830
8831 else
8832 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
8833 Ent := RTE (RE_Exp_Unsigned);
8834 else
8835 Ent := RTE (RE_Exp_Long_Long_Unsigned);
8836 end if;
8837
8838 Rewrite (N,
8839 Convert_To (Typ,
8840 Make_Op_And (Loc,
cc6f5d75 8841 Left_Opnd =>
70482933 8842 Make_Function_Call (Loc,
cc6f5d75 8843 Name => New_Occurrence_Of (Ent, Loc),
70482933
RK
8844 Parameter_Associations => New_List (
8845 Convert_To (Etype (First_Formal (Ent)), Base),
8846 Exp)),
8847 Right_Opnd =>
8848 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
8849
8850 end if;
8851
8852 -- Common exit point for modular type case
8853
8854 Analyze_And_Resolve (N, Typ);
8855 return;
8856
fbf5a39b
AC
8857 -- Signed integer cases, done using either Integer or Long_Long_Integer.
8858 -- It is not worth having routines for Short_[Short_]Integer, since for
8859 -- most machines it would not help, and it would generate more code that
dfd99a80 8860 -- might need certification when a certified run time is required.
70482933 8861
fbf5a39b 8862 -- In the integer cases, we have two routines, one for when overflow
dfd99a80
TQ
8863 -- checks are required, and one when they are not required, since there
8864 -- is a real gain in omitting checks on many machines.
70482933 8865
fbf5a39b
AC
8866 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
8867 or else (Rtyp = Base_Type (Standard_Long_Integer)
761f7dcb
AC
8868 and then
8869 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
8870 or else Rtyp = Universal_Integer
70482933 8871 then
fbf5a39b
AC
8872 Etyp := Standard_Long_Long_Integer;
8873
f96fd197 8874 if Ovflo then
70482933
RK
8875 Rent := RE_Exp_Long_Long_Integer;
8876 else
8877 Rent := RE_Exn_Long_Long_Integer;
8878 end if;
8879
fbf5a39b
AC
8880 elsif Is_Signed_Integer_Type (Rtyp) then
8881 Etyp := Standard_Integer;
70482933 8882
f96fd197 8883 if Ovflo then
fbf5a39b 8884 Rent := RE_Exp_Integer;
70482933 8885 else
fbf5a39b 8886 Rent := RE_Exn_Integer;
70482933 8887 end if;
fbf5a39b 8888
83496138
AC
8889 -- Floating-point cases. We do not need separate routines for the
8890 -- overflow case here, since in the case of floating-point, we generate
8891 -- infinities anyway as a rule (either that or we automatically trap
8892 -- overflow), and if there is an infinity generated and a range check
8893 -- is required, the check will fail anyway.
8894
8895 -- Historical note: we used to convert everything to Long_Long_Float
8896 -- and call a single common routine, but this had the undesirable effect
8897 -- of giving different results for small static exponent values and the
8898 -- same dynamic values.
fbf5a39b
AC
8899
8900 else
8901 pragma Assert (Is_Floating_Point_Type (Rtyp));
83496138
AC
8902
8903 if Rtyp = Standard_Float then
8904 Etyp := Standard_Float;
8905 Rent := RE_Exn_Float;
8906
8907 elsif Rtyp = Standard_Long_Float then
8908 Etyp := Standard_Long_Float;
8909 Rent := RE_Exn_Long_Float;
8910
8911 else
8912 Etyp := Standard_Long_Long_Float;
8913 Rent := RE_Exn_Long_Long_Float;
8914 end if;
70482933
RK
8915 end if;
8916
8917 -- Common processing for integer cases and floating-point cases.
fbf5a39b 8918 -- If we are in the right type, we can call runtime routine directly
70482933 8919
fbf5a39b 8920 if Typ = Etyp
70482933
RK
8921 and then Rtyp /= Universal_Integer
8922 and then Rtyp /= Universal_Real
8923 then
8924 Rewrite (N,
83496138
AC
8925 Wrap_MA (
8926 Make_Function_Call (Loc,
8927 Name => New_Occurrence_Of (RTE (Rent), Loc),
8928 Parameter_Associations => New_List (Base, Exp))));
70482933
RK
8929
8930 -- Otherwise we have to introduce conversions (conversions are also
fbf5a39b 8931 -- required in the universal cases, since the runtime routine is
1147c704 8932 -- typed using one of the standard types).
70482933
RK
8933
8934 else
8935 Rewrite (N,
8936 Convert_To (Typ,
8937 Make_Function_Call (Loc,
e4494292 8938 Name => New_Occurrence_Of (RTE (Rent), Loc),
70482933 8939 Parameter_Associations => New_List (
fbf5a39b 8940 Convert_To (Etyp, Base),
70482933
RK
8941 Exp))));
8942 end if;
8943
8944 Analyze_And_Resolve (N, Typ);
8945 return;
8946
fbf5a39b
AC
8947 exception
8948 when RE_Not_Available =>
8949 return;
70482933
RK
8950 end Expand_N_Op_Expon;
8951
8952 --------------------
8953 -- Expand_N_Op_Ge --
8954 --------------------
8955
8956 procedure Expand_N_Op_Ge (N : Node_Id) is
8957 Typ : constant Entity_Id := Etype (N);
8958 Op1 : constant Node_Id := Left_Opnd (N);
8959 Op2 : constant Node_Id := Right_Opnd (N);
8960 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8961
8962 begin
8963 Binary_Op_Validity_Checks (N);
8964
456cbfa5 8965 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 8966 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
8967
8968 Expand_Compare_Minimize_Eliminate_Overflow (N);
8969
8970 if Nkind (N) /= N_Op_Ge then
8971 return;
8972 end if;
8973
8974 -- Array type case
8975
f02b8bb8 8976 if Is_Array_Type (Typ1) then
70482933
RK
8977 Expand_Array_Comparison (N);
8978 return;
8979 end if;
8980
456cbfa5
AC
8981 -- Deal with boolean operands
8982
70482933
RK
8983 if Is_Boolean_Type (Typ1) then
8984 Adjust_Condition (Op1);
8985 Adjust_Condition (Op2);
8986 Set_Etype (N, Standard_Boolean);
8987 Adjust_Result_Type (N, Typ);
8988 end if;
8989
8990 Rewrite_Comparison (N);
f02b8bb8 8991
0580d807 8992 Optimize_Length_Comparison (N);
70482933
RK
8993 end Expand_N_Op_Ge;
8994
8995 --------------------
8996 -- Expand_N_Op_Gt --
8997 --------------------
8998
8999 procedure Expand_N_Op_Gt (N : Node_Id) is
9000 Typ : constant Entity_Id := Etype (N);
9001 Op1 : constant Node_Id := Left_Opnd (N);
9002 Op2 : constant Node_Id := Right_Opnd (N);
9003 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
9004
9005 begin
9006 Binary_Op_Validity_Checks (N);
9007
456cbfa5 9008 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 9009 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
9010
9011 Expand_Compare_Minimize_Eliminate_Overflow (N);
9012
9013 if Nkind (N) /= N_Op_Gt then
9014 return;
9015 end if;
9016
9017 -- Deal with array type operands
9018
f02b8bb8 9019 if Is_Array_Type (Typ1) then
70482933
RK
9020 Expand_Array_Comparison (N);
9021 return;
9022 end if;
9023
456cbfa5
AC
9024 -- Deal with boolean type operands
9025
70482933
RK
9026 if Is_Boolean_Type (Typ1) then
9027 Adjust_Condition (Op1);
9028 Adjust_Condition (Op2);
9029 Set_Etype (N, Standard_Boolean);
9030 Adjust_Result_Type (N, Typ);
9031 end if;
9032
9033 Rewrite_Comparison (N);
f02b8bb8 9034
0580d807 9035 Optimize_Length_Comparison (N);
70482933
RK
9036 end Expand_N_Op_Gt;
9037
9038 --------------------
9039 -- Expand_N_Op_Le --
9040 --------------------
9041
9042 procedure Expand_N_Op_Le (N : Node_Id) is
9043 Typ : constant Entity_Id := Etype (N);
9044 Op1 : constant Node_Id := Left_Opnd (N);
9045 Op2 : constant Node_Id := Right_Opnd (N);
9046 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
9047
9048 begin
9049 Binary_Op_Validity_Checks (N);
9050
456cbfa5 9051 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 9052 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
9053
9054 Expand_Compare_Minimize_Eliminate_Overflow (N);
9055
9056 if Nkind (N) /= N_Op_Le then
9057 return;
9058 end if;
9059
9060 -- Deal with array type operands
9061
f02b8bb8 9062 if Is_Array_Type (Typ1) then
70482933
RK
9063 Expand_Array_Comparison (N);
9064 return;
9065 end if;
9066
456cbfa5
AC
9067 -- Deal with Boolean type operands
9068
70482933
RK
9069 if Is_Boolean_Type (Typ1) then
9070 Adjust_Condition (Op1);
9071 Adjust_Condition (Op2);
9072 Set_Etype (N, Standard_Boolean);
9073 Adjust_Result_Type (N, Typ);
9074 end if;
9075
9076 Rewrite_Comparison (N);
f02b8bb8 9077
0580d807 9078 Optimize_Length_Comparison (N);
70482933
RK
9079 end Expand_N_Op_Le;
9080
9081 --------------------
9082 -- Expand_N_Op_Lt --
9083 --------------------
9084
9085 procedure Expand_N_Op_Lt (N : Node_Id) is
9086 Typ : constant Entity_Id := Etype (N);
9087 Op1 : constant Node_Id := Left_Opnd (N);
9088 Op2 : constant Node_Id := Right_Opnd (N);
9089 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
9090
9091 begin
9092 Binary_Op_Validity_Checks (N);
9093
456cbfa5 9094 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
60b68e56 9095 -- means we no longer have a comparison operation, we are all done.
456cbfa5
AC
9096
9097 Expand_Compare_Minimize_Eliminate_Overflow (N);
9098
9099 if Nkind (N) /= N_Op_Lt then
9100 return;
9101 end if;
9102
9103 -- Deal with array type operands
9104
f02b8bb8 9105 if Is_Array_Type (Typ1) then
70482933
RK
9106 Expand_Array_Comparison (N);
9107 return;
9108 end if;
9109
456cbfa5
AC
9110 -- Deal with Boolean type operands
9111
70482933
RK
9112 if Is_Boolean_Type (Typ1) then
9113 Adjust_Condition (Op1);
9114 Adjust_Condition (Op2);
9115 Set_Etype (N, Standard_Boolean);
9116 Adjust_Result_Type (N, Typ);
9117 end if;
9118
9119 Rewrite_Comparison (N);
f02b8bb8 9120
0580d807 9121 Optimize_Length_Comparison (N);
70482933
RK
9122 end Expand_N_Op_Lt;
9123
9124 -----------------------
9125 -- Expand_N_Op_Minus --
9126 -----------------------
9127
9128 procedure Expand_N_Op_Minus (N : Node_Id) is
9129 Loc : constant Source_Ptr := Sloc (N);
9130 Typ : constant Entity_Id := Etype (N);
9131
9132 begin
9133 Unary_Op_Validity_Checks (N);
9134
b6b5cca8
AC
9135 -- Check for MINIMIZED/ELIMINATED overflow mode
9136
9137 if Minimized_Eliminated_Overflow_Check (N) then
9138 Apply_Arithmetic_Overflow_Check (N);
9139 return;
9140 end if;
9141
07fc65c4 9142 if not Backend_Overflow_Checks_On_Target
70482933
RK
9143 and then Is_Signed_Integer_Type (Etype (N))
9144 and then Do_Overflow_Check (N)
9145 then
9146 -- Software overflow checking expands -expr into (0 - expr)
9147
9148 Rewrite (N,
9149 Make_Op_Subtract (Loc,
9150 Left_Opnd => Make_Integer_Literal (Loc, 0),
9151 Right_Opnd => Right_Opnd (N)));
9152
9153 Analyze_And_Resolve (N, Typ);
70482933 9154 end if;
05dbb83f 9155
f4ac86dd 9156 Expand_Nonbinary_Modular_Op (N);
70482933
RK
9157 end Expand_N_Op_Minus;
9158
9159 ---------------------
9160 -- Expand_N_Op_Mod --
9161 ---------------------
9162
9163 procedure Expand_N_Op_Mod (N : Node_Id) is
9164 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 9165 Typ : constant Entity_Id := Etype (N);
70482933
RK
9166 DDC : constant Boolean := Do_Division_Check (N);
9167
b6b5cca8
AC
9168 Left : Node_Id;
9169 Right : Node_Id;
9170
70482933
RK
9171 LLB : Uint;
9172 Llo : Uint;
9173 Lhi : Uint;
9174 LOK : Boolean;
9175 Rlo : Uint;
9176 Rhi : Uint;
9177 ROK : Boolean;
9178
1033834f
RD
9179 pragma Warnings (Off, Lhi);
9180
70482933
RK
9181 begin
9182 Binary_Op_Validity_Checks (N);
9183
b6b5cca8
AC
9184 -- Check for MINIMIZED/ELIMINATED overflow mode
9185
9186 if Minimized_Eliminated_Overflow_Check (N) then
9187 Apply_Arithmetic_Overflow_Check (N);
9188 return;
9189 end if;
9190
9a6dc470
RD
9191 if Is_Integer_Type (Etype (N)) then
9192 Apply_Divide_Checks (N);
b6b5cca8
AC
9193
9194 -- All done if we don't have a MOD any more, which can happen as a
9195 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9196
9197 if Nkind (N) /= N_Op_Mod then
9198 return;
9199 end if;
9a6dc470
RD
9200 end if;
9201
b6b5cca8
AC
9202 -- Proceed with expansion of mod operator
9203
9204 Left := Left_Opnd (N);
9205 Right := Right_Opnd (N);
9206
5d5e9775
AC
9207 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
9208 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933 9209
2c9f8c0a
AC
9210 -- Convert mod to rem if operands are both known to be non-negative, or
9211 -- both known to be non-positive (these are the cases in which rem and
9212 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
9213 -- likely that this will improve the quality of code, (the operation now
9214 -- corresponds to the hardware remainder), and it does not seem likely
9215 -- that it could be harmful. It also avoids some cases of the elaborate
9216 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
9217
9218 if (LOK and ROK)
9219 and then ((Llo >= 0 and then Rlo >= 0)
cc6f5d75 9220 or else
2c9f8c0a
AC
9221 (Lhi <= 0 and then Rhi <= 0))
9222 then
70482933
RK
9223 Rewrite (N,
9224 Make_Op_Rem (Sloc (N),
9225 Left_Opnd => Left_Opnd (N),
9226 Right_Opnd => Right_Opnd (N)));
9227
685094bf
RD
9228 -- Instead of reanalyzing the node we do the analysis manually. This
9229 -- avoids anomalies when the replacement is done in an instance and
9230 -- is epsilon more efficient.
70482933
RK
9231
9232 Set_Entity (N, Standard_Entity (S_Op_Rem));
fbf5a39b 9233 Set_Etype (N, Typ);
70482933
RK
9234 Set_Do_Division_Check (N, DDC);
9235 Expand_N_Op_Rem (N);
9236 Set_Analyzed (N);
2c9f8c0a 9237 return;
70482933
RK
9238
9239 -- Otherwise, normal mod processing
9240
9241 else
fbf5a39b 9242 -- Apply optimization x mod 1 = 0. We don't really need that with
f96fd197
AC
9243 -- gcc, but it is useful with other back ends and is certainly
9244 -- harmless.
fbf5a39b
AC
9245
9246 if Is_Integer_Type (Etype (N))
9247 and then Compile_Time_Known_Value (Right)
9248 and then Expr_Value (Right) = Uint_1
9249 then
abcbd24c
ST
9250 -- Call Remove_Side_Effects to ensure that any side effects in
9251 -- the ignored left operand (in particular function calls to
9252 -- user defined functions) are properly executed.
9253
9254 Remove_Side_Effects (Left);
9255
fbf5a39b
AC
9256 Rewrite (N, Make_Integer_Literal (Loc, 0));
9257 Analyze_And_Resolve (N, Typ);
9258 return;
9259 end if;
9260
2c9f8c0a
AC
9261 -- If we still have a mod operator and we are in Modify_Tree_For_C
9262 -- mode, and we have a signed integer type, then here is where we do
9263 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
9264 -- for the special handling of the annoying case of largest negative
9265 -- number mod minus one.
9266
9267 if Nkind (N) = N_Op_Mod
9268 and then Is_Signed_Integer_Type (Typ)
9269 and then Modify_Tree_For_C
9270 then
9271 -- In the general case, we expand A mod B as
9272
9273 -- Tnn : constant typ := A rem B;
9274 -- ..
9275 -- (if (A >= 0) = (B >= 0) then Tnn
9276 -- elsif Tnn = 0 then 0
9277 -- else Tnn + B)
9278
9279 -- The comparison can be written simply as A >= 0 if we know that
9280 -- B >= 0 which is a very common case.
9281
9282 -- An important optimization is when B is known at compile time
9283 -- to be 2**K for some constant. In this case we can simply AND
9284 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
9285 -- and that works for both the positive and negative cases.
9286
9287 declare
9288 P2 : constant Nat := Power_Of_Two (Right);
9289
9290 begin
9291 if P2 /= 0 then
9292 Rewrite (N,
9293 Unchecked_Convert_To (Typ,
9294 Make_Op_And (Loc,
9295 Left_Opnd =>
9296 Unchecked_Convert_To
9297 (Corresponding_Unsigned_Type (Typ), Left),
9298 Right_Opnd =>
9299 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
9300 Analyze_And_Resolve (N, Typ);
9301 return;
9302 end if;
9303 end;
9304
9305 -- Here for the full rewrite
9306
9307 declare
9308 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
9309 Cmp : Node_Id;
9310
9311 begin
9312 Cmp :=
9313 Make_Op_Ge (Loc,
9314 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9315 Right_Opnd => Make_Integer_Literal (Loc, 0));
9316
9317 if not LOK or else Rlo < 0 then
9318 Cmp :=
9319 Make_Op_Eq (Loc,
9320 Left_Opnd => Cmp,
9321 Right_Opnd =>
9322 Make_Op_Ge (Loc,
9323 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
9324 Right_Opnd => Make_Integer_Literal (Loc, 0)));
9325 end if;
9326
9327 Insert_Action (N,
9328 Make_Object_Declaration (Loc,
9329 Defining_Identifier => Tnn,
9330 Constant_Present => True,
9331 Object_Definition => New_Occurrence_Of (Typ, Loc),
9332 Expression =>
9333 Make_Op_Rem (Loc,
9334 Left_Opnd => Left,
9335 Right_Opnd => Right)));
9336
9337 Rewrite (N,
9338 Make_If_Expression (Loc,
9339 Expressions => New_List (
9340 Cmp,
9341 New_Occurrence_Of (Tnn, Loc),
9342 Make_If_Expression (Loc,
9343 Is_Elsif => True,
9344 Expressions => New_List (
9345 Make_Op_Eq (Loc,
9346 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
9347 Right_Opnd => Make_Integer_Literal (Loc, 0)),
9348 Make_Integer_Literal (Loc, 0),
9349 Make_Op_Add (Loc,
9350 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
9351 Right_Opnd =>
9352 Duplicate_Subexpr_No_Checks (Right)))))));
9353
9354 Analyze_And_Resolve (N, Typ);
9355 return;
9356 end;
9357 end if;
9358
9359 -- Deal with annoying case of largest negative number mod minus one.
9360 -- Gigi may not handle this case correctly, because on some targets,
9361 -- the mod value is computed using a divide instruction which gives
9362 -- an overflow trap for this case.
b9daa96e
AC
9363
9364 -- It would be a bit more efficient to figure out which targets
9365 -- this is really needed for, but in practice it is reasonable
9366 -- to do the following special check in all cases, since it means
9367 -- we get a clearer message, and also the overhead is minimal given
9368 -- that division is expensive in any case.
70482933 9369
685094bf
RD
9370 -- In fact the check is quite easy, if the right operand is -1, then
9371 -- the mod value is always 0, and we can just ignore the left operand
9372 -- completely in this case.
70482933 9373
9a6dc470
RD
9374 -- This only applies if we still have a mod operator. Skip if we
9375 -- have already rewritten this (e.g. in the case of eliminated
9376 -- overflow checks which have driven us into bignum mode).
fbf5a39b 9377
9a6dc470 9378 if Nkind (N) = N_Op_Mod then
70482933 9379
9a6dc470
RD
9380 -- The operand type may be private (e.g. in the expansion of an
9381 -- intrinsic operation) so we must use the underlying type to get
9382 -- the bounds, and convert the literals explicitly.
70482933 9383
9a6dc470
RD
9384 LLB :=
9385 Expr_Value
9386 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
9387
9388 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
761f7dcb 9389 and then ((not LOK) or else (Llo = LLB))
9a6dc470
RD
9390 then
9391 Rewrite (N,
9b16cb57 9392 Make_If_Expression (Loc,
9a6dc470
RD
9393 Expressions => New_List (
9394 Make_Op_Eq (Loc,
9395 Left_Opnd => Duplicate_Subexpr (Right),
9396 Right_Opnd =>
9397 Unchecked_Convert_To (Typ,
9398 Make_Integer_Literal (Loc, -1))),
9399 Unchecked_Convert_To (Typ,
9400 Make_Integer_Literal (Loc, Uint_0)),
9401 Relocate_Node (N))));
9402
9403 Set_Analyzed (Next (Next (First (Expressions (N)))));
9404 Analyze_And_Resolve (N, Typ);
9405 end if;
70482933
RK
9406 end if;
9407 end if;
9408 end Expand_N_Op_Mod;
9409
9410 --------------------------
9411 -- Expand_N_Op_Multiply --
9412 --------------------------
9413
9414 procedure Expand_N_Op_Multiply (N : Node_Id) is
abcbd24c
ST
9415 Loc : constant Source_Ptr := Sloc (N);
9416 Lop : constant Node_Id := Left_Opnd (N);
9417 Rop : constant Node_Id := Right_Opnd (N);
fbf5a39b 9418
abcbd24c 9419 Lp2 : constant Boolean :=
533369aa 9420 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
abcbd24c 9421 Rp2 : constant Boolean :=
533369aa 9422 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
fbf5a39b 9423
70482933
RK
9424 Ltyp : constant Entity_Id := Etype (Lop);
9425 Rtyp : constant Entity_Id := Etype (Rop);
9426 Typ : Entity_Id := Etype (N);
9427
9428 begin
9429 Binary_Op_Validity_Checks (N);
9430
b6b5cca8
AC
9431 -- Check for MINIMIZED/ELIMINATED overflow mode
9432
9433 if Minimized_Eliminated_Overflow_Check (N) then
9434 Apply_Arithmetic_Overflow_Check (N);
9435 return;
9436 end if;
9437
70482933
RK
9438 -- Special optimizations for integer types
9439
9440 if Is_Integer_Type (Typ) then
9441
abcbd24c 9442 -- N * 0 = 0 for integer types
70482933 9443
abcbd24c
ST
9444 if Compile_Time_Known_Value (Rop)
9445 and then Expr_Value (Rop) = Uint_0
70482933 9446 then
abcbd24c
ST
9447 -- Call Remove_Side_Effects to ensure that any side effects in
9448 -- the ignored left operand (in particular function calls to
9449 -- user defined functions) are properly executed.
9450
9451 Remove_Side_Effects (Lop);
9452
9453 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
9454 Analyze_And_Resolve (N, Typ);
9455 return;
9456 end if;
9457
9458 -- Similar handling for 0 * N = 0
9459
9460 if Compile_Time_Known_Value (Lop)
9461 and then Expr_Value (Lop) = Uint_0
9462 then
9463 Remove_Side_Effects (Rop);
70482933
RK
9464 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
9465 Analyze_And_Resolve (N, Typ);
9466 return;
9467 end if;
9468
9469 -- N * 1 = 1 * N = N for integer types
9470
fbf5a39b
AC
9471 -- This optimisation is not done if we are going to
9472 -- rewrite the product 1 * 2 ** N to a shift.
9473
9474 if Compile_Time_Known_Value (Rop)
9475 and then Expr_Value (Rop) = Uint_1
9476 and then not Lp2
70482933 9477 then
fbf5a39b 9478 Rewrite (N, Lop);
70482933
RK
9479 return;
9480
fbf5a39b
AC
9481 elsif Compile_Time_Known_Value (Lop)
9482 and then Expr_Value (Lop) = Uint_1
9483 and then not Rp2
70482933 9484 then
fbf5a39b 9485 Rewrite (N, Rop);
70482933
RK
9486 return;
9487 end if;
9488 end if;
9489
70482933
RK
9490 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
9491 -- Is_Power_Of_2_For_Shift is set means that we know that our left
9492 -- operand is an integer, as required for this to work.
9493
fbf5a39b
AC
9494 if Rp2 then
9495 if Lp2 then
70482933 9496
fbf5a39b 9497 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
70482933
RK
9498
9499 Rewrite (N,
9500 Make_Op_Expon (Loc,
9501 Left_Opnd => Make_Integer_Literal (Loc, 2),
9502 Right_Opnd =>
9503 Make_Op_Add (Loc,
9504 Left_Opnd => Right_Opnd (Lop),
9505 Right_Opnd => Right_Opnd (Rop))));
9506 Analyze_And_Resolve (N, Typ);
9507 return;
9508
9509 else
eefe3761
AC
9510 -- If the result is modular, perform the reduction of the result
9511 -- appropriately.
9512
9513 if Is_Modular_Integer_Type (Typ)
9514 and then not Non_Binary_Modulus (Typ)
9515 then
9516 Rewrite (N,
573e5dd6
RD
9517 Make_Op_And (Loc,
9518 Left_Opnd =>
9519 Make_Op_Shift_Left (Loc,
9520 Left_Opnd => Lop,
9521 Right_Opnd =>
9522 Convert_To (Standard_Natural, Right_Opnd (Rop))),
9523 Right_Opnd =>
eefe3761 9524 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
573e5dd6 9525
eefe3761
AC
9526 else
9527 Rewrite (N,
9528 Make_Op_Shift_Left (Loc,
9529 Left_Opnd => Lop,
9530 Right_Opnd =>
9531 Convert_To (Standard_Natural, Right_Opnd (Rop))));
9532 end if;
9533
70482933
RK
9534 Analyze_And_Resolve (N, Typ);
9535 return;
9536 end if;
9537
9538 -- Same processing for the operands the other way round
9539
fbf5a39b 9540 elsif Lp2 then
eefe3761
AC
9541 if Is_Modular_Integer_Type (Typ)
9542 and then not Non_Binary_Modulus (Typ)
9543 then
9544 Rewrite (N,
573e5dd6
RD
9545 Make_Op_And (Loc,
9546 Left_Opnd =>
9547 Make_Op_Shift_Left (Loc,
9548 Left_Opnd => Rop,
9549 Right_Opnd =>
9550 Convert_To (Standard_Natural, Right_Opnd (Lop))),
9551 Right_Opnd =>
9552 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
9553
eefe3761
AC
9554 else
9555 Rewrite (N,
9556 Make_Op_Shift_Left (Loc,
9557 Left_Opnd => Rop,
9558 Right_Opnd =>
9559 Convert_To (Standard_Natural, Right_Opnd (Lop))));
9560 end if;
9561
70482933
RK
9562 Analyze_And_Resolve (N, Typ);
9563 return;
9564 end if;
9565
9566 -- Do required fixup of universal fixed operation
9567
9568 if Typ = Universal_Fixed then
9569 Fixup_Universal_Fixed_Operation (N);
9570 Typ := Etype (N);
9571 end if;
9572
9573 -- Multiplications with fixed-point results
9574
9575 if Is_Fixed_Point_Type (Typ) then
9576
685094bf
RD
9577 -- No special processing if Treat_Fixed_As_Integer is set, since from
9578 -- a semantic point of view such operations are simply integer
9579 -- operations and will be treated that way.
