]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
Licensing changes to GPLv3 resp. GPLv3 with GCC Runtime Exception.
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
19590d70 1-----------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
748086b7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
07fc65c4 39with Lib.Xref; use Lib.Xref;
7d8b9c99 40with Namet; use Namet;
70482933
RK
41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
44with Restrict; use Restrict;
6e937c1c 45with Rident; use Rident;
70482933 46with Sem; use Sem;
a4100e55 47with Sem_Aux; use Sem_Aux;
70482933
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch6; use Sem_Ch6;
50with Sem_Ch7; use Sem_Ch7;
51with Sem_Ch8; use Sem_Ch8;
52with Sem_Ch13; use Sem_Ch13;
53with Sem_Eval; use Sem_Eval;
54with Sem_Mech; use Sem_Mech;
55with Sem_Prag; use Sem_Prag;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stand; use Stand;
61with Targparm; use Targparm;
62with Tbuild; use Tbuild;
63with Ttypes; use Ttypes;
64with Uintp; use Uintp;
65with Urealp; use Urealp;
66
67package body Freeze is
68
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
72
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
79
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
49e90211 84 -- Build body for a renaming declaration, insert in tree and analyze
70482933 85
fbf5a39b
AC
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 88 -- at the point the object is frozen.
fbf5a39b 89
70482933
RK
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
94
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
101
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
104 Loc : Source_Ptr;
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
107 -- nodes to Result, modifying Result from No_List if necessary.
108
109 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
110 -- Freeze enumeration type. The Esize field is set as processing
111 -- proceeds (i.e. set by default when the type is declared and then
112 -- adjusted by rep clauses. What this procedure does is to make sure
113 -- that if a foreign convention is specified, and no specific size
114 -- is given, then the size must be at least Integer'Size.
115
70482933
RK
116 procedure Freeze_Static_Object (E : Entity_Id);
117 -- If an object is frozen which has Is_Statically_Allocated set, then
118 -- all referenced types must also be marked with this flag. This routine
119 -- is in charge of meeting this requirement for the object entity E.
120
121 procedure Freeze_Subprogram (E : Entity_Id);
122 -- Perform freezing actions for a subprogram (create extra formals,
123 -- and set proper default mechanism values). Note that this routine
124 -- is not called for internal subprograms, for which neither of these
125 -- actions is needed (or desirable, we do not want for example to have
126 -- these extra formals present in initialization procedures, where they
127 -- would serve no purpose). In this call E is either a subprogram or
128 -- a subprogram type (i.e. an access to a subprogram).
129
130 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 131 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
132 -- view. Used to determine whether the designated type of an access type
133 -- should be frozen when the access type is frozen. This is done when an
134 -- allocator is frozen, or an expression that may involve attributes of
135 -- the designated type. Otherwise freezing the access type does not freeze
136 -- the designated type.
70482933 137
bb1b6ec8 138 procedure Generate_Prim_Op_References (Typ : Entity_Id);
70d904ca
ES
139 -- For a tagged type, generate implicit references to its primitive
140 -- operations, for source navigation.
141
70482933
RK
142 procedure Process_Default_Expressions
143 (E : Entity_Id;
144 After : in out Node_Id);
145 -- This procedure is called for each subprogram to complete processing
146 -- of default expressions at the point where all types are known to be
147 -- frozen. The expressions must be analyzed in full, to make sure that
148 -- all error processing is done (they have only been pre-analyzed). If
149 -- the expression is not an entity or literal, its analysis may generate
150 -- code which must not be executed. In that case we build a function
151 -- body to hold that code. This wrapper function serves no other purpose
152 -- (it used to be called to evaluate the default, but now the default is
153 -- inlined at each point of call).
154
155 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
156 -- Typ is a record or array type that is being frozen. This routine
157 -- sets the default component alignment from the scope stack values
158 -- if the alignment is otherwise not specified.
159
160 procedure Check_Debug_Info_Needed (T : Entity_Id);
161 -- As each entity is frozen, this routine is called to deal with the
162 -- setting of Debug_Info_Needed for the entity. This flag is set if
163 -- the entity comes from source, or if we are in Debug_Generated_Code
164 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
165 -- the flag if Debug_Info_Off is set. This procedure also ensures that
166 -- subsidiary entities have the flag set as required.
70482933 167
c6823a20
EB
168 procedure Undelay_Type (T : Entity_Id);
169 -- T is a type of a component that we know to be an Itype.
170 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
171 -- Do the same for any Full_View or Corresponding_Record_Type.
172
fbf5a39b
AC
173 procedure Warn_Overlay
174 (Expr : Node_Id;
175 Typ : Entity_Id;
176 Nam : Node_Id);
177 -- Expr is the expression for an address clause for entity Nam whose type
178 -- is Typ. If Typ has a default initialization, and there is no explicit
179 -- initialization in the source declaration, check whether the address
180 -- clause might cause overlaying of an entity, and emit a warning on the
181 -- side effect that the initialization will cause.
182
70482933
RK
183 -------------------------------
184 -- Adjust_Esize_For_Alignment --
185 -------------------------------
186
187 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
188 Align : Uint;
189
190 begin
191 if Known_Esize (Typ) and then Known_Alignment (Typ) then
192 Align := Alignment_In_Bits (Typ);
193
194 if Align > Esize (Typ)
195 and then Align <= Standard_Long_Long_Integer_Size
196 then
197 Set_Esize (Typ, Align);
198 end if;
199 end if;
200 end Adjust_Esize_For_Alignment;
201
202 ------------------------------------
203 -- Build_And_Analyze_Renamed_Body --
204 ------------------------------------
205
206 procedure Build_And_Analyze_Renamed_Body
207 (Decl : Node_Id;
208 New_S : Entity_Id;
209 After : in out Node_Id)
210 is
211 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
212 begin
213 Insert_After (After, Body_Node);
214 Mark_Rewrite_Insertion (Body_Node);
215 Analyze (Body_Node);
216 After := Body_Node;
217 end Build_And_Analyze_Renamed_Body;
218
219 ------------------------
220 -- Build_Renamed_Body --
221 ------------------------
222
223 function Build_Renamed_Body
224 (Decl : Node_Id;
fbf5a39b 225 New_S : Entity_Id) return Node_Id
70482933
RK
226 is
227 Loc : constant Source_Ptr := Sloc (New_S);
228 -- We use for the source location of the renamed body, the location
229 -- of the spec entity. It might seem more natural to use the location
230 -- of the renaming declaration itself, but that would be wrong, since
231 -- then the body we create would look as though it was created far
232 -- too late, and this could cause problems with elaboration order
233 -- analysis, particularly in connection with instantiations.
234
235 N : constant Node_Id := Unit_Declaration_Node (New_S);
236 Nam : constant Node_Id := Name (N);
237 Old_S : Entity_Id;
238 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
239 Actuals : List_Id := No_List;
240 Call_Node : Node_Id;
241 Call_Name : Node_Id;
242 Body_Node : Node_Id;
243 Formal : Entity_Id;
244 O_Formal : Entity_Id;
245 Param_Spec : Node_Id;
246
def46b54
RD
247 Pref : Node_Id := Empty;
248 -- If the renamed entity is a primitive operation given in prefix form,
249 -- the prefix is the target object and it has to be added as the first
250 -- actual in the generated call.
251
70482933 252 begin
def46b54
RD
253 -- Determine the entity being renamed, which is the target of the call
254 -- statement. If the name is an explicit dereference, this is a renaming
255 -- of a subprogram type rather than a subprogram. The name itself is
256 -- fully analyzed.
70482933
RK
257
258 if Nkind (Nam) = N_Selected_Component then
259 Old_S := Entity (Selector_Name (Nam));
260
261 elsif Nkind (Nam) = N_Explicit_Dereference then
262 Old_S := Etype (Nam);
263
264 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
265 if Is_Entity_Name (Prefix (Nam)) then
266 Old_S := Entity (Prefix (Nam));
267 else
268 Old_S := Entity (Selector_Name (Prefix (Nam)));
269 end if;
270
271 elsif Nkind (Nam) = N_Character_Literal then
272 Old_S := Etype (New_S);
273
274 else
275 Old_S := Entity (Nam);
276 end if;
277
278 if Is_Entity_Name (Nam) then
07fc65c4 279
def46b54
RD
280 -- If the renamed entity is a predefined operator, retain full name
281 -- to ensure its visibility.
07fc65c4
GB
282
283 if Ekind (Old_S) = E_Operator
284 and then Nkind (Nam) = N_Expanded_Name
285 then
286 Call_Name := New_Copy (Name (N));
287 else
288 Call_Name := New_Reference_To (Old_S, Loc);
289 end if;
290
70482933 291 else
def46b54
RD
292 if Nkind (Nam) = N_Selected_Component
293 and then Present (First_Formal (Old_S))
294 and then
295 (Is_Controlling_Formal (First_Formal (Old_S))
296 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
297 then
298
299 -- Retrieve the target object, to be added as a first actual
300 -- in the call.
301
302 Call_Name := New_Occurrence_Of (Old_S, Loc);
303 Pref := Prefix (Nam);
304
305 else
306 Call_Name := New_Copy (Name (N));
307 end if;
70482933
RK
308
309 -- The original name may have been overloaded, but
310 -- is fully resolved now.
311
312 Set_Is_Overloaded (Call_Name, False);
313 end if;
314
def46b54
RD
315 -- For simple renamings, subsequent calls can be expanded directly as
316 -- called to the renamed entity. The body must be generated in any case
317 -- for calls they may appear elsewhere.
70482933
RK
318
319 if (Ekind (Old_S) = E_Function
320 or else Ekind (Old_S) = E_Procedure)
321 and then Nkind (Decl) = N_Subprogram_Declaration
322 then
323 Set_Body_To_Inline (Decl, Old_S);
324 end if;
325
326 -- The body generated for this renaming is an internal artifact, and
327 -- does not constitute a freeze point for the called entity.
328
329 Set_Must_Not_Freeze (Call_Name);
330
331 Formal := First_Formal (Defining_Entity (Decl));
332
def46b54
RD
333 if Present (Pref) then
334 declare
335 Pref_Type : constant Entity_Id := Etype (Pref);
336 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
337
338 begin
339
340 -- The controlling formal may be an access parameter, or the
e14c931f 341 -- actual may be an access value, so adjust accordingly.
def46b54
RD
342
343 if Is_Access_Type (Pref_Type)
344 and then not Is_Access_Type (Form_Type)
345 then
346 Actuals := New_List
347 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
348
349 elsif Is_Access_Type (Form_Type)
350 and then not Is_Access_Type (Pref)
351 then
352 Actuals := New_List
353 (Make_Attribute_Reference (Loc,
354 Attribute_Name => Name_Access,
355 Prefix => Relocate_Node (Pref)));
356 else
357 Actuals := New_List (Pref);
358 end if;
359 end;
360
361 elsif Present (Formal) then
70482933
RK
362 Actuals := New_List;
363
def46b54
RD
364 else
365 Actuals := No_List;
366 end if;
367
368 if Present (Formal) then
70482933
RK
369 while Present (Formal) loop
370 Append (New_Reference_To (Formal, Loc), Actuals);
371 Next_Formal (Formal);
372 end loop;
373 end if;
374
def46b54
RD
375 -- If the renamed entity is an entry, inherit its profile. For other
376 -- renamings as bodies, both profiles must be subtype conformant, so it
377 -- is not necessary to replace the profile given in the declaration.
378 -- However, default values that are aggregates are rewritten when
379 -- partially analyzed, so we recover the original aggregate to insure
380 -- that subsequent conformity checking works. Similarly, if the default
381 -- expression was constant-folded, recover the original expression.
70482933
RK
382
383 Formal := First_Formal (Defining_Entity (Decl));
384
385 if Present (Formal) then
386 O_Formal := First_Formal (Old_S);
387 Param_Spec := First (Parameter_Specifications (Spec));
388
389 while Present (Formal) loop
390 if Is_Entry (Old_S) then
391
392 if Nkind (Parameter_Type (Param_Spec)) /=
393 N_Access_Definition
394 then
395 Set_Etype (Formal, Etype (O_Formal));
396 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
397 end if;
398
07fc65c4
GB
399 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
400 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
401 Nkind (Default_Value (O_Formal))
402 then
70482933
RK
403 Set_Expression (Param_Spec,
404 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
405 end if;
406
407 Next_Formal (Formal);
408 Next_Formal (O_Formal);
409 Next (Param_Spec);
410 end loop;
411 end if;
412
413 -- If the renamed entity is a function, the generated body contains a
414 -- return statement. Otherwise, build a procedure call. If the entity is
415 -- an entry, subsequent analysis of the call will transform it into the
416 -- proper entry or protected operation call. If the renamed entity is
417 -- a character literal, return it directly.
418
419 if Ekind (Old_S) = E_Function
420 or else Ekind (Old_S) = E_Operator
421 or else (Ekind (Old_S) = E_Subprogram_Type
422 and then Etype (Old_S) /= Standard_Void_Type)
423 then
424 Call_Node :=
86cde7b1 425 Make_Simple_Return_Statement (Loc,
70482933
RK
426 Expression =>
427 Make_Function_Call (Loc,
428 Name => Call_Name,
429 Parameter_Associations => Actuals));
430
431 elsif Ekind (Old_S) = E_Enumeration_Literal then
432 Call_Node :=
86cde7b1 433 Make_Simple_Return_Statement (Loc,
70482933
RK
434 Expression => New_Occurrence_Of (Old_S, Loc));
435
436 elsif Nkind (Nam) = N_Character_Literal then
437 Call_Node :=
86cde7b1 438 Make_Simple_Return_Statement (Loc,
70482933
RK
439 Expression => Call_Name);
440
441 else
442 Call_Node :=
443 Make_Procedure_Call_Statement (Loc,
444 Name => Call_Name,
445 Parameter_Associations => Actuals);
446 end if;
447
49e90211 448 -- Create entities for subprogram body and formals
70482933
RK
449
450 Set_Defining_Unit_Name (Spec,
451 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
452
453 Param_Spec := First (Parameter_Specifications (Spec));
454
455 while Present (Param_Spec) loop
456 Set_Defining_Identifier (Param_Spec,
457 Make_Defining_Identifier (Loc,
458 Chars => Chars (Defining_Identifier (Param_Spec))));
459 Next (Param_Spec);
460 end loop;
461
462 Body_Node :=
463 Make_Subprogram_Body (Loc,
464 Specification => Spec,
465 Declarations => New_List,
466 Handled_Statement_Sequence =>
467 Make_Handled_Sequence_Of_Statements (Loc,
468 Statements => New_List (Call_Node)));
469
470 if Nkind (Decl) /= N_Subprogram_Declaration then
471 Rewrite (N,
472 Make_Subprogram_Declaration (Loc,
473 Specification => Specification (N)));
474 end if;
475
476 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
477 -- the body is analyzed when the renamed entity is frozen, it may
478 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
479
480 if Nkind (N) = N_Subprogram_Renaming_Declaration
481 and then Present (Corresponding_Spec (N))
482 then
483 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
484 else
485 Set_Corresponding_Spec (Body_Node, New_S);
486 end if;
487
488 return Body_Node;
489 end Build_Renamed_Body;
490
fbf5a39b
AC
491 --------------------------
492 -- Check_Address_Clause --
493 --------------------------
494
495 procedure Check_Address_Clause (E : Entity_Id) is
496 Addr : constant Node_Id := Address_Clause (E);
497 Expr : Node_Id;
498 Decl : constant Node_Id := Declaration_Node (E);
499 Typ : constant Entity_Id := Etype (E);
500
501 begin
502 if Present (Addr) then
503 Expr := Expression (Addr);
504
def46b54
RD
505 -- If we have no initialization of any kind, then we don't need to
506 -- place any restrictions on the address clause, because the object
507 -- will be elaborated after the address clause is evaluated. This
508 -- happens if the declaration has no initial expression, or the type
509 -- has no implicit initialization, or the object is imported.
fbf5a39b 510
def46b54
RD
511 -- The same holds for all initialized scalar types and all access
512 -- types. Packed bit arrays of size up to 64 are represented using a
513 -- modular type with an initialization (to zero) and can be processed
514 -- like other initialized scalar types.
fbf5a39b
AC
515
516 -- If the type is controlled, code to attach the object to a
517 -- finalization chain is generated at the point of declaration,
518 -- and therefore the elaboration of the object cannot be delayed:
519 -- the address expression must be a constant.
520
521 if (No (Expression (Decl))
048e5cef 522 and then not Needs_Finalization (Typ)
fbf5a39b
AC
523 and then
524 (not Has_Non_Null_Base_Init_Proc (Typ)
525 or else Is_Imported (E)))
526
527 or else
528 (Present (Expression (Decl))
529 and then Is_Scalar_Type (Typ))
530
531 or else
532 Is_Access_Type (Typ)
533
534 or else
535 (Is_Bit_Packed_Array (Typ)
536 and then
537 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
538 then
539 null;
540
def46b54
RD
541 -- Otherwise, we require the address clause to be constant because
542 -- the call to the initialization procedure (or the attach code) has
543 -- to happen at the point of the declaration.
fbf5a39b
AC
544
545 else
546 Check_Constant_Address_Clause (Expr, E);
547 Set_Has_Delayed_Freeze (E, False);
548 end if;
549
550 if not Error_Posted (Expr)
048e5cef 551 and then not Needs_Finalization (Typ)
fbf5a39b
AC
552 then
553 Warn_Overlay (Expr, Typ, Name (Addr));
554 end if;
555 end if;
556 end Check_Address_Clause;
557
70482933
RK
558 -----------------------------
559 -- Check_Compile_Time_Size --
560 -----------------------------
561
562 procedure Check_Compile_Time_Size (T : Entity_Id) is
563
c6823a20 564 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 565 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 566 -- field, of T checking for a size clause that was given which attempts
70482933
RK
567 -- to give a smaller size.
568
569 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 570 -- Recursive function that does all the work
70482933
RK
571
572 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
573 -- If T is a constrained subtype, its size is not known if any of its
574 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 575 -- The test is conservative and doesn't check that the components are
70482933
RK
576 -- in fact constrained by non-static discriminant values. Could be made
577 -- more precise ???
578
579 --------------------
580 -- Set_Small_Size --
581 --------------------
582
c6823a20 583 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
584 begin
585 if S > 32 then
586 return;
587
588 elsif Has_Size_Clause (T) then
589 if RM_Size (T) < S then
590 Error_Msg_Uint_1 := S;
591 Error_Msg_NE
7d8b9c99 592 ("size for & too small, minimum allowed is ^",
70482933
RK
593 Size_Clause (T), T);
594
595 elsif Unknown_Esize (T) then
596 Set_Esize (T, S);
597 end if;
598
599 -- Set sizes if not set already
600
601 else
602 if Unknown_Esize (T) then
603 Set_Esize (T, S);
604 end if;
605
606 if Unknown_RM_Size (T) then
607 Set_RM_Size (T, S);
608 end if;
609 end if;
610 end Set_Small_Size;
611
612 ----------------
613 -- Size_Known --
614 ----------------
615
616 function Size_Known (T : Entity_Id) return Boolean is
617 Index : Entity_Id;
618 Comp : Entity_Id;
619 Ctyp : Entity_Id;
620 Low : Node_Id;
621 High : Node_Id;
622
623 begin
624 if Size_Known_At_Compile_Time (T) then
625 return True;
626
c6a9797e
RD
627 -- Always True for scalar types. This is true even for generic formal
628 -- scalar types. We used to return False in the latter case, but the
629 -- size is known at compile time, even in the template, we just do
630 -- not know the exact size but that's not the point of this routine.
631
70482933
RK
632 elsif Is_Scalar_Type (T)
633 or else Is_Task_Type (T)
634 then
c6a9797e
RD
635 return True;
636
637 -- Array types
70482933
RK
638
639 elsif Is_Array_Type (T) then
c6a9797e
RD
640
641 -- String literals always have known size, and we can set it
642
70482933 643 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
644 Set_Small_Size (T, Component_Size (T)
645 * String_Literal_Length (T));
70482933
RK
646 return True;
647
c6a9797e
RD
648 -- Unconstrained types never have known at compile time size
649
70482933
RK
650 elsif not Is_Constrained (T) then
651 return False;
652
def46b54
RD
653 -- Don't do any recursion on type with error posted, since we may
654 -- have a malformed type that leads us into a loop.
07fc65c4
GB
655
656 elsif Error_Posted (T) then
657 return False;
658
c6a9797e
RD
659 -- Otherwise if component size unknown, then array size unknown
660
70482933
RK
661 elsif not Size_Known (Component_Type (T)) then
662 return False;
663 end if;
664
def46b54
RD
665 -- Check for all indexes static, and also compute possible size
666 -- (in case it is less than 32 and may be packable).
70482933
RK
667
668 declare
669 Esiz : Uint := Component_Size (T);
670 Dim : Uint;
671
672 begin
673 Index := First_Index (T);
70482933
RK
674 while Present (Index) loop
675 if Nkind (Index) = N_Range then
676 Get_Index_Bounds (Index, Low, High);
677
678 elsif Error_Posted (Scalar_Range (Etype (Index))) then
679 return False;
680
681 else
682 Low := Type_Low_Bound (Etype (Index));
683 High := Type_High_Bound (Etype (Index));
684 end if;
685
686 if not Compile_Time_Known_Value (Low)
687 or else not Compile_Time_Known_Value (High)
688 or else Etype (Index) = Any_Type
689 then
690 return False;
691
692 else
693 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
694
695 if Dim >= 0 then
696 Esiz := Esiz * Dim;
697 else
698 Esiz := Uint_0;
699 end if;
700 end if;
701
702 Next_Index (Index);
703 end loop;
704
c6823a20 705 Set_Small_Size (T, Esiz);
70482933
RK
706 return True;
707 end;
708
c6a9797e
RD
709 -- Access types always have known at compile time sizes
710
70482933
RK
711 elsif Is_Access_Type (T) then
712 return True;
713
c6a9797e
RD
714 -- For non-generic private types, go to underlying type if present
715
70482933
RK
716 elsif Is_Private_Type (T)
717 and then not Is_Generic_Type (T)
718 and then Present (Underlying_Type (T))
719 then
def46b54
RD
720 -- Don't do any recursion on type with error posted, since we may
721 -- have a malformed type that leads us into a loop.
07fc65c4
GB
722
723 if Error_Posted (T) then
724 return False;
725 else
726 return Size_Known (Underlying_Type (T));
727 end if;
70482933 728
c6a9797e
RD
729 -- Record types
730
70482933 731 elsif Is_Record_Type (T) then
fbf5a39b
AC
732
733 -- A class-wide type is never considered to have a known size
734
70482933
RK
735 if Is_Class_Wide_Type (T) then
736 return False;
737
fbf5a39b
AC
738 -- A subtype of a variant record must not have non-static
739 -- discriminanted components.
740
741 elsif T /= Base_Type (T)
742 and then not Static_Discriminated_Components (T)
743 then
744 return False;
70482933 745
def46b54
RD
746 -- Don't do any recursion on type with error posted, since we may
747 -- have a malformed type that leads us into a loop.
07fc65c4
GB
748
749 elsif Error_Posted (T) then
750 return False;
fbf5a39b 751 end if;
07fc65c4 752
fbf5a39b 753 -- Now look at the components of the record
70482933 754
fbf5a39b 755 declare
def46b54
RD
756 -- The following two variables are used to keep track of the
757 -- size of packed records if we can tell the size of the packed
758 -- record in the front end. Packed_Size_Known is True if so far
759 -- we can figure out the size. It is initialized to True for a
760 -- packed record, unless the record has discriminants. The
761 -- reason we eliminate the discriminated case is that we don't
762 -- know the way the back end lays out discriminated packed
763 -- records. If Packed_Size_Known is True, then Packed_Size is
764 -- the size in bits so far.
fbf5a39b
AC
765
766 Packed_Size_Known : Boolean :=
767 Is_Packed (T)
768 and then not Has_Discriminants (T);
769
770 Packed_Size : Uint := Uint_0;
771
772 begin
773 -- Test for variant part present
774
775 if Has_Discriminants (T)
776 and then Present (Parent (T))
777 and then Nkind (Parent (T)) = N_Full_Type_Declaration
778 and then Nkind (Type_Definition (Parent (T))) =
779 N_Record_Definition
780 and then not Null_Present (Type_Definition (Parent (T)))
781 and then Present (Variant_Part
782 (Component_List (Type_Definition (Parent (T)))))
783 then
784 -- If variant part is present, and type is unconstrained,
785 -- then we must have defaulted discriminants, or a size
786 -- clause must be present for the type, or else the size
787 -- is definitely not known at compile time.
