]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
sem_ch5.adb, [...]: Change spelling 'parametrization' to 'parameterization'.
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
ce532f42 9-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
2010d078
AC
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
0ea55619 27with Checks; use Checks;
70482933
RK
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
ca0cb93e 39with Lib; use Lib;
7d8b9c99 40with Namet; use Namet;
70482933
RK
41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
44with Restrict; use Restrict;
6e937c1c 45with Rident; use Rident;
b7f7dab2 46with Rtsfind; use Rtsfind;
70482933 47with Sem; use Sem;
a4100e55 48with Sem_Aux; use Sem_Aux;
70482933
RK
49with Sem_Cat; use Sem_Cat;
50with Sem_Ch6; use Sem_Ch6;
51with Sem_Ch7; use Sem_Ch7;
52with Sem_Ch8; use Sem_Ch8;
b98e2969 53with Sem_Ch9; use Sem_Ch9;
70482933
RK
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Eval; use Sem_Eval;
56with Sem_Mech; use Sem_Mech;
57with Sem_Prag; use Sem_Prag;
58with Sem_Res; use Sem_Res;
59with Sem_Util; use Sem_Util;
60with Sinfo; use Sinfo;
61with Snames; use Snames;
62with Stand; use Stand;
63with Targparm; use Targparm;
64with Tbuild; use Tbuild;
65with Ttypes; use Ttypes;
66with Uintp; use Uintp;
67with Urealp; use Urealp;
68
69package body Freeze is
70
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
74
75 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
76 -- Typ is a type that is being frozen. If no size clause is given,
77 -- but a default Esize has been computed, then this default Esize is
78 -- adjusted up if necessary to be consistent with a given alignment,
79 -- but never to a value greater than Long_Long_Integer'Size. This
80 -- is used for all discrete types and for fixed-point types.
81
82 procedure Build_And_Analyze_Renamed_Body
83 (Decl : Node_Id;
84 New_S : Entity_Id;
85 After : in out Node_Id);
49e90211 86 -- Build body for a renaming declaration, insert in tree and analyze
70482933 87
fbf5a39b
AC
88 procedure Check_Address_Clause (E : Entity_Id);
89 -- Apply legality checks to address clauses for object declarations,
cf6956bb
AC
90 -- at the point the object is frozen. Also ensure any initialization is
91 -- performed only after the object has been frozen.
fbf5a39b 92
75965852
AC
93 procedure Check_Component_Storage_Order
94 (Encl_Type : Entity_Id;
8a7c0400
AC
95 Comp : Entity_Id;
96 ADC : Node_Id);
75965852 97 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
8a7c0400
AC
98 -- clause, verify that the component type has an explicit and compatible
99 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
100 -- entity of the component under consideration. For an Encl_Type that
101 -- does not have a Scalar_Storage_Order attribute definition clause,
102 -- verify that the component also does not have such a clause.
103 -- ADC is the attribute definition clause if present (or Empty).
75965852 104
70482933
RK
105 procedure Check_Strict_Alignment (E : Entity_Id);
106 -- E is a base type. If E is tagged or has a component that is aliased
107 -- or tagged or contains something this is aliased or tagged, set
108 -- Strict_Alignment.
109
110 procedure Check_Unsigned_Type (E : Entity_Id);
111 pragma Inline (Check_Unsigned_Type);
112 -- If E is a fixed-point or discrete type, then all the necessary work
113 -- to freeze it is completed except for possible setting of the flag
114 -- Is_Unsigned_Type, which is done by this procedure. The call has no
115 -- effect if the entity E is not a discrete or fixed-point type.
116
117 procedure Freeze_And_Append
118 (Ent : Entity_Id;
c159409f 119 N : Node_Id;
70482933
RK
120 Result : in out List_Id);
121 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
122 -- nodes to Result, modifying Result from No_List if necessary. N has
123 -- the same usage as in Freeze_Entity.
70482933
RK
124
125 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
126 -- Freeze enumeration type. The Esize field is set as processing
127 -- proceeds (i.e. set by default when the type is declared and then
128 -- adjusted by rep clauses. What this procedure does is to make sure
129 -- that if a foreign convention is specified, and no specific size
130 -- is given, then the size must be at least Integer'Size.
131
70482933
RK
132 procedure Freeze_Static_Object (E : Entity_Id);
133 -- If an object is frozen which has Is_Statically_Allocated set, then
134 -- all referenced types must also be marked with this flag. This routine
135 -- is in charge of meeting this requirement for the object entity E.
136
137 procedure Freeze_Subprogram (E : Entity_Id);
138 -- Perform freezing actions for a subprogram (create extra formals,
139 -- and set proper default mechanism values). Note that this routine
140 -- is not called for internal subprograms, for which neither of these
141 -- actions is needed (or desirable, we do not want for example to have
142 -- these extra formals present in initialization procedures, where they
143 -- would serve no purpose). In this call E is either a subprogram or
144 -- a subprogram type (i.e. an access to a subprogram).
145
146 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 147 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
148 -- view. Used to determine whether the designated type of an access type
149 -- should be frozen when the access type is frozen. This is done when an
150 -- allocator is frozen, or an expression that may involve attributes of
151 -- the designated type. Otherwise freezing the access type does not freeze
152 -- the designated type.
70482933
RK
153
154 procedure Process_Default_Expressions
155 (E : Entity_Id;
156 After : in out Node_Id);
c159409f
AC
157 -- This procedure is called for each subprogram to complete processing of
158 -- default expressions at the point where all types are known to be frozen.
159 -- The expressions must be analyzed in full, to make sure that all error
160 -- processing is done (they have only been pre-analyzed). If the expression
161 -- is not an entity or literal, its analysis may generate code which must
162 -- not be executed. In that case we build a function body to hold that
163 -- code. This wrapper function serves no other purpose (it used to be
164 -- called to evaluate the default, but now the default is inlined at each
165 -- point of call).
70482933
RK
166
167 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
168 -- Typ is a record or array type that is being frozen. This routine sets
169 -- the default component alignment from the scope stack values if the
170 -- alignment is otherwise not specified.
70482933
RK
171
172 procedure Check_Debug_Info_Needed (T : Entity_Id);
173 -- As each entity is frozen, this routine is called to deal with the
174 -- setting of Debug_Info_Needed for the entity. This flag is set if
175 -- the entity comes from source, or if we are in Debug_Generated_Code
176 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
177 -- the flag if Debug_Info_Off is set. This procedure also ensures that
178 -- subsidiary entities have the flag set as required.
70482933 179
c6823a20 180 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
181 -- T is a type of a component that we know to be an Itype. We don't want
182 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
183 -- Full_View or Corresponding_Record_Type.
c6823a20 184
fbf5a39b
AC
185 procedure Warn_Overlay
186 (Expr : Node_Id;
187 Typ : Entity_Id;
188 Nam : Node_Id);
189 -- Expr is the expression for an address clause for entity Nam whose type
190 -- is Typ. If Typ has a default initialization, and there is no explicit
191 -- initialization in the source declaration, check whether the address
192 -- clause might cause overlaying of an entity, and emit a warning on the
193 -- side effect that the initialization will cause.
194
70482933
RK
195 -------------------------------
196 -- Adjust_Esize_For_Alignment --
197 -------------------------------
198
199 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
200 Align : Uint;
201
202 begin
203 if Known_Esize (Typ) and then Known_Alignment (Typ) then
204 Align := Alignment_In_Bits (Typ);
205
206 if Align > Esize (Typ)
207 and then Align <= Standard_Long_Long_Integer_Size
208 then
209 Set_Esize (Typ, Align);
210 end if;
211 end if;
212 end Adjust_Esize_For_Alignment;
213
214 ------------------------------------
215 -- Build_And_Analyze_Renamed_Body --
216 ------------------------------------
217
218 procedure Build_And_Analyze_Renamed_Body
219 (Decl : Node_Id;
220 New_S : Entity_Id;
221 After : in out Node_Id)
222 is
ca0cb93e
AC
223 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
224 Ent : constant Entity_Id := Defining_Entity (Decl);
225 Body_Node : Node_Id;
226 Renamed_Subp : Entity_Id;
d4fc0fb4 227
70482933 228 begin
1c612f29
RD
229 -- If the renamed subprogram is intrinsic, there is no need for a
230 -- wrapper body: we set the alias that will be called and expanded which
231 -- completes the declaration. This transformation is only legal if the
232 -- renamed entity has already been elaborated.
ca0cb93e 233
d4fc0fb4
AC
234 -- Note that it is legal for a renaming_as_body to rename an intrinsic
235 -- subprogram, as long as the renaming occurs before the new entity
ef1c0511 236 -- is frozen (RM 8.5.4 (5)).
d4fc0fb4
AC
237
238 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 239 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 240 then
ca0cb93e
AC
241 Renamed_Subp := Entity (Name (Body_Decl));
242 else
243 Renamed_Subp := Empty;
244 end if;
245
246 if Present (Renamed_Subp)
247 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
248 and then
249 (not In_Same_Source_Unit (Renamed_Subp, Ent)
250 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 251
308e6f3a 252 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
253 -- has an interface name, or if it is one of the shift/rotate
254 -- operations known to the compiler.
879e23f0 255
b69cd36a
AC
256 and then
257 (Present (Interface_Name (Renamed_Subp))
258 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
259 Name_Rotate_Right,
260 Name_Shift_Left,
261 Name_Shift_Right,
262 Name_Shift_Right_Arithmetic))
ca0cb93e
AC
263 then
264 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 265
ca0cb93e
AC
266 if Present (Alias (Renamed_Subp)) then
267 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 268 else
ca0cb93e 269 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
270 end if;
271
272 Set_Is_Intrinsic_Subprogram (Ent);
273 Set_Has_Completion (Ent);
274
275 else
276 Body_Node := Build_Renamed_Body (Decl, New_S);
277 Insert_After (After, Body_Node);
278 Mark_Rewrite_Insertion (Body_Node);
279 Analyze (Body_Node);
280 After := Body_Node;
281 end if;
70482933
RK
282 end Build_And_Analyze_Renamed_Body;
283
284 ------------------------
285 -- Build_Renamed_Body --
286 ------------------------
287
288 function Build_Renamed_Body
289 (Decl : Node_Id;
fbf5a39b 290 New_S : Entity_Id) return Node_Id
70482933
RK
291 is
292 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
293 -- We use for the source location of the renamed body, the location of
294 -- the spec entity. It might seem more natural to use the location of
295 -- the renaming declaration itself, but that would be wrong, since then
296 -- the body we create would look as though it was created far too late,
297 -- and this could cause problems with elaboration order analysis,
298 -- particularly in connection with instantiations.
70482933
RK
299
300 N : constant Node_Id := Unit_Declaration_Node (New_S);
301 Nam : constant Node_Id := Name (N);
302 Old_S : Entity_Id;
303 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
304 Actuals : List_Id := No_List;
305 Call_Node : Node_Id;
306 Call_Name : Node_Id;
307 Body_Node : Node_Id;
308 Formal : Entity_Id;
309 O_Formal : Entity_Id;
310 Param_Spec : Node_Id;
311
def46b54
RD
312 Pref : Node_Id := Empty;
313 -- If the renamed entity is a primitive operation given in prefix form,
314 -- the prefix is the target object and it has to be added as the first
315 -- actual in the generated call.
316
70482933 317 begin
def46b54
RD
318 -- Determine the entity being renamed, which is the target of the call
319 -- statement. If the name is an explicit dereference, this is a renaming
320 -- of a subprogram type rather than a subprogram. The name itself is
321 -- fully analyzed.
70482933
RK
322
323 if Nkind (Nam) = N_Selected_Component then
324 Old_S := Entity (Selector_Name (Nam));
325
326 elsif Nkind (Nam) = N_Explicit_Dereference then
327 Old_S := Etype (Nam);
328
329 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
330 if Is_Entity_Name (Prefix (Nam)) then
331 Old_S := Entity (Prefix (Nam));
332 else
333 Old_S := Entity (Selector_Name (Prefix (Nam)));
334 end if;
335
336 elsif Nkind (Nam) = N_Character_Literal then
337 Old_S := Etype (New_S);
338
339 else
340 Old_S := Entity (Nam);
341 end if;
342
343 if Is_Entity_Name (Nam) then
07fc65c4 344
def46b54
RD
345 -- If the renamed entity is a predefined operator, retain full name
346 -- to ensure its visibility.
07fc65c4
GB
347
348 if Ekind (Old_S) = E_Operator
349 and then Nkind (Nam) = N_Expanded_Name
350 then
351 Call_Name := New_Copy (Name (N));
352 else
e4494292 353 Call_Name := New_Occurrence_Of (Old_S, Loc);
07fc65c4
GB
354 end if;
355
70482933 356 else
def46b54
RD
357 if Nkind (Nam) = N_Selected_Component
358 and then Present (First_Formal (Old_S))
359 and then
360 (Is_Controlling_Formal (First_Formal (Old_S))
361 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
362 then
363
364 -- Retrieve the target object, to be added as a first actual
365 -- in the call.
366
367 Call_Name := New_Occurrence_Of (Old_S, Loc);
368 Pref := Prefix (Nam);
369
370 else
371 Call_Name := New_Copy (Name (N));
372 end if;
70482933 373
545cb5be 374 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
375
376 Set_Is_Overloaded (Call_Name, False);
377 end if;
378
def46b54 379 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4 380 -- calls to the renamed entity. The body must be generated in any case
a3068ca6
AC
381 -- for calls that may appear elsewhere. This is not done in the case
382 -- where the subprogram is an instantiation because the actual proper
383 -- body has not been built yet.
70482933 384
545cb5be 385 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933 386 and then Nkind (Decl) = N_Subprogram_Declaration
a3068ca6 387 and then not Is_Generic_Instance (Old_S)
70482933
RK
388 then
389 Set_Body_To_Inline (Decl, Old_S);
390 end if;
391
392 -- The body generated for this renaming is an internal artifact, and
393 -- does not constitute a freeze point for the called entity.
394
395 Set_Must_Not_Freeze (Call_Name);
396
397 Formal := First_Formal (Defining_Entity (Decl));
398
def46b54
RD
399 if Present (Pref) then
400 declare
401 Pref_Type : constant Entity_Id := Etype (Pref);
402 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
403
404 begin
def46b54 405 -- The controlling formal may be an access parameter, or the
e14c931f 406 -- actual may be an access value, so adjust accordingly.
def46b54
RD
407
408 if Is_Access_Type (Pref_Type)
409 and then not Is_Access_Type (Form_Type)
410 then
411 Actuals := New_List
412 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
413
414 elsif Is_Access_Type (Form_Type)
415 and then not Is_Access_Type (Pref)
416 then
417 Actuals := New_List
418 (Make_Attribute_Reference (Loc,
419 Attribute_Name => Name_Access,
420 Prefix => Relocate_Node (Pref)));
421 else
422 Actuals := New_List (Pref);
423 end if;
424 end;
425
426 elsif Present (Formal) then
70482933
RK
427 Actuals := New_List;
428
def46b54
RD
429 else
430 Actuals := No_List;
431 end if;
432
433 if Present (Formal) then
70482933 434 while Present (Formal) loop
e4494292 435 Append (New_Occurrence_Of (Formal, Loc), Actuals);
70482933
RK
436 Next_Formal (Formal);
437 end loop;
438 end if;
439
def46b54
RD
440 -- If the renamed entity is an entry, inherit its profile. For other
441 -- renamings as bodies, both profiles must be subtype conformant, so it
442 -- is not necessary to replace the profile given in the declaration.
443 -- However, default values that are aggregates are rewritten when
444 -- partially analyzed, so we recover the original aggregate to insure
445 -- that subsequent conformity checking works. Similarly, if the default
446 -- expression was constant-folded, recover the original expression.
70482933
RK
447
448 Formal := First_Formal (Defining_Entity (Decl));
449
450 if Present (Formal) then
451 O_Formal := First_Formal (Old_S);
452 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
453 while Present (Formal) loop
454 if Is_Entry (Old_S) then
70482933
RK
455 if Nkind (Parameter_Type (Param_Spec)) /=
456 N_Access_Definition
457 then
458 Set_Etype (Formal, Etype (O_Formal));
459 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
460 end if;
461
07fc65c4
GB
462 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
463 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
464 Nkind (Default_Value (O_Formal))
465 then
70482933
RK
466 Set_Expression (Param_Spec,
467 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
468 end if;
469
470 Next_Formal (Formal);
471 Next_Formal (O_Formal);
472 Next (Param_Spec);
473 end loop;
474 end if;
475
476 -- If the renamed entity is a function, the generated body contains a
477 -- return statement. Otherwise, build a procedure call. If the entity is
478 -- an entry, subsequent analysis of the call will transform it into the
479 -- proper entry or protected operation call. If the renamed entity is
480 -- a character literal, return it directly.
481
482 if Ekind (Old_S) = E_Function
483 or else Ekind (Old_S) = E_Operator
484 or else (Ekind (Old_S) = E_Subprogram_Type
485 and then Etype (Old_S) /= Standard_Void_Type)
486 then
487 Call_Node :=
86cde7b1 488 Make_Simple_Return_Statement (Loc,
70482933
RK
489 Expression =>
490 Make_Function_Call (Loc,
491 Name => Call_Name,
492 Parameter_Associations => Actuals));
493
494 elsif Ekind (Old_S) = E_Enumeration_Literal then
495 Call_Node :=
86cde7b1 496 Make_Simple_Return_Statement (Loc,
70482933
RK
497 Expression => New_Occurrence_Of (Old_S, Loc));
498
499 elsif Nkind (Nam) = N_Character_Literal then
500 Call_Node :=
86cde7b1 501 Make_Simple_Return_Statement (Loc,
70482933
RK
502 Expression => Call_Name);
503
504 else
505 Call_Node :=
506 Make_Procedure_Call_Statement (Loc,
507 Name => Call_Name,
508 Parameter_Associations => Actuals);
509 end if;
510
49e90211 511 -- Create entities for subprogram body and formals
70482933
RK
512
513 Set_Defining_Unit_Name (Spec,
514 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
515
516 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
517 while Present (Param_Spec) loop
518 Set_Defining_Identifier (Param_Spec,
519 Make_Defining_Identifier (Loc,
520 Chars => Chars (Defining_Identifier (Param_Spec))));
521 Next (Param_Spec);
522 end loop;
523
524 Body_Node :=
525 Make_Subprogram_Body (Loc,
526 Specification => Spec,
527 Declarations => New_List,
528 Handled_Statement_Sequence =>
529 Make_Handled_Sequence_Of_Statements (Loc,
530 Statements => New_List (Call_Node)));
531
532 if Nkind (Decl) /= N_Subprogram_Declaration then
533 Rewrite (N,
534 Make_Subprogram_Declaration (Loc,
535 Specification => Specification (N)));
536 end if;
537
538 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
539 -- the body is analyzed when the renamed entity is frozen, it may
540 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
541
542 if Nkind (N) = N_Subprogram_Renaming_Declaration
543 and then Present (Corresponding_Spec (N))
544 then
545 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
546 else
547 Set_Corresponding_Spec (Body_Node, New_S);
548 end if;
549
550 return Body_Node;
551 end Build_Renamed_Body;
552
fbf5a39b
AC
553 --------------------------
554 -- Check_Address_Clause --
555 --------------------------
556
557 procedure Check_Address_Clause (E : Entity_Id) is
cf6956bb 558 Addr : constant Node_Id := Address_Clause (E);
fbf5a39b 559 Expr : Node_Id;
cf6956bb
AC
560 Decl : constant Node_Id := Declaration_Node (E);
561 Loc : constant Source_Ptr := Sloc (Decl);
562 Typ : constant Entity_Id := Etype (E);
fbf5a39b
AC
563
564 begin
565 if Present (Addr) then
566 Expr := Expression (Addr);
567
0d901290 568 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 569 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
570
571 -- Has_Delayed_Freeze was set on E when the address clause was
02217452
AC
572 -- analyzed, and must remain set because we want the address
573 -- clause to be elaborated only after any entity it references
574 -- has been elaborated.
fbf5a39b
AC
575 end if;
576
1d57c04f
AC
577 -- If Rep_Clauses are to be ignored, remove address clause from
578 -- list attached to entity, because it may be illegal for gigi,
579 -- for example by breaking order of elaboration..
580
581 if Ignore_Rep_Clauses then
582 declare
583 Rep : Node_Id;
584
585 begin
586 Rep := First_Rep_Item (E);
587
588 if Rep = Addr then
589 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
590
591 else
592 while Present (Rep)
593 and then Next_Rep_Item (Rep) /= Addr
594 loop
595 Rep := Next_Rep_Item (Rep);
596 end loop;
597 end if;
598
599 if Present (Rep) then
600 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
601 end if;
602 end;
603
604 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
605
606 elsif not Error_Posted (Expr)
048e5cef 607 and then not Needs_Finalization (Typ)
fbf5a39b
AC
608 then
609 Warn_Overlay (Expr, Typ, Name (Addr));
610 end if;
cf6956bb
AC
611
612 if Present (Expression (Decl)) then
613
614 -- Capture initialization value at point of declaration
615
616 Remove_Side_Effects (Expression (Decl));
617
618 -- Move initialization to freeze actions (once the object has
619 -- been frozen, and the address clause alignment check has been
620 -- performed.
621
622 Append_Freeze_Action (E,
623 Make_Assignment_Statement (Loc,
624 Name => New_Occurrence_Of (E, Loc),
625 Expression => Expression (Decl)));
626
627 Set_No_Initialization (Decl);
628 end if;
fbf5a39b
AC
629 end if;
630 end Check_Address_Clause;
631
70482933
RK
632 -----------------------------
633 -- Check_Compile_Time_Size --
634 -----------------------------
635
636 procedure Check_Compile_Time_Size (T : Entity_Id) is
637
c6823a20 638 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 639 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 640 -- field, of T checking for a size clause that was given which attempts
2593c3e1 641 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
642
643 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 644 -- Recursive function that does all the work
70482933
RK
645
646 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
647 -- If T is a constrained subtype, its size is not known if any of its
648 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 649 -- The test is conservative and doesn't check that the components are
70482933
RK
650 -- in fact constrained by non-static discriminant values. Could be made
651 -- more precise ???
652
653 --------------------
654 -- Set_Small_Size --
655 --------------------
656
c6823a20 657 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
658 begin
659 if S > 32 then
660 return;
661
2593c3e1
AC
662 -- Check for bad size clause given
663
70482933
RK
664 elsif Has_Size_Clause (T) then
665 if RM_Size (T) < S then
666 Error_Msg_Uint_1 := S;
667 Error_Msg_NE
d58b9515 668 ("size for& too small, minimum allowed is ^",
70482933 669 Size_Clause (T), T);
70482933
RK
670 end if;
671
fc893455 672 -- Set size if not set already
70482933 673
fc893455
AC
674 elsif Unknown_RM_Size (T) then
675 Set_RM_Size (T, S);
70482933
RK
676 end if;
677 end Set_Small_Size;
678
679 ----------------
680 -- Size_Known --
681 ----------------
682
683 function Size_Known (T : Entity_Id) return Boolean is
684 Index : Entity_Id;
685 Comp : Entity_Id;
686 Ctyp : Entity_Id;
687 Low : Node_Id;
688 High : Node_Id;
689
690 begin
691 if Size_Known_At_Compile_Time (T) then
692 return True;
693
c6a9797e
RD
694 -- Always True for scalar types. This is true even for generic formal
695 -- scalar types. We used to return False in the latter case, but the
696 -- size is known at compile time, even in the template, we just do
697 -- not know the exact size but that's not the point of this routine.
698
70482933
RK
699 elsif Is_Scalar_Type (T)
700 or else Is_Task_Type (T)
701 then
c6a9797e
RD
702 return True;
703
704 -- Array types
70482933
RK
705
706 elsif Is_Array_Type (T) then
c6a9797e
RD
707
708 -- String literals always have known size, and we can set it
709
70482933 710 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
711 Set_Small_Size (T, Component_Size (T)
712 * String_Literal_Length (T));
70482933
RK
713 return True;
714
c6a9797e
RD
715 -- Unconstrained types never have known at compile time size
716
70482933
RK
717 elsif not Is_Constrained (T) then
718 return False;
719
def46b54
RD
720 -- Don't do any recursion on type with error posted, since we may
721 -- have a malformed type that leads us into a loop.
07fc65c4
GB
722
723 elsif Error_Posted (T) then
724 return False;
725
c6a9797e
RD
726 -- Otherwise if component size unknown, then array size unknown
727
70482933
RK
728 elsif not Size_Known (Component_Type (T)) then
729 return False;
730 end if;
731
def46b54
RD
732 -- Check for all indexes static, and also compute possible size
733 -- (in case it is less than 32 and may be packable).
70482933
RK
734
735 declare
736 Esiz : Uint := Component_Size (T);
737 Dim : Uint;
738
739 begin
740 Index := First_Index (T);
70482933
RK
741 while Present (Index) loop
742 if Nkind (Index) = N_Range then
743 Get_Index_Bounds (Index, Low, High);
744
745 elsif Error_Posted (Scalar_Range (Etype (Index))) then
746 return False;
747
748 else
749 Low := Type_Low_Bound (Etype (Index));
750 High := Type_High_Bound (Etype (Index));
751 end if;
752
753 if not Compile_Time_Known_Value (Low)
754 or else not Compile_Time_Known_Value (High)
755 or else Etype (Index) = Any_Type
756 then
757 return False;
758
759 else
760 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
761
762 if Dim >= 0 then
763 Esiz := Esiz * Dim;
764 else
765 Esiz := Uint_0;
766 end if;
767 end if;
768
769 Next_Index (Index);
770 end loop;
771
c6823a20 772 Set_Small_Size (T, Esiz);
70482933
RK
773 return True;
774 end;
775
c6a9797e
RD
776 -- Access types always have known at compile time sizes
777
70482933
RK
778 elsif Is_Access_Type (T) then
779 return True;
780
c6a9797e
RD
781 -- For non-generic private types, go to underlying type if present
782
70482933
RK
783 elsif Is_Private_Type (T)
784 and then not Is_Generic_Type (T)
785 and then Present (Underlying_Type (T))
786 then
def46b54
RD
787 -- Don't do any recursion on type with error posted, since we may
788 -- have a malformed type that leads us into a loop.
07fc65c4
GB
789
790 if Error_Posted (T) then
791 return False;
792 else
793 return Size_Known (Underlying_Type (T));
794 end if;
70482933 795
c6a9797e
RD
796 -- Record types
797
70482933 798 elsif Is_Record_Type (T) then
fbf5a39b
AC
799
800 -- A class-wide type is never considered to have a known size
801
70482933
RK
802 if Is_Class_Wide_Type (T) then
803 return False;
804
fbf5a39b 805 -- A subtype of a variant record must not have non-static
308e6f3a 806 -- discriminated components.
fbf5a39b
AC
807
808 elsif T /= Base_Type (T)
809 and then not Static_Discriminated_Components (T)
810 then
811 return False;
70482933 812
def46b54
RD
813 -- Don't do any recursion on type with error posted, since we may
814 -- have a malformed type that leads us into a loop.
07fc65c4
GB
815
816 elsif Error_Posted (T) then
817 return False;
fbf5a39b 818 end if;
07fc65c4 819
fbf5a39b 820 -- Now look at the components of the record
70482933 821
fbf5a39b 822 declare
def46b54
RD
823 -- The following two variables are used to keep track of the
824 -- size of packed records if we can tell the size of the packed
825 -- record in the front end. Packed_Size_Known is True if so far
826 -- we can figure out the size. It is initialized to True for a
ca1ffed0
AC
827 -- packed record, unless the record has discriminants or atomic
828 -- components or independent components.