70482933
RK
9580
9581 if not Treat_Fixed_As_Integer (N) then
9582
9583 -- Case of fixed * integer => fixed
9584
9585 if Is_Integer_Type (Rtyp) then
9586 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
9587
9588 -- Case of integer * fixed => fixed
9589
9590 elsif Is_Integer_Type (Ltyp) then
9591 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
9592
9593 -- Case of fixed * fixed => fixed
9594
9595 else
9596 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
9597 end if;
9598 end if;
9599
685094bf
RD
9600 -- Other cases of multiplication of fixed-point operands. Again we
9601 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
70482933
RK
9602
9603 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
9604 and then not Treat_Fixed_As_Integer (N)
9605 then
9606 if Is_Integer_Type (Typ) then
9607 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
9608 else
9609 pragma Assert (Is_Floating_Point_Type (Typ));
9610 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
9611 end if;
9612
685094bf
RD
9613 -- Mixed-mode operations can appear in a non-static universal context,
9614 -- in which case the integer argument must be converted explicitly.
70482933 9615
533369aa 9616 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
70482933 9617 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
70482933
RK
9618 Analyze_And_Resolve (Rop, Universal_Real);
9619
533369aa 9620 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
70482933 9621 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
70482933
RK
9622 Analyze_And_Resolve (Lop, Universal_Real);
9623
9624 -- Non-fixed point cases, check software overflow checking required
9625
9626 elsif Is_Signed_Integer_Type (Etype (N)) then
9627 Apply_Arithmetic_Overflow_Check (N);
9628 end if;
dfaff97b
RD
9629
9630 -- Overflow checks for floating-point if -gnateF mode active
9631
9632 Check_Float_Op_Overflow (N);
05dbb83f 9633
f4ac86dd 9634 Expand_Nonbinary_Modular_Op (N);
70482933
RK
9635 end Expand_N_Op_Multiply;
9636
9637 --------------------
9638 -- Expand_N_Op_Ne --
9639 --------------------
9640
70482933 9641 procedure Expand_N_Op_Ne (N : Node_Id) is
f02b8bb8 9642 Typ : constant Entity_Id := Etype (Left_Opnd (N));
70482933
RK
9643
9644 begin
60f66f34
GD
9645 -- Case of elementary type with standard operator. But if unnesting,
9646 -- handle elementary types whose Equivalent_Types are records because
9647 -- there may be padding or undefined fields.
70482933 9648
f02b8bb8
RD
9649 if Is_Elementary_Type (Typ)
9650 and then Sloc (Entity (N)) = Standard_Location
6bc08721
JM
9651 and then not (Ekind_In (Typ, E_Class_Wide_Type,
9652 E_Class_Wide_Subtype,
9653 E_Access_Subprogram_Type,
9654 E_Access_Protected_Subprogram_Type,
9655 E_Anonymous_Access_Protected_Subprogram_Type,
9656 E_Access_Subprogram_Type,
9657 E_Exception_Type)
9658 and then Present (Equivalent_Type (Typ))
9659 and then Is_Record_Type (Equivalent_Type (Typ)))
f02b8bb8
RD
9660 then
9661 Binary_Op_Validity_Checks (N);
70482933 9662
456cbfa5 9663 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
60b68e56 9664 -- means we no longer have a /= operation, we are all done.
456cbfa5
AC
9665
9666 Expand_Compare_Minimize_Eliminate_Overflow (N);
9667
9668 if Nkind (N) /= N_Op_Ne then
9669 return;
9670 end if;
9671
f02b8bb8 9672 -- Boolean types (requiring handling of non-standard case)
70482933 9673
f02b8bb8
RD
9674 if Is_Boolean_Type (Typ) then
9675 Adjust_Condition (Left_Opnd (N));
9676 Adjust_Condition (Right_Opnd (N));
9677 Set_Etype (N, Standard_Boolean);
9678 Adjust_Result_Type (N, Typ);
9679 end if;
fbf5a39b 9680
f02b8bb8
RD
9681 Rewrite_Comparison (N);
9682
f02b8bb8
RD
9683 -- For all cases other than elementary types, we rewrite node as the
9684 -- negation of an equality operation, and reanalyze. The equality to be
9685 -- used is defined in the same scope and has the same signature. This
9686 -- signature must be set explicitly since in an instance it may not have
9687 -- the same visibility as in the generic unit. This avoids duplicating
9688 -- or factoring the complex code for record/array equality tests etc.
9689
99bba92c
AC
9690 -- This case is also used for the minimal expansion performed in
9691 -- GNATprove mode.
9692
f02b8bb8
RD
9693 else
9694 declare
9695 Loc : constant Source_Ptr := Sloc (N);
9696 Neg : Node_Id;
9697 Ne : constant Entity_Id := Entity (N);
9698
9699 begin
9700 Binary_Op_Validity_Checks (N);
9701
9702 Neg :=
9703 Make_Op_Not (Loc,
9704 Right_Opnd =>
9705 Make_Op_Eq (Loc,
9706 Left_Opnd => Left_Opnd (N),
9707 Right_Opnd => Right_Opnd (N)));
99bba92c
AC
9708
9709 -- The level of parentheses is useless in GNATprove mode, and
9710 -- bumping its level here leads to wrong columns being used in
9711 -- check messages, hence skip it in this mode.
9712
9713 if not GNATprove_Mode then
9714 Set_Paren_Count (Right_Opnd (Neg), 1);
9715 end if;
f02b8bb8
RD
9716
9717 if Scope (Ne) /= Standard_Standard then
9718 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
9719 end if;
9720
4637729f 9721 -- For navigation purposes, we want to treat the inequality as an
f02b8bb8 9722 -- implicit reference to the corresponding equality. Preserve the
4637729f 9723 -- Comes_From_ source flag to generate proper Xref entries.
f02b8bb8
RD
9724
9725 Preserve_Comes_From_Source (Neg, N);
9726 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
9727 Rewrite (N, Neg);
9728 Analyze_And_Resolve (N, Standard_Boolean);
9729 end;
9730 end if;
0580d807 9731
99bba92c
AC
9732 -- No need for optimization in GNATprove mode, where we would rather see
9733 -- the original source expression.
9734
9735 if not GNATprove_Mode then
9736 Optimize_Length_Comparison (N);
9737 end if;
70482933
RK
9738 end Expand_N_Op_Ne;
9739
9740 ---------------------
9741 -- Expand_N_Op_Not --
9742 ---------------------
9743
685094bf 9744 -- If the argument is other than a Boolean array type, there is no special
7a5b62b0
AC
9745 -- expansion required, except for dealing with validity checks, and non-
9746 -- standard boolean representations.
70482933 9747
7a5b62b0
AC
9748 -- For the packed array case, we call the special routine in Exp_Pakd,
9749 -- except that if the component size is greater than one, we use the
9750 -- standard routine generating a gruesome loop (it is so peculiar to have
9751 -- packed arrays with non-standard Boolean representations anyway, so it
9752 -- does not matter that we do not handle this case efficiently).
70482933 9753
7a5b62b0
AC
9754 -- For the unpacked array case (and for the special packed case where we
9755 -- have non standard Booleans, as discussed above), we generate and insert
9756 -- into the tree the following function definition:
70482933
RK
9757
9758 -- function Nnnn (A : arr) is
9759 -- B : arr;
9760 -- begin
9761 -- for J in a'range loop
9762 -- B (J) := not A (J);
9763 -- end loop;
9764 -- return B;
9765 -- end Nnnn;
9766
9767 -- Here arr is the actual subtype of the parameter (and hence always
9768 -- constrained). Then we replace the not with a call to this function.
9769
9770 procedure Expand_N_Op_Not (N : Node_Id) is
9771 Loc : constant Source_Ptr := Sloc (N);
9772 Typ : constant Entity_Id := Etype (N);
9773 Opnd : Node_Id;
9774 Arr : Entity_Id;
9775 A : Entity_Id;
9776 B : Entity_Id;
9777 J : Entity_Id;
9778 A_J : Node_Id;
9779 B_J : Node_Id;
9780
9781 Func_Name : Entity_Id;
9782 Loop_Statement : Node_Id;
9783
9784 begin
9785 Unary_Op_Validity_Checks (N);
9786
9787 -- For boolean operand, deal with non-standard booleans
9788
9789 if Is_Boolean_Type (Typ) then
9790 Adjust_Condition (Right_Opnd (N));
9791 Set_Etype (N, Standard_Boolean);
9792 Adjust_Result_Type (N, Typ);
9793 return;
9794 end if;
9795
da94696d 9796 -- Only array types need any other processing
70482933 9797
da94696d 9798 if not Is_Array_Type (Typ) then
70482933
RK
9799 return;
9800 end if;
9801
a9d8907c
JM
9802 -- Case of array operand. If bit packed with a component size of 1,
9803 -- handle it in Exp_Pakd if the operand is known to be aligned.
70482933 9804
a9d8907c
JM
9805 if Is_Bit_Packed_Array (Typ)
9806 and then Component_Size (Typ) = 1
9807 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
9808 then
70482933
RK
9809 Expand_Packed_Not (N);
9810 return;
9811 end if;
9812
fbf5a39b
AC
9813 -- Case of array operand which is not bit-packed. If the context is
9814 -- a safe assignment, call in-place operation, If context is a larger
9815 -- boolean expression in the context of a safe assignment, expansion is
9816 -- done by enclosing operation.
70482933
RK
9817
9818 Opnd := Relocate_Node (Right_Opnd (N));
9819 Convert_To_Actual_Subtype (Opnd);
9820 Arr := Etype (Opnd);
9821 Ensure_Defined (Arr, N);
b4592168 9822 Silly_Boolean_Array_Not_Test (N, Arr);
70482933 9823
fbf5a39b
AC
9824 if Nkind (Parent (N)) = N_Assignment_Statement then
9825 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
9826 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
9827 return;
9828
5e1c00fa 9829 -- Special case the negation of a binary operation
fbf5a39b 9830
303b4d58 9831 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
fbf5a39b 9832 and then Safe_In_Place_Array_Op
303b4d58 9833 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
fbf5a39b
AC
9834 then
9835 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
9836 return;
9837 end if;
9838
9839 elsif Nkind (Parent (N)) in N_Binary_Op
9840 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
9841 then
9842 declare
9843 Op1 : constant Node_Id := Left_Opnd (Parent (N));
9844 Op2 : constant Node_Id := Right_Opnd (Parent (N));
9845 Lhs : constant Node_Id := Name (Parent (Parent (N)));
9846
9847 begin
9848 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
fbf5a39b 9849
aa9a7dd7
AC
9850 -- (not A) op (not B) can be reduced to a single call
9851
9852 if N = Op1 and then Nkind (Op2) = N_Op_Not then
fbf5a39b
AC
9853 return;
9854
bed8af19
AC
9855 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
9856 return;
9857
aa9a7dd7 9858 -- A xor (not B) can also be special-cased
fbf5a39b 9859
aa9a7dd7 9860 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
fbf5a39b
AC
9861 return;
9862 end if;
9863 end if;
9864 end;
9865 end if;
9866
70482933
RK
9867 A := Make_Defining_Identifier (Loc, Name_uA);
9868 B := Make_Defining_Identifier (Loc, Name_uB);
9869 J := Make_Defining_Identifier (Loc, Name_uJ);
9870
9871 A_J :=
9872 Make_Indexed_Component (Loc,
e4494292
RD
9873 Prefix => New_Occurrence_Of (A, Loc),
9874 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
9875
9876 B_J :=
9877 Make_Indexed_Component (Loc,
e4494292
RD
9878 Prefix => New_Occurrence_Of (B, Loc),
9879 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
9880
9881 Loop_Statement :=
9882 Make_Implicit_Loop_Statement (N,
9883 Identifier => Empty,
9884
9885 Iteration_Scheme =>
9886 Make_Iteration_Scheme (Loc,
9887 Loop_Parameter_Specification =>
9888 Make_Loop_Parameter_Specification (Loc,
0d901290 9889 Defining_Identifier => J,
70482933
RK
9890 Discrete_Subtype_Definition =>
9891 Make_Attribute_Reference (Loc,
0d901290 9892 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
9893 Attribute_Name => Name_Range))),
9894
9895 Statements => New_List (
9896 Make_Assignment_Statement (Loc,
9897 Name => B_J,
9898 Expression => Make_Op_Not (Loc, A_J))));
9899
191fcb3a 9900 Func_Name := Make_Temporary (Loc, 'N');
70482933
RK
9901 Set_Is_Inlined (Func_Name);
9902
9903 Insert_Action (N,
9904 Make_Subprogram_Body (Loc,
9905 Specification =>
9906 Make_Function_Specification (Loc,
9907 Defining_Unit_Name => Func_Name,
9908 Parameter_Specifications => New_List (
9909 Make_Parameter_Specification (Loc,
9910 Defining_Identifier => A,
e4494292
RD
9911 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9912 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
9913
9914 Declarations => New_List (
9915 Make_Object_Declaration (Loc,
9916 Defining_Identifier => B,
e4494292 9917 Object_Definition => New_Occurrence_Of (Arr, Loc))),
70482933
RK
9918
9919 Handled_Statement_Sequence =>
9920 Make_Handled_Sequence_Of_Statements (Loc,
9921 Statements => New_List (
9922 Loop_Statement,
d766cee3 9923 Make_Simple_Return_Statement (Loc,
0d901290 9924 Expression => Make_Identifier (Loc, Chars (B)))))));
70482933
RK
9925
9926 Rewrite (N,
9927 Make_Function_Call (Loc,
e4494292 9928 Name => New_Occurrence_Of (Func_Name, Loc),
70482933
RK
9929 Parameter_Associations => New_List (Opnd)));
9930
9931 Analyze_And_Resolve (N, Typ);
9932 end Expand_N_Op_Not;
9933
9934 --------------------
9935 -- Expand_N_Op_Or --
9936 --------------------
9937
9938 procedure Expand_N_Op_Or (N : Node_Id) is
9939 Typ : constant Entity_Id := Etype (N);
9940
9941 begin
9942 Binary_Op_Validity_Checks (N);
9943
9944 if Is_Array_Type (Etype (N)) then
9945 Expand_Boolean_Operator (N);
9946
9947 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
9948 Adjust_Condition (Left_Opnd (N));
9949 Adjust_Condition (Right_Opnd (N));
9950 Set_Etype (N, Standard_Boolean);
9951 Adjust_Result_Type (N, Typ);
437f8c1e
AC
9952
9953 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9954 Expand_Intrinsic_Call (N, Entity (N));
05dbb83f
AC
9955 end if;
9956
f4ac86dd 9957 Expand_Nonbinary_Modular_Op (N);
70482933
RK
9958 end Expand_N_Op_Or;
9959
9960 ----------------------
9961 -- Expand_N_Op_Plus --
9962 ----------------------
9963
9964 procedure Expand_N_Op_Plus (N : Node_Id) is
9965 begin
9966 Unary_Op_Validity_Checks (N);
b6b5cca8
AC
9967
9968 -- Check for MINIMIZED/ELIMINATED overflow mode
9969
9970 if Minimized_Eliminated_Overflow_Check (N) then
9971 Apply_Arithmetic_Overflow_Check (N);
9972 return;
9973 end if;
70482933
RK
9974 end Expand_N_Op_Plus;
9975
9976 ---------------------
9977 -- Expand_N_Op_Rem --
9978 ---------------------
9979
9980 procedure Expand_N_Op_Rem (N : Node_Id) is
9981 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 9982 Typ : constant Entity_Id := Etype (N);
70482933 9983
b6b5cca8
AC
9984 Left : Node_Id;
9985 Right : Node_Id;
70482933 9986
5d5e9775
AC
9987 Lo : Uint;
9988 Hi : Uint;
9989 OK : Boolean;
70482933 9990
5d5e9775
AC
9991 Lneg : Boolean;
9992 Rneg : Boolean;
9993 -- Set if corresponding operand can be negative
9994
9995 pragma Unreferenced (Hi);
1033834f 9996
70482933
RK
9997 begin
9998 Binary_Op_Validity_Checks (N);
9999
b6b5cca8
AC
10000 -- Check for MINIMIZED/ELIMINATED overflow mode
10001
10002 if Minimized_Eliminated_Overflow_Check (N) then
10003 Apply_Arithmetic_Overflow_Check (N);
10004 return;
10005 end if;
10006
70482933 10007 if Is_Integer_Type (Etype (N)) then
a91e9ac7 10008 Apply_Divide_Checks (N);
b6b5cca8
AC
10009
10010 -- All done if we don't have a REM any more, which can happen as a
10011 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
10012
10013 if Nkind (N) /= N_Op_Rem then
10014 return;
10015 end if;
70482933
RK
10016 end if;
10017
b6b5cca8
AC
10018 -- Proceed with expansion of REM
10019
10020 Left := Left_Opnd (N);
10021 Right := Right_Opnd (N);
10022
685094bf 10023 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
f96fd197 10024 -- but it is useful with other back ends, and is certainly harmless.
fbf5a39b
AC
10025
10026 if Is_Integer_Type (Etype (N))
10027 and then Compile_Time_Known_Value (Right)
10028 and then Expr_Value (Right) = Uint_1
10029 then
abcbd24c
ST
10030 -- Call Remove_Side_Effects to ensure that any side effects in the
10031 -- ignored left operand (in particular function calls to user defined
10032 -- functions) are properly executed.
10033
10034 Remove_Side_Effects (Left);
10035
fbf5a39b
AC
10036 Rewrite (N, Make_Integer_Literal (Loc, 0));
10037 Analyze_And_Resolve (N, Typ);
10038 return;
10039 end if;
10040
685094bf 10041 -- Deal with annoying case of largest negative number remainder minus
b9daa96e
AC
10042 -- one. Gigi may not handle this case correctly, because on some
10043 -- targets, the mod value is computed using a divide instruction
10044 -- which gives an overflow trap for this case.
10045
10046 -- It would be a bit more efficient to figure out which targets this
10047 -- is really needed for, but in practice it is reasonable to do the
10048 -- following special check in all cases, since it means we get a clearer
10049 -- message, and also the overhead is minimal given that division is
10050 -- expensive in any case.
70482933 10051
685094bf
RD
10052 -- In fact the check is quite easy, if the right operand is -1, then
10053 -- the remainder is always 0, and we can just ignore the left operand
10054 -- completely in this case.
70482933 10055
5d5e9775
AC
10056 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
10057 Lneg := (not OK) or else Lo < 0;
fbf5a39b 10058
5d5e9775
AC
10059 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
10060 Rneg := (not OK) or else Lo < 0;
fbf5a39b 10061
5d5e9775
AC
10062 -- We won't mess with trying to find out if the left operand can really
10063 -- be the largest negative number (that's a pain in the case of private
10064 -- types and this is really marginal). We will just assume that we need
10065 -- the test if the left operand can be negative at all.
fbf5a39b 10066
5d5e9775 10067 if Lneg and Rneg then
70482933 10068 Rewrite (N,
9b16cb57 10069 Make_If_Expression (Loc,
70482933
RK
10070 Expressions => New_List (
10071 Make_Op_Eq (Loc,
0d901290 10072 Left_Opnd => Duplicate_Subexpr (Right),
70482933 10073 Right_Opnd =>
0d901290 10074 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
70482933 10075
fbf5a39b
AC
10076 Unchecked_Convert_To (Typ,
10077 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
10078
10079 Relocate_Node (N))));
10080
10081 Set_Analyzed (Next (Next (First (Expressions (N)))));
10082 Analyze_And_Resolve (N, Typ);
10083 end if;
10084 end Expand_N_Op_Rem;
10085
10086 -----------------------------
10087 -- Expand_N_Op_Rotate_Left --
10088 -----------------------------
10089
10090 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
10091 begin
10092 Binary_Op_Validity_Checks (N);
5216b599
AC
10093
10094 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
10095 -- so we rewrite in terms of logical shifts
10096
10097 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
10098
10099 -- where Bits is the shift count mod Esize (the mod operation here
10100 -- deals with ludicrous large shift counts, which are apparently OK).
10101
a95f708e 10102 -- What about nonbinary modulus ???
5216b599
AC
10103
10104 declare
10105 Loc : constant Source_Ptr := Sloc (N);
10106 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
10107 Typ : constant Entity_Id := Etype (N);
10108
10109 begin
10110 if Modify_Tree_For_C then
10111 Rewrite (Right_Opnd (N),
10112 Make_Op_Rem (Loc,
10113 Left_Opnd => Relocate_Node (Right_Opnd (N)),
10114 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
10115
10116 Analyze_And_Resolve (Right_Opnd (N), Rtp);
10117
10118 Rewrite (N,
10119 Make_Op_Or (Loc,
10120 Left_Opnd =>
10121 Make_Op_Shift_Left (Loc,
10122 Left_Opnd => Left_Opnd (N),
10123 Right_Opnd => Right_Opnd (N)),
e09a5598 10124
5216b599
AC
10125 Right_Opnd =>
10126 Make_Op_Shift_Right (Loc,
10127 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
10128 Right_Opnd =>
10129 Make_Op_Subtract (Loc,
10130 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
10131 Right_Opnd =>
10132 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
10133
10134 Analyze_And_Resolve (N, Typ);
10135 end if;
10136 end;
70482933
RK
10137 end Expand_N_Op_Rotate_Left;
10138
10139 ------------------------------
10140 -- Expand_N_Op_Rotate_Right --
10141 ------------------------------
10142
10143 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
10144 begin
10145 Binary_Op_Validity_Checks (N);
5216b599
AC
10146
10147 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
10148 -- so we rewrite in terms of logical shifts
10149
10150 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
10151
10152 -- where Bits is the shift count mod Esize (the mod operation here
10153 -- deals with ludicrous large shift counts, which are apparently OK).
10154
a95f708e 10155 -- What about nonbinary modulus ???
5216b599
AC
10156
10157 declare
10158 Loc : constant Source_Ptr := Sloc (N);
10159 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
10160 Typ : constant Entity_Id := Etype (N);
10161
10162 begin
10163 Rewrite (Right_Opnd (N),
10164 Make_Op_Rem (Loc,
10165 Left_Opnd => Relocate_Node (Right_Opnd (N)),
10166 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
10167
10168 Analyze_And_Resolve (Right_Opnd (N), Rtp);
10169
10170 if Modify_Tree_For_C then
10171 Rewrite (N,
10172 Make_Op_Or (Loc,
10173 Left_Opnd =>
10174 Make_Op_Shift_Right (Loc,
10175 Left_Opnd => Left_Opnd (N),
10176 Right_Opnd => Right_Opnd (N)),
e09a5598 10177
5216b599
AC
10178 Right_Opnd =>
10179 Make_Op_Shift_Left (Loc,
10180 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
10181 Right_Opnd =>
10182 Make_Op_Subtract (Loc,
10183 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
10184 Right_Opnd =>
10185 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
10186
10187 Analyze_And_Resolve (N, Typ);
10188 end if;
10189 end;
70482933
RK
10190 end Expand_N_Op_Rotate_Right;
10191
10192 ----------------------------
10193 -- Expand_N_Op_Shift_Left --
10194 ----------------------------
10195
e09a5598
AC
10196 -- Note: nothing in this routine depends on left as opposed to right shifts
10197 -- so we share the routine for expanding shift right operations.
10198
70482933
RK
10199 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
10200 begin
10201 Binary_Op_Validity_Checks (N);
e09a5598
AC
10202
10203 -- If we are in Modify_Tree_For_C mode, then ensure that the right
10204 -- operand is not greater than the word size (since that would not
10205 -- be defined properly by the corresponding C shift operator).
10206
10207 if Modify_Tree_For_C then
10208 declare
10209 Right : constant Node_Id := Right_Opnd (N);
10210 Loc : constant Source_Ptr := Sloc (Right);
10211 Typ : constant Entity_Id := Etype (N);
10212 Siz : constant Uint := Esize (Typ);
10213 Orig : Node_Id;
10214 OK : Boolean;
10215 Lo : Uint;
10216 Hi : Uint;
10217
10218 begin
10219 if Compile_Time_Known_Value (Right) then
10220 if Expr_Value (Right) >= Siz then
10221 Rewrite (N, Make_Integer_Literal (Loc, 0));
10222 Analyze_And_Resolve (N, Typ);
10223 end if;
10224
10225 -- Not compile time known, find range
10226
10227 else
10228 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
10229
10230 -- Nothing to do if known to be OK range, otherwise expand
10231
10232 if not OK or else Hi >= Siz then
10233
10234 -- Prevent recursion on copy of shift node
10235
10236 Orig := Relocate_Node (N);
10237 Set_Analyzed (Orig);
10238
10239 -- Now do the rewrite
10240
10241 Rewrite (N,
10242 Make_If_Expression (Loc,
10243 Expressions => New_List (
10244 Make_Op_Ge (Loc,
10245 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
10246 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
10247 Make_Integer_Literal (Loc, 0),
10248 Orig)));
10249 Analyze_And_Resolve (N, Typ);
10250 end if;
10251 end if;
10252 end;
10253 end if;
70482933
RK
10254 end Expand_N_Op_Shift_Left;
10255
10256 -----------------------------
10257 -- Expand_N_Op_Shift_Right --
10258 -----------------------------
10259
10260 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
10261 begin
e09a5598
AC
10262 -- Share shift left circuit
10263
10264 Expand_N_Op_Shift_Left (N);
70482933
RK
10265 end Expand_N_Op_Shift_Right;
10266
10267 ----------------------------------------
10268 -- Expand_N_Op_Shift_Right_Arithmetic --
10269 ----------------------------------------
10270
10271 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
10272 begin
10273 Binary_Op_Validity_Checks (N);
5216b599
AC
10274
10275 -- If we are in Modify_Tree_For_C mode, there is no shift right
10276 -- arithmetic in C, so we rewrite in terms of logical shifts.
10277
10278 -- Shift_Right (Num, Bits) or
10279 -- (if Num >= Sign
10280 -- then not (Shift_Right (Mask, bits))
10281 -- else 0)
10282
10283 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
10284
10285 -- Note: in almost all C compilers it would work to just shift a
10286 -- signed integer right, but it's undefined and we cannot rely on it.
10287
e09a5598
AC
10288 -- Note: the above works fine for shift counts greater than or equal
10289 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
10290 -- generates all 1'bits.
10291
a95f708e 10292 -- What about nonbinary modulus ???
5216b599
AC
10293
10294 declare
10295 Loc : constant Source_Ptr := Sloc (N);
10296 Typ : constant Entity_Id := Etype (N);
10297 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
10298 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
10299 Left : constant Node_Id := Left_Opnd (N);
10300 Right : constant Node_Id := Right_Opnd (N);
10301 Maskx : Node_Id;
10302
10303 begin
10304 if Modify_Tree_For_C then
10305
10306 -- Here if not (Shift_Right (Mask, bits)) can be computed at
10307 -- compile time as a single constant.