788
789 if not Is_Constrained (T)
790 and then
791 No (Discriminant_Default_Value
792 (First_Discriminant (T)))
793 and then Unknown_Esize (T)
70482933 794 then
fbf5a39b
AC
795 return False;
796 end if;
797 end if;
70482933 798
fbf5a39b
AC
799 -- Loop through components
800
fea9e956 801 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 802 while Present (Comp) loop
fea9e956 803 Ctyp := Etype (Comp);
fbf5a39b 804
fea9e956
ES
805 -- We do not know the packed size if there is a component
806 -- clause present (we possibly could, but this would only
807 -- help in the case of a record with partial rep clauses.
808 -- That's because in the case of full rep clauses, the
809 -- size gets figured out anyway by a different circuit).
fbf5a39b 810
fea9e956
ES
811 if Present (Component_Clause (Comp)) then
812 Packed_Size_Known := False;
813 end if;
70482933 814
fea9e956
ES
815 -- We need to identify a component that is an array where
816 -- the index type is an enumeration type with non-standard
817 -- representation, and some bound of the type depends on a
818 -- discriminant.
70482933 819
fea9e956 820 -- This is because gigi computes the size by doing a
e14c931f 821 -- substitution of the appropriate discriminant value in
fea9e956
ES
822 -- the size expression for the base type, and gigi is not
823 -- clever enough to evaluate the resulting expression (which
824 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 825
fea9e956
ES
826 -- It would be nice if gigi would either recognize that
827 -- this expression can be computed at compile time, or
828 -- alternatively figured out the size from the subtype
829 -- directly, where all the information is at hand ???
fbf5a39b 830
fea9e956
ES
831 if Is_Array_Type (Etype (Comp))
832 and then Present (Packed_Array_Type (Etype (Comp)))
833 then
834 declare
835 Ocomp : constant Entity_Id :=
836 Original_Record_Component (Comp);
837 OCtyp : constant Entity_Id := Etype (Ocomp);
838 Ind : Node_Id;
839 Indtyp : Entity_Id;
840 Lo, Hi : Node_Id;
70482933 841
fea9e956
ES
842 begin
843 Ind := First_Index (OCtyp);
844 while Present (Ind) loop
845 Indtyp := Etype (Ind);
70482933 846
fea9e956
ES
847 if Is_Enumeration_Type (Indtyp)
848 and then Has_Non_Standard_Rep (Indtyp)
849 then
850 Lo := Type_Low_Bound (Indtyp);
851 Hi := Type_High_Bound (Indtyp);
fbf5a39b 852
fea9e956
ES
853 if Is_Entity_Name (Lo)
854 and then Ekind (Entity (Lo)) = E_Discriminant
855 then
856 return False;
fbf5a39b 857
fea9e956
ES
858 elsif Is_Entity_Name (Hi)
859 and then Ekind (Entity (Hi)) = E_Discriminant
860 then
861 return False;
862 end if;
863 end if;
fbf5a39b 864
fea9e956
ES
865 Next_Index (Ind);
866 end loop;
867 end;
868 end if;
70482933 869
def46b54
RD
870 -- Clearly size of record is not known if the size of one of
871 -- the components is not known.
70482933 872
fea9e956
ES
873 if not Size_Known (Ctyp) then
874 return False;
875 end if;
70482933 876
fea9e956 877 -- Accumulate packed size if possible
70482933 878
fea9e956 879 if Packed_Size_Known then
70482933 880
fea9e956
ES
881 -- We can only deal with elementary types, since for
882 -- non-elementary components, alignment enters into the
883 -- picture, and we don't know enough to handle proper
884 -- alignment in this context. Packed arrays count as
885 -- elementary if the representation is a modular type.
fbf5a39b 886
fea9e956
ES
887 if Is_Elementary_Type (Ctyp)
888 or else (Is_Array_Type (Ctyp)
889 and then Present (Packed_Array_Type (Ctyp))
890 and then Is_Modular_Integer_Type
891 (Packed_Array_Type (Ctyp)))
892 then
893 -- If RM_Size is known and static, then we can
894 -- keep accumulating the packed size.
70482933 895
fea9e956 896 if Known_Static_RM_Size (Ctyp) then
70482933 897
fea9e956
ES
898 -- A little glitch, to be removed sometime ???
899 -- gigi does not understand zero sizes yet.
900
901 if RM_Size (Ctyp) = Uint_0 then
70482933 902 Packed_Size_Known := False;
fea9e956
ES
903
904 -- Normal case where we can keep accumulating the
905 -- packed array size.
906
907 else
908 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 909 end if;
fbf5a39b 910
fea9e956
ES
911 -- If we have a field whose RM_Size is not known then
912 -- we can't figure out the packed size here.
fbf5a39b
AC
913
914 else
915 Packed_Size_Known := False;
70482933 916 end if;
fea9e956
ES
917
918 -- If we have a non-elementary type we can't figure out
919 -- the packed array size (alignment issues).
920
921 else
922 Packed_Size_Known := False;
70482933 923 end if;
fbf5a39b 924 end if;
70482933 925
fea9e956 926 Next_Component_Or_Discriminant (Comp);
fbf5a39b 927 end loop;
70482933 928
fbf5a39b 929 if Packed_Size_Known then
c6823a20 930 Set_Small_Size (T, Packed_Size);
fbf5a39b 931 end if;
70482933 932
fbf5a39b
AC
933 return True;
934 end;
70482933 935
c6a9797e
RD
936 -- All other cases, size not known at compile time
937
70482933
RK
938 else
939 return False;
940 end if;
941 end Size_Known;
942
943 -------------------------------------
944 -- Static_Discriminated_Components --
945 -------------------------------------
946
947 function Static_Discriminated_Components
0da2c8ac 948 (T : Entity_Id) return Boolean
70482933
RK
949 is
950 Constraint : Elmt_Id;
951
952 begin
953 if Has_Discriminants (T)
954 and then Present (Discriminant_Constraint (T))
955 and then Present (First_Component (T))
956 then
957 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
958 while Present (Constraint) loop
959 if not Compile_Time_Known_Value (Node (Constraint)) then
960 return False;
961 end if;
962
963 Next_Elmt (Constraint);
964 end loop;
965 end if;
966
967 return True;
968 end Static_Discriminated_Components;
969
970 -- Start of processing for Check_Compile_Time_Size
971
972 begin
973 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
974 end Check_Compile_Time_Size;
975
976 -----------------------------
977 -- Check_Debug_Info_Needed --
978 -----------------------------
979
980 procedure Check_Debug_Info_Needed (T : Entity_Id) is
981 begin
1b24ada5 982 if Debug_Info_Off (T) then
70482933
RK
983 return;
984
985 elsif Comes_From_Source (T)
986 or else Debug_Generated_Code
987 or else Debug_Flag_VV
1b24ada5 988 or else Needs_Debug_Info (T)
70482933
RK
989 then
990 Set_Debug_Info_Needed (T);
991 end if;
992 end Check_Debug_Info_Needed;
993
994 ----------------------------
995 -- Check_Strict_Alignment --
996 ----------------------------
997
998 procedure Check_Strict_Alignment (E : Entity_Id) is
999 Comp : Entity_Id;
1000
1001 begin
1002 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1003 Set_Strict_Alignment (E);
1004
1005 elsif Is_Array_Type (E) then
1006 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1007
1008 elsif Is_Record_Type (E) then
1009 if Is_Limited_Record (E) then
1010 Set_Strict_Alignment (E);
1011 return;
1012 end if;
1013
1014 Comp := First_Component (E);
1015
1016 while Present (Comp) loop
1017 if not Is_Type (Comp)
1018 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1019 or else Is_Aliased (Comp))
70482933
RK
1020 then
1021 Set_Strict_Alignment (E);
1022 return;
1023 end if;
1024
1025 Next_Component (Comp);
1026 end loop;
1027 end if;
1028 end Check_Strict_Alignment;
1029
1030 -------------------------
1031 -- Check_Unsigned_Type --
1032 -------------------------
1033
1034 procedure Check_Unsigned_Type (E : Entity_Id) is
1035 Ancestor : Entity_Id;
1036 Lo_Bound : Node_Id;
1037 Btyp : Entity_Id;
1038
1039 begin
1040 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1041 return;
1042 end if;
1043
1044 -- Do not attempt to analyze case where range was in error
1045
1046 if Error_Posted (Scalar_Range (E)) then
1047 return;
1048 end if;
1049
1050 -- The situation that is non trivial is something like
1051
1052 -- subtype x1 is integer range -10 .. +10;
1053 -- subtype x2 is x1 range 0 .. V1;
1054 -- subtype x3 is x2 range V2 .. V3;
1055 -- subtype x4 is x3 range V4 .. V5;
1056
1057 -- where Vn are variables. Here the base type is signed, but we still
1058 -- know that x4 is unsigned because of the lower bound of x2.
1059
1060 -- The only way to deal with this is to look up the ancestor chain
1061
1062 Ancestor := E;
1063 loop
1064 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1065 return;
1066 end if;
1067
1068 Lo_Bound := Type_Low_Bound (Ancestor);
1069
1070 if Compile_Time_Known_Value (Lo_Bound) then
1071
1072 if Expr_Rep_Value (Lo_Bound) >= 0 then
1073 Set_Is_Unsigned_Type (E, True);
1074 end if;
1075
1076 return;
1077
1078 else
1079 Ancestor := Ancestor_Subtype (Ancestor);
1080
1081 -- If no ancestor had a static lower bound, go to base type
1082
1083 if No (Ancestor) then
1084
1085 -- Note: the reason we still check for a compile time known
1086 -- value for the base type is that at least in the case of
1087 -- generic formals, we can have bounds that fail this test,
1088 -- and there may be other cases in error situations.
1089
1090 Btyp := Base_Type (E);
1091
1092 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1093 return;
1094 end if;
1095
1096 Lo_Bound := Type_Low_Bound (Base_Type (E));
1097
1098 if Compile_Time_Known_Value (Lo_Bound)
1099 and then Expr_Rep_Value (Lo_Bound) >= 0
1100 then
1101 Set_Is_Unsigned_Type (E, True);
1102 end if;
1103
1104 return;
70482933
RK
1105 end if;
1106 end if;
1107 end loop;
1108 end Check_Unsigned_Type;
1109
fbf5a39b
AC
1110 -----------------------------
1111 -- Expand_Atomic_Aggregate --
1112 -----------------------------
1113
1114 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1115 Loc : constant Source_Ptr := Sloc (E);
1116 New_N : Node_Id;
1117 Temp : Entity_Id;
1118
1119 begin
1120 if (Nkind (Parent (E)) = N_Object_Declaration
1121 or else Nkind (Parent (E)) = N_Assignment_Statement)
1122 and then Comes_From_Source (Parent (E))
1123 and then Nkind (E) = N_Aggregate
1124 then
1125 Temp :=
1126 Make_Defining_Identifier (Loc,
1127 New_Internal_Name ('T'));
1128
1129 New_N :=
1130 Make_Object_Declaration (Loc,
1131 Defining_Identifier => Temp,
c6a9797e
RD
1132 Object_Definition => New_Occurrence_Of (Typ, Loc),
1133 Expression => Relocate_Node (E));
fbf5a39b
AC
1134 Insert_Before (Parent (E), New_N);
1135 Analyze (New_N);
1136
1137 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1138
def46b54
RD
1139 -- To prevent the temporary from being constant-folded (which would
1140 -- lead to the same piecemeal assignment on the original target)
1141 -- indicate to the back-end that the temporary is a variable with
1142 -- real storage. See description of this flag in Einfo, and the notes
1143 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
fbf5a39b
AC
1144
1145 Set_Is_True_Constant (Temp, False);
1146 end if;
1147 end Expand_Atomic_Aggregate;
1148
70482933
RK
1149 ----------------
1150 -- Freeze_All --
1151 ----------------
1152
1153 -- Note: the easy coding for this procedure would be to just build a
1154 -- single list of freeze nodes and then insert them and analyze them
1155 -- all at once. This won't work, because the analysis of earlier freeze
1156 -- nodes may recursively freeze types which would otherwise appear later
1157 -- on in the freeze list. So we must analyze and expand the freeze nodes
1158 -- as they are generated.
1159
1160 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1161 Loc : constant Source_Ptr := Sloc (After);
1162 E : Entity_Id;
1163 Decl : Node_Id;
1164
1165 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1166 -- This is the internal recursive routine that does freezing of entities
1167 -- (but NOT the analysis of default expressions, which should not be
1168 -- recursive, we don't want to analyze those till we are sure that ALL
1169 -- the types are frozen).
70482933 1170
fbf5a39b
AC
1171 --------------------
1172 -- Freeze_All_Ent --
1173 --------------------
1174
70482933
RK
1175 procedure Freeze_All_Ent
1176 (From : Entity_Id;
1177 After : in out Node_Id)
1178 is
1179 E : Entity_Id;
1180 Flist : List_Id;
1181 Lastn : Node_Id;
1182
1183 procedure Process_Flist;
def46b54
RD
1184 -- If freeze nodes are present, insert and analyze, and reset cursor
1185 -- for next insertion.
70482933 1186
fbf5a39b
AC
1187 -------------------
1188 -- Process_Flist --
1189 -------------------
1190
70482933
RK
1191 procedure Process_Flist is
1192 begin
1193 if Is_Non_Empty_List (Flist) then
1194 Lastn := Next (After);
1195 Insert_List_After_And_Analyze (After, Flist);
1196
1197 if Present (Lastn) then
1198 After := Prev (Lastn);
1199 else
1200 After := Last (List_Containing (After));
1201 end if;
1202 end if;
1203 end Process_Flist;
1204
fbf5a39b
AC
1205 -- Start or processing for Freeze_All_Ent
1206
70482933
RK
1207 begin
1208 E := From;
1209 while Present (E) loop
1210
1211 -- If the entity is an inner package which is not a package
def46b54
RD
1212 -- renaming, then its entities must be frozen at this point. Note
1213 -- that such entities do NOT get frozen at the end of the nested
1214 -- package itself (only library packages freeze).
70482933
RK
1215
1216 -- Same is true for task declarations, where anonymous records
1217 -- created for entry parameters must be frozen.
1218
1219 if Ekind (E) = E_Package
1220 and then No (Renamed_Object (E))
1221 and then not Is_Child_Unit (E)
1222 and then not Is_Frozen (E)
1223 then
7d8b9c99 1224 Push_Scope (E);
70482933
RK
1225 Install_Visible_Declarations (E);
1226 Install_Private_Declarations (E);
1227
1228 Freeze_All (First_Entity (E), After);
1229
1230 End_Package_Scope (E);
1231
1232 elsif Ekind (E) in Task_Kind
1233 and then
1234 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1235 or else
70482933
RK
1236 Nkind (Parent (E)) = N_Single_Task_Declaration)
1237 then
7d8b9c99 1238 Push_Scope (E);
70482933
RK
1239 Freeze_All (First_Entity (E), After);
1240 End_Scope;
1241
1242 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1243 -- primitive operations of the parent have been frozen, so that
1244 -- their addresses will be in the parent's dispatch table at the
1245 -- point it is inherited.
70482933
RK
1246
1247 elsif Ekind (E) = E_Record_Type
1248 and then Is_Tagged_Type (E)
1249 and then Is_Tagged_Type (Etype (E))
1250 and then Is_Derived_Type (E)
1251 then
1252 declare
1253 Prim_List : constant Elist_Id :=
1254 Primitive_Operations (Etype (E));
fbf5a39b
AC
1255
1256 Prim : Elmt_Id;
1257 Subp : Entity_Id;
70482933
RK
1258
1259 begin
1260 Prim := First_Elmt (Prim_List);
1261
1262 while Present (Prim) loop
1263 Subp := Node (Prim);
1264
1265 if Comes_From_Source (Subp)
1266 and then not Is_Frozen (Subp)
1267 then
1268 Flist := Freeze_Entity (Subp, Loc);
1269 Process_Flist;
1270 end if;
1271
1272 Next_Elmt (Prim);
1273 end loop;
1274 end;
1275 end if;
1276
1277 if not Is_Frozen (E) then
1278 Flist := Freeze_Entity (E, Loc);
1279 Process_Flist;
1280 end if;
1281
def46b54
RD
1282 -- If an incomplete type is still not frozen, this may be a
1283 -- premature freezing because of a body declaration that follows.
1284 -- Indicate where the freezing took place.
fbf5a39b 1285
def46b54
RD
1286 -- If the freezing is caused by the end of the current declarative
1287 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1288
1289 if not Is_Frozen (E)
1290 and then Ekind (E) = E_Incomplete_Type
1291 then
1292 declare
1293 Bod : constant Node_Id := Next (After);
1294
1295 begin
1296 if (Nkind (Bod) = N_Subprogram_Body
1297 or else Nkind (Bod) = N_Entry_Body
1298 or else Nkind (Bod) = N_Package_Body
1299 or else Nkind (Bod) = N_Protected_Body
1300 or else Nkind (Bod) = N_Task_Body
1301 or else Nkind (Bod) in N_Body_Stub)
1302 and then
1303 List_Containing (After) = List_Containing (Parent (E))
1304 then
1305 Error_Msg_Sloc := Sloc (Next (After));
1306 Error_Msg_NE
1307 ("type& is frozen# before its full declaration",
1308 Parent (E), E);
1309 end if;
1310 end;
1311 end if;
1312
70482933
RK
1313 Next_Entity (E);
1314 end loop;
1315 end Freeze_All_Ent;
1316
1317 -- Start of processing for Freeze_All
1318
1319 begin
1320 Freeze_All_Ent (From, After);
1321
1322 -- Now that all types are frozen, we can deal with default expressions
1323 -- that require us to build a default expression functions. This is the
1324 -- point at which such functions are constructed (after all types that
1325 -- might be used in such expressions have been frozen).
fbf5a39b 1326
70482933
RK
1327 -- We also add finalization chains to access types whose designated
1328 -- types are controlled. This is normally done when freezing the type,
1329 -- but this misses recursive type definitions where the later members
c6a9797e 1330 -- of the recursion introduce controlled components.
70482933
RK
1331
1332 -- Loop through entities
1333
1334 E := From;
1335 while Present (E) loop
70482933
RK
1336 if Is_Subprogram (E) then
1337
1338 if not Default_Expressions_Processed (E) then
1339 Process_Default_Expressions (E, After);
1340 end if;
1341
1342 if not Has_Completion (E) then
1343 Decl := Unit_Declaration_Node (E);
1344
1345 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1346 Build_And_Analyze_Renamed_Body (Decl, E, After);
1347
1348 elsif Nkind (Decl) = N_Subprogram_Declaration
1349 and then Present (Corresponding_Body (Decl))
1350 and then
1351 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1352 = N_Subprogram_Renaming_Declaration
70482933
RK
1353 then
1354 Build_And_Analyze_Renamed_Body
1355 (Decl, Corresponding_Body (Decl), After);
1356 end if;
1357 end if;
1358
1359 elsif Ekind (E) in Task_Kind
1360 and then
1361 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1362 or else
70482933
RK
1363 Nkind (Parent (E)) = N_Single_Task_Declaration)
1364 then
1365 declare
1366 Ent : Entity_Id;
70482933
RK
1367 begin
1368 Ent := First_Entity (E);
1369
1370 while Present (Ent) loop
1371
1372 if Is_Entry (Ent)
1373 and then not Default_Expressions_Processed (Ent)
1374 then
1375 Process_Default_Expressions (Ent, After);
1376 end if;
1377
1378 Next_Entity (Ent);
1379 end loop;
1380 end;
1381
1382 elsif Is_Access_Type (E)
1383 and then Comes_From_Source (E)
1384 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1385 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1386 and then No (Associated_Final_Chain (E))
1387 then
1388 Build_Final_List (Parent (E), E);
1389 end if;
1390
1391 Next_Entity (E);
1392 end loop;
70482933
RK
1393 end Freeze_All;
1394
1395 -----------------------
1396 -- Freeze_And_Append --
1397 -----------------------
1398
1399 procedure Freeze_And_Append
1400 (Ent : Entity_Id;
1401 Loc : Source_Ptr;
1402 Result : in out List_Id)
1403 is
1404 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1405 begin
1406 if Is_Non_Empty_List (L) then
1407 if Result = No_List then
1408 Result := L;
1409 else
1410 Append_List (L, Result);
1411 end if;
1412 end if;
1413 end Freeze_And_Append;
1414
1415 -------------------
1416 -- Freeze_Before --
1417 -------------------
1418
1419 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1420 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1421 begin
1422 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1423 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1424 end if;
1425 end Freeze_Before;
1426
1427 -------------------
1428 -- Freeze_Entity --
1429 -------------------
1430
1431 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1432 Test_E : Entity_Id := E;
70482933
RK
1433 Comp : Entity_Id;
1434 F_Node : Node_Id;
1435 Result : List_Id;
1436 Indx : Node_Id;
1437 Formal : Entity_Id;
1438 Atype : Entity_Id;
1439
4c8a5bb8
AC
1440 Has_Default_Initialization : Boolean := False;
1441 -- This flag gets set to true for a variable with default initialization
1442
70482933 1443 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1444 -- Check that an Access or Unchecked_Access attribute with a prefix
1445 -- which is the current instance type can only be applied when the type
1446 -- is limited.
70482933
RK
1447
1448 function After_Last_Declaration return Boolean;
1449 -- If Loc is a freeze_entity that appears after the last declaration
1450 -- in the scope, inhibit error messages on late completion.
1451
1452 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1453 -- Freeze each component, handle some representation clauses, and freeze
1454 -- primitive operations if this is a tagged type.
70482933
RK
1455
1456 ----------------------------
1457 -- After_Last_Declaration --
1458 ----------------------------
1459
1460 function After_Last_Declaration return Boolean is
fbf5a39b 1461 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1462 begin
1463 if Nkind (Spec) = N_Package_Specification then
1464 if Present (Private_Declarations (Spec)) then
1465 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1466 elsif Present (Visible_Declarations (Spec)) then
1467 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1468 else
1469 return False;
1470 end if;
70482933
RK
1471 else
1472 return False;
1473 end if;
1474 end After_Last_Declaration;
1475
1476 ----------------------------
1477 -- Check_Current_Instance --
1478 ----------------------------
1479
1480 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1481
32c760e6
ES
1482 Rec_Type : constant Entity_Id :=
1483 Scope (Defining_Identifier (Comp_Decl));
1484
1485 Decl : constant Node_Id := Parent (Rec_Type);
1486
70482933 1487 function Process (N : Node_Id) return Traverse_Result;
49e90211 1488 -- Process routine to apply check to given node
70482933 1489
fbf5a39b
AC
1490 -------------
1491 -- Process --
1492 -------------
1493
70482933
RK
1494 function Process (N : Node_Id) return Traverse_Result is
1495 begin
1496 case Nkind (N) is
1497 when N_Attribute_Reference =>
def46b54 1498 if (Attribute_Name (N) = Name_Access
70482933
RK
1499 or else
1500 Attribute_Name (N) = Name_Unchecked_Access)
1501 and then Is_Entity_Name (Prefix (N))
1502 and then Is_Type (Entity (Prefix (N)))
1503 and then Entity (Prefix (N)) = E
1504 then
1505 Error_Msg_N
1506 ("current instance must be a limited type", Prefix (N));
1507 return Abandon;
1508 else
1509 return OK;
1510 end if;
1511
1512 when others => return OK;
1513 end case;
1514 end Process;
1515
1516 procedure Traverse is new Traverse_Proc (Process);
1517
1518 -- Start of processing for Check_Current_Instance
1519
1520 begin
32c760e6
ES
1521 -- In Ada95, the (imprecise) rule is that the current instance of a
1522 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1523 -- either a tagged type, or a limited record.