829
830 -- The reason we eliminate the discriminated case is that
831 -- we don't know the way the back end lays out discriminated
832 -- packed records. If Packed_Size_Known is True, then
833 -- Packed_Size is the size in bits so far.
fbf5a39b
AC
834
835 Packed_Size_Known : Boolean :=
ca1ffed0
AC
836 Is_Packed (T)
837 and then not Has_Discriminants (T)
838 and then not Has_Atomic_Components (T)
839 and then not Has_Independent_Components (T);
fbf5a39b
AC
840
841 Packed_Size : Uint := Uint_0;
515490e0 842 -- Size in bits so far
fbf5a39b
AC
843
844 begin
845 -- Test for variant part present
846
847 if Has_Discriminants (T)
848 and then Present (Parent (T))
849 and then Nkind (Parent (T)) = N_Full_Type_Declaration
850 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 851 N_Record_Definition
fbf5a39b 852 and then not Null_Present (Type_Definition (Parent (T)))
15918371
AC
853 and then
854 Present (Variant_Part
855 (Component_List (Type_Definition (Parent (T)))))
fbf5a39b
AC
856 then
857 -- If variant part is present, and type is unconstrained,
858 -- then we must have defaulted discriminants, or a size
859 -- clause must be present for the type, or else the size
860 -- is definitely not known at compile time.
861
862 if not Is_Constrained (T)
863 and then
545cb5be 864 No (Discriminant_Default_Value (First_Discriminant (T)))
fc893455 865 and then Unknown_RM_Size (T)
70482933 866 then
fbf5a39b
AC
867 return False;
868 end if;
869 end if;
70482933 870
fbf5a39b
AC
871 -- Loop through components
872
fea9e956 873 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 874 while Present (Comp) loop
fea9e956 875 Ctyp := Etype (Comp);
fbf5a39b 876
fea9e956
ES
877 -- We do not know the packed size if there is a component
878 -- clause present (we possibly could, but this would only
879 -- help in the case of a record with partial rep clauses.
880 -- That's because in the case of full rep clauses, the
881 -- size gets figured out anyway by a different circuit).
fbf5a39b 882
fea9e956
ES
883 if Present (Component_Clause (Comp)) then
884 Packed_Size_Known := False;
885 end if;
70482933 886
ca1ffed0 887 -- We do not know the packed size if we have a by reference
515490e0
AC
888 -- type, or an atomic type or an atomic component, or an
889 -- aliased component (because packing does not touch these).
ca1ffed0
AC
890
891 if Is_Atomic (Ctyp)
892 or else Is_Atomic (Comp)
893 or else Is_By_Reference_Type (Ctyp)
515490e0 894 or else Is_Aliased (Comp)
ca1ffed0
AC
895 then
896 Packed_Size_Known := False;
897 end if;
898
fea9e956
ES
899 -- We need to identify a component that is an array where
900 -- the index type is an enumeration type with non-standard
901 -- representation, and some bound of the type depends on a
902 -- discriminant.
70482933 903
fea9e956 904 -- This is because gigi computes the size by doing a
e14c931f 905 -- substitution of the appropriate discriminant value in
fea9e956
ES
906 -- the size expression for the base type, and gigi is not
907 -- clever enough to evaluate the resulting expression (which
908 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 909
fea9e956
ES
910 -- It would be nice if gigi would either recognize that
911 -- this expression can be computed at compile time, or
912 -- alternatively figured out the size from the subtype
913 -- directly, where all the information is at hand ???
fbf5a39b 914
fea9e956
ES
915 if Is_Array_Type (Etype (Comp))
916 and then Present (Packed_Array_Type (Etype (Comp)))
917 then
918 declare
919 Ocomp : constant Entity_Id :=
920 Original_Record_Component (Comp);
921 OCtyp : constant Entity_Id := Etype (Ocomp);
922 Ind : Node_Id;
923 Indtyp : Entity_Id;
924 Lo, Hi : Node_Id;
70482933 925
fea9e956
ES
926 begin
927 Ind := First_Index (OCtyp);
928 while Present (Ind) loop
929 Indtyp := Etype (Ind);
70482933 930
fea9e956
ES
931 if Is_Enumeration_Type (Indtyp)
932 and then Has_Non_Standard_Rep (Indtyp)
933 then
934 Lo := Type_Low_Bound (Indtyp);
935 Hi := Type_High_Bound (Indtyp);
fbf5a39b 936
fea9e956
ES
937 if Is_Entity_Name (Lo)
938 and then Ekind (Entity (Lo)) = E_Discriminant
939 then
940 return False;
fbf5a39b 941
fea9e956
ES
942 elsif Is_Entity_Name (Hi)
943 and then Ekind (Entity (Hi)) = E_Discriminant
944 then
945 return False;
946 end if;
947 end if;
fbf5a39b 948
fea9e956
ES
949 Next_Index (Ind);
950 end loop;
951 end;
952 end if;
70482933 953
def46b54
RD
954 -- Clearly size of record is not known if the size of one of
955 -- the components is not known.
70482933 956
fea9e956
ES
957 if not Size_Known (Ctyp) then
958 return False;
959 end if;
70482933 960
fea9e956 961 -- Accumulate packed size if possible
70482933 962
fea9e956 963 if Packed_Size_Known then
70482933 964
fea9e956
ES
965 -- We can only deal with elementary types, since for
966 -- non-elementary components, alignment enters into the
967 -- picture, and we don't know enough to handle proper
968 -- alignment in this context. Packed arrays count as
969 -- elementary if the representation is a modular type.
fbf5a39b 970
fea9e956
ES
971 if Is_Elementary_Type (Ctyp)
972 or else (Is_Array_Type (Ctyp)
2593c3e1
AC
973 and then Present (Packed_Array_Type (Ctyp))
974 and then Is_Modular_Integer_Type
975 (Packed_Array_Type (Ctyp)))
fea9e956 976 then
ca1ffed0
AC
977 -- Packed size unknown if we have an atomic type
978 -- or a by reference type, since the back end
979 -- knows how these are layed out.
980
981 if Is_Atomic (Ctyp)
982 or else Is_By_Reference_Type (Ctyp)
983 then
984 Packed_Size_Known := False;
985
2593c3e1 986 -- If RM_Size is known and static, then we can keep
ca1ffed0 987 -- accumulating the packed size
70482933 988
ca1ffed0 989 elsif Known_Static_RM_Size (Ctyp) then
70482933 990
fea9e956
ES
991 -- A little glitch, to be removed sometime ???
992 -- gigi does not understand zero sizes yet.
993
994 if RM_Size (Ctyp) = Uint_0 then
70482933 995 Packed_Size_Known := False;
fea9e956
ES
996
997 -- Normal case where we can keep accumulating the
998 -- packed array size.
999
1000 else
1001 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 1002 end if;
fbf5a39b 1003
fea9e956
ES
1004 -- If we have a field whose RM_Size is not known then
1005 -- we can't figure out the packed size here.
fbf5a39b
AC
1006
1007 else
1008 Packed_Size_Known := False;
70482933 1009 end if;
fea9e956
ES
1010
1011 -- If we have a non-elementary type we can't figure out
1012 -- the packed array size (alignment issues).
1013
1014 else
1015 Packed_Size_Known := False;
70482933 1016 end if;
fbf5a39b 1017 end if;
70482933 1018
fea9e956 1019 Next_Component_Or_Discriminant (Comp);
fbf5a39b 1020 end loop;
70482933 1021
fbf5a39b 1022 if Packed_Size_Known then
c6823a20 1023 Set_Small_Size (T, Packed_Size);
fbf5a39b 1024 end if;
70482933 1025
fbf5a39b
AC
1026 return True;
1027 end;
70482933 1028
c6a9797e
RD
1029 -- All other cases, size not known at compile time
1030
70482933
RK
1031 else
1032 return False;
1033 end if;
1034 end Size_Known;
1035
1036 -------------------------------------
1037 -- Static_Discriminated_Components --
1038 -------------------------------------
1039
1040 function Static_Discriminated_Components
0da2c8ac 1041 (T : Entity_Id) return Boolean
70482933
RK
1042 is
1043 Constraint : Elmt_Id;
1044
1045 begin
1046 if Has_Discriminants (T)
1047 and then Present (Discriminant_Constraint (T))
1048 and then Present (First_Component (T))
1049 then
1050 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
1051 while Present (Constraint) loop
1052 if not Compile_Time_Known_Value (Node (Constraint)) then
1053 return False;
1054 end if;
1055
1056 Next_Elmt (Constraint);
1057 end loop;
1058 end if;
1059
1060 return True;
1061 end Static_Discriminated_Components;
1062
1063 -- Start of processing for Check_Compile_Time_Size
1064
1065 begin
1066 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1067 end Check_Compile_Time_Size;
1068
75965852
AC
1069 -----------------------------------
1070 -- Check_Component_Storage_Order --
1071 -----------------------------------
1072
1073 procedure Check_Component_Storage_Order
1074 (Encl_Type : Entity_Id;
8a7c0400
AC
1075 Comp : Entity_Id;
1076 ADC : Node_Id)
75965852
AC
1077 is
1078 Comp_Type : Entity_Id;
8a7c0400 1079 Comp_ADC : Node_Id;
75965852 1080 Err_Node : Node_Id;
75965852 1081
5df1266a
AC
1082 Comp_Byte_Aligned : Boolean;
1083 -- Set True for the record case, when Comp starts on a byte boundary
1084 -- (in which case it is allowed to have different storage order).
1085
637a41a5
AC
1086 Comp_SSO_Differs : Boolean;
1087 -- Set True when the component is a nested composite, and it does not
1088 -- have the same scalar storage order as Encl_Type.
1089
11d59a86
AC
1090 Component_Aliased : Boolean;
1091
75965852
AC
1092 begin
1093 -- Record case
1094
1095 if Present (Comp) then
1096 Err_Node := Comp;
1097 Comp_Type := Etype (Comp);
75965852 1098
4ff4293f 1099 if Is_Tag (Comp) then
4ff4293f 1100 Comp_Byte_Aligned := True;
11d59a86 1101 Component_Aliased := False;
4ff4293f
AC
1102
1103 else
4ff4293f
AC
1104 Comp_Byte_Aligned :=
1105 Present (Component_Clause (Comp))
1106 and then
ca1ffed0 1107 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
11d59a86 1108 Component_Aliased := Is_Aliased (Comp);
4ff4293f 1109 end if;
5df1266a 1110
75965852
AC
1111 -- Array case
1112
1113 else
1114 Err_Node := Encl_Type;
1115 Comp_Type := Component_Type (Encl_Type);
5df1266a
AC
1116
1117 Comp_Byte_Aligned := False;
11d59a86 1118 Component_Aliased := Has_Aliased_Components (Encl_Type);
75965852
AC
1119 end if;
1120
b3408631
RD
1121 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1122 -- the attribute definition clause is attached to the first subtype.
75965852
AC
1123
1124 Comp_Type := Base_Type (Comp_Type);
8a7c0400
AC
1125 Comp_ADC := Get_Attribute_Definition_Clause
1126 (First_Subtype (Comp_Type),
1127 Attribute_Scalar_Storage_Order);
75965852 1128
8a7c0400
AC
1129 -- Case of enclosing type not having explicit SSO: component cannot
1130 -- have it either.
1131
1132 if No (ADC) then
1133 if Present (Comp_ADC) then
1134 Error_Msg_N
1135 ("composite type must have explicit scalar storage order",
1136 Err_Node);
1137 end if;
1138
1139 -- Case of enclosing type having explicit SSO: check compatible
1140 -- attribute on Comp_Type if composite.
1141
1142 elsif Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
637a41a5
AC
1143 Comp_SSO_Differs :=
1144 Reverse_Storage_Order (Encl_Type)
1145 /=
1146 Reverse_Storage_Order (Comp_Type);
1147
ae05cdd6 1148 if Present (Comp) and then Chars (Comp) = Name_uParent then
637a41a5 1149 if Comp_SSO_Differs then
8190087e
AC
1150 Error_Msg_N
1151 ("record extension must have same scalar storage order as "
1152 & "parent", Err_Node);
1153 end if;
1154
637a41a5 1155 elsif No (Comp_ADC) then
5df1266a
AC
1156 Error_Msg_N ("nested composite must have explicit scalar "
1157 & "storage order", Err_Node);
1158
637a41a5
AC
1159 elsif Comp_SSO_Differs then
1160
1161 -- Component SSO differs from enclosing composite:
1162
1163 -- Reject if component is a packed array, as it may be represented
1164 -- as a scalar internally.
1165
1166 if Is_Packed (Comp_Type) then
1167 Error_Msg_N
1168 ("type of packed component must have same scalar "
1169 & "storage order as enclosing composite", Err_Node);
1170
1171 -- Reject if not byte aligned
1172
1173 elsif not Comp_Byte_Aligned then
1174 Error_Msg_N
1175 ("type of non-byte-aligned component must have same scalar "
1176 & "storage order as enclosing composite", Err_Node);
637a41a5 1177 end if;
5df1266a 1178 end if;
75965852 1179
8a7c0400
AC
1180 -- Enclosing type has explicit SSO, non-composite component must not
1181 -- be aliased.
1182
11d59a86 1183 elsif Component_Aliased then
b3408631
RD
1184 Error_Msg_N
1185 ("aliased component not permitted for type with "
1186 & "explicit Scalar_Storage_Order", Err_Node);
75965852
AC
1187 end if;
1188 end Check_Component_Storage_Order;
1189
70482933
RK
1190 -----------------------------
1191 -- Check_Debug_Info_Needed --
1192 -----------------------------
1193
1194 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1195 begin
1b24ada5 1196 if Debug_Info_Off (T) then
70482933
RK
1197 return;
1198
1199 elsif Comes_From_Source (T)
1200 or else Debug_Generated_Code
1201 or else Debug_Flag_VV
1b24ada5 1202 or else Needs_Debug_Info (T)
70482933
RK
1203 then
1204 Set_Debug_Info_Needed (T);
1205 end if;
1206 end Check_Debug_Info_Needed;
1207
1208 ----------------------------
1209 -- Check_Strict_Alignment --
1210 ----------------------------
1211
1212 procedure Check_Strict_Alignment (E : Entity_Id) is
1213 Comp : Entity_Id;
1214
1215 begin
1216 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1217 Set_Strict_Alignment (E);
1218
1219 elsif Is_Array_Type (E) then
1220 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1221
1222 elsif Is_Record_Type (E) then
1223 if Is_Limited_Record (E) then
1224 Set_Strict_Alignment (E);
1225 return;
1226 end if;
1227
1228 Comp := First_Component (E);
70482933
RK
1229 while Present (Comp) loop
1230 if not Is_Type (Comp)
1231 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1232 or else Is_Aliased (Comp))
70482933
RK
1233 then
1234 Set_Strict_Alignment (E);
1235 return;
1236 end if;
1237
1238 Next_Component (Comp);
1239 end loop;
1240 end if;
1241 end Check_Strict_Alignment;
1242
1243 -------------------------
1244 -- Check_Unsigned_Type --
1245 -------------------------
1246
1247 procedure Check_Unsigned_Type (E : Entity_Id) is
1248 Ancestor : Entity_Id;
1249 Lo_Bound : Node_Id;
1250 Btyp : Entity_Id;
1251
1252 begin
1253 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1254 return;
1255 end if;
1256
1257 -- Do not attempt to analyze case where range was in error
1258
ef1c0511 1259 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
70482933
RK
1260 return;
1261 end if;
1262
1263 -- The situation that is non trivial is something like
1264
1265 -- subtype x1 is integer range -10 .. +10;
1266 -- subtype x2 is x1 range 0 .. V1;
1267 -- subtype x3 is x2 range V2 .. V3;
1268 -- subtype x4 is x3 range V4 .. V5;
1269
1270 -- where Vn are variables. Here the base type is signed, but we still
1271 -- know that x4 is unsigned because of the lower bound of x2.
1272
1273 -- The only way to deal with this is to look up the ancestor chain
1274
1275 Ancestor := E;
1276 loop
1277 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1278 return;
1279 end if;
1280
1281 Lo_Bound := Type_Low_Bound (Ancestor);
1282
1283 if Compile_Time_Known_Value (Lo_Bound) then
70482933
RK
1284 if Expr_Rep_Value (Lo_Bound) >= 0 then
1285 Set_Is_Unsigned_Type (E, True);
1286 end if;
1287
1288 return;
1289
1290 else
1291 Ancestor := Ancestor_Subtype (Ancestor);
1292
1293 -- If no ancestor had a static lower bound, go to base type
1294
1295 if No (Ancestor) then
1296
1297 -- Note: the reason we still check for a compile time known
1298 -- value for the base type is that at least in the case of
1299 -- generic formals, we can have bounds that fail this test,
1300 -- and there may be other cases in error situations.
1301
1302 Btyp := Base_Type (E);
1303
1304 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1305 return;
1306 end if;
1307
1308 Lo_Bound := Type_Low_Bound (Base_Type (E));
1309
1310 if Compile_Time_Known_Value (Lo_Bound)
1311 and then Expr_Rep_Value (Lo_Bound) >= 0
1312 then
1313 Set_Is_Unsigned_Type (E, True);
1314 end if;
1315
1316 return;
70482933
RK
1317 end if;
1318 end if;
1319 end loop;
1320 end Check_Unsigned_Type;
1321
cfb120b5
AC
1322 -------------------------
1323 -- Is_Atomic_Aggregate --
1324 -------------------------
fbf5a39b 1325
cfb120b5 1326 function Is_Atomic_Aggregate
b0159fbe
AC
1327 (E : Entity_Id;
1328 Typ : Entity_Id) return Boolean
1329 is
fbf5a39b
AC
1330 Loc : constant Source_Ptr := Sloc (E);
1331 New_N : Node_Id;
b0159fbe 1332 Par : Node_Id;
fbf5a39b
AC
1333 Temp : Entity_Id;
1334
1335 begin
b0159fbe
AC
1336 Par := Parent (E);
1337
01957849 1338 -- Array may be qualified, so find outer context
b0159fbe
AC
1339
1340 if Nkind (Par) = N_Qualified_Expression then
1341 Par := Parent (Par);
1342 end if;
1343
fb2e11ee 1344 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1345 and then Comes_From_Source (Par)
fbf5a39b 1346 then
b29def53 1347 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1348 New_N :=
1349 Make_Object_Declaration (Loc,
1350 Defining_Identifier => Temp,
c6a9797e
RD
1351 Object_Definition => New_Occurrence_Of (Typ, Loc),
1352 Expression => Relocate_Node (E));
b0159fbe 1353 Insert_Before (Par, New_N);
fbf5a39b
AC
1354 Analyze (New_N);
1355
b0159fbe
AC
1356 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1357 return True;
2c1b72d7 1358
b0159fbe
AC
1359 else
1360 return False;
fbf5a39b 1361 end if;
cfb120b5 1362 end Is_Atomic_Aggregate;
fbf5a39b 1363
70482933
RK
1364 ----------------
1365 -- Freeze_All --
1366 ----------------
1367
1368 -- Note: the easy coding for this procedure would be to just build a
1369 -- single list of freeze nodes and then insert them and analyze them
1370 -- all at once. This won't work, because the analysis of earlier freeze
1371 -- nodes may recursively freeze types which would otherwise appear later
1372 -- on in the freeze list. So we must analyze and expand the freeze nodes
1373 -- as they are generated.
1374
1375 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1376 E : Entity_Id;
1377 Decl : Node_Id;
1378
1379 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1380 -- This is the internal recursive routine that does freezing of entities
1381 -- (but NOT the analysis of default expressions, which should not be
1382 -- recursive, we don't want to analyze those till we are sure that ALL
1383 -- the types are frozen).
70482933 1384
fbf5a39b
AC
1385 --------------------
1386 -- Freeze_All_Ent --
1387 --------------------
1388
545cb5be 1389 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1390 E : Entity_Id;
1391 Flist : List_Id;
1392 Lastn : Node_Id;
1393
1394 procedure Process_Flist;
def46b54
RD
1395 -- If freeze nodes are present, insert and analyze, and reset cursor
1396 -- for next insertion.
70482933 1397
fbf5a39b
AC
1398 -------------------
1399 -- Process_Flist --
1400 -------------------
1401
70482933
RK
1402 procedure Process_Flist is
1403 begin
1404 if Is_Non_Empty_List (Flist) then
1405 Lastn := Next (After);
1406 Insert_List_After_And_Analyze (After, Flist);
1407
1408 if Present (Lastn) then
1409 After := Prev (Lastn);
1410 else
1411 After := Last (List_Containing (After));
1412 end if;
1413 end if;
1414 end Process_Flist;
1415
fbf5a39b
AC
1416 -- Start or processing for Freeze_All_Ent
1417
70482933
RK
1418 begin
1419 E := From;
1420 while Present (E) loop
1421
1422 -- If the entity is an inner package which is not a package
def46b54
RD
1423 -- renaming, then its entities must be frozen at this point. Note
1424 -- that such entities do NOT get frozen at the end of the nested
1425 -- package itself (only library packages freeze).
70482933
RK
1426
1427 -- Same is true for task declarations, where anonymous records
1428 -- created for entry parameters must be frozen.
1429
1430 if Ekind (E) = E_Package
1431 and then No (Renamed_Object (E))
1432 and then not Is_Child_Unit (E)
1433 and then not Is_Frozen (E)
1434 then
7d8b9c99 1435 Push_Scope (E);
70482933
RK
1436 Install_Visible_Declarations (E);
1437 Install_Private_Declarations (E);
1438
1439 Freeze_All (First_Entity (E), After);
1440
1441 End_Package_Scope (E);
1442
d3cb4cc0
AC
1443 if Is_Generic_Instance (E)
1444 and then Has_Delayed_Freeze (E)
1445 then
1446 Set_Has_Delayed_Freeze (E, False);
1447 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1448 end if;
1449
70482933 1450 elsif Ekind (E) in Task_Kind
ef1c0511
AC
1451 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1452 N_Single_Task_Declaration)
70482933 1453 then
7d8b9c99 1454 Push_Scope (E);
70482933
RK
1455 Freeze_All (First_Entity (E), After);
1456 End_Scope;
1457
1458 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1459 -- primitive operations of the parent have been frozen, so that
1460 -- their addresses will be in the parent's dispatch table at the
1461 -- point it is inherited.
70482933
RK
1462
1463 elsif Ekind (E) = E_Record_Type
1464 and then Is_Tagged_Type (E)
1465 and then Is_Tagged_Type (Etype (E))
1466 and then Is_Derived_Type (E)
1467 then
1468 declare
1469 Prim_List : constant Elist_Id :=
1470 Primitive_Operations (Etype (E));
fbf5a39b
AC
1471
1472 Prim : Elmt_Id;
1473 Subp : Entity_Id;
70482933
RK
1474
1475 begin
df3e68b1 1476 Prim := First_Elmt (Prim_List);
70482933
RK
1477 while Present (Prim) loop
1478 Subp := Node (Prim);
1479
1480 if Comes_From_Source (Subp)
1481 and then not Is_Frozen (Subp)
1482 then
c159409f 1483 Flist := Freeze_Entity (Subp, After);
70482933
RK
1484 Process_Flist;
1485 end if;
1486
1487 Next_Elmt (Prim);
1488 end loop;
1489 end;
1490 end if;
1491
1492 if not Is_Frozen (E) then
c159409f 1493 Flist := Freeze_Entity (E, After);
70482933 1494 Process_Flist;
47e11d08
AC
1495
1496 -- If already frozen, and there are delayed aspects, this is where
1497 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1498 -- for a description of how we handle aspect visibility).
1499
1500 elsif Has_Delayed_Aspects (E) then
02e4edea 1501
b98e2969
AC
1502 -- Retrieve the visibility to the discriminants in order to
1503 -- analyze properly the aspects.
1504
1505 Push_Scope_And_Install_Discriminants (E);
1506
47e11d08
AC
1507 declare
1508 Ritem : Node_Id;
1509
1510 begin
1511 Ritem := First_Rep_Item (E);
1512 while Present (Ritem) loop
1513 if Nkind (Ritem) = N_Aspect_Specification
bd949ee2 1514 and then Entity (Ritem) = E
47e11d08
AC
1515 and then Is_Delayed_Aspect (Ritem)
1516 then
1517 Check_Aspect_At_End_Of_Declarations (Ritem);
1518 end if;
1519
1520 Ritem := Next_Rep_Item (Ritem);
1521 end loop;
1522 end;
b98e2969
AC
1523
1524 Uninstall_Discriminants_And_Pop_Scope (E);
70482933
RK
1525 end if;
1526
def46b54
RD
1527 -- If an incomplete type is still not frozen, this may be a
1528 -- premature freezing because of a body declaration that follows.
ef992452
AC
1529 -- Indicate where the freezing took place. Freezing will happen
1530 -- if the body comes from source, but not if it is internally
1531 -- generated, for example as the body of a type invariant.
fbf5a39b 1532
def46b54
RD
1533 -- If the freezing is caused by the end of the current declarative
1534 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1535
1536 if not Is_Frozen (E)
1537 and then Ekind (E) = E_Incomplete_Type
1538 then
1539 declare
1540 Bod : constant Node_Id := Next (After);
1541
1542 begin
35fae080
RD
1543 -- The presence of a body freezes all entities previously
1544 -- declared in the current list of declarations, but this
1545 -- does not apply if the body does not come from source.
1546 -- A type invariant is transformed into a subprogram body
1547 -- which is placed at the end of the private part of the
1548 -- current package, but this body does not freeze incomplete
1549 -- types that may be declared in this private part.
1550
545cb5be
AC
1551 if (Nkind_In (Bod, N_Subprogram_Body,
1552 N_Entry_Body,
1553 N_Package_Body,
1554 N_Protected_Body,
1555 N_Task_Body)
fbf5a39b 1556 or else Nkind (Bod) in N_Body_Stub)
ef992452 1557 and then
35fae080 1558 List_Containing (After) = List_Containing (Parent (E))
ef992452 1559 and then Comes_From_Source (Bod)
fbf5a39b
AC
1560 then
1561 Error_Msg_Sloc := Sloc (Next (After));
1562 Error_Msg_NE
1563 ("type& is frozen# before its full declaration",
1564 Parent (E), E);
1565 end if;
1566 end;
1567 end if;
1568
70482933
RK
1569 Next_Entity (E);
1570 end loop;
1571 end Freeze_All_Ent;
1572
1573 -- Start of processing for Freeze_All
1574
1575 begin
1576 Freeze_All_Ent (From, After);
1577
1578 -- Now that all types are frozen, we can deal with default expressions
1579 -- that require us to build a default expression functions. This is the
1580 -- point at which such functions are constructed (after all types that
1581 -- might be used in such expressions have been frozen).
fbf5a39b 1582
d4fc0fb4
AC
1583 -- For subprograms that are renaming_as_body, we create the wrapper
1584 -- bodies as needed.
1585
70482933
RK
1586 -- We also add finalization chains to access types whose designated
1587 -- types are controlled. This is normally done when freezing the type,
1588 -- but this misses recursive type definitions where the later members
c6a9797e 1589 -- of the recursion introduce controlled components.