10308
10309 if Compile_Time_Known_Value (Right) then
10310 declare
10311 Val : constant Uint := Expr_Value (Right);
10312
10313 begin
10314 if Val >= Esize (Typ) then
10315 Maskx := Make_Integer_Literal (Loc, Mask);
10316
10317 else
10318 Maskx :=
10319 Make_Integer_Literal (Loc,
10320 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
10321 end if;
10322 end;
10323
10324 else
10325 Maskx :=
10326 Make_Op_Not (Loc,
10327 Right_Opnd =>
10328 Make_Op_Shift_Right (Loc,
10329 Left_Opnd => Make_Integer_Literal (Loc, Mask),
10330 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
10331 end if;
10332
10333 -- Now do the rewrite
10334
10335 Rewrite (N,
10336 Make_Op_Or (Loc,
10337 Left_Opnd =>
10338 Make_Op_Shift_Right (Loc,
10339 Left_Opnd => Left,
10340 Right_Opnd => Right),
10341 Right_Opnd =>
10342 Make_If_Expression (Loc,
10343 Expressions => New_List (
10344 Make_Op_Ge (Loc,
10345 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
10346 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
10347 Maskx,
10348 Make_Integer_Literal (Loc, 0)))));
10349 Analyze_And_Resolve (N, Typ);
10350 end if;
10351 end;
70482933
RK
10352 end Expand_N_Op_Shift_Right_Arithmetic;
10353
10354 --------------------------
10355 -- Expand_N_Op_Subtract --
10356 --------------------------
10357
10358 procedure Expand_N_Op_Subtract (N : Node_Id) is
10359 Typ : constant Entity_Id := Etype (N);
10360
10361 begin
10362 Binary_Op_Validity_Checks (N);
10363
b6b5cca8
AC
10364 -- Check for MINIMIZED/ELIMINATED overflow mode
10365
10366 if Minimized_Eliminated_Overflow_Check (N) then
10367 Apply_Arithmetic_Overflow_Check (N);
10368 return;
10369 end if;
10370
70482933
RK
10371 -- N - 0 = N for integer types
10372
10373 if Is_Integer_Type (Typ)
10374 and then Compile_Time_Known_Value (Right_Opnd (N))
10375 and then Expr_Value (Right_Opnd (N)) = 0
10376 then
10377 Rewrite (N, Left_Opnd (N));
10378 return;
10379 end if;
10380
8fc789c8 10381 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 10382
761f7dcb 10383 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
70482933 10384 Apply_Arithmetic_Overflow_Check (N);
70482933 10385 end if;
dfaff97b
RD
10386
10387 -- Overflow checks for floating-point if -gnateF mode active
10388
10389 Check_Float_Op_Overflow (N);
05dbb83f 10390
f4ac86dd 10391 Expand_Nonbinary_Modular_Op (N);
70482933
RK
10392 end Expand_N_Op_Subtract;
10393
10394 ---------------------
10395 -- Expand_N_Op_Xor --
10396 ---------------------
10397
10398 procedure Expand_N_Op_Xor (N : Node_Id) is
10399 Typ : constant Entity_Id := Etype (N);
10400
10401 begin
10402 Binary_Op_Validity_Checks (N);
10403
10404 if Is_Array_Type (Etype (N)) then
10405 Expand_Boolean_Operator (N);
10406
10407 elsif Is_Boolean_Type (Etype (N)) then
10408 Adjust_Condition (Left_Opnd (N));
10409 Adjust_Condition (Right_Opnd (N));
10410 Set_Etype (N, Standard_Boolean);
10411 Adjust_Result_Type (N, Typ);
437f8c1e
AC
10412
10413 elsif Is_Intrinsic_Subprogram (Entity (N)) then
10414 Expand_Intrinsic_Call (N, Entity (N));
70482933 10415 end if;
9cd7bc5e
ES
10416
10417 Expand_Nonbinary_Modular_Op (N);
70482933
RK
10418 end Expand_N_Op_Xor;
10419
10420 ----------------------
10421 -- Expand_N_Or_Else --
10422 ----------------------
10423
5875f8d6
AC
10424 procedure Expand_N_Or_Else (N : Node_Id)
10425 renames Expand_Short_Circuit_Operator;
70482933
RK
10426
10427 -----------------------------------
10428 -- Expand_N_Qualified_Expression --
10429 -----------------------------------
10430
10431 procedure Expand_N_Qualified_Expression (N : Node_Id) is
10432 Operand : constant Node_Id := Expression (N);
10433 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
10434
10435 begin
f82944b7
JM
10436 -- Do validity check if validity checking operands
10437
533369aa 10438 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
10439 Ensure_Valid (Operand);
10440 end if;
10441
10442 -- Apply possible constraint check
10443
70482933 10444 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
d79e621a
GD
10445
10446 if Do_Range_Check (Operand) then
d79e621a
GD
10447 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
10448 end if;
70482933
RK
10449 end Expand_N_Qualified_Expression;
10450
a961aa79
AC
10451 ------------------------------------
10452 -- Expand_N_Quantified_Expression --
10453 ------------------------------------
10454
c0f136cd
AC
10455 -- We expand:
10456
10457 -- for all X in range => Cond
a961aa79 10458
c0f136cd 10459 -- into:
a961aa79 10460
c0f136cd
AC
10461 -- T := True;
10462 -- for X in range loop
10463 -- if not Cond then
10464 -- T := False;
10465 -- exit;
10466 -- end if;
10467 -- end loop;
90c63b09 10468
36504e5f 10469 -- Similarly, an existentially quantified expression:
90c63b09 10470
c0f136cd 10471 -- for some X in range => Cond
90c63b09 10472
c0f136cd 10473 -- becomes:
90c63b09 10474
c0f136cd
AC
10475 -- T := False;
10476 -- for X in range loop
10477 -- if Cond then
10478 -- T := True;
10479 -- exit;
10480 -- end if;
10481 -- end loop;
90c63b09 10482
c0f136cd
AC
10483 -- In both cases, the iteration may be over a container in which case it is
10484 -- given by an iterator specification, not a loop parameter specification.
a961aa79 10485
c0f136cd 10486 procedure Expand_N_Quantified_Expression (N : Node_Id) is
804670f1
AC
10487 Actions : constant List_Id := New_List;
10488 For_All : constant Boolean := All_Present (N);
10489 Iter_Spec : constant Node_Id := Iterator_Specification (N);
10490 Loc : constant Source_Ptr := Sloc (N);
10491 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
10492 Cond : Node_Id;
10493 Flag : Entity_Id;
10494 Scheme : Node_Id;
10495 Stmts : List_Id;
16b9e3c3 10496 Var : Entity_Id;
c56a9ba4 10497
a961aa79 10498 begin
16b9e3c3
ES
10499 -- Ensure that the bound variable is properly frozen. We must do
10500 -- this before expansion because the expression is about to be
10501 -- converted into a loop, and resulting freeze nodes may end up
10502 -- in the wrong place in the tree.
10503
10504 if Present (Iter_Spec) then
10505 Var := Defining_Identifier (Iter_Spec);
10506 else
10507 Var := Defining_Identifier (Loop_Spec);
10508 end if;
10509
10510 declare
10511 P : Node_Id := Parent (N);
10512 begin
10513 while Nkind (P) in N_Subexpr loop
10514 P := Parent (P);
10515 end loop;
10516
10517 Freeze_Before (P, Etype (Var));
10518 end;
10519
804670f1
AC
10520 -- Create the declaration of the flag which tracks the status of the
10521 -- quantified expression. Generate:
011f9d5d 10522
804670f1 10523 -- Flag : Boolean := (True | False);
011f9d5d 10524
804670f1 10525 Flag := Make_Temporary (Loc, 'T', N);
011f9d5d 10526
804670f1 10527 Append_To (Actions,
90c63b09 10528 Make_Object_Declaration (Loc,
804670f1 10529 Defining_Identifier => Flag,
c0f136cd
AC
10530 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
10531 Expression =>
804670f1
AC
10532 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
10533
10534 -- Construct the circuitry which tracks the status of the quantified
10535 -- expression. Generate:
10536
10537 -- if [not] Cond then
10538 -- Flag := (False | True);
10539 -- exit;
10540 -- end if;
a961aa79 10541
c0f136cd 10542 Cond := Relocate_Node (Condition (N));
a961aa79 10543
804670f1 10544 if For_All then
c0f136cd 10545 Cond := Make_Op_Not (Loc, Cond);
a961aa79
AC
10546 end if;
10547
804670f1 10548 Stmts := New_List (
c0f136cd
AC
10549 Make_Implicit_If_Statement (N,
10550 Condition => Cond,
10551 Then_Statements => New_List (
10552 Make_Assignment_Statement (Loc,
804670f1 10553 Name => New_Occurrence_Of (Flag, Loc),
c0f136cd 10554 Expression =>
804670f1
AC
10555 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
10556 Make_Exit_Statement (Loc))));
10557
10558 -- Build the loop equivalent of the quantified expression
c0f136cd 10559
804670f1
AC
10560 if Present (Iter_Spec) then
10561 Scheme :=
011f9d5d 10562 Make_Iteration_Scheme (Loc,
804670f1 10563 Iterator_Specification => Iter_Spec);
c56a9ba4 10564 else
804670f1 10565 Scheme :=
011f9d5d 10566 Make_Iteration_Scheme (Loc,
804670f1 10567 Loop_Parameter_Specification => Loop_Spec);
c56a9ba4
AC
10568 end if;
10569
a961aa79
AC
10570 Append_To (Actions,
10571 Make_Loop_Statement (Loc,
804670f1
AC
10572 Iteration_Scheme => Scheme,
10573 Statements => Stmts,
c0f136cd 10574 End_Label => Empty));
a961aa79 10575
804670f1
AC
10576 -- Transform the quantified expression
10577
a961aa79
AC
10578 Rewrite (N,
10579 Make_Expression_With_Actions (Loc,
804670f1 10580 Expression => New_Occurrence_Of (Flag, Loc),
a961aa79 10581 Actions => Actions));
a961aa79
AC
10582 Analyze_And_Resolve (N, Standard_Boolean);
10583 end Expand_N_Quantified_Expression;
10584
70482933
RK
10585 ---------------------------------
10586 -- Expand_N_Selected_Component --
10587 ---------------------------------
10588
70482933
RK
10589 procedure Expand_N_Selected_Component (N : Node_Id) is
10590 Loc : constant Source_Ptr := Sloc (N);
10591 Par : constant Node_Id := Parent (N);
10592 P : constant Node_Id := Prefix (N);
03eb6036 10593 S : constant Node_Id := Selector_Name (N);
fbf5a39b 10594 Ptyp : Entity_Id := Underlying_Type (Etype (P));
70482933 10595 Disc : Entity_Id;
70482933 10596 New_N : Node_Id;
fbf5a39b 10597 Dcon : Elmt_Id;
d606f1df 10598 Dval : Node_Id;
70482933
RK
10599
10600 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
10601 -- Gigi needs a temporary for prefixes that depend on a discriminant,
10602 -- unless the context of an assignment can provide size information.
fbf5a39b
AC
10603 -- Don't we have a general routine that does this???
10604
53f29d4f
AC
10605 function Is_Subtype_Declaration return Boolean;
10606 -- The replacement of a discriminant reference by its value is required
4317e442
AC
10607 -- if this is part of the initialization of an temporary generated by a
10608 -- change of representation. This shows up as the construction of a
53f29d4f 10609 -- discriminant constraint for a subtype declared at the same point as
4317e442
AC
10610 -- the entity in the prefix of the selected component. We recognize this
10611 -- case when the context of the reference is:
10612 -- subtype ST is T(Obj.D);
10613 -- where the entity for Obj comes from source, and ST has the same sloc.
53f29d4f 10614
fbf5a39b
AC
10615 -----------------------
10616 -- In_Left_Hand_Side --
10617 -----------------------
70482933
RK
10618
10619 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
10620 begin
fbf5a39b 10621 return (Nkind (Parent (Comp)) = N_Assignment_Statement
90c63b09 10622 and then Comp = Name (Parent (Comp)))
fbf5a39b 10623 or else (Present (Parent (Comp))
90c63b09
AC
10624 and then Nkind (Parent (Comp)) in N_Subexpr
10625 and then In_Left_Hand_Side (Parent (Comp)));
70482933
RK
10626 end In_Left_Hand_Side;
10627
53f29d4f
AC
10628 -----------------------------
10629 -- Is_Subtype_Declaration --
10630 -----------------------------
10631
10632 function Is_Subtype_Declaration return Boolean is
10633 Par : constant Node_Id := Parent (N);
53f29d4f
AC
10634 begin
10635 return
10636 Nkind (Par) = N_Index_Or_Discriminant_Constraint
10637 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
10638 and then Comes_From_Source (Entity (Prefix (N)))
10639 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
10640 end Is_Subtype_Declaration;
10641
fbf5a39b
AC
10642 -- Start of processing for Expand_N_Selected_Component
10643
70482933 10644 begin
fbf5a39b
AC
10645 -- Insert explicit dereference if required
10646
10647 if Is_Access_Type (Ptyp) then
702d2020
AC
10648
10649 -- First set prefix type to proper access type, in case it currently
10650 -- has a private (non-access) view of this type.
10651
10652 Set_Etype (P, Ptyp);
10653
fbf5a39b 10654 Insert_Explicit_Dereference (P);
e6f69614 10655 Analyze_And_Resolve (P, Designated_Type (Ptyp));
fbf5a39b 10656
fbf5a39b
AC
10657 Ptyp := Etype (P);
10658 end if;
10659
10660 -- Deal with discriminant check required
10661
70482933 10662 if Do_Discriminant_Check (N) then
03eb6036
AC
10663 if Present (Discriminant_Checking_Func
10664 (Original_Record_Component (Entity (S))))
10665 then
10666 -- Present the discriminant checking function to the backend, so
10667 -- that it can inline the call to the function.
10668
10669 Add_Inlined_Body
10670 (Discriminant_Checking_Func
cf27c5a2
EB
10671 (Original_Record_Component (Entity (S))),
10672 N);
70482933 10673
03eb6036 10674 -- Now reset the flag and generate the call
70482933 10675
03eb6036
AC
10676 Set_Do_Discriminant_Check (N, False);
10677 Generate_Discriminant_Check (N);
70482933 10678
03eb6036
AC
10679 -- In the case of Unchecked_Union, no discriminant checking is
10680 -- actually performed.
70482933 10681
03eb6036
AC
10682 else
10683 Set_Do_Discriminant_Check (N, False);
10684 end if;
70482933
RK
10685 end if;
10686
b4592168
GD
10687 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10688 -- function, then additional actuals must be passed.
10689
d4dfb005 10690 if Is_Build_In_Place_Function_Call (P) then
b4592168 10691 Make_Build_In_Place_Call_In_Anonymous_Context (P);
4ac62786
AC
10692
10693 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
10694 -- containing build-in-place function calls whose returned object covers
10695 -- interface types.
10696
d4dfb005 10697 elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
4ac62786 10698 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
b4592168
GD
10699 end if;
10700
fbf5a39b
AC
10701 -- Gigi cannot handle unchecked conversions that are the prefix of a
10702 -- selected component with discriminants. This must be checked during
10703 -- expansion, because during analysis the type of the selector is not
10704 -- known at the point the prefix is analyzed. If the conversion is the
10705 -- target of an assignment, then we cannot force the evaluation.
70482933
RK
10706
10707 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
10708 and then Has_Discriminants (Etype (N))
10709 and then not In_Left_Hand_Side (N)
10710 then
10711 Force_Evaluation (Prefix (N));
10712 end if;
10713
10714 -- Remaining processing applies only if selector is a discriminant
10715
10716 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
10717
10718 -- If the selector is a discriminant of a constrained record type,
fbf5a39b
AC
10719 -- we may be able to rewrite the expression with the actual value
10720 -- of the discriminant, a useful optimization in some cases.
70482933
RK
10721
10722 if Is_Record_Type (Ptyp)
10723 and then Has_Discriminants (Ptyp)
10724 and then Is_Constrained (Ptyp)
70482933 10725 then
fbf5a39b 10726 -- Do this optimization for discrete types only, and not for
a90bd866 10727 -- access types (access discriminants get us into trouble).
70482933 10728
fbf5a39b
AC
10729 if not Is_Discrete_Type (Etype (N)) then
10730 null;
10731
356ffab8 10732 -- Don't do this on the left-hand side of an assignment statement.
0d901290
AC
10733 -- Normally one would think that references like this would not
10734 -- occur, but they do in generated code, and mean that we really
a90bd866 10735 -- do want to assign the discriminant.
fbf5a39b
AC
10736
10737 elsif Nkind (Par) = N_Assignment_Statement
10738 and then Name (Par) = N
10739 then
10740 null;
10741
685094bf 10742 -- Don't do this optimization for the prefix of an attribute or
e2534738 10743 -- the name of an object renaming declaration since these are
685094bf 10744 -- contexts where we do not want the value anyway.
fbf5a39b
AC
10745
10746 elsif (Nkind (Par) = N_Attribute_Reference
533369aa 10747 and then Prefix (Par) = N)
fbf5a39b
AC
10748 or else Is_Renamed_Object (N)
10749 then
10750 null;
10751
10752 -- Don't do this optimization if we are within the code for a
10753 -- discriminant check, since the whole point of such a check may
a90bd866 10754 -- be to verify the condition on which the code below depends.
fbf5a39b
AC
10755
10756 elsif Is_In_Discriminant_Check (N) then
10757 null;
10758
10759 -- Green light to see if we can do the optimization. There is
685094bf
RD
10760 -- still one condition that inhibits the optimization below but
10761 -- now is the time to check the particular discriminant.
fbf5a39b
AC
10762
10763 else
685094bf
RD
10764 -- Loop through discriminants to find the matching discriminant
10765 -- constraint to see if we can copy it.
fbf5a39b
AC
10766
10767 Disc := First_Discriminant (Ptyp);
10768 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
10769 Discr_Loop : while Present (Dcon) loop
d606f1df 10770 Dval := Node (Dcon);
fbf5a39b 10771
bd949ee2
RD
10772 -- Check if this is the matching discriminant and if the
10773 -- discriminant value is simple enough to make sense to
10774 -- copy. We don't want to copy complex expressions, and
10775 -- indeed to do so can cause trouble (before we put in
10776 -- this guard, a discriminant expression containing an
e7d897b8 10777 -- AND THEN was copied, causing problems for coverage
c228a069 10778 -- analysis tools).
bd949ee2 10779
53f29d4f
AC
10780 -- However, if the reference is part of the initialization
10781 -- code generated for an object declaration, we must use
10782 -- the discriminant value from the subtype constraint,
10783 -- because the selected component may be a reference to the
10784 -- object being initialized, whose discriminant is not yet
10785 -- set. This only happens in complex cases involving changes
10786 -- or representation.
10787
bd949ee2
RD
10788 if Disc = Entity (Selector_Name (N))
10789 and then (Is_Entity_Name (Dval)
170b2989
AC
10790 or else Compile_Time_Known_Value (Dval)
10791 or else Is_Subtype_Declaration)
bd949ee2 10792 then
fbf5a39b
AC
10793 -- Here we have the matching discriminant. Check for
10794 -- the case of a discriminant of a component that is
10795 -- constrained by an outer discriminant, which cannot
10796 -- be optimized away.
10797
d606f1df
AC
10798 if Denotes_Discriminant
10799 (Dval, Check_Concurrent => True)
10800 then
10801 exit Discr_Loop;
10802
10803 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
10804 and then
10805 Denotes_Discriminant
10806 (Selector_Name (Original_Node (Dval)), True)
10807 then
10808 exit Discr_Loop;
10809
10810 -- Do not retrieve value if constraint is not static. It
10811 -- is generally not useful, and the constraint may be a
10812 -- rewritten outer discriminant in which case it is in
10813 -- fact incorrect.
10814
10815 elsif Is_Entity_Name (Dval)
d606f1df 10816 and then
533369aa
AC
10817 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
10818 and then Present (Expression (Parent (Entity (Dval))))
10819 and then not
edab6088 10820 Is_OK_Static_Expression
d606f1df 10821 (Expression (Parent (Entity (Dval))))
fbf5a39b
AC
10822 then
10823 exit Discr_Loop;
70482933 10824
685094bf
RD
10825 -- In the context of a case statement, the expression may
10826 -- have the base type of the discriminant, and we need to
10827 -- preserve the constraint to avoid spurious errors on
10828 -- missing cases.
70482933 10829
fbf5a39b 10830 elsif Nkind (Parent (N)) = N_Case_Statement
d606f1df 10831 and then Etype (Dval) /= Etype (Disc)
70482933
RK
10832 then
10833 Rewrite (N,
10834 Make_Qualified_Expression (Loc,
fbf5a39b
AC
10835 Subtype_Mark =>
10836 New_Occurrence_Of (Etype (Disc), Loc),
10837 Expression =>
d606f1df 10838 New_Copy_Tree (Dval)));
ffe9aba8 10839 Analyze_And_Resolve (N, Etype (Disc));
fbf5a39b
AC
10840
10841 -- In case that comes out as a static expression,
10842 -- reset it (a selected component is never static).
10843
10844 Set_Is_Static_Expression (N, False);
10845 return;
10846
10847 -- Otherwise we can just copy the constraint, but the
a90bd866 10848 -- result is certainly not static. In some cases the
ffe9aba8
AC
10849 -- discriminant constraint has been analyzed in the
10850 -- context of the original subtype indication, but for
10851 -- itypes the constraint might not have been analyzed
10852 -- yet, and this must be done now.
fbf5a39b 10853
70482933 10854 else
d606f1df 10855 Rewrite (N, New_Copy_Tree (Dval));
ffe9aba8 10856 Analyze_And_Resolve (N);
fbf5a39b
AC
10857 Set_Is_Static_Expression (N, False);
10858 return;
70482933 10859 end if;
70482933
RK
10860 end if;
10861
fbf5a39b
AC
10862 Next_Elmt (Dcon);
10863 Next_Discriminant (Disc);
10864 end loop Discr_Loop;
70482933 10865
fbf5a39b
AC
10866 -- Note: the above loop should always find a matching
10867 -- discriminant, but if it does not, we just missed an
c228a069
AC
10868 -- optimization due to some glitch (perhaps a previous
10869 -- error), so ignore.
fbf5a39b
AC
10870
10871 end if;
70482933
RK
10872 end if;
10873
10874 -- The only remaining processing is in the case of a discriminant of
10875 -- a concurrent object, where we rewrite the prefix to denote the
10876 -- corresponding record type. If the type is derived and has renamed
10877 -- discriminants, use corresponding discriminant, which is the one
10878 -- that appears in the corresponding record.
10879
10880 if not Is_Concurrent_Type (Ptyp) then
10881 return;
10882 end if;
10883
10884 Disc := Entity (Selector_Name (N));
10885
10886 if Is_Derived_Type (Ptyp)
10887 and then Present (Corresponding_Discriminant (Disc))
10888 then
10889 Disc := Corresponding_Discriminant (Disc);
10890 end if;
10891
10892 New_N :=
10893 Make_Selected_Component (Loc,
10894 Prefix =>
10895 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
10896 New_Copy_Tree (P)),
10897 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
10898
10899 Rewrite (N, New_N);
10900 Analyze (N);
10901 end if;
5972791c 10902
73fe1679 10903 -- Set Atomic_Sync_Required if necessary for atomic component
5972791c 10904
73fe1679
AC
10905 if Nkind (N) = N_Selected_Component then
10906 declare
10907 E : constant Entity_Id := Entity (Selector_Name (N));
10908 Set : Boolean;
10909
10910 begin
10911 -- If component is atomic, but type is not, setting depends on
10912 -- disable/enable state for the component.
10913
10914 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
10915 Set := not Atomic_Synchronization_Disabled (E);
10916
10917 -- If component is not atomic, but its type is atomic, setting
10918 -- depends on disable/enable state for the type.
10919
10920 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
10921 Set := not Atomic_Synchronization_Disabled (Etype (E));
10922
10923 -- If both component and type are atomic, we disable if either
10924 -- component or its type have sync disabled.
10925
10926 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
10927 Set := (not Atomic_Synchronization_Disabled (E))
10928 and then
10929 (not Atomic_Synchronization_Disabled (Etype (E)));
10930
10931 else
10932 Set := False;
10933 end if;
10934
10935 -- Set flag if required
10936
10937 if Set then
10938 Activate_Atomic_Synchronization (N);
10939 end if;
10940 end;
5972791c 10941 end if;
70482933
RK
10942 end Expand_N_Selected_Component;
10943
10944 --------------------
10945 -- Expand_N_Slice --
10946 --------------------
10947
10948 procedure Expand_N_Slice (N : Node_Id) is
5ff90f08
AC
10949 Loc : constant Source_Ptr := Sloc (N);
10950 Typ : constant Entity_Id := Etype (N);
fbf5a39b 10951
81a5b587 10952 function Is_Procedure_Actual (N : Node_Id) return Boolean;
685094bf
RD
10953 -- Check whether the argument is an actual for a procedure call, in
10954 -- which case the expansion of a bit-packed slice is deferred until the
10955 -- call itself is expanded. The reason this is required is that we might
10956 -- have an IN OUT or OUT parameter, and the copy out is essential, and
10957 -- that copy out would be missed if we created a temporary here in
10958 -- Expand_N_Slice. Note that we don't bother to test specifically for an
10959 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
10960 -- is harmless to defer expansion in the IN case, since the call
10961 -- processing will still generate the appropriate copy in operation,
10962 -- which will take care of the slice.
81a5b587 10963
b01bf852 10964 procedure Make_Temporary_For_Slice;
685094bf 10965 -- Create a named variable for the value of the slice, in cases where
c7a494c9 10966 -- the back end cannot handle it properly, e.g. when packed types or
685094bf 10967 -- unaligned slices are involved.
fbf5a39b 10968
81a5b587
AC
10969 -------------------------
10970 -- Is_Procedure_Actual --
10971 -------------------------
10972
10973 function Is_Procedure_Actual (N : Node_Id) return Boolean is
10974 Par : Node_Id := Parent (N);
08aa9a4a 10975
81a5b587 10976 begin
81a5b587 10977 loop
c6a60aa1
RD
10978 -- If our parent is a procedure call we can return
10979
81a5b587
AC
10980 if Nkind (Par) = N_Procedure_Call_Statement then
10981 return True;
6b6fcd3e 10982
685094bf
RD
10983 -- If our parent is a type conversion, keep climbing the tree,
10984 -- since a type conversion can be a procedure actual. Also keep
10985 -- climbing if parameter association or a qualified expression,
10986 -- since these are additional cases that do can appear on
10987 -- procedure actuals.
6b6fcd3e 10988
303b4d58
AC
10989 elsif Nkind_In (Par, N_Type_Conversion,
10990 N_Parameter_Association,
10991 N_Qualified_Expression)
c6a60aa1 10992 then
81a5b587 10993 Par := Parent (Par);
c6a60aa1
RD
10994
10995 -- Any other case is not what we are looking for
10996
10997 else
10998 return False;
81a5b587
AC
10999 end if;
11000 end loop;
81a5b587
AC
11001 end Is_Procedure_Actual;
11002
b01bf852
AC
11003 ------------------------------
11004 -- Make_Temporary_For_Slice --
11005 ------------------------------
fbf5a39b 11006
b01bf852 11007 procedure Make_Temporary_For_Slice is
b01bf852 11008 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5ff90f08 11009 Decl : Node_Id;
13d923cc 11010
fbf5a39b
AC
11011 begin
11012 Decl :=
11013 Make_Object_Declaration (Loc,
11014 Defining_Identifier => Ent,
11015 Object_Definition => New_Occurrence_Of (Typ, Loc));
11016
11017 Set_No_Initialization (Decl);
11018
11019 Insert_Actions (N, New_List (
11020 Decl,
11021 Make_Assignment_Statement (Loc,
5ff90f08 11022 Name => New_Occurrence_Of (Ent, Loc),
fbf5a39b
AC
11023 Expression => Relocate_Node (N))));
11024
11025 Rewrite (N, New_Occurrence_Of (Ent, Loc));
11026 Analyze_And_Resolve (N, Typ);
b01bf852 11027 end Make_Temporary_For_Slice;
fbf5a39b 11028
5ff90f08
AC
11029 -- Local variables
11030
800da977
AC
11031 Pref : constant Node_Id := Prefix (N);
11032 Pref_Typ : Entity_Id := Etype (Pref);
5ff90f08 11033
fbf5a39b 11034 -- Start of processing for Expand_N_Slice
70482933
RK
11035
11036 begin
11037 -- Special handling for access types
11038
5ff90f08
AC
11039 if Is_Access_Type (Pref_Typ) then
11040 Pref_Typ := Designated_Type (Pref_Typ);
70482933 11041
5ff90f08 11042 Rewrite (Pref,
e6f69614 11043 Make_Explicit_Dereference (Sloc (N),
5ff90f08 11044 Prefix => Relocate_Node (Pref)));
70482933 11045
5ff90f08 11046 Analyze_And_Resolve (Pref, Pref_Typ);
70482933
RK
11047 end if;
11048
b4592168
GD
11049 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
11050 -- function, then additional actuals must be passed.