1524
1525 if Is_Limited_Type (Rec_Type)
1526 and then
1527 (Ada_Version < Ada_05
1528 or else Is_Tagged_Type (Rec_Type))
1529 then
1530 return;
1531
1532 elsif Nkind (Decl) = N_Full_Type_Declaration
1533 and then Limited_Present (Type_Definition (Decl))
1534 then
1535 return;
1536
1537 else
1538 Traverse (Comp_Decl);
1539 end if;
70482933
RK
1540 end Check_Current_Instance;
1541
1542 ------------------------
1543 -- Freeze_Record_Type --
1544 ------------------------
1545
1546 procedure Freeze_Record_Type (Rec : Entity_Id) is
1547 Comp : Entity_Id;
fbf5a39b 1548 IR : Node_Id;
70482933 1549 ADC : Node_Id;
c6823a20 1550 Prev : Entity_Id;
70482933 1551
67ce0d7e
RD
1552 Junk : Boolean;
1553 pragma Warnings (Off, Junk);
1554
70482933
RK
1555 Unplaced_Component : Boolean := False;
1556 -- Set True if we find at least one component with no component
1557 -- clause (used to warn about useless Pack pragmas).
1558
1559 Placed_Component : Boolean := False;
1560 -- Set True if we find at least one component with a component
1561 -- clause (used to warn about useless Bit_Order pragmas).
1562
e18d6a15
JM
1563 function Check_Allocator (N : Node_Id) return Node_Id;
1564 -- If N is an allocator, possibly wrapped in one or more level of
1565 -- qualified expression(s), return the inner allocator node, else
1566 -- return Empty.
19590d70 1567
7d8b9c99
RD
1568 procedure Check_Itype (Typ : Entity_Id);
1569 -- If the component subtype is an access to a constrained subtype of
1570 -- an already frozen type, make the subtype frozen as well. It might
1571 -- otherwise be frozen in the wrong scope, and a freeze node on
1572 -- subtype has no effect. Similarly, if the component subtype is a
1573 -- regular (not protected) access to subprogram, set the anonymous
1574 -- subprogram type to frozen as well, to prevent an out-of-scope
1575 -- freeze node at some eventual point of call. Protected operations
1576 -- are handled elsewhere.
6e059adb 1577
19590d70
GD
1578 ---------------------
1579 -- Check_Allocator --
1580 ---------------------
1581
e18d6a15
JM
1582 function Check_Allocator (N : Node_Id) return Node_Id is
1583 Inner : Node_Id;
19590d70 1584 begin
e18d6a15 1585 Inner := N;
e18d6a15
JM
1586 loop
1587 if Nkind (Inner) = N_Allocator then
1588 return Inner;
e18d6a15
JM
1589 elsif Nkind (Inner) = N_Qualified_Expression then
1590 Inner := Expression (Inner);
e18d6a15
JM
1591 else
1592 return Empty;
1593 end if;
1594 end loop;
19590d70
GD
1595 end Check_Allocator;
1596
6871ba5f
AC
1597 -----------------
1598 -- Check_Itype --
1599 -----------------
1600
7d8b9c99
RD
1601 procedure Check_Itype (Typ : Entity_Id) is
1602 Desig : constant Entity_Id := Designated_Type (Typ);
1603
6e059adb
AC
1604 begin
1605 if not Is_Frozen (Desig)
1606 and then Is_Frozen (Base_Type (Desig))
1607 then
1608 Set_Is_Frozen (Desig);
1609
1610 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1611 -- access subtype is elaborated early enough. This cannot be
1612 -- done if the subtype may depend on discriminants.
6e059adb
AC
1613
1614 if Ekind (Comp) = E_Component
1615 and then Is_Itype (Etype (Comp))
1616 and then not Has_Discriminants (Rec)
1617 then
1618 IR := Make_Itype_Reference (Sloc (Comp));
1619 Set_Itype (IR, Desig);
1620
1621 if No (Result) then
1622 Result := New_List (IR);
1623 else
1624 Append (IR, Result);
1625 end if;
1626 end if;
7d8b9c99
RD
1627
1628 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1629 and then Convention (Desig) /= Convention_Protected
1630 then
1631 Set_Is_Frozen (Desig);
6e059adb
AC
1632 end if;
1633 end Check_Itype;
1634
1635 -- Start of processing for Freeze_Record_Type
1636
70482933 1637 begin
7d8b9c99
RD
1638 -- If this is a subtype of a controlled type, declared without a
1639 -- constraint, the _controller may not appear in the component list
1640 -- if the parent was not frozen at the point of subtype declaration.
1641 -- Inherit the _controller component now.
fbf5a39b
AC
1642
1643 if Rec /= Base_Type (Rec)
1644 and then Has_Controlled_Component (Rec)
1645 then
1646 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1647 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1648 then
1649 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1650
49e90211 1651 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1652 -- record component, the base type may not yet be frozen, and its
1653 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1654 -- for the itype, so it will be frozen after the base type. This
1655 -- freeze node is used to communicate with the expander, in order
1656 -- to create the controller for the enclosing record, and it is
1657 -- deleted afterwards (see exp_ch3). It must not be created when
1658 -- expansion is off, because it might appear in the wrong context
1659 -- for the back end.
fbf5a39b
AC
1660
1661 elsif Is_Itype (Rec)
1662 and then Has_Delayed_Freeze (Base_Type (Rec))
1663 and then
1664 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1665 N_Component_Declaration
1666 and then Expander_Active
fbf5a39b
AC
1667 then
1668 Ensure_Freeze_Node (Rec);
1669 end if;
1670 end if;
1671
49e90211 1672 -- Freeze components and embedded subtypes
70482933
RK
1673
1674 Comp := First_Entity (Rec);
c6823a20 1675 Prev := Empty;
c6823a20 1676 while Present (Comp) loop
70482933 1677
49e90211 1678 -- First handle the (real) component case
70482933
RK
1679
1680 if Ekind (Comp) = E_Component
1681 or else Ekind (Comp) = E_Discriminant
1682 then
70482933
RK
1683 declare
1684 CC : constant Node_Id := Component_Clause (Comp);
1685
1686 begin
c6823a20
EB
1687 -- Freezing a record type freezes the type of each of its
1688 -- components. However, if the type of the component is
1689 -- part of this record, we do not want or need a separate
1690 -- Freeze_Node. Note that Is_Itype is wrong because that's
1691 -- also set in private type cases. We also can't check for
1692 -- the Scope being exactly Rec because of private types and
1693 -- record extensions.
1694
1695 if Is_Itype (Etype (Comp))
1696 and then Is_Record_Type (Underlying_Type
1697 (Scope (Etype (Comp))))
1698 then
1699 Undelay_Type (Etype (Comp));
1700 end if;
1701
1702 Freeze_And_Append (Etype (Comp), Loc, Result);
1703
0da2c8ac
AC
1704 -- Check for error of component clause given for variable
1705 -- sized type. We have to delay this test till this point,
1706 -- since the component type has to be frozen for us to know
1707 -- if it is variable length. We omit this test in a generic
1708 -- context, it will be applied at instantiation time.
1709
70482933
RK
1710 if Present (CC) then
1711 Placed_Component := True;
1712
07fc65c4
GB
1713 if Inside_A_Generic then
1714 null;
1715
7d8b9c99
RD
1716 elsif not
1717 Size_Known_At_Compile_Time
1718 (Underlying_Type (Etype (Comp)))
70482933
RK
1719 then
1720 Error_Msg_N
1721 ("component clause not allowed for variable " &
1722 "length component", CC);
1723 end if;
1724
1725 else
1726 Unplaced_Component := True;
1727 end if;
70482933 1728
0da2c8ac 1729 -- Case of component requires byte alignment
70482933 1730
0da2c8ac 1731 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1732
0da2c8ac 1733 -- Set the enclosing record to also require byte align
70482933 1734
0da2c8ac 1735 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1736
7d8b9c99
RD
1737 -- Check for component clause that is inconsistent with
1738 -- the required byte boundary alignment.
70482933 1739
0da2c8ac
AC
1740 if Present (CC)
1741 and then Normalized_First_Bit (Comp) mod
1742 System_Storage_Unit /= 0
1743 then
1744 Error_Msg_N
1745 ("component & must be byte aligned",
1746 Component_Name (Component_Clause (Comp)));
1747 end if;
1748 end if;
70482933 1749
7d8b9c99
RD
1750 -- If component clause is present, then deal with the non-
1751 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1752 -- processing for Ada 2005 mode is handled separately after
1753 -- processing all components.
70482933 1754
0da2c8ac
AC
1755 -- We only do this processing for the base type, and in
1756 -- fact that's important, since otherwise if there are
1757 -- record subtypes, we could reverse the bits once for
1758 -- each subtype, which would be incorrect.
70482933 1759
0da2c8ac
AC
1760 if Present (CC)
1761 and then Reverse_Bit_Order (Rec)
1762 and then Ekind (E) = E_Record_Type
fea9e956 1763 and then Ada_Version <= Ada_95
0da2c8ac
AC
1764 then
1765 declare
1766 CFB : constant Uint := Component_Bit_Offset (Comp);
1767 CSZ : constant Uint := Esize (Comp);
1768 CLC : constant Node_Id := Component_Clause (Comp);
1769 Pos : constant Node_Id := Position (CLC);
1770 FB : constant Node_Id := First_Bit (CLC);
1771
1772 Storage_Unit_Offset : constant Uint :=
1773 CFB / System_Storage_Unit;
1774
1775 Start_Bit : constant Uint :=
1776 CFB mod System_Storage_Unit;
1777
1778 begin
1779 -- Cases where field goes over storage unit boundary
1780
1781 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1782
0da2c8ac
AC
1783 -- Allow multi-byte field but generate warning
1784
1785 if Start_Bit mod System_Storage_Unit = 0
1786 and then CSZ mod System_Storage_Unit = 0
1787 then
70482933 1788 Error_Msg_N
0da2c8ac
AC
1789 ("multi-byte field specified with non-standard"
1790 & " Bit_Order?", CLC);
1791
1792 if Bytes_Big_Endian then
1793 Error_Msg_N
1794 ("bytes are not reversed "
1795 & "(component is big-endian)?", CLC);
1796 else
1797 Error_Msg_N
1798 ("bytes are not reversed "
1799 & "(component is little-endian)?", CLC);
1800 end if;
1801
c6084ae0 1802 -- Do not allow non-contiguous field
0da2c8ac 1803
70482933
RK
1804 else
1805 Error_Msg_N
c6084ae0
AC
1806 ("attempt to specify non-contiguous field "
1807 & "not permitted", CLC);
0da2c8ac 1808 Error_Msg_N
c6084ae0
AC
1809 ("\caused by non-standard Bit_Order "
1810 & "specified", CLC);
1811 Error_Msg_N
1812 ("\consider possibility of using "
1813 & "Ada 2005 mode here", CLC);
70482933
RK
1814 end if;
1815
c6084ae0 1816 -- Case where field fits in one storage unit
70482933
RK
1817
1818 else
0da2c8ac 1819 -- Give warning if suspicious component clause
70482933 1820
fea9e956
ES
1821 if Intval (FB) >= System_Storage_Unit
1822 and then Warn_On_Reverse_Bit_Order
1823 then
0da2c8ac
AC
1824 Error_Msg_N
1825 ("?Bit_Order clause does not affect " &
1826 "byte ordering", Pos);
1827 Error_Msg_Uint_1 :=
1828 Intval (Pos) + Intval (FB) /
1829 System_Storage_Unit;
1830 Error_Msg_N
1831 ("?position normalized to ^ before bit " &
1832 "order interpreted", Pos);
1833 end if;
70482933 1834
0da2c8ac
AC
1835 -- Here is where we fix up the Component_Bit_Offset
1836 -- value to account for the reverse bit order.
1837 -- Some examples of what needs to be done are:
70482933 1838
0da2c8ac
AC
1839 -- First_Bit .. Last_Bit Component_Bit_Offset
1840 -- old new old new
70482933 1841
0da2c8ac
AC
1842 -- 0 .. 0 7 .. 7 0 7
1843 -- 0 .. 1 6 .. 7 0 6
1844 -- 0 .. 2 5 .. 7 0 5
1845 -- 0 .. 7 0 .. 7 0 4
70482933 1846
0da2c8ac
AC
1847 -- 1 .. 1 6 .. 6 1 6
1848 -- 1 .. 4 3 .. 6 1 3
1849 -- 4 .. 7 0 .. 3 4 0
70482933 1850
0da2c8ac
AC
1851 -- The general rule is that the first bit is
1852 -- is obtained by subtracting the old ending bit
1853 -- from storage_unit - 1.
70482933 1854
0da2c8ac
AC
1855 Set_Component_Bit_Offset
1856 (Comp,
1857 (Storage_Unit_Offset * System_Storage_Unit) +
1858 (System_Storage_Unit - 1) -
1859 (Start_Bit + CSZ - 1));
70482933 1860
0da2c8ac
AC
1861 Set_Normalized_First_Bit
1862 (Comp,
1863 Component_Bit_Offset (Comp) mod
1864 System_Storage_Unit);
1865 end if;
1866 end;
1867 end if;
1868 end;
70482933
RK
1869 end if;
1870
c6823a20
EB
1871 -- If the component is an Itype with Delayed_Freeze and is either
1872 -- a record or array subtype and its base type has not yet been
1873 -- frozen, we must remove this from the entity list of this
1874 -- record and put it on the entity list of the scope of its base
1875 -- type. Note that we know that this is not the type of a
1876 -- component since we cleared Has_Delayed_Freeze for it in the
1877 -- previous loop. Thus this must be the Designated_Type of an
1878 -- access type, which is the type of a component.
1879
1880 if Is_Itype (Comp)
1881 and then Is_Type (Scope (Comp))
1882 and then Is_Composite_Type (Comp)
1883 and then Base_Type (Comp) /= Comp
1884 and then Has_Delayed_Freeze (Comp)
1885 and then not Is_Frozen (Base_Type (Comp))
1886 then
1887 declare
1888 Will_Be_Frozen : Boolean := False;
1b24ada5 1889 S : Entity_Id;
c6823a20
EB
1890
1891 begin
fea9e956
ES
1892 -- We have a pretty bad kludge here. Suppose Rec is subtype
1893 -- being defined in a subprogram that's created as part of
1894 -- the freezing of Rec'Base. In that case, we know that
1895 -- Comp'Base must have already been frozen by the time we
1896 -- get to elaborate this because Gigi doesn't elaborate any
1897 -- bodies until it has elaborated all of the declarative
1898 -- part. But Is_Frozen will not be set at this point because
1899 -- we are processing code in lexical order.
1900
1901 -- We detect this case by going up the Scope chain of Rec
1902 -- and seeing if we have a subprogram scope before reaching
1903 -- the top of the scope chain or that of Comp'Base. If we
1904 -- do, then mark that Comp'Base will actually be frozen. If
1905 -- so, we merely undelay it.
c6823a20 1906
1b24ada5 1907 S := Scope (Rec);
c6823a20
EB
1908 while Present (S) loop
1909 if Is_Subprogram (S) then
1910 Will_Be_Frozen := True;
1911 exit;
1912 elsif S = Scope (Base_Type (Comp)) then
1913 exit;
1914 end if;
1915
1916 S := Scope (S);
1917 end loop;
1918
1919 if Will_Be_Frozen then
1920 Undelay_Type (Comp);
1921 else
1922 if Present (Prev) then
1923 Set_Next_Entity (Prev, Next_Entity (Comp));
1924 else
1925 Set_First_Entity (Rec, Next_Entity (Comp));
1926 end if;
1927
1928 -- Insert in entity list of scope of base type (which
1929 -- must be an enclosing scope, because still unfrozen).
1930
1931 Append_Entity (Comp, Scope (Base_Type (Comp)));
1932 end if;
1933 end;
1934
def46b54
RD
1935 -- If the component is an access type with an allocator as default
1936 -- value, the designated type will be frozen by the corresponding
1937 -- expression in init_proc. In order to place the freeze node for
1938 -- the designated type before that for the current record type,
1939 -- freeze it now.
c6823a20
EB
1940
1941 -- Same process if the component is an array of access types,
1942 -- initialized with an aggregate. If the designated type is
def46b54
RD
1943 -- private, it cannot contain allocators, and it is premature
1944 -- to freeze the type, so we check for this as well.
c6823a20
EB
1945
1946 elsif Is_Access_Type (Etype (Comp))
1947 and then Present (Parent (Comp))
1948 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1949 then
1950 declare
e18d6a15
JM
1951 Alloc : constant Node_Id :=
1952 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1953
1954 begin
e18d6a15 1955 if Present (Alloc) then
19590d70 1956
e18d6a15
JM
1957 -- If component is pointer to a classwide type, freeze
1958 -- the specific type in the expression being allocated.
1959 -- The expression may be a subtype indication, in which
1960 -- case freeze the subtype mark.
c6823a20 1961
e18d6a15
JM
1962 if Is_Class_Wide_Type
1963 (Designated_Type (Etype (Comp)))
0f4cb75c 1964 then
e18d6a15
JM
1965 if Is_Entity_Name (Expression (Alloc)) then
1966 Freeze_And_Append
1967 (Entity (Expression (Alloc)), Loc, Result);
1968 elsif
1969 Nkind (Expression (Alloc)) = N_Subtype_Indication
1970 then
1971 Freeze_And_Append
1972 (Entity (Subtype_Mark (Expression (Alloc))),
1973 Loc, Result);
1974 end if;
0f4cb75c 1975
e18d6a15
JM
1976 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1977 Check_Itype (Etype (Comp));
0f4cb75c 1978
e18d6a15
JM
1979 else
1980 Freeze_And_Append
1981 (Designated_Type (Etype (Comp)), Loc, Result);
1982 end if;
c6823a20
EB
1983 end if;
1984 end;
1985
1986 elsif Is_Access_Type (Etype (Comp))
1987 and then Is_Itype (Designated_Type (Etype (Comp)))
1988 then
7d8b9c99 1989 Check_Itype (Etype (Comp));
c6823a20
EB
1990
1991 elsif Is_Array_Type (Etype (Comp))
1992 and then Is_Access_Type (Component_Type (Etype (Comp)))
1993 and then Present (Parent (Comp))
1994 and then Nkind (Parent (Comp)) = N_Component_Declaration
1995 and then Present (Expression (Parent (Comp)))
1996 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1997 and then Is_Fully_Defined
1998 (Designated_Type (Component_Type (Etype (Comp))))
1999 then
2000 Freeze_And_Append
2001 (Designated_Type
2002 (Component_Type (Etype (Comp))), Loc, Result);
2003 end if;
2004
2005 Prev := Comp;
70482933
RK
2006 Next_Entity (Comp);
2007 end loop;
2008
fea9e956
ES
2009 -- Deal with pragma Bit_Order
2010
2011 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2012 if not Placed_Component then
2013 ADC :=
2014 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2015 Error_Msg_N
2016 ("?Bit_Order specification has no effect", ADC);
2017 Error_Msg_N
2018 ("\?since no component clauses were specified", ADC);
2019
def46b54
RD
2020 -- Here is where we do Ada 2005 processing for bit order (the Ada
2021 -- 95 case was already taken care of above).
70482933 2022
fea9e956
ES
2023 elsif Ada_Version >= Ada_05 then
2024 Adjust_Record_For_Reverse_Bit_Order (Rec);
2025 end if;
70482933
RK
2026 end if;
2027
1b24ada5
RD
2028 -- Set OK_To_Reorder_Components depending on debug flags
2029
2030 if Rec = Base_Type (Rec)
2031 and then Convention (Rec) = Convention_Ada
2032 then
2033 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2034 or else
2035 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2036 then
2037 Set_OK_To_Reorder_Components (Rec);
2038 end if;
2039 end if;
2040
ee094616
RD
2041 -- Check for useless pragma Pack when all components placed. We only
2042 -- do this check for record types, not subtypes, since a subtype may
2043 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2044 -- sense to pack other subtypes or the parent type. We do not give
2045 -- this warning if Optimize_Alignment is set to Space, since the
2046 -- pragma Pack does have an effect in this case (it always resets
2047 -- the alignment to one).
70482933 2048
ee094616
RD
2049 if Ekind (Rec) = E_Record_Type
2050 and then Is_Packed (Rec)
70482933 2051 and then not Unplaced_Component
1b24ada5 2052 and then Optimize_Alignment /= 'S'
70482933 2053 then
def46b54
RD
2054 -- Reset packed status. Probably not necessary, but we do it so
2055 -- that there is no chance of the back end doing something strange
2056 -- with this redundant indication of packing.
ee094616 2057
70482933 2058 Set_Is_Packed (Rec, False);
ee094616
RD
2059
2060 -- Give warning if redundant constructs warnings on
2061
2062 if Warn_On_Redundant_Constructs then
2063 Error_Msg_N
2064 ("?pragma Pack has no effect, no unplaced components",
2065 Get_Rep_Pragma (Rec, Name_Pack));
2066 end if;
70482933
RK
2067 end if;
2068
ee094616
RD
2069 -- If this is the record corresponding to a remote type, freeze the
2070 -- remote type here since that is what we are semantically freezing.
2071 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2072
2073 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2074 -- Finally, enforce the restriction that access attributes with a
2075 -- current instance prefix can only apply to limited types.
70482933
RK
2076
2077 if Ekind (Rec) = E_Record_Type then
70482933
RK
2078 if Present (Corresponding_Remote_Type (Rec)) then
2079 Freeze_And_Append
2080 (Corresponding_Remote_Type (Rec), Loc, Result);
2081 end if;
2082
2083 Comp := First_Component (Rec);
70482933
RK
2084 while Present (Comp) loop
2085 if Has_Controlled_Component (Etype (Comp))
2086 or else (Chars (Comp) /= Name_uParent
2087 and then Is_Controlled (Etype (Comp)))
2088 or else (Is_Protected_Type (Etype (Comp))
2089 and then Present
2090 (Corresponding_Record_Type (Etype (Comp)))
2091 and then Has_Controlled_Component
2092 (Corresponding_Record_Type (Etype (Comp))))
2093 then
2094 Set_Has_Controlled_Component (Rec);
2095 exit;
2096 end if;
2097
2098 if Has_Unchecked_Union (Etype (Comp)) then
2099 Set_Has_Unchecked_Union (Rec);
2100 end if;
2101
32c760e6
ES
2102 if Has_Per_Object_Constraint (Comp) then
2103
ee094616
RD
2104 -- Scan component declaration for likely misuses of current
2105 -- instance, either in a constraint or a default expression.
70482933
RK
2106
2107 Check_Current_Instance (Parent (Comp));
2108 end if;
2109
2110 Next_Component (Comp);
2111 end loop;
2112 end if;
2113
2114 Set_Component_Alignment_If_Not_Set (Rec);
2115
ee094616
RD
2116 -- For first subtypes, check if there are any fixed-point fields with
2117 -- component clauses, where we must check the size. This is not done
2118 -- till the freeze point, since for fixed-point types, we do not know
2119 -- the size until the type is frozen. Similar processing applies to
2120 -- bit packed arrays.
70482933
RK
2121
2122 if Is_First_Subtype (Rec) then
2123 Comp := First_Component (Rec);
2124
2125 while Present (Comp) loop
2126 if Present (Component_Clause (Comp))
d05ef0ab
AC
2127 and then (Is_Fixed_Point_Type (Etype (Comp))
2128 or else
2129 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2130 then
2131 Check_Size
d05ef0ab 2132 (Component_Name (Component_Clause (Comp)),
70482933
RK
2133 Etype (Comp),
2134 Esize (Comp),
2135 Junk);
2136 end if;
2137
2138 Next_Component (Comp);
2139 end loop;
2140 end if;
7d8b9c99
RD
2141
2142 -- Generate warning for applying C or C++ convention to a record
2143 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2144 -- case, since the whole point in this case is interface C. We also
2145 -- do not generate this within instantiations, since we will have
2146 -- generated a message on the template.
7d8b9c99
RD
2147
2148 if Has_Discriminants (E)
2149 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2150 and then (Convention (E) = Convention_C
2151 or else
2152 Convention (E) = Convention_CPP)
2153 and then Comes_From_Source (E)
1b24ada5
RD
2154 and then not In_Instance
2155 and then not Has_Warnings_Off (E)
2156 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2157 then
2158 declare
2159 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2160 A2 : Node_Id;
2161
2162 begin
2163 if Present (Cprag) then
2164 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2165
2166 if Convention (E) = Convention_C then
2167 Error_Msg_N
2168 ("?variant record has no direct equivalent in C", A2);
2169 else
2170 Error_Msg_N
2171 ("?variant record has no direct equivalent in C++", A2);
2172 end if;
2173
2174 Error_Msg_NE
2175 ("\?use of convention for type& is dubious", A2, E);
2176 end if;
2177 end;
2178 end if;
70482933
RK
2179 end Freeze_Record_Type;
2180
2181 -- Start of processing for Freeze_Entity
2182
2183 begin
c6823a20
EB
2184 -- We are going to test for various reasons why this entity need not be
2185 -- frozen here, but in the case of an Itype that's defined within a
2186 -- record, that test actually applies to the record.