70482933
RK
1590
1591 -- Loop through entities
1592
1593 E := From;
1594 while Present (E) loop
70482933
RK
1595 if Is_Subprogram (E) then
1596
1597 if not Default_Expressions_Processed (E) then
1598 Process_Default_Expressions (E, After);
1599 end if;
1600
1601 if not Has_Completion (E) then
1602 Decl := Unit_Declaration_Node (E);
1603
1604 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
8417f4b2
AC
1605 if Error_Posted (Decl) then
1606 Set_Has_Completion (E);
8417f4b2
AC
1607 else
1608 Build_And_Analyze_Renamed_Body (Decl, E, After);
1609 end if;
70482933
RK
1610
1611 elsif Nkind (Decl) = N_Subprogram_Declaration
1612 and then Present (Corresponding_Body (Decl))
1613 and then
1614 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1615 = N_Subprogram_Renaming_Declaration
70482933
RK
1616 then
1617 Build_And_Analyze_Renamed_Body
1618 (Decl, Corresponding_Body (Decl), After);
1619 end if;
1620 end if;
1621
1622 elsif Ekind (E) in Task_Kind
ef1c0511
AC
1623 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1624 N_Single_Task_Declaration)
70482933
RK
1625 then
1626 declare
1627 Ent : Entity_Id;
545cb5be 1628
70482933
RK
1629 begin
1630 Ent := First_Entity (E);
70482933 1631 while Present (Ent) loop
70482933
RK
1632 if Is_Entry (Ent)
1633 and then not Default_Expressions_Processed (Ent)
1634 then
1635 Process_Default_Expressions (Ent, After);
1636 end if;
1637
1638 Next_Entity (Ent);
1639 end loop;
1640 end;
1641
ca5af305
AC
1642 -- We add finalization masters to access types whose designated types
1643 -- require finalization. This is normally done when freezing the
1644 -- type, but this misses recursive type definitions where the later
1645 -- members of the recursion introduce controlled components (such as
1646 -- can happen when incomplete types are involved), as well cases
1647 -- where a component type is private and the controlled full type
1648 -- occurs after the access type is frozen. Cases that don't need a
1649 -- finalization master are generic formal types (the actual type will
ebdaa81b
AC
1650 -- have it) and types derived from them, and types with Java and CIL
1651 -- conventions, since those are used for API bindings.
1652 -- (Are there any other cases that should be excluded here???)
df3e68b1 1653
70482933
RK
1654 elsif Is_Access_Type (E)
1655 and then Comes_From_Source (E)
ebdaa81b 1656 and then not Is_Generic_Type (Root_Type (E))
048e5cef 1657 and then Needs_Finalization (Designated_Type (E))
70482933 1658 then
ca5af305 1659 Build_Finalization_Master (E);
70482933
RK
1660 end if;
1661
1662 Next_Entity (E);
1663 end loop;
70482933
RK
1664 end Freeze_All;
1665
1666 -----------------------
1667 -- Freeze_And_Append --
1668 -----------------------
1669
1670 procedure Freeze_And_Append
1671 (Ent : Entity_Id;
c159409f 1672 N : Node_Id;
70482933
RK
1673 Result : in out List_Id)
1674 is
c159409f 1675 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
1676 begin
1677 if Is_Non_Empty_List (L) then
1678 if Result = No_List then
1679 Result := L;
1680 else
1681 Append_List (L, Result);
1682 end if;
1683 end if;
1684 end Freeze_And_Append;
1685
1686 -------------------
1687 -- Freeze_Before --
1688 -------------------
1689
1690 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
c159409f 1691 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
70482933
RK
1692 begin
1693 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1694 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1695 end if;
1696 end Freeze_Before;
1697
1698 -------------------
1699 -- Freeze_Entity --
1700 -------------------
1701
c159409f
AC
1702 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1703 Loc : constant Source_Ptr := Sloc (N);
c6823a20 1704 Test_E : Entity_Id := E;
70482933
RK
1705 Comp : Entity_Id;
1706 F_Node : Node_Id;
70482933
RK
1707 Indx : Node_Id;
1708 Formal : Entity_Id;
1709 Atype : Entity_Id;
1710
90878b12
AC
1711 Result : List_Id := No_List;
1712 -- List of freezing actions, left at No_List if none
1713
4c8a5bb8
AC
1714 Has_Default_Initialization : Boolean := False;
1715 -- This flag gets set to true for a variable with default initialization
1716
90878b12
AC
1717 procedure Add_To_Result (N : Node_Id);
1718 -- N is a freezing action to be appended to the Result
1719
b98e2969
AC
1720 function After_Last_Declaration return Boolean;
1721 -- If Loc is a freeze_entity that appears after the last declaration
1722 -- in the scope, inhibit error messages on late completion.
1723
70482933 1724 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1725 -- Check that an Access or Unchecked_Access attribute with a prefix
1726 -- which is the current instance type can only be applied when the type
1727 -- is limited.
70482933 1728
67b3acf8
RD
1729 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1730 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1731 -- integer literal without an explicit corresponding size clause. The
1732 -- caller has checked that Utype is a modular integer type.
1733
63bb4268
AC
1734 procedure Freeze_Array_Type (Arr : Entity_Id);
1735 -- Freeze array type, including freezing index and component types
1736
3cd4a210
AC
1737 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1738 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1739 -- package. Recurse on inner generic packages.
1740
70482933 1741 procedure Freeze_Record_Type (Rec : Entity_Id);
63bb4268 1742 -- Freeze record type, including freezing component types, and freezing
edd63e9b 1743 -- primitive operations if this is a tagged type.
70482933 1744
90878b12
AC
1745 -------------------
1746 -- Add_To_Result --
1747 -------------------
1748
1749 procedure Add_To_Result (N : Node_Id) is
1750 begin
1751 if No (Result) then
1752 Result := New_List (N);
1753 else
1754 Append (N, Result);
1755 end if;
1756 end Add_To_Result;
1757
70482933
RK
1758 ----------------------------
1759 -- After_Last_Declaration --
1760 ----------------------------
1761
1762 function After_Last_Declaration return Boolean is
fb2e11ee 1763 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1764 begin
1765 if Nkind (Spec) = N_Package_Specification then
1766 if Present (Private_Declarations (Spec)) then
1767 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1768 elsif Present (Visible_Declarations (Spec)) then
1769 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1770 else
1771 return False;
1772 end if;
70482933
RK
1773 else
1774 return False;
1775 end if;
1776 end After_Last_Declaration;
1777
1778 ----------------------------
1779 -- Check_Current_Instance --
1780 ----------------------------
1781
1782 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1783
e1308fa8
AC
1784 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1785 -- Determine whether Typ is compatible with the rules for aliased
1786 -- views of types as defined in RM 3.10 in the various dialects.
32c760e6 1787
70482933 1788 function Process (N : Node_Id) return Traverse_Result;
49e90211 1789 -- Process routine to apply check to given node
70482933 1790
e1308fa8
AC
1791 -----------------------------
1792 -- Is_Aliased_View_Of_Type --
1793 -----------------------------
1794
1795 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1796 Typ_Decl : constant Node_Id := Parent (Typ);
1797
1798 begin
1799 -- Common case
1800
1801 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1802 and then Limited_Present (Type_Definition (Typ_Decl))
1803 then
1804 return True;
1805
1806 -- The following paragraphs describe what a legal aliased view of
1807 -- a type is in the various dialects of Ada.
1808
1809 -- Ada 95
1810
1811 -- The current instance of a limited type, and a formal parameter
1812 -- or generic formal object of a tagged type.
1813
1814 -- Ada 95 limited type
1815 -- * Type with reserved word "limited"
1816 -- * A protected or task type
1817 -- * A composite type with limited component
1818
1819 elsif Ada_Version <= Ada_95 then
1820 return Is_Limited_Type (Typ);
1821
1822 -- Ada 2005
1823
1824 -- The current instance of a limited tagged type, a protected
1825 -- type, a task type, or a type that has the reserved word
1826 -- "limited" in its full definition ... a formal parameter or
1827 -- generic formal object of a tagged type.
1828
1829 -- Ada 2005 limited type
1830 -- * Type with reserved word "limited", "synchronized", "task"
1831 -- or "protected"
1832 -- * A composite type with limited component
1833 -- * A derived type whose parent is a non-interface limited type
1834
1835 elsif Ada_Version = Ada_2005 then
1836 return
1837 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1838 or else
1839 (Is_Derived_Type (Typ)
1840 and then not Is_Interface (Etype (Typ))
1841 and then Is_Limited_Type (Etype (Typ)));
1842
1843 -- Ada 2012 and beyond
1844
1845 -- The current instance of an immutably limited type ... a formal
1846 -- parameter or generic formal object of a tagged type.
1847
1848 -- Ada 2012 limited type
1849 -- * Type with reserved word "limited", "synchronized", "task"
1850 -- or "protected"
1851 -- * A composite type with limited component
1852 -- * A derived type whose parent is a non-interface limited type
1853 -- * An incomplete view
1854
1855 -- Ada 2012 immutably limited type
1856 -- * Explicitly limited record type
1857 -- * Record extension with "limited" present
1858 -- * Non-formal limited private type that is either tagged
1859 -- or has at least one access discriminant with a default
1860 -- expression
1861 -- * Task type, protected type or synchronized interface
1862 -- * Type derived from immutably limited type
1863
1864 else
1865 return
1866 Is_Immutably_Limited_Type (Typ)
1867 or else Is_Incomplete_Type (Typ);
1868 end if;
1869 end Is_Aliased_View_Of_Type;
1870
fbf5a39b
AC
1871 -------------
1872 -- Process --
1873 -------------
1874
70482933
RK
1875 function Process (N : Node_Id) return Traverse_Result is
1876 begin
1877 case Nkind (N) is
1878 when N_Attribute_Reference =>
b69cd36a
AC
1879 if Nam_In (Attribute_Name (N), Name_Access,
1880 Name_Unchecked_Access)
70482933
RK
1881 and then Is_Entity_Name (Prefix (N))
1882 and then Is_Type (Entity (Prefix (N)))
1883 and then Entity (Prefix (N)) = E
1884 then
a9895094
AC
1885 if Ada_Version < Ada_2012 then
1886 Error_Msg_N
1887 ("current instance must be a limited type",
1f0b1e48 1888 Prefix (N));
a9895094
AC
1889 else
1890 Error_Msg_N
1f0b1e48
RD
1891 ("current instance must be an immutably limited "
1892 & "type (RM-2012, 7.5 (8.1/3))",
1893 Prefix (N));
a9895094 1894 end if;
1f0b1e48 1895
70482933 1896 return Abandon;
1f0b1e48 1897
70482933
RK
1898 else
1899 return OK;
1900 end if;
1901
1902 when others => return OK;
1903 end case;
1904 end Process;
1905
1906 procedure Traverse is new Traverse_Proc (Process);
1907
e1308fa8 1908 -- Local variables
32c760e6 1909
e1308fa8
AC
1910 Rec_Type : constant Entity_Id :=
1911 Scope (Defining_Identifier (Comp_Decl));
32c760e6 1912
e1308fa8 1913 -- Start of processing for Check_Current_Instance
32c760e6 1914
e1308fa8
AC
1915 begin
1916 if not Is_Aliased_View_Of_Type (Rec_Type) then
32c760e6
ES
1917 Traverse (Comp_Decl);
1918 end if;
70482933
RK
1919 end Check_Current_Instance;
1920
67b3acf8
RD
1921 ------------------------------
1922 -- Check_Suspicious_Modulus --
1923 ------------------------------
1924
1925 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1926 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1927
1928 begin
685bc70f
AC
1929 if not Warn_On_Suspicious_Modulus_Value then
1930 return;
1931 end if;
1932
67b3acf8
RD
1933 if Nkind (Decl) = N_Full_Type_Declaration then
1934 declare
1935 Tdef : constant Node_Id := Type_Definition (Decl);
3e7302c3 1936
67b3acf8
RD
1937 begin
1938 if Nkind (Tdef) = N_Modular_Type_Definition then
1939 declare
1940 Modulus : constant Node_Id :=
1941 Original_Node (Expression (Tdef));
685bc70f 1942
67b3acf8
RD
1943 begin
1944 if Nkind (Modulus) = N_Integer_Literal then
1945 declare
1946 Modv : constant Uint := Intval (Modulus);
1947 Sizv : constant Uint := RM_Size (Utype);
1948
1949 begin
1950 -- First case, modulus and size are the same. This
1951 -- happens if you have something like mod 32, with
1952 -- an explicit size of 32, this is for sure a case
1953 -- where the warning is given, since it is seems
1954 -- very unlikely that someone would want e.g. a
1955 -- five bit type stored in 32 bits. It is much
1956 -- more likely they wanted a 32-bit type.
1957
1958 if Modv = Sizv then
1959 null;
1960
1961 -- Second case, the modulus is 32 or 64 and no
1962 -- size clause is present. This is a less clear
1963 -- case for giving the warning, but in the case
1964 -- of 32/64 (5-bit or 6-bit types) these seem rare
1965 -- enough that it is a likely error (and in any
1966 -- case using 2**5 or 2**6 in these cases seems
1967 -- clearer. We don't include 8 or 16 here, simply
1968 -- because in practice 3-bit and 4-bit types are
1969 -- more common and too many false positives if
1970 -- we warn in these cases.
1971
1972 elsif not Has_Size_Clause (Utype)
1973 and then (Modv = Uint_32 or else Modv = Uint_64)
1974 then
1975 null;
1976
1977 -- No warning needed
1978
1979 else
1980 return;
1981 end if;
1982
1983 -- If we fall through, give warning
1984
1985 Error_Msg_Uint_1 := Modv;
1986 Error_Msg_N
685bc70f 1987 ("?M?2 '*'*^' may have been intended here",
67b3acf8
RD
1988 Modulus);
1989 end;
1990 end if;
1991 end;
1992 end if;
1993 end;
1994 end if;
1995 end Check_Suspicious_Modulus;
1996
63bb4268
AC
1997 -----------------------
1998 -- Freeze_Array_Type --
1999 -----------------------
2000
2001 procedure Freeze_Array_Type (Arr : Entity_Id) is
2002 FS : constant Entity_Id := First_Subtype (Arr);
2003 Ctyp : constant Entity_Id := Component_Type (Arr);
2004 Clause : Entity_Id;
2005
2006 Non_Standard_Enum : Boolean := False;
2007 -- Set true if any of the index types is an enumeration type with a
2008 -- non-standard representation.
2009
2010 begin
2011 Freeze_And_Append (Ctyp, N, Result);
2012
2013 Indx := First_Index (Arr);
2014 while Present (Indx) loop
2015 Freeze_And_Append (Etype (Indx), N, Result);
2016
2017 if Is_Enumeration_Type (Etype (Indx))
2018 and then Has_Non_Standard_Rep (Etype (Indx))
2019 then
2020 Non_Standard_Enum := True;
2021 end if;
2022
2023 Next_Index (Indx);
2024 end loop;
2025
2026 -- Processing that is done only for base types
2027
2028 if Ekind (Arr) = E_Array_Type then
2029
2030 -- Propagate flags for component type
2031
2032 if Is_Controlled (Component_Type (Arr))
2033 or else Has_Controlled_Component (Ctyp)
2034 then
2035 Set_Has_Controlled_Component (Arr);
2036 end if;
2037
2038 if Has_Unchecked_Union (Component_Type (Arr)) then
2039 Set_Has_Unchecked_Union (Arr);
2040 end if;
2041
2042 -- Warn for pragma Pack overriding foreign convention
2043
2044 if Has_Foreign_Convention (Ctyp)
2045 and then Has_Pragma_Pack (Arr)
2046 then
2047 declare
2048 CN : constant Name_Id :=
2049 Get_Convention_Name (Convention (Ctyp));
2050 PP : constant Node_Id :=
2051 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2052 begin
2053 if Present (PP) then
2054 Error_Msg_Name_1 := CN;
2055 Error_Msg_Sloc := Sloc (Arr);
2056 Error_Msg_N
2057 ("pragma Pack affects convention % components #??",
2058 PP);
2059 Error_Msg_Name_1 := CN;
2060 Error_Msg_N
2061 ("\array components may not have % compatible "
2062 & "representation??", PP);
2063 end if;
2064 end;
2065 end if;
2066
2067 -- If packing was requested or if the component size was
2068 -- set explicitly, then see if bit packing is required. This
2069 -- processing is only done for base types, since all of the
ef1c0511
AC
2070 -- representation aspects involved are type-related.
2071
2072 -- This is not just an optimization, if we start processing the
2073 -- subtypes, they interfere with the settings on the base type
2074 -- (this is because Is_Packed has a slightly different meaning
2075 -- before and after freezing).
63bb4268
AC
2076
2077 declare
2078 Csiz : Uint;
2079 Esiz : Uint;
2080
2081 begin
2082 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2083 and then Known_Static_RM_Size (Ctyp)
2084 and then not Has_Component_Size_Clause (Arr)
2085 then
2086 Csiz := UI_Max (RM_Size (Ctyp), 1);
2087
2088 elsif Known_Component_Size (Arr) then
2089 Csiz := Component_Size (Arr);
2090
2091 elsif not Known_Static_Esize (Ctyp) then
2092 Csiz := Uint_0;
2093
2094 else
2095 Esiz := Esize (Ctyp);
2096
2097 -- We can set the component size if it is less than 16,
2098 -- rounding it up to the next storage unit size.
2099
2100 if Esiz <= 8 then
2101 Csiz := Uint_8;
2102 elsif Esiz <= 16 then
2103 Csiz := Uint_16;
2104 else
2105 Csiz := Uint_0;
2106 end if;
2107
2108 -- Set component size up to match alignment if it would
2109 -- otherwise be less than the alignment. This deals with
2110 -- cases of types whose alignment exceeds their size (the
2111 -- padded type cases).
2112
2113 if Csiz /= 0 then
2114 declare
2115 A : constant Uint := Alignment_In_Bits (Ctyp);
2116 begin
2117 if Csiz < A then
2118 Csiz := A;
2119 end if;
2120 end;
2121 end if;
2122 end if;
2123
2124 -- Case of component size that may result in packing
2125
2126 if 1 <= Csiz and then Csiz <= 64 then
2127 declare
2128 Ent : constant Entity_Id :=
2129 First_Subtype (Arr);
2130 Pack_Pragma : constant Node_Id :=
2131 Get_Rep_Pragma (Ent, Name_Pack);
2132 Comp_Size_C : constant Node_Id :=
2133 Get_Attribute_Definition_Clause
2134 (Ent, Attribute_Component_Size);
2135 begin
2136 -- Warn if we have pack and component size so that the
2137 -- pack is ignored.
2138
2139 -- Note: here we must check for the presence of a
2140 -- component size before checking for a Pack pragma to
2141 -- deal with the case where the array type is a derived
2142 -- type whose parent is currently private.
2143
2144 if Present (Comp_Size_C)
2145 and then Has_Pragma_Pack (Ent)
2146 and then Warn_On_Redundant_Constructs
2147 then
2148 Error_Msg_Sloc := Sloc (Comp_Size_C);
2149 Error_Msg_NE
a90bd866 2150 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
63bb4268 2151 Error_Msg_N
a90bd866 2152 ("\?r?explicit component size given#!", Pack_Pragma);
63bb4268
AC
2153 Set_Is_Packed (Base_Type (Ent), False);
2154 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2155 end if;
2156
2157 -- Set component size if not already set by a component
2158 -- size clause.
2159
2160 if not Present (Comp_Size_C) then
2161 Set_Component_Size (Arr, Csiz);
2162 end if;
2163
2164 -- Check for base type of 8, 16, 32 bits, where an
2165 -- unsigned subtype has a length one less than the
2166 -- base type (e.g. Natural subtype of Integer).
2167
2168 -- In such cases, if a component size was not set
2169 -- explicitly, then generate a warning.
2170
2171 if Has_Pragma_Pack (Arr)
2172 and then not Present (Comp_Size_C)
2173 and then
2174 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2175 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2176 then
2177 Error_Msg_Uint_1 := Csiz;
2178
2179 if Present (Pack_Pragma) then
2180 Error_Msg_N
2181 ("??pragma Pack causes component size "
2182 & "to be ^!", Pack_Pragma);
2183 Error_Msg_N
2184 ("\??use Component_Size to set "
2185 & "desired value!", Pack_Pragma);
2186 end if;
2187 end if;
2188
2189 -- Actual packing is not needed for 8, 16, 32, 64. Also
2190 -- not needed for 24 if alignment is 1.
2191
2192 if Csiz = 8
2193 or else Csiz = 16
2194 or else Csiz = 32
2195 or else Csiz = 64
2196 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2197 then
2198 -- Here the array was requested to be packed, but
2199 -- the packing request had no effect, so Is_Packed
2200 -- is reset.
2201
2202 -- Note: semantically this means that we lose track
2203 -- of the fact that a derived type inherited a pragma
2204 -- Pack that was non- effective, but that seems fine.
2205
2206 -- We regard a Pack pragma as a request to set a
2207 -- representation characteristic, and this request
2208 -- may be ignored.
2209
2210 Set_Is_Packed (Base_Type (Arr), False);
2211 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2212
2213 if Known_Static_Esize (Component_Type (Arr))
2214 and then Esize (Component_Type (Arr)) = Csiz
2215 then
2216 Set_Has_Non_Standard_Rep
2217 (Base_Type (Arr), False);
2218 end if;
2219
2220 -- In all other cases, packing is indeed needed
2221
2222 else
2223 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2224 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2225 Set_Is_Packed (Base_Type (Arr), True);
2226 end if;
2227 end;
2228 end if;
2229 end;
2230
2231 -- Check for Atomic_Components or Aliased with unsuitable packing
2232 -- or explicit component size clause given.
2233
ef1c0511
AC
2234 if (Has_Atomic_Components (Arr)
2235 or else
2236 Has_Aliased_Components (Arr))
2237 and then
2238 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
63bb4268
AC
2239 then
2240 Alias_Atomic_Check : declare
2241
2242 procedure Complain_CS (T : String);
2243 -- Outputs error messages for incorrect CS clause or pragma
2244 -- Pack for aliased or atomic components (T is "aliased" or
2245 -- "atomic");
2246
2247 -----------------
2248 -- Complain_CS --
2249 -----------------
2250
2251 procedure Complain_CS (T : String) is
2252 begin
2253 if Has_Component_Size_Clause (Arr) then
2254 Clause :=
2255 Get_Attribute_Definition_Clause
2256 (FS, Attribute_Component_Size);
2257
2258 if Known_Static_Esize (Ctyp) then
2259 Error_Msg_N
2260 ("incorrect component size for "
2261 & T & " components", Clause);
2262 Error_Msg_Uint_1 := Esize (Ctyp);
2263 Error_Msg_N
2264 ("\only allowed value is^", Clause);
2265
2266 else
2267 Error_Msg_N
2268 ("component size cannot be given for "
2269 & T & " components", Clause);
2270 end if;
2271
2272 else
2273 Error_Msg_N
2274 ("cannot pack " & T & " components",
2275 Get_Rep_Pragma (FS, Name_Pack));
2276 end if;
2277
2278 return;
2279 end Complain_CS;
2280
2281 -- Start of processing for Alias_Atomic_Check
2282
2283 begin
63bb4268
AC
2284 -- If object size of component type isn't known, we cannot
2285 -- be sure so we defer to the back end.
2286
2287 if not Known_Static_Esize (Ctyp) then
2288 null;
2289
2290 -- Case where component size has no effect. First check for
2291 -- object size of component type multiple of the storage
2292 -- unit size.
2293
2294 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2295
2296 -- OK in both packing case and component size case if RM
2297 -- size is known and static and same as the object size.
2298
2299 and then
2300 ((Known_Static_RM_Size (Ctyp)
2301 and then Esize (Ctyp) = RM_Size (Ctyp))
2302
2303 -- Or if we have an explicit component size clause and
2304 -- the component size and object size are equal.
2305
2306 or else
2307 (Has_Component_Size_Clause (Arr)
2308 and then Component_Size (Arr) = Esize (Ctyp)))
2309 then
2310 null;
2311
2312 elsif Has_Aliased_Components (Arr)
2313 or else Is_Aliased (Ctyp)
2314 then
2315 Complain_CS ("aliased");
2316
2317 elsif Has_Atomic_Components (Arr)
2318 or else Is_Atomic (Ctyp)
2319 then
2320 Complain_CS ("atomic");
2321 end if;
2322 end Alias_Atomic_Check;
2323 end if;
2324
2325 -- Warn for case of atomic type
2326
2327 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2328
2329 if Present (Clause)
2330 and then not Addressable (Component_Size (FS))
2331 then
2332 Error_Msg_NE
2333 ("non-atomic components of type& may not be "
2334 & "accessible by separate tasks??", Clause, Arr);
2335
2336 if Has_Component_Size_Clause (Arr) then
ef1c0511
AC
2337 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2338 (FS, Attribute_Component_Size));
2339 Error_Msg_N ("\because of component size clause#??", Clause);
63bb4268
AC
2340
2341 elsif Has_Pragma_Pack (Arr) then
ef1c0511
AC
2342 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2343 Error_Msg_N ("\because of pragma Pack#??", Clause);
63bb4268
AC
2344 end if;
2345 end if;
2346
2347 -- Check for scalar storage order
2348
8a7c0400
AC
2349 Check_Component_Storage_Order
2350 (Encl_Type => Arr,
2351 Comp => Empty,
2352 ADC => Get_Attribute_Definition_Clause
2353 (First_Subtype (Arr),
2354 Attribute_Scalar_Storage_Order));
63bb4268
AC
2355
2356 -- Processing that is done only for subtypes
2357
2358 else
2359 -- Acquire alignment from base type
2360
2361 if Unknown_Alignment (Arr) then
2362 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2363 Adjust_Esize_Alignment (Arr);
2364 end if;
2365 end if;
2366
2367 -- Specific checks for bit-packed arrays
2368
2369 if Is_Bit_Packed_Array (Arr) then
2370
2371 -- Check number of elements for bit packed arrays that come from
2372 -- source and have compile time known ranges. The bit-packed
2373 -- arrays circuitry does not support arrays with more than
2374 -- Integer'Last + 1 elements, and when this restriction is
2375 -- violated, causes incorrect data access.
2376
2377 -- For the case where this is not compile time known, a run-time
2378 -- check should be generated???
2379
2380 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2381 declare
2382 Elmts : Uint;
2383 Index : Node_Id;
2384 Ilen : Node_Id;
2385 Ityp : Entity_Id;
2386
2387 begin
2388 Elmts := Uint_1;
2389 Index := First_Index (Arr);
2390 while Present (Index) loop
2391 Ityp := Etype (Index);
2392
2393 -- Never generate an error if any index is of a generic
2394 -- type. We will check this in instances.
2395
2396 if Is_Generic_Type (Ityp) then
2397 Elmts := Uint_0;
2398 exit;
2399 end if;
2400
2401 Ilen :=
2402 Make_Attribute_Reference (Loc,
2403 Prefix =>
2404 New_Occurrence_Of (Ityp, Loc),
2405 Attribute_Name => Name_Range_Length);
2406 Analyze_And_Resolve (Ilen);
2407
2408 -- No attempt is made to check number of elements
2409 -- if not compile time known.
2410
2411 if Nkind (Ilen) /= N_Integer_Literal then
2412 Elmts := Uint_0;
2413 exit;
2414 end if;
2415
2416 Elmts := Elmts * Intval (Ilen);
2417 Next_Index (Index);
2418 end loop;
2419
2420 if Elmts > Intval (High_Bound
ef1c0511 2421 (Scalar_Range (Standard_Integer))) + 1
63bb4268
AC
2422 then
2423 Error_Msg_N
2424 ("bit packed array type may not have "
2425 & "more than Integer''Last+1 elements", Arr);
2426 end if;
2427 end;
2428 end if;
2429
2430 -- Check size
2431
2432 if Known_RM_Size (Arr) then
2433 declare
2434 SizC : constant Node_Id := Size_Clause (Arr);
2435
2436 Discard : Boolean;
2437 pragma Warnings (Off, Discard);
2438
2439 begin
2440 -- It is not clear if it is possible to have no size clause
2441 -- at this stage, but it is not worth worrying about. Post
2442 -- error on the entity name in the size clause if present,
2443 -- else on the type entity itself.