11051
d4dfb005 11052 if Is_Build_In_Place_Function_Call (Pref) then
5ff90f08 11053 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
4ac62786
AC
11054
11055 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
11056 -- containing build-in-place function calls whose returned object covers
11057 -- interface types.
11058
d4dfb005 11059 elsif Present (Unqual_BIP_Iface_Function_Call (Pref)) then
4ac62786 11060 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Pref);
b4592168
GD
11061 end if;
11062
70482933
RK
11063 -- The remaining case to be handled is packed slices. We can leave
11064 -- packed slices as they are in the following situations:
11065
11066 -- 1. Right or left side of an assignment (we can handle this
11067 -- situation correctly in the assignment statement expansion).
11068
685094bf
RD
11069 -- 2. Prefix of indexed component (the slide is optimized away in this
11070 -- case, see the start of Expand_N_Slice.)
70482933 11071
685094bf
RD
11072 -- 3. Object renaming declaration, since we want the name of the
11073 -- slice, not the value.
70482933 11074
685094bf
RD
11075 -- 4. Argument to procedure call, since copy-in/copy-out handling may
11076 -- be required, and this is handled in the expansion of call
11077 -- itself.
70482933 11078
685094bf
RD
11079 -- 5. Prefix of an address attribute (this is an error which is caught
11080 -- elsewhere, and the expansion would interfere with generating the
955379e4
EB
11081 -- error message) or of a size attribute (because 'Size may change
11082 -- when applied to the temporary instead of the slice directly).
70482933 11083
81a5b587 11084 if not Is_Packed (Typ) then
08aa9a4a 11085
685094bf
RD
11086 -- Apply transformation for actuals of a function call, where
11087 -- Expand_Actuals is not used.
81a5b587
AC
11088
11089 if Nkind (Parent (N)) = N_Function_Call
11090 and then Is_Possibly_Unaligned_Slice (N)
11091 then
b01bf852 11092 Make_Temporary_For_Slice;
81a5b587
AC
11093 end if;
11094
11095 elsif Nkind (Parent (N)) = N_Assignment_Statement
11096 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
533369aa 11097 and then Parent (N) = Name (Parent (Parent (N))))
70482933 11098 then
81a5b587 11099 return;
70482933 11100
81a5b587
AC
11101 elsif Nkind (Parent (N)) = N_Indexed_Component
11102 or else Is_Renamed_Object (N)
11103 or else Is_Procedure_Actual (N)
11104 then
11105 return;
70482933 11106
91b1417d 11107 elsif Nkind (Parent (N)) = N_Attribute_Reference
955379e4
EB
11108 and then (Attribute_Name (Parent (N)) = Name_Address
11109 or else Attribute_Name (Parent (N)) = Name_Size)
fbf5a39b 11110 then
81a5b587
AC
11111 return;
11112
11113 else
b01bf852 11114 Make_Temporary_For_Slice;
70482933
RK
11115 end if;
11116 end Expand_N_Slice;
11117
11118 ------------------------------
11119 -- Expand_N_Type_Conversion --
11120 ------------------------------
11121
11122 procedure Expand_N_Type_Conversion (N : Node_Id) is
11123 Loc : constant Source_Ptr := Sloc (N);
11124 Operand : constant Node_Id := Expression (N);
1b2f53bb 11125 Operand_Acc : Node_Id := Operand;
8113b0c7 11126 Target_Type : Entity_Id := Etype (N);
70482933
RK
11127 Operand_Type : Entity_Id := Etype (Operand);
11128
8113b0c7
EB
11129 procedure Discrete_Range_Check;
11130 -- Handles generation of range check for discrete target value
11131
70482933 11132 procedure Handle_Changed_Representation;
685094bf
RD
11133 -- This is called in the case of record and array type conversions to
11134 -- see if there is a change of representation to be handled. Change of
11135 -- representation is actually handled at the assignment statement level,
11136 -- and what this procedure does is rewrite node N conversion as an
11137 -- assignment to temporary. If there is no change of representation,
11138 -- then the conversion node is unchanged.
70482933 11139
426908f8
RD
11140 procedure Raise_Accessibility_Error;
11141 -- Called when we know that an accessibility check will fail. Rewrites
11142 -- node N to an appropriate raise statement and outputs warning msgs.
91669e7e
AC
11143 -- The Etype of the raise node is set to Target_Type. Note that in this
11144 -- case the rest of the processing should be skipped (i.e. the call to
11145 -- this procedure will be followed by "goto Done").
426908f8 11146
70482933
RK
11147 procedure Real_Range_Check;
11148 -- Handles generation of range check for real target value
11149
d15f9422
AC
11150 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
11151 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
11152 -- evaluates to True.
11153
8113b0c7
EB
11154 --------------------------
11155 -- Discrete_Range_Check --
11156 --------------------------
11157
43eb2bb6
EB
11158 -- Case of conversions to a discrete type. We let Generate_Range_Check
11159 -- do the heavy lifting, after converting a fixed-point operand to an
11160 -- appropriate integer type.
8113b0c7
EB
11161
11162 procedure Discrete_Range_Check is
11163 Expr : Node_Id;
11164 Ityp : Entity_Id;
11165
11166 begin
11167 -- Nothing to do if conversion was rewritten
11168
11169 if Nkind (N) /= N_Type_Conversion then
11170 return;
11171 end if;
11172
11173 Expr := Expression (N);
11174
43eb2bb6
EB
11175 -- Nothing to do if range checks suppressed
11176
11177 if Range_Checks_Suppressed (Target_Type) then
11178 return;
11179 end if;
11180
11181 -- Nothing to do if expression is an entity on which checks have been
11182 -- suppressed.
11183
11184 if Is_Entity_Name (Expr)
11185 and then Range_Checks_Suppressed (Entity (Expr))
11186 then
11187 return;
11188 end if;
11189
8113b0c7
EB
11190 -- Before we do a range check, we have to deal with treating
11191 -- a fixed-point operand as an integer. The way we do this
11192 -- is simply to do an unchecked conversion to an appropriate
11193 -- integer type large enough to hold the result.
11194
11195 if Is_Fixed_Point_Type (Etype (Expr)) then
11196 if Esize (Base_Type (Etype (Expr))) > Esize (Standard_Integer) then
11197 Ityp := Standard_Long_Long_Integer;
11198 else
11199 Ityp := Standard_Integer;
11200 end if;
11201
11202 Set_Do_Range_Check (Expr, False);
11203 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
11204 end if;
11205
a7191e01
EB
11206 -- Reset overflow flag, since the range check will include
11207 -- dealing with possible overflow, and generate the check.
11208
11209 Set_Do_Overflow_Check (N, False);
11210
8113b0c7
EB
11211 Generate_Range_Check (Expr, Target_Type, CE_Range_Check_Failed);
11212 end Discrete_Range_Check;
11213
70482933
RK
11214 -----------------------------------
11215 -- Handle_Changed_Representation --
11216 -----------------------------------
11217
11218 procedure Handle_Changed_Representation is
11219 Temp : Entity_Id;
11220 Decl : Node_Id;
11221 Odef : Node_Id;
70482933
RK
11222 N_Ix : Node_Id;
11223 Cons : List_Id;
11224
11225 begin
f82944b7 11226 -- Nothing else to do if no change of representation
70482933
RK
11227
11228 if Same_Representation (Operand_Type, Target_Type) then
11229 return;
11230
11231 -- The real change of representation work is done by the assignment
11232 -- statement processing. So if this type conversion is appearing as
11233 -- the expression of an assignment statement, nothing needs to be
11234 -- done to the conversion.
11235
11236 elsif Nkind (Parent (N)) = N_Assignment_Statement then
11237 return;
11238
11239 -- Otherwise we need to generate a temporary variable, and do the
11240 -- change of representation assignment into that temporary variable.
11241 -- The conversion is then replaced by a reference to this variable.
11242
11243 else
11244 Cons := No_List;
11245
685094bf 11246 -- If type is unconstrained we have to add a constraint, copied
356ffab8 11247 -- from the actual value of the left-hand side.
70482933
RK
11248
11249 if not Is_Constrained (Target_Type) then
11250 if Has_Discriminants (Operand_Type) then
fbf5a39b 11251
7c15c6dd
AC
11252 -- A change of representation can only apply to untagged
11253 -- types. We need to build the constraint that applies to
11254 -- the target type, using the constraints of the operand.
11255 -- The analysis is complicated if there are both inherited
11256 -- discriminants and constrained discriminants.
11257 -- We iterate over the discriminants of the target, and
11258 -- find the discriminant of the same name:
fbf5a39b 11259
7c15c6dd
AC
11260 -- a) If there is a corresponding discriminant in the object
11261 -- then the value is a selected component of the operand.
11262
11263 -- b) Otherwise the value of a constrained discriminant is
11264 -- found in the stored constraint of the operand.
11265
11266 declare
11267 Stored : constant Elist_Id :=
a4f4dbdb 11268 Stored_Constraint (Operand_Type);
7c15c6dd
AC
11269
11270 Elmt : Elmt_Id;
11271
11272 Disc_O : Entity_Id;
11273 -- Discriminant of the operand type. Its value in the
a4f4dbdb 11274 -- object is captured in a selected component.
7c15c6dd
AC
11275
11276 Disc_S : Entity_Id;
11277 -- Stored discriminant of the operand. If present, it
11278 -- corresponds to a constrained discriminant of the
11279 -- parent type.
11280
11281 Disc_T : Entity_Id;
11282 -- Discriminant of the target type
11283
11284 begin
11285 Disc_T := First_Discriminant (Target_Type);
11286 Disc_O := First_Discriminant (Operand_Type);
11287 Disc_S := First_Stored_Discriminant (Operand_Type);
11288
11289 if Present (Stored) then
11290 Elmt := First_Elmt (Stored);
5612989e
PMR
11291 else
11292 Elmt := No_Elmt; -- init to avoid warning
7c15c6dd
AC
11293 end if;
11294
11295 Cons := New_List;
11296 while Present (Disc_T) loop
11297 if Present (Disc_O)
11298 and then Chars (Disc_T) = Chars (Disc_O)
11299 then
11300 Append_To (Cons,
11301 Make_Selected_Component (Loc,
11302 Prefix =>
11303 Duplicate_Subexpr_Move_Checks (Operand),
a4f4dbdb 11304 Selector_Name =>
7c15c6dd
AC
11305 Make_Identifier (Loc, Chars (Disc_O))));
11306 Next_Discriminant (Disc_O);
11307
11308 elsif Present (Disc_S) then
11309 Append_To (Cons, New_Copy_Tree (Node (Elmt)));
11310 Next_Elmt (Elmt);
11311 end if;
11312
11313 Next_Discriminant (Disc_T);
11314 end loop;
11315 end;
70482933
RK
11316
11317 elsif Is_Array_Type (Operand_Type) then
11318 N_Ix := First_Index (Target_Type);
11319 Cons := New_List;
11320
11321 for J in 1 .. Number_Dimensions (Operand_Type) loop
11322
11323 -- We convert the bounds explicitly. We use an unchecked
11324 -- conversion because bounds checks are done elsewhere.
11325
11326 Append_To (Cons,
11327 Make_Range (Loc,
a4f4dbdb 11328 Low_Bound =>
70482933
RK
11329 Unchecked_Convert_To (Etype (N_Ix),
11330 Make_Attribute_Reference (Loc,
a4f4dbdb 11331 Prefix =>
fbf5a39b 11332 Duplicate_Subexpr_No_Checks
70482933
RK
11333 (Operand, Name_Req => True),
11334 Attribute_Name => Name_First,
11335 Expressions => New_List (
11336 Make_Integer_Literal (Loc, J)))),
11337
11338 High_Bound =>
11339 Unchecked_Convert_To (Etype (N_Ix),
11340 Make_Attribute_Reference (Loc,
a4f4dbdb 11341 Prefix =>
fbf5a39b 11342 Duplicate_Subexpr_No_Checks
70482933
RK
11343 (Operand, Name_Req => True),
11344 Attribute_Name => Name_Last,
11345 Expressions => New_List (
11346 Make_Integer_Literal (Loc, J))))));
11347
11348 Next_Index (N_Ix);
11349 end loop;
11350 end if;
11351 end if;
11352
11353 Odef := New_Occurrence_Of (Target_Type, Loc);
11354
11355 if Present (Cons) then
11356 Odef :=
11357 Make_Subtype_Indication (Loc,
11358 Subtype_Mark => Odef,
a4f4dbdb 11359 Constraint =>
70482933
RK
11360 Make_Index_Or_Discriminant_Constraint (Loc,
11361 Constraints => Cons));
11362 end if;
11363
191fcb3a 11364 Temp := Make_Temporary (Loc, 'C');
70482933
RK
11365 Decl :=
11366 Make_Object_Declaration (Loc,
11367 Defining_Identifier => Temp,
11368 Object_Definition => Odef);
11369
11370 Set_No_Initialization (Decl, True);
11371
11372 -- Insert required actions. It is essential to suppress checks
11373 -- since we have suppressed default initialization, which means
11374 -- that the variable we create may have no discriminants.
11375
11376 Insert_Actions (N,
11377 New_List (
11378 Decl,
11379 Make_Assignment_Statement (Loc,
a4f4dbdb 11380 Name => New_Occurrence_Of (Temp, Loc),
70482933
RK
11381 Expression => Relocate_Node (N))),
11382 Suppress => All_Checks);
11383
11384 Rewrite (N, New_Occurrence_Of (Temp, Loc));
11385 return;
11386 end if;
11387 end Handle_Changed_Representation;
11388
426908f8
RD
11389 -------------------------------
11390 -- Raise_Accessibility_Error --
11391 -------------------------------
11392
11393 procedure Raise_Accessibility_Error is
11394 begin
43417b90 11395 Error_Msg_Warn := SPARK_Mode /= On;
426908f8
RD
11396 Rewrite (N,
11397 Make_Raise_Program_Error (Sloc (N),
11398 Reason => PE_Accessibility_Check_Failed));
11399 Set_Etype (N, Target_Type);
11400
4a28b181
AC
11401 Error_Msg_N ("<<accessibility check failure", N);
11402 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
426908f8
RD
11403 end Raise_Accessibility_Error;
11404
70482933
RK
11405 ----------------------
11406 -- Real_Range_Check --
11407 ----------------------
11408
685094bf
RD
11409 -- Case of conversions to floating-point or fixed-point. If range checks
11410 -- are enabled and the target type has a range constraint, we convert:
70482933
RK
11411
11412 -- typ (x)
11413
11414 -- to
11415
11416 -- Tnn : typ'Base := typ'Base (x);
11417 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
4e896dad 11418 -- typ (Tnn)
70482933 11419
685094bf
RD
11420 -- This is necessary when there is a conversion of integer to float or
11421 -- to fixed-point to ensure that the correct checks are made. It is not
4e896dad
EB
11422 -- necessary for the float-to-float case where it is enough to just set
11423 -- the Do_Range_Check flag on the expression.
fbf5a39b 11424
70482933
RK
11425 procedure Real_Range_Check is
11426 Btyp : constant Entity_Id := Base_Type (Target_Type);
11427 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
11428 Hi : constant Node_Id := Type_High_Bound (Target_Type);
a98217be
ES
11429
11430 Conv : Node_Id;
a98217be
ES
11431 Hi_Arg : Node_Id;
11432 Hi_Val : Node_Id;
f537fc00
HK
11433 Lo_Arg : Node_Id;
11434 Lo_Val : Node_Id;
4e896dad 11435 Expr : Entity_Id;
a98217be 11436 Tnn : Entity_Id;
70482933
RK
11437
11438 begin
11439 -- Nothing to do if conversion was rewritten
11440
11441 if Nkind (N) /= N_Type_Conversion then
11442 return;
11443 end if;
11444
4e896dad
EB
11445 Expr := Expression (N);
11446
11447 -- Clear the flag once for all
11448
11449 Set_Do_Range_Check (Expr, False);
11450
685094bf
RD
11451 -- Nothing to do if range checks suppressed, or target has the same
11452 -- range as the base type (or is the base type).
70482933
RK
11453
11454 if Range_Checks_Suppressed (Target_Type)
533369aa 11455 or else (Lo = Type_Low_Bound (Btyp)
70482933
RK
11456 and then
11457 Hi = Type_High_Bound (Btyp))
11458 then
11459 return;
11460 end if;
11461
685094bf
RD
11462 -- Nothing to do if expression is an entity on which checks have been
11463 -- suppressed.
70482933 11464
4e896dad
EB
11465 if Is_Entity_Name (Expr)
11466 and then Range_Checks_Suppressed (Entity (Expr))
11467 then
11468 return;
11469 end if;
11470
11471 -- Nothing to do if expression was rewritten into a float-to-float
31fde973 11472 -- conversion, since this kind of conversion is handled elsewhere.
4e896dad
EB
11473
11474 if Is_Floating_Point_Type (Etype (Expr))
11475 and then Is_Floating_Point_Type (Target_Type)
fbf5a39b
AC
11476 then
11477 return;
11478 end if;
11479
685094bf
RD
11480 -- Nothing to do if bounds are all static and we can tell that the
11481 -- expression is within the bounds of the target. Note that if the
11482 -- operand is of an unconstrained floating-point type, then we do
11483 -- not trust it to be in range (might be infinite)
fbf5a39b
AC
11484
11485 declare
4e896dad
EB
11486 S_Lo : constant Node_Id := Type_Low_Bound (Etype (Expr));
11487 S_Hi : constant Node_Id := Type_High_Bound (Etype (Expr));
fbf5a39b
AC
11488
11489 begin
4e896dad
EB
11490 if (not Is_Floating_Point_Type (Etype (Expr))
11491 or else Is_Constrained (Etype (Expr)))
fbf5a39b
AC
11492 and then Compile_Time_Known_Value (S_Lo)
11493 and then Compile_Time_Known_Value (S_Hi)
11494 and then Compile_Time_Known_Value (Hi)
11495 and then Compile_Time_Known_Value (Lo)
11496 then
11497 declare
11498 D_Lov : constant Ureal := Expr_Value_R (Lo);
11499 D_Hiv : constant Ureal := Expr_Value_R (Hi);
11500 S_Lov : Ureal;
11501 S_Hiv : Ureal;
11502
11503 begin
4e896dad 11504 if Is_Real_Type (Etype (Expr)) then
fbf5a39b
AC
11505 S_Lov := Expr_Value_R (S_Lo);
11506 S_Hiv := Expr_Value_R (S_Hi);
11507 else
11508 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
11509 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
11510 end if;
11511
11512 if D_Hiv > D_Lov
11513 and then S_Lov >= D_Lov
11514 and then S_Hiv <= D_Hiv
11515 then
fbf5a39b
AC
11516 return;
11517 end if;
11518 end;
11519 end if;
11520 end;
11521
fbf5a39b 11522 -- Otherwise rewrite the conversion as described above
70482933 11523
4e896dad 11524 Conv := Convert_To (Btyp, Expr);
8113b0c7 11525
4e896dad
EB
11526 -- If a conversion is necessary, then copy the specific flags from
11527 -- the original one and also move the Do_Overflow_Check flag since
11528 -- this new conversion is to the base type.
70482933 11529
4e896dad
EB
11530 if Nkind (Conv) = N_Type_Conversion then
11531 Set_Conversion_OK (Conv, Conversion_OK (N));
11532 Set_Float_Truncate (Conv, Float_Truncate (N));
11533 Set_Rounded_Result (Conv, Rounded_Result (N));
70482933 11534
4e896dad
EB
11535 if Do_Overflow_Check (N) then
11536 Set_Do_Overflow_Check (Conv);
11537 Set_Do_Overflow_Check (N, False);
11538 end if;
70482933
RK
11539 end if;
11540
191fcb3a 11541 Tnn := Make_Temporary (Loc, 'T', Conv);
70482933 11542
a98217be
ES
11543 -- For a conversion from Float to Fixed where the bounds of the
11544 -- fixed-point type are static, we can obtain a more accurate
11545 -- fixed-point value by converting the result of the floating-
11546 -- point expression to an appropriate integer type, and then
11547 -- performing an unchecked conversion to the target fixed-point
11548 -- type. The range check can then use the corresponding integer
11549 -- value of the bounds instead of requiring further conversions.
11550 -- This preserves the identity:
11551
11552 -- Fix_Val = Fixed_Type (Float_Type (Fix_Val))
11553
11554 -- which used to fail when Fix_Val was a bound of the type and
11555 -- the 'Small was not a representable number.
11556 -- This transformation requires an integer type large enough to
11557 -- accommodate a fixed-point value. This will not be the case
11558 -- in systems where Duration is larger than Long_Integer.
11559
11560 if Is_Ordinary_Fixed_Point_Type (Target_Type)
4e896dad
EB
11561 and then Is_Floating_Point_Type (Etype (Expr))
11562 and then RM_Size (Btyp) <= RM_Size (Standard_Long_Integer)
a98217be
ES
11563 and then Nkind (Lo) = N_Real_Literal
11564 and then Nkind (Hi) = N_Real_Literal
11565 then
a98217be 11566 declare
4e896dad 11567 Expr_Id : constant Entity_Id := Make_Temporary (Loc, 'T', Conv);
04920bb6 11568 Int_Type : Entity_Id;
a98217be
ES
11569
11570 begin
4e896dad
EB
11571 -- Find an integer type of the appropriate size to perform an
11572 -- unchecked conversion to the target fixed-point type.
11573
11574 if RM_Size (Btyp) > RM_Size (Standard_Integer) then
a98217be
ES
11575 Int_Type := Standard_Long_Integer;
11576
4e896dad 11577 elsif RM_Size (Btyp) > RM_Size (Standard_Short_Integer) then
a98217be
ES
11578 Int_Type := Standard_Integer;
11579
11580 else
11581 Int_Type := Standard_Short_Integer;
11582 end if;
11583
04920bb6 11584 -- Generate a temporary with the integer value. Required in the
4e896dad 11585 -- CCG compiler to ensure that run-time checks reference this
04920bb6 11586 -- integer expression (instead of the resulting fixed-point
4e896dad 11587 -- value because fixed-point values are handled by means of
04920bb6
JM
11588 -- unsigned integer types).
11589
11590 Insert_Action (N,
11591 Make_Object_Declaration (Loc,
11592 Defining_Identifier => Expr_Id,
11593 Object_Definition => New_Occurrence_Of (Int_Type, Loc),
11594 Constant_Present => True,
11595 Expression =>
11596 Convert_To (Int_Type, Expression (Conv))));
11597
a98217be
ES
11598 -- Create integer objects for range checking of result.
11599
f537fc00
HK
11600 Lo_Arg :=
11601 Unchecked_Convert_To
11602 (Int_Type, New_Occurrence_Of (Expr_Id, Loc));
11603
11604 Lo_Val :=
11605 Make_Integer_Literal (Loc, Corresponding_Integer_Value (Lo));
a98217be 11606
f537fc00
HK
11607 Hi_Arg :=
11608 Unchecked_Convert_To
11609 (Int_Type, New_Occurrence_Of (Expr_Id, Loc));
11610
11611 Hi_Val :=
11612 Make_Integer_Literal (Loc, Corresponding_Integer_Value (Hi));
a98217be
ES
11613
11614 -- Rewrite conversion as an integer conversion of the
11615 -- original floating-point expression, followed by an
11616 -- unchecked conversion to the target fixed-point type.
11617
f537fc00
HK
11618 Conv :=
11619 Make_Unchecked_Type_Conversion (Loc,
11620 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
11621 Expression => New_Occurrence_Of (Expr_Id, Loc));
a98217be
ES
11622 end;
11623
f537fc00 11624 -- All other conversions
a98217be 11625
f537fc00 11626 else
a98217be 11627 Lo_Arg := New_Occurrence_Of (Tnn, Loc);
f537fc00
HK
11628 Lo_Val :=
11629 Make_Attribute_Reference (Loc,
11630 Prefix => New_Occurrence_Of (Target_Type, Loc),
11631 Attribute_Name => Name_First);
a98217be
ES
11632
11633 Hi_Arg := New_Occurrence_Of (Tnn, Loc);
f537fc00
HK
11634 Hi_Val :=
11635 Make_Attribute_Reference (Loc,
11636 Prefix => New_Occurrence_Of (Target_Type, Loc),
11637 Attribute_Name => Name_Last);
a98217be
ES
11638 end if;
11639
4e896dad
EB
11640 -- Build code for range checking. Note that checks are suppressed
11641 -- here since we don't want a recursive range check popping up.
a98217be 11642
70482933
RK
11643 Insert_Actions (N, New_List (
11644 Make_Object_Declaration (Loc,
11645 Defining_Identifier => Tnn,
11646 Object_Definition => New_Occurrence_Of (Btyp, Loc),
0ac2a660
AC
11647 Constant_Present => True,
11648 Expression => Conv),
f537fc00 11649
70482933 11650 Make_Raise_Constraint_Error (Loc,
f537fc00
HK
11651 Condition =>
11652 Make_Or_Else (Loc,
11653 Left_Opnd =>
11654 Make_Op_Lt (Loc,
11655 Left_Opnd => Lo_Arg,
11656 Right_Opnd => Lo_Val),
70482933 11657
07fc65c4
GB
11658 Right_Opnd =>
11659 Make_Op_Gt (Loc,
a98217be
ES
11660 Left_Opnd => Hi_Arg,
11661 Right_Opnd => Hi_Val)),
4e896dad
EB
11662 Reason => CE_Range_Check_Failed)),
11663 Suppress => All_Checks);
70482933 11664
4e896dad 11665 Rewrite (Expr, New_Occurrence_Of (Tnn, Loc));
70482933
RK
11666 end Real_Range_Check;
11667
d15f9422
AC
11668 -----------------------------
11669 -- Has_Extra_Accessibility --
11670 -----------------------------
11671
f537fc00
HK
11672 -- Returns true for a formal of an anonymous access type or for an Ada
11673 -- 2012-style stand-alone object of an anonymous access type.
d15f9422
AC
11674
11675 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
11676 begin
11677 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
11678 return Present (Effective_Extra_Accessibility (Id));
11679 else
11680 return False;
11681 end if;
11682 end Has_Extra_Accessibility;
11683
70482933
RK
11684 -- Start of processing for Expand_N_Type_Conversion
11685
11686 begin
83851b23 11687 -- First remove check marks put by the semantic analysis on the type
b2502161
AC
11688 -- conversion between array types. We need these checks, and they will
11689 -- be generated by this expansion routine, but we do not depend on these
11690 -- flags being set, and since we do intend to expand the checks in the
11691 -- front end, we don't want them on the tree passed to the back end.
83851b23
AC
11692
11693 if Is_Array_Type (Target_Type) then
11694 if Is_Constrained (Target_Type) then
11695 Set_Do_Length_Check (N, False);
11696 else
11697 Set_Do_Range_Check (Operand, False);
11698 end if;
11699 end if;
11700
685094bf 11701 -- Nothing at all to do if conversion is to the identical type so remove
76efd572
AC
11702 -- the conversion completely, it is useless, except that it may carry
11703 -- an Assignment_OK attribute, which must be propagated to the operand.