2187
2188 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2189 Test_E := Scope (E);
2190 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2191 and then Is_Record_Type (Underlying_Type (Scope (E)))
2192 then
2193 Test_E := Underlying_Type (Scope (E));
2194 end if;
2195
fbf5a39b 2196 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2197
2198 if Is_Frozen (E) then
2199 return No_List;
2200
c6823a20
EB
2201 -- It is improper to freeze an external entity within a generic because
2202 -- its freeze node will appear in a non-valid context. The entity will
2203 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2204
c6823a20 2205 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2206 return No_List;
2207
2208 -- Do not freeze a global entity within an inner scope created during
2209 -- expansion. A call to subprogram E within some internal procedure
2210 -- (a stream attribute for example) might require freezing E, but the
2211 -- freeze node must appear in the same declarative part as E itself.
2212 -- The two-pass elaboration mechanism in gigi guarantees that E will
2213 -- be frozen before the inner call is elaborated. We exclude constants
2214 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2215 -- must be diagnosed (e.g. in the case of a deferred constant being used
2216 -- in a default expression). If the enclosing subprogram comes from
2217 -- source, or is a generic instance, then the freeze point is the one
2218 -- mandated by the language, and we freeze the entity. A subprogram that
2219 -- is a child unit body that acts as a spec does not have a spec that
2220 -- comes from source, but can only come from source.
70482933 2221
c6823a20
EB
2222 elsif In_Open_Scopes (Scope (Test_E))
2223 and then Scope (Test_E) /= Current_Scope
2224 and then Ekind (Test_E) /= E_Constant
70482933
RK
2225 then
2226 declare
2227 S : Entity_Id := Current_Scope;
2228
2229 begin
2230 while Present (S) loop
2231 if Is_Overloadable (S) then
2232 if Comes_From_Source (S)
2233 or else Is_Generic_Instance (S)
fea9e956 2234 or else Is_Child_Unit (S)
70482933
RK
2235 then
2236 exit;
2237 else
2238 return No_List;
2239 end if;
2240 end if;
2241
2242 S := Scope (S);
2243 end loop;
2244 end;
555360a5
AC
2245
2246 -- Similarly, an inlined instance body may make reference to global
2247 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2248 -- for them, and in the absence of inlining freezing will take place in
2249 -- their own scope. Normally instance bodies are analyzed after the
2250 -- enclosing compilation, and everything has been frozen at the proper
2251 -- place, but with front-end inlining an instance body is compiled
2252 -- before the end of the enclosing scope, and as a result out-of-order
2253 -- freezing must be prevented.
555360a5
AC
2254
2255 elsif Front_End_Inlining
7d8b9c99 2256 and then In_Instance_Body
c6823a20 2257 and then Present (Scope (Test_E))
555360a5
AC
2258 then
2259 declare
c6823a20
EB
2260 S : Entity_Id := Scope (Test_E);
2261
555360a5
AC
2262 begin
2263 while Present (S) loop
2264 if Is_Generic_Instance (S) then
2265 exit;
2266 else
2267 S := Scope (S);
2268 end if;
2269 end loop;
2270
2271 if No (S) then
2272 return No_List;
2273 end if;
2274 end;
70482933
RK
2275 end if;
2276
2277 -- Here to freeze the entity
2278
2279 Result := No_List;
2280 Set_Is_Frozen (E);
2281
2282 -- Case of entity being frozen is other than a type
2283
2284 if not Is_Type (E) then
2285
2286 -- If entity is exported or imported and does not have an external
2287 -- name, now is the time to provide the appropriate default name.
2288 -- Skip this if the entity is stubbed, since we don't need a name
2289 -- for any stubbed routine.
2290
2291 if (Is_Imported (E) or else Is_Exported (E))
2292 and then No (Interface_Name (E))
2293 and then Convention (E) /= Convention_Stubbed
2294 then
2295 Set_Encoded_Interface_Name
2296 (E, Get_Default_External_Name (E));
fbf5a39b
AC
2297
2298 -- Special processing for atomic objects appearing in object decls
2299
2300 elsif Is_Atomic (E)
2301 and then Nkind (Parent (E)) = N_Object_Declaration
2302 and then Present (Expression (Parent (E)))
2303 then
2304 declare
2305 Expr : constant Node_Id := Expression (Parent (E));
2306
2307 begin
2308 -- If expression is an aggregate, assign to a temporary to
2309 -- ensure that the actual assignment is done atomically rather
2310 -- than component-wise (the assignment to the temp may be done
7d8b9c99 2311 -- component-wise, but that is harmless).
fbf5a39b
AC
2312
2313 if Nkind (Expr) = N_Aggregate then
2314 Expand_Atomic_Aggregate (Expr, Etype (E));
2315
ee094616
RD
2316 -- If the expression is a reference to a record or array object
2317 -- entity, then reset Is_True_Constant to False so that the
2318 -- compiler will not optimize away the intermediate object,
2319 -- which we need in this case for the same reason (to ensure
2320 -- that the actual assignment is atomic, rather than
2321 -- component-wise).
fbf5a39b
AC
2322
2323 elsif Is_Entity_Name (Expr)
2324 and then (Is_Record_Type (Etype (Expr))
2325 or else
2326 Is_Array_Type (Etype (Expr)))
2327 then
2328 Set_Is_True_Constant (Entity (Expr), False);
2329 end if;
2330 end;
70482933
RK
2331 end if;
2332
2333 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2334 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2335 -- This is also the point where any extra formal parameters are
2336 -- created since we now know whether the subprogram will use
2337 -- a foreign convention.
2338
2339 if Is_Subprogram (E) then
70482933 2340 if not Is_Internal (E) then
70482933 2341 declare
6d11af89 2342 F_Type : Entity_Id;
def46b54 2343 R_Type : Entity_Id;
6d11af89 2344 Warn_Node : Node_Id;
70482933 2345
70482933
RK
2346 begin
2347 -- Loop through formals
2348
2349 Formal := First_Formal (E);
70482933 2350 while Present (Formal) loop
70482933
RK
2351 F_Type := Etype (Formal);
2352 Freeze_And_Append (F_Type, Loc, Result);
2353
2354 if Is_Private_Type (F_Type)
2355 and then Is_Private_Type (Base_Type (F_Type))
2356 and then No (Full_View (Base_Type (F_Type)))
2357 and then not Is_Generic_Type (F_Type)
2358 and then not Is_Derived_Type (F_Type)
2359 then
2360 -- If the type of a formal is incomplete, subprogram
2361 -- is being frozen prematurely. Within an instance
2362 -- (but not within a wrapper package) this is an
2363 -- an artifact of our need to regard the end of an
2364 -- instantiation as a freeze point. Otherwise it is
2365 -- a definite error.
fbf5a39b 2366
70482933
RK
2367 -- and then not Is_Wrapper_Package (Current_Scope) ???
2368
2369 if In_Instance then
2370 Set_Is_Frozen (E, False);
2371 return No_List;
2372
86cde7b1
RD
2373 elsif not After_Last_Declaration
2374 and then not Freezing_Library_Level_Tagged_Type
2375 then
70482933
RK
2376 Error_Msg_Node_1 := F_Type;
2377 Error_Msg
2378 ("type& must be fully defined before this point",
2379 Loc);
2380 end if;
2381 end if;
2382
def46b54 2383 -- Check suspicious parameter for C function. These tests
1b24ada5 2384 -- apply only to exported/imported subprograms.
70482933 2385
def46b54 2386 if Warn_On_Export_Import
1b24ada5 2387 and then Comes_From_Source (E)
def46b54
RD
2388 and then (Convention (E) = Convention_C
2389 or else
2390 Convention (E) = Convention_CPP)
def46b54 2391 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2392 and then Convention (E) /= Convention (Formal)
2393 and then not Has_Warnings_Off (E)
2394 and then not Has_Warnings_Off (F_Type)
2395 and then not Has_Warnings_Off (Formal)
fbf5a39b 2396 then
70482933 2397 Error_Msg_Qual_Level := 1;
def46b54
RD
2398
2399 -- Check suspicious use of fat C pointer
2400
2401 if Is_Access_Type (F_Type)
2402 and then Esize (F_Type) > Ttypes.System_Address_Size
2403 then
2404 Error_Msg_N
2405 ("?type of & does not correspond "
2406 & "to C pointer!", Formal);
2407
2408 -- Check suspicious return of boolean
2409
2410 elsif Root_Type (F_Type) = Standard_Boolean
2411 and then Convention (F_Type) = Convention_Ada
67198556
RD
2412 and then not Has_Warnings_Off (F_Type)
2413 and then not Has_Size_Clause (F_Type)
def46b54
RD
2414 then
2415 Error_Msg_N
2416 ("?& is an 8-bit Ada Boolean, "
2417 & "use char in C!", Formal);
2418
2419 -- Check suspicious tagged type
2420
2421 elsif (Is_Tagged_Type (F_Type)
2422 or else (Is_Access_Type (F_Type)
2423 and then
2424 Is_Tagged_Type
2425 (Designated_Type (F_Type))))
2426 and then Convention (E) = Convention_C
2427 then
2428 Error_Msg_N
2429 ("?& is a tagged type which does not "
2430 & "correspond to any C type!", Formal);
2431
2432 -- Check wrong convention subprogram pointer
2433
2434 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2435 and then not Has_Foreign_Convention (F_Type)
2436 then
2437 Error_Msg_N
2438 ("?subprogram pointer & should "
2439 & "have foreign convention!", Formal);
2440 Error_Msg_Sloc := Sloc (F_Type);
2441 Error_Msg_NE
2442 ("\?add Convention pragma to declaration of &#",
2443 Formal, F_Type);
2444 end if;
2445
70482933
RK
2446 Error_Msg_Qual_Level := 0;
2447 end if;
2448
2449 -- Check for unconstrained array in exported foreign
2450 -- convention case.
2451
def46b54 2452 if Has_Foreign_Convention (E)
70482933
RK
2453 and then not Is_Imported (E)
2454 and then Is_Array_Type (F_Type)
2455 and then not Is_Constrained (F_Type)
fbf5a39b 2456 and then Warn_On_Export_Import
70482933
RK
2457 then
2458 Error_Msg_Qual_Level := 1;
6d11af89
AC
2459
2460 -- If this is an inherited operation, place the
2461 -- warning on the derived type declaration, rather
2462 -- than on the original subprogram.
2463
2464 if Nkind (Original_Node (Parent (E))) =
2465 N_Full_Type_Declaration
2466 then
2467 Warn_Node := Parent (E);
2468
2469 if Formal = First_Formal (E) then
2470 Error_Msg_NE
add9f797 2471 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2472 end if;
2473 else
2474 Warn_Node := Formal;
2475 end if;
2476
2477 Error_Msg_NE
70482933 2478 ("?type of argument& is unconstrained array",
6d11af89
AC
2479 Warn_Node, Formal);
2480 Error_Msg_NE
70482933 2481 ("?foreign caller must pass bounds explicitly",
6d11af89 2482 Warn_Node, Formal);
70482933
RK
2483 Error_Msg_Qual_Level := 0;
2484 end if;
2485
d8db0bca
JM
2486 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2487 -- types with unknown discriminants. For example:
2488
2489 -- type T (<>) is tagged;
2490 -- procedure P (X : access T); -- ERROR
2491 -- procedure P (X : T); -- ERROR
2492
2493 if not From_With_Type (F_Type) then
2494 if Is_Access_Type (F_Type) then
2495 F_Type := Designated_Type (F_Type);
2496 end if;
2497
2498 if Ekind (F_Type) = E_Incomplete_Type
2499 and then Is_Tagged_Type (F_Type)
2500 and then not Is_Class_Wide_Type (F_Type)
2501 and then No (Full_View (F_Type))
2502 and then Unknown_Discriminants_Present
2503 (Parent (F_Type))
2504 and then No (Stored_Constraint (F_Type))
2505 then
2506 Error_Msg_N
2507 ("(Ada 2005): invalid use of unconstrained tagged"
2508 & " incomplete type", E);
57747aec 2509
7d8b9c99
RD
2510 -- If the formal is an anonymous_access_to_subprogram
2511 -- freeze the subprogram type as well, to prevent
2512 -- scope anomalies in gigi, because there is no other
2513 -- clear point at which it could be frozen.
2514
2515 elsif Is_Itype (Etype (Formal))
2516 and then Ekind (F_Type) = E_Subprogram_Type
2517 then
57747aec 2518 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2519 end if;
2520 end if;
2521
70482933
RK
2522 Next_Formal (Formal);
2523 end loop;
2524
def46b54 2525 -- Case of function
70482933
RK
2526
2527 if Ekind (E) = E_Function then
def46b54
RD
2528
2529 -- Freeze return type
2530
2531 R_Type := Etype (E);
2532 Freeze_And_Append (R_Type, Loc, Result);
2533
2534 -- Check suspicious return type for C function
70482933 2535
fbf5a39b 2536 if Warn_On_Export_Import
def46b54
RD
2537 and then (Convention (E) = Convention_C
2538 or else
2539 Convention (E) = Convention_CPP)
def46b54 2540 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2541 then
def46b54
RD
2542 -- Check suspicious return of fat C pointer
2543
2544 if Is_Access_Type (R_Type)
2545 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2546 and then not Has_Warnings_Off (E)
2547 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2548 then
2549 Error_Msg_N
2550 ("?return type of& does not "
2551 & "correspond to C pointer!", E);
2552
2553 -- Check suspicious return of boolean
2554
2555 elsif Root_Type (R_Type) = Standard_Boolean
2556 and then Convention (R_Type) = Convention_Ada
1b24ada5
RD
2557 and then not Has_Warnings_Off (E)
2558 and then not Has_Warnings_Off (R_Type)
67198556 2559 and then not Has_Size_Clause (R_Type)
def46b54
RD
2560 then
2561 Error_Msg_N
2562 ("?return type of & is an 8-bit "
2563 & "Ada Boolean, use char in C!", E);
70482933 2564
def46b54
RD
2565 -- Check suspicious return tagged type
2566
2567 elsif (Is_Tagged_Type (R_Type)
2568 or else (Is_Access_Type (R_Type)
2569 and then
2570 Is_Tagged_Type
2571 (Designated_Type (R_Type))))
2572 and then Convention (E) = Convention_C
1b24ada5
RD
2573 and then not Has_Warnings_Off (E)
2574 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2575 then
2576 Error_Msg_N
2577 ("?return type of & does not "
2578 & "correspond to C type!", E);
2579
2580 -- Check return of wrong convention subprogram pointer
2581
2582 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2583 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2584 and then not Has_Warnings_Off (E)
2585 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2586 then
2587 Error_Msg_N
2588 ("?& should return a foreign "
2589 & "convention subprogram pointer", E);
2590 Error_Msg_Sloc := Sloc (R_Type);
2591 Error_Msg_NE
2592 ("\?add Convention pragma to declaration of& #",
2593 E, R_Type);
2594 end if;
2595 end if;
2596
2597 if Is_Array_Type (Etype (E))
70482933
RK
2598 and then not Is_Constrained (Etype (E))
2599 and then not Is_Imported (E)
def46b54 2600 and then Has_Foreign_Convention (E)
fbf5a39b 2601 and then Warn_On_Export_Import
1b24ada5
RD
2602 and then not Has_Warnings_Off (E)
2603 and then not Has_Warnings_Off (Etype (E))
70482933
RK
2604 then
2605 Error_Msg_N
fbf5a39b 2606 ("?foreign convention function& should not " &
1b24ada5 2607 "return unconstrained array!", E);
d8db0bca
JM
2608
2609 -- Ada 2005 (AI-326): Check wrong use of tagged
2610 -- incomplete type
bb1b6ec8 2611
d8db0bca
JM
2612 -- type T is tagged;
2613 -- function F (X : Boolean) return T; -- ERROR
bb1b6ec8 2614
3f92549e
TQ
2615 -- The type must be declared in the current scope for the
2616 -- use to be legal, and the full view must be available
2617 -- when the construct that mentions it is frozen.
d8db0bca
JM
2618
2619 elsif Ekind (Etype (E)) = E_Incomplete_Type
2620 and then Is_Tagged_Type (Etype (E))
2621 and then No (Full_View (Etype (E)))
7d8b9c99 2622 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
2623 then
2624 Error_Msg_N
2625 ("(Ada 2005): invalid use of tagged incomplete type",
70d904ca 2626 E);
70482933
RK
2627 end if;
2628 end if;
2629 end;
2630 end if;
2631
2632 -- Must freeze its parent first if it is a derived subprogram
2633
2634 if Present (Alias (E)) then
2635 Freeze_And_Append (Alias (E), Loc, Result);
2636 end if;
2637
19590d70
GD
2638 -- We don't freeze internal subprograms, because we don't normally
2639 -- want addition of extra formals or mechanism setting to happen
2640 -- for those. However we do pass through predefined dispatching
2641 -- cases, since extra formals may be needed in some cases, such as
2642 -- for the stream 'Input function (build-in-place formals).
2643
2644 if not Is_Internal (E)
2645 or else Is_Predefined_Dispatching_Operation (E)
2646 then
70482933
RK
2647 Freeze_Subprogram (E);
2648 end if;
2649
2650 -- Here for other than a subprogram or type
2651
2652 else
70d904ca
ES
2653 -- For a generic package, freeze types within, so that proper
2654 -- cross-reference information is generated for tagged types.
2655 -- This is the only freeze processing needed for generic packages.
2656
2657 if Ekind (E) = E_Generic_Package then
2658 declare
2659 T : Entity_Id;
2660
2661 begin
2662 T := First_Entity (E);
70d904ca
ES
2663 while Present (T) loop
2664 if Is_Type (T) then
2665 Generate_Prim_Op_References (T);
2666 end if;
2667
2668 Next_Entity (T);
2669 end loop;
2670 end;
2671
70482933 2672 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2673 -- freeze it first (RM 13.14(10)).
70482933 2674
70d904ca 2675 elsif Present (Etype (E))
70482933
RK
2676 and then Ekind (E) /= E_Generic_Function
2677 then
2678 Freeze_And_Append (Etype (E), Loc, Result);
2679 end if;
2680
2c9beb8a 2681 -- Special processing for objects created by object declaration
70482933
RK
2682
2683 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a
RD
2684
2685 -- For object created by object declaration, perform required
2686 -- categorization (preelaborate and pure) checks. Defer these
2687 -- checks to freeze time since pragma Import inhibits default
2688 -- initialization and thus pragma Import affects these checks.
2689
70482933 2690 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2691
1ce1f005 2692 -- If there is an address clause, check that it is valid
2c9beb8a 2693
fbf5a39b 2694 Check_Address_Clause (E);
2c9beb8a 2695
1ce1f005
GD
2696 -- If the object needs any kind of default initialization, an
2697 -- error must be issued if No_Default_Initialization applies.
2698 -- The check doesn't apply to imported objects, which are not
2699 -- ever default initialized, and is why the check is deferred
2700 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2701 -- Deferred constants are also exempted from this test because
2702 -- their completion is explicit, or through an import pragma.
1ce1f005 2703
4fec4e7a
ES
2704 if Ekind (E) = E_Constant
2705 and then Present (Full_View (E))
2706 then
2707 null;
2708
2709 elsif Comes_From_Source (E)
b6e209b5 2710 and then not Is_Imported (E)
1ce1f005
GD
2711 and then not Has_Init_Expression (Declaration_Node (E))
2712 and then
2713 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2714 and then not No_Initialization (Declaration_Node (E))
2715 and then not Is_Value_Type (Etype (E))
2716 and then not Suppress_Init_Proc (Etype (E)))
2717 or else
2718 (Needs_Simple_Initialization (Etype (E))
2719 and then not Is_Internal (E)))
2720 then
4c8a5bb8 2721 Has_Default_Initialization := True;
1ce1f005
GD
2722 Check_Restriction
2723 (No_Default_Initialization, Declaration_Node (E));
2724 end if;
2725
4c8a5bb8
AC
2726 -- Check that a Thread_Local_Storage variable does not have
2727 -- default initialization, and any explicit initialization must
2728 -- either be the null constant or a static constant.
2729
2730 if Has_Pragma_Thread_Local_Storage (E) then
2731 declare
2732 Decl : constant Node_Id := Declaration_Node (E);
2733 begin
2734 if Has_Default_Initialization
2735 or else
2736 (Has_Init_Expression (Decl)
2737 and then
2738 (No (Expression (Decl))
2739 or else not
2740 (Is_Static_Expression (Expression (Decl))
2741 or else
2742 Nkind (Expression (Decl)) = N_Null)))
2743 then
2744 Error_Msg_NE
2745 ("Thread_Local_Storage variable& is "
2746 & "improperly initialized", Decl, E);
2747 Error_Msg_NE
2748 ("\only allowed initialization is explicit "
2749 & "NULL or static expression", Decl, E);
2750 end if;
2751 end;
2752 end if;
2753
def46b54
RD
2754 -- For imported objects, set Is_Public unless there is also an
2755 -- address clause, which means that there is no external symbol
2756 -- needed for the Import (Is_Public may still be set for other
2757 -- unrelated reasons). Note that we delayed this processing
2758 -- till freeze time so that we can be sure not to set the flag
2759 -- if there is an address clause. If there is such a clause,
2760 -- then the only purpose of the Import pragma is to suppress
2761 -- implicit initialization.
2c9beb8a
RD
2762
2763 if Is_Imported (E)
add9f797 2764 and then No (Address_Clause (E))
2c9beb8a
RD
2765 then
2766 Set_Is_Public (E);
2767 end if;
7d8b9c99
RD
2768
2769 -- For convention C objects of an enumeration type, warn if
2770 -- the size is not integer size and no explicit size given.
2771 -- Skip warning for Boolean, and Character, assume programmer
2772 -- expects 8-bit sizes for these cases.
2773
2774 if (Convention (E) = Convention_C
2775 or else
2776 Convention (E) = Convention_CPP)
2777 and then Is_Enumeration_Type (Etype (E))
2778 and then not Is_Character_Type (Etype (E))
2779 and then not Is_Boolean_Type (Etype (E))
2780 and then Esize (Etype (E)) < Standard_Integer_Size
2781 and then not Has_Size_Clause (E)
2782 then
2783 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2784 Error_Msg_N
2785 ("?convention C enumeration object has size less than ^",
2786 E);
2787 Error_Msg_N ("\?use explicit size clause to set size", E);
2788 end if;
70482933
RK
2789 end if;
2790
2791 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2792 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2793
2794 -- Note: Atomic[_Components] also sets Volatile[_Components]
2795
2796 if Ekind (E) = E_Constant
2797 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2798 and then not Is_Imported (E)
2799 then
2800 -- Make sure we actually have a pragma, and have not merely
2801 -- inherited the indication from elsewhere (e.g. an address
2802 -- clause, which is not good enough in RM terms!)
2803
1d571f3b 2804 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2805 or else
1d571f3b 2806 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2807 then
2808 Error_Msg_N
91b1417d 2809 ("stand alone atomic constant must be " &
def46b54 2810 "imported (RM C.6(13))", E);
91b1417d 2811
1d571f3b 2812 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2813 or else
1d571f3b 2814 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2815 then
2816 Error_Msg_N
2817 ("stand alone volatile constant must be " &
86cde7b1 2818 "imported (RM C.6(13))", E);
70482933
RK
2819 end if;
2820 end if;
2821
2822 -- Static objects require special handling
2823
2824 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2825 and then Is_Statically_Allocated (E)
2826 then
2827 Freeze_Static_Object (E);
2828 end if;
2829
2830 -- Remaining step is to layout objects
2831
2832 if Ekind (E) = E_Variable
2833 or else
2834 Ekind (E) = E_Constant
2835 or else
2836 Ekind (E) = E_Loop_Parameter
2837 or else
2838 Is_Formal (E)
2839 then
2840 Layout_Object (E);
2841 end if;
2842 end if;
2843
2844 -- Case of a type or subtype being frozen
2845
2846 else
31b5873d
GD
2847 -- We used to check here that a full type must have preelaborable
2848 -- initialization if it completes a private type specified with
2849 -- pragma Preelaborable_Intialization, but that missed cases where
2850 -- the types occur within a generic package, since the freezing
2851 -- that occurs within a containing scope generally skips traversal
2852 -- of a generic unit's declarations (those will be frozen within
2853 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2854
70482933
RK
2855 -- The type may be defined in a generic unit. This can occur when
2856 -- freezing a generic function that returns the type (which is
2857 -- defined in a parent unit). It is clearly meaningless to freeze
2858 -- this type. However, if it is a subtype, its size may be determi-
2859 -- nable and used in subsequent checks, so might as well try to
2860 -- compute it.