2444
2445 if Present (SizC) then
2446 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2447 else
2448 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2449 end if;
2450 end;
2451 end if;
2452 end if;
2453
2454 -- If any of the index types was an enumeration type with a
2455 -- non-standard rep clause, then we indicate that the array type
2456 -- is always packed (even if it is not bit packed).
2457
2458 if Non_Standard_Enum then
2459 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2460 Set_Is_Packed (Base_Type (Arr));
2461 end if;
2462
2463 Set_Component_Alignment_If_Not_Set (Arr);
2464
2465 -- If the array is packed, we must create the packed array type to be
2466 -- used to actually implement the type. This is only needed for real
2467 -- array types (not for string literal types, since they are present
2468 -- only for the front end).
2469
2470 if Is_Packed (Arr)
2471 and then Ekind (Arr) /= E_String_Literal_Subtype
2472 then
2473 Create_Packed_Array_Type (Arr);
2474 Freeze_And_Append (Packed_Array_Type (Arr), N, Result);
2475
2476 -- Size information of packed array type is copied to the array
2477 -- type, since this is really the representation. But do not
2478 -- override explicit existing size values. If the ancestor subtype
2479 -- is constrained the packed_array_type will be inherited from it,
2480 -- but the size may have been provided already, and must not be
2481 -- overridden either.
2482
2483 if not Has_Size_Clause (Arr)
2484 and then
2485 (No (Ancestor_Subtype (Arr))
2486 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2487 then
2488 Set_Esize (Arr, Esize (Packed_Array_Type (Arr)));
2489 Set_RM_Size (Arr, RM_Size (Packed_Array_Type (Arr)));
2490 end if;
2491
2492 if not Has_Alignment_Clause (Arr) then
2493 Set_Alignment (Arr, Alignment (Packed_Array_Type (Arr)));
2494 end if;
2495 end if;
2496
2497 -- For non-packed arrays set the alignment of the array to the
2498 -- alignment of the component type if it is unknown. Skip this
2499 -- in atomic case (atomic arrays may need larger alignments).
2500
2501 if not Is_Packed (Arr)
2502 and then Unknown_Alignment (Arr)
2503 and then Known_Alignment (Ctyp)
2504 and then Known_Static_Component_Size (Arr)
2505 and then Known_Static_Esize (Ctyp)
2506 and then Esize (Ctyp) = Component_Size (Arr)
2507 and then not Is_Atomic (Arr)
2508 then
2509 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2510 end if;
2511 end Freeze_Array_Type;
2512
3cd4a210
AC
2513 -----------------------------
2514 -- Freeze_Generic_Entities --
2515 -----------------------------
2516
2517 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
5a8a6763
RD
2518 E : Entity_Id;
2519 F : Node_Id;
3cd4a210
AC
2520 Flist : List_Id;
2521
2522 begin
2523 Flist := New_List;
2524 E := First_Entity (Pack);
2525 while Present (E) loop
2526 if Is_Type (E) and then not Is_Generic_Type (E) then
2527 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2528 Set_Entity (F, E);
2529 Append_To (Flist, F);
2530
2531 elsif Ekind (E) = E_Generic_Package then
2532 Append_List_To (Flist, Freeze_Generic_Entities (E));
2533 end if;
2534
2535 Next_Entity (E);
2536 end loop;
2537
2538 return Flist;
2539 end Freeze_Generic_Entities;
2540
70482933
RK
2541 ------------------------
2542 -- Freeze_Record_Type --
2543 ------------------------
2544
2545 procedure Freeze_Record_Type (Rec : Entity_Id) is
2546 Comp : Entity_Id;
fbf5a39b 2547 IR : Node_Id;
70482933 2548 ADC : Node_Id;
c6823a20 2549 Prev : Entity_Id;
70482933 2550
67ce0d7e
RD
2551 Junk : Boolean;
2552 pragma Warnings (Off, Junk);
2553
22a83cea
AC
2554 Rec_Pushed : Boolean := False;
2555 -- Set True if the record type scope Rec has been pushed on the scope
2556 -- stack. Needed for the analysis of delayed aspects specified to the
2557 -- components of Rec.
2558
70482933
RK
2559 Unplaced_Component : Boolean := False;
2560 -- Set True if we find at least one component with no component
2561 -- clause (used to warn about useless Pack pragmas).
2562
2563 Placed_Component : Boolean := False;
2564 -- Set True if we find at least one component with a component
8dc10d38
AC
2565 -- clause (used to warn about useless Bit_Order pragmas, and also
2566 -- to detect cases where Implicit_Packing may have an effect).
2567
515490e0
AC
2568 Aliased_Component : Boolean := False;
2569 -- Set True if we find at least one component which is aliased. This
2570 -- is used to prevent Implicit_Packing of the record, since packing
2571 -- cannot modify the size of alignment of an aliased component.
2572
8dc10d38
AC
2573 All_Scalar_Components : Boolean := True;
2574 -- Set False if we encounter a component of a non-scalar type
2575
2576 Scalar_Component_Total_RM_Size : Uint := Uint_0;
2577 Scalar_Component_Total_Esize : Uint := Uint_0;
2578 -- Accumulates total RM_Size values and total Esize values of all
2579 -- scalar components. Used for processing of Implicit_Packing.
70482933 2580
e18d6a15
JM
2581 function Check_Allocator (N : Node_Id) return Node_Id;
2582 -- If N is an allocator, possibly wrapped in one or more level of
2583 -- qualified expression(s), return the inner allocator node, else
2584 -- return Empty.
19590d70 2585
7d8b9c99
RD
2586 procedure Check_Itype (Typ : Entity_Id);
2587 -- If the component subtype is an access to a constrained subtype of
2588 -- an already frozen type, make the subtype frozen as well. It might
2589 -- otherwise be frozen in the wrong scope, and a freeze node on
2590 -- subtype has no effect. Similarly, if the component subtype is a
2591 -- regular (not protected) access to subprogram, set the anonymous
2592 -- subprogram type to frozen as well, to prevent an out-of-scope
2593 -- freeze node at some eventual point of call. Protected operations
2594 -- are handled elsewhere.
6e059adb 2595
c76bf0bf
AC
2596 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
2597 -- Make sure that all types mentioned in Discrete_Choices of the
2598 -- variants referenceed by the Variant_Part VP are frozen. This is
2599 -- a recursive routine to deal with nested variants.
2600
19590d70
GD
2601 ---------------------
2602 -- Check_Allocator --
2603 ---------------------
2604
e18d6a15
JM
2605 function Check_Allocator (N : Node_Id) return Node_Id is
2606 Inner : Node_Id;
19590d70 2607 begin
e18d6a15 2608 Inner := N;
e18d6a15
JM
2609 loop
2610 if Nkind (Inner) = N_Allocator then
2611 return Inner;
e18d6a15
JM
2612 elsif Nkind (Inner) = N_Qualified_Expression then
2613 Inner := Expression (Inner);
e18d6a15
JM
2614 else
2615 return Empty;
2616 end if;
2617 end loop;
19590d70
GD
2618 end Check_Allocator;
2619
6871ba5f
AC
2620 -----------------
2621 -- Check_Itype --
2622 -----------------
2623
7d8b9c99
RD
2624 procedure Check_Itype (Typ : Entity_Id) is
2625 Desig : constant Entity_Id := Designated_Type (Typ);
2626
6e059adb
AC
2627 begin
2628 if not Is_Frozen (Desig)
2629 and then Is_Frozen (Base_Type (Desig))
2630 then
2631 Set_Is_Frozen (Desig);
2632
2633 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
2634 -- access subtype is elaborated early enough. This cannot be
2635 -- done if the subtype may depend on discriminants.
6e059adb
AC
2636
2637 if Ekind (Comp) = E_Component
2638 and then Is_Itype (Etype (Comp))
2639 and then not Has_Discriminants (Rec)
2640 then
2641 IR := Make_Itype_Reference (Sloc (Comp));
2642 Set_Itype (IR, Desig);
90878b12 2643 Add_To_Result (IR);
6e059adb 2644 end if;
7d8b9c99
RD
2645
2646 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
2647 and then Convention (Desig) /= Convention_Protected
2648 then
2649 Set_Is_Frozen (Desig);
6e059adb
AC
2650 end if;
2651 end Check_Itype;
2652
c76bf0bf
AC
2653 ------------------------------------
2654 -- Freeze_Choices_In_Variant_Part --
2655 ------------------------------------
2656
2657 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
2658 pragma Assert (Nkind (VP) = N_Variant_Part);
2659
2660 Variant : Node_Id;
2661 Choice : Node_Id;
2662 CL : Node_Id;
2663
2664 begin
2665 -- Loop through variants
2666
2667 Variant := First_Non_Pragma (Variants (VP));
2668 while Present (Variant) loop
2669
2670 -- Loop through choices, checking that all types are frozen
2671
2672 Choice := First_Non_Pragma (Discrete_Choices (Variant));
2673 while Present (Choice) loop
2674 if Nkind (Choice) in N_Has_Etype
2675 and then Present (Etype (Choice))
2676 then
2677 Freeze_And_Append (Etype (Choice), N, Result);
2678 end if;
2679
2680 Next_Non_Pragma (Choice);
2681 end loop;
2682
2683 -- Check for nested variant part to process
2684
2685 CL := Component_List (Variant);
2686
2687 if not Null_Present (CL) then
2688 if Present (Variant_Part (CL)) then
2689 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
2690 end if;
2691 end if;
2692
2693 Next_Non_Pragma (Variant);
2694 end loop;
2695 end Freeze_Choices_In_Variant_Part;
2696
6e059adb
AC
2697 -- Start of processing for Freeze_Record_Type
2698
70482933 2699 begin
22a83cea
AC
2700 -- Deal with delayed aspect specifications for components. The
2701 -- analysis of the aspect is required to be delayed to the freeze
d27f3ff4
AC
2702 -- point, thus we analyze the pragma or attribute definition
2703 -- clause in the tree at this point. We also analyze the aspect
22a83cea
AC
2704 -- specification node at the freeze point when the aspect doesn't
2705 -- correspond to pragma/attribute definition clause.
70482933
RK
2706
2707 Comp := First_Entity (Rec);
c6823a20 2708 while Present (Comp) loop
b3f532ce 2709 if Ekind (Comp) = E_Component
b7f7dab2 2710 and then Has_Delayed_Aspects (Comp)
b3f532ce 2711 then
22a83cea
AC
2712 if not Rec_Pushed then
2713 Push_Scope (Rec);
2714 Rec_Pushed := True;
b3f532ce 2715
22a83cea
AC
2716 -- The visibility to the discriminants must be restored in
2717 -- order to properly analyze the aspects.
b3f532ce 2718
22a83cea
AC
2719 if Has_Discriminants (Rec) then
2720 Install_Discriminants (Rec);
2721 end if;
b3f532ce
AC
2722 end if;
2723
22a83cea 2724 Analyze_Aspects_At_Freeze_Point (Comp);
b3f532ce
AC
2725 end if;
2726
22a83cea
AC
2727 Next_Entity (Comp);
2728 end loop;
2729
2730 -- Pop the scope if Rec scope has been pushed on the scope stack
2731 -- during the delayed aspect analysis process.
2732
2733 if Rec_Pushed then
2734 if Has_Discriminants (Rec) then
2735 Uninstall_Discriminants (Rec);
2736 end if;
2737
2738 Pop_Scope;
2739 end if;
2740
2741 -- Freeze components and embedded subtypes
2742
2743 Comp := First_Entity (Rec);
2744 Prev := Empty;
2745 while Present (Comp) loop
515490e0
AC
2746 if Is_Aliased (Comp) then
2747 Aliased_Component := True;
2748 end if;
22a83cea 2749
b3f532ce 2750 -- Handle the component and discriminant case
70482933 2751
d27f3ff4 2752 if Ekind_In (Comp, E_Component, E_Discriminant) then
70482933
RK
2753 declare
2754 CC : constant Node_Id := Component_Clause (Comp);
2755
2756 begin
c6823a20
EB
2757 -- Freezing a record type freezes the type of each of its
2758 -- components. However, if the type of the component is
2759 -- part of this record, we do not want or need a separate
2760 -- Freeze_Node. Note that Is_Itype is wrong because that's
2761 -- also set in private type cases. We also can't check for
2762 -- the Scope being exactly Rec because of private types and
2763 -- record extensions.
2764
2765 if Is_Itype (Etype (Comp))
2766 and then Is_Record_Type (Underlying_Type
ef1c0511 2767 (Scope (Etype (Comp))))
c6823a20
EB
2768 then
2769 Undelay_Type (Etype (Comp));
2770 end if;
2771
c159409f 2772 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 2773
63bb4268
AC
2774 -- Warn for pragma Pack overriding foreign convention
2775
2776 if Has_Foreign_Convention (Etype (Comp))
2777 and then Has_Pragma_Pack (Rec)
d12b19fa
AC
2778
2779 -- Don't warn for aliased components, since override
2780 -- cannot happen in that case.
2781
2782 and then not Is_Aliased (Comp)
63bb4268
AC
2783 then
2784 declare
2785 CN : constant Name_Id :=
2786 Get_Convention_Name (Convention (Etype (Comp)));
2787 PP : constant Node_Id :=
2788 Get_Pragma (Rec, Pragma_Pack);
2789 begin
2790 if Present (PP) then
2791 Error_Msg_Name_1 := CN;
2792 Error_Msg_Sloc := Sloc (Comp);
2793 Error_Msg_N
2794 ("pragma Pack affects convention % component#??",
2795 PP);
2796 Error_Msg_Name_1 := CN;
2797 Error_Msg_NE
2798 ("\component & may not have % compatible "
2799 & "representation??", PP, Comp);
2800 end if;
2801 end;
2802 end if;
2803
0da2c8ac
AC
2804 -- Check for error of component clause given for variable
2805 -- sized type. We have to delay this test till this point,
2806 -- since the component type has to be frozen for us to know
ef1c0511 2807 -- if it is variable length.
0da2c8ac 2808
70482933
RK
2809 if Present (CC) then
2810 Placed_Component := True;
2811
ef1c0511
AC
2812 -- We omit this test in a generic context, it will be
2813 -- applied at instantiation time.
2814
07fc65c4
GB
2815 if Inside_A_Generic then
2816 null;
2817
ef1c0511
AC
2818 -- Also omit this test in CodePeer mode, since we do not
2819 -- have sufficient info on size and rep clauses.
2820
24c34107
AC
2821 elsif CodePeer_Mode then
2822 null;
2823
ef1c0511
AC
2824 -- Do the check
2825
7d8b9c99
RD
2826 elsif not
2827 Size_Known_At_Compile_Time
2828 (Underlying_Type (Etype (Comp)))
70482933
RK
2829 then
2830 Error_Msg_N
2831 ("component clause not allowed for variable " &
2832 "length component", CC);
2833 end if;
2834
2835 else
2836 Unplaced_Component := True;
2837 end if;
70482933 2838
0da2c8ac 2839 -- Case of component requires byte alignment
70482933 2840
0da2c8ac 2841 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 2842
0da2c8ac 2843 -- Set the enclosing record to also require byte align
70482933 2844
0da2c8ac 2845 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 2846
7d8b9c99
RD
2847 -- Check for component clause that is inconsistent with
2848 -- the required byte boundary alignment.
70482933 2849
0da2c8ac
AC
2850 if Present (CC)
2851 and then Normalized_First_Bit (Comp) mod
2852 System_Storage_Unit /= 0
2853 then
2854 Error_Msg_N
2855 ("component & must be byte aligned",
2856 Component_Name (Component_Clause (Comp)));
2857 end if;
2858 end if;
0da2c8ac 2859 end;
70482933
RK
2860 end if;
2861
8a95f4e8
RD
2862 -- Gather data for possible Implicit_Packing later. Note that at
2863 -- this stage we might be dealing with a real component, or with
2864 -- an implicit subtype declaration.
8dc10d38 2865
426d2717
AC
2866 if not Is_Scalar_Type (Etype (Comp)) then
2867 All_Scalar_Components := False;
2868 else
2869 Scalar_Component_Total_RM_Size :=
2870 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
2871 Scalar_Component_Total_Esize :=
2872 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
2873 end if;
2874
c6823a20
EB
2875 -- If the component is an Itype with Delayed_Freeze and is either
2876 -- a record or array subtype and its base type has not yet been
545cb5be
AC
2877 -- frozen, we must remove this from the entity list of this record
2878 -- and put it on the entity list of the scope of its base type.
2879 -- Note that we know that this is not the type of a component
2880 -- since we cleared Has_Delayed_Freeze for it in the previous
2881 -- loop. Thus this must be the Designated_Type of an access type,
2882 -- which is the type of a component.
c6823a20
EB
2883
2884 if Is_Itype (Comp)
2885 and then Is_Type (Scope (Comp))
2886 and then Is_Composite_Type (Comp)
2887 and then Base_Type (Comp) /= Comp
2888 and then Has_Delayed_Freeze (Comp)
2889 and then not Is_Frozen (Base_Type (Comp))
2890 then
2891 declare
2892 Will_Be_Frozen : Boolean := False;
1b24ada5 2893 S : Entity_Id;
c6823a20
EB
2894
2895 begin
fea9e956
ES
2896 -- We have a pretty bad kludge here. Suppose Rec is subtype
2897 -- being defined in a subprogram that's created as part of
2898 -- the freezing of Rec'Base. In that case, we know that
2899 -- Comp'Base must have already been frozen by the time we
2900 -- get to elaborate this because Gigi doesn't elaborate any
2901 -- bodies until it has elaborated all of the declarative
2902 -- part. But Is_Frozen will not be set at this point because
2903 -- we are processing code in lexical order.
2904
2905 -- We detect this case by going up the Scope chain of Rec
2906 -- and seeing if we have a subprogram scope before reaching
2907 -- the top of the scope chain or that of Comp'Base. If we
2908 -- do, then mark that Comp'Base will actually be frozen. If
2909 -- so, we merely undelay it.
c6823a20 2910
1b24ada5 2911 S := Scope (Rec);
c6823a20
EB
2912 while Present (S) loop
2913 if Is_Subprogram (S) then
2914 Will_Be_Frozen := True;
2915 exit;
2916 elsif S = Scope (Base_Type (Comp)) then
2917 exit;
2918 end if;
2919
2920 S := Scope (S);
2921 end loop;
2922
2923 if Will_Be_Frozen then
2924 Undelay_Type (Comp);
2925 else
2926 if Present (Prev) then
2927 Set_Next_Entity (Prev, Next_Entity (Comp));
2928 else
2929 Set_First_Entity (Rec, Next_Entity (Comp));
2930 end if;
2931
2932 -- Insert in entity list of scope of base type (which
2933 -- must be an enclosing scope, because still unfrozen).
2934
2935 Append_Entity (Comp, Scope (Base_Type (Comp)));
2936 end if;
2937 end;
2938
def46b54
RD
2939 -- If the component is an access type with an allocator as default
2940 -- value, the designated type will be frozen by the corresponding
2941 -- expression in init_proc. In order to place the freeze node for
2942 -- the designated type before that for the current record type,
2943 -- freeze it now.
c6823a20
EB
2944
2945 -- Same process if the component is an array of access types,
2946 -- initialized with an aggregate. If the designated type is
def46b54
RD
2947 -- private, it cannot contain allocators, and it is premature
2948 -- to freeze the type, so we check for this as well.
c6823a20
EB
2949
2950 elsif Is_Access_Type (Etype (Comp))
2951 and then Present (Parent (Comp))
2952 and then Present (Expression (Parent (Comp)))
c6823a20
EB
2953 then
2954 declare
e18d6a15
JM
2955 Alloc : constant Node_Id :=
2956 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
2957
2958 begin
e18d6a15 2959 if Present (Alloc) then
19590d70 2960
15918371 2961 -- If component is pointer to a class-wide type, freeze
e18d6a15
JM
2962 -- the specific type in the expression being allocated.
2963 -- The expression may be a subtype indication, in which
2964 -- case freeze the subtype mark.
c6823a20 2965
e18d6a15
JM
2966 if Is_Class_Wide_Type
2967 (Designated_Type (Etype (Comp)))
0f4cb75c 2968 then
e18d6a15
JM
2969 if Is_Entity_Name (Expression (Alloc)) then
2970 Freeze_And_Append
c159409f 2971 (Entity (Expression (Alloc)), N, Result);
e18d6a15
JM
2972 elsif
2973 Nkind (Expression (Alloc)) = N_Subtype_Indication
2974 then
2975 Freeze_And_Append
2976 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 2977 N, Result);
e18d6a15 2978 end if;
0f4cb75c 2979
e18d6a15
JM
2980 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2981 Check_Itype (Etype (Comp));
0f4cb75c 2982
e18d6a15
JM
2983 else
2984 Freeze_And_Append
c159409f 2985 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 2986 end if;
c6823a20
EB
2987 end if;
2988 end;
2989
2990 elsif Is_Access_Type (Etype (Comp))
2991 and then Is_Itype (Designated_Type (Etype (Comp)))
2992 then
7d8b9c99 2993 Check_Itype (Etype (Comp));
c6823a20
EB
2994
2995 elsif Is_Array_Type (Etype (Comp))
2996 and then Is_Access_Type (Component_Type (Etype (Comp)))
2997 and then Present (Parent (Comp))
2998 and then Nkind (Parent (Comp)) = N_Component_Declaration
2999 and then Present (Expression (Parent (Comp)))
3000 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
3001 and then Is_Fully_Defined
ef1c0511 3002 (Designated_Type (Component_Type (Etype (Comp))))
c6823a20
EB
3003 then
3004 Freeze_And_Append
3005 (Designated_Type
ef1c0511 3006 (Component_Type (Etype (Comp))), N, Result);
c6823a20
EB
3007 end if;
3008
3009 Prev := Comp;
70482933
RK
3010 Next_Entity (Comp);
3011 end loop;
3012
f91510fc
AC
3013 ADC := Get_Attribute_Definition_Clause
3014 (Rec, Attribute_Scalar_Storage_Order);
3015
d3b00ce3
AC
3016 if Present (ADC) then
3017
3018 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3019 -- the former is specified.
3020
3021 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3022
3023 -- Note: report error on Rec, not on ADC, as ADC may apply to
3024 -- an ancestor type.
3025
3026 Error_Msg_Sloc := Sloc (ADC);
3027 Error_Msg_N
3028 ("scalar storage order for& specified# inconsistent with "
3029 & "bit order", Rec);
3030 end if;
3031
3032 -- Warn if there is a Scalar_Storage_Order but no component clause
75965852 3033 -- (or pragma Pack).
50cd5b4d 3034
75965852 3035 if not (Placed_Component or else Is_Packed (Rec)) then
d3b00ce3 3036 Error_Msg_N
685bc70f 3037 ("??scalar storage order specified but no component clause",
d3b00ce3
AC
3038 ADC);
3039 end if;
8a7c0400 3040 end if;
75965852 3041
8a7c0400 3042 -- Check consistent attribute setting on component types
75965852 3043
8a7c0400
AC
3044 Comp := First_Component (Rec);
3045 while Present (Comp) loop
3046 Check_Component_Storage_Order
3047 (Encl_Type => Rec, Comp => Comp, ADC => ADC);
3048 Next_Component (Comp);
3049 end loop;
f91510fc 3050
164e06c6 3051 -- Deal with Bit_Order aspect specifying a non-default bit order
fea9e956 3052
2a290fec 3053 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
758ad973
AC
3054
3055 if Present (ADC) and then Base_Type (Rec) = Rec then
75965852 3056 if not (Placed_Component or else Is_Packed (Rec)) then
15918371
AC
3057 Error_Msg_N
3058 ("??bit order specification has no effect", ADC);
fea9e956 3059 Error_Msg_N
685bc70f 3060 ("\??since no component clauses were specified", ADC);
fea9e956 3061
8a95f4e8 3062 -- Here is where we do the processing for reversed bit order
70482933 3063
758ad973 3064 elsif Reverse_Bit_Order (Rec)
2a290fec 3065 and then not Reverse_Storage_Order (Rec)
758ad973 3066 then
fea9e956 3067 Adjust_Record_For_Reverse_Bit_Order (Rec);
702d139e 3068
758ad973 3069 -- Case where we have both an explicit Bit_Order and the same
702d139e
TQ
3070 -- Scalar_Storage_Order: leave record untouched, the back-end
3071 -- will take care of required layout conversions.
3072
3073 else
3074 null;
3075
fea9e956 3076 end if;
70482933
RK
3077 end if;
3078
8a95f4e8
RD
3079 -- Complete error checking on record representation clause (e.g.
3080 -- overlap of components). This is called after adjusting the
3081 -- record for reverse bit order.
3082
3083 declare
3084 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3085 begin
3086 if Present (RRC) then
3087 Check_Record_Representation_Clause (RRC);
3088 end if;
3089 end;
3090
1b24ada5
RD
3091 -- Set OK_To_Reorder_Components depending on debug flags
3092
d347f572 3093 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5 3094 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
d3b00ce3
AC
3095 or else
3096 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
1b24ada5
RD
3097 then
3098 Set_OK_To_Reorder_Components (Rec);
3099 end if;
3100 end if;
3101
ee094616
RD
3102 -- Check for useless pragma Pack when all components placed. We only
3103 -- do this check for record types, not subtypes, since a subtype may
3104 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
3105 -- sense to pack other subtypes or the parent type. We do not give
3106 -- this warning if Optimize_Alignment is set to Space, since the
3107 -- pragma Pack does have an effect in this case (it always resets
3108 -- the alignment to one).
70482933 3109
ee094616
RD
3110 if Ekind (Rec) = E_Record_Type
3111 and then Is_Packed (Rec)
70482933 3112 and then not Unplaced_Component
1b24ada5 3113 and then Optimize_Alignment /= 'S'
70482933 3114 then
def46b54
RD
3115 -- Reset packed status. Probably not necessary, but we do it so
3116 -- that there is no chance of the back end doing something strange
3117 -- with this redundant indication of packing.
ee094616 3118
70482933 3119 Set_Is_Packed (Rec, False);
ee094616
RD
3120
3121 -- Give warning if redundant constructs warnings on
3122
3123 if Warn_On_Redundant_Constructs then
ed2233dc 3124 Error_Msg_N -- CODEFIX
685bc70f 3125 ("??pragma Pack has no effect, no unplaced components",
ee094616
RD
3126 Get_Rep_Pragma (Rec, Name_Pack));
3127 end if;
70482933
RK
3128 end if;
3129
ee094616
RD
3130 -- If this is the record corresponding to a remote type, freeze the
3131 -- remote type here since that is what we are semantically freezing.
3132 -- This prevents the freeze node for that type in an inner scope.
70482933 3133
8dc10d38 3134 if Ekind (Rec) = E_Record_Type then
70482933 3135 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 3136 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
3137 end if;
3138
15918371
AC
3139 -- Check for controlled components and unchecked unions.
3140
70482933 3141 Comp := First_Component (Rec);
70482933 3142 while Present (Comp) loop
80fa4617
EB
3143
3144 -- Do not set Has_Controlled_Component on a class-wide
3145 -- equivalent type. See Make_CW_Equivalent_Type.
3146
3147 if not Is_Class_Wide_Equivalent_Type (Rec)
15918371
AC
3148 and then
3149 (Has_Controlled_Component (Etype (Comp))
3150 or else
3151 (Chars (Comp) /= Name_uParent
3152 and then Is_Controlled (Etype (Comp)))
3153 or else
3154 (Is_Protected_Type (Etype (Comp))
3155 and then
3156 Present (Corresponding_Record_Type (Etype (Comp)))
3157 and then
3158 Has_Controlled_Component
3159 (Corresponding_Record_Type (Etype (Comp)))))
70482933
RK
3160 then
3161 Set_Has_Controlled_Component (Rec);
70482933
RK
3162 end if;
3163
3164 if Has_Unchecked_Union (Etype (Comp)) then
3165 Set_Has_Unchecked_Union (Rec);
3166 end if;
3167
e1308fa8
AC
3168 -- Scan component declaration for likely misuses of current
3169 -- instance, either in a constraint or a default expression.