70482933
RK
11704
11705 if Operand_Type = Target_Type then
7b00e31d
AC
11706 if Assignment_OK (N) then
11707 Set_Assignment_OK (Operand);
11708 end if;
11709
fbf5a39b 11710 Rewrite (N, Relocate_Node (Operand));
e606088a 11711 goto Done;
70482933
RK
11712 end if;
11713
685094bf
RD
11714 -- Nothing to do if this is the second argument of read. This is a
11715 -- "backwards" conversion that will be handled by the specialized code
11716 -- in attribute processing.
70482933
RK
11717
11718 if Nkind (Parent (N)) = N_Attribute_Reference
11719 and then Attribute_Name (Parent (N)) = Name_Read
11720 and then Next (First (Expressions (Parent (N)))) = N
11721 then
e606088a
AC
11722 goto Done;
11723 end if;
11724
11725 -- Check for case of converting to a type that has an invariant
d89ce432
AC
11726 -- associated with it. This requires an invariant check. We insert
11727 -- a call:
e606088a 11728
d89ce432 11729 -- invariant_check (typ (expr))
e606088a 11730
d89ce432
AC
11731 -- in the code, after removing side effects from the expression.
11732 -- This is clearer than replacing the conversion into an expression
11733 -- with actions, because the context may impose additional actions
11734 -- (tag checks, membership tests, etc.) that conflict with this
11735 -- rewriting (used previously).
e606088a
AC
11736
11737 -- Note: the Comes_From_Source check, and then the resetting of this
11738 -- flag prevents what would otherwise be an infinite recursion.
11739
fd0ff1cf
RD
11740 if Has_Invariants (Target_Type)
11741 and then Present (Invariant_Procedure (Target_Type))
e606088a
AC
11742 and then Comes_From_Source (N)
11743 then
11744 Set_Comes_From_Source (N, False);
d89ce432
AC
11745 Remove_Side_Effects (N);
11746 Insert_Action (N, Make_Invariant_Call (Duplicate_Subexpr (N)));
e606088a 11747 goto Done;
70482933
RK
11748 end if;
11749
11750 -- Here if we may need to expand conversion
11751
eaa826f8
RD
11752 -- If the operand of the type conversion is an arithmetic operation on
11753 -- signed integers, and the based type of the signed integer type in
11754 -- question is smaller than Standard.Integer, we promote both of the
11755 -- operands to type Integer.
11756
11757 -- For example, if we have
11758
11759 -- target-type (opnd1 + opnd2)
11760
11761 -- and opnd1 and opnd2 are of type short integer, then we rewrite
11762 -- this as:
11763
11764 -- target-type (integer(opnd1) + integer(opnd2))
11765
11766 -- We do this because we are always allowed to compute in a larger type
11767 -- if we do the right thing with the result, and in this case we are
11768 -- going to do a conversion which will do an appropriate check to make
11769 -- sure that things are in range of the target type in any case. This
11770 -- avoids some unnecessary intermediate overflows.
11771
dfcfdc0a
AC
11772 -- We might consider a similar transformation in the case where the
11773 -- target is a real type or a 64-bit integer type, and the operand
11774 -- is an arithmetic operation using a 32-bit integer type. However,
11775 -- we do not bother with this case, because it could cause significant
308e6f3a 11776 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
dfcfdc0a
AC
11777 -- much cheaper, but we don't want different behavior on 32-bit and
11778 -- 64-bit machines. Note that the exclusion of the 64-bit case also
11779 -- handles the configurable run-time cases where 64-bit arithmetic
11780 -- may simply be unavailable.
eaa826f8
RD
11781
11782 -- Note: this circuit is partially redundant with respect to the circuit
11783 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
11784 -- the processing here. Also we still need the Checks circuit, since we
11785 -- have to be sure not to generate junk overflow checks in the first
a90bd866 11786 -- place, since it would be trick to remove them here.
eaa826f8 11787
fdfcc663 11788 if Integer_Promotion_Possible (N) then
eaa826f8 11789
fdfcc663 11790 -- All conditions met, go ahead with transformation
eaa826f8 11791
fdfcc663
AC
11792 declare
11793 Opnd : Node_Id;
11794 L, R : Node_Id;
dfcfdc0a 11795
fdfcc663
AC
11796 begin
11797 R :=
11798 Make_Type_Conversion (Loc,
e4494292 11799 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663 11800 Expression => Relocate_Node (Right_Opnd (Operand)));
eaa826f8 11801
5f3f175d
AC
11802 Opnd := New_Op_Node (Nkind (Operand), Loc);
11803 Set_Right_Opnd (Opnd, R);
eaa826f8 11804
5f3f175d 11805 if Nkind (Operand) in N_Binary_Op then
fdfcc663 11806 L :=
eaa826f8 11807 Make_Type_Conversion (Loc,
e4494292 11808 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
fdfcc663
AC
11809 Expression => Relocate_Node (Left_Opnd (Operand)));
11810
5f3f175d
AC
11811 Set_Left_Opnd (Opnd, L);
11812 end if;
eaa826f8 11813
5f3f175d
AC
11814 Rewrite (N,
11815 Make_Type_Conversion (Loc,
11816 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
11817 Expression => Opnd));
dfcfdc0a 11818
5f3f175d 11819 Analyze_And_Resolve (N, Target_Type);
e606088a 11820 goto Done;
fdfcc663
AC
11821 end;
11822 end if;
eaa826f8 11823
f82944b7
JM
11824 -- Do validity check if validity checking operands
11825
533369aa 11826 if Validity_Checks_On and Validity_Check_Operands then
f82944b7
JM
11827 Ensure_Valid (Operand);
11828 end if;
11829
70482933
RK
11830 -- Special case of converting from non-standard boolean type
11831
11832 if Is_Boolean_Type (Operand_Type)
11833 and then (Nonzero_Is_True (Operand_Type))
11834 then
11835 Adjust_Condition (Operand);
11836 Set_Etype (Operand, Standard_Boolean);
11837 Operand_Type := Standard_Boolean;
11838 end if;
11839
11840 -- Case of converting to an access type
11841
11842 if Is_Access_Type (Target_Type) then
1b2f53bb
JS
11843 -- In terms of accessibility rules, an anonymous access discriminant
11844 -- is not considered separate from its parent object.
11845
11846 if Nkind (Operand) = N_Selected_Component
11847 and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
11848 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
11849 then
11850 Operand_Acc := Original_Node (Prefix (Operand));
11851 end if;
70482933 11852
ca0b6141 11853 -- If this type conversion was internally generated by the front end
904a2ae4 11854 -- to displace the pointer to the object to reference an interface
ca0b6141 11855 -- type and the original node was an Unrestricted_Access attribute,
904a2ae4
AC
11856 -- then skip applying accessibility checks (because, according to the
11857 -- GNAT Reference Manual, this attribute is similar to 'Access except
11858 -- that all accessibility and aliased view checks are omitted).
11859
11860 if not Comes_From_Source (N)
11861 and then Is_Interface (Designated_Type (Target_Type))
11862 and then Nkind (Original_Node (N)) = N_Attribute_Reference
0bcee275
AC
11863 and then Attribute_Name (Original_Node (N)) =
11864 Name_Unrestricted_Access
904a2ae4
AC
11865 then
11866 null;
11867
d766cee3
RD
11868 -- Apply an accessibility check when the conversion operand is an
11869 -- access parameter (or a renaming thereof), unless conversion was
6a237c45 11870 -- expanded from an Unchecked_ or Unrestricted_Access attribute,
683af98c
AC
11871 -- or for the actual of a class-wide interface parameter. Note that
11872 -- other checks may still need to be applied below (such as tagged
11873 -- type checks).
70482933 11874
1b2f53bb
JS
11875 elsif Is_Entity_Name (Operand_Acc)
11876 and then Has_Extra_Accessibility (Entity (Operand_Acc))
11877 and then Ekind (Etype (Operand_Acc)) = E_Anonymous_Access_Type
d766cee3
RD
11878 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
11879 or else Attribute_Name (Original_Node (N)) = Name_Access)
70482933 11880 then
6a237c45 11881 if not Comes_From_Source (N)
683af98c 11882 and then Nkind_In (Parent (N), N_Function_Call,
6d0289b1
HK
11883 N_Parameter_Association,
11884 N_Procedure_Call_Statement)
6a237c45
AC
11885 and then Is_Interface (Designated_Type (Target_Type))
11886 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
11887 then
11888 null;
11889
11890 else
11891 Apply_Accessibility_Check
1b2f53bb 11892 (Operand_Acc, Target_Type, Insert_Node => Operand);
6a237c45 11893 end if;
70482933 11894
e84e11ba 11895 -- If the level of the operand type is statically deeper than the
685094bf
RD
11896 -- level of the target type, then force Program_Error. Note that this
11897 -- can only occur for cases where the attribute is within the body of
6c56d9b8
AC
11898 -- an instantiation, otherwise the conversion will already have been
11899 -- rejected as illegal.
11900
11901 -- Note: warnings are issued by the analyzer for the instance cases
70482933
RK
11902
11903 elsif In_Instance_Body
6c56d9b8
AC
11904
11905 -- The case where the target type is an anonymous access type of
11906 -- a discriminant is excluded, because the level of such a type
11907 -- depends on the context and currently the level returned for such
604801a4 11908 -- types is zero, resulting in warnings about check failures
6c56d9b8
AC
11909 -- in certain legal cases involving class-wide interfaces as the
11910 -- designated type (some cases, such as return statements, are
11911 -- checked at run time, but not clear if these are handled right
11912 -- in general, see 3.10.2(12/2-12.5/3) ???).
11913
ad5edba5
AC
11914 and then
11915 not (Ekind (Target_Type) = E_Anonymous_Access_Type
11916 and then Present (Associated_Node_For_Itype (Target_Type))
11917 and then Nkind (Associated_Node_For_Itype (Target_Type)) =
11918 N_Discriminant_Specification)
11919 and then
11920 Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
70482933 11921 then
426908f8 11922 Raise_Accessibility_Error;
91669e7e 11923 goto Done;
70482933 11924
685094bf
RD
11925 -- When the operand is a selected access discriminant the check needs
11926 -- to be made against the level of the object denoted by the prefix
11927 -- of the selected name. Force Program_Error for this case as well
11928 -- (this accessibility violation can only happen if within the body
11929 -- of an instantiation).
70482933
RK
11930
11931 elsif In_Instance_Body
11932 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
11933 and then Nkind (Operand) = N_Selected_Component
ec98bb7d 11934 and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
70482933
RK
11935 and then Object_Access_Level (Operand) >
11936 Type_Access_Level (Target_Type)
11937 then
426908f8 11938 Raise_Accessibility_Error;
e606088a 11939 goto Done;
70482933
RK
11940 end if;
11941 end if;
11942
11943 -- Case of conversions of tagged types and access to tagged types
11944
685094bf
RD
11945 -- When needed, that is to say when the expression is class-wide, Add
11946 -- runtime a tag check for (strict) downward conversion by using the
11947 -- membership test, generating:
70482933
RK
11948
11949 -- [constraint_error when Operand not in Target_Type'Class]
11950
11951 -- or in the access type case
11952
11953 -- [constraint_error
11954 -- when Operand /= null
11955 -- and then Operand.all not in
11956 -- Designated_Type (Target_Type)'Class]
11957
11958 if (Is_Access_Type (Target_Type)
11959 and then Is_Tagged_Type (Designated_Type (Target_Type)))
11960 or else Is_Tagged_Type (Target_Type)
11961 then
685094bf
RD
11962 -- Do not do any expansion in the access type case if the parent is a
11963 -- renaming, since this is an error situation which will be caught by
11964 -- Sem_Ch8, and the expansion can interfere with this error check.
70482933 11965
e7e4d230 11966 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
e606088a 11967 goto Done;
70482933
RK
11968 end if;
11969
0669bebe 11970 -- Otherwise, proceed with processing tagged conversion
70482933 11971
e7e4d230 11972 Tagged_Conversion : declare
8cea7b64
HK
11973 Actual_Op_Typ : Entity_Id;
11974 Actual_Targ_Typ : Entity_Id;
11975 Make_Conversion : Boolean := False;
11976 Root_Op_Typ : Entity_Id;
70482933 11977
8cea7b64
HK
11978 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
11979 -- Create a membership check to test whether Operand is a member
11980 -- of Targ_Typ. If the original Target_Type is an access, include
11981 -- a test for null value. The check is inserted at N.
11982
11983 --------------------
11984 -- Make_Tag_Check --
11985 --------------------
11986
11987 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
11988 Cond : Node_Id;
11989
11990 begin
11991 -- Generate:
11992 -- [Constraint_Error
11993 -- when Operand /= null
11994 -- and then Operand.all not in Targ_Typ]
11995
11996 if Is_Access_Type (Target_Type) then
11997 Cond :=
11998 Make_And_Then (Loc,
11999 Left_Opnd =>
12000 Make_Op_Ne (Loc,
12001 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
12002 Right_Opnd => Make_Null (Loc)),
12003
12004 Right_Opnd =>
12005 Make_Not_In (Loc,
12006 Left_Opnd =>
12007 Make_Explicit_Dereference (Loc,
12008 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
e4494292 12009 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
8cea7b64
HK
12010
12011 -- Generate:
12012 -- [Constraint_Error when Operand not in Targ_Typ]
12013
12014 else
12015 Cond :=
12016 Make_Not_In (Loc,
12017 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
e4494292 12018 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
8cea7b64
HK
12019 end if;
12020
12021 Insert_Action (N,
12022 Make_Raise_Constraint_Error (Loc,
12023 Condition => Cond,
cf9a473e
AC
12024 Reason => CE_Tag_Check_Failed),
12025 Suppress => All_Checks);
8cea7b64
HK
12026 end Make_Tag_Check;
12027
e7e4d230 12028 -- Start of processing for Tagged_Conversion
70482933
RK
12029
12030 begin
9732e886 12031 -- Handle entities from the limited view
852dba80 12032
9732e886 12033 if Is_Access_Type (Operand_Type) then
852dba80
AC
12034 Actual_Op_Typ :=
12035 Available_View (Designated_Type (Operand_Type));
9732e886
JM
12036 else
12037 Actual_Op_Typ := Operand_Type;
12038 end if;
12039
12040 if Is_Access_Type (Target_Type) then
852dba80
AC
12041 Actual_Targ_Typ :=
12042 Available_View (Designated_Type (Target_Type));
70482933 12043 else
8cea7b64 12044 Actual_Targ_Typ := Target_Type;
70482933
RK
12045 end if;
12046
8cea7b64
HK
12047 Root_Op_Typ := Root_Type (Actual_Op_Typ);
12048
20b5d666
JM
12049 -- Ada 2005 (AI-251): Handle interface type conversion
12050
3cb9a885 12051 if Is_Interface (Actual_Op_Typ)
58b81ab0
AC
12052 or else
12053 Is_Interface (Actual_Targ_Typ)
3cb9a885 12054 then
f6f4d8d4 12055 Expand_Interface_Conversion (N);
e606088a 12056 goto Done;
20b5d666
JM
12057 end if;
12058
8cea7b64 12059 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
70482933 12060
8cea7b64
HK
12061 -- Create a runtime tag check for a downward class-wide type
12062 -- conversion.
70482933 12063
8cea7b64 12064 if Is_Class_Wide_Type (Actual_Op_Typ)
852dba80 12065 and then Actual_Op_Typ /= Actual_Targ_Typ
8cea7b64 12066 and then Root_Op_Typ /= Actual_Targ_Typ
4ac2477e
JM
12067 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
12068 Use_Full_View => True)
8cea7b64
HK
12069 then
12070 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
12071 Make_Conversion := True;
12072 end if;
70482933 12073
8cea7b64
HK
12074 -- AI05-0073: If the result subtype of the function is defined
12075 -- by an access_definition designating a specific tagged type
12076 -- T, a check is made that the result value is null or the tag
12077 -- of the object designated by the result value identifies T.
12078 -- Constraint_Error is raised if this check fails.
70482933 12079
92a7cd46 12080 if Nkind (Parent (N)) = N_Simple_Return_Statement then
8cea7b64 12081 declare
e886436a 12082 Func : Entity_Id;
8cea7b64
HK
12083 Func_Typ : Entity_Id;
12084
12085 begin
e886436a 12086 -- Climb scope stack looking for the enclosing function
8cea7b64 12087
e886436a 12088 Func := Current_Scope;
8cea7b64
HK
12089 while Present (Func)
12090 and then Ekind (Func) /= E_Function
12091 loop
12092 Func := Scope (Func);
12093 end loop;
12094
12095 -- The function's return subtype must be defined using
12096 -- an access definition.
12097
12098 if Nkind (Result_Definition (Parent (Func))) =
12099 N_Access_Definition
12100 then
12101 Func_Typ := Directly_Designated_Type (Etype (Func));
12102
12103 -- The return subtype denotes a specific tagged type,
12104 -- in other words, a non class-wide type.
12105
12106 if Is_Tagged_Type (Func_Typ)
12107 and then not Is_Class_Wide_Type (Func_Typ)
12108 then
12109 Make_Tag_Check (Actual_Targ_Typ);
12110 Make_Conversion := True;
12111 end if;
12112 end if;
12113 end;
70482933
RK
12114 end if;
12115
8cea7b64
HK
12116 -- We have generated a tag check for either a class-wide type
12117 -- conversion or for AI05-0073.
70482933 12118
8cea7b64
HK
12119 if Make_Conversion then
12120 declare
12121 Conv : Node_Id;
12122 begin
12123 Conv :=
12124 Make_Unchecked_Type_Conversion (Loc,
12125 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
12126 Expression => Relocate_Node (Expression (N)));
12127 Rewrite (N, Conv);
12128 Analyze_And_Resolve (N, Target_Type);
12129 end;
12130 end if;
70482933 12131 end if;
e7e4d230 12132 end Tagged_Conversion;
70482933
RK
12133
12134 -- Case of other access type conversions
12135
12136 elsif Is_Access_Type (Target_Type) then
12137 Apply_Constraint_Check (Operand, Target_Type);
12138
12139 -- Case of conversions from a fixed-point type
12140
685094bf
RD
12141 -- These conversions require special expansion and processing, found in
12142 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
12143 -- since from a semantic point of view, these are simple integer
70482933
RK
12144 -- conversions, which do not need further processing.
12145
12146 elsif Is_Fixed_Point_Type (Operand_Type)
12147 and then not Conversion_OK (N)
12148 then
12149 -- We should never see universal fixed at this case, since the
12150 -- expansion of the constituent divide or multiply should have
12151 -- eliminated the explicit mention of universal fixed.
12152
12153 pragma Assert (Operand_Type /= Universal_Fixed);
12154
685094bf
RD
12155 -- Check for special case of the conversion to universal real that
12156 -- occurs as a result of the use of a round attribute. In this case,
12157 -- the real type for the conversion is taken from the target type of
12158 -- the Round attribute and the result must be marked as rounded.
70482933
RK
12159
12160 if Target_Type = Universal_Real
12161 and then Nkind (Parent (N)) = N_Attribute_Reference
12162 and then Attribute_Name (Parent (N)) = Name_Round
12163 then
12164 Set_Rounded_Result (N);
12165 Set_Etype (N, Etype (Parent (N)));
8113b0c7 12166 Target_Type := Etype (N);
70482933
RK
12167 end if;
12168
8113b0c7
EB
12169 if Is_Fixed_Point_Type (Target_Type) then
12170 Expand_Convert_Fixed_To_Fixed (N);
12171 Real_Range_Check;
241848fd 12172
8113b0c7
EB
12173 elsif Is_Integer_Type (Target_Type) then
12174 Expand_Convert_Fixed_To_Integer (N);
12175 Discrete_Range_Check;
241848fd 12176
8113b0c7
EB
12177 else
12178 pragma Assert (Is_Floating_Point_Type (Target_Type));
12179 Expand_Convert_Fixed_To_Float (N);
12180 Real_Range_Check;
70482933
RK
12181 end if;
12182
12183 -- Case of conversions to a fixed-point type
12184
685094bf
RD
12185 -- These conversions require special expansion and processing, found in
12186 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
12187 -- since from a semantic point of view, these are simple integer
12188 -- conversions, which do not need further processing.
70482933
RK
12189
12190 elsif Is_Fixed_Point_Type (Target_Type)
12191 and then not Conversion_OK (N)
12192 then
12193 if Is_Integer_Type (Operand_Type) then
12194 Expand_Convert_Integer_To_Fixed (N);
12195 Real_Range_Check;
12196 else
12197 pragma Assert (Is_Floating_Point_Type (Operand_Type));
12198 Expand_Convert_Float_To_Fixed (N);
12199 Real_Range_Check;
12200 end if;
12201
70482933
RK
12202 -- Case of array conversions
12203
685094bf
RD
12204 -- Expansion of array conversions, add required length/range checks but
12205 -- only do this if there is no change of representation. For handling of
12206 -- this case, see Handle_Changed_Representation.
70482933
RK
12207
12208 elsif Is_Array_Type (Target_Type) then
70482933
RK
12209 if Is_Constrained (Target_Type) then
12210 Apply_Length_Check (Operand, Target_Type);
12211 else
12212 Apply_Range_Check (Operand, Target_Type);
12213 end if;
12214
12215 Handle_Changed_Representation;
12216
12217 -- Case of conversions of discriminated types
12218
685094bf
RD
12219 -- Add required discriminant checks if target is constrained. Again this
12220 -- change is skipped if we have a change of representation.
70482933
RK
12221
12222 elsif Has_Discriminants (Target_Type)
12223 and then Is_Constrained (Target_Type)
12224 then
12225 Apply_Discriminant_Check (Operand, Target_Type);
12226 Handle_Changed_Representation;
12227
12228 -- Case of all other record conversions. The only processing required
12229 -- is to check for a change of representation requiring the special
12230 -- assignment processing.
12231
12232 elsif Is_Record_Type (Target_Type) then
5d09245e
AC
12233
12234 -- Ada 2005 (AI-216): Program_Error is raised when converting from
685094bf
RD
12235 -- a derived Unchecked_Union type to an unconstrained type that is
12236 -- not Unchecked_Union if the operand lacks inferable discriminants.
5d09245e
AC
12237
12238 if Is_Derived_Type (Operand_Type)
12239 and then Is_Unchecked_Union (Base_Type (Operand_Type))
12240 and then not Is_Constrained (Target_Type)
12241 and then not Is_Unchecked_Union (Base_Type (Target_Type))
12242 and then not Has_Inferable_Discriminants (Operand)
12243 then
685094bf 12244 -- To prevent Gigi from generating illegal code, we generate a
5d09245e 12245 -- Program_Error node, but we give it the target type of the
6cb3037c 12246 -- conversion (is this requirement documented somewhere ???)
5d09245e
AC
12247
12248 declare
12249 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
12250 Reason => PE_Unchecked_Union_Restriction);
12251
12252 begin
12253 Set_Etype (PE, Target_Type);
12254 Rewrite (N, PE);
12255
12256 end;
12257 else
12258 Handle_Changed_Representation;
12259 end if;
70482933
RK
12260
12261 -- Case of conversions of enumeration types
12262
12263 elsif Is_Enumeration_Type (Target_Type) then
12264
12265 -- Special processing is required if there is a change of
e7e4d230 12266 -- representation (from enumeration representation clauses).
70482933
RK
12267
12268 if not Same_Representation (Target_Type, Operand_Type) then
12269
12270 -- Convert: x(y) to x'val (ytyp'val (y))
12271
12272 Rewrite (N,
1c66c4f5
AC
12273 Make_Attribute_Reference (Loc,
12274 Prefix => New_Occurrence_Of (Target_Type, Loc),
12275 Attribute_Name => Name_Val,
12276 Expressions => New_List (
12277 Make_Attribute_Reference (Loc,
12278 Prefix => New_Occurrence_Of (Operand_Type, Loc),
12279 Attribute_Name => Name_Pos,
12280 Expressions => New_List (Operand)))));
70482933
RK
12281
12282 Analyze_And_Resolve (N, Target_Type);
12283 end if;
70482933
RK
12284 end if;
12285
685094bf 12286 -- At this stage, either the conversion node has been transformed into
e7e4d230
AC
12287 -- some other equivalent expression, or left as a conversion that can be
12288 -- handled by Gigi, in the following cases:
70482933
RK
12289
12290 -- Conversions with no change of representation or type
12291
685094bf
RD
12292 -- Numeric conversions involving integer, floating- and fixed-point
12293 -- values. Fixed-point values are allowed only if Conversion_OK is
12294 -- set, i.e. if the fixed-point values are to be treated as integers.
70482933 12295
5e1c00fa
RD
12296 -- No other conversions should be passed to Gigi
12297
12298 -- Check: are these rules stated in sinfo??? if so, why restate here???
70482933 12299
685094bf 12300 -- The only remaining step is to generate a range check if we still have
267c7ff6
EB
12301 -- a type conversion at this stage and Do_Range_Check is set. Note that
12302 -- we need to deal with at most 8 out of the 9 possible cases of numeric
12303 -- conversions here, because the float-to-integer case is entirely dealt
12304 -- with by Apply_Float_Conversion_Check.
fbf5a39b 12305
8113b0c7
EB
12306 if Nkind (N) = N_Type_Conversion
12307 and then Do_Range_Check (Expression (N))
12308 then
12309 -- Float-to-float conversions
fbf5a39b 12310
8113b0c7 12311 if Is_Floating_Point_Type (Target_Type)
f5655e4a 12312 and then Is_Floating_Point_Type (Etype (Expression (N)))
7b536495 12313 then
67460d45
EB
12314 -- Reset overflow flag, since the range check will include
12315 -- dealing with possible overflow, and generate the check.
12316
12317 Set_Do_Overflow_Check (N, False);
12318
8113b0c7
EB
12319 Generate_Range_Check
12320 (Expression (N), Target_Type, CE_Range_Check_Failed);
fbf5a39b 12321
8113b0c7
EB
12322 -- Discrete-to-discrete conversions or fixed-point-to-discrete
12323 -- conversions when Conversion_OK is set.
fbf5a39b 12324
8113b0c7
EB
12325 elsif Is_Discrete_Type (Target_Type)
12326 and then (Is_Discrete_Type (Etype (Expression (N)))
12327 or else (Is_Fixed_Point_Type (Etype (Expression (N)))
12328 and then Conversion_OK (N)))
12329 then
8113b0c7
EB
12330 -- If Address is either a source type or target type,
12331 -- suppress range check to avoid typing anomalies when
12332 -- it is a visible integer type.
7b536495 12333
8113b0c7
EB
12334 if Is_Descendant_Of_Address (Etype (Expression (N)))
12335 or else Is_Descendant_Of_Address (Target_Type)
12336 then
12337 Set_Do_Range_Check (Expression (N), False);
12338 else
12339 Discrete_Range_Check;
12340 end if;
7b536495 12341
8113b0c7 12342 -- Conversions to floating- or fixed-point when Conversion_OK is set
7b536495 12343
8113b0c7
EB
12344 elsif Is_Floating_Point_Type (Target_Type)
12345 or else (Is_Fixed_Point_Type (Target_Type)
12346 and then Conversion_OK (N))
12347 then
12348 Real_Range_Check;
7b536495 12349 end if;
fbf5a39b 12350 end if;
f02b8bb8 12351
e606088a
AC
12352 -- Here at end of processing
12353
48f91b44
RD
12354 <<Done>>
12355 -- Apply predicate check if required. Note that we can't just call
12356 -- Apply_Predicate_Check here, because the type looks right after
12357 -- the conversion and it would omit the check. The Comes_From_Source
12358 -- guard is necessary to prevent infinite recursions when we generate
12359 -- internal conversions for the purpose of checking predicates.