2861
2862 if Present (Scope (E))
2863 and then Is_Generic_Unit (Scope (E))
2864 then
2865 Check_Compile_Time_Size (E);
2866 return No_List;
2867 end if;
2868
2869 -- Deal with special cases of freezing for subtype
2870
2871 if E /= Base_Type (E) then
2872
86cde7b1
RD
2873 -- Before we do anything else, a specialized test for the case of
2874 -- a size given for an array where the array needs to be packed,
2875 -- but was not so the size cannot be honored. This would of course
2876 -- be caught by the backend, and indeed we don't catch all cases.
2877 -- The point is that we can give a better error message in those
2878 -- cases that we do catch with the circuitry here. Also if pragma
2879 -- Implicit_Packing is set, this is where the packing occurs.
2880
2881 -- The reason we do this so early is that the processing in the
2882 -- automatic packing case affects the layout of the base type, so
2883 -- it must be done before we freeze the base type.
2884
2885 if Is_Array_Type (E) then
2886 declare
2887 Lo, Hi : Node_Id;
2888 Ctyp : constant Entity_Id := Component_Type (E);
2889
2890 begin
2891 -- Check enabling conditions. These are straightforward
2892 -- except for the test for a limited composite type. This
2893 -- eliminates the rare case of a array of limited components
2894 -- where there are issues of whether or not we can go ahead
2895 -- and pack the array (since we can't freely pack and unpack
2896 -- arrays if they are limited).
2897
2898 -- Note that we check the root type explicitly because the
2899 -- whole point is we are doing this test before we have had
2900 -- a chance to freeze the base type (and it is that freeze
2901 -- action that causes stuff to be inherited).
2902
2903 if Present (Size_Clause (E))
2904 and then Known_Static_Esize (E)
2905 and then not Is_Packed (E)
2906 and then not Has_Pragma_Pack (E)
2907 and then Number_Dimensions (E) = 1
2908 and then not Has_Component_Size_Clause (E)
2909 and then Known_Static_Esize (Ctyp)
2910 and then not Is_Limited_Composite (E)
2911 and then not Is_Packed (Root_Type (E))
2912 and then not Has_Component_Size_Clause (Root_Type (E))
2913 then
2914 Get_Index_Bounds (First_Index (E), Lo, Hi);
2915
2916 if Compile_Time_Known_Value (Lo)
2917 and then Compile_Time_Known_Value (Hi)
2918 and then Known_Static_RM_Size (Ctyp)
2919 and then RM_Size (Ctyp) < 64
2920 then
2921 declare
2922 Lov : constant Uint := Expr_Value (Lo);
2923 Hiv : constant Uint := Expr_Value (Hi);
2924 Len : constant Uint := UI_Max
2925 (Uint_0,
2926 Hiv - Lov + 1);
2927 Rsiz : constant Uint := RM_Size (Ctyp);
2928 SZ : constant Node_Id := Size_Clause (E);
2929 Btyp : constant Entity_Id := Base_Type (E);
2930
2931 -- What we are looking for here is the situation where
2932 -- the RM_Size given would be exactly right if there
2933 -- was a pragma Pack (resulting in the component size
2934 -- being the same as the RM_Size). Furthermore, the
2935 -- component type size must be an odd size (not a
2936 -- multiple of storage unit)
2937
2938 begin
2939 if RM_Size (E) = Len * Rsiz
2940 and then Rsiz mod System_Storage_Unit /= 0
2941 then
2942 -- For implicit packing mode, just set the
2943 -- component size silently
2944
2945 if Implicit_Packing then
2946 Set_Component_Size (Btyp, Rsiz);
2947 Set_Is_Bit_Packed_Array (Btyp);
2948 Set_Is_Packed (Btyp);
2949 Set_Has_Non_Standard_Rep (Btyp);
2950
2951 -- Otherwise give an error message
2952
2953 else
2954 Error_Msg_NE
2955 ("size given for& too small", SZ, E);
2956 Error_Msg_N
2957 ("\use explicit pragma Pack "
2958 & "or use pragma Implicit_Packing", SZ);
2959 end if;
2960 end if;
2961 end;
2962 end if;
2963 end if;
2964 end;
2965 end if;
2966
def46b54
RD
2967 -- If ancestor subtype present, freeze that first. Note that this
2968 -- will also get the base type frozen.
70482933
RK
2969
2970 Atype := Ancestor_Subtype (E);
2971
2972 if Present (Atype) then
2973 Freeze_And_Append (Atype, Loc, Result);
2974
def46b54
RD
2975 -- Otherwise freeze the base type of the entity before freezing
2976 -- the entity itself (RM 13.14(15)).
70482933
RK
2977
2978 elsif E /= Base_Type (E) then
2979 Freeze_And_Append (Base_Type (E), Loc, Result);
2980 end if;
2981
fbf5a39b 2982 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2983
2984 elsif Is_Derived_Type (E) then
2985 Freeze_And_Append (Etype (E), Loc, Result);
2986 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2987 end if;
2988
2989 -- For array type, freeze index types and component type first
fbf5a39b 2990 -- before freezing the array (RM 13.14(15)).
70482933
RK
2991
2992 if Is_Array_Type (E) then
2993 declare
fbf5a39b 2994 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
2995
2996 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
2997 -- Set true if any of the index types is an enumeration type
2998 -- with a non-standard representation.
70482933
RK
2999
3000 begin
3001 Freeze_And_Append (Ctyp, Loc, Result);
3002
3003 Indx := First_Index (E);
3004 while Present (Indx) loop
3005 Freeze_And_Append (Etype (Indx), Loc, Result);
3006
3007 if Is_Enumeration_Type (Etype (Indx))
3008 and then Has_Non_Standard_Rep (Etype (Indx))
3009 then
3010 Non_Standard_Enum := True;
3011 end if;
3012
3013 Next_Index (Indx);
3014 end loop;
3015
07fc65c4 3016 -- Processing that is done only for base types
70482933
RK
3017
3018 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3019
3020 -- Propagate flags for component type
3021
70482933
RK
3022 if Is_Controlled (Component_Type (E))
3023 or else Has_Controlled_Component (Ctyp)
3024 then
3025 Set_Has_Controlled_Component (E);
3026 end if;
3027
3028 if Has_Unchecked_Union (Component_Type (E)) then
3029 Set_Has_Unchecked_Union (E);
3030 end if;
70482933 3031
07fc65c4
GB
3032 -- If packing was requested or if the component size was set
3033 -- explicitly, then see if bit packing is required. This
3034 -- processing is only done for base types, since all the
3035 -- representation aspects involved are type-related. This
3036 -- is not just an optimization, if we start processing the
e14c931f 3037 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3038 -- type (this is because Is_Packed has a slightly different
3039 -- meaning before and after freezing).
70482933 3040
70482933
RK
3041 declare
3042 Csiz : Uint;
3043 Esiz : Uint;
3044
3045 begin
3046 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3047 and then not Has_Atomic_Components (E)
3048 and then Known_Static_RM_Size (Ctyp)
3049 then
3050 Csiz := UI_Max (RM_Size (Ctyp), 1);
3051
3052 elsif Known_Component_Size (E) then
3053 Csiz := Component_Size (E);
3054
3055 elsif not Known_Static_Esize (Ctyp) then
3056 Csiz := Uint_0;
3057
3058 else
3059 Esiz := Esize (Ctyp);
3060
3061 -- We can set the component size if it is less than
3062 -- 16, rounding it up to the next storage unit size.
3063
3064 if Esiz <= 8 then
3065 Csiz := Uint_8;
3066 elsif Esiz <= 16 then
3067 Csiz := Uint_16;
3068 else
3069 Csiz := Uint_0;
3070 end if;
3071
7d8b9c99
RD
3072 -- Set component size up to match alignment if it
3073 -- would otherwise be less than the alignment. This
3074 -- deals with cases of types whose alignment exceeds
3075 -- their size (padded types).
70482933
RK
3076
3077 if Csiz /= 0 then
3078 declare
3079 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3080 begin
3081 if Csiz < A then
3082 Csiz := A;
3083 end if;
3084 end;
3085 end if;
70482933
RK
3086 end if;
3087
86cde7b1
RD
3088 -- Case of component size that may result in packing
3089
70482933 3090 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3091 declare
3092 Ent : constant Entity_Id :=
3093 First_Subtype (E);
3094 Pack_Pragma : constant Node_Id :=
3095 Get_Rep_Pragma (Ent, Name_Pack);
3096 Comp_Size_C : constant Node_Id :=
3097 Get_Attribute_Definition_Clause
3098 (Ent, Attribute_Component_Size);
3099 begin
3100 -- Warn if we have pack and component size so that
3101 -- the pack is ignored.
70482933 3102
86cde7b1
RD
3103 -- Note: here we must check for the presence of a
3104 -- component size before checking for a Pack pragma
3105 -- to deal with the case where the array type is a
3106 -- derived type whose parent is currently private.
3107
3108 if Present (Comp_Size_C)
3109 and then Has_Pragma_Pack (Ent)
3110 then
3111 Error_Msg_Sloc := Sloc (Comp_Size_C);
3112 Error_Msg_NE
3113 ("?pragma Pack for& ignored!",
3114 Pack_Pragma, Ent);
3115 Error_Msg_N
3116 ("\?explicit component size given#!",
3117 Pack_Pragma);
3118 end if;
70482933 3119
86cde7b1
RD
3120 -- Set component size if not already set by a
3121 -- component size clause.
70482933 3122
86cde7b1
RD
3123 if not Present (Comp_Size_C) then
3124 Set_Component_Size (E, Csiz);
3125 end if;
fbf5a39b 3126
86cde7b1
RD
3127 -- Check for base type of 8, 16, 32 bits, where an
3128 -- unsigned subtype has a length one less than the
3129 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3130
86cde7b1
RD
3131 -- In such cases, if a component size was not set
3132 -- explicitly, then generate a warning.
fbf5a39b 3133
86cde7b1
RD
3134 if Has_Pragma_Pack (E)
3135 and then not Present (Comp_Size_C)
3136 and then
3137 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3138 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3139 then
3140 Error_Msg_Uint_1 := Csiz;
3141
3142 if Present (Pack_Pragma) then
3143 Error_Msg_N
3144 ("?pragma Pack causes component size "
3145 & "to be ^!", Pack_Pragma);
3146 Error_Msg_N
3147 ("\?use Component_Size to set "
3148 & "desired value!", Pack_Pragma);
3149 end if;
fbf5a39b 3150 end if;
fbf5a39b 3151
86cde7b1
RD
3152 -- Actual packing is not needed for 8, 16, 32, 64.
3153 -- Also not needed for 24 if alignment is 1.
70482933 3154
86cde7b1
RD
3155 if Csiz = 8
3156 or else Csiz = 16
3157 or else Csiz = 32
3158 or else Csiz = 64
3159 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3160 then
3161 -- Here the array was requested to be packed,
3162 -- but the packing request had no effect, so
3163 -- Is_Packed is reset.
70482933 3164
86cde7b1
RD
3165 -- Note: semantically this means that we lose
3166 -- track of the fact that a derived type
3167 -- inherited a pragma Pack that was non-
3168 -- effective, but that seems fine.
70482933 3169
86cde7b1
RD
3170 -- We regard a Pack pragma as a request to set
3171 -- a representation characteristic, and this
3172 -- request may be ignored.
70482933 3173
86cde7b1 3174 Set_Is_Packed (Base_Type (E), False);
70482933 3175
86cde7b1 3176 -- In all other cases, packing is indeed needed
70482933 3177
86cde7b1
RD
3178 else
3179 Set_Has_Non_Standard_Rep (Base_Type (E));
3180 Set_Is_Bit_Packed_Array (Base_Type (E));
3181 Set_Is_Packed (Base_Type (E));
3182 end if;
3183 end;
70482933
RK
3184 end if;
3185 end;
07fc65c4
GB
3186
3187 -- Processing that is done only for subtypes
3188
3189 else
3190 -- Acquire alignment from base type
3191
3192 if Unknown_Alignment (E) then
3193 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3194 Adjust_Esize_Alignment (E);
07fc65c4
GB
3195 end if;
3196 end if;
3197
d05ef0ab
AC
3198 -- For bit-packed arrays, check the size
3199
3200 if Is_Bit_Packed_Array (E)
7d8b9c99 3201 and then Known_RM_Size (E)
d05ef0ab
AC
3202 then
3203 declare
67ce0d7e
RD
3204 SizC : constant Node_Id := Size_Clause (E);
3205
d05ef0ab 3206 Discard : Boolean;
67ce0d7e 3207 pragma Warnings (Off, Discard);
d05ef0ab
AC
3208
3209 begin
3210 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3211 -- clause at this stage, but it is not worth worrying
3212 -- about. Post error on the entity name in the size
d05ef0ab
AC
3213 -- clause if present, else on the type entity itself.
3214
3215 if Present (SizC) then
7d8b9c99 3216 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3217 else
7d8b9c99 3218 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3219 end if;
3220 end;
3221 end if;
3222
70482933
RK
3223 -- If any of the index types was an enumeration type with
3224 -- a non-standard rep clause, then we indicate that the
3225 -- array type is always packed (even if it is not bit packed).
3226
3227 if Non_Standard_Enum then
3228 Set_Has_Non_Standard_Rep (Base_Type (E));
3229 Set_Is_Packed (Base_Type (E));
3230 end if;
70482933 3231
0da2c8ac 3232 Set_Component_Alignment_If_Not_Set (E);
70482933 3233
0da2c8ac
AC
3234 -- If the array is packed, we must create the packed array
3235 -- type to be used to actually implement the type. This is
3236 -- only needed for real array types (not for string literal
3237 -- types, since they are present only for the front end).
70482933 3238
0da2c8ac
AC
3239 if Is_Packed (E)
3240 and then Ekind (E) /= E_String_Literal_Subtype
3241 then
3242 Create_Packed_Array_Type (E);
3243 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3244
0da2c8ac 3245 -- Size information of packed array type is copied to the
fea9e956 3246 -- array type, since this is really the representation. But
def46b54
RD
3247 -- do not override explicit existing size values. If the
3248 -- ancestor subtype is constrained the packed_array_type
3249 -- will be inherited from it, but the size may have been
3250 -- provided already, and must not be overridden either.
fea9e956 3251
def46b54
RD
3252 if not Has_Size_Clause (E)
3253 and then
3254 (No (Ancestor_Subtype (E))
3255 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3256 then
fea9e956
ES
3257 Set_Esize (E, Esize (Packed_Array_Type (E)));
3258 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3259 end if;
70482933 3260
fea9e956
ES
3261 if not Has_Alignment_Clause (E) then
3262 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3263 end if;
0da2c8ac
AC
3264 end if;
3265
def46b54
RD
3266 -- For non-packed arrays set the alignment of the array to the
3267 -- alignment of the component type if it is unknown. Skip this
3268 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3269
3270 if not Is_Packed (E)
3271 and then Unknown_Alignment (E)
3272 and then Known_Alignment (Ctyp)
3273 and then Known_Static_Component_Size (E)
3274 and then Known_Static_Esize (Ctyp)
3275 and then Esize (Ctyp) = Component_Size (E)
3276 and then not Is_Atomic (E)
3277 then
3278 Set_Alignment (E, Alignment (Component_Type (E)));
3279 end if;
3280 end;
70482933 3281
fbf5a39b
AC
3282 -- For a class-wide type, the corresponding specific type is
3283 -- frozen as well (RM 13.14(15))
70482933
RK
3284
3285 elsif Is_Class_Wide_Type (E) then
3286 Freeze_And_Append (Root_Type (E), Loc, Result);
3287
86cde7b1
RD
3288 -- If the base type of the class-wide type is still incomplete,
3289 -- the class-wide remains unfrozen as well. This is legal when
3290 -- E is the formal of a primitive operation of some other type
3291 -- which is being frozen.
3292
3293 if not Is_Frozen (Root_Type (E)) then
3294 Set_Is_Frozen (E, False);
3295 return Result;
3296 end if;
3297
70482933
RK
3298 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3299 -- parent of a derived type) and it is a library-level entity,
3300 -- generate an itype reference for it. Otherwise, its first
3301 -- explicit reference may be in an inner scope, which will be
3302 -- rejected by the back-end.
3303
3304 if Is_Itype (E)
3305 and then Is_Compilation_Unit (Scope (E))
3306 then
70482933 3307 declare
fbf5a39b 3308 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3309
3310 begin
3311 Set_Itype (Ref, E);
3312 if No (Result) then
3313 Result := New_List (Ref);
3314 else
3315 Append (Ref, Result);
3316 end if;
3317 end;
3318 end if;
3319
def46b54
RD
3320 -- The equivalent type associated with a class-wide subtype needs
3321 -- to be frozen to ensure that its layout is done. Class-wide
3322 -- subtypes are currently only frozen on targets requiring
3323 -- front-end layout (see New_Class_Wide_Subtype and
3324 -- Make_CW_Equivalent_Type in exp_util.adb).
fbf5a39b
AC
3325
3326 if Ekind (E) = E_Class_Wide_Subtype
3327 and then Present (Equivalent_Type (E))
3328 then
3329 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3330 end if;
3331
3332 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3333 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3334 -- Is_Record_Type, because we don't want to attempt the freeze for
3335 -- the case of a private type with record extension (we will do that
3336 -- later when the full type is frozen).
70482933
RK
3337
3338 elsif Ekind (E) = E_Record_Type
3339 or else Ekind (E) = E_Record_Subtype
3340 then
3341 Freeze_Record_Type (E);
3342
3343 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3344 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3345 -- record type is essentially part of the concurrent type.
3346 -- Freeze as well all local entities. This includes record types
3347 -- created for entry parameter blocks, and whatever local entities
3348 -- may appear in the private part.
3349
3350 elsif Is_Concurrent_Type (E) then
3351 if Present (Corresponding_Record_Type (E)) then
3352 Freeze_And_Append
3353 (Corresponding_Record_Type (E), Loc, Result);
3354 end if;
3355
3356 Comp := First_Entity (E);
3357
3358 while Present (Comp) loop
3359 if Is_Type (Comp) then
3360 Freeze_And_Append (Comp, Loc, Result);
3361
3362 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3363 if Is_Itype (Etype (Comp))
3364 and then Underlying_Type (Scope (Etype (Comp))) = E
3365 then
3366 Undelay_Type (Etype (Comp));
3367 end if;
3368
70482933
RK
3369 Freeze_And_Append (Etype (Comp), Loc, Result);
3370 end if;
3371
3372 Next_Entity (Comp);
3373 end loop;
3374
ee094616
RD
3375 -- Private types are required to point to the same freeze node as
3376 -- their corresponding full views. The freeze node itself has to
3377 -- point to the partial view of the entity (because from the partial
3378 -- view, we can retrieve the full view, but not the reverse).
3379 -- However, in order to freeze correctly, we need to freeze the full
3380 -- view. If we are freezing at the end of a scope (or within the
3381 -- scope of the private type), the partial and full views will have
3382 -- been swapped, the full view appears first in the entity chain and
3383 -- the swapping mechanism ensures that the pointers are properly set
3384 -- (on scope exit).
3385
3386 -- If we encounter the partial view before the full view (e.g. when
3387 -- freezing from another scope), we freeze the full view, and then
3388 -- set the pointers appropriately since we cannot rely on swapping to
3389 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3390
3391 elsif Is_Incomplete_Or_Private_Type (E)
3392 and then not Is_Generic_Type (E)
3393 then
86cde7b1
RD
3394 -- The construction of the dispatch table associated with library
3395 -- level tagged types forces freezing of all the primitives of the
3396 -- type, which may cause premature freezing of the partial view.
3397 -- For example:
3398
3399 -- package Pkg is
3400 -- type T is tagged private;
3401 -- type DT is new T with private;
3402 -- procedure Prim (X : in out T; Y : in out DT'class);
3403 -- private
3404 -- type T is tagged null record;
3405 -- Obj : T;
3406 -- type DT is new T with null record;
3407 -- end;
3408
3409 -- In this case the type will be frozen later by the usual
3410 -- mechanism: an object declaration, an instantiation, or the
3411 -- end of a declarative part.
3412
3413 if Is_Library_Level_Tagged_Type (E)
3414 and then not Present (Full_View (E))
3415 then
3416 Set_Is_Frozen (E, False);
3417 return Result;
3418
70482933
RK
3419 -- Case of full view present
3420
86cde7b1 3421 elsif Present (Full_View (E)) then
70482933 3422
ee094616
RD
3423 -- If full view has already been frozen, then no further
3424 -- processing is required
70482933
RK
3425
3426 if Is_Frozen (Full_View (E)) then
3427
3428 Set_Has_Delayed_Freeze (E, False);
3429 Set_Freeze_Node (E, Empty);
3430 Check_Debug_Info_Needed (E);
3431
ee094616
RD
3432 -- Otherwise freeze full view and patch the pointers so that
3433 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3434
3435 else
fbf5a39b
AC
3436 declare
3437 Full : constant Entity_Id := Full_View (E);
70482933 3438
fbf5a39b
AC
3439 begin
3440 if Is_Private_Type (Full)
3441 and then Present (Underlying_Full_View (Full))
3442 then
3443 Freeze_And_Append
3444 (Underlying_Full_View (Full), Loc, Result);
3445 end if;
70482933 3446
fbf5a39b 3447 Freeze_And_Append (Full, Loc, Result);
70482933 3448
fbf5a39b
AC
3449 if Has_Delayed_Freeze (E) then
3450 F_Node := Freeze_Node (Full);
70482933 3451
fbf5a39b
AC
3452 if Present (F_Node) then
3453 Set_Freeze_Node (E, F_Node);
3454 Set_Entity (F_Node, E);
3455
3456 else
def46b54
RD
3457 -- {Incomplete,Private}_Subtypes with Full_Views
3458 -- constrained by discriminants.
fbf5a39b
AC
3459
3460 Set_Has_Delayed_Freeze (E, False);
3461 Set_Freeze_Node (E, Empty);
3462 end if;
70482933 3463 end if;
fbf5a39b 3464 end;
70482933
RK
3465
3466 Check_Debug_Info_Needed (E);
3467 end if;
3468
ee094616
RD
3469 -- AI-117 requires that the convention of a partial view be the
3470 -- same as the convention of the full view. Note that this is a
3471 -- recognized breach of privacy, but it's essential for logical
3472 -- consistency of representation, and the lack of a rule in
3473 -- RM95 was an oversight.
70482933
RK
3474
3475 Set_Convention (E, Convention (Full_View (E)));
3476
3477 Set_Size_Known_At_Compile_Time (E,
3478 Size_Known_At_Compile_Time (Full_View (E)));
3479
3480 -- Size information is copied from the full view to the
def46b54 3481 -- incomplete or private view for consistency.
70482933 3482
ee094616
RD
3483 -- We skip this is the full view is not a type. This is very
3484 -- strange of course, and can only happen as a result of
3485 -- certain illegalities, such as a premature attempt to derive
3486 -- from an incomplete type.
70482933
RK
3487
3488 if Is_Type (Full_View (E)) then
3489 Set_Size_Info (E, Full_View (E));
3490 Set_RM_Size (E, RM_Size (Full_View (E)));
3491 end if;
3492
3493 return Result;
3494
3495 -- Case of no full view present. If entity is derived or subtype,
3496 -- it is safe to freeze, correctness depends on the frozen status
3497 -- of parent. Otherwise it is either premature usage, or a Taft
3498 -- amendment type, so diagnosis is at the point of use and the
3499 -- type might be frozen later.
3500
3501 elsif E /= Base_Type (E)
3502 or else Is_Derived_Type (E)
3503 then
3504 null;
3505
3506 else
3507 Set_Is_Frozen (E, False);
3508 return No_List;
3509 end if;
3510
3511 -- For access subprogram, freeze types of all formals, the return
3512 -- type was already frozen, since it is the Etype of the function.