70482933 3170
e1308fa8 3171 if Has_Per_Object_Constraint (Comp) then
70482933
RK
3172 Check_Current_Instance (Parent (Comp));
3173 end if;
3174
3175 Next_Component (Comp);
3176 end loop;
3177 end if;
3178
15918371
AC
3179 -- Enforce the restriction that access attributes with a current
3180 -- instance prefix can only apply to limited types. This comment
3181 -- is floating here, but does not seem to belong here???
3182
3183 -- Set component alignment if not otherwise already set
3184
70482933
RK
3185 Set_Component_Alignment_If_Not_Set (Rec);
3186
ee094616
RD
3187 -- For first subtypes, check if there are any fixed-point fields with
3188 -- component clauses, where we must check the size. This is not done
15918371 3189 -- till the freeze point since for fixed-point types, we do not know
ee094616
RD
3190 -- the size until the type is frozen. Similar processing applies to
3191 -- bit packed arrays.
70482933
RK
3192
3193 if Is_First_Subtype (Rec) then
3194 Comp := First_Component (Rec);
70482933
RK
3195 while Present (Comp) loop
3196 if Present (Component_Clause (Comp))
d05ef0ab
AC
3197 and then (Is_Fixed_Point_Type (Etype (Comp))
3198 or else
3199 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
3200 then
3201 Check_Size
d05ef0ab 3202 (Component_Name (Component_Clause (Comp)),
70482933
RK
3203 Etype (Comp),
3204 Esize (Comp),
3205 Junk);
3206 end if;
3207
3208 Next_Component (Comp);
3209 end loop;
3210 end if;
7d8b9c99
RD
3211
3212 -- Generate warning for applying C or C++ convention to a record
3213 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
3214 -- case, since the whole point in this case is interface C. We also
3215 -- do not generate this within instantiations, since we will have
3216 -- generated a message on the template.
7d8b9c99
RD
3217
3218 if Has_Discriminants (E)
3219 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
3220 and then (Convention (E) = Convention_C
3221 or else
3222 Convention (E) = Convention_CPP)
3223 and then Comes_From_Source (E)
1b24ada5
RD
3224 and then not In_Instance
3225 and then not Has_Warnings_Off (E)
3226 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
3227 then
3228 declare
3229 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3230 A2 : Node_Id;
3231
3232 begin
3233 if Present (Cprag) then
3234 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3235
3236 if Convention (E) = Convention_C then
3237 Error_Msg_N
685bc70f
AC
3238 ("?x?variant record has no direct equivalent in C",
3239 A2);
7d8b9c99
RD
3240 else
3241 Error_Msg_N
685bc70f
AC
3242 ("?x?variant record has no direct equivalent in C++",
3243 A2);
7d8b9c99
RD
3244 end if;
3245
3246 Error_Msg_NE
685bc70f 3247 ("\?x?use of convention for type& is dubious", A2, E);
7d8b9c99
RD
3248 end if;
3249 end;
3250 end if;
8dc10d38 3251
ce14c577 3252 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 3253
426d2717 3254 if not Is_Packed (Rec)
ce14c577
AC
3255
3256 -- No implicit packing if even one component is explicitly placed
3257
426d2717 3258 and then not Placed_Component
ce14c577 3259
515490e0
AC
3260 -- Or even one component is aliased
3261
3262 and then not Aliased_Component
3263
ce14c577
AC
3264 -- Must have size clause and all scalar components
3265
8dc10d38
AC
3266 and then Has_Size_Clause (Rec)
3267 and then All_Scalar_Components
ce14c577
AC
3268
3269 -- Do not try implicit packing on records with discriminants, too
3270 -- complicated, especially in the variant record case.
3271
8dc10d38 3272 and then not Has_Discriminants (Rec)
ce14c577
AC
3273
3274 -- We can implicitly pack if the specified size of the record is
3275 -- less than the sum of the object sizes (no point in packing if
3276 -- this is not the case).
3277
fc893455 3278 and then RM_Size (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
3279
3280 -- And the total RM size cannot be greater than the specified size
a90bd866 3281 -- since otherwise packing will not get us where we have to be.
ce14c577 3282
fc893455 3283 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
ce14c577 3284
06b599fd 3285 -- Never do implicit packing in CodePeer or SPARK modes since
59e6b23c 3286 -- we don't do any packing in these modes, since this generates
25ebc085
AC
3287 -- over-complex code that confuses static analysis, and in
3288 -- general, neither CodePeer not GNATprove care about the
3289 -- internal representation of objects.
ce14c577 3290
f5da7a97 3291 and then not (CodePeer_Mode or GNATprove_Mode)
8dc10d38 3292 then
426d2717
AC
3293 -- If implicit packing enabled, do it
3294
3295 if Implicit_Packing then
3296 Set_Is_Packed (Rec);
3297
3298 -- Otherwise flag the size clause
3299
3300 else
3301 declare
3302 Sz : constant Node_Id := Size_Clause (Rec);
3303 begin
ed2233dc 3304 Error_Msg_NE -- CODEFIX
426d2717 3305 ("size given for& too small", Sz, Rec);
ed2233dc 3306 Error_Msg_N -- CODEFIX
426d2717
AC
3307 ("\use explicit pragma Pack "
3308 & "or use pragma Implicit_Packing", Sz);
3309 end;
3310 end if;
8dc10d38 3311 end if;
15918371
AC
3312
3313 -- All done if not a full record definition
3314
3315 if Ekind (Rec) /= E_Record_Type then
3316 return;
3317 end if;
3318
c76bf0bf
AC
3319 -- Finally we need to check the variant part to make sure that
3320 -- all types within choices are properly frozen as part of the
3321 -- freezing of the record type.
15918371
AC
3322
3323 Check_Variant_Part : declare
3324 D : constant Node_Id := Declaration_Node (Rec);
3325 T : Node_Id;
3326 C : Node_Id;
15918371
AC
3327
3328 begin
3329 -- Find component list
3330
3331 C := Empty;
3332
3333 if Nkind (D) = N_Full_Type_Declaration then
3334 T := Type_Definition (D);
3335
3336 if Nkind (T) = N_Record_Definition then
3337 C := Component_List (T);
3338
3339 elsif Nkind (T) = N_Derived_Type_Definition
3340 and then Present (Record_Extension_Part (T))
3341 then
3342 C := Component_List (Record_Extension_Part (T));
3343 end if;
3344 end if;
3345
e7f23f06 3346 -- Case of variant part present
15918371
AC
3347
3348 if Present (C) and then Present (Variant_Part (C)) then
c76bf0bf
AC
3349 Freeze_Choices_In_Variant_Part (Variant_Part (C));
3350 end if;
4530b919 3351
c76bf0bf
AC
3352 -- Note: we used to call Check_Choices here, but it is too early,
3353 -- since predicated subtypes are frozen here, but their freezing
3354 -- actions are in Analyze_Freeze_Entity, which has not been called
3355 -- yet for entities frozen within this procedure, so we moved that
3356 -- call to the Analyze_Freeze_Entity for the record type.
4530b919 3357
15918371 3358 end Check_Variant_Part;
70482933
RK
3359 end Freeze_Record_Type;
3360
3361 -- Start of processing for Freeze_Entity
3362
3363 begin
c6823a20
EB
3364 -- We are going to test for various reasons why this entity need not be
3365 -- frozen here, but in the case of an Itype that's defined within a
3366 -- record, that test actually applies to the record.
3367
3368 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
3369 Test_E := Scope (E);
3370 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
3371 and then Is_Record_Type (Underlying_Type (Scope (E)))
3372 then
3373 Test_E := Underlying_Type (Scope (E));
3374 end if;
3375
fbf5a39b 3376 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
3377
3378 if Is_Frozen (E) then
3379 return No_List;
3380
c6823a20
EB
3381 -- It is improper to freeze an external entity within a generic because
3382 -- its freeze node will appear in a non-valid context. The entity will
3383 -- be frozen in the proper scope after the current generic is analyzed.
7640ef8a
AC
3384 -- However, aspects must be analyzed because they may be queried later
3385 -- within the generic itself, and the corresponding pragma or attribute
3386 -- definition has not been analyzed yet.
70482933 3387
c6823a20 3388 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
7640ef8a
AC
3389 if Has_Delayed_Aspects (E) then
3390 Analyze_Aspects_At_Freeze_Point (E);
3391 end if;
3392
70482933
RK
3393 return No_List;
3394
164e06c6
AC
3395 -- AI05-0213: A formal incomplete type does not freeze the actual. In
3396 -- the instance, the same applies to the subtype renaming the actual.
d3cb4cc0
AC
3397
3398 elsif Is_Private_Type (E)
3399 and then Is_Generic_Actual_Type (E)
3400 and then No (Full_View (Base_Type (E)))
3401 and then Ada_Version >= Ada_2012
3402 then
3403 return No_List;
3404
5a8a6763
RD
3405 -- Generic types need no freeze node and have no delayed semantic
3406 -- checks.
3407
3408 elsif Is_Generic_Type (E) then
3409 return No_List;
3410
70482933
RK
3411 -- Do not freeze a global entity within an inner scope created during
3412 -- expansion. A call to subprogram E within some internal procedure
3413 -- (a stream attribute for example) might require freezing E, but the
3414 -- freeze node must appear in the same declarative part as E itself.
3415 -- The two-pass elaboration mechanism in gigi guarantees that E will
3416 -- be frozen before the inner call is elaborated. We exclude constants
3417 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
3418 -- must be diagnosed (e.g. in the case of a deferred constant being used
3419 -- in a default expression). If the enclosing subprogram comes from
3420 -- source, or is a generic instance, then the freeze point is the one
3421 -- mandated by the language, and we freeze the entity. A subprogram that
3422 -- is a child unit body that acts as a spec does not have a spec that
3423 -- comes from source, but can only come from source.
70482933 3424
c6823a20
EB
3425 elsif In_Open_Scopes (Scope (Test_E))
3426 and then Scope (Test_E) /= Current_Scope
3427 and then Ekind (Test_E) /= E_Constant
70482933
RK
3428 then
3429 declare
3cae7f14 3430 S : Entity_Id;
70482933
RK
3431
3432 begin
3cae7f14 3433 S := Current_Scope;
70482933
RK
3434 while Present (S) loop
3435 if Is_Overloadable (S) then
3436 if Comes_From_Source (S)
3437 or else Is_Generic_Instance (S)
fea9e956 3438 or else Is_Child_Unit (S)
70482933
RK
3439 then
3440 exit;
3441 else
3442 return No_List;
3443 end if;
3444 end if;
3445
3446 S := Scope (S);
3447 end loop;
3448 end;
555360a5
AC
3449
3450 -- Similarly, an inlined instance body may make reference to global
3451 -- entities, but these references cannot be the proper freezing point
def46b54
RD
3452 -- for them, and in the absence of inlining freezing will take place in
3453 -- their own scope. Normally instance bodies are analyzed after the
3454 -- enclosing compilation, and everything has been frozen at the proper
3455 -- place, but with front-end inlining an instance body is compiled
3456 -- before the end of the enclosing scope, and as a result out-of-order
3457 -- freezing must be prevented.
555360a5
AC
3458
3459 elsif Front_End_Inlining
7d8b9c99 3460 and then In_Instance_Body
c6823a20 3461 and then Present (Scope (Test_E))
555360a5
AC
3462 then
3463 declare
3cae7f14 3464 S : Entity_Id;
c6823a20 3465
555360a5 3466 begin
3cae7f14 3467 S := Scope (Test_E);
555360a5
AC
3468 while Present (S) loop
3469 if Is_Generic_Instance (S) then
3470 exit;
3471 else
3472 S := Scope (S);
3473 end if;
3474 end loop;
3475
3476 if No (S) then
3477 return No_List;
3478 end if;
3479 end;
3cd4a210
AC
3480
3481 elsif Ekind (E) = E_Generic_Package then
3482 return Freeze_Generic_Entities (E);
70482933
RK
3483 end if;
3484
5f49133f
AC
3485 -- Add checks to detect proper initialization of scalars that may appear
3486 -- as subprogram parameters.
0ea55619 3487
15e934bf 3488 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5f49133f 3489 Apply_Parameter_Validity_Checks (E);
0ea55619
AC
3490 end if;
3491
9a6dc470
RD
3492 -- Deal with delayed aspect specifications. The analysis of the aspect
3493 -- is required to be delayed to the freeze point, thus we analyze the
3494 -- pragma or attribute definition clause in the tree at this point. We
3495 -- also analyze the aspect specification node at the freeze point when
3496 -- the aspect doesn't correspond to pragma/attribute definition clause.
c159409f
AC
3497
3498 if Has_Delayed_Aspects (E) then
8a0320ad 3499 Analyze_Aspects_At_Freeze_Point (E);
c159409f
AC
3500 end if;
3501
70482933
RK
3502 -- Here to freeze the entity
3503
70482933
RK
3504 Set_Is_Frozen (E);
3505
3506 -- Case of entity being frozen is other than a type
3507
3508 if not Is_Type (E) then
685bc70f 3509
70482933
RK
3510 -- If entity is exported or imported and does not have an external
3511 -- name, now is the time to provide the appropriate default name.
3512 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
3513 -- for any stubbed routine. For the case on intrinsics, if no
3514 -- external name is specified, then calls will be handled in
545cb5be
AC
3515 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
3516 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 3517 -- calls in place for expansion by GIGI.
70482933
RK
3518
3519 if (Is_Imported (E) or else Is_Exported (E))
3520 and then No (Interface_Name (E))
3521 and then Convention (E) /= Convention_Stubbed
75a64833 3522 and then Convention (E) /= Convention_Intrinsic
70482933
RK
3523 then
3524 Set_Encoded_Interface_Name
3525 (E, Get_Default_External_Name (E));
fbf5a39b 3526
bbaba73f
EB
3527 -- If entity is an atomic object appearing in a declaration and
3528 -- the expression is an aggregate, assign it to a temporary to
3529 -- ensure that the actual assignment is done atomically rather
3530 -- than component-wise (the assignment to the temp may be done
3531 -- component-wise, but that is harmless).
fbf5a39b
AC
3532
3533 elsif Is_Atomic (E)
3534 and then Nkind (Parent (E)) = N_Object_Declaration
3535 and then Present (Expression (Parent (E)))
bbaba73f 3536 and then Nkind (Expression (Parent (E))) = N_Aggregate
f96b2d85 3537 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 3538 then
b0159fbe 3539 null;
70482933
RK
3540 end if;
3541
3542 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 3543 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 3544 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
3545 -- created since we now know whether the subprogram will use a
3546 -- foreign convention.
70482933
RK
3547
3548 if Is_Subprogram (E) then
70482933 3549 if not Is_Internal (E) then
70482933 3550 declare
6d11af89 3551 F_Type : Entity_Id;
def46b54 3552 R_Type : Entity_Id;
6d11af89 3553 Warn_Node : Node_Id;
70482933 3554
70482933
RK
3555 begin
3556 -- Loop through formals
3557
3558 Formal := First_Formal (E);
70482933 3559 while Present (Formal) loop
70482933 3560 F_Type := Etype (Formal);
406935b6
AC
3561
3562 -- AI05-0151 : incomplete types can appear in a profile.
3563 -- By the time the entity is frozen, the full view must
3564 -- be available, unless it is a limited view.
3565
3566 if Is_Incomplete_Type (F_Type)
3567 and then Present (Full_View (F_Type))
7b56a91b 3568 and then not From_Limited_With (F_Type)
406935b6
AC
3569 then
3570 F_Type := Full_View (F_Type);
3571 Set_Etype (Formal, F_Type);
3572 end if;
3573
c159409f 3574 Freeze_And_Append (F_Type, N, Result);
70482933
RK
3575
3576 if Is_Private_Type (F_Type)
3577 and then Is_Private_Type (Base_Type (F_Type))
3578 and then No (Full_View (Base_Type (F_Type)))
3579 and then not Is_Generic_Type (F_Type)
3580 and then not Is_Derived_Type (F_Type)
3581 then
3582 -- If the type of a formal is incomplete, subprogram
3583 -- is being frozen prematurely. Within an instance
3584 -- (but not within a wrapper package) this is an
fb2e11ee 3585 -- artifact of our need to regard the end of an
70482933
RK
3586 -- instantiation as a freeze point. Otherwise it is
3587 -- a definite error.
fbf5a39b 3588
70482933
RK
3589 if In_Instance then
3590 Set_Is_Frozen (E, False);
3591 return No_List;
3592
86cde7b1
RD
3593 elsif not After_Last_Declaration
3594 and then not Freezing_Library_Level_Tagged_Type
3595 then
70482933
RK
3596 Error_Msg_Node_1 := F_Type;
3597 Error_Msg
3598 ("type& must be fully defined before this point",
3599 Loc);
3600 end if;
3601 end if;
3602
def46b54 3603 -- Check suspicious parameter for C function. These tests
1b24ada5 3604 -- apply only to exported/imported subprograms.
70482933 3605
def46b54 3606 if Warn_On_Export_Import
1b24ada5 3607 and then Comes_From_Source (E)
def46b54
RD
3608 and then (Convention (E) = Convention_C
3609 or else
3610 Convention (E) = Convention_CPP)
def46b54 3611 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
3612 and then Convention (E) /= Convention (Formal)
3613 and then not Has_Warnings_Off (E)
3614 and then not Has_Warnings_Off (F_Type)
3615 and then not Has_Warnings_Off (Formal)
fbf5a39b 3616 then
b3afa59b
AC
3617 -- Qualify mention of formals with subprogram name
3618
70482933 3619 Error_Msg_Qual_Level := 1;
def46b54
RD
3620
3621 -- Check suspicious use of fat C pointer
3622
3623 if Is_Access_Type (F_Type)
3624 and then Esize (F_Type) > Ttypes.System_Address_Size
3625 then
3626 Error_Msg_N
685bc70f 3627 ("?x?type of & does not correspond to C pointer!",
b3afa59b 3628 Formal);
def46b54
RD
3629
3630 -- Check suspicious return of boolean
3631
3632 elsif Root_Type (F_Type) = Standard_Boolean
3633 and then Convention (F_Type) = Convention_Ada
67198556
RD
3634 and then not Has_Warnings_Off (F_Type)
3635 and then not Has_Size_Clause (F_Type)
6a2afd13 3636 and then VM_Target = No_VM
def46b54 3637 then
685bc70f
AC
3638 Error_Msg_N
3639 ("& is an 8-bit Ada Boolean?x?", Formal);
b3afa59b
AC
3640 Error_Msg_N
3641 ("\use appropriate corresponding type in C "
685bc70f 3642 & "(e.g. char)?x?", Formal);
def46b54
RD
3643
3644 -- Check suspicious tagged type
3645
3646 elsif (Is_Tagged_Type (F_Type)
3647 or else (Is_Access_Type (F_Type)
3648 and then
3649 Is_Tagged_Type
3650 (Designated_Type (F_Type))))
3651 and then Convention (E) = Convention_C
3652 then
3653 Error_Msg_N
685bc70f 3654 ("?x?& involves a tagged type which does not "
def46b54
RD
3655 & "correspond to any C type!", Formal);
3656
3657 -- Check wrong convention subprogram pointer
3658
3659 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3660 and then not Has_Foreign_Convention (F_Type)
3661 then
3662 Error_Msg_N
685bc70f 3663 ("?x?subprogram pointer & should "
def46b54
RD
3664 & "have foreign convention!", Formal);
3665 Error_Msg_Sloc := Sloc (F_Type);
3666 Error_Msg_NE
685bc70f 3667 ("\?x?add Convention pragma to declaration of &#",
def46b54
RD
3668 Formal, F_Type);
3669 end if;
3670
b3afa59b
AC
3671 -- Turn off name qualification after message output
3672
70482933
RK
3673 Error_Msg_Qual_Level := 0;
3674 end if;
3675
3676 -- Check for unconstrained array in exported foreign
3677 -- convention case.
3678
def46b54 3679 if Has_Foreign_Convention (E)
70482933
RK
3680 and then not Is_Imported (E)
3681 and then Is_Array_Type (F_Type)
3682 and then not Is_Constrained (F_Type)
fbf5a39b 3683 and then Warn_On_Export_Import
3acdda2d
AC
3684
3685 -- Exclude VM case, since both .NET and JVM can handle
3686 -- unconstrained arrays without a problem.
3687
3688 and then VM_Target = No_VM
70482933
RK
3689 then
3690 Error_Msg_Qual_Level := 1;
6d11af89
AC
3691
3692 -- If this is an inherited operation, place the
3693 -- warning on the derived type declaration, rather
3694 -- than on the original subprogram.
3695
3696 if Nkind (Original_Node (Parent (E))) =
3697 N_Full_Type_Declaration
3698 then
3699 Warn_Node := Parent (E);
3700
3701 if Formal = First_Formal (E) then
3702 Error_Msg_NE
685bc70f 3703 ("??in inherited operation&", Warn_Node, E);
6d11af89
AC
3704 end if;
3705 else
3706 Warn_Node := Formal;
3707 end if;
3708
3709 Error_Msg_NE
685bc70f 3710 ("?x?type of argument& is unconstrained array",
6d11af89
AC
3711 Warn_Node, Formal);
3712 Error_Msg_NE
685bc70f 3713 ("?x?foreign caller must pass bounds explicitly",
6d11af89 3714 Warn_Node, Formal);
70482933
RK
3715 Error_Msg_Qual_Level := 0;
3716 end if;
3717
7b56a91b 3718 if not From_Limited_With (F_Type) then
d8db0bca
JM
3719 if Is_Access_Type (F_Type) then
3720 F_Type := Designated_Type (F_Type);
3721 end if;
3722
7d8b9c99
RD
3723 -- If the formal is an anonymous_access_to_subprogram
3724 -- freeze the subprogram type as well, to prevent
3725 -- scope anomalies in gigi, because there is no other
3726 -- clear point at which it could be frozen.
3727
93bcda23 3728 if Is_Itype (Etype (Formal))
7d8b9c99
RD
3729 and then Ekind (F_Type) = E_Subprogram_Type
3730 then
c159409f 3731 Freeze_And_Append (F_Type, N, Result);
d8db0bca
JM
3732 end if;
3733 end if;
3734
70482933
RK
3735 Next_Formal (Formal);
3736 end loop;
3737
5e39baa6 3738 -- Case of function: similar checks on return type
70482933
RK
3739
3740 if Ekind (E) = E_Function then
def46b54
RD
3741
3742 -- Freeze return type
3743
3744 R_Type := Etype (E);
406935b6
AC
3745
3746 -- AI05-0151: the return type may have been incomplete
ad0d71b5
AC
3747 -- at the point of declaration. Replace it with the full
3748 -- view, unless the current type is a limited view. In
3749 -- that case the full view is in a different unit, and
3750 -- gigi finds the non-limited view after the other unit
3751 -- is elaborated.
406935b6
AC
3752
3753 if Ekind (R_Type) = E_Incomplete_Type
3754 and then Present (Full_View (R_Type))
7b56a91b 3755 and then not From_Limited_With (R_Type)
406935b6
AC
3756 then
3757 R_Type := Full_View (R_Type);
3758 Set_Etype (E, R_Type);
3759 end if;
3760
c159409f 3761 Freeze_And_Append (R_Type, N, Result);
def46b54
RD
3762
3763 -- Check suspicious return type for C function
70482933 3764
fbf5a39b 3765 if Warn_On_Export_Import
def46b54
RD
3766 and then (Convention (E) = Convention_C
3767 or else
3768 Convention (E) = Convention_CPP)
def46b54 3769 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 3770 then
def46b54
RD
3771 -- Check suspicious return of fat C pointer
3772
3773 if Is_Access_Type (R_Type)
3774 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
3775 and then not Has_Warnings_Off (E)
3776 and then not Has_Warnings_Off (R_Type)
def46b54
RD
3777 then
3778 Error_Msg_N
685bc70f 3779 ("?x?return type of& does not "
def46b54
RD
3780 & "correspond to C pointer!", E);
3781
3782 -- Check suspicious return of boolean
3783
3784 elsif Root_Type (R_Type) = Standard_Boolean
3785 and then Convention (R_Type) = Convention_Ada
6a2afd13 3786 and then VM_Target = No_VM
1b24ada5
RD
3787 and then not Has_Warnings_Off (E)
3788 and then not Has_Warnings_Off (R_Type)
67198556 3789 and then not Has_Size_Clause (R_Type)
def46b54 3790 then
b3afa59b
AC
3791 declare
3792 N : constant Node_Id :=
3793 Result_Definition (Declaration_Node (E));
3794 begin
3795 Error_Msg_NE
685bc70f 3796 ("return type of & is an 8-bit Ada Boolean?x?",
b3afa59b
AC
3797 N, E);
3798 Error_Msg_NE
3799 ("\use appropriate corresponding type in C "
685bc70f 3800 & "(e.g. char)?x?", N, E);
b3afa59b 3801 end;
70482933 3802
def46b54
RD
3803 -- Check suspicious return tagged type
3804
3805 elsif (Is_Tagged_Type (R_Type)
3806 or else (Is_Access_Type (R_Type)
ef1c0511
AC
3807 and then
3808 Is_Tagged_Type
3809 (Designated_Type (R_Type))))
def46b54 3810 and then Convention (E) = Convention_C
1b24ada5
RD
3811 and then not Has_Warnings_Off (E)
3812 and then not Has_Warnings_Off (R_Type)
def46b54
RD
3813 then
3814 Error_Msg_N
685bc70f 3815 ("?x?return type of & does not "
def46b54
RD
3816 & "correspond to C type!", E);
3817
3818 -- Check return of wrong convention subprogram pointer
3819
3820 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3821 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
3822 and then not Has_Warnings_Off (E)
3823 and then not Has_Warnings_Off (R_Type)
def46b54
RD
3824 then
3825 Error_Msg_N
685bc70f 3826 ("?x?& should return a foreign "
def46b54
RD
3827 & "convention subprogram pointer", E);
3828 Error_Msg_Sloc := Sloc (R_Type);
3829 Error_Msg_NE
685bc70f 3830 ("\?x?add Convention pragma to declaration of& #",
def46b54
RD
3831 E, R_Type);
3832 end if;
3833 end if;
3834
308e6f3a 3835 -- Give warning for suspicious return of a result of an
e7d72fb9
AC
3836 -- unconstrained array type in a foreign convention
3837 -- function.
59366db6 3838
e7d72fb9
AC
3839 if Has_Foreign_Convention (E)
3840
2c1b72d7 3841 -- We are looking for a return of unconstrained array
e7d72fb9
AC
3842
3843 and then Is_Array_Type (R_Type)
93bcda23 3844 and then not Is_Constrained (R_Type)
e7d72fb9 3845
2c1b72d7
AC
3846 -- Exclude imported routines, the warning does not
3847 -- belong on the import, but rather on the routine
3848 -- definition.
e7d72fb9 3849
70482933 3850 and then not Is_Imported (E)
e7d72fb9 3851
2c1b72d7
AC
3852 -- Exclude VM case, since both .NET and JVM can handle
3853 -- return of unconstrained arrays without a problem.
e7d72fb9 3854
f3b57ab0 3855 and then VM_Target = No_VM
e7d72fb9 3856
2c1b72d7
AC
3857 -- Check that general warning is enabled, and that it
3858 -- is not suppressed for this particular case.
e7d72fb9 3859
fbf5a39b 3860 and then Warn_On_Export_Import
1b24ada5 3861 and then not Has_Warnings_Off (E)
93bcda23 3862 and then not Has_Warnings_Off (R_Type)
70482933
RK
3863 then
3864 Error_Msg_N
685bc70f 3865 ("?x?foreign convention function& should not " &
1b24ada5 3866 "return unconstrained array!", E);
70482933
RK
3867 end if;
3868 end if;
3869 end;
79ee6ab3 3870
ebb6b0bd
AC
3871 -- Pre/post conditions are implemented through a subprogram
3872 -- in the corresponding body, and therefore are not checked on
3873 -- an imported subprogram for which the body is not available.