12360
12361 if Present (Predicate_Function (Target_Type))
8d4611f7 12362 and then not Predicates_Ignored (Target_Type)
48f91b44
RD
12363 and then Target_Type /= Operand_Type
12364 and then Comes_From_Source (N)
12365 then
00332244
AC
12366 declare
12367 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
12368
12369 begin
12370 -- Avoid infinite recursion on the subsequent expansion of
6ef13c4f
ES
12371 -- of the copy of the original type conversion. When needed,
12372 -- a range check has already been applied to the expression.
00332244
AC
12373
12374 Set_Comes_From_Source (New_Expr, False);
6ef13c4f
ES
12375 Insert_Action (N,
12376 Make_Predicate_Check (Target_Type, New_Expr),
12377 Suppress => Range_Check);
00332244 12378 end;
48f91b44 12379 end if;
70482933
RK
12380 end Expand_N_Type_Conversion;
12381
12382 -----------------------------------
12383 -- Expand_N_Unchecked_Expression --
12384 -----------------------------------
12385
e7e4d230 12386 -- Remove the unchecked expression node from the tree. Its job was simply
70482933 12387 -- to make sure that its constituent expression was handled with checks
604801a4
PT
12388 -- off, and now that is done, we can remove it from the tree, and indeed
12389 -- must, since Gigi does not expect to see these nodes.
70482933
RK
12390
12391 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
12392 Exp : constant Node_Id := Expression (N);
70482933 12393 begin
e7e4d230 12394 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
70482933
RK
12395 Rewrite (N, Exp);
12396 end Expand_N_Unchecked_Expression;
12397
12398 ----------------------------------------
12399 -- Expand_N_Unchecked_Type_Conversion --
12400 ----------------------------------------
12401
685094bf
RD
12402 -- If this cannot be handled by Gigi and we haven't already made a
12403 -- temporary for it, do it now.
70482933
RK
12404
12405 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
12406 Target_Type : constant Entity_Id := Etype (N);
12407 Operand : constant Node_Id := Expression (N);
12408 Operand_Type : constant Entity_Id := Etype (Operand);
12409
12410 begin
7b00e31d 12411 -- Nothing at all to do if conversion is to the identical type so remove
76efd572 12412 -- the conversion completely, it is useless, except that it may carry
e7e4d230 12413 -- an Assignment_OK indication which must be propagated to the operand.
7b00e31d
AC
12414
12415 if Operand_Type = Target_Type then
13d923cc 12416
e7e4d230
AC
12417 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
12418
7b00e31d
AC
12419 if Assignment_OK (N) then
12420 Set_Assignment_OK (Operand);
12421 end if;
12422
12423 Rewrite (N, Relocate_Node (Operand));
12424 return;
12425 end if;
12426
70482933
RK
12427 -- If we have a conversion of a compile time known value to a target
12428 -- type and the value is in range of the target type, then we can simply
12429 -- replace the construct by an integer literal of the correct type. We
12430 -- only apply this to integer types being converted. Possibly it may
12431 -- apply in other cases, but it is too much trouble to worry about.
12432
12433 -- Note that we do not do this transformation if the Kill_Range_Check
12434 -- flag is set, since then the value may be outside the expected range.
12435 -- This happens in the Normalize_Scalars case.
12436
20b5d666
JM
12437 -- We also skip this if either the target or operand type is biased
12438 -- because in this case, the unchecked conversion is supposed to
12439 -- preserve the bit pattern, not the integer value.
12440
70482933 12441 if Is_Integer_Type (Target_Type)
20b5d666 12442 and then not Has_Biased_Representation (Target_Type)
70482933 12443 and then Is_Integer_Type (Operand_Type)
20b5d666 12444 and then not Has_Biased_Representation (Operand_Type)
70482933
RK
12445 and then Compile_Time_Known_Value (Operand)
12446 and then not Kill_Range_Check (N)
12447 then
12448 declare
12449 Val : constant Uint := Expr_Value (Operand);
12450
12451 begin
12452 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
12453 and then
12454 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
12455 and then
12456 Val >= Expr_Value (Type_Low_Bound (Target_Type))
12457 and then
12458 Val <= Expr_Value (Type_High_Bound (Target_Type))
12459 then
12460 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8a36a0cc 12461
685094bf
RD
12462 -- If Address is the target type, just set the type to avoid a
12463 -- spurious type error on the literal when Address is a visible
12464 -- integer type.
8a36a0cc 12465
d9d25d04 12466 if Is_Descendant_Of_Address (Target_Type) then
8a36a0cc
AC
12467 Set_Etype (N, Target_Type);
12468 else
12469 Analyze_And_Resolve (N, Target_Type);
12470 end if;
12471
70482933
RK
12472 return;
12473 end if;
12474 end;
12475 end if;
12476
02458cc7
JM
12477 -- Generate an extra temporary for cases unsupported by the C backend
12478
12479 if Modify_Tree_For_C then
12480 declare
12481 Source : constant Node_Id := Unqual_Conv (Expression (N));
12482 Source_Typ : Entity_Id := Get_Full_View (Etype (Source));
12483
12484 begin
12485 if Is_Packed_Array (Source_Typ) then
12486 Source_Typ := Packed_Array_Impl_Type (Source_Typ);
12487 end if;
12488
12489 if Nkind (Source) = N_Function_Call
12490 and then (Is_Composite_Type (Etype (Source))
12491 or else Is_Composite_Type (Target_Type))
12492 then
12493 Force_Evaluation (Source);
12494 end if;
12495 end;
12496 end if;
12497
70482933
RK
12498 -- Nothing to do if conversion is safe
12499
12500 if Safe_Unchecked_Type_Conversion (N) then
12501 return;
12502 end if;
12503
12504 -- Otherwise force evaluation unless Assignment_OK flag is set (this
324ac540 12505 -- flag indicates ??? More comments needed here)
70482933
RK
12506
12507 if Assignment_OK (N) then
12508 null;
12509 else
12510 Force_Evaluation (N);
12511 end if;
12512 end Expand_N_Unchecked_Type_Conversion;
12513
12514 ----------------------------
12515 -- Expand_Record_Equality --
12516 ----------------------------
12517
12518 -- For non-variant records, Equality is expanded when needed into:
12519
12520 -- and then Lhs.Discr1 = Rhs.Discr1
12521 -- and then ...
12522 -- and then Lhs.Discrn = Rhs.Discrn
12523 -- and then Lhs.Cmp1 = Rhs.Cmp1
12524 -- and then ...
12525 -- and then Lhs.Cmpn = Rhs.Cmpn
12526
c7a494c9 12527 -- The expression is folded by the back end for adjacent fields. This
70482933
RK
12528 -- function is called for tagged record in only one occasion: for imple-
12529 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
12530 -- otherwise the primitive "=" is used directly.
12531
12532 function Expand_Record_Equality
12533 (Nod : Node_Id;
12534 Typ : Entity_Id;
12535 Lhs : Node_Id;
12536 Rhs : Node_Id;
2e071734 12537 Bodies : List_Id) return Node_Id
70482933
RK
12538 is
12539 Loc : constant Source_Ptr := Sloc (Nod);
12540
0ab80019
AC
12541 Result : Node_Id;
12542 C : Entity_Id;
12543
12544 First_Time : Boolean := True;
12545
6b670dcf
AC
12546 function Element_To_Compare (C : Entity_Id) return Entity_Id;
12547 -- Return the next discriminant or component to compare, starting with
12548 -- C, skipping inherited components.
0ab80019 12549
6b670dcf
AC
12550 ------------------------
12551 -- Element_To_Compare --
12552 ------------------------
70482933 12553
6b670dcf
AC
12554 function Element_To_Compare (C : Entity_Id) return Entity_Id is
12555 Comp : Entity_Id;
28270211 12556
70482933 12557 begin
6b670dcf 12558 Comp := C;
6b670dcf
AC
12559 loop
12560 -- Exit loop when the next element to be compared is found, or
12561 -- there is no more such element.
70482933 12562
6b670dcf 12563 exit when No (Comp);
8190087e 12564
6b670dcf
AC
12565 exit when Ekind_In (Comp, E_Discriminant, E_Component)
12566 and then not (
70482933 12567
6b670dcf 12568 -- Skip inherited components
70482933 12569
6b670dcf
AC
12570 -- Note: for a tagged type, we always generate the "=" primitive
12571 -- for the base type (not on the first subtype), so the test for
12572 -- Comp /= Original_Record_Component (Comp) is True for
12573 -- inherited components only.
24558db8 12574
6b670dcf 12575 (Is_Tagged_Type (Typ)
28270211 12576 and then Comp /= Original_Record_Component (Comp))
24558db8 12577
6b670dcf 12578 -- Skip _Tag
26bff3d9 12579
6b670dcf
AC
12580 or else Chars (Comp) = Name_uTag
12581
6b670dcf
AC
12582 -- Skip interface elements (secondary tags???)
12583
12584 or else Is_Interface (Etype (Comp)));
12585
12586 Next_Entity (Comp);
12587 end loop;
12588
12589 return Comp;
12590 end Element_To_Compare;
70482933 12591
70482933
RK
12592 -- Start of processing for Expand_Record_Equality
12593
12594 begin
70482933
RK
12595 -- Generates the following code: (assuming that Typ has one Discr and
12596 -- component C2 is also a record)
12597
63254915
AC
12598 -- Lhs.Discr1 = Rhs.Discr1
12599 -- and then Lhs.C1 = Rhs.C1
12600 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
12601 -- and then ...
12602 -- and then Lhs.Cmpn = Rhs.Cmpn
70482933 12603
e4494292 12604 Result := New_Occurrence_Of (Standard_True, Loc);
6b670dcf 12605 C := Element_To_Compare (First_Entity (Typ));
70482933 12606 while Present (C) loop
70482933
RK
12607 declare
12608 New_Lhs : Node_Id;
12609 New_Rhs : Node_Id;
8aceda64 12610 Check : Node_Id;
70482933
RK
12611
12612 begin
12613 if First_Time then
70482933
RK
12614 New_Lhs := Lhs;
12615 New_Rhs := Rhs;
70482933
RK
12616 else
12617 New_Lhs := New_Copy_Tree (Lhs);
12618 New_Rhs := New_Copy_Tree (Rhs);
12619 end if;
12620
8aceda64
AC
12621 Check :=
12622 Expand_Composite_Equality (Nod, Etype (C),
12623 Lhs =>
12624 Make_Selected_Component (Loc,
8d80ff64 12625 Prefix => New_Lhs,
e4494292 12626 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
12627 Rhs =>
12628 Make_Selected_Component (Loc,
8d80ff64 12629 Prefix => New_Rhs,
e4494292 12630 Selector_Name => New_Occurrence_Of (C, Loc)),
8aceda64
AC
12631 Bodies => Bodies);
12632
12633 -- If some (sub)component is an unchecked_union, the whole
12634 -- operation will raise program error.
12635
12636 if Nkind (Check) = N_Raise_Program_Error then
12637 Result := Check;
12638 Set_Etype (Result, Standard_Boolean);
12639 exit;
12640 else
63254915
AC
12641 if First_Time then
12642 Result := Check;
12643
12644 -- Generate logical "and" for CodePeer to simplify the
12645 -- generated code and analysis.
12646
12647 elsif CodePeer_Mode then
12648 Result :=
12649 Make_Op_And (Loc,
12650 Left_Opnd => Result,
12651 Right_Opnd => Check);
12652
12653 else
12654 Result :=
12655 Make_And_Then (Loc,
12656 Left_Opnd => Result,
12657 Right_Opnd => Check);
12658 end if;
8aceda64 12659 end if;
70482933
RK
12660 end;
12661
63254915 12662 First_Time := False;
6b670dcf 12663 C := Element_To_Compare (Next_Entity (C));
70482933
RK
12664 end loop;
12665
12666 return Result;
12667 end Expand_Record_Equality;
12668
a3068ca6
AC
12669 ---------------------------
12670 -- Expand_Set_Membership --
12671 ---------------------------
12672
12673 procedure Expand_Set_Membership (N : Node_Id) is
12674 Lop : constant Node_Id := Left_Opnd (N);
12675 Alt : Node_Id;
12676 Res : Node_Id;
12677
12678 function Make_Cond (Alt : Node_Id) return Node_Id;
12679 -- If the alternative is a subtype mark, create a simple membership
12680 -- test. Otherwise create an equality test for it.
12681
12682 ---------------
12683 -- Make_Cond --
12684 ---------------
12685
12686 function Make_Cond (Alt : Node_Id) return Node_Id is
12687 Cond : Node_Id;
afe9c539 12688 L : constant Node_Id := New_Copy_Tree (Lop);
a3068ca6
AC
12689 R : constant Node_Id := Relocate_Node (Alt);
12690
12691 begin
12692 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
12693 or else Nkind (Alt) = N_Range
12694 then
12695 Cond :=
12696 Make_In (Sloc (Alt),
12697 Left_Opnd => L,
12698 Right_Opnd => R);
12699 else
12700 Cond :=
12701 Make_Op_Eq (Sloc (Alt),
12702 Left_Opnd => L,
12703 Right_Opnd => R);
12704 end if;
12705
12706 return Cond;
12707 end Make_Cond;
12708
12709 -- Start of processing for Expand_Set_Membership
12710
12711 begin
12712 Remove_Side_Effects (Lop);
12713
12714 Alt := Last (Alternatives (N));
12715 Res := Make_Cond (Alt);
12716
12717 Prev (Alt);
12718 while Present (Alt) loop
12719 Res :=
12720 Make_Or_Else (Sloc (Alt),
12721 Left_Opnd => Make_Cond (Alt),
12722 Right_Opnd => Res);
12723 Prev (Alt);
12724 end loop;
12725
12726 Rewrite (N, Res);
12727 Analyze_And_Resolve (N, Standard_Boolean);
12728 end Expand_Set_Membership;
12729
5875f8d6
AC
12730 -----------------------------------
12731 -- Expand_Short_Circuit_Operator --
12732 -----------------------------------
12733
955871d3
AC
12734 -- Deal with special expansion if actions are present for the right operand
12735 -- and deal with optimizing case of arguments being True or False. We also
12736 -- deal with the special case of non-standard boolean values.
5875f8d6
AC
12737
12738 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
12739 Loc : constant Source_Ptr := Sloc (N);
12740 Typ : constant Entity_Id := Etype (N);
5875f8d6
AC
12741 Left : constant Node_Id := Left_Opnd (N);
12742 Right : constant Node_Id := Right_Opnd (N);
955871d3 12743 LocR : constant Source_Ptr := Sloc (Right);
5875f8d6
AC
12744 Actlist : List_Id;
12745
12746 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
12747 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
12748 -- If Left = Shortcut_Value then Right need not be evaluated
12749
f916243b
AC
12750 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
12751 -- For Opnd a boolean expression, return a Boolean expression equivalent
12752 -- to Opnd /= Shortcut_Value.
12753
a0766a82
AC
12754 function Useful (Actions : List_Id) return Boolean;
12755 -- Return True if Actions is not empty and contains useful nodes to
12756 -- process.
12757
f916243b
AC
12758 --------------------
12759 -- Make_Test_Expr --
12760 --------------------
12761
12762 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
12763 begin
12764 if Shortcut_Value then
12765 return Make_Op_Not (Sloc (Opnd), Opnd);
12766 else
12767 return Opnd;
12768 end if;
12769 end Make_Test_Expr;
12770
a0766a82
AC
12771 ------------
12772 -- Useful --
12773 ------------
12774
12775 function Useful (Actions : List_Id) return Boolean is
12776 L : Node_Id;
12777 begin
12778 if Present (Actions) then
12779 L := First (Actions);
12780
12781 -- For now "useful" means not N_Variable_Reference_Marker.
12782 -- Consider stripping other nodes in the future.
12783
12784 while Present (L) loop
12785 if Nkind (L) /= N_Variable_Reference_Marker then
12786 return True;
12787 end if;
12788
12789 Next (L);
12790 end loop;
12791 end if;
12792
12793 return False;
12794 end Useful;
12795
f916243b
AC
12796 -- Local variables
12797
12798 Op_Var : Entity_Id;
12799 -- Entity for a temporary variable holding the value of the operator,
12800 -- used for expansion in the case where actions are present.
12801
12802 -- Start of processing for Expand_Short_Circuit_Operator
12803
5875f8d6
AC
12804 begin
12805 -- Deal with non-standard booleans
12806
12807 if Is_Boolean_Type (Typ) then
12808 Adjust_Condition (Left);
12809 Adjust_Condition (Right);
12810 Set_Etype (N, Standard_Boolean);
12811 end if;
12812
12813 -- Check for cases where left argument is known to be True or False
12814
12815 if Compile_Time_Known_Value (Left) then
25adc5fb
AC
12816
12817 -- Mark SCO for left condition as compile time known
12818
12819 if Generate_SCO and then Comes_From_Source (Left) then
12820 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
12821 end if;
12822
5875f8d6
AC
12823 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
12824 -- Any actions associated with Right will be executed unconditionally
12825 -- and can thus be inserted into the tree unconditionally.
12826
12827 if Expr_Value_E (Left) /= Shortcut_Ent then
12828 if Present (Actions (N)) then
12829 Insert_Actions (N, Actions (N));
12830 end if;
12831
12832 Rewrite (N, Right);
12833
12834 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
12835 -- In this case we can forget the actions associated with Right,
12836 -- since they will never be executed.
12837
12838 else
12839 Kill_Dead_Code (Right);
12840 Kill_Dead_Code (Actions (N));
12841 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
12842 end if;
12843
12844 Adjust_Result_Type (N, Typ);
12845 return;
12846 end if;
12847
955871d3
AC
12848 -- If Actions are present for the right operand, we have to do some
12849 -- special processing. We can't just let these actions filter back into
12850 -- code preceding the short circuit (which is what would have happened
12851 -- if we had not trapped them in the short-circuit form), since they
12852 -- must only be executed if the right operand of the short circuit is
12853 -- executed and not otherwise.
5875f8d6 12854
a0766a82 12855 if Useful (Actions (N)) then
955871d3 12856 Actlist := Actions (N);
5875f8d6 12857
f916243b
AC
12858 -- The old approach is to expand:
12859
12860 -- left AND THEN right
12861
12862 -- into
12863
12864 -- C : Boolean := False;
12865 -- IF left THEN
12866 -- Actions;
12867 -- IF right THEN
12868 -- C := True;
12869 -- END IF;
12870 -- END IF;
12871
12872 -- and finally rewrite the operator into a reference to C. Similarly
12873 -- for left OR ELSE right, with negated values. Note that this
12874 -- rewrite causes some difficulties for coverage analysis because
12875 -- of the introduction of the new variable C, which obscures the
12876 -- structure of the test.
12877
12878 -- We use this "old approach" if Minimize_Expression_With_Actions
12879 -- is True.
12880
12881 if Minimize_Expression_With_Actions then
12882 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
12883
12884 Insert_Action (N,
12885 Make_Object_Declaration (Loc,
12886 Defining_Identifier => Op_Var,
12887 Object_Definition =>
12888 New_Occurrence_Of (Standard_Boolean, Loc),
12889 Expression =>
12890 New_Occurrence_Of (Shortcut_Ent, Loc)));
12891
12892 Append_To (Actlist,
12893 Make_Implicit_If_Statement (Right,
12894 Condition => Make_Test_Expr (Right),
12895 Then_Statements => New_List (
12896 Make_Assignment_Statement (LocR,
12897 Name => New_Occurrence_Of (Op_Var, LocR),
12898 Expression =>
12899 New_Occurrence_Of
12900 (Boolean_Literals (not Shortcut_Value), LocR)))));
12901
12902 Insert_Action (N,
12903 Make_Implicit_If_Statement (Left,
12904 Condition => Make_Test_Expr (Left),
12905 Then_Statements => Actlist));
12906
12907 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
12908 Analyze_And_Resolve (N, Standard_Boolean);
12909
12910 -- The new approach (the default) is to use an
12911 -- Expression_With_Actions node for the right operand of the
12912 -- short-circuit form. Note that this solves the traceability
0812b84e 12913 -- problems for coverage analysis.
5875f8d6 12914
f916243b
AC
12915 else
12916 Rewrite (Right,
12917 Make_Expression_With_Actions (LocR,
12918 Expression => Relocate_Node (Right),
12919 Actions => Actlist));
4b17187f 12920
f916243b
AC
12921 Set_Actions (N, No_List);
12922 Analyze_And_Resolve (Right, Standard_Boolean);
12923 end if;
955871d3 12924
5875f8d6
AC
12925 Adjust_Result_Type (N, Typ);
12926 return;
12927 end if;
12928
12929 -- No actions present, check for cases of right argument True/False
12930
12931 if Compile_Time_Known_Value (Right) then
25adc5fb
AC
12932
12933 -- Mark SCO for left condition as compile time known
12934
12935 if Generate_SCO and then Comes_From_Source (Right) then
12936 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
12937 end if;
12938
f916243b
AC
12939 -- Change (Left and then True), (Left or else False) to Left. Note
12940 -- that we know there are no actions associated with the right
5875f8d6
AC
12941 -- operand, since we just checked for this case above.
12942
12943 if Expr_Value_E (Right) /= Shortcut_Ent then
12944 Rewrite (N, Left);
12945
12946 -- Change (Left and then False), (Left or else True) to Right,
12947 -- making sure to preserve any side effects associated with the Left
12948 -- operand.
12949
12950 else
12951 Remove_Side_Effects (Left);
12952 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
12953 end if;
12954 end if;
12955
12956 Adjust_Result_Type (N, Typ);
12957 end Expand_Short_Circuit_Operator;
12958
bdbb2a40 12959 ------------------------------------
70482933
RK
12960 -- Fixup_Universal_Fixed_Operation --
12961 -------------------------------------
12962
12963 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
12964 Conv : constant Node_Id := Parent (N);
12965
12966 begin
12967 -- We must have a type conversion immediately above us
12968
12969 pragma Assert (Nkind (Conv) = N_Type_Conversion);
12970
12971 -- Normally the type conversion gives our target type. The exception
12972 -- occurs in the case of the Round attribute, where the conversion
12973 -- will be to universal real, and our real type comes from the Round
12974 -- attribute (as well as an indication that we must round the result)
12975
12976 if Nkind (Parent (Conv)) = N_Attribute_Reference
12977 and then Attribute_Name (Parent (Conv)) = Name_Round
12978 then
267c7ff6 12979 Set_Etype (N, Base_Type (Etype (Parent (Conv))));
70482933
RK
12980 Set_Rounded_Result (N);
12981
12982 -- Normal case where type comes from conversion above us
12983
12984 else
267c7ff6 12985 Set_Etype (N, Base_Type (Etype (Conv)));
70482933
RK
12986 end if;
12987 end Fixup_Universal_Fixed_Operation;
12988
5d09245e
AC
12989 ---------------------------------
12990 -- Has_Inferable_Discriminants --
12991 ---------------------------------
12992
12993 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
12994
12995 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
12996 -- Determines whether the left-most prefix of a selected component is a
12997 -- formal parameter in a subprogram. Assumes N is a selected component.
12998
12999 --------------------------------
13000 -- Prefix_Is_Formal_Parameter --
13001 --------------------------------
13002
13003 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
83bb90af 13004 Sel_Comp : Node_Id;
5d09245e
AC
13005
13006 begin
13007 -- Move to the left-most prefix by climbing up the tree
13008
83bb90af 13009 Sel_Comp := N;
5d09245e
AC
13010 while Present (Parent (Sel_Comp))
13011 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
13012 loop
13013 Sel_Comp := Parent (Sel_Comp);
13014 end loop;
13015
bb6a856b 13016 return Is_Formal (Entity (Prefix (Sel_Comp)));
5d09245e
AC
13017 end Prefix_Is_Formal_Parameter;
13018
13019 -- Start of processing for Has_Inferable_Discriminants
13020
13021 begin
5d09245e
AC
13022 -- For selected components, the subtype of the selector must be a
13023 -- constrained Unchecked_Union. If the component is subject to a
13024 -- per-object constraint, then the enclosing object must have inferable
13025 -- discriminants.
13026
83bb90af 13027 if Nkind (N) = N_Selected_Component then
5d09245e
AC
13028 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
13029
13030 -- A small hack. If we have a per-object constrained selected
13031 -- component of a formal parameter, return True since we do not
13032 -- know the actual parameter association yet.
13033
13034 if Prefix_Is_Formal_Parameter (N) then
13035 return True;
5d09245e
AC
13036
13037 -- Otherwise, check the enclosing object and the selector
13038
83bb90af
TQ
13039 else
13040 return Has_Inferable_Discriminants (Prefix (N))
13041 and then Has_Inferable_Discriminants (Selector_Name (N));
13042 end if;
5d09245e
AC
13043
13044 -- The call to Has_Inferable_Discriminants will determine whether
13045 -- the selector has a constrained Unchecked_Union nominal type.
13046
83bb90af
TQ
13047 else
13048 return Has_Inferable_Discriminants (Selector_Name (N));
13049 end if;
5d09245e
AC
13050
13051 -- A qualified expression has inferable discriminants if its subtype
13052 -- mark is a constrained Unchecked_Union subtype.
13053
13054 elsif Nkind (N) = N_Qualified_Expression then
053cf994 13055 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
5b5b27ad 13056 and then Is_Constrained (Etype (Subtype_Mark (N)));
5d09245e 13057
83bb90af
TQ
13058 -- For all other names, it is sufficient to have a constrained
13059 -- Unchecked_Union nominal subtype.
13060
13061 else
13062 return Is_Unchecked_Union (Base_Type (Etype (N)))
13063 and then Is_Constrained (Etype (N));
13064 end if;
5d09245e
AC
13065 end Has_Inferable_Discriminants;
13066
70482933
RK
13067 -------------------------------
13068 -- Insert_Dereference_Action --
13069 -------------------------------
13070
13071 procedure Insert_Dereference_Action (N : Node_Id) is
70482933 13072 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
2e071734
AC
13073 -- Return true if type of P is derived from Checked_Pool;
13074
13075 -----------------------------
13076 -- Is_Checked_Storage_Pool --
13077 -----------------------------
70482933
RK
13078
13079 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
13080 T : Entity_Id;
761f7dcb 13081
70482933
RK
13082 begin
13083 if No (P) then
13084 return False;
13085 end if;
13086
13087 T := Etype (P);
13088 while T /= Etype (T) loop
13089 if Is_RTE (T, RE_Checked_Pool) then
13090 return True;
13091 else
13092 T := Etype (T);
13093 end if;
13094 end loop;
13095
13096 return False;
13097 end Is_Checked_Storage_Pool;
13098
b0d71355
HK
13099 -- Local variables
13100
bb9e2aa2
AC
13101 Context : constant Node_Id := Parent (N);
13102 Ptr_Typ : constant Entity_Id := Etype (N);
13103 Desig_Typ : constant Entity_Id :=
13104 Available_View (Designated_Type (Ptr_Typ));
13105 Loc : constant Source_Ptr := Sloc (N);
13106 Pool : constant Entity_Id := Associated_Storage_Pool (Ptr_Typ);
b0d71355 13107
51dcceec
AC
13108 Addr : Entity_Id;
13109 Alig : Entity_Id;
13110 Deref : Node_Id;
13111 Size : Entity_Id;
13112 Size_Bits : Node_Id;
13113 Stmt : Node_Id;
b0d71355 13114
70482933
RK
13115 -- Start of processing for Insert_Dereference_Action
13116
13117 begin
bb9e2aa2 13118 pragma Assert (Nkind (Context) = N_Explicit_Dereference);
e6f69614 13119
b0d71355
HK
13120 -- Do not re-expand a dereference which has already been processed by
13121 -- this routine.