3513
3514 elsif Ekind (E) = E_Subprogram_Type then
3515 Formal := First_Formal (E);
3516 while Present (Formal) loop
3517 Freeze_And_Append (Etype (Formal), Loc, Result);
3518 Next_Formal (Formal);
3519 end loop;
3520
70482933
RK
3521 Freeze_Subprogram (E);
3522
3f1ede06 3523 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
def46b54 3524
d8db0bca
JM
3525 -- type T is tagged;
3526 -- type Acc is access function (X : T) return T; -- ERROR
3527
3528 if Ekind (Etype (E)) = E_Incomplete_Type
3529 and then Is_Tagged_Type (Etype (E))
3530 and then No (Full_View (Etype (E)))
7d8b9c99 3531 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
3532 then
3533 Error_Msg_N
3534 ("(Ada 2005): invalid use of tagged incomplete type", E);
3535 end if;
3536
ee094616
RD
3537 -- For access to a protected subprogram, freeze the equivalent type
3538 -- (however this is not set if we are not generating code or if this
3539 -- is an anonymous type used just for resolution).
70482933 3540
fea9e956 3541 elsif Is_Access_Protected_Subprogram_Type (E) then
d8db0bca
JM
3542
3543 -- AI-326: Check wrong use of tagged incomplete types
3544
3545 -- type T is tagged;
3546 -- type As3D is access protected
3547 -- function (X : Float) return T; -- ERROR
3548
3549 declare
3550 Etyp : Entity_Id;
3551
3552 begin
3553 Etyp := Etype (Directly_Designated_Type (E));
3554
3555 if Is_Class_Wide_Type (Etyp) then
3556 Etyp := Etype (Etyp);
3557 end if;
3558
3559 if Ekind (Etyp) = E_Incomplete_Type
3560 and then Is_Tagged_Type (Etyp)
3561 and then No (Full_View (Etyp))
7d8b9c99 3562 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
3563 then
3564 Error_Msg_N
3565 ("(Ada 2005): invalid use of tagged incomplete type", E);
3566 end if;
3567 end;
3568
57747aec 3569 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3570 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3571 end if;
70482933
RK
3572 end if;
3573
3574 -- Generic types are never seen by the back-end, and are also not
3575 -- processed by the expander (since the expander is turned off for
3576 -- generic processing), so we never need freeze nodes for them.
3577
3578 if Is_Generic_Type (E) then
3579 return Result;
3580 end if;
3581
3582 -- Some special processing for non-generic types to complete
3583 -- representation details not known till the freeze point.
3584
3585 if Is_Fixed_Point_Type (E) then
3586 Freeze_Fixed_Point_Type (E);
3587
ee094616
RD
3588 -- Some error checks required for ordinary fixed-point type. Defer
3589 -- these till the freeze-point since we need the small and range
3590 -- values. We only do these checks for base types
fbf5a39b
AC
3591
3592 if Is_Ordinary_Fixed_Point_Type (E)
3593 and then E = Base_Type (E)
3594 then
3595 if Small_Value (E) < Ureal_2_M_80 then
3596 Error_Msg_Name_1 := Name_Small;
3597 Error_Msg_N
7d8b9c99 3598 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3599
3600 elsif Small_Value (E) > Ureal_2_80 then
3601 Error_Msg_Name_1 := Name_Small;
3602 Error_Msg_N
7d8b9c99 3603 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3604 end if;
3605
3606 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3607 Error_Msg_Name_1 := Name_First;
3608 Error_Msg_N
7d8b9c99 3609 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3610 end if;
3611
3612 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3613 Error_Msg_Name_1 := Name_Last;
3614 Error_Msg_N
7d8b9c99 3615 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3616 end if;
3617 end if;
3618
70482933
RK
3619 elsif Is_Enumeration_Type (E) then
3620 Freeze_Enumeration_Type (E);
3621
3622 elsif Is_Integer_Type (E) then
3623 Adjust_Esize_For_Alignment (E);
3624
edd63e9b
ES
3625 elsif Is_Access_Type (E) then
3626
3627 -- Check restriction for standard storage pool
3628
3629 if No (Associated_Storage_Pool (E)) then
3630 Check_Restriction (No_Standard_Storage_Pools, E);
3631 end if;
3632
3633 -- Deal with error message for pure access type. This is not an
3634 -- error in Ada 2005 if there is no pool (see AI-366).
3635
3636 if Is_Pure_Unit_Access_Type (E)
3637 and then (Ada_Version < Ada_05
c6a9797e 3638 or else not No_Pool_Assigned (E))
edd63e9b
ES
3639 then
3640 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e
RD
3641
3642 if Ada_Version >= Ada_05 then
3643 Error_Msg_N
3644 ("\would be legal if Storage_Size of 0 given?", E);
3645
3646 elsif No_Pool_Assigned (E) then
3647 Error_Msg_N
3648 ("\would be legal in Ada 2005?", E);
3649
3650 else
3651 Error_Msg_N
3652 ("\would be legal in Ada 2005 if "
3653 & "Storage_Size of 0 given?", E);
3654 end if;
edd63e9b 3655 end if;
70482933
RK
3656 end if;
3657
edd63e9b
ES
3658 -- Case of composite types
3659
70482933
RK
3660 if Is_Composite_Type (E) then
3661
edd63e9b
ES
3662 -- AI-117 requires that all new primitives of a tagged type must
3663 -- inherit the convention of the full view of the type. Inherited
3664 -- and overriding operations are defined to inherit the convention
3665 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3666 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3667 -- and New_Overloaded_Entity). Here we set the convention of
3668 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3669 -- that any new primitives inherit the type's convention. Class-
3670 -- wide types can have a foreign convention inherited from their
3671 -- specific type, but are excluded from this since they don't have
3672 -- any associated primitives.
70482933
RK
3673
3674 if Is_Tagged_Type (E)
3675 and then not Is_Class_Wide_Type (E)
3676 and then Convention (E) /= Convention_Ada
3677 then
3678 declare
3679 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3680 Prim : Elmt_Id;
70482933 3681 begin
07fc65c4 3682 Prim := First_Elmt (Prim_List);
70482933
RK
3683 while Present (Prim) loop
3684 if Convention (Node (Prim)) = Convention_Ada then
3685 Set_Convention (Node (Prim), Convention (E));
3686 end if;
3687
3688 Next_Elmt (Prim);
3689 end loop;
3690 end;
3691 end if;
3692 end if;
3693
70d904ca 3694 -- Generate references to primitive operations for a tagged type
add9f797 3695
70d904ca 3696 Generate_Prim_Op_References (E);
07fc65c4 3697
ee094616
RD
3698 -- Now that all types from which E may depend are frozen, see if the
3699 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3700 -- strict alignment is required
70482933
RK
3701
3702 Check_Compile_Time_Size (E);
3703 Check_Unsigned_Type (E);
3704
3705 if Base_Type (E) = E then
3706 Check_Strict_Alignment (E);
3707 end if;
3708
3709 -- Do not allow a size clause for a type which does not have a size
3710 -- that is known at compile time
3711
3712 if Has_Size_Clause (E)
3713 and then not Size_Known_At_Compile_Time (E)
3714 then
e14c931f 3715 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3716 -- in all errors mode, since this is often a junk message
3717
3718 if not Error_Posted (E) then
3719 Error_Msg_N
3720 ("size clause not allowed for variable length type",
3721 Size_Clause (E));
3722 end if;
70482933
RK
3723 end if;
3724
3725 -- Remaining process is to set/verify the representation information,
3726 -- in particular the size and alignment values. This processing is
3727 -- not required for generic types, since generic types do not play
3728 -- any part in code generation, and so the size and alignment values
c6823a20 3729 -- for such types are irrelevant.
70482933
RK
3730
3731 if Is_Generic_Type (E) then
3732 return Result;
3733
3734 -- Otherwise we call the layout procedure
3735
3736 else
3737 Layout_Type (E);
3738 end if;
3739
3740 -- End of freeze processing for type entities
3741 end if;
3742
3743 -- Here is where we logically freeze the current entity. If it has a
3744 -- freeze node, then this is the point at which the freeze node is
3745 -- linked into the result list.
3746
3747 if Has_Delayed_Freeze (E) then
3748
3749 -- If a freeze node is already allocated, use it, otherwise allocate
3750 -- a new one. The preallocation happens in the case of anonymous base
3751 -- types, where we preallocate so that we can set First_Subtype_Link.
3752 -- Note that we reset the Sloc to the current freeze location.
3753
3754 if Present (Freeze_Node (E)) then
3755 F_Node := Freeze_Node (E);
3756 Set_Sloc (F_Node, Loc);
3757
3758 else
3759 F_Node := New_Node (N_Freeze_Entity, Loc);
3760 Set_Freeze_Node (E, F_Node);
3761 Set_Access_Types_To_Process (F_Node, No_Elist);
3762 Set_TSS_Elist (F_Node, No_Elist);
3763 Set_Actions (F_Node, No_List);
3764 end if;
3765
3766 Set_Entity (F_Node, E);
3767
3768 if Result = No_List then
3769 Result := New_List (F_Node);
3770 else
3771 Append (F_Node, Result);
3772 end if;
35ae2ed8
AC
3773
3774 -- A final pass over record types with discriminants. If the type
3775 -- has an incomplete declaration, there may be constrained access
3776 -- subtypes declared elsewhere, which do not depend on the discrimi-
3777 -- nants of the type, and which are used as component types (i.e.
3778 -- the full view is a recursive type). The designated types of these
3779 -- subtypes can only be elaborated after the type itself, and they
3780 -- need an itype reference.
3781
3782 if Ekind (E) = E_Record_Type
3783 and then Has_Discriminants (E)
3784 then
3785 declare
3786 Comp : Entity_Id;
3787 IR : Node_Id;
3788 Typ : Entity_Id;
3789
3790 begin
3791 Comp := First_Component (E);
3792
3793 while Present (Comp) loop
3794 Typ := Etype (Comp);
3795
3796 if Ekind (Comp) = E_Component
3797 and then Is_Access_Type (Typ)
3798 and then Scope (Typ) /= E
3799 and then Base_Type (Designated_Type (Typ)) = E
3800 and then Is_Itype (Designated_Type (Typ))
3801 then
3802 IR := Make_Itype_Reference (Sloc (Comp));
3803 Set_Itype (IR, Designated_Type (Typ));
3804 Append (IR, Result);
3805 end if;
3806
3807 Next_Component (Comp);
3808 end loop;
3809 end;
3810 end if;
70482933
RK
3811 end if;
3812
3813 -- When a type is frozen, the first subtype of the type is frozen as
3814 -- well (RM 13.14(15)). This has to be done after freezing the type,
3815 -- since obviously the first subtype depends on its own base type.
3816
3817 if Is_Type (E) then
3818 Freeze_And_Append (First_Subtype (E), Loc, Result);
3819
3820 -- If we just froze a tagged non-class wide record, then freeze the
3821 -- corresponding class-wide type. This must be done after the tagged
3822 -- type itself is frozen, because the class-wide type refers to the
3823 -- tagged type which generates the class.
3824
3825 if Is_Tagged_Type (E)
3826 and then not Is_Class_Wide_Type (E)
3827 and then Present (Class_Wide_Type (E))
3828 then
3829 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3830 end if;
3831 end if;
3832
3833 Check_Debug_Info_Needed (E);
3834
3835 -- Special handling for subprograms
3836
3837 if Is_Subprogram (E) then
3838
3839 -- If subprogram has address clause then reset Is_Public flag, since
3840 -- we do not want the backend to generate external references.
3841
3842 if Present (Address_Clause (E))
3843 and then not Is_Library_Level_Entity (E)
3844 then
3845 Set_Is_Public (E, False);
3846
3847 -- If no address clause and not intrinsic, then for imported
3848 -- subprogram in main unit, generate descriptor if we are in
3849 -- Propagate_Exceptions mode.
3850
3851 elsif Propagate_Exceptions
3852 and then Is_Imported (E)
3853 and then not Is_Intrinsic_Subprogram (E)
3854 and then Convention (E) /= Convention_Stubbed
3855 then
3856 if Result = No_List then
3857 Result := Empty_List;
3858 end if;
70482933 3859 end if;
70482933
RK
3860 end if;
3861
3862 return Result;
3863 end Freeze_Entity;
3864
3865 -----------------------------
3866 -- Freeze_Enumeration_Type --
3867 -----------------------------
3868
3869 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3870 begin
d677afa9
ES
3871 -- By default, if no size clause is present, an enumeration type with
3872 -- Convention C is assumed to interface to a C enum, and has integer
3873 -- size. This applies to types. For subtypes, verify that its base
3874 -- type has no size clause either.
3875
70482933
RK
3876 if Has_Foreign_Convention (Typ)
3877 and then not Has_Size_Clause (Typ)
d677afa9 3878 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
3879 and then Esize (Typ) < Standard_Integer_Size
3880 then
3881 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 3882
70482933 3883 else
d677afa9
ES
3884 -- If the enumeration type interfaces to C, and it has a size clause
3885 -- that specifies less than int size, it warrants a warning. The
3886 -- user may intend the C type to be an enum or a char, so this is
3887 -- not by itself an error that the Ada compiler can detect, but it
3888 -- it is a worth a heads-up. For Boolean and Character types we
3889 -- assume that the programmer has the proper C type in mind.
3890
3891 if Convention (Typ) = Convention_C
3892 and then Has_Size_Clause (Typ)
3893 and then Esize (Typ) /= Esize (Standard_Integer)
3894 and then not Is_Boolean_Type (Typ)
3895 and then not Is_Character_Type (Typ)
3896 then
3897 Error_Msg_N
3898 ("C enum types have the size of a C int?", Size_Clause (Typ));
3899 end if;
3900
70482933
RK
3901 Adjust_Esize_For_Alignment (Typ);
3902 end if;
3903 end Freeze_Enumeration_Type;
3904
3905 -----------------------
3906 -- Freeze_Expression --
3907 -----------------------
3908
3909 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
3910 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3911 Typ : Entity_Id;
3912 Nam : Entity_Id;
3913 Desig_Typ : Entity_Id;
3914 P : Node_Id;
3915 Parent_P : Node_Id;
70482933
RK
3916
3917 Freeze_Outside : Boolean := False;
3918 -- This flag is set true if the entity must be frozen outside the
3919 -- current subprogram. This happens in the case of expander generated
3920 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3921 -- not freeze all entities like other bodies, but which nevertheless
3922 -- may reference entities that have to be frozen before the body and
3923 -- obviously cannot be frozen inside the body.
3924
3925 function In_Exp_Body (N : Node_Id) return Boolean;
3926 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3927 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
3928 -- subprogram (init proc, stream subprogram, or renaming as body).
3929 -- If so, this is not a freezing context.
70482933 3930
fbf5a39b
AC
3931 -----------------
3932 -- In_Exp_Body --
3933 -----------------
3934
70482933 3935 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
3936 P : Node_Id;
3937 Id : Entity_Id;
70482933
RK
3938
3939 begin
3940 if Nkind (N) = N_Subprogram_Body then
3941 P := N;
3942 else
3943 P := Parent (N);
3944 end if;
3945
3946 if Nkind (P) /= N_Subprogram_Body then
3947 return False;
3948
3949 else
7d8b9c99
RD
3950 Id := Defining_Unit_Name (Specification (P));
3951
3952 if Nkind (Id) = N_Defining_Identifier
3953 and then (Is_Init_Proc (Id) or else
3954 Is_TSS (Id, TSS_Stream_Input) or else
3955 Is_TSS (Id, TSS_Stream_Output) or else
3956 Is_TSS (Id, TSS_Stream_Read) or else
3957 Is_TSS (Id, TSS_Stream_Write) or else
3958 Nkind (Original_Node (P)) =
3959 N_Subprogram_Renaming_Declaration)
70482933
RK
3960 then
3961 return True;
3962 else
3963 return False;
3964 end if;
3965 end if;
70482933
RK
3966 end In_Exp_Body;
3967
3968 -- Start of processing for Freeze_Expression
3969
3970 begin
edd63e9b
ES
3971 -- Immediate return if freezing is inhibited. This flag is set by the
3972 -- analyzer to stop freezing on generated expressions that would cause
3973 -- freezing if they were in the source program, but which are not
3974 -- supposed to freeze, since they are created.
70482933
RK
3975
3976 if Must_Not_Freeze (N) then
3977 return;
3978 end if;
3979
3980 -- If expression is non-static, then it does not freeze in a default
3981 -- expression, see section "Handling of Default Expressions" in the
3982 -- spec of package Sem for further details. Note that we have to
3983 -- make sure that we actually have a real expression (if we have
3984 -- a subtype indication, we can't test Is_Static_Expression!)
3985
c6a9797e 3986 if In_Spec_Exp
70482933
RK
3987 and then Nkind (N) in N_Subexpr
3988 and then not Is_Static_Expression (N)
3989 then
3990 return;
3991 end if;
3992
3993 -- Freeze type of expression if not frozen already
3994
fbf5a39b
AC
3995 Typ := Empty;
3996
3997 if Nkind (N) in N_Has_Etype then
3998 if not Is_Frozen (Etype (N)) then
3999 Typ := Etype (N);
4000
4001 -- Base type may be an derived numeric type that is frozen at
4002 -- the point of declaration, but first_subtype is still unfrozen.
4003
4004 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4005 Typ := First_Subtype (Etype (N));
4006 end if;
70482933
RK
4007 end if;
4008
4009 -- For entity name, freeze entity if not frozen already. A special
4010 -- exception occurs for an identifier that did not come from source.
4011 -- We don't let such identifiers freeze a non-internal entity, i.e.
4012 -- an entity that did come from source, since such an identifier was
4013 -- generated by the expander, and cannot have any semantic effect on
4014 -- the freezing semantics. For example, this stops the parameter of
4015 -- an initialization procedure from freezing the variable.
4016
4017 if Is_Entity_Name (N)
4018 and then not Is_Frozen (Entity (N))
4019 and then (Nkind (N) /= N_Identifier
4020 or else Comes_From_Source (N)
4021 or else not Comes_From_Source (Entity (N)))
4022 then
4023 Nam := Entity (N);
70482933
RK
4024 else
4025 Nam := Empty;
4026 end if;
4027
49e90211 4028 -- For an allocator freeze designated type if not frozen already
70482933 4029
ee094616
RD
4030 -- For an aggregate whose component type is an access type, freeze the
4031 -- designated type now, so that its freeze does not appear within the
4032 -- loop that might be created in the expansion of the aggregate. If the
4033 -- designated type is a private type without full view, the expression
4034 -- cannot contain an allocator, so the type is not frozen.
70482933
RK
4035
4036 Desig_Typ := Empty;
70482933 4037
fbf5a39b 4038 case Nkind (N) is
70482933
RK
4039 when N_Allocator =>
4040 Desig_Typ := Designated_Type (Etype (N));
4041
4042 when N_Aggregate =>
4043 if Is_Array_Type (Etype (N))
4044 and then Is_Access_Type (Component_Type (Etype (N)))
4045 then
4046 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4047 end if;
4048
4049 when N_Selected_Component |
4050 N_Indexed_Component |
4051 N_Slice =>
4052
4053 if Is_Access_Type (Etype (Prefix (N))) then
4054 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4055 end if;
4056
4057 when others =>
4058 null;
70482933
RK
4059 end case;
4060
4061 if Desig_Typ /= Empty
4062 and then (Is_Frozen (Desig_Typ)
4063 or else (not Is_Fully_Defined (Desig_Typ)))
4064 then
4065 Desig_Typ := Empty;
4066 end if;
4067
4068 -- All done if nothing needs freezing
4069
4070 if No (Typ)
4071 and then No (Nam)
4072 and then No (Desig_Typ)
4073 then
4074 return;
4075 end if;
4076
4077 -- Loop for looking at the right place to insert the freeze nodes
4078 -- exiting from the loop when it is appropriate to insert the freeze
4079 -- node before the current node P.
4080
4081 -- Also checks some special exceptions to the freezing rules. These
4082 -- cases result in a direct return, bypassing the freeze action.
4083
4084 P := N;
4085 loop
4086 Parent_P := Parent (P);
4087
ee094616
RD
4088 -- If we don't have a parent, then we are not in a well-formed tree.
4089 -- This is an unusual case, but there are some legitimate situations
4090 -- in which this occurs, notably when the expressions in the range of
4091 -- a type declaration are resolved. We simply ignore the freeze
4092 -- request in this case. Is this right ???
70482933
RK
4093
4094 if No (Parent_P) then
4095 return;
4096 end if;
4097
4098 -- See if we have got to an appropriate point in the tree
4099
4100 case Nkind (Parent_P) is
4101
edd63e9b
ES
4102 -- A special test for the exception of (RM 13.14(8)) for the case
4103 -- of per-object expressions (RM 3.8(18)) occurring in component
4104 -- definition or a discrete subtype definition. Note that we test
4105 -- for a component declaration which includes both cases we are
4106 -- interested in, and furthermore the tree does not have explicit
4107 -- nodes for either of these two constructs.
70482933
RK
4108
4109 when N_Component_Declaration =>
4110
4111 -- The case we want to test for here is an identifier that is
4112 -- a per-object expression, this is either a discriminant that
4113 -- appears in a context other than the component declaration
4114 -- or it is a reference to the type of the enclosing construct.
4115
4116 -- For either of these cases, we skip the freezing
4117
c6a9797e 4118 if not In_Spec_Expression
70482933
RK
4119 and then Nkind (N) = N_Identifier
4120 and then (Present (Entity (N)))
4121 then
4122 -- We recognize the discriminant case by just looking for
4123 -- a reference to a discriminant. It can only be one for
4124 -- the enclosing construct. Skip freezing in this case.
4125
4126 if Ekind (Entity (N)) = E_Discriminant then
4127 return;
4128
4129 -- For the case of a reference to the enclosing record,
4130 -- (or task or protected type), we look for a type that
4131 -- matches the current scope.
4132
4133 elsif Entity (N) = Current_Scope then
4134 return;
4135 end if;
4136 end if;
4137
edd63e9b
ES
4138 -- If we have an enumeration literal that appears as the choice in
4139 -- the aggregate of an enumeration representation clause, then
4140 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4141
4142 when N_Enumeration_Representation_Clause =>
4143
4144 -- The case we are looking for is an enumeration literal
4145
4146 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4147 and then Is_Enumeration_Type (Etype (N))
4148 then
4149 -- If enumeration literal appears directly as the choice,
e14c931f 4150 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4151
4152 if Nkind (Parent (N)) = N_Component_Association
4153 and then First (Choices (Parent (N))) = N
4154 then
4155 return;
4156
ee094616
RD
4157 -- If enumeration literal appears as the name of function
4158 -- which is the choice, then also do not freeze. This
4159 -- happens in the overloaded literal case, where the
70482933
RK
4160 -- enumeration literal is temporarily changed to a function
4161 -- call for overloading analysis purposes.
4162
4163 elsif Nkind (Parent (N)) = N_Function_Call
4164 and then
4165 Nkind (Parent (Parent (N))) = N_Component_Association
4166 and then
4167 First (Choices (Parent (Parent (N)))) = Parent (N)
4168 then
4169 return;
4170 end if;
4171 end if;
4172
4173 -- Normally if the parent is a handled sequence of statements,
4174 -- then the current node must be a statement, and that is an
4175 -- appropriate place to insert a freeze node.
4176
4177 when N_Handled_Sequence_Of_Statements =>
4178
edd63e9b
ES
4179 -- An exception occurs when the sequence of statements is for
4180 -- an expander generated body that did not do the usual freeze
4181 -- all operation. In this case we usually want to freeze
4182 -- outside this body, not inside it, and we skip past the
4183 -- subprogram body that we are inside.
70482933
RK
4184
4185 if In_Exp_Body (Parent_P) then
4186
4187 -- However, we *do* want to freeze at this point if we have
4188 -- an entity to freeze, and that entity is declared *inside*
4189 -- the body of the expander generated procedure. This case
4190 -- is recognized by the scope of the type, which is either
4191 -- the spec for some enclosing body, or (in the case of
4192 -- init_procs, for which there are no separate specs) the
4193 -- current scope.
4194
4195 declare
4196 Subp : constant Node_Id := Parent (Parent_P);
4197 Cspc : Entity_Id;
4198
4199 begin
4200 if Nkind (Subp) = N_Subprogram_Body then
4201 Cspc := Corresponding_Spec (Subp);
4202
4203 if (Present (Typ) and then Scope (Typ) = Cspc)
4204 or else
4205 (Present (Nam) and then Scope (Nam) = Cspc)
4206 then
4207 exit;
4208
4209 elsif Present (Typ)
4210 and then Scope (Typ) = Current_Scope
4211 and then Current_Scope = Defining_Entity (Subp)
4212 then
4213 exit;
4214 end if;
4215 end if;
4216 end;
4217
4218 -- If not that exception to the exception, then this is
4219 -- where we delay the freeze till outside the body.