1037b0f4
AC
3874 -- This warning is not issued in GNATprove mode, as all these
3875 -- contracts are handled in formal verification, so the warning
3876 -- would be misleading in that case.
79ee6ab3 3877
2557e054
RD
3878 -- Could consider generating a wrapper to take care of this???
3879
79ee6ab3
AC
3880 if Is_Subprogram (E)
3881 and then Is_Imported (E)
3882 and then Present (Contract (E))
d6095153 3883 and then Present (Pre_Post_Conditions (Contract (E)))
ebb6b0bd 3884 and then not GNATprove_Mode
79ee6ab3 3885 then
685bc70f 3886 Error_Msg_NE
d6095153
AC
3887 ("pre/post conditions on imported subprogram are not "
3888 & "enforced??", E, Pre_Post_Conditions (Contract (E)));
79ee6ab3 3889 end if;
70482933
RK
3890 end if;
3891
3892 -- Must freeze its parent first if it is a derived subprogram
3893
3894 if Present (Alias (E)) then
c159409f 3895 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
3896 end if;
3897
19590d70
GD
3898 -- We don't freeze internal subprograms, because we don't normally
3899 -- want addition of extra formals or mechanism setting to happen
3900 -- for those. However we do pass through predefined dispatching
3901 -- cases, since extra formals may be needed in some cases, such as
3902 -- for the stream 'Input function (build-in-place formals).
3903
3904 if not Is_Internal (E)
3905 or else Is_Predefined_Dispatching_Operation (E)
3906 then
70482933
RK
3907 Freeze_Subprogram (E);
3908 end if;
3909
3910 -- Here for other than a subprogram or type
3911
3912 else
3913 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 3914 -- freeze it first (RM 13.14(10)).
70482933 3915
ac72c9c5 3916 if Present (Etype (E))
70482933
RK
3917 and then Ekind (E) /= E_Generic_Function
3918 then
c159409f 3919 Freeze_And_Append (Etype (E), N, Result);
70482933
RK
3920 end if;
3921
2c9beb8a 3922 -- Special processing for objects created by object declaration
70482933
RK
3923
3924 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 3925
6823270c
AC
3926 -- Abstract type allowed only for C++ imported variables or
3927 -- constants.
3928
3929 -- Note: we inhibit this check for objects that do not come
3930 -- from source because there is at least one case (the
3e24afaa 3931 -- expansion of x'Class'Input where x is abstract) where we
6823270c
AC
3932 -- legitimately generate an abstract object.
3933
3934 if Is_Abstract_Type (Etype (E))
3935 and then Comes_From_Source (Parent (E))
3936 and then not (Is_Imported (E)
3937 and then Is_CPP_Class (Etype (E)))
3938 then
3939 Error_Msg_N ("type of object cannot be abstract",
3940 Object_Definition (Parent (E)));
3941
3942 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
3943 Error_Msg_NE
3944 ("\} may need a cpp_constructor",
6823270c
AC
3945 Object_Definition (Parent (E)), Etype (E));
3946 end if;
3947 end if;
3948
2c9beb8a
RD
3949 -- For object created by object declaration, perform required
3950 -- categorization (preelaborate and pure) checks. Defer these
3951 -- checks to freeze time since pragma Import inhibits default
3952 -- initialization and thus pragma Import affects these checks.
3953
70482933 3954 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 3955
1ce1f005 3956 -- If there is an address clause, check that it is valid
2c9beb8a 3957
fbf5a39b 3958 Check_Address_Clause (E);
2c9beb8a 3959
124092ee
AC
3960 -- Reset Is_True_Constant for aliased object. We consider that
3961 -- the fact that something is aliased may indicate that some
3962 -- funny business is going on, e.g. an aliased object is passed
3963 -- by reference to a procedure which captures the address of
3964 -- the object, which is later used to assign a new value. Such
3965 -- code is highly dubious, but we choose to make it "work" for
3966 -- aliased objects.
3967
3968 -- However, we don't do that for internal entities. We figure
3969 -- that if we deliberately set Is_True_Constant for an internal
a90bd866 3970 -- entity, e.g. a dispatch table entry, then we mean it.
124092ee
AC
3971
3972 if (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3973 and then not Is_Internal_Name (Chars (E))
3974 then
3975 Set_Is_True_Constant (E, False);
3976 end if;
3977
1ce1f005
GD
3978 -- If the object needs any kind of default initialization, an
3979 -- error must be issued if No_Default_Initialization applies.
3980 -- The check doesn't apply to imported objects, which are not
3981 -- ever default initialized, and is why the check is deferred
3982 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
3983 -- Deferred constants are also exempted from this test because
3984 -- their completion is explicit, or through an import pragma.
1ce1f005 3985
4fec4e7a
ES
3986 if Ekind (E) = E_Constant
3987 and then Present (Full_View (E))
3988 then
3989 null;
3990
3991 elsif Comes_From_Source (E)
b6e209b5 3992 and then not Is_Imported (E)
1ce1f005
GD
3993 and then not Has_Init_Expression (Declaration_Node (E))
3994 and then
3995 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3996 and then not No_Initialization (Declaration_Node (E))
3997 and then not Is_Value_Type (Etype (E))
5b1e6aca 3998 and then not Initialization_Suppressed (Etype (E)))
1ce1f005
GD
3999 or else
4000 (Needs_Simple_Initialization (Etype (E))
4001 and then not Is_Internal (E)))
4002 then
4c8a5bb8 4003 Has_Default_Initialization := True;
1ce1f005
GD
4004 Check_Restriction
4005 (No_Default_Initialization, Declaration_Node (E));
4006 end if;
4007
4c8a5bb8
AC
4008 -- Check that a Thread_Local_Storage variable does not have
4009 -- default initialization, and any explicit initialization must
4010 -- either be the null constant or a static constant.
4011
4012 if Has_Pragma_Thread_Local_Storage (E) then
4013 declare
4014 Decl : constant Node_Id := Declaration_Node (E);
4015 begin
4016 if Has_Default_Initialization
4017 or else
4018 (Has_Init_Expression (Decl)
4019 and then
4020 (No (Expression (Decl))
4021 or else not
4022 (Is_Static_Expression (Expression (Decl))
4023 or else
4024 Nkind (Expression (Decl)) = N_Null)))
4025 then
4026 Error_Msg_NE
4027 ("Thread_Local_Storage variable& is "
4028 & "improperly initialized", Decl, E);
4029 Error_Msg_NE
4030 ("\only allowed initialization is explicit "
4031 & "NULL or static expression", Decl, E);
4032 end if;
4033 end;
4034 end if;
4035
def46b54
RD
4036 -- For imported objects, set Is_Public unless there is also an
4037 -- address clause, which means that there is no external symbol
4038 -- needed for the Import (Is_Public may still be set for other
4039 -- unrelated reasons). Note that we delayed this processing
4040 -- till freeze time so that we can be sure not to set the flag
4041 -- if there is an address clause. If there is such a clause,
4042 -- then the only purpose of the Import pragma is to suppress
4043 -- implicit initialization.
2c9beb8a 4044
15e934bf 4045 if Is_Imported (E) and then No (Address_Clause (E)) then
2c9beb8a
RD
4046 Set_Is_Public (E);
4047 end if;
7d8b9c99 4048
19992053
AC
4049 -- For source objects that are not Imported and are library
4050 -- level, if no linker section pragma was given inherit the
4051 -- appropriate linker section from the corresponding type.
4052
4053 if Comes_From_Source (E)
4054 and then not Is_Imported (E)
4055 and then Is_Library_Level_Entity (E)
4056 and then No (Linker_Section_Pragma (E))
4057 then
4058 Set_Linker_Section_Pragma
4059 (E, Linker_Section_Pragma (Etype (E)));
4060 end if;
4061
7d8b9c99
RD
4062 -- For convention C objects of an enumeration type, warn if
4063 -- the size is not integer size and no explicit size given.
4064 -- Skip warning for Boolean, and Character, assume programmer
4065 -- expects 8-bit sizes for these cases.
4066
4067 if (Convention (E) = Convention_C
15e934bf 4068 or else
7d8b9c99
RD
4069 Convention (E) = Convention_CPP)
4070 and then Is_Enumeration_Type (Etype (E))
4071 and then not Is_Character_Type (Etype (E))
4072 and then not Is_Boolean_Type (Etype (E))
4073 and then Esize (Etype (E)) < Standard_Integer_Size
4074 and then not Has_Size_Clause (E)
4075 then
4076 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4077 Error_Msg_N
685bc70f 4078 ("??convention C enumeration object has size less than ^",
7d8b9c99
RD
4079 E);
4080 Error_Msg_N ("\?use explicit size clause to set size", E);
4081 end if;
70482933
RK
4082 end if;
4083
4084 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 4085 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
4086
4087 -- Note: Atomic[_Components] also sets Volatile[_Components]
4088
4089 if Ekind (E) = E_Constant
4090 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4091 and then not Is_Imported (E)
4092 then
4093 -- Make sure we actually have a pragma, and have not merely
4094 -- inherited the indication from elsewhere (e.g. an address
a90bd866 4095 -- clause, which is not good enough in RM terms).
70482933 4096
1d571f3b 4097 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 4098 or else
1d571f3b 4099 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
4100 then
4101 Error_Msg_N
91b1417d 4102 ("stand alone atomic constant must be " &
def46b54 4103 "imported (RM C.6(13))", E);
91b1417d 4104
1d571f3b 4105 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 4106 or else
1d571f3b 4107 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
4108 then
4109 Error_Msg_N
4110 ("stand alone volatile constant must be " &
86cde7b1 4111 "imported (RM C.6(13))", E);
70482933
RK
4112 end if;
4113 end if;
4114
4115 -- Static objects require special handling
4116
4117 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4118 and then Is_Statically_Allocated (E)
4119 then
4120 Freeze_Static_Object (E);
4121 end if;
4122
4123 -- Remaining step is to layout objects
4124
ef1c0511
AC
4125 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4126 or else Is_Formal (E)
70482933
RK
4127 then
4128 Layout_Object (E);
4129 end if;
3a3af4c3
AC
4130
4131 -- If initialization statements were captured in an expression
4132 -- with actions with null expression, and the object does not
4133 -- have delayed freezing, move them back now directly within the
4134 -- enclosing statement sequence.
4135
4136 if Ekind_In (E, E_Constant, E_Variable)
15e934bf 4137 and then not Has_Delayed_Freeze (E)
3a3af4c3
AC
4138 then
4139 declare
4140 Init_Stmts : constant Node_Id :=
4141 Initialization_Statements (E);
4142 begin
4143 if Present (Init_Stmts)
ae05cdd6
RD
4144 and then Nkind (Init_Stmts) = N_Expression_With_Actions
4145 and then Nkind (Expression (Init_Stmts)) = N_Null_Statement
3a3af4c3
AC
4146 then
4147 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
a33f291d
AC
4148
4149 -- Note that we rewrite Init_Stmts into a NULL statement,
4150 -- rather than just removing it, because Freeze_All may
4151 -- depend on this particular Node_Id still being present
4152 -- in the enclosing list to signal where to stop
4153 -- freezing.
4154
4155 Rewrite (Init_Stmts,
4156 Make_Null_Statement (Sloc (Init_Stmts)));
4157
3a3af4c3
AC
4158 Set_Initialization_Statements (E, Empty);
4159 end if;
4160 end;
4161 end if;
70482933
RK
4162 end if;
4163
4164 -- Case of a type or subtype being frozen
4165
4166 else
31b5873d
GD
4167 -- We used to check here that a full type must have preelaborable
4168 -- initialization if it completes a private type specified with
308e6f3a 4169 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
4170 -- the types occur within a generic package, since the freezing
4171 -- that occurs within a containing scope generally skips traversal
4172 -- of a generic unit's declarations (those will be frozen within
4173 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 4174
70482933
RK
4175 -- The type may be defined in a generic unit. This can occur when
4176 -- freezing a generic function that returns the type (which is
4177 -- defined in a parent unit). It is clearly meaningless to freeze
4178 -- this type. However, if it is a subtype, its size may be determi-
4179 -- nable and used in subsequent checks, so might as well try to
4180 -- compute it.
4181
cf7bb903 4182 -- In Ada 2012, Freeze_Entities is also used in the front end to
e876c43a
AC
4183 -- trigger the analysis of aspect expressions, so in this case we
4184 -- want to continue the freezing process.
4185
70482933
RK
4186 if Present (Scope (E))
4187 and then Is_Generic_Unit (Scope (E))
3cd4a210
AC
4188 and then
4189 (not Has_Predicates (E)
4190 and then not Has_Delayed_Freeze (E))
70482933
RK
4191 then
4192 Check_Compile_Time_Size (E);
4193 return No_List;
4194 end if;
4195
4196 -- Deal with special cases of freezing for subtype
4197
4198 if E /= Base_Type (E) then
4199
86cde7b1
RD
4200 -- Before we do anything else, a specialized test for the case of
4201 -- a size given for an array where the array needs to be packed,
3d529af4
RD
4202 -- but was not so the size cannot be honored. This is the case
4203 -- where implicit packing may apply. The reason we do this so
aa0dfa7e 4204 -- early is that if we have implicit packing, the layout of the
3d529af4
RD
4205 -- base type is affected, so we must do this before we freeze
4206 -- the base type.
4207
4208 -- We could do this processing only if implicit packing is enabled
4209 -- since in all other cases, the error would be caught by the back
4210 -- end. However, we choose to do the check even if we do not have
aa0dfa7e
AC
4211 -- implicit packing enabled, since this allows us to give a more
4212 -- useful error message (advising use of pragmas Implicit_Packing
4213 -- or Pack).
86cde7b1
RD
4214
4215 if Is_Array_Type (E) then
4216 declare
3d529af4
RD
4217 Ctyp : constant Entity_Id := Component_Type (E);
4218 Rsiz : constant Uint := RM_Size (Ctyp);
4219 SZ : constant Node_Id := Size_Clause (E);
4220 Btyp : constant Entity_Id := Base_Type (E);
4221
4222 Lo : Node_Id;
4223 Hi : Node_Id;
4224 Indx : Node_Id;
4225
4226 Num_Elmts : Uint;
4227 -- Number of elements in array
86cde7b1
RD
4228
4229 begin
4230 -- Check enabling conditions. These are straightforward
4231 -- except for the test for a limited composite type. This
4232 -- eliminates the rare case of a array of limited components
4233 -- where there are issues of whether or not we can go ahead
4234 -- and pack the array (since we can't freely pack and unpack
4235 -- arrays if they are limited).
4236
4237 -- Note that we check the root type explicitly because the
4238 -- whole point is we are doing this test before we have had
4239 -- a chance to freeze the base type (and it is that freeze
4240 -- action that causes stuff to be inherited).
4241
3d529af4 4242 if Has_Size_Clause (E)
fc893455 4243 and then Known_Static_RM_Size (E)
86cde7b1
RD
4244 and then not Is_Packed (E)
4245 and then not Has_Pragma_Pack (E)
86cde7b1 4246 and then not Has_Component_Size_Clause (E)
fc893455 4247 and then Known_Static_RM_Size (Ctyp)
3d529af4 4248 and then RM_Size (Ctyp) < 64
86cde7b1
RD
4249 and then not Is_Limited_Composite (E)
4250 and then not Is_Packed (Root_Type (E))
4251 and then not Has_Component_Size_Clause (Root_Type (E))
f5da7a97 4252 and then not (CodePeer_Mode or GNATprove_Mode)
86cde7b1 4253 then
3d529af4
RD
4254 -- Compute number of elements in array
4255
4256 Num_Elmts := Uint_1;
4257 Indx := First_Index (E);
4258 while Present (Indx) loop
4259 Get_Index_Bounds (Indx, Lo, Hi);
4260
4261 if not (Compile_Time_Known_Value (Lo)
4262 and then
4263 Compile_Time_Known_Value (Hi))
4264 then
4265 goto No_Implicit_Packing;
4266 end if;
86cde7b1 4267
3d529af4
RD
4268 Num_Elmts :=
4269 Num_Elmts *
4270 UI_Max (Uint_0,
4271 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4272 Next_Index (Indx);
4273 end loop;
4274
4275 -- What we are looking for here is the situation where
4276 -- the RM_Size given would be exactly right if there was
4277 -- a pragma Pack (resulting in the component size being
4278 -- the same as the RM_Size). Furthermore, the component
4279 -- type size must be an odd size (not a multiple of
4280 -- storage unit). If the component RM size is an exact
4281 -- number of storage units that is a power of two, the
4282 -- array is not packed and has a standard representation.
4283
4284 if RM_Size (E) = Num_Elmts * Rsiz
4285 and then Rsiz mod System_Storage_Unit /= 0
86cde7b1 4286 then
3d529af4
RD
4287 -- For implicit packing mode, just set the component
4288 -- size silently.
86cde7b1 4289
3d529af4
RD
4290 if Implicit_Packing then
4291 Set_Component_Size (Btyp, Rsiz);
4292 Set_Is_Bit_Packed_Array (Btyp);
4293 Set_Is_Packed (Btyp);
4294 Set_Has_Non_Standard_Rep (Btyp);
5a989c6b 4295
3d529af4
RD
4296 -- Otherwise give an error message
4297
4298 else
4299 Error_Msg_NE
4300 ("size given for& too small", SZ, E);
4301 Error_Msg_N -- CODEFIX
4302 ("\use explicit pragma Pack "
4303 & "or use pragma Implicit_Packing", SZ);
4304 end if;
5a989c6b 4305
3d529af4
RD
4306 elsif RM_Size (E) = Num_Elmts * Rsiz
4307 and then Implicit_Packing
4308 and then
4309 (Rsiz / System_Storage_Unit = 1
4310 or else
4311 Rsiz / System_Storage_Unit = 2
4312 or else
4313 Rsiz / System_Storage_Unit = 4)
4314 then
4315 -- Not a packed array, but indicate the desired
4316 -- component size, for the back-end.
5a989c6b 4317
3d529af4 4318 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
4319 end if;
4320 end if;
4321 end;
4322 end if;
4323
3d529af4
RD
4324 <<No_Implicit_Packing>>
4325
def46b54 4326 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 4327 -- will also get the base type frozen. Need RM reference ???
70482933
RK
4328
4329 Atype := Ancestor_Subtype (E);
4330
4331 if Present (Atype) then
c159409f 4332 Freeze_And_Append (Atype, N, Result);
70482933 4333
8110ee3b 4334 -- No ancestor subtype present
70482933 4335
8110ee3b
RD
4336 else
4337 -- See if we have a nearest ancestor that has a predicate.
4338 -- That catches the case of derived type with a predicate.
4339 -- Need RM reference here ???
4340
4341 Atype := Nearest_Ancestor (E);
4342
4343 if Present (Atype) and then Has_Predicates (Atype) then
4344 Freeze_And_Append (Atype, N, Result);
4345 end if;
4346
4347 -- Freeze base type before freezing the entity (RM 13.14(15))
4348
4349 if E /= Base_Type (E) then
4350 Freeze_And_Append (Base_Type (E), N, Result);
4351 end if;
70482933
RK
4352 end if;
4353
dc3af7e2
AC
4354 -- A subtype inherits all the type-related representation aspects
4355 -- from its parents (RM 13.1(8)).
4356
4357 Inherit_Aspects_At_Freeze_Point (E);
4358
fbf5a39b 4359 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
4360
4361 elsif Is_Derived_Type (E) then
c159409f
AC
4362 Freeze_And_Append (Etype (E), N, Result);
4363 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
dc3af7e2
AC
4364
4365 -- A derived type inherits each type-related representation aspect
4366 -- of its parent type that was directly specified before the
4367 -- declaration of the derived type (RM 13.1(15)).
4368
4369 Inherit_Aspects_At_Freeze_Point (E);
70482933
RK
4370 end if;
4371
63bb4268 4372 -- Array type
70482933
RK
4373
4374 if Is_Array_Type (E) then
63bb4268 4375 Freeze_Array_Type (E);
70482933 4376
fbf5a39b
AC
4377 -- For a class-wide type, the corresponding specific type is
4378 -- frozen as well (RM 13.14(15))
70482933
RK
4379
4380 elsif Is_Class_Wide_Type (E) then
c159409f 4381 Freeze_And_Append (Root_Type (E), N, Result);
70482933 4382
86cde7b1
RD
4383 -- If the base type of the class-wide type is still incomplete,
4384 -- the class-wide remains unfrozen as well. This is legal when
4385 -- E is the formal of a primitive operation of some other type
4386 -- which is being frozen.
4387
4388 if not Is_Frozen (Root_Type (E)) then
4389 Set_Is_Frozen (E, False);
4390 return Result;
4391 end if;
4392
67336960
AC
4393 -- The equivalent type associated with a class-wide subtype needs
4394 -- to be frozen to ensure that its layout is done.
4395
4396 if Ekind (E) = E_Class_Wide_Subtype
4397 and then Present (Equivalent_Type (E))
4398 then
4399 Freeze_And_Append (Equivalent_Type (E), N, Result);
4400 end if;
4401
4402 -- Generate an itype reference for a library-level class-wide type
4403 -- at the freeze point. Otherwise the first explicit reference to
4404 -- the type may appear in an inner scope which will be rejected by
4405 -- the back-end.
70482933
RK
4406
4407 if Is_Itype (E)
4408 and then Is_Compilation_Unit (Scope (E))
4409 then
70482933 4410 declare
fbf5a39b 4411 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
4412
4413 begin
4414 Set_Itype (Ref, E);
70482933 4415
67336960
AC
4416 -- From a gigi point of view, a class-wide subtype derives
4417 -- from its record equivalent type. As a result, the itype
4418 -- reference must appear after the freeze node of the
4419 -- equivalent type or gigi will reject the reference.
fbf5a39b 4420
67336960
AC
4421 if Ekind (E) = E_Class_Wide_Subtype
4422 and then Present (Equivalent_Type (E))
4423 then
4424 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
4425 else
4426 Add_To_Result (Ref);
4427 end if;
4428 end;
fbf5a39b
AC
4429 end if;
4430
e187fa72
AC
4431 -- For a record type or record subtype, freeze all component types
4432 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
4433 -- using Is_Record_Type, because we don't want to attempt the freeze
4434 -- for the case of a private type with record extension (we will do
4435 -- that later when the full type is frozen).
4436
3cd4a210
AC
4437 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
4438 and then not Is_Generic_Unit (Scope (E))
4439 then
70482933
RK
4440 Freeze_Record_Type (E);
4441
4442 -- For a concurrent type, freeze corresponding record type. This
e14c931f 4443 -- does not correspond to any specific rule in the RM, but the
70482933
RK
4444 -- record type is essentially part of the concurrent type.
4445 -- Freeze as well all local entities. This includes record types
4446 -- created for entry parameter blocks, and whatever local entities
4447 -- may appear in the private part.
4448
4449 elsif Is_Concurrent_Type (E) then
4450 if Present (Corresponding_Record_Type (E)) then
ef1c0511 4451 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
70482933
RK
4452 end if;
4453
4454 Comp := First_Entity (E);
70482933
RK
4455 while Present (Comp) loop
4456 if Is_Type (Comp) then
c159409f 4457 Freeze_And_Append (Comp, N, Result);
70482933
RK
4458
4459 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
4460 if Is_Itype (Etype (Comp))
4461 and then Underlying_Type (Scope (Etype (Comp))) = E
4462 then
4463 Undelay_Type (Etype (Comp));
4464 end if;
4465
c159409f 4466 Freeze_And_Append (Etype (Comp), N, Result);
70482933
RK
4467 end if;
4468
4469 Next_Entity (Comp);
4470 end loop;
4471
ee094616
RD
4472 -- Private types are required to point to the same freeze node as
4473 -- their corresponding full views. The freeze node itself has to
4474 -- point to the partial view of the entity (because from the partial
4475 -- view, we can retrieve the full view, but not the reverse).
4476 -- However, in order to freeze correctly, we need to freeze the full
4477 -- view. If we are freezing at the end of a scope (or within the
4478 -- scope of the private type), the partial and full views will have
4479 -- been swapped, the full view appears first in the entity chain and
4480 -- the swapping mechanism ensures that the pointers are properly set
4481 -- (on scope exit).
4482
4483 -- If we encounter the partial view before the full view (e.g. when
4484 -- freezing from another scope), we freeze the full view, and then
4485 -- set the pointers appropriately since we cannot rely on swapping to
4486 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
4487
4488 elsif Is_Incomplete_Or_Private_Type (E)
4489 and then not Is_Generic_Type (E)
4490 then
86cde7b1
RD
4491 -- The construction of the dispatch table associated with library
4492 -- level tagged types forces freezing of all the primitives of the
4493 -- type, which may cause premature freezing of the partial view.
4494 -- For example:
4495
4496 -- package Pkg is
4497 -- type T is tagged private;
4498 -- type DT is new T with private;
3e24afaa 4499 -- procedure Prim (X : in out T; Y : in out DT'Class);
86cde7b1
RD
4500 -- private
4501 -- type T is tagged null record;
4502 -- Obj : T;
4503 -- type DT is new T with null record;
4504 -- end;
4505
4506 -- In this case the type will be frozen later by the usual
4507 -- mechanism: an object declaration, an instantiation, or the
4508 -- end of a declarative part.
4509
4510 if Is_Library_Level_Tagged_Type (E)
4511 and then not Present (Full_View (E))
4512 then
4513 Set_Is_Frozen (E, False);
4514 return Result;
4515
70482933
RK
4516 -- Case of full view present
4517
86cde7b1 4518 elsif Present (Full_View (E)) then
70482933 4519
ee094616
RD
4520 -- If full view has already been frozen, then no further
4521 -- processing is required
70482933
RK
4522
4523 if Is_Frozen (Full_View (E)) then
70482933
RK
4524 Set_Has_Delayed_Freeze (E, False);
4525 Set_Freeze_Node (E, Empty);
4526 Check_Debug_Info_Needed (E);
4527
ee094616
RD
4528 -- Otherwise freeze full view and patch the pointers so that
4529 -- the freeze node will elaborate both views in the back-end.
70482933
RK
4530
4531 else
fbf5a39b
AC
4532 declare
4533 Full : constant Entity_Id := Full_View (E);
70482933 4534
fbf5a39b
AC
4535 begin
4536 if Is_Private_Type (Full)
4537 and then Present (Underlying_Full_View (Full))
4538 then
4539 Freeze_And_Append
c159409f 4540 (Underlying_Full_View (Full), N, Result);
fbf5a39b 4541 end if;
70482933 4542
c159409f 4543 Freeze_And_Append (Full, N, Result);
70482933 4544
fbf5a39b
AC
4545 if Has_Delayed_Freeze (E) then
4546 F_Node := Freeze_Node (Full);
70482933 4547
fbf5a39b
AC
4548 if Present (F_Node) then
4549 Set_Freeze_Node (E, F_Node);
4550 Set_Entity (F_Node, E);
4551
4552 else
def46b54
RD
4553 -- {Incomplete,Private}_Subtypes with Full_Views
4554 -- constrained by discriminants.
fbf5a39b
AC
4555
4556 Set_Has_Delayed_Freeze (E, False);
4557 Set_Freeze_Node (E, Empty);
4558 end if;
70482933 4559 end if;
fbf5a39b 4560 end;
70482933
RK
4561
4562 Check_Debug_Info_Needed (E);
4563 end if;
4564
ee094616
RD
4565 -- AI-117 requires that the convention of a partial view be the
4566 -- same as the convention of the full view. Note that this is a
4567 -- recognized breach of privacy, but it's essential for logical
4568 -- consistency of representation, and the lack of a rule in
4569 -- RM95 was an oversight.