13122
bb9e2aa2 13123 if Has_Dereference_Action (Context) then
70482933 13124 return;
70482933 13125
b0d71355
HK
13126 -- Do not perform this type of expansion for internally-generated
13127 -- dereferences.
70482933 13128
bb9e2aa2 13129 elsif not Comes_From_Source (Original_Node (Context)) then
b0d71355 13130 return;
70482933 13131
b0d71355
HK
13132 -- A dereference action is only applicable to objects which have been
13133 -- allocated on a checked pool.
70482933 13134
b0d71355
HK
13135 elsif not Is_Checked_Storage_Pool (Pool) then
13136 return;
13137 end if;
70482933 13138
b0d71355 13139 -- Extract the address of the dereferenced object. Generate:
8777c5a6 13140
b0d71355 13141 -- Addr : System.Address := <N>'Pool_Address;
70482933 13142
b0d71355 13143 Addr := Make_Temporary (Loc, 'P');
70482933 13144
b0d71355
HK
13145 Insert_Action (N,
13146 Make_Object_Declaration (Loc,
13147 Defining_Identifier => Addr,
13148 Object_Definition =>
e4494292 13149 New_Occurrence_Of (RTE (RE_Address), Loc),
b0d71355
HK
13150 Expression =>
13151 Make_Attribute_Reference (Loc,
13152 Prefix => Duplicate_Subexpr_Move_Checks (N),
13153 Attribute_Name => Name_Pool_Address)));
13154
13155 -- Calculate the size of the dereferenced object. Generate:
8777c5a6 13156
b0d71355
HK
13157 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
13158
13159 Deref :=
13160 Make_Explicit_Dereference (Loc,
13161 Prefix => Duplicate_Subexpr_Move_Checks (N));
13162 Set_Has_Dereference_Action (Deref);
70482933 13163
51dcceec
AC
13164 Size_Bits :=
13165 Make_Attribute_Reference (Loc,
13166 Prefix => Deref,
13167 Attribute_Name => Name_Size);
13168
13169 -- Special case of an unconstrained array: need to add descriptor size
13170
bb9e2aa2
AC
13171 if Is_Array_Type (Desig_Typ)
13172 and then not Is_Constrained (First_Subtype (Desig_Typ))
51dcceec
AC
13173 then
13174 Size_Bits :=
13175 Make_Op_Add (Loc,
13176 Left_Opnd =>
13177 Make_Attribute_Reference (Loc,
13178 Prefix =>
bb9e2aa2 13179 New_Occurrence_Of (First_Subtype (Desig_Typ), Loc),
51dcceec
AC
13180 Attribute_Name => Name_Descriptor_Size),
13181 Right_Opnd => Size_Bits);
13182 end if;
b0d71355 13183
51dcceec 13184 Size := Make_Temporary (Loc, 'S');
b0d71355
HK
13185 Insert_Action (N,
13186 Make_Object_Declaration (Loc,
13187 Defining_Identifier => Size,
13188 Object_Definition =>
e4494292 13189 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
b0d71355
HK
13190 Expression =>
13191 Make_Op_Divide (Loc,
51dcceec
AC
13192 Left_Opnd => Size_Bits,
13193 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
70482933 13194
b0d71355
HK
13195 -- Calculate the alignment of the dereferenced object. Generate:
13196 -- Alig : constant Storage_Count := <N>.all'Alignment;
70482933 13197
b0d71355
HK
13198 Deref :=
13199 Make_Explicit_Dereference (Loc,
13200 Prefix => Duplicate_Subexpr_Move_Checks (N));
13201 Set_Has_Dereference_Action (Deref);
13202
13203 Alig := Make_Temporary (Loc, 'A');
b0d71355
HK
13204 Insert_Action (N,
13205 Make_Object_Declaration (Loc,
13206 Defining_Identifier => Alig,
13207 Object_Definition =>
e4494292 13208 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
b0d71355
HK
13209 Expression =>
13210 Make_Attribute_Reference (Loc,
13211 Prefix => Deref,
13212 Attribute_Name => Name_Alignment)));
13213
13214 -- A dereference of a controlled object requires special processing. The
13215 -- finalization machinery requests additional space from the underlying
13216 -- pool to allocate and hide two pointers. As a result, a checked pool
13217 -- may mark the wrong memory as valid. Since checked pools do not have
13218 -- knowledge of hidden pointers, we have to bring the two pointers back
13219 -- in view in order to restore the original state of the object.
13220
bb9e2aa2
AC
13221 -- The address manipulation is not performed for access types that are
13222 -- subject to pragma No_Heap_Finalization because the two pointers do
13223 -- not exist in the first place.
13224
13225 if No_Heap_Finalization (Ptr_Typ) then
13226 null;
13227
13228 elsif Needs_Finalization (Desig_Typ) then
b0d71355
HK
13229
13230 -- Adjust the address and size of the dereferenced object. Generate:
13231 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
13232
13233 Stmt :=
13234 Make_Procedure_Call_Statement (Loc,
13235 Name =>
e4494292 13236 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
b0d71355 13237 Parameter_Associations => New_List (
e4494292
RD
13238 New_Occurrence_Of (Addr, Loc),
13239 New_Occurrence_Of (Size, Loc),
13240 New_Occurrence_Of (Alig, Loc)));
b0d71355
HK
13241
13242 -- Class-wide types complicate things because we cannot determine
13243 -- statically whether the actual object is truly controlled. We must
13244 -- generate a runtime check to detect this property. Generate:
13245 --
13246 -- if Needs_Finalization (<N>.all'Tag) then
13247 -- <Stmt>;
13248 -- end if;
13249
bb9e2aa2 13250 if Is_Class_Wide_Type (Desig_Typ) then
b0d71355
HK
13251 Deref :=
13252 Make_Explicit_Dereference (Loc,
13253 Prefix => Duplicate_Subexpr_Move_Checks (N));
13254 Set_Has_Dereference_Action (Deref);
13255
13256 Stmt :=
8b1011c0 13257 Make_Implicit_If_Statement (N,
b0d71355
HK
13258 Condition =>
13259 Make_Function_Call (Loc,
13260 Name =>
e4494292 13261 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
b0d71355
HK
13262 Parameter_Associations => New_List (
13263 Make_Attribute_Reference (Loc,
13264 Prefix => Deref,
13265 Attribute_Name => Name_Tag))),
13266 Then_Statements => New_List (Stmt));
13267 end if;
13268
13269 Insert_Action (N, Stmt);
13270 end if;
13271
13272 -- Generate:
13273 -- Dereference (Pool, Addr, Size, Alig);
13274
13275 Insert_Action (N,
13276 Make_Procedure_Call_Statement (Loc,
13277 Name =>
e4494292 13278 New_Occurrence_Of
b0d71355
HK
13279 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
13280 Parameter_Associations => New_List (
e4494292
RD
13281 New_Occurrence_Of (Pool, Loc),
13282 New_Occurrence_Of (Addr, Loc),
13283 New_Occurrence_Of (Size, Loc),
13284 New_Occurrence_Of (Alig, Loc))));
b0d71355
HK
13285
13286 -- Mark the explicit dereference as processed to avoid potential
13287 -- infinite expansion.
13288
bb9e2aa2 13289 Set_Has_Dereference_Action (Context);
70482933 13290
fbf5a39b
AC
13291 exception
13292 when RE_Not_Available =>
13293 return;
70482933
RK
13294 end Insert_Dereference_Action;
13295
fdfcc663
AC
13296 --------------------------------
13297 -- Integer_Promotion_Possible --
13298 --------------------------------
13299
13300 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
13301 Operand : constant Node_Id := Expression (N);
13302 Operand_Type : constant Entity_Id := Etype (Operand);
13303 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
13304
13305 begin
13306 pragma Assert (Nkind (N) = N_Type_Conversion);
13307
13308 return
13309
13310 -- We only do the transformation for source constructs. We assume
13311 -- that the expander knows what it is doing when it generates code.
13312
13313 Comes_From_Source (N)
13314
13315 -- If the operand type is Short_Integer or Short_Short_Integer,
13316 -- then we will promote to Integer, which is available on all
13317 -- targets, and is sufficient to ensure no intermediate overflow.
13318 -- Furthermore it is likely to be as efficient or more efficient
13319 -- than using the smaller type for the computation so we do this
13320 -- unconditionally.
13321
13322 and then
13323 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
761f7dcb 13324 or else
fdfcc663
AC
13325 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
13326
13327 -- Test for interesting operation, which includes addition,
5f3f175d
AC
13328 -- division, exponentiation, multiplication, subtraction, absolute
13329 -- value and unary negation. Unary "+" is omitted since it is a
13330 -- no-op and thus can't overflow.
fdfcc663 13331
5f3f175d
AC
13332 and then Nkind_In (Operand, N_Op_Abs,
13333 N_Op_Add,
fdfcc663
AC
13334 N_Op_Divide,
13335 N_Op_Expon,
13336 N_Op_Minus,
13337 N_Op_Multiply,
13338 N_Op_Subtract);
13339 end Integer_Promotion_Possible;
13340
70482933
RK
13341 ------------------------------
13342 -- Make_Array_Comparison_Op --
13343 ------------------------------
13344
13345 -- This is a hand-coded expansion of the following generic function:
13346
13347 -- generic
13348 -- type elem is (<>);
13349 -- type index is (<>);
13350 -- type a is array (index range <>) of elem;
20b5d666 13351
70482933
RK
13352 -- function Gnnn (X : a; Y: a) return boolean is
13353 -- J : index := Y'first;
20b5d666 13354
70482933
RK
13355 -- begin
13356 -- if X'length = 0 then
13357 -- return false;
20b5d666 13358
70482933
RK
13359 -- elsif Y'length = 0 then
13360 -- return true;
20b5d666 13361
70482933
RK
13362 -- else
13363 -- for I in X'range loop
13364 -- if X (I) = Y (J) then
13365 -- if J = Y'last then
13366 -- exit;
13367 -- else
13368 -- J := index'succ (J);
13369 -- end if;
20b5d666 13370
70482933
RK
13371 -- else
13372 -- return X (I) > Y (J);
13373 -- end if;
13374 -- end loop;
20b5d666 13375
70482933
RK
13376 -- return X'length > Y'length;
13377 -- end if;
13378 -- end Gnnn;
13379
13380 -- Note that since we are essentially doing this expansion by hand, we
13381 -- do not need to generate an actual or formal generic part, just the
13382 -- instantiated function itself.
13383
bb012790
AC
13384 -- Perhaps we could have the actual generic available in the run-time,
13385 -- obtained by rtsfind, and actually expand a real instantiation ???
13386
70482933 13387 function Make_Array_Comparison_Op
2e071734
AC
13388 (Typ : Entity_Id;
13389 Nod : Node_Id) return Node_Id
70482933
RK
13390 is
13391 Loc : constant Source_Ptr := Sloc (Nod);
13392
13393 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
13394 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
13395 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
13396 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
13397
13398 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
13399
13400 Loop_Statement : Node_Id;
13401 Loop_Body : Node_Id;
13402 If_Stat : Node_Id;
13403 Inner_If : Node_Id;
13404 Final_Expr : Node_Id;
13405 Func_Body : Node_Id;
13406 Func_Name : Entity_Id;
13407 Formals : List_Id;
13408 Length1 : Node_Id;
13409 Length2 : Node_Id;
13410
13411 begin
13412 -- if J = Y'last then
13413 -- exit;
13414 -- else
13415 -- J := index'succ (J);
13416 -- end if;
13417
13418 Inner_If :=
13419 Make_Implicit_If_Statement (Nod,
13420 Condition =>
13421 Make_Op_Eq (Loc,
e4494292 13422 Left_Opnd => New_Occurrence_Of (J, Loc),
70482933
RK
13423 Right_Opnd =>
13424 Make_Attribute_Reference (Loc,
e4494292 13425 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
13426 Attribute_Name => Name_Last)),
13427
13428 Then_Statements => New_List (
13429 Make_Exit_Statement (Loc)),
13430
13431 Else_Statements =>
13432 New_List (
13433 Make_Assignment_Statement (Loc,
e4494292 13434 Name => New_Occurrence_Of (J, Loc),
70482933
RK
13435 Expression =>
13436 Make_Attribute_Reference (Loc,
e4494292 13437 Prefix => New_Occurrence_Of (Index, Loc),
70482933 13438 Attribute_Name => Name_Succ,
e4494292 13439 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
70482933
RK
13440
13441 -- if X (I) = Y (J) then
13442 -- if ... end if;
13443 -- else
13444 -- return X (I) > Y (J);
13445 -- end if;
13446
13447 Loop_Body :=
13448 Make_Implicit_If_Statement (Nod,
13449 Condition =>
13450 Make_Op_Eq (Loc,
13451 Left_Opnd =>
13452 Make_Indexed_Component (Loc,
e4494292
RD
13453 Prefix => New_Occurrence_Of (X, Loc),
13454 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
13455
13456 Right_Opnd =>
13457 Make_Indexed_Component (Loc,
e4494292
RD
13458 Prefix => New_Occurrence_Of (Y, Loc),
13459 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
70482933
RK
13460
13461 Then_Statements => New_List (Inner_If),
13462
13463 Else_Statements => New_List (
d766cee3 13464 Make_Simple_Return_Statement (Loc,
70482933
RK
13465 Expression =>
13466 Make_Op_Gt (Loc,
13467 Left_Opnd =>
13468 Make_Indexed_Component (Loc,
e4494292
RD
13469 Prefix => New_Occurrence_Of (X, Loc),
13470 Expressions => New_List (New_Occurrence_Of (I, Loc))),
70482933
RK
13471
13472 Right_Opnd =>
13473 Make_Indexed_Component (Loc,
e4494292 13474 Prefix => New_Occurrence_Of (Y, Loc),
70482933 13475 Expressions => New_List (
e4494292 13476 New_Occurrence_Of (J, Loc)))))));
70482933
RK
13477
13478 -- for I in X'range loop
13479 -- if ... end if;
13480 -- end loop;
13481
13482 Loop_Statement :=
13483 Make_Implicit_Loop_Statement (Nod,
13484 Identifier => Empty,
13485
13486 Iteration_Scheme =>
13487 Make_Iteration_Scheme (Loc,
13488 Loop_Parameter_Specification =>
13489 Make_Loop_Parameter_Specification (Loc,
13490 Defining_Identifier => I,
13491 Discrete_Subtype_Definition =>
13492 Make_Attribute_Reference (Loc,
e4494292 13493 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
13494 Attribute_Name => Name_Range))),
13495
13496 Statements => New_List (Loop_Body));
13497
13498 -- if X'length = 0 then
13499 -- return false;
13500 -- elsif Y'length = 0 then
13501 -- return true;
13502 -- else
13503 -- for ... loop ... end loop;
13504 -- return X'length > Y'length;
13505 -- end if;
13506
13507 Length1 :=
13508 Make_Attribute_Reference (Loc,
e4494292 13509 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
13510 Attribute_Name => Name_Length);
13511
13512 Length2 :=
13513 Make_Attribute_Reference (Loc,
e4494292 13514 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
13515 Attribute_Name => Name_Length);
13516
13517 Final_Expr :=
13518 Make_Op_Gt (Loc,
13519 Left_Opnd => Length1,
13520 Right_Opnd => Length2);
13521
13522 If_Stat :=
13523 Make_Implicit_If_Statement (Nod,
13524 Condition =>
13525 Make_Op_Eq (Loc,
13526 Left_Opnd =>
13527 Make_Attribute_Reference (Loc,
e4494292 13528 Prefix => New_Occurrence_Of (X, Loc),
70482933
RK
13529 Attribute_Name => Name_Length),
13530 Right_Opnd =>
13531 Make_Integer_Literal (Loc, 0)),
13532
13533 Then_Statements =>
13534 New_List (
d766cee3 13535 Make_Simple_Return_Statement (Loc,
e4494292 13536 Expression => New_Occurrence_Of (Standard_False, Loc))),
70482933
RK
13537
13538 Elsif_Parts => New_List (
13539 Make_Elsif_Part (Loc,
13540 Condition =>
13541 Make_Op_Eq (Loc,
13542 Left_Opnd =>
13543 Make_Attribute_Reference (Loc,
e4494292 13544 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
13545 Attribute_Name => Name_Length),
13546 Right_Opnd =>
13547 Make_Integer_Literal (Loc, 0)),
13548
13549 Then_Statements =>
13550 New_List (
d766cee3 13551 Make_Simple_Return_Statement (Loc,
e4494292 13552 Expression => New_Occurrence_Of (Standard_True, Loc))))),
70482933
RK
13553
13554 Else_Statements => New_List (
13555 Loop_Statement,
d766cee3 13556 Make_Simple_Return_Statement (Loc,
70482933
RK
13557 Expression => Final_Expr)));
13558
13559 -- (X : a; Y: a)
13560
13561 Formals := New_List (
13562 Make_Parameter_Specification (Loc,
13563 Defining_Identifier => X,
e4494292 13564 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
13565
13566 Make_Parameter_Specification (Loc,
13567 Defining_Identifier => Y,
e4494292 13568 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933
RK
13569
13570 -- function Gnnn (...) return boolean is
13571 -- J : index := Y'first;
13572 -- begin
13573 -- if ... end if;
13574 -- end Gnnn;
13575
191fcb3a 13576 Func_Name := Make_Temporary (Loc, 'G');
70482933
RK
13577
13578 Func_Body :=
13579 Make_Subprogram_Body (Loc,
13580 Specification =>
13581 Make_Function_Specification (Loc,
13582 Defining_Unit_Name => Func_Name,
13583 Parameter_Specifications => Formals,
e4494292 13584 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
70482933
RK
13585
13586 Declarations => New_List (
13587 Make_Object_Declaration (Loc,
13588 Defining_Identifier => J,
e4494292 13589 Object_Definition => New_Occurrence_Of (Index, Loc),
70482933
RK
13590 Expression =>
13591 Make_Attribute_Reference (Loc,
e4494292 13592 Prefix => New_Occurrence_Of (Y, Loc),
70482933
RK
13593 Attribute_Name => Name_First))),
13594
13595 Handled_Statement_Sequence =>
13596 Make_Handled_Sequence_Of_Statements (Loc,
13597 Statements => New_List (If_Stat)));
13598
13599 return Func_Body;
70482933
RK
13600 end Make_Array_Comparison_Op;
13601
13602 ---------------------------
13603 -- Make_Boolean_Array_Op --
13604 ---------------------------
13605
685094bf
RD
13606 -- For logical operations on boolean arrays, expand in line the following,
13607 -- replacing 'and' with 'or' or 'xor' where needed:
70482933
RK
13608
13609 -- function Annn (A : typ; B: typ) return typ is
13610 -- C : typ;
13611 -- begin
13612 -- for J in A'range loop
13613 -- C (J) := A (J) op B (J);
13614 -- end loop;
13615 -- return C;
13616 -- end Annn;
13617
13618 -- Here typ is the boolean array type
13619
13620 function Make_Boolean_Array_Op
2e071734
AC
13621 (Typ : Entity_Id;
13622 N : Node_Id) return Node_Id
70482933
RK
13623 is
13624 Loc : constant Source_Ptr := Sloc (N);
13625
13626 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
13627 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
13628 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
13629 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
13630
13631 A_J : Node_Id;
13632 B_J : Node_Id;
13633 C_J : Node_Id;
13634 Op : Node_Id;
13635
13636 Formals : List_Id;
13637 Func_Name : Entity_Id;
13638 Func_Body : Node_Id;
13639 Loop_Statement : Node_Id;
13640
13641 begin
13642 A_J :=
13643 Make_Indexed_Component (Loc,
e4494292
RD
13644 Prefix => New_Occurrence_Of (A, Loc),
13645 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
13646
13647 B_J :=
13648 Make_Indexed_Component (Loc,
e4494292
RD
13649 Prefix => New_Occurrence_Of (B, Loc),
13650 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
13651
13652 C_J :=
13653 Make_Indexed_Component (Loc,
e4494292
RD
13654 Prefix => New_Occurrence_Of (C, Loc),
13655 Expressions => New_List (New_Occurrence_Of (J, Loc)));
70482933
RK
13656
13657 if Nkind (N) = N_Op_And then
13658 Op :=
13659 Make_Op_And (Loc,
13660 Left_Opnd => A_J,
13661 Right_Opnd => B_J);
13662
13663 elsif Nkind (N) = N_Op_Or then
13664 Op :=
13665 Make_Op_Or (Loc,
13666 Left_Opnd => A_J,
13667 Right_Opnd => B_J);
13668
13669 else
13670 Op :=
13671 Make_Op_Xor (Loc,
13672 Left_Opnd => A_J,
13673 Right_Opnd => B_J);
13674 end if;
13675
13676 Loop_Statement :=
13677 Make_Implicit_Loop_Statement (N,
13678 Identifier => Empty,
13679
13680 Iteration_Scheme =>
13681 Make_Iteration_Scheme (Loc,
13682 Loop_Parameter_Specification =>
13683 Make_Loop_Parameter_Specification (Loc,
13684 Defining_Identifier => J,
13685 Discrete_Subtype_Definition =>
13686 Make_Attribute_Reference (Loc,
e4494292 13687 Prefix => New_Occurrence_Of (A, Loc),
70482933
RK
13688 Attribute_Name => Name_Range))),
13689
13690 Statements => New_List (
13691 Make_Assignment_Statement (Loc,
13692 Name => C_J,
13693 Expression => Op)));
13694
13695 Formals := New_List (
13696 Make_Parameter_Specification (Loc,
13697 Defining_Identifier => A,
e4494292 13698 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
70482933
RK
13699
13700 Make_Parameter_Specification (Loc,
13701 Defining_Identifier => B,
e4494292 13702 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
70482933 13703
191fcb3a 13704 Func_Name := Make_Temporary (Loc, 'A');
70482933
RK
13705 Set_Is_Inlined (Func_Name);
13706
13707 Func_Body :=
13708 Make_Subprogram_Body (Loc,
13709 Specification =>
13710 Make_Function_Specification (Loc,
13711 Defining_Unit_Name => Func_Name,
13712 Parameter_Specifications => Formals,
e4494292 13713 Result_Definition => New_Occurrence_Of (Typ, Loc)),
70482933
RK
13714
13715 Declarations => New_List (
13716 Make_Object_Declaration (Loc,
13717 Defining_Identifier => C,
e4494292 13718 Object_Definition => New_Occurrence_Of (Typ, Loc))),
70482933
RK
13719
13720 Handled_Statement_Sequence =>
13721 Make_Handled_Sequence_Of_Statements (Loc,
13722 Statements => New_List (
13723 Loop_Statement,
d766cee3 13724 Make_Simple_Return_Statement (Loc,
e4494292 13725 Expression => New_Occurrence_Of (C, Loc)))));
70482933
RK
13726
13727 return Func_Body;
13728 end Make_Boolean_Array_Op;
13729
b6b5cca8
AC
13730 -----------------------------------------
13731 -- Minimized_Eliminated_Overflow_Check --
13732 -----------------------------------------
13733
13734 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
13735 begin
13736 return
13737 Is_Signed_Integer_Type (Etype (N))
a7f1b24f 13738 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
b6b5cca8
AC
13739 end Minimized_Eliminated_Overflow_Check;
13740
0580d807
AC
13741 --------------------------------
13742 -- Optimize_Length_Comparison --
13743 --------------------------------
13744
13745 procedure Optimize_Length_Comparison (N : Node_Id) is
13746 Loc : constant Source_Ptr := Sloc (N);
13747 Typ : constant Entity_Id := Etype (N);
13748 Result : Node_Id;
13749
13750 Left : Node_Id;
13751 Right : Node_Id;
13752 -- First and Last attribute reference nodes, which end up as left and
13753 -- right operands of the optimized result.
13754
13755 Is_Zero : Boolean;
13756 -- True for comparison operand of zero
13757
13758 Comp : Node_Id;
13759 -- Comparison operand, set only if Is_Zero is false
13760
dcd5fd67 13761 Ent : Entity_Id := Empty;
0580d807
AC
13762 -- Entity whose length is being compared
13763
dcd5fd67 13764 Index : Node_Id := Empty;
0580d807
AC
13765 -- Integer_Literal node for length attribute expression, or Empty
13766 -- if there is no such expression present.
13767
13768 Ityp : Entity_Id;
13769 -- Type of array index to which 'Length is applied
13770
13771 Op : Node_Kind := Nkind (N);
13772 -- Kind of comparison operator, gets flipped if operands backwards
13773
13774 function Is_Optimizable (N : Node_Id) return Boolean;
abcd9db2
AC
13775 -- Tests N to see if it is an optimizable comparison value (defined as
13776 -- constant zero or one, or something else where the value is known to
13777 -- be positive and in the range of 32-bits, and where the corresponding
13778 -- Length value is also known to be 32-bits. If result is true, sets
13779 -- Is_Zero, Ityp, and Comp accordingly.
0580d807
AC
13780
13781 function Is_Entity_Length (N : Node_Id) return Boolean;
13782 -- Tests if N is a length attribute applied to a simple entity. If so,
13783 -- returns True, and sets Ent to the entity, and Index to the integer
13784 -- literal provided as an attribute expression, or to Empty if none.
13785 -- Also returns True if the expression is a generated type conversion
13786 -- whose expression is of the desired form. This latter case arises
13787 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
13788 -- to check for being in range, which is not needed in this context.
13789 -- Returns False if neither condition holds.
13790
13791 function Prepare_64 (N : Node_Id) return Node_Id;
13792 -- Given a discrete expression, returns a Long_Long_Integer typed
13793 -- expression representing the underlying value of the expression.
13794 -- This is done with an unchecked conversion to the result type. We
13795 -- use unchecked conversion to handle the enumeration type case.
13796
13797 ----------------------
13798 -- Is_Entity_Length --
13799 ----------------------
13800
13801 function Is_Entity_Length (N : Node_Id) return Boolean is
13802 begin
13803 if Nkind (N) = N_Attribute_Reference
13804 and then Attribute_Name (N) = Name_Length
13805 and then Is_Entity_Name (Prefix (N))
13806 then
13807 Ent := Entity (Prefix (N));
13808
13809 if Present (Expressions (N)) then
13810 Index := First (Expressions (N));
13811 else
13812 Index := Empty;
13813 end if;
13814
13815 return True;
13816
13817 elsif Nkind (N) = N_Type_Conversion
13818 and then not Comes_From_Source (N)
13819 then
13820 return Is_Entity_Length (Expression (N));
13821
13822 else
13823 return False;
13824 end if;
13825 end Is_Entity_Length;
13826
13827 --------------------
13828 -- Is_Optimizable --
13829 --------------------
13830
13831 function Is_Optimizable (N : Node_Id) return Boolean is
13832 Val : Uint;
13833 OK : Boolean;
13834 Lo : Uint;
13835 Hi : Uint;
13836 Indx : Node_Id;
13837
13838 begin
13839 if Compile_Time_Known_Value (N) then
13840 Val := Expr_Value (N);
13841
13842 if Val = Uint_0 then
13843 Is_Zero := True;
13844 Comp := Empty;
13845 return True;
13846
13847 elsif Val = Uint_1 then
13848 Is_Zero := False;
13849 Comp := Empty;
13850 return True;
13851 end if;
13852 end if;
13853
13854 -- Here we have to make sure of being within 32-bits
13855
13856 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
13857
13858 if not OK
abcd9db2 13859 or else Lo < Uint_1
0580d807
AC
13860 or else Hi > UI_From_Int (Int'Last)
13861 then
13862 return False;
13863 end if;
13864
abcd9db2
AC
13865 -- Comparison value was within range, so now we must check the index
13866 -- value to make sure it is also within 32-bits.