4220
4221 Parent_P := Parent (Parent_P);
4222 Freeze_Outside := True;
4223
4224 -- Here if normal case where we are in handled statement
4225 -- sequence and want to do the insertion right there.
4226
4227 else
4228 exit;
4229 end if;
4230
ee094616
RD
4231 -- If parent is a body or a spec or a block, then the current node
4232 -- is a statement or declaration and we can insert the freeze node
4233 -- before it.
70482933
RK
4234
4235 when N_Package_Specification |
4236 N_Package_Body |
4237 N_Subprogram_Body |
4238 N_Task_Body |
4239 N_Protected_Body |
4240 N_Entry_Body |
4241 N_Block_Statement => exit;
4242
4243 -- The expander is allowed to define types in any statements list,
4244 -- so any of the following parent nodes also mark a freezing point
4245 -- if the actual node is in a list of statements or declarations.
4246
4247 when N_Exception_Handler |
4248 N_If_Statement |
4249 N_Elsif_Part |
4250 N_Case_Statement_Alternative |
4251 N_Compilation_Unit_Aux |
4252 N_Selective_Accept |
4253 N_Accept_Alternative |
4254 N_Delay_Alternative |
4255 N_Conditional_Entry_Call |
4256 N_Entry_Call_Alternative |
4257 N_Triggering_Alternative |
4258 N_Abortable_Part |
4259 N_Freeze_Entity =>
4260
4261 exit when Is_List_Member (P);
4262
4263 -- Note: The N_Loop_Statement is a special case. A type that
4264 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4265 -- occurs only because of a loop expanded by the expander), so we
4266 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4267 -- of any entity which comes from source. (if they have predefined
4268 -- type, that type does not appear to come from source, but the
4269 -- entity should not be frozen here).
70482933
RK
4270
4271 when N_Loop_Statement =>
4272 exit when not Comes_From_Source (Etype (N))
4273 and then (No (Nam) or else not Comes_From_Source (Nam));
4274
4275 -- For all other cases, keep looking at parents
4276
4277 when others =>
4278 null;
4279 end case;
4280
4281 -- We fall through the case if we did not yet find the proper
4282 -- place in the free for inserting the freeze node, so climb!
4283
4284 P := Parent_P;
4285 end loop;
4286
edd63e9b
ES
4287 -- If the expression appears in a record or an initialization procedure,
4288 -- the freeze nodes are collected and attached to the current scope, to
4289 -- be inserted and analyzed on exit from the scope, to insure that
4290 -- generated entities appear in the correct scope. If the expression is
4291 -- a default for a discriminant specification, the scope is still void.
4292 -- The expression can also appear in the discriminant part of a private
4293 -- or concurrent type.
70482933 4294
c6823a20 4295 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4296 -- enclosing record declaration, the freeze nodes must be attached to
4297 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4298 -- enclosing declaration list.
4299
ee094616
RD
4300 -- The other case requiring this special handling is if we are in a
4301 -- default expression, since in that case we are about to freeze a
4302 -- static type, and the freeze scope needs to be the outer scope, not
4303 -- the scope of the subprogram with the default parameter.
70482933 4304
c6a9797e
RD
4305 -- For default expressions and other spec expressions in generic units,
4306 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4307 -- placing them at the proper place, after the generic unit.
70482933 4308
c6a9797e 4309 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4310 or else Freeze_Outside
4311 or else (Is_Type (Current_Scope)
4312 and then (not Is_Concurrent_Type (Current_Scope)
4313 or else not Has_Completion (Current_Scope)))
4314 or else Ekind (Current_Scope) = E_Void
4315 then
4316 declare
4317 Loc : constant Source_Ptr := Sloc (Current_Scope);
4318 Freeze_Nodes : List_Id := No_List;
c6823a20 4319 Pos : Int := Scope_Stack.Last;
70482933
RK
4320
4321 begin
4322 if Present (Desig_Typ) then
4323 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4324 end if;
4325
4326 if Present (Typ) then
4327 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4328 end if;
4329
4330 if Present (Nam) then
4331 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4332 end if;
4333
c6823a20
EB
4334 -- The current scope may be that of a constrained component of
4335 -- an enclosing record declaration, which is above the current
4336 -- scope in the scope stack.
4337
4338 if Is_Record_Type (Scope (Current_Scope)) then
4339 Pos := Pos - 1;
4340 end if;
4341
70482933 4342 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4343 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4344 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4345 Freeze_Nodes;
4346 else
4347 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4348 (Pos).Pending_Freeze_Actions);
70482933
RK
4349 end if;
4350 end if;
4351 end;
4352
4353 return;
4354 end if;
4355
4356 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4357 -- adjustment, if we are in spec-expression analysis mode, these freeze
4358 -- actions must not be thrown away (normally all inserted actions are
4359 -- thrown away in this mode. However, the freeze actions are from static
4360 -- expressions and one of the important reasons we are doing this
ee094616 4361 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4362 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4363 -- This also means they get properly analyzed and expanded.
70482933 4364
c6a9797e 4365 In_Spec_Expression := False;
70482933 4366
fbf5a39b 4367 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4368
4369 if Present (Desig_Typ) then
4370 Freeze_Before (P, Desig_Typ);
4371 end if;
4372
fbf5a39b 4373 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4374 -- the enumeration representation clause exception in the loop above.
4375
4376 if Present (Typ) then
4377 Freeze_Before (P, Typ);
4378 end if;
4379
fbf5a39b 4380 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4381
4382 if Present (Nam) then
4383 Freeze_Before (P, Nam);
4384 end if;
4385
c6a9797e
RD
4386 -- Restore In_Spec_Expression flag
4387
4388 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4389 end Freeze_Expression;
4390
4391 -----------------------------
4392 -- Freeze_Fixed_Point_Type --
4393 -----------------------------
4394
edd63e9b
ES
4395 -- Certain fixed-point types and subtypes, including implicit base types
4396 -- and declared first subtypes, have not yet set up a range. This is
4397 -- because the range cannot be set until the Small and Size values are
4398 -- known, and these are not known till the type is frozen.
70482933 4399
edd63e9b
ES
4400 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4401 -- whose bounds are unanalyzed real literals. This routine will recognize
4402 -- this case, and transform this range node into a properly typed range
4403 -- with properly analyzed and resolved values.
70482933
RK
4404
4405 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4406 Rng : constant Node_Id := Scalar_Range (Typ);
4407 Lo : constant Node_Id := Low_Bound (Rng);
4408 Hi : constant Node_Id := High_Bound (Rng);
4409 Btyp : constant Entity_Id := Base_Type (Typ);
4410 Brng : constant Node_Id := Scalar_Range (Btyp);
4411 BLo : constant Node_Id := Low_Bound (Brng);
4412 BHi : constant Node_Id := High_Bound (Brng);
4413 Small : constant Ureal := Small_Value (Typ);
4414 Loval : Ureal;
4415 Hival : Ureal;
4416 Atype : Entity_Id;
4417
4418 Actual_Size : Nat;
4419
4420 function Fsize (Lov, Hiv : Ureal) return Nat;
4421 -- Returns size of type with given bounds. Also leaves these
4422 -- bounds set as the current bounds of the Typ.
4423
0da2c8ac
AC
4424 -----------
4425 -- Fsize --
4426 -----------
4427
70482933
RK
4428 function Fsize (Lov, Hiv : Ureal) return Nat is
4429 begin
4430 Set_Realval (Lo, Lov);
4431 Set_Realval (Hi, Hiv);
4432 return Minimum_Size (Typ);
4433 end Fsize;
4434
0da2c8ac 4435 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4436
4437 begin
4438 -- If Esize of a subtype has not previously been set, set it now
4439
4440 if Unknown_Esize (Typ) then
4441 Atype := Ancestor_Subtype (Typ);
4442
4443 if Present (Atype) then
fbf5a39b 4444 Set_Esize (Typ, Esize (Atype));
70482933 4445 else
fbf5a39b 4446 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4447 end if;
4448 end if;
4449
ee094616
RD
4450 -- Immediate return if the range is already analyzed. This means that
4451 -- the range is already set, and does not need to be computed by this
4452 -- routine.
70482933
RK
4453
4454 if Analyzed (Rng) then
4455 return;
4456 end if;
4457
4458 -- Immediate return if either of the bounds raises Constraint_Error
4459
4460 if Raises_Constraint_Error (Lo)
4461 or else Raises_Constraint_Error (Hi)
4462 then
4463 return;
4464 end if;
4465
4466 Loval := Realval (Lo);
4467 Hival := Realval (Hi);
4468
4469 -- Ordinary fixed-point case
4470
4471 if Is_Ordinary_Fixed_Point_Type (Typ) then
4472
4473 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4474 -- end-points up or down by small. Generally we prefer to fudge up,
4475 -- i.e. widen the bounds for non-model numbers so that the end points
4476 -- are included. However there are cases in which this cannot be
4477 -- done, and indeed cases in which we may need to narrow the bounds.
4478 -- The following circuit makes the decision.
70482933 4479
ee094616
RD
4480 -- Note: our terminology here is that Incl_EP means that the bounds
4481 -- are widened by Small if necessary to include the end points, and
4482 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4483 -- end-points if this reduces the size.
70482933
RK
4484
4485 -- Note that in the Incl case, all we care about is including the
4486 -- end-points. In the Excl case, we want to narrow the bounds as
4487 -- much as permitted by the RM, to give the smallest possible size.
4488
4489 Fudge : declare
4490 Loval_Incl_EP : Ureal;
4491 Hival_Incl_EP : Ureal;
4492
4493 Loval_Excl_EP : Ureal;
4494 Hival_Excl_EP : Ureal;
4495
4496 Size_Incl_EP : Nat;
4497 Size_Excl_EP : Nat;
4498
4499 Model_Num : Ureal;
4500 First_Subt : Entity_Id;
4501 Actual_Lo : Ureal;
4502 Actual_Hi : Ureal;
4503
4504 begin
4505 -- First step. Base types are required to be symmetrical. Right
4506 -- now, the base type range is a copy of the first subtype range.
4507 -- This will be corrected before we are done, but right away we
4508 -- need to deal with the case where both bounds are non-negative.
4509 -- In this case, we set the low bound to the negative of the high
4510 -- bound, to make sure that the size is computed to include the
4511 -- required sign. Note that we do not need to worry about the
4512 -- case of both bounds negative, because the sign will be dealt
4513 -- with anyway. Furthermore we can't just go making such a bound
4514 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4515 -- extra negative value which could not be accommodated on the
70482933
RK
4516 -- positive side.
4517
4518 if Typ = Btyp
4519 and then not UR_Is_Negative (Loval)
4520 and then Hival > Loval
4521 then
4522 Loval := -Hival;
4523 Set_Realval (Lo, Loval);
4524 end if;
4525
4526 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4527 -- then we do nothing to include it, but we are allowed to backoff
4528 -- to the next adjacent model number when we exclude it. If it is
4529 -- not a model number then we straddle the two values with the
4530 -- model numbers on either side.
70482933
RK
4531
4532 Model_Num := UR_Trunc (Loval / Small) * Small;
4533
4534 if Loval = Model_Num then
4535 Loval_Incl_EP := Model_Num;
4536 else
4537 Loval_Incl_EP := Model_Num - Small;
4538 end if;
4539
4540 -- The low value excluding the end point is Small greater, but
4541 -- we do not do this exclusion if the low value is positive,
4542 -- since it can't help the size and could actually hurt by
4543 -- crossing the high bound.
4544
4545 if UR_Is_Negative (Loval_Incl_EP) then
4546 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4547
4548 -- If the value went from negative to zero, then we have the
4549 -- case where Loval_Incl_EP is the model number just below
4550 -- zero, so we want to stick to the negative value for the
4551 -- base type to maintain the condition that the size will
4552 -- include signed values.
4553
4554 if Typ = Btyp
4555 and then UR_Is_Zero (Loval_Excl_EP)
4556 then
4557 Loval_Excl_EP := Loval_Incl_EP;
4558 end if;
4559
70482933
RK
4560 else
4561 Loval_Excl_EP := Loval_Incl_EP;
4562 end if;
4563
4564 -- Similar processing for upper bound and high value
4565
4566 Model_Num := UR_Trunc (Hival / Small) * Small;
4567
4568 if Hival = Model_Num then
4569 Hival_Incl_EP := Model_Num;
4570 else
4571 Hival_Incl_EP := Model_Num + Small;
4572 end if;
4573
4574 if UR_Is_Positive (Hival_Incl_EP) then
4575 Hival_Excl_EP := Hival_Incl_EP - Small;
4576 else
4577 Hival_Excl_EP := Hival_Incl_EP;
4578 end if;
4579
ee094616
RD
4580 -- One further adjustment is needed. In the case of subtypes, we
4581 -- cannot go outside the range of the base type, or we get
70482933 4582 -- peculiarities, and the base type range is already set. This
ee094616
RD
4583 -- only applies to the Incl values, since clearly the Excl values
4584 -- are already as restricted as they are allowed to be.
70482933
RK
4585
4586 if Typ /= Btyp then
4587 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4588 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4589 end if;
4590
4591 -- Get size including and excluding end points
4592
4593 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4594 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4595
4596 -- No need to exclude end-points if it does not reduce size
4597
4598 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4599 Loval_Excl_EP := Loval_Incl_EP;
4600 end if;
4601
4602 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4603 Hival_Excl_EP := Hival_Incl_EP;
4604 end if;
4605
4606 -- Now we set the actual size to be used. We want to use the
4607 -- bounds fudged up to include the end-points but only if this
4608 -- can be done without violating a specifically given size
4609 -- size clause or causing an unacceptable increase in size.
4610
4611 -- Case of size clause given
4612
4613 if Has_Size_Clause (Typ) then
4614
4615 -- Use the inclusive size only if it is consistent with
4616 -- the explicitly specified size.
4617
4618 if Size_Incl_EP <= RM_Size (Typ) then
4619 Actual_Lo := Loval_Incl_EP;
4620 Actual_Hi := Hival_Incl_EP;
4621 Actual_Size := Size_Incl_EP;
4622
4623 -- If the inclusive size is too large, we try excluding
4624 -- the end-points (will be caught later if does not work).
4625
4626 else
4627 Actual_Lo := Loval_Excl_EP;
4628 Actual_Hi := Hival_Excl_EP;
4629 Actual_Size := Size_Excl_EP;
4630 end if;
4631
4632 -- Case of size clause not given
4633
4634 else
4635 -- If we have a base type whose corresponding first subtype
4636 -- has an explicit size that is large enough to include our
4637 -- end-points, then do so. There is no point in working hard
4638 -- to get a base type whose size is smaller than the specified
4639 -- size of the first subtype.
4640
4641 First_Subt := First_Subtype (Typ);
4642
4643 if Has_Size_Clause (First_Subt)
4644 and then Size_Incl_EP <= Esize (First_Subt)
4645 then
4646 Actual_Size := Size_Incl_EP;
4647 Actual_Lo := Loval_Incl_EP;
4648 Actual_Hi := Hival_Incl_EP;
4649
4650 -- If excluding the end-points makes the size smaller and
4651 -- results in a size of 8,16,32,64, then we take the smaller
4652 -- size. For the 64 case, this is compulsory. For the other
4653 -- cases, it seems reasonable. We like to include end points
4654 -- if we can, but not at the expense of moving to the next
4655 -- natural boundary of size.
4656
4657 elsif Size_Incl_EP /= Size_Excl_EP
4658 and then
4659 (Size_Excl_EP = 8 or else
4660 Size_Excl_EP = 16 or else
4661 Size_Excl_EP = 32 or else
4662 Size_Excl_EP = 64)
4663 then
4664 Actual_Size := Size_Excl_EP;
4665 Actual_Lo := Loval_Excl_EP;
4666 Actual_Hi := Hival_Excl_EP;
4667
4668 -- Otherwise we can definitely include the end points
4669
4670 else
4671 Actual_Size := Size_Incl_EP;
4672 Actual_Lo := Loval_Incl_EP;
4673 Actual_Hi := Hival_Incl_EP;
4674 end if;
4675
edd63e9b
ES
4676 -- One pathological case: normally we never fudge a low bound
4677 -- down, since it would seem to increase the size (if it has
4678 -- any effect), but for ranges containing single value, or no
4679 -- values, the high bound can be small too large. Consider:
70482933
RK
4680
4681 -- type t is delta 2.0**(-14)
4682 -- range 131072.0 .. 0;
4683
edd63e9b
ES
4684 -- That lower bound is *just* outside the range of 32 bits, and
4685 -- does need fudging down in this case. Note that the bounds
4686 -- will always have crossed here, since the high bound will be
4687 -- fudged down if necessary, as in the case of:
70482933
RK
4688
4689 -- type t is delta 2.0**(-14)
4690 -- range 131072.0 .. 131072.0;
4691
edd63e9b
ES
4692 -- So we detect the situation by looking for crossed bounds,
4693 -- and if the bounds are crossed, and the low bound is greater
4694 -- than zero, we will always back it off by small, since this
4695 -- is completely harmless.
70482933
RK
4696
4697 if Actual_Lo > Actual_Hi then
4698 if UR_Is_Positive (Actual_Lo) then
4699 Actual_Lo := Loval_Incl_EP - Small;
4700 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4701
4702 -- And of course, we need to do exactly the same parallel
4703 -- fudge for flat ranges in the negative region.
4704
4705 elsif UR_Is_Negative (Actual_Hi) then
4706 Actual_Hi := Hival_Incl_EP + Small;
4707 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4708 end if;
4709 end if;
4710 end if;
4711
4712 Set_Realval (Lo, Actual_Lo);
4713 Set_Realval (Hi, Actual_Hi);
4714 end Fudge;
4715
4716 -- For the decimal case, none of this fudging is required, since there
4717 -- are no end-point problems in the decimal case (the end-points are
4718 -- always included).
4719
4720 else
4721 Actual_Size := Fsize (Loval, Hival);
4722 end if;
4723
4724 -- At this stage, the actual size has been calculated and the proper
4725 -- required bounds are stored in the low and high bounds.
4726
4727 if Actual_Size > 64 then
4728 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4729 Error_Msg_N
7d8b9c99
RD
4730 ("size required (^) for type& too large, maximum allowed is 64",
4731 Typ);
70482933
RK
4732 Actual_Size := 64;
4733 end if;
4734
4735 -- Check size against explicit given size
4736
4737 if Has_Size_Clause (Typ) then
4738 if Actual_Size > RM_Size (Typ) then
4739 Error_Msg_Uint_1 := RM_Size (Typ);
4740 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4741 Error_Msg_NE
7d8b9c99 4742 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4743 Size_Clause (Typ), Typ);
4744
4745 else
4746 Actual_Size := UI_To_Int (Esize (Typ));
4747 end if;
4748
4749 -- Increase size to next natural boundary if no size clause given
4750
4751 else
4752 if Actual_Size <= 8 then
4753 Actual_Size := 8;
4754 elsif Actual_Size <= 16 then
4755 Actual_Size := 16;
4756 elsif Actual_Size <= 32 then
4757 Actual_Size := 32;
4758 else
4759 Actual_Size := 64;
4760 end if;
4761
4762 Init_Esize (Typ, Actual_Size);
4763 Adjust_Esize_For_Alignment (Typ);
4764 end if;
4765
edd63e9b
ES
4766 -- If we have a base type, then expand the bounds so that they extend to
4767 -- the full width of the allocated size in bits, to avoid junk range
4768 -- checks on intermediate computations.
70482933
RK
4769
4770 if Base_Type (Typ) = Typ then
4771 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4772 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4773 end if;
4774
4775 -- Final step is to reanalyze the bounds using the proper type
4776 -- and set the Corresponding_Integer_Value fields of the literals.
4777
4778 Set_Etype (Lo, Empty);
4779 Set_Analyzed (Lo, False);
4780 Analyze (Lo);
4781
edd63e9b
ES
4782 -- Resolve with universal fixed if the base type, and the base type if
4783 -- it is a subtype. Note we can't resolve the base type with itself,
4784 -- that would be a reference before definition.
70482933
RK
4785
4786 if Typ = Btyp then
4787 Resolve (Lo, Universal_Fixed);
4788 else
4789 Resolve (Lo, Btyp);
4790 end if;
4791
4792 -- Set corresponding integer value for bound
4793
4794 Set_Corresponding_Integer_Value
4795 (Lo, UR_To_Uint (Realval (Lo) / Small));
4796
4797 -- Similar processing for high bound
4798
4799 Set_Etype (Hi, Empty);
4800 Set_Analyzed (Hi, False);
4801 Analyze (Hi);
4802
4803 if Typ = Btyp then
4804 Resolve (Hi, Universal_Fixed);
4805 else
4806 Resolve (Hi, Btyp);
4807 end if;
4808
4809 Set_Corresponding_Integer_Value
4810 (Hi, UR_To_Uint (Realval (Hi) / Small));
4811
4812 -- Set type of range to correspond to bounds
4813
4814 Set_Etype (Rng, Etype (Lo));
4815
fbf5a39b 4816 -- Set Esize to calculated size if not set already
70482933 4817
fbf5a39b
AC
4818 if Unknown_Esize (Typ) then
4819 Init_Esize (Typ, Actual_Size);
4820 end if;
70482933
RK
4821
4822 -- Set RM_Size if not already set. If already set, check value
4823
4824 declare
4825 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4826
4827 begin
4828 if RM_Size (Typ) /= Uint_0 then
4829 if RM_Size (Typ) < Minsiz then
4830 Error_Msg_Uint_1 := RM_Size (Typ);
4831 Error_Msg_Uint_2 := Minsiz;
4832 Error_Msg_NE
7d8b9c99 4833 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4834 Size_Clause (Typ), Typ);
4835 end if;
4836
4837 else
4838 Set_RM_Size (Typ, Minsiz);
4839 end if;
4840 end;
70482933
RK
4841 end Freeze_Fixed_Point_Type;
4842
4843 ------------------
4844 -- Freeze_Itype --
4845 ------------------
4846
4847 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4848 L : List_Id;
4849
4850 begin
4851 Set_Has_Delayed_Freeze (T);
4852 L := Freeze_Entity (T, Sloc (N));
4853
4854 if Is_Non_Empty_List (L) then
4855 Insert_Actions (N, L);
4856 end if;
4857 end Freeze_Itype;
4858
4859 --------------------------
4860 -- Freeze_Static_Object --
4861 --------------------------
4862
4863 procedure Freeze_Static_Object (E : Entity_Id) is
4864
4865 Cannot_Be_Static : exception;
4866 -- Exception raised if the type of a static object cannot be made
4867 -- static. This happens if the type depends on non-global objects.
4868
4869 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4870 -- Called to ensure that an expression used as part of a type definition
4871 -- is statically allocatable, which means that the expression type is
4872 -- statically allocatable, and the expression is either static, or a
4873 -- reference to a library level constant.
70482933
RK
4874
4875 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4876 -- Called to mark a type as static, checking that it is possible
4877 -- to set the type as static. If it is not possible, then the
4878 -- exception Cannot_Be_Static is raised.
4879
4880 -----------------------------
4881 -- Ensure_Expression_Is_SA --
4882 -----------------------------
4883
4884 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4885 Ent : Entity_Id;
4886
4887 begin
4888 Ensure_Type_Is_SA (Etype (N));
4889
4890 if Is_Static_Expression (N) then
4891 return;
4892
4893 elsif Nkind (N) = N_Identifier then
4894 Ent := Entity (N);
4895
4896 if Present (Ent)
4897 and then Ekind (Ent) = E_Constant
4898 and then Is_Library_Level_Entity (Ent)
4899 then
4900 return;
4901 end if;
4902 end if;
4903
4904 raise Cannot_Be_Static;
4905 end Ensure_Expression_Is_SA;
4906
4907 -----------------------
4908 -- Ensure_Type_Is_SA --
4909 -----------------------
4910
4911 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4912 N : Node_Id;
4913 C : Entity_Id;
4914
4915 begin
4916 -- If type is library level, we are all set
4917
4918 if Is_Library_Level_Entity (Typ) then
4919 return;
4920 end if;
4921
ee094616
RD
4922 -- We are also OK if the type already marked as statically allocated,
4923 -- which means we processed it before.