70482933
RK
4570
4571 Set_Convention (E, Convention (Full_View (E)));
4572
4573 Set_Size_Known_At_Compile_Time (E,
4574 Size_Known_At_Compile_Time (Full_View (E)));
4575
4576 -- Size information is copied from the full view to the
def46b54 4577 -- incomplete or private view for consistency.
70482933 4578
ee094616
RD
4579 -- We skip this is the full view is not a type. This is very
4580 -- strange of course, and can only happen as a result of
4581 -- certain illegalities, such as a premature attempt to derive
4582 -- from an incomplete type.
70482933
RK
4583
4584 if Is_Type (Full_View (E)) then
4585 Set_Size_Info (E, Full_View (E));
4586 Set_RM_Size (E, RM_Size (Full_View (E)));
4587 end if;
4588
4589 return Result;
4590
4591 -- Case of no full view present. If entity is derived or subtype,
4592 -- it is safe to freeze, correctness depends on the frozen status
4593 -- of parent. Otherwise it is either premature usage, or a Taft
4594 -- amendment type, so diagnosis is at the point of use and the
4595 -- type might be frozen later.
4596
ef1c0511 4597 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
70482933
RK
4598 null;
4599
4600 else
4601 Set_Is_Frozen (E, False);
4602 return No_List;
4603 end if;
4604
4605 -- For access subprogram, freeze types of all formals, the return
4606 -- type was already frozen, since it is the Etype of the function.
8aec446b 4607 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 4608 -- they cannot be incomplete.
70482933
RK
4609
4610 elsif Ekind (E) = E_Subprogram_Type then
4611 Formal := First_Formal (E);
4612 while Present (Formal) loop
8aec446b
AC
4613 if Ekind (Etype (Formal)) = E_Incomplete_Type
4614 and then No (Full_View (Etype (Formal)))
4615 and then not Is_Value_Type (Etype (Formal))
4616 then
4617 if Is_Tagged_Type (Etype (Formal)) then
4618 null;
dd386db0 4619
3cae7f14 4620 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
4621 -- subprogram specifications.
4622
4623 elsif Ada_Version < Ada_2012 then
8aec446b
AC
4624 Error_Msg_NE
4625 ("invalid use of incomplete type&", E, Etype (Formal));
4626 end if;
4627 end if;
4628
c159409f 4629 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
4630 Next_Formal (Formal);
4631 end loop;
4632
70482933
RK
4633 Freeze_Subprogram (E);
4634
ee094616
RD
4635 -- For access to a protected subprogram, freeze the equivalent type
4636 -- (however this is not set if we are not generating code or if this
4637 -- is an anonymous type used just for resolution).
70482933 4638
fea9e956 4639 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 4640 if Present (Equivalent_Type (E)) then
c159409f 4641 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 4642 end if;
70482933
RK
4643 end if;
4644
4645 -- Generic types are never seen by the back-end, and are also not
4646 -- processed by the expander (since the expander is turned off for
4647 -- generic processing), so we never need freeze nodes for them.
4648
4649 if Is_Generic_Type (E) then
4650 return Result;
4651 end if;
4652
4653 -- Some special processing for non-generic types to complete
4654 -- representation details not known till the freeze point.
4655
4656 if Is_Fixed_Point_Type (E) then
4657 Freeze_Fixed_Point_Type (E);
4658
ee094616
RD
4659 -- Some error checks required for ordinary fixed-point type. Defer
4660 -- these till the freeze-point since we need the small and range
4661 -- values. We only do these checks for base types
fbf5a39b 4662
d347f572 4663 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
4664 if Small_Value (E) < Ureal_2_M_80 then
4665 Error_Msg_Name_1 := Name_Small;
4666 Error_Msg_N
7d8b9c99 4667 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
4668
4669 elsif Small_Value (E) > Ureal_2_80 then
4670 Error_Msg_Name_1 := Name_Small;
4671 Error_Msg_N
7d8b9c99 4672 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
4673 end if;
4674
4675 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
4676 Error_Msg_Name_1 := Name_First;
4677 Error_Msg_N
7d8b9c99 4678 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
4679 end if;
4680
4681 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
4682 Error_Msg_Name_1 := Name_Last;
4683 Error_Msg_N
7d8b9c99 4684 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
4685 end if;
4686 end if;
4687
70482933
RK
4688 elsif Is_Enumeration_Type (E) then
4689 Freeze_Enumeration_Type (E);
4690
4691 elsif Is_Integer_Type (E) then
4692 Adjust_Esize_For_Alignment (E);
4693
79afa047
AC
4694 if Is_Modular_Integer_Type (E)
4695 and then Warn_On_Suspicious_Modulus_Value
4696 then
67b3acf8
RD
4697 Check_Suspicious_Modulus (E);
4698 end if;
4699
ea2af26a
AC
4700 elsif Is_Access_Type (E)
4701 and then not Is_Access_Subprogram_Type (E)
4702 then
fab2daeb
AC
4703 -- If a pragma Default_Storage_Pool applies, and this type has no
4704 -- Storage_Pool or Storage_Size clause (which must have occurred
4705 -- before the freezing point), then use the default. This applies
4706 -- only to base types.
a5fe079c
AC
4707
4708 -- None of this applies to access to subprograms, for which there
ea2af26a 4709 -- are clearly no pools.
fab2daeb
AC
4710
4711 if Present (Default_Pool)
d347f572 4712 and then Is_Base_Type (E)
fab2daeb
AC
4713 and then not Has_Storage_Size_Clause (E)
4714 and then No (Associated_Storage_Pool (E))
4715 then
4716 -- Case of pragma Default_Storage_Pool (null)
4717
4718 if Nkind (Default_Pool) = N_Null then
4719 Set_No_Pool_Assigned (E);
4720
4721 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
4722
4723 else
4724 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
4725 end if;
4726 end if;
4727
edd63e9b
ES
4728 -- Check restriction for standard storage pool
4729
4730 if No (Associated_Storage_Pool (E)) then
4731 Check_Restriction (No_Standard_Storage_Pools, E);
4732 end if;
4733
4734 -- Deal with error message for pure access type. This is not an
4735 -- error in Ada 2005 if there is no pool (see AI-366).
4736
4737 if Is_Pure_Unit_Access_Type (E)
0791fbe9 4738 and then (Ada_Version < Ada_2005
2c1b72d7 4739 or else not No_Pool_Assigned (E))
3cd4a210 4740 and then not Is_Generic_Unit (Scope (E))
edd63e9b
ES
4741 then
4742 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 4743
0791fbe9 4744 if Ada_Version >= Ada_2005 then
c6a9797e 4745 Error_Msg_N
685bc70f 4746 ("\would be legal if Storage_Size of 0 given??", E);
c6a9797e
RD
4747
4748 elsif No_Pool_Assigned (E) then
4749 Error_Msg_N
685bc70f 4750 ("\would be legal in Ada 2005??", E);
c6a9797e
RD
4751
4752 else
4753 Error_Msg_N
4754 ("\would be legal in Ada 2005 if "
685bc70f 4755 & "Storage_Size of 0 given??", E);
c6a9797e 4756 end if;
edd63e9b 4757 end if;
70482933
RK
4758 end if;
4759
edd63e9b
ES
4760 -- Case of composite types
4761
70482933
RK
4762 if Is_Composite_Type (E) then
4763
edd63e9b
ES
4764 -- AI-117 requires that all new primitives of a tagged type must
4765 -- inherit the convention of the full view of the type. Inherited
4766 -- and overriding operations are defined to inherit the convention
4767 -- of their parent or overridden subprogram (also specified in
ee094616
RD
4768 -- AI-117), which will have occurred earlier (in Derive_Subprogram
4769 -- and New_Overloaded_Entity). Here we set the convention of
4770 -- primitives that are still convention Ada, which will ensure
def46b54
RD
4771 -- that any new primitives inherit the type's convention. Class-
4772 -- wide types can have a foreign convention inherited from their
4773 -- specific type, but are excluded from this since they don't have
4774 -- any associated primitives.
70482933
RK
4775
4776 if Is_Tagged_Type (E)
4777 and then not Is_Class_Wide_Type (E)
4778 and then Convention (E) /= Convention_Ada
4779 then
4780 declare
4781 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 4782 Prim : Elmt_Id;
3cae7f14 4783
70482933 4784 begin
07fc65c4 4785 Prim := First_Elmt (Prim_List);
70482933
RK
4786 while Present (Prim) loop
4787 if Convention (Node (Prim)) = Convention_Ada then
4788 Set_Convention (Node (Prim), Convention (E));
4789 end if;
4790
4791 Next_Elmt (Prim);
4792 end loop;
4793 end;
4794 end if;
a8551b5f
AC
4795
4796 -- If the type is a simple storage pool type, then this is where
4797 -- we attempt to locate and validate its Allocate, Deallocate, and
4798 -- Storage_Size operations (the first is required, and the latter
4799 -- two are optional). We also verify that the full type for a
4800 -- private type is allowed to be a simple storage pool type.
4801
f6205414 4802 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
a8551b5f
AC
4803 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
4804 then
a8551b5f
AC
4805 -- If the type is marked Has_Private_Declaration, then this is
4806 -- a full type for a private type that was specified with the
f6205414 4807 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
a8551b5f
AC
4808 -- pragma is allowed for the full type (for example, it can't
4809 -- be an array type, or a nonlimited record type).
4810
4811 if Has_Private_Declaration (E) then
ef1c0511 4812 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
a8551b5f
AC
4813 and then not Is_Private_Type (E)
4814 then
f6205414 4815 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
a8551b5f
AC
4816 Error_Msg_N
4817 ("pragma% can only apply to full type that is an " &
4818 "explicitly limited type", E);
4819 end if;
4820 end if;
4821
4822 Validate_Simple_Pool_Ops : declare
4823 Pool_Type : Entity_Id renames E;
4824 Address_Type : constant Entity_Id := RTE (RE_Address);
4825 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
4826
4827 procedure Validate_Simple_Pool_Op_Formal
4828 (Pool_Op : Entity_Id;
4829 Pool_Op_Formal : in out Entity_Id;
4830 Expected_Mode : Formal_Kind;
4831 Expected_Type : Entity_Id;
4832 Formal_Name : String;
4833 OK_Formal : in out Boolean);
4834 -- Validate one formal Pool_Op_Formal of the candidate pool
4835 -- operation Pool_Op. The formal must be of Expected_Type
4836 -- and have mode Expected_Mode. OK_Formal will be set to
4837 -- False if the formal doesn't match. If OK_Formal is False
4838 -- on entry, then the formal will effectively be ignored
4839 -- (because validation of the pool op has already failed).
4840 -- Upon return, Pool_Op_Formal will be updated to the next
4841 -- formal, if any.
4842
ef1c0511
AC
4843 procedure Validate_Simple_Pool_Operation
4844 (Op_Name : Name_Id);
a8551b5f
AC
4845 -- Search for and validate a simple pool operation with the
4846 -- name Op_Name. If the name is Allocate, then there must be
4847 -- exactly one such primitive operation for the simple pool
4848 -- type. If the name is Deallocate or Storage_Size, then
4849 -- there can be at most one such primitive operation. The
4850 -- profile of the located primitive must conform to what
4851 -- is expected for each operation.
4852
4853 ------------------------------------
4854 -- Validate_Simple_Pool_Op_Formal --
4855 ------------------------------------
4856
4857 procedure Validate_Simple_Pool_Op_Formal
4858 (Pool_Op : Entity_Id;
4859 Pool_Op_Formal : in out Entity_Id;
4860 Expected_Mode : Formal_Kind;
4861 Expected_Type : Entity_Id;
4862 Formal_Name : String;
4863 OK_Formal : in out Boolean)
4864 is
4865 begin
4866 -- If OK_Formal is False on entry, then simply ignore
4867 -- the formal, because an earlier formal has already
4868 -- been flagged.
4869
4870 if not OK_Formal then
4871 return;
4872
4873 -- If no formal is passed in, then issue an error for a
4874 -- missing formal.
4875
4876 elsif not Present (Pool_Op_Formal) then
4877 Error_Msg_NE
4878 ("simple storage pool op missing formal " &
4879 Formal_Name & " of type&", Pool_Op, Expected_Type);
4880 OK_Formal := False;
4881
4882 return;
4883 end if;
4884
4885 if Etype (Pool_Op_Formal) /= Expected_Type then
260359e3 4886
a8551b5f
AC
4887 -- If the pool type was expected for this formal, then
4888 -- this will not be considered a candidate operation
4889 -- for the simple pool, so we unset OK_Formal so that
4890 -- the op and any later formals will be ignored.
4891
4892 if Expected_Type = Pool_Type then
4893 OK_Formal := False;
4894
4895 return;
4896
4897 else
4898 Error_Msg_NE
4899 ("wrong type for formal " & Formal_Name &
4900 " of simple storage pool op; expected type&",
4901 Pool_Op_Formal, Expected_Type);
4902 end if;
4903 end if;
4904
4905 -- Issue error if formal's mode is not the expected one
4906
4907 if Ekind (Pool_Op_Formal) /= Expected_Mode then
4908 Error_Msg_N
4909 ("wrong mode for formal of simple storage pool op",
4910 Pool_Op_Formal);
4911 end if;
4912
4913 -- Advance to the next formal
4914
4915 Next_Formal (Pool_Op_Formal);
4916 end Validate_Simple_Pool_Op_Formal;
4917
4918 ------------------------------------
4919 -- Validate_Simple_Pool_Operation --
4920 ------------------------------------
4921
4922 procedure Validate_Simple_Pool_Operation
4923 (Op_Name : Name_Id)
4924 is
4925 Op : Entity_Id;
4926 Found_Op : Entity_Id := Empty;
4927 Formal : Entity_Id;
4928 Is_OK : Boolean;
4929
4930 begin
4931 pragma Assert
b69cd36a
AC
4932 (Nam_In (Op_Name, Name_Allocate,
4933 Name_Deallocate,
4934 Name_Storage_Size));
a8551b5f
AC
4935
4936 Error_Msg_Name_1 := Op_Name;
4937
4938 -- For each homonym declared immediately in the scope
4939 -- of the simple storage pool type, determine whether
4940 -- the homonym is an operation of the pool type, and,
4941 -- if so, check that its profile is as expected for
4942 -- a simple pool operation of that name.
4943
4944 Op := Get_Name_Entity_Id (Op_Name);
4945 while Present (Op) loop
4946 if Ekind_In (Op, E_Function, E_Procedure)
4947 and then Scope (Op) = Current_Scope
4948 then
4949 Formal := First_Entity (Op);
4950
4951 Is_OK := True;
4952
4953 -- The first parameter must be of the pool type
4954 -- in order for the operation to qualify.
4955
4956 if Op_Name = Name_Storage_Size then
4957 Validate_Simple_Pool_Op_Formal
4958 (Op, Formal, E_In_Parameter, Pool_Type,
4959 "Pool", Is_OK);
a8551b5f
AC
4960 else
4961 Validate_Simple_Pool_Op_Formal
4962 (Op, Formal, E_In_Out_Parameter, Pool_Type,
4963 "Pool", Is_OK);
4964 end if;
4965
4966 -- If another operation with this name has already
4967 -- been located for the type, then flag an error,
4968 -- since we only allow the type to have a single
4969 -- such primitive.
4970
4971 if Present (Found_Op) and then Is_OK then
4972 Error_Msg_NE
4973 ("only one % operation allowed for " &
4974 "simple storage pool type&", Op, Pool_Type);
4975 end if;
4976
4977 -- In the case of Allocate and Deallocate, a formal
4978 -- of type System.Address is required.
4979
4980 if Op_Name = Name_Allocate then
4981 Validate_Simple_Pool_Op_Formal
4982 (Op, Formal, E_Out_Parameter,
b69cd36a
AC
4983 Address_Type, "Storage_Address", Is_OK);
4984
a8551b5f
AC
4985 elsif Op_Name = Name_Deallocate then
4986 Validate_Simple_Pool_Op_Formal
4987 (Op, Formal, E_In_Parameter,
4988 Address_Type, "Storage_Address", Is_OK);
4989 end if;
4990
4991 -- In the case of Allocate and Deallocate, formals
4992 -- of type Storage_Count are required as the third
4993 -- and fourth parameters.
4994
4995 if Op_Name /= Name_Storage_Size then
4996 Validate_Simple_Pool_Op_Formal
4997 (Op, Formal, E_In_Parameter,
4998 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
a8551b5f
AC
4999 Validate_Simple_Pool_Op_Formal
5000 (Op, Formal, E_In_Parameter,
5001 Stg_Cnt_Type, "Alignment", Is_OK);
5002 end if;
5003
5004 -- If no mismatched formals have been found (Is_OK)
5005 -- and no excess formals are present, then this
5006 -- operation has been validated, so record it.
5007
5008 if not Present (Formal) and then Is_OK then
5009 Found_Op := Op;
5010 end if;
5011 end if;
5012
5013 Op := Homonym (Op);
5014 end loop;
5015
5016 -- There must be a valid Allocate operation for the type,
5017 -- so issue an error if none was found.
5018
5019 if Op_Name = Name_Allocate
5020 and then not Present (Found_Op)
5021 then
5022 Error_Msg_N ("missing % operation for simple " &
5023 "storage pool type", Pool_Type);
5024
5025 elsif Present (Found_Op) then
260359e3 5026
a8551b5f
AC
5027 -- Simple pool operations can't be abstract
5028
5029 if Is_Abstract_Subprogram (Found_Op) then
5030 Error_Msg_N
5031 ("simple storage pool operation must not be " &
5032 "abstract", Found_Op);
5033 end if;
5034
5035 -- The Storage_Size operation must be a function with
5036 -- Storage_Count as its result type.
5037
5038 if Op_Name = Name_Storage_Size then
5039 if Ekind (Found_Op) = E_Procedure then
5040 Error_Msg_N
5041 ("% operation must be a function", Found_Op);
5042
5043 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5044 Error_Msg_NE
5045 ("wrong result type for%, expected type&",
5046 Found_Op, Stg_Cnt_Type);
5047 end if;
5048
5049 -- Allocate and Deallocate must be procedures
5050
5051 elsif Ekind (Found_Op) = E_Function then
5052 Error_Msg_N
5053 ("% operation must be a procedure", Found_Op);
5054 end if;
5055 end if;
5056 end Validate_Simple_Pool_Operation;
5057
5058 -- Start of processing for Validate_Simple_Pool_Ops
5059
5060 begin
5061 Validate_Simple_Pool_Operation (Name_Allocate);
a8551b5f 5062 Validate_Simple_Pool_Operation (Name_Deallocate);
a8551b5f
AC
5063 Validate_Simple_Pool_Operation (Name_Storage_Size);
5064 end Validate_Simple_Pool_Ops;
5065 end if;
70482933
RK
5066 end if;
5067
ee094616
RD
5068 -- Now that all types from which E may depend are frozen, see if the
5069 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 5070 -- strict alignment is required
70482933
RK
5071
5072 Check_Compile_Time_Size (E);
5073 Check_Unsigned_Type (E);
5074
5075 if Base_Type (E) = E then
5076 Check_Strict_Alignment (E);
5077 end if;
5078
5079 -- Do not allow a size clause for a type which does not have a size
5080 -- that is known at compile time
5081
5082 if Has_Size_Clause (E)
5083 and then not Size_Known_At_Compile_Time (E)
5084 then
e14c931f 5085 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
5086 -- in all errors mode, since this is often a junk message
5087
5088 if not Error_Posted (E) then
5089 Error_Msg_N
5090 ("size clause not allowed for variable length type",
5091 Size_Clause (E));
5092 end if;
70482933
RK
5093 end if;
5094
a01b9df6
AC
5095 -- Now we set/verify the representation information, in particular
5096 -- the size and alignment values. This processing is not required for
5097 -- generic types, since generic types do not play any part in code
5098 -- generation, and so the size and alignment values for such types
84c4181d
AC
5099 -- are irrelevant. Ditto for types declared within a generic unit,
5100 -- which may have components that depend on generic parameters, and
5101 -- that will be recreated in an instance.
70482933 5102
84c4181d
AC
5103 if Inside_A_Generic then
5104 null;
70482933
RK
5105
5106 -- Otherwise we call the layout procedure
5107
5108 else
5109 Layout_Type (E);
5110 end if;
a01b9df6 5111
cc570be6
AC
5112 -- If this is an access to subprogram whose designated type is itself
5113 -- a subprogram type, the return type of this anonymous subprogram
5114 -- type must be decorated as well.
5115
5116 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5117 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5118 then
5119 Layout_Type (Etype (Designated_Type (E)));
5120 end if;
5121
a01b9df6
AC
5122 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5123 -- this is where we analye the expression (after the type is frozen,
5124 -- since in the case of Default_Value, we are analyzing with the
5125 -- type itself, and we treat Default_Component_Value similarly for
1b73408a 5126 -- the sake of uniformity).
a01b9df6
AC
5127
5128 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5129 declare
37da997b
RD
5130 Nam : Name_Id;
5131 Exp : Node_Id;
5132 Typ : Entity_Id;
a01b9df6
AC
5133
5134 begin
5135 if Is_Scalar_Type (E) then
5136 Nam := Name_Default_Value;
5137 Typ := E;
6d9e03cb 5138 Exp := Default_Aspect_Value (Typ);
a01b9df6
AC
5139 else
5140 Nam := Name_Default_Component_Value;
5141 Typ := Component_Type (E);
37da997b 5142 Exp := Default_Aspect_Component_Value (E);
a01b9df6
AC
5143 end if;
5144
a01b9df6
AC
5145 Analyze_And_Resolve (Exp, Typ);
5146
5147 if Etype (Exp) /= Any_Type then
5148 if not Is_Static_Expression (Exp) then
5149 Error_Msg_Name_1 := Nam;
5150 Flag_Non_Static_Expr
5151 ("aspect% requires static expression", Exp);
5152 end if;
5153 end if;
5154 end;
5155 end if;
70482933
RK
5156
5157 -- End of freeze processing for type entities
5158 end if;
5159
5160 -- Here is where we logically freeze the current entity. If it has a
5161 -- freeze node, then this is the point at which the freeze node is
5162 -- linked into the result list.
5163
5164 if Has_Delayed_Freeze (E) then
5165
5166 -- If a freeze node is already allocated, use it, otherwise allocate
5167 -- a new one. The preallocation happens in the case of anonymous base
5168 -- types, where we preallocate so that we can set First_Subtype_Link.
5169 -- Note that we reset the Sloc to the current freeze location.
5170
5171 if Present (Freeze_Node (E)) then
5172 F_Node := Freeze_Node (E);
5173 Set_Sloc (F_Node, Loc);
5174
5175 else
5176 F_Node := New_Node (N_Freeze_Entity, Loc);
5177 Set_Freeze_Node (E, F_Node);
5178 Set_Access_Types_To_Process (F_Node, No_Elist);
5179 Set_TSS_Elist (F_Node, No_Elist);
5180 Set_Actions (F_Node, No_List);
5181 end if;
5182
5183 Set_Entity (F_Node, E);
90878b12 5184 Add_To_Result (F_Node);
35ae2ed8
AC
5185
5186 -- A final pass over record types with discriminants. If the type
5187 -- has an incomplete declaration, there may be constrained access
5188 -- subtypes declared elsewhere, which do not depend on the discrimi-
5189 -- nants of the type, and which are used as component types (i.e.
5190 -- the full view is a recursive type). The designated types of these
5191 -- subtypes can only be elaborated after the type itself, and they
5192 -- need an itype reference.
5193
5194 if Ekind (E) = E_Record_Type
5195 and then Has_Discriminants (E)
5196 then
5197 declare
5198 Comp : Entity_Id;
5199 IR : Node_Id;
5200 Typ : Entity_Id;
5201
5202 begin
5203 Comp := First_Component (E);
35ae2ed8
AC
5204 while Present (Comp) loop
5205 Typ := Etype (Comp);
5206
5207 if Ekind (Comp) = E_Component
5208 and then Is_Access_Type (Typ)
5209 and then Scope (Typ) /= E
5210 and then Base_Type (Designated_Type (Typ)) = E
5211 and then Is_Itype (Designated_Type (Typ))
5212 then
5213 IR := Make_Itype_Reference (Sloc (Comp));
5214 Set_Itype (IR, Designated_Type (Typ));
5215 Append (IR, Result);
5216 end if;
5217
5218 Next_Component (Comp);
5219 end loop;
5220 end;
5221 end if;
70482933
RK
5222 end if;
5223
5224 -- When a type is frozen, the first subtype of the type is frozen as
5225 -- well (RM 13.14(15)). This has to be done after freezing the type,
5226 -- since obviously the first subtype depends on its own base type.
5227
5228 if Is_Type (E) then
c159409f 5229 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
5230
5231 -- If we just froze a tagged non-class wide record, then freeze the
5232 -- corresponding class-wide type. This must be done after the tagged
5233 -- type itself is frozen, because the class-wide type refers to the
5234 -- tagged type which generates the class.
5235
5236 if Is_Tagged_Type (E)
5237 and then not Is_Class_Wide_Type (E)
5238 and then Present (Class_Wide_Type (E))
5239 then
c159409f 5240 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
5241 end if;
5242 end if;
5243
5244 Check_Debug_Info_Needed (E);
5245
5246 -- Special handling for subprograms
5247
5248 if Is_Subprogram (E) then
5249
5250 -- If subprogram has address clause then reset Is_Public flag, since
5251 -- we do not want the backend to generate external references.
5252
5253 if Present (Address_Clause (E))
5254 and then not Is_Library_Level_Entity (E)
5255 then
5256 Set_Is_Public (E, False);
70482933 5257 end if;
70482933
RK
5258 end if;
5259
5260 return Result;
5261 end Freeze_Entity;
5262
5263 -----------------------------
5264 -- Freeze_Enumeration_Type --
5265 -----------------------------
5266
5267 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
5268 begin
d677afa9
ES
5269 -- By default, if no size clause is present, an enumeration type with
5270 -- Convention C is assumed to interface to a C enum, and has integer
5271 -- size. This applies to types. For subtypes, verify that its base
be482a8c
AC
5272 -- type has no size clause either. Treat other foreign conventions
5273 -- in the same way, and also make sure alignment is set right.
d677afa9 5274
70482933
RK
5275 if Has_Foreign_Convention (Typ)
5276 and then not Has_Size_Clause (Typ)
d677afa9 5277 and then not Has_Size_Clause (Base_Type (Typ))
70482933 5278 and then Esize (Typ) < Standard_Integer_Size
d0ef7921
AC
5279
5280 -- Don't do this if Short_Enums on target
5281
f27ad2b2 5282 and then not Target_Short_Enums
70482933
RK
5283 then
5284 Init_Esize (Typ, Standard_Integer_Size);
be482a8c 5285 Set_Alignment (Typ, Alignment (Standard_Integer));
d677afa9 5286
d0ef7921
AC
5287 -- Normal Ada case or size clause present or not Long_C_Enums on target
5288
70482933 5289 else
d677afa9
ES
5290 -- If the enumeration type interfaces to C, and it has a size clause
5291 -- that specifies less than int size, it warrants a warning. The
5292 -- user may intend the C type to be an enum or a char, so this is
5293 -- not by itself an error that the Ada compiler can detect, but it
5294 -- it is a worth a heads-up. For Boolean and Character types we
5295 -- assume that the programmer has the proper C type in mind.