0580d807
AC
13867
13868 Indx := First_Index (Etype (Ent));
13869
13870 if Present (Index) then
13871 for J in 2 .. UI_To_Int (Intval (Index)) loop
13872 Next_Index (Indx);
13873 end loop;
13874 end if;
13875
13876 Ityp := Etype (Indx);
13877
13878 if Esize (Ityp) > 32 then
13879 return False;
13880 end if;
13881
13882 Is_Zero := False;
13883 Comp := N;
13884 return True;
13885 end Is_Optimizable;
13886
13887 ----------------
13888 -- Prepare_64 --
13889 ----------------
13890
13891 function Prepare_64 (N : Node_Id) return Node_Id is
13892 begin
13893 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
13894 end Prepare_64;
13895
13896 -- Start of processing for Optimize_Length_Comparison
13897
13898 begin
13899 -- Nothing to do if not a comparison
13900
13901 if Op not in N_Op_Compare then
13902 return;
13903 end if;
13904
f96fd197 13905 -- Nothing to do if special -gnatd.P debug flag set.
0580d807 13906
f96fd197 13907 if Debug_Flag_Dot_PP then
0580d807
AC
13908 return;
13909 end if;
13910
13911 -- Ent'Length op 0/1
13912
13913 if Is_Entity_Length (Left_Opnd (N))
13914 and then Is_Optimizable (Right_Opnd (N))
13915 then
13916 null;
13917
13918 -- 0/1 op Ent'Length
13919
13920 elsif Is_Entity_Length (Right_Opnd (N))
13921 and then Is_Optimizable (Left_Opnd (N))
13922 then
13923 -- Flip comparison to opposite sense
13924
13925 case Op is
13926 when N_Op_Lt => Op := N_Op_Gt;
13927 when N_Op_Le => Op := N_Op_Ge;
13928 when N_Op_Gt => Op := N_Op_Lt;
13929 when N_Op_Ge => Op := N_Op_Le;
13930 when others => null;
13931 end case;
13932
13933 -- Else optimization not possible
13934
13935 else
13936 return;
13937 end if;
13938
13939 -- Fall through if we will do the optimization
13940
13941 -- Cases to handle:
13942
13943 -- X'Length = 0 => X'First > X'Last
13944 -- X'Length = 1 => X'First = X'Last
13945 -- X'Length = n => X'First + (n - 1) = X'Last
13946
13947 -- X'Length /= 0 => X'First <= X'Last
13948 -- X'Length /= 1 => X'First /= X'Last
13949 -- X'Length /= n => X'First + (n - 1) /= X'Last
13950
13951 -- X'Length >= 0 => always true, warn
13952 -- X'Length >= 1 => X'First <= X'Last
13953 -- X'Length >= n => X'First + (n - 1) <= X'Last
13954
13955 -- X'Length > 0 => X'First <= X'Last
13956 -- X'Length > 1 => X'First < X'Last
13957 -- X'Length > n => X'First + (n - 1) < X'Last
13958
13959 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
13960 -- X'Length <= 1 => X'First >= X'Last
13961 -- X'Length <= n => X'First + (n - 1) >= X'Last
13962
13963 -- X'Length < 0 => always false (warn)
13964 -- X'Length < 1 => X'First > X'Last
13965 -- X'Length < n => X'First + (n - 1) > X'Last
13966
13967 -- Note: for the cases of n (not constant 0,1), we require that the
13968 -- corresponding index type be integer or shorter (i.e. not 64-bit),
13969 -- and the same for the comparison value. Then we do the comparison
13970 -- using 64-bit arithmetic (actually long long integer), so that we
13971 -- cannot have overflow intefering with the result.
13972
13973 -- First deal with warning cases
13974
13975 if Is_Zero then
13976 case Op is
13977
13978 -- X'Length >= 0
13979
13980 when N_Op_Ge =>
13981 Rewrite (N,
13982 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
13983 Analyze_And_Resolve (N, Typ);
13984 Warn_On_Known_Condition (N);
13985 return;
13986
13987 -- X'Length < 0
13988
13989 when N_Op_Lt =>
13990 Rewrite (N,
13991 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
13992 Analyze_And_Resolve (N, Typ);
13993 Warn_On_Known_Condition (N);
13994 return;
13995
13996 when N_Op_Le =>
13997 if Constant_Condition_Warnings
13998 and then Comes_From_Source (Original_Node (N))
13999 then
324ac540 14000 Error_Msg_N ("could replace by ""'=""?c?", N);
0580d807
AC
14001 end if;
14002
14003 Op := N_Op_Eq;
14004
14005 when others =>
14006 null;
14007 end case;
14008 end if;
14009
14010 -- Build the First reference we will use
14011
14012 Left :=
14013 Make_Attribute_Reference (Loc,
14014 Prefix => New_Occurrence_Of (Ent, Loc),
14015 Attribute_Name => Name_First);
14016
14017 if Present (Index) then
14018 Set_Expressions (Left, New_List (New_Copy (Index)));
14019 end if;
14020
14021 -- If general value case, then do the addition of (n - 1), and
14022 -- also add the needed conversions to type Long_Long_Integer.
14023
14024 if Present (Comp) then
14025 Left :=
14026 Make_Op_Add (Loc,
14027 Left_Opnd => Prepare_64 (Left),
14028 Right_Opnd =>
14029 Make_Op_Subtract (Loc,
14030 Left_Opnd => Prepare_64 (Comp),
14031 Right_Opnd => Make_Integer_Literal (Loc, 1)));
14032 end if;
14033
14034 -- Build the Last reference we will use
14035
14036 Right :=
14037 Make_Attribute_Reference (Loc,
14038 Prefix => New_Occurrence_Of (Ent, Loc),
14039 Attribute_Name => Name_Last);
14040
14041 if Present (Index) then
14042 Set_Expressions (Right, New_List (New_Copy (Index)));
14043 end if;
14044
14045 -- If general operand, convert Last reference to Long_Long_Integer
14046
14047 if Present (Comp) then
14048 Right := Prepare_64 (Right);
14049 end if;
14050
14051 -- Check for cases to optimize
14052
14053 -- X'Length = 0 => X'First > X'Last
14054 -- X'Length < 1 => X'First > X'Last
14055 -- X'Length < n => X'First + (n - 1) > X'Last
14056
14057 if (Is_Zero and then Op = N_Op_Eq)
14058 or else (not Is_Zero and then Op = N_Op_Lt)
14059 then
14060 Result :=
14061 Make_Op_Gt (Loc,
14062 Left_Opnd => Left,
14063 Right_Opnd => Right);
14064
14065 -- X'Length = 1 => X'First = X'Last
14066 -- X'Length = n => X'First + (n - 1) = X'Last
14067
14068 elsif not Is_Zero and then Op = N_Op_Eq then
14069 Result :=
14070 Make_Op_Eq (Loc,
14071 Left_Opnd => Left,
14072 Right_Opnd => Right);
14073
14074 -- X'Length /= 0 => X'First <= X'Last
14075 -- X'Length > 0 => X'First <= X'Last
14076
14077 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
14078 Result :=
14079 Make_Op_Le (Loc,
14080 Left_Opnd => Left,
14081 Right_Opnd => Right);
14082
14083 -- X'Length /= 1 => X'First /= X'Last
14084 -- X'Length /= n => X'First + (n - 1) /= X'Last
14085
14086 elsif not Is_Zero and then Op = N_Op_Ne then
14087 Result :=
14088 Make_Op_Ne (Loc,
14089 Left_Opnd => Left,
14090 Right_Opnd => Right);
14091
14092 -- X'Length >= 1 => X'First <= X'Last
14093 -- X'Length >= n => X'First + (n - 1) <= X'Last
14094
14095 elsif not Is_Zero and then Op = N_Op_Ge then
14096 Result :=
14097 Make_Op_Le (Loc,
14098 Left_Opnd => Left,
9dd8f36f 14099 Right_Opnd => Right);
0580d807
AC
14100
14101 -- X'Length > 1 => X'First < X'Last
14102 -- X'Length > n => X'First + (n = 1) < X'Last
14103
14104 elsif not Is_Zero and then Op = N_Op_Gt then
14105 Result :=
14106 Make_Op_Lt (Loc,
14107 Left_Opnd => Left,
14108 Right_Opnd => Right);
14109
14110 -- X'Length <= 1 => X'First >= X'Last
14111 -- X'Length <= n => X'First + (n - 1) >= X'Last
14112
14113 elsif not Is_Zero and then Op = N_Op_Le then
14114 Result :=
14115 Make_Op_Ge (Loc,
14116 Left_Opnd => Left,
14117 Right_Opnd => Right);
14118
14119 -- Should not happen at this stage
14120
14121 else
14122 raise Program_Error;
14123 end if;
14124
14125 -- Rewrite and finish up
14126
14127 Rewrite (N, Result);
14128 Analyze_And_Resolve (N, Typ);
14129 return;
14130 end Optimize_Length_Comparison;
14131
0da343bc
AC
14132 --------------------------------
14133 -- Process_If_Case_Statements --
14134 --------------------------------
14135
14136 procedure Process_If_Case_Statements (N : Node_Id; Stmts : List_Id) is
14137 Decl : Node_Id;
14138
14139 begin
14140 Decl := First (Stmts);
14141 while Present (Decl) loop
14142 if Nkind (Decl) = N_Object_Declaration
14143 and then Is_Finalizable_Transient (Decl, N)
14144 then
937e9676 14145 Process_Transient_In_Expression (Decl, N, Stmts);
0da343bc
AC
14146 end if;
14147
14148 Next (Decl);
14149 end loop;
14150 end Process_If_Case_Statements;
14151
937e9676
AC
14152 -------------------------------------
14153 -- Process_Transient_In_Expression --
14154 -------------------------------------
b2c28399 14155
937e9676
AC
14156 procedure Process_Transient_In_Expression
14157 (Obj_Decl : Node_Id;
14158 Expr : Node_Id;
14159 Stmts : List_Id)
7782ff67 14160 is
937e9676
AC
14161 Loc : constant Source_Ptr := Sloc (Obj_Decl);
14162 Obj_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
0da343bc 14163
937e9676 14164 Hook_Context : constant Node_Id := Find_Hook_Context (Expr);
4b17187f
AC
14165 -- The node on which to insert the hook as an action. This is usually
14166 -- the innermost enclosing non-transient construct.
064f4527 14167
937e9676
AC
14168 Fin_Call : Node_Id;
14169 Hook_Assign : Node_Id;
14170 Hook_Clear : Node_Id;
14171 Hook_Decl : Node_Id;
14172 Hook_Insert : Node_Id;
14173 Ptr_Decl : Node_Id;
14174
4b17187f
AC
14175 Fin_Context : Node_Id;
14176 -- The node after which to insert the finalization actions of the
937e9676 14177 -- transient object.
b2c28399 14178
8942b30c 14179 begin
937e9676
AC
14180 pragma Assert (Nkind_In (Expr, N_Case_Expression,
14181 N_Expression_With_Actions,
14182 N_If_Expression));
7782ff67
AC
14183
14184 -- When the context is a Boolean evaluation, all three nodes capture the
14185 -- result of their computation in a local temporary:
14186
14187 -- do
14188 -- Trans_Id : Ctrl_Typ := ...;
14189 -- Result : constant Boolean := ... Trans_Id ...;
14190 -- <finalize Trans_Id>
14191 -- in Result end;
14192
937e9676
AC
14193 -- As a result, the finalization of any transient objects can safely
14194 -- take place after the result capture.
7782ff67
AC
14195
14196 -- ??? could this be extended to elementary types?
14197
937e9676 14198 if Is_Boolean_Type (Etype (Expr)) then
7782ff67
AC
14199 Fin_Context := Last (Stmts);
14200
937e9676
AC
14201 -- Otherwise the immediate context may not be safe enough to carry
14202 -- out transient object finalization due to aliasing and nesting of
14203 -- constructs. Insert calls to [Deep_]Finalize after the innermost
7782ff67
AC
14204 -- enclosing non-transient construct.
14205
8942b30c 14206 else
4b17187f 14207 Fin_Context := Hook_Context;
8942b30c 14208 end if;
064f4527 14209
937e9676
AC
14210 -- Mark the transient object as successfully processed to avoid double
14211 -- finalization.
b2c28399 14212
937e9676 14213 Set_Is_Finalized_Transient (Obj_Id);
b2c28399 14214
937e9676
AC
14215 -- Construct all the pieces necessary to hook and finalize a transient
14216 -- object.
b2c28399 14217
937e9676
AC
14218 Build_Transient_Object_Statements
14219 (Obj_Decl => Obj_Decl,
14220 Fin_Call => Fin_Call,
14221 Hook_Assign => Hook_Assign,
14222 Hook_Clear => Hook_Clear,
14223 Hook_Decl => Hook_Decl,
14224 Ptr_Decl => Ptr_Decl,
14225 Finalize_Obj => False);
b2c28399 14226
937e9676
AC
14227 -- Add the access type which provides a reference to the transient
14228 -- object. Generate:
b2c28399 14229
937e9676 14230 -- type Ptr_Typ is access all Desig_Typ;
b2c28399 14231
937e9676
AC
14232 Insert_Action (Hook_Context, Ptr_Decl);
14233
14234 -- Add the temporary which acts as a hook to the transient object.
14235 -- Generate:
b2c28399 14236
4b17187f 14237 -- Hook : Ptr_Id := null;
b2c28399 14238
937e9676 14239 Insert_Action (Hook_Context, Hook_Decl);
b2c28399 14240
937e9676
AC
14241 -- When the transient object is initialized by an aggregate, the hook
14242 -- must capture the object after the last aggregate assignment takes
14243 -- place. Only then is the object considered initialized. Generate:
b2c28399 14244
937e9676 14245 -- Hook := Ptr_Typ (Obj_Id);
b2c28399 14246 -- <or>
4b17187f 14247 -- Hook := Obj_Id'Unrestricted_Access;
b2c28399 14248
937e9676 14249 if Ekind_In (Obj_Id, E_Constant, E_Variable)
97779c34
AC
14250 and then Present (Last_Aggregate_Assignment (Obj_Id))
14251 then
4b17187f 14252 Hook_Insert := Last_Aggregate_Assignment (Obj_Id);
97779c34
AC
14253
14254 -- Otherwise the hook seizes the related object immediately
14255
14256 else
937e9676 14257 Hook_Insert := Obj_Decl;
97779c34
AC
14258 end if;
14259
937e9676 14260 Insert_After_And_Analyze (Hook_Insert, Hook_Assign);
b2c28399
AC
14261
14262 -- When the node is part of a return statement, there is no need to
14263 -- insert a finalization call, as the general finalization mechanism
937e9676
AC
14264 -- (see Build_Finalizer) would take care of the transient object on
14265 -- subprogram exit. Note that it would also be impossible to insert the
14266 -- finalization code after the return statement as this will render it
14267 -- unreachable.
b2c28399 14268
4b17187f
AC
14269 if Nkind (Fin_Context) = N_Simple_Return_Statement then
14270 null;
b2c28399 14271
937e9676
AC
14272 -- Finalize the hook after the context has been evaluated. Generate:
14273
14274 -- if Hook /= null then
14275 -- [Deep_]Finalize (Hook.all);
14276 -- Hook := null;
14277 -- end if;
b2c28399 14278
4b17187f
AC
14279 else
14280 Insert_Action_After (Fin_Context,
937e9676 14281 Make_Implicit_If_Statement (Obj_Decl,
4b17187f
AC
14282 Condition =>
14283 Make_Op_Ne (Loc,
937e9676
AC
14284 Left_Opnd =>
14285 New_Occurrence_Of (Defining_Entity (Hook_Decl), Loc),
4b17187f
AC
14286 Right_Opnd => Make_Null (Loc)),
14287
14288 Then_Statements => New_List (
937e9676
AC
14289 Fin_Call,
14290 Hook_Clear)));
b2c28399 14291 end if;
937e9676 14292 end Process_Transient_In_Expression;
b2c28399 14293
70482933
RK
14294 ------------------------
14295 -- Rewrite_Comparison --
14296 ------------------------
14297
14298 procedure Rewrite_Comparison (N : Node_Id) is
634a926b 14299 Typ : constant Entity_Id := Etype (N);
c800f862 14300
634a926b
AC
14301 False_Result : Boolean;
14302 True_Result : Boolean;
c800f862 14303
d26dc4b5
AC
14304 begin
14305 if Nkind (N) = N_Type_Conversion then
14306 Rewrite_Comparison (Expression (N));
20b5d666 14307 return;
70482933 14308
d26dc4b5 14309 elsif Nkind (N) not in N_Op_Compare then
20b5d666
JM
14310 return;
14311 end if;
70482933 14312
634a926b
AC
14313 -- Determine the potential outcome of the comparison assuming that the
14314 -- operands are valid and emit a warning when the comparison evaluates
14315 -- to True or False only in the presence of invalid values.
c800f862 14316
634a926b 14317 Warn_On_Constant_Valid_Condition (N);
70482933 14318
634a926b
AC
14319 -- Determine the potential outcome of the comparison assuming that the
14320 -- operands are not valid.
f02b8bb8 14321
634a926b
AC
14322 Test_Comparison
14323 (Op => N,
14324 Assume_Valid => False,
14325 True_Result => True_Result,
14326 False_Result => False_Result);
c800f862 14327
634a926b 14328 -- The outcome is a decisive False or True, rewrite the operator
c800f862 14329
634a926b
AC
14330 if False_Result or True_Result then
14331 Rewrite (N,
14332 Convert_To (Typ,
14333 New_Occurrence_Of (Boolean_Literals (True_Result), Sloc (N))));
c800f862 14334
634a926b
AC
14335 Analyze_And_Resolve (N, Typ);
14336 Warn_On_Known_Condition (N);
14337 end if;
70482933
RK
14338 end Rewrite_Comparison;
14339
fbf5a39b
AC
14340 ----------------------------
14341 -- Safe_In_Place_Array_Op --
14342 ----------------------------
14343
14344 function Safe_In_Place_Array_Op
2e071734
AC
14345 (Lhs : Node_Id;
14346 Op1 : Node_Id;
14347 Op2 : Node_Id) return Boolean
fbf5a39b
AC
14348 is
14349 Target : Entity_Id;
14350
14351 function Is_Safe_Operand (Op : Node_Id) return Boolean;
14352 -- Operand is safe if it cannot overlap part of the target of the
14353 -- operation. If the operand and the target are identical, the operand
14354 -- is safe. The operand can be empty in the case of negation.
14355
14356 function Is_Unaliased (N : Node_Id) return Boolean;
5e1c00fa 14357 -- Check that N is a stand-alone entity
fbf5a39b
AC
14358
14359 ------------------
14360 -- Is_Unaliased --
14361 ------------------
14362
14363 function Is_Unaliased (N : Node_Id) return Boolean is
14364 begin
14365 return
14366 Is_Entity_Name (N)
14367 and then No (Address_Clause (Entity (N)))
14368 and then No (Renamed_Object (Entity (N)));
14369 end Is_Unaliased;
14370
14371 ---------------------
14372 -- Is_Safe_Operand --
14373 ---------------------
14374
14375 function Is_Safe_Operand (Op : Node_Id) return Boolean is
14376 begin
14377 if No (Op) then
14378 return True;
14379
14380 elsif Is_Entity_Name (Op) then
14381 return Is_Unaliased (Op);
14382
303b4d58 14383 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
fbf5a39b
AC
14384 return Is_Unaliased (Prefix (Op));
14385
14386 elsif Nkind (Op) = N_Slice then
14387 return
14388 Is_Unaliased (Prefix (Op))
14389 and then Entity (Prefix (Op)) /= Target;
14390
14391 elsif Nkind (Op) = N_Op_Not then
14392 return Is_Safe_Operand (Right_Opnd (Op));
14393
14394 else
14395 return False;
14396 end if;
14397 end Is_Safe_Operand;
14398
b6b5cca8 14399 -- Start of processing for Safe_In_Place_Array_Op
fbf5a39b
AC
14400
14401 begin
685094bf
RD
14402 -- Skip this processing if the component size is different from system
14403 -- storage unit (since at least for NOT this would cause problems).
fbf5a39b 14404
eaa826f8 14405 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
fbf5a39b
AC
14406 return False;
14407
fbf5a39b
AC
14408 -- Cannot do in place stuff if non-standard Boolean representation
14409
eaa826f8 14410 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
fbf5a39b
AC
14411 return False;
14412
14413 elsif not Is_Unaliased (Lhs) then
14414 return False;
e7e4d230 14415
fbf5a39b
AC
14416 else
14417 Target := Entity (Lhs);
e7e4d230 14418 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
fbf5a39b
AC
14419 end if;
14420 end Safe_In_Place_Array_Op;
14421
70482933
RK
14422 -----------------------
14423 -- Tagged_Membership --
14424 -----------------------
14425
685094bf
RD
14426 -- There are two different cases to consider depending on whether the right
14427 -- operand is a class-wide type or not. If not we just compare the actual
14428 -- tag of the left expr to the target type tag:
70482933
RK
14429 --
14430 -- Left_Expr.Tag = Right_Type'Tag;
14431 --
685094bf
RD
14432 -- If it is a class-wide type we use the RT function CW_Membership which is
14433 -- usually implemented by looking in the ancestor tables contained in the
14434 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
70482933 14435
0669bebe
GB
14436 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
14437 -- function IW_Membership which is usually implemented by looking in the
14438 -- table of abstract interface types plus the ancestor table contained in
14439 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
14440
82878151
AC
14441 procedure Tagged_Membership
14442 (N : Node_Id;
14443 SCIL_Node : out Node_Id;
14444 Result : out Node_Id)
14445 is
70482933
RK
14446 Left : constant Node_Id := Left_Opnd (N);
14447 Right : constant Node_Id := Right_Opnd (N);
14448 Loc : constant Source_Ptr := Sloc (N);
14449
38171f43 14450 Full_R_Typ : Entity_Id;
70482933 14451 Left_Type : Entity_Id;
82878151 14452 New_Node : Node_Id;
70482933
RK
14453 Right_Type : Entity_Id;
14454 Obj_Tag : Node_Id;
14455
14456 begin
82878151
AC
14457 SCIL_Node := Empty;
14458
852dba80
AC
14459 -- Handle entities from the limited view
14460
14461 Left_Type := Available_View (Etype (Left));
14462 Right_Type := Available_View (Etype (Right));
70482933 14463
6cce2156
GD
14464 -- In the case where the type is an access type, the test is applied
14465 -- using the designated types (needed in Ada 2012 for implicit anonymous
14466 -- access conversions, for AI05-0149).
14467
14468 if Is_Access_Type (Right_Type) then
14469 Left_Type := Designated_Type (Left_Type);
14470 Right_Type := Designated_Type (Right_Type);
14471 end if;
14472
70482933
RK
14473 if Is_Class_Wide_Type (Left_Type) then
14474 Left_Type := Root_Type (Left_Type);
14475 end if;
14476
38171f43
AC
14477 if Is_Class_Wide_Type (Right_Type) then
14478 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
14479 else
14480 Full_R_Typ := Underlying_Type (Right_Type);
14481 end if;
14482
70482933
RK
14483 Obj_Tag :=
14484 Make_Selected_Component (Loc,
14485 Prefix => Relocate_Node (Left),
a9d8907c 14486 Selector_Name =>
e4494292 14487 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
70482933 14488
25409c3c 14489 if Is_Class_Wide_Type (Right_Type) or else Is_Interface (Left_Type) then
758c442c 14490
0669bebe
GB
14491 -- No need to issue a run-time check if we statically know that the
14492 -- result of this membership test is always true. For example,
14493 -- considering the following declarations:
14494
14495 -- type Iface is interface;
14496 -- type T is tagged null record;
14497 -- type DT is new T and Iface with null record;
14498
14499 -- Obj1 : T;
14500 -- Obj2 : DT;
14501
14502 -- These membership tests are always true:
14503
14504 -- Obj1 in T'Class
14505 -- Obj2 in T'Class;
14506 -- Obj2 in Iface'Class;
14507
14508 -- We do not need to handle cases where the membership is illegal.
14509 -- For example:
14510
14511 -- Obj1 in DT'Class; -- Compile time error
14512 -- Obj1 in Iface'Class; -- Compile time error
14513
fa2538c7
JM
14514 if not Is_Interface (Left_Type)
14515 and then not Is_Class_Wide_Type (Left_Type)
4ac2477e
JM
14516 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
14517 Use_Full_View => True)
533369aa
AC
14518 or else (Is_Interface (Etype (Right_Type))
14519 and then Interface_Present_In_Ancestor
761f7dcb
AC
14520 (Typ => Left_Type,
14521 Iface => Etype (Right_Type))))
0669bebe 14522 then
e4494292 14523 Result := New_Occurrence_Of (Standard_True, Loc);
82878151 14524 return;
0669bebe
GB
14525 end if;
14526
758c442c
GD
14527 -- Ada 2005 (AI-251): Class-wide applied to interfaces
14528
630d30e9
RD
14529 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
14530
0669bebe 14531 -- Support to: "Iface_CW_Typ in Typ'Class"
630d30e9
RD
14532
14533 or else Is_Interface (Left_Type)
14534 then
dfd99a80
TQ
14535 -- Issue error if IW_Membership operation not available in a
14536 -- configurable run time setting.
14537
14538 if not RTE_Available (RE_IW_Membership) then
b4592168
GD
14539 Error_Msg_CRT
14540 ("dynamic membership test on interface types", N);
82878151
AC
14541 Result := Empty;
14542 return;
dfd99a80
TQ
14543 end if;
14544
82878151 14545 Result :=
758c442c
GD
14546 Make_Function_Call (Loc,
14547 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
14548 Parameter_Associations => New_List (
14549 Make_Attribute_Reference (Loc,
14550 Prefix => Obj_Tag,
14551 Attribute_Name => Name_Address),
e4494292 14552 New_Occurrence_Of (
38171f43 14553 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
758c442c
GD
14554 Loc)));
14555
14556 -- Ada 95: Normal case
14557
14558 else
82878151
AC
14559 Build_CW_Membership (Loc,
14560 Obj_Tag_Node => Obj_Tag,
14561 Typ_Tag_Node =>
e4494292 14562 New_Occurrence_Of (
38171f43 14563 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
82878151
AC
14564 Related_Nod => N,
14565 New_Node => New_Node);
14566
14567 -- Generate the SCIL node for this class-wide membership test.
14568 -- Done here because the previous call to Build_CW_Membership
14569 -- relocates Obj_Tag.
14570
14571 if Generate_SCIL then
14572 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
14573 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
14574 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
14575 end if;
14576
14577 Result := New_Node;
758c442c
GD
14578 end if;
14579
0669bebe
GB
14580 -- Right_Type is not a class-wide type
14581
70482933 14582 else
0669bebe
GB
14583 -- No need to check the tag of the object if Right_Typ is abstract
14584
14585 if Is_Abstract_Type (Right_Type) then
e4494292 14586 Result := New_Occurrence_Of (Standard_False, Loc);
0669bebe
GB
14587
14588 else
82878151 14589 Result :=
0669bebe
GB
14590 Make_Op_Eq (Loc,
14591 Left_Opnd => Obj_Tag,
14592 Right_Opnd =>
e4494292 14593 New_Occurrence_Of
38171f43 14594 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
0669bebe 14595 end if;
70482933 14596 end if;
70482933
RK
14597 end Tagged_Membership;
14598
14599 ------------------------------
14600 -- Unary_Op_Validity_Checks --
14601 ------------------------------
14602
14603 procedure Unary_Op_Validity_Checks (N : Node_Id) is
14604 begin
14605 if Validity_Checks_On and Validity_Check_Operands then
14606 Ensure_Valid (Right_Opnd (N));
14607 end if;
14608 end Unary_Op_Validity_Checks;
14609
14610end Exp_Ch4;