70482933
RK
4924
4925 if Is_Statically_Allocated (Typ) then
4926 return;
4927 end if;
4928
4929 -- Mark type as statically allocated
4930
4931 Set_Is_Statically_Allocated (Typ);
4932
4933 -- Check that it is safe to statically allocate this type
4934
4935 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4936 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4937 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4938
4939 elsif Is_Array_Type (Typ) then
4940 N := First_Index (Typ);
4941 while Present (N) loop
4942 Ensure_Type_Is_SA (Etype (N));
4943 Next_Index (N);
4944 end loop;
4945
4946 Ensure_Type_Is_SA (Component_Type (Typ));
4947
4948 elsif Is_Access_Type (Typ) then
4949 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4950
4951 declare
4952 F : Entity_Id;
4953 T : constant Entity_Id := Etype (Designated_Type (Typ));
4954
4955 begin
4956 if T /= Standard_Void_Type then
4957 Ensure_Type_Is_SA (T);
4958 end if;
4959
4960 F := First_Formal (Designated_Type (Typ));
4961
4962 while Present (F) loop
4963 Ensure_Type_Is_SA (Etype (F));
4964 Next_Formal (F);
4965 end loop;
4966 end;
4967
4968 else
4969 Ensure_Type_Is_SA (Designated_Type (Typ));
4970 end if;
4971
4972 elsif Is_Record_Type (Typ) then
4973 C := First_Entity (Typ);
70482933
RK
4974 while Present (C) loop
4975 if Ekind (C) = E_Discriminant
4976 or else Ekind (C) = E_Component
4977 then
4978 Ensure_Type_Is_SA (Etype (C));
4979
4980 elsif Is_Type (C) then
4981 Ensure_Type_Is_SA (C);
4982 end if;
4983
4984 Next_Entity (C);
4985 end loop;
4986
4987 elsif Ekind (Typ) = E_Subprogram_Type then
4988 Ensure_Type_Is_SA (Etype (Typ));
4989
4990 C := First_Formal (Typ);
4991 while Present (C) loop
4992 Ensure_Type_Is_SA (Etype (C));
4993 Next_Formal (C);
4994 end loop;
4995
4996 else
4997 raise Cannot_Be_Static;
4998 end if;
4999 end Ensure_Type_Is_SA;
5000
5001 -- Start of processing for Freeze_Static_Object
5002
5003 begin
5004 Ensure_Type_Is_SA (Etype (E));
5005
5006 exception
5007 when Cannot_Be_Static =>
5008
5009 -- If the object that cannot be static is imported or exported,
5010 -- then we give an error message saying that this object cannot
5011 -- be imported or exported.
5012
5013 if Is_Imported (E) then
5014 Error_Msg_N
5015 ("& cannot be imported (local type is not constant)", E);
5016
5017 -- Otherwise must be exported, something is wrong if compiler
5018 -- is marking something as statically allocated which cannot be).
5019
5020 else pragma Assert (Is_Exported (E));
5021 Error_Msg_N
5022 ("& cannot be exported (local type is not constant)", E);
5023 end if;
5024 end Freeze_Static_Object;
5025
5026 -----------------------
5027 -- Freeze_Subprogram --
5028 -----------------------
5029
5030 procedure Freeze_Subprogram (E : Entity_Id) is
5031 Retype : Entity_Id;
5032 F : Entity_Id;
5033
5034 begin
5035 -- Subprogram may not have an address clause unless it is imported
5036
5037 if Present (Address_Clause (E)) then
5038 if not Is_Imported (E) then
5039 Error_Msg_N
5040 ("address clause can only be given " &
5041 "for imported subprogram",
5042 Name (Address_Clause (E)));
5043 end if;
5044 end if;
5045
91b1417d
AC
5046 -- Reset the Pure indication on an imported subprogram unless an
5047 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5048 -- otherwise it is an insidious error to call a non-pure function from
5049 -- pure unit and have calls mysteriously optimized away. What happens
5050 -- here is that the Import can bypass the normal check to ensure that
5051 -- pure units call only pure subprograms.
91b1417d
AC
5052
5053 if Is_Imported (E)
5054 and then Is_Pure (E)
5055 and then not Has_Pragma_Pure_Function (E)
5056 then
5057 Set_Is_Pure (E, False);
5058 end if;
5059
70482933
RK
5060 -- For non-foreign convention subprograms, this is where we create
5061 -- the extra formals (for accessibility level and constrained bit
5062 -- information). We delay this till the freeze point precisely so
5063 -- that we know the convention!
5064
5065 if not Has_Foreign_Convention (E) then
5066 Create_Extra_Formals (E);
5067 Set_Mechanisms (E);
5068
5069 -- If this is convention Ada and a Valued_Procedure, that's odd
5070
5071 if Ekind (E) = E_Procedure
5072 and then Is_Valued_Procedure (E)
5073 and then Convention (E) = Convention_Ada
fbf5a39b 5074 and then Warn_On_Export_Import
70482933
RK
5075 then
5076 Error_Msg_N
5077 ("?Valued_Procedure has no effect for convention Ada", E);
5078 Set_Is_Valued_Procedure (E, False);
5079 end if;
5080
5081 -- Case of foreign convention
5082
5083 else
5084 Set_Mechanisms (E);
5085
fbf5a39b 5086 -- For foreign conventions, warn about return of an
70482933
RK
5087 -- unconstrained array.
5088
5089 -- Note: we *do* allow a return by descriptor for the VMS case,
5090 -- though here there is probably more to be done ???
5091
5092 if Ekind (E) = E_Function then
5093 Retype := Underlying_Type (Etype (E));
5094
5095 -- If no return type, probably some other error, e.g. a
5096 -- missing full declaration, so ignore.
5097
5098 if No (Retype) then
5099 null;
5100
5101 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5102 -- earlier on, and there is nothing else to check here. Specific
5103 -- instantiations may lead to erroneous behavior.
70482933
RK
5104
5105 elsif Is_Generic_Type (Etype (E)) then
5106 null;
5107
5108 elsif Is_Array_Type (Retype)
5109 and then not Is_Constrained (Retype)
5110 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 5111 and then Warn_On_Export_Import
70482933 5112 then
fbf5a39b
AC
5113 Error_Msg_N
5114 ("?foreign convention function& should not return " &
5115 "unconstrained array", E);
70482933
RK
5116 return;
5117 end if;
5118 end if;
5119
5120 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5121 -- subprogram have defaults, then emit an appropriate warning since
5122 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5123
5124 if Is_Exported (E) then
5125 F := First_Formal (E);
5126 while Present (F) loop
fbf5a39b
AC
5127 if Warn_On_Export_Import
5128 and then Present (Default_Value (F))
5129 then
70482933
RK
5130 Error_Msg_N
5131 ("?parameter cannot be defaulted in non-Ada call",
5132 Default_Value (F));
5133 end if;
5134
5135 Next_Formal (F);
5136 end loop;
5137 end if;
5138 end if;
5139
5140 -- For VMS, descriptor mechanisms for parameters are allowed only
7d8b9c99
RD
5141 -- for imported/exported subprograms. Moreover, the NCA descriptor
5142 -- is not allowed for parameters of exported subprograms.
70482933
RK
5143
5144 if OpenVMS_On_Target then
7d8b9c99
RD
5145 if Is_Exported (E) then
5146 F := First_Formal (E);
5147 while Present (F) loop
5148 if Mechanism (F) = By_Descriptor_NCA then
5149 Error_Msg_N
5150 ("'N'C'A' descriptor for parameter not permitted", F);
5151 Error_Msg_N
5152 ("\can only be used for imported subprogram", F);
5153 end if;
5154
5155 Next_Formal (F);
5156 end loop;
5157
5158 elsif not Is_Imported (E) then
70482933
RK
5159 F := First_Formal (E);
5160 while Present (F) loop
5161 if Mechanism (F) in Descriptor_Codes then
5162 Error_Msg_N
5163 ("descriptor mechanism for parameter not permitted", F);
5164 Error_Msg_N
7d8b9c99 5165 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5166 end if;
5167
5168 Next_Formal (F);
5169 end loop;
5170 end if;
5171 end if;
edd63e9b
ES
5172
5173 -- Pragma Inline_Always is disallowed for dispatching subprograms
5174 -- because the address of such subprograms is saved in the dispatch
5175 -- table to support dispatching calls, and dispatching calls cannot
5176 -- be inlined. This is consistent with the restriction against using
5177 -- 'Access or 'Address on an Inline_Always subprogram.
5178
def46b54
RD
5179 if Is_Dispatching_Operation (E)
5180 and then Has_Pragma_Inline_Always (E)
5181 then
edd63e9b
ES
5182 Error_Msg_N
5183 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5184 end if;
c6a9797e
RD
5185
5186 -- Because of the implicit representation of inherited predefined
5187 -- operators in the front-end, the overriding status of the operation
5188 -- may be affected when a full view of a type is analyzed, and this is
5189 -- not captured by the analysis of the corresponding type declaration.
5190 -- Therefore the correctness of a not-overriding indicator must be
5191 -- rechecked when the subprogram is frozen.
5192
5193 if Nkind (E) = N_Defining_Operator_Symbol
5194 and then not Error_Posted (Parent (E))
5195 then
5196 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5197 end if;
70482933
RK
5198 end Freeze_Subprogram;
5199
15ce9ca2
AC
5200 ----------------------
5201 -- Is_Fully_Defined --
5202 ----------------------
70482933 5203
70482933
RK
5204 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5205 begin
5206 if Ekind (T) = E_Class_Wide_Type then
5207 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5208
5209 elsif Is_Array_Type (T) then
5210 return Is_Fully_Defined (Component_Type (T));
5211
5212 elsif Is_Record_Type (T)
5213 and not Is_Private_Type (T)
5214 then
ee094616
RD
5215 -- Verify that the record type has no components with private types
5216 -- without completion.
657a9dd9
AC
5217
5218 declare
5219 Comp : Entity_Id;
bde58e32 5220
657a9dd9
AC
5221 begin
5222 Comp := First_Component (T);
5223
5224 while Present (Comp) loop
5225 if not Is_Fully_Defined (Etype (Comp)) then
5226 return False;
5227 end if;
5228
5229 Next_Component (Comp);
5230 end loop;
5231 return True;
5232 end;
5233
86cde7b1
RD
5234 else
5235 return not Is_Private_Type (T)
5236 or else Present (Full_View (Base_Type (T)));
70482933
RK
5237 end if;
5238 end Is_Fully_Defined;
5239
70d904ca
ES
5240 ---------------------------------
5241 -- Generate_Prim_Op_References --
5242 ---------------------------------
5243
bb1b6ec8 5244 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
70d904ca
ES
5245 Base_T : Entity_Id;
5246 Prim : Elmt_Id;
5247 Prim_List : Elist_Id;
5248 Ent : Entity_Id;
5249
5250 begin
bb1b6ec8 5251 -- Handle subtypes of synchronized types
70d904ca
ES
5252
5253 if Ekind (Typ) = E_Protected_Subtype
5254 or else Ekind (Typ) = E_Task_Subtype
5255 then
5256 Base_T := Etype (Typ);
5257 else
5258 Base_T := Typ;
5259 end if;
5260
5261 -- References to primitive operations are only relevant for tagged types
5262
5263 if not Is_Tagged_Type (Base_T)
5264 or else Is_Class_Wide_Type (Base_T)
5265 then
5266 return;
5267 end if;
5268
5269 -- Ada 2005 (AI-345): For synchronized types generate reference
5270 -- to the wrapper that allow us to dispatch calls through their
5271 -- implemented abstract interface types.
5272
5273 -- The check for Present here is to protect against previously
5274 -- reported critical errors.
5275
5276 if Is_Concurrent_Type (Base_T)
5277 and then Present (Corresponding_Record_Type (Base_T))
5278 then
5279 Prim_List := Primitive_Operations
5280 (Corresponding_Record_Type (Base_T));
5281 else
5282 Prim_List := Primitive_Operations (Base_T);
5283 end if;
5284
5285 if No (Prim_List) then
5286 return;
5287 end if;
5288
5289 Prim := First_Elmt (Prim_List);
5290 while Present (Prim) loop
5291
5292 -- If the operation is derived, get the original for cross-reference
5293 -- reference purposes (it is the original for which we want the xref
5294 -- and for which the comes_from_source test must be performed).
5295
5296 Ent := Node (Prim);
5297 while Present (Alias (Ent)) loop
5298 Ent := Alias (Ent);
5299 end loop;
5300
5301 Generate_Reference (Typ, Ent, 'p', Set_Ref => False);
5302 Next_Elmt (Prim);
5303 end loop;
5304 end Generate_Prim_Op_References;
5305
70482933
RK
5306 ---------------------------------
5307 -- Process_Default_Expressions --
5308 ---------------------------------
5309
5310 procedure Process_Default_Expressions
5311 (E : Entity_Id;
5312 After : in out Node_Id)
5313 is
5314 Loc : constant Source_Ptr := Sloc (E);
5315 Dbody : Node_Id;
5316 Formal : Node_Id;
5317 Dcopy : Node_Id;
5318 Dnam : Entity_Id;
5319
5320 begin
5321 Set_Default_Expressions_Processed (E);
5322
ee094616
RD
5323 -- A subprogram instance and its associated anonymous subprogram share
5324 -- their signature. The default expression functions are defined in the
5325 -- wrapper packages for the anonymous subprogram, and should not be
5326 -- generated again for the instance.
70482933
RK
5327
5328 if Is_Generic_Instance (E)
5329 and then Present (Alias (E))
5330 and then Default_Expressions_Processed (Alias (E))
5331 then
5332 return;
5333 end if;
5334
5335 Formal := First_Formal (E);
70482933
RK
5336 while Present (Formal) loop
5337 if Present (Default_Value (Formal)) then
5338
5339 -- We work with a copy of the default expression because we
5340 -- do not want to disturb the original, since this would mess
5341 -- up the conformance checking.
5342
5343 Dcopy := New_Copy_Tree (Default_Value (Formal));
5344
5345 -- The analysis of the expression may generate insert actions,
5346 -- which of course must not be executed. We wrap those actions
5347 -- in a procedure that is not called, and later on eliminated.
5348 -- The following cases have no side-effects, and are analyzed
5349 -- directly.
5350
5351 if Nkind (Dcopy) = N_Identifier
5352 or else Nkind (Dcopy) = N_Expanded_Name
5353 or else Nkind (Dcopy) = N_Integer_Literal
5354 or else (Nkind (Dcopy) = N_Real_Literal
5355 and then not Vax_Float (Etype (Dcopy)))
5356 or else Nkind (Dcopy) = N_Character_Literal
5357 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5358 or else Known_Null (Dcopy)
70482933
RK
5359 or else (Nkind (Dcopy) = N_Attribute_Reference
5360 and then
5361 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5362 then
5363
5364 -- If there is no default function, we must still do a full
ee094616
RD
5365 -- analyze call on the default value, to ensure that all error
5366 -- checks are performed, e.g. those associated with static
5367 -- evaluation. Note: this branch will always be taken if the
5368 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5369
5370 -- Note: the setting of parent here is to meet the requirement
5371 -- that we can only analyze the expression while attached to
5372 -- the tree. Really the requirement is that the parent chain
5373 -- be set, we don't actually need to be in the tree.
5374
5375 Set_Parent (Dcopy, Declaration_Node (Formal));
5376 Analyze (Dcopy);
5377
5378 -- Default expressions are resolved with their own type if the
5379 -- context is generic, to avoid anomalies with private types.
5380
5381 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5382 Resolve (Dcopy);
70482933
RK
5383 else
5384 Resolve (Dcopy, Etype (Formal));
5385 end if;
5386
5387 -- If that resolved expression will raise constraint error,
5388 -- then flag the default value as raising constraint error.
5389 -- This allows a proper error message on the calls.
5390
5391 if Raises_Constraint_Error (Dcopy) then
5392 Set_Raises_Constraint_Error (Default_Value (Formal));
5393 end if;
5394
5395 -- If the default is a parameterless call, we use the name of
5396 -- the called function directly, and there is no body to build.
5397
5398 elsif Nkind (Dcopy) = N_Function_Call
5399 and then No (Parameter_Associations (Dcopy))
5400 then
5401 null;
5402
5403 -- Else construct and analyze the body of a wrapper procedure
5404 -- that contains an object declaration to hold the expression.
5405 -- Given that this is done only to complete the analysis, it
5406 -- simpler to build a procedure than a function which might
5407 -- involve secondary stack expansion.
5408
5409 else
5410 Dnam :=
5411 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5412
5413 Dbody :=
5414 Make_Subprogram_Body (Loc,
5415 Specification =>
5416 Make_Procedure_Specification (Loc,
5417 Defining_Unit_Name => Dnam),
5418
5419 Declarations => New_List (
5420 Make_Object_Declaration (Loc,
5421 Defining_Identifier =>
5422 Make_Defining_Identifier (Loc,
5423 New_Internal_Name ('T')),
5424 Object_Definition =>
5425 New_Occurrence_Of (Etype (Formal), Loc),
5426 Expression => New_Copy_Tree (Dcopy))),
5427
5428 Handled_Statement_Sequence =>
5429 Make_Handled_Sequence_Of_Statements (Loc,
5430 Statements => New_List));
5431
5432 Set_Scope (Dnam, Scope (E));
5433 Set_Assignment_OK (First (Declarations (Dbody)));
5434 Set_Is_Eliminated (Dnam);
5435 Insert_After (After, Dbody);
5436 Analyze (Dbody);
5437 After := Dbody;
5438 end if;
5439 end if;
5440
5441 Next_Formal (Formal);
5442 end loop;
70482933
RK
5443 end Process_Default_Expressions;
5444
5445 ----------------------------------------
5446 -- Set_Component_Alignment_If_Not_Set --
5447 ----------------------------------------
5448
5449 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5450 begin
5451 -- Ignore if not base type, subtypes don't need anything
5452
5453 if Typ /= Base_Type (Typ) then
5454 return;
5455 end if;
5456
5457 -- Do not override existing representation
5458
5459 if Is_Packed (Typ) then
5460 return;
5461
5462 elsif Has_Specified_Layout (Typ) then
5463 return;
5464
5465 elsif Component_Alignment (Typ) /= Calign_Default then
5466 return;
5467
5468 else
5469 Set_Component_Alignment
5470 (Typ, Scope_Stack.Table
5471 (Scope_Stack.Last).Component_Alignment_Default);
5472 end if;
5473 end Set_Component_Alignment_If_Not_Set;
5474
c6823a20
EB
5475 ------------------
5476 -- Undelay_Type --
5477 ------------------
5478
5479 procedure Undelay_Type (T : Entity_Id) is
5480 begin
5481 Set_Has_Delayed_Freeze (T, False);
5482 Set_Freeze_Node (T, Empty);
5483
5484 -- Since we don't want T to have a Freeze_Node, we don't want its
5485 -- Full_View or Corresponding_Record_Type to have one either.
5486
5487 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5488 -- want is to be sure that for an Itype that's part of record R and is a
5489 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5490 -- points of R and T. We have no way of doing that directly, so what we
5491 -- do is force most such Itypes to be frozen as part of freezing R via
5492 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5493 -- (mostly the designated types of access types that are defined as part
5494 -- of the record).
c6823a20
EB
5495
5496 if Is_Private_Type (T)
5497 and then Present (Full_View (T))
5498 and then Is_Itype (Full_View (T))
5499 and then Is_Record_Type (Scope (Full_View (T)))
5500 then
5501 Undelay_Type (Full_View (T));
5502 end if;
5503
5504 if Is_Concurrent_Type (T)
5505 and then Present (Corresponding_Record_Type (T))
5506 and then Is_Itype (Corresponding_Record_Type (T))
5507 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5508 then
5509 Undelay_Type (Corresponding_Record_Type (T));
5510 end if;
5511 end Undelay_Type;
5512
fbf5a39b
AC
5513 ------------------
5514 -- Warn_Overlay --
5515 ------------------
5516
5517 procedure Warn_Overlay
5518 (Expr : Node_Id;
5519 Typ : Entity_Id;
5520 Nam : Entity_Id)
5521 is
5522 Ent : constant Entity_Id := Entity (Nam);
49e90211 5523 -- The object to which the address clause applies
fbf5a39b
AC
5524
5525 Init : Node_Id;
5526 Old : Entity_Id := Empty;
5527 Decl : Node_Id;
5528
5529 begin
5530 -- No warning if address clause overlay warnings are off
5531
5532 if not Address_Clause_Overlay_Warnings then
5533 return;
5534 end if;
5535
5536 -- No warning if there is an explicit initialization
5537
5538 Init := Original_Node (Expression (Declaration_Node (Ent)));
5539
5540 if Present (Init) and then Comes_From_Source (Init) then
5541 return;
5542 end if;
5543
edd63e9b 5544 -- We only give the warning for non-imported entities of a type for
0ac73189
AC
5545 -- which a non-null base init proc is defined, or for objects of access
5546 -- types with implicit null initialization, or when Initialize_Scalars
5547 -- applies and the type is scalar or a string type (the latter being
5548 -- tested for because predefined String types are initialized by inline
5549 -- code rather than by an init_proc).
fbf5a39b
AC
5550
5551 if Present (Expr)
fbf5a39b 5552 and then not Is_Imported (Ent)
0ac73189
AC
5553 and then (Has_Non_Null_Base_Init_Proc (Typ)
5554 or else Is_Access_Type (Typ)
5555 or else (Init_Or_Norm_Scalars
5556 and then (Is_Scalar_Type (Typ)
5557 or else Is_String_Type (Typ))))
fbf5a39b
AC
5558 then
5559 if Nkind (Expr) = N_Attribute_Reference
5560 and then Is_Entity_Name (Prefix (Expr))
5561 then
5562 Old := Entity (Prefix (Expr));
5563
5564 elsif Is_Entity_Name (Expr)
5565 and then Ekind (Entity (Expr)) = E_Constant
5566 then
5567 Decl := Declaration_Node (Entity (Expr));
5568
5569 if Nkind (Decl) = N_Object_Declaration
5570 and then Present (Expression (Decl))
5571 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5572 and then Is_Entity_Name (Prefix (Expression (Decl)))
5573 then
5574 Old := Entity (Prefix (Expression (Decl)));
5575
5576 elsif Nkind (Expr) = N_Function_Call then
5577 return;
5578 end if;
5579
ee094616
RD
5580 -- A function call (most likely to To_Address) is probably not an
5581 -- overlay, so skip warning. Ditto if the function call was inlined
5582 -- and transformed into an entity.
fbf5a39b
AC
5583
5584 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5585 return;
5586 end if;
5587
5588 Decl := Next (Parent (Expr));
5589
5590 -- If a pragma Import follows, we assume that it is for the current
5591 -- target of the address clause, and skip the warning.
5592
5593 if Present (Decl)
5594 and then Nkind (Decl) = N_Pragma
1b24ada5 5595 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5596 then
5597 return;
5598 end if;
5599
5600 if Present (Old) then
5601 Error_Msg_Node_2 := Old;
5602 Error_Msg_N
5603 ("default initialization of & may modify &?",
5604 Nam);
5605 else
5606 Error_Msg_N
5607 ("default initialization of & may modify overlaid storage?",
5608 Nam);
5609 end if;
5610
5611 -- Add friendly warning if initialization comes from a packed array
5612 -- component.
5613
5614 if Is_Record_Type (Typ) then
5615 declare
5616 Comp : Entity_Id;
5617
5618 begin
5619 Comp := First_Component (Typ);
5620
5621 while Present (Comp) loop
5622 if Nkind (Parent (Comp)) = N_Component_Declaration
5623 and then Present (Expression (Parent (Comp)))
5624 then
5625 exit;
5626 elsif Is_Array_Type (Etype (Comp))
5627 and then Present (Packed_Array_Type (Etype (Comp)))
5628 then
5629 Error_Msg_NE
3f1ede06
RD
5630 ("\packed array component& " &
5631 "will be initialized to zero?",
5632 Nam, Comp);
fbf5a39b
AC
5633 exit;
5634 else
5635 Next_Component (Comp);
5636 end if;
5637 end loop;
5638 end;
5639 end if;
5640
5641 Error_Msg_N
3f1ede06 5642 ("\use pragma Import for & to " &
86cde7b1 5643 "suppress initialization (RM B.1(24))?",
3f1ede06 5644 Nam);
fbf5a39b
AC
5645 end if;
5646 end Warn_Overlay;
5647
70482933 5648end Freeze;