5296
5297 if Convention (Typ) = Convention_C
5298 and then Has_Size_Clause (Typ)
5299 and then Esize (Typ) /= Esize (Standard_Integer)
5300 and then not Is_Boolean_Type (Typ)
5301 and then not Is_Character_Type (Typ)
d0ef7921
AC
5302
5303 -- Don't do this if Short_Enums on target
5304
f27ad2b2 5305 and then not Target_Short_Enums
d677afa9
ES
5306 then
5307 Error_Msg_N
685bc70f 5308 ("C enum types have the size of a C int??", Size_Clause (Typ));
d677afa9
ES
5309 end if;
5310
70482933
RK
5311 Adjust_Esize_For_Alignment (Typ);
5312 end if;
5313 end Freeze_Enumeration_Type;
5314
5315 -----------------------
5316 -- Freeze_Expression --
5317 -----------------------
5318
5319 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
5320 In_Spec_Exp : constant Boolean := In_Spec_Expression;
5321 Typ : Entity_Id;
5322 Nam : Entity_Id;
5323 Desig_Typ : Entity_Id;
5324 P : Node_Id;
5325 Parent_P : Node_Id;
70482933
RK
5326
5327 Freeze_Outside : Boolean := False;
5328 -- This flag is set true if the entity must be frozen outside the
5329 -- current subprogram. This happens in the case of expander generated
5330 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
5331 -- not freeze all entities like other bodies, but which nevertheless
5332 -- may reference entities that have to be frozen before the body and
5333 -- obviously cannot be frozen inside the body.
5334
5335 function In_Exp_Body (N : Node_Id) return Boolean;
5336 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 5337 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
5338 -- subprogram (init proc, stream subprogram, or renaming as body).
5339 -- If so, this is not a freezing context.
70482933 5340
fbf5a39b
AC
5341 -----------------
5342 -- In_Exp_Body --
5343 -----------------
5344
70482933 5345 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
5346 P : Node_Id;
5347 Id : Entity_Id;
70482933
RK
5348
5349 begin
5350 if Nkind (N) = N_Subprogram_Body then
5351 P := N;
5352 else
5353 P := Parent (N);
5354 end if;
5355
5356 if Nkind (P) /= N_Subprogram_Body then
5357 return False;
5358
5359 else
7d8b9c99
RD
5360 Id := Defining_Unit_Name (Specification (P));
5361
21791d97
AC
5362 -- Following complex conditional could use comments ???
5363
7d8b9c99 5364 if Nkind (Id) = N_Defining_Identifier
21791d97
AC
5365 and then (Is_Init_Proc (Id)
5366 or else Is_TSS (Id, TSS_Stream_Input)
5367 or else Is_TSS (Id, TSS_Stream_Output)
5368 or else Is_TSS (Id, TSS_Stream_Read)
5369 or else Is_TSS (Id, TSS_Stream_Write)
5370 or else Nkind_In (Original_Node (P),
5371 N_Subprogram_Renaming_Declaration,
5372 N_Expression_Function))
70482933
RK
5373 then
5374 return True;
5375 else
5376 return False;
5377 end if;
5378 end if;
70482933
RK
5379 end In_Exp_Body;
5380
5381 -- Start of processing for Freeze_Expression
5382
5383 begin
edd63e9b
ES
5384 -- Immediate return if freezing is inhibited. This flag is set by the
5385 -- analyzer to stop freezing on generated expressions that would cause
5386 -- freezing if they were in the source program, but which are not
5387 -- supposed to freeze, since they are created.
70482933
RK
5388
5389 if Must_Not_Freeze (N) then
5390 return;
5391 end if;
5392
5393 -- If expression is non-static, then it does not freeze in a default
5394 -- expression, see section "Handling of Default Expressions" in the
fe58fea7
AC
5395 -- spec of package Sem for further details. Note that we have to make
5396 -- sure that we actually have a real expression (if we have a subtype
a90bd866 5397 -- indication, we can't test Is_Static_Expression). However, we exclude
fe58fea7
AC
5398 -- the case of the prefix of an attribute of a static scalar subtype
5399 -- from this early return, because static subtype attributes should
5400 -- always cause freezing, even in default expressions, but the attribute
5401 -- may not have been marked as static yet (because in Resolve_Attribute,
5402 -- the call to Eval_Attribute follows the call of Freeze_Expression on
5403 -- the prefix).
70482933 5404
c6a9797e 5405 if In_Spec_Exp
70482933
RK
5406 and then Nkind (N) in N_Subexpr
5407 and then not Is_Static_Expression (N)
fe58fea7
AC
5408 and then (Nkind (Parent (N)) /= N_Attribute_Reference
5409 or else not (Is_Entity_Name (N)
5410 and then Is_Type (Entity (N))
5411 and then Is_Static_Subtype (Entity (N))))
70482933
RK
5412 then
5413 return;
5414 end if;
5415
5416 -- Freeze type of expression if not frozen already
5417
fbf5a39b
AC
5418 Typ := Empty;
5419
5420 if Nkind (N) in N_Has_Etype then
5421 if not Is_Frozen (Etype (N)) then
5422 Typ := Etype (N);
5423
5424 -- Base type may be an derived numeric type that is frozen at
5425 -- the point of declaration, but first_subtype is still unfrozen.
5426
5427 elsif not Is_Frozen (First_Subtype (Etype (N))) then
5428 Typ := First_Subtype (Etype (N));
5429 end if;
70482933
RK
5430 end if;
5431
5432 -- For entity name, freeze entity if not frozen already. A special
5433 -- exception occurs for an identifier that did not come from source.
5434 -- We don't let such identifiers freeze a non-internal entity, i.e.
5435 -- an entity that did come from source, since such an identifier was
5436 -- generated by the expander, and cannot have any semantic effect on
5437 -- the freezing semantics. For example, this stops the parameter of
5438 -- an initialization procedure from freezing the variable.
5439
5440 if Is_Entity_Name (N)
5441 and then not Is_Frozen (Entity (N))
5442 and then (Nkind (N) /= N_Identifier
5443 or else Comes_From_Source (N)
5444 or else not Comes_From_Source (Entity (N)))
5445 then
5446 Nam := Entity (N);
70482933
RK
5447 else
5448 Nam := Empty;
5449 end if;
5450
49e90211 5451 -- For an allocator freeze designated type if not frozen already
70482933 5452
ee094616
RD
5453 -- For an aggregate whose component type is an access type, freeze the
5454 -- designated type now, so that its freeze does not appear within the
5455 -- loop that might be created in the expansion of the aggregate. If the
5456 -- designated type is a private type without full view, the expression
5457 -- cannot contain an allocator, so the type is not frozen.
70482933 5458
7aedb36a
AC
5459 -- For a function, we freeze the entity when the subprogram declaration
5460 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 5461 -- before the declaration is frozen. We need to generate the extra
7aedb36a 5462 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
5463 -- the proper actuals. This only applies to Ada subprograms, not to
5464 -- imported ones.
7aedb36a 5465
70482933 5466 Desig_Typ := Empty;
70482933 5467
fbf5a39b 5468 case Nkind (N) is
70482933
RK
5469 when N_Allocator =>
5470 Desig_Typ := Designated_Type (Etype (N));
5471
5472 when N_Aggregate =>
5473 if Is_Array_Type (Etype (N))
5474 and then Is_Access_Type (Component_Type (Etype (N)))
5475 then
5476 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
5477 end if;
5478
5479 when N_Selected_Component |
5480 N_Indexed_Component |
5481 N_Slice =>
5482
5483 if Is_Access_Type (Etype (Prefix (N))) then
5484 Desig_Typ := Designated_Type (Etype (Prefix (N)));
5485 end if;
5486
7aedb36a
AC
5487 when N_Identifier =>
5488 if Present (Nam)
5489 and then Ekind (Nam) = E_Function
5490 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 5491 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
5492 then
5493 Create_Extra_Formals (Nam);
5494 end if;
5495
70482933
RK
5496 when others =>
5497 null;
70482933
RK
5498 end case;
5499
5500 if Desig_Typ /= Empty
5501 and then (Is_Frozen (Desig_Typ)
5502 or else (not Is_Fully_Defined (Desig_Typ)))
5503 then
5504 Desig_Typ := Empty;
5505 end if;
5506
5507 -- All done if nothing needs freezing
5508
5509 if No (Typ)
5510 and then No (Nam)
5511 and then No (Desig_Typ)
5512 then
5513 return;
5514 end if;
5515
f6cf5b85 5516 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
5517 -- exiting from the loop when it is appropriate to insert the freeze
5518 -- node before the current node P.
5519
bce79204
AC
5520 -- Also checks some special exceptions to the freezing rules. These
5521 -- cases result in a direct return, bypassing the freeze action.
70482933
RK
5522
5523 P := N;
5524 loop
5525 Parent_P := Parent (P);
5526
ee094616
RD
5527 -- If we don't have a parent, then we are not in a well-formed tree.
5528 -- This is an unusual case, but there are some legitimate situations
5529 -- in which this occurs, notably when the expressions in the range of
5530 -- a type declaration are resolved. We simply ignore the freeze
5531 -- request in this case. Is this right ???
70482933
RK
5532
5533 if No (Parent_P) then
5534 return;
5535 end if;
5536
5537 -- See if we have got to an appropriate point in the tree
5538
5539 case Nkind (Parent_P) is
5540
edd63e9b
ES
5541 -- A special test for the exception of (RM 13.14(8)) for the case
5542 -- of per-object expressions (RM 3.8(18)) occurring in component
5543 -- definition or a discrete subtype definition. Note that we test
5544 -- for a component declaration which includes both cases we are
5545 -- interested in, and furthermore the tree does not have explicit
5546 -- nodes for either of these two constructs.
70482933
RK
5547
5548 when N_Component_Declaration =>
5549
5550 -- The case we want to test for here is an identifier that is
5551 -- a per-object expression, this is either a discriminant that
5552 -- appears in a context other than the component declaration
5553 -- or it is a reference to the type of the enclosing construct.
5554
5555 -- For either of these cases, we skip the freezing
5556
c6a9797e 5557 if not In_Spec_Expression
70482933
RK
5558 and then Nkind (N) = N_Identifier
5559 and then (Present (Entity (N)))
5560 then
5561 -- We recognize the discriminant case by just looking for
5562 -- a reference to a discriminant. It can only be one for
5563 -- the enclosing construct. Skip freezing in this case.
5564
5565 if Ekind (Entity (N)) = E_Discriminant then
5566 return;
5567
5568 -- For the case of a reference to the enclosing record,
5569 -- (or task or protected type), we look for a type that
5570 -- matches the current scope.
5571
5572 elsif Entity (N) = Current_Scope then
5573 return;
5574 end if;
5575 end if;
5576
edd63e9b
ES
5577 -- If we have an enumeration literal that appears as the choice in
5578 -- the aggregate of an enumeration representation clause, then
5579 -- freezing does not occur (RM 13.14(10)).
70482933
RK
5580
5581 when N_Enumeration_Representation_Clause =>
5582
5583 -- The case we are looking for is an enumeration literal
5584
5585 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
5586 and then Is_Enumeration_Type (Etype (N))
5587 then
5588 -- If enumeration literal appears directly as the choice,
e14c931f 5589 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
5590
5591 if Nkind (Parent (N)) = N_Component_Association
5592 and then First (Choices (Parent (N))) = N
5593 then
5594 return;
5595
ee094616
RD
5596 -- If enumeration literal appears as the name of function
5597 -- which is the choice, then also do not freeze. This
5598 -- happens in the overloaded literal case, where the
70482933
RK
5599 -- enumeration literal is temporarily changed to a function
5600 -- call for overloading analysis purposes.
5601
5602 elsif Nkind (Parent (N)) = N_Function_Call
5603 and then
5604 Nkind (Parent (Parent (N))) = N_Component_Association
5605 and then
5606 First (Choices (Parent (Parent (N)))) = Parent (N)
5607 then
5608 return;
5609 end if;
5610 end if;
5611
5612 -- Normally if the parent is a handled sequence of statements,
5613 -- then the current node must be a statement, and that is an
5614 -- appropriate place to insert a freeze node.
5615
5616 when N_Handled_Sequence_Of_Statements =>
5617
edd63e9b
ES
5618 -- An exception occurs when the sequence of statements is for
5619 -- an expander generated body that did not do the usual freeze
5620 -- all operation. In this case we usually want to freeze
5621 -- outside this body, not inside it, and we skip past the
5622 -- subprogram body that we are inside.
70482933
RK
5623
5624 if In_Exp_Body (Parent_P) then
70482933
RK
5625 declare
5626 Subp : constant Node_Id := Parent (Parent_P);
95081e99 5627 Spec : Entity_Id;
70482933
RK
5628
5629 begin
95081e99
AC
5630 -- Freeze the entity only when it is declared inside the
5631 -- body of the expander generated procedure. This case
5632 -- is recognized by the scope of the entity or its type,
5633 -- which is either the spec for some enclosing body, or
5634 -- (in the case of init_procs, for which there are no
5635 -- separate specs) the current scope.
5636
70482933 5637 if Nkind (Subp) = N_Subprogram_Body then
95081e99 5638 Spec := Corresponding_Spec (Subp);
70482933 5639
95081e99 5640 if (Present (Typ) and then Scope (Typ) = Spec)
70482933 5641 or else
95081e99 5642 (Present (Nam) and then Scope (Nam) = Spec)
70482933
RK
5643 then
5644 exit;
5645
5646 elsif Present (Typ)
5647 and then Scope (Typ) = Current_Scope
95081e99 5648 and then Defining_Entity (Subp) = Current_Scope
70482933
RK
5649 then
5650 exit;
5651 end if;
5652 end if;
70482933 5653
95081e99
AC
5654 -- An expression function may act as a completion of
5655 -- a function declaration. As such, it can reference
5656 -- entities declared between the two views:
70482933 5657
95081e99
AC
5658 -- Hidden []; -- 1
5659 -- function F return ...;
5660 -- private
5661 -- function Hidden return ...;
5662 -- function F return ... is (Hidden); -- 2
5663
5664 -- Refering to the example above, freezing the expression
5665 -- of F (2) would place Hidden's freeze node (1) in the
5666 -- wrong place. Avoid explicit freezing and let the usual
5667 -- scenarios do the job - for example, reaching the end
5668 -- of the private declarations.
5669
5670 if Nkind (Original_Node (Subp)) =
5671 N_Expression_Function
5672 then
5673 null;
5674
5675 -- Freeze outside the body
5676
5677 else
5678 Parent_P := Parent (Parent_P);
5679 Freeze_Outside := True;
5680 end if;
5681 end;
70482933
RK
5682
5683 -- Here if normal case where we are in handled statement
5684 -- sequence and want to do the insertion right there.
5685
5686 else
5687 exit;
5688 end if;
5689
ee094616
RD
5690 -- If parent is a body or a spec or a block, then the current node
5691 -- is a statement or declaration and we can insert the freeze node
5692 -- before it.
70482933 5693
8b3c6430
AC
5694 when N_Block_Statement |
5695 N_Entry_Body |
70482933 5696 N_Package_Body |
8b3c6430 5697 N_Package_Specification |
70482933 5698 N_Protected_Body |
8b3c6430
AC
5699 N_Subprogram_Body |
5700 N_Task_Body => exit;
70482933
RK
5701
5702 -- The expander is allowed to define types in any statements list,
5703 -- so any of the following parent nodes also mark a freezing point
5704 -- if the actual node is in a list of statements or declarations.
5705
8b3c6430
AC
5706 when N_Abortable_Part |
5707 N_Accept_Alternative |
5708 N_And_Then |
70482933
RK
5709 N_Case_Statement_Alternative |
5710 N_Compilation_Unit_Aux |
70482933 5711 N_Conditional_Entry_Call |
8b3c6430
AC
5712 N_Delay_Alternative |
5713 N_Elsif_Part |
70482933 5714 N_Entry_Call_Alternative |
8b3c6430
AC
5715 N_Exception_Handler |
5716 N_Extended_Return_Statement |
5717 N_Freeze_Entity |
5718 N_If_Statement |
bce79204 5719 N_Or_Else |
8b3c6430
AC
5720 N_Selective_Accept |
5721 N_Triggering_Alternative =>
70482933
RK
5722
5723 exit when Is_List_Member (P);
5724
5725 -- Note: The N_Loop_Statement is a special case. A type that
5726 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
5727 -- occurs only because of a loop expanded by the expander), so we
5728 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
5729 -- of any entity which comes from source. (if they have predefined
5730 -- type, that type does not appear to come from source, but the
5731 -- entity should not be frozen here).
70482933
RK
5732
5733 when N_Loop_Statement =>
5734 exit when not Comes_From_Source (Etype (N))
5735 and then (No (Nam) or else not Comes_From_Source (Nam));
5736
5737 -- For all other cases, keep looking at parents
5738
5739 when others =>
5740 null;
5741 end case;
5742
5743 -- We fall through the case if we did not yet find the proper
a90bd866 5744 -- place in the free for inserting the freeze node, so climb.
70482933
RK
5745
5746 P := Parent_P;
5747 end loop;
5748
edd63e9b
ES
5749 -- If the expression appears in a record or an initialization procedure,
5750 -- the freeze nodes are collected and attached to the current scope, to
5751 -- be inserted and analyzed on exit from the scope, to insure that
5752 -- generated entities appear in the correct scope. If the expression is
5753 -- a default for a discriminant specification, the scope is still void.
5754 -- The expression can also appear in the discriminant part of a private
5755 -- or concurrent type.
70482933 5756
c6823a20 5757 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
5758 -- enclosing record declaration, the freeze nodes must be attached to
5759 -- the outer record type so they can eventually be placed in the
c6823a20
EB
5760 -- enclosing declaration list.
5761
ee094616
RD
5762 -- The other case requiring this special handling is if we are in a
5763 -- default expression, since in that case we are about to freeze a
5764 -- static type, and the freeze scope needs to be the outer scope, not
5765 -- the scope of the subprogram with the default parameter.
70482933 5766
c6a9797e
RD
5767 -- For default expressions and other spec expressions in generic units,
5768 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
5769 -- placing them at the proper place, after the generic unit.
70482933 5770
c6a9797e 5771 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
5772 or else Freeze_Outside
5773 or else (Is_Type (Current_Scope)
5774 and then (not Is_Concurrent_Type (Current_Scope)
5775 or else not Has_Completion (Current_Scope)))
5776 or else Ekind (Current_Scope) = E_Void
5777 then
5778 declare
df378148
AC
5779 N : constant Node_Id := Current_Scope;
5780 Freeze_Nodes : List_Id := No_List;
5781 Pos : Int := Scope_Stack.Last;
70482933
RK
5782
5783 begin
5784 if Present (Desig_Typ) then
c159409f 5785 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
5786 end if;
5787
5788 if Present (Typ) then
c159409f 5789 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
5790 end if;
5791
5792 if Present (Nam) then
c159409f 5793 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
5794 end if;
5795
c6823a20 5796 -- The current scope may be that of a constrained component of
df378148
AC
5797 -- an enclosing record declaration, or of a loop of an enclosing
5798 -- quantified expression, which is above the current scope in the
5799 -- scope stack. Indeed in the context of a quantified expression,
5800 -- a scope is created and pushed above the current scope in order
5801 -- to emulate the loop-like behavior of the quantified expression.
6191e212
AC
5802 -- If the expression is within a top-level pragma, as for a pre-
5803 -- condition on a library-level subprogram, nothing to do.
c6823a20 5804
6191e212 5805 if not Is_Compilation_Unit (Current_Scope)
df378148
AC
5806 and then (Is_Record_Type (Scope (Current_Scope))
5807 or else Nkind (Parent (Current_Scope)) =
21791d97 5808 N_Quantified_Expression)
6191e212 5809 then
c6823a20
EB
5810 Pos := Pos - 1;
5811 end if;
5812
70482933 5813 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
5814 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
5815 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 5816 Freeze_Nodes;
70482933 5817 else
cd5a9750
AC
5818 Append_List (Freeze_Nodes,
5819 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
5820 end if;
5821 end if;
5822 end;
5823
5824 return;
5825 end if;
5826
5827 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
5828 -- adjustment, if we are in spec-expression analysis mode, these freeze
5829 -- actions must not be thrown away (normally all inserted actions are
5830 -- thrown away in this mode. However, the freeze actions are from static
5831 -- expressions and one of the important reasons we are doing this
ee094616 5832 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 5833 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 5834 -- This also means they get properly analyzed and expanded.
70482933 5835
c6a9797e 5836 In_Spec_Expression := False;
70482933 5837
fbf5a39b 5838 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
5839
5840 if Present (Desig_Typ) then
5841 Freeze_Before (P, Desig_Typ);
5842 end if;
5843
fbf5a39b 5844 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
5845 -- the enumeration representation clause exception in the loop above.
5846
5847 if Present (Typ) then
5848 Freeze_Before (P, Typ);
5849 end if;
5850
fbf5a39b 5851 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
5852
5853 if Present (Nam) then
5854 Freeze_Before (P, Nam);
5855 end if;
5856
c6a9797e
RD
5857 -- Restore In_Spec_Expression flag
5858
5859 In_Spec_Expression := In_Spec_Exp;
70482933
RK
5860 end Freeze_Expression;
5861
5862 -----------------------------
5863 -- Freeze_Fixed_Point_Type --
5864 -----------------------------
5865
edd63e9b
ES
5866 -- Certain fixed-point types and subtypes, including implicit base types
5867 -- and declared first subtypes, have not yet set up a range. This is
5868 -- because the range cannot be set until the Small and Size values are
5869 -- known, and these are not known till the type is frozen.
70482933 5870
edd63e9b
ES
5871 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
5872 -- whose bounds are unanalyzed real literals. This routine will recognize
5873 -- this case, and transform this range node into a properly typed range
5874 -- with properly analyzed and resolved values.
70482933
RK
5875
5876 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
5877 Rng : constant Node_Id := Scalar_Range (Typ);
5878 Lo : constant Node_Id := Low_Bound (Rng);
5879 Hi : constant Node_Id := High_Bound (Rng);
5880 Btyp : constant Entity_Id := Base_Type (Typ);
5881 Brng : constant Node_Id := Scalar_Range (Btyp);
5882 BLo : constant Node_Id := Low_Bound (Brng);
5883 BHi : constant Node_Id := High_Bound (Brng);
5884 Small : constant Ureal := Small_Value (Typ);
5885 Loval : Ureal;
5886 Hival : Ureal;
5887 Atype : Entity_Id;
5888
5889 Actual_Size : Nat;
5890
5891 function Fsize (Lov, Hiv : Ureal) return Nat;
5892 -- Returns size of type with given bounds. Also leaves these
5893 -- bounds set as the current bounds of the Typ.
5894
0da2c8ac
AC
5895 -----------
5896 -- Fsize --
5897 -----------
5898
70482933
RK
5899 function Fsize (Lov, Hiv : Ureal) return Nat is
5900 begin
5901 Set_Realval (Lo, Lov);
5902 Set_Realval (Hi, Hiv);
5903 return Minimum_Size (Typ);
5904 end Fsize;
5905
0da2c8ac 5906 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
5907
5908 begin
5909 -- If Esize of a subtype has not previously been set, set it now
5910
5911 if Unknown_Esize (Typ) then
5912 Atype := Ancestor_Subtype (Typ);
5913
5914 if Present (Atype) then
fbf5a39b 5915 Set_Esize (Typ, Esize (Atype));
70482933 5916 else
fbf5a39b 5917 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
5918 end if;
5919 end if;
5920
ee094616
RD
5921 -- Immediate return if the range is already analyzed. This means that
5922 -- the range is already set, and does not need to be computed by this
5923 -- routine.
70482933
RK
5924
5925 if Analyzed (Rng) then
5926 return;
5927 end if;
5928
5929 -- Immediate return if either of the bounds raises Constraint_Error
5930
5931 if Raises_Constraint_Error (Lo)
5932 or else Raises_Constraint_Error (Hi)
5933 then
5934 return;
5935 end if;
5936
5937 Loval := Realval (Lo);
5938 Hival := Realval (Hi);
5939
5940 -- Ordinary fixed-point case
5941
5942 if Is_Ordinary_Fixed_Point_Type (Typ) then
5943
5944 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
5945 -- end-points up or down by small. Generally we prefer to fudge up,
5946 -- i.e. widen the bounds for non-model numbers so that the end points
5947 -- are included. However there are cases in which this cannot be
5948 -- done, and indeed cases in which we may need to narrow the bounds.
5949 -- The following circuit makes the decision.
70482933 5950
ee094616
RD
5951 -- Note: our terminology here is that Incl_EP means that the bounds
5952 -- are widened by Small if necessary to include the end points, and
5953 -- Excl_EP means that the bounds are narrowed by Small to exclude the
5954 -- end-points if this reduces the size.
70482933
RK
5955
5956 -- Note that in the Incl case, all we care about is including the
5957 -- end-points. In the Excl case, we want to narrow the bounds as
5958 -- much as permitted by the RM, to give the smallest possible size.
5959
5960 Fudge : declare
5961 Loval_Incl_EP : Ureal;
5962 Hival_Incl_EP : Ureal;
5963
5964 Loval_Excl_EP : Ureal;
5965 Hival_Excl_EP : Ureal;
5966
5967 Size_Incl_EP : Nat;
5968 Size_Excl_EP : Nat;
5969
5970 Model_Num : Ureal;
5971 First_Subt : Entity_Id;
5972 Actual_Lo : Ureal;
5973 Actual_Hi : Ureal;
5974
5975 begin
5976 -- First step. Base types are required to be symmetrical. Right
5977 -- now, the base type range is a copy of the first subtype range.
5978 -- This will be corrected before we are done, but right away we
5979 -- need to deal with the case where both bounds are non-negative.
5980 -- In this case, we set the low bound to the negative of the high
5981 -- bound, to make sure that the size is computed to include the
5982 -- required sign. Note that we do not need to worry about the
5983 -- case of both bounds negative, because the sign will be dealt
5984 -- with anyway. Furthermore we can't just go making such a bound
5985 -- symmetrical, since in a twos-complement system, there is an
e14c931f 5986 -- extra negative value which could not be accommodated on the
70482933
RK
5987 -- positive side.
5988
5989 if Typ = Btyp
5990 and then not UR_Is_Negative (Loval)
5991 and then Hival > Loval
5992 then
5993 Loval := -Hival;
5994 Set_Realval (Lo, Loval);
5995 end if;
5996
5997 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
5998 -- then we do nothing to include it, but we are allowed to backoff
5999 -- to the next adjacent model number when we exclude it. If it is
6000 -- not a model number then we straddle the two values with the
6001 -- model numbers on either side.
70482933
RK
6002
6003 Model_Num := UR_Trunc (Loval / Small) * Small;
6004
6005 if Loval = Model_Num then
6006 Loval_Incl_EP := Model_Num;
6007 else
6008 Loval_Incl_EP := Model_Num - Small;
6009 end if;
6010
6011 -- The low value excluding the end point is Small greater, but
6012 -- we do not do this exclusion if the low value is positive,
6013 -- since it can't help the size and could actually hurt by
6014 -- crossing the high bound.
6015
6016 if UR_Is_Negative (Loval_Incl_EP) then
6017 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
6018
6019 -- If the value went from negative to zero, then we have the
6020 -- case where Loval_Incl_EP is the model number just below
6021 -- zero, so we want to stick to the negative value for the
6022 -- base type to maintain the condition that the size will
6023 -- include signed values.
6024
6025 if Typ = Btyp
6026 and then UR_Is_Zero (Loval_Excl_EP)
6027 then
6028 Loval_Excl_EP := Loval_Incl_EP;
6029 end if;
6030
70482933
RK
6031 else
6032 Loval_Excl_EP := Loval_Incl_EP;
6033 end if;
6034
6035 -- Similar processing for upper bound and high value
6036
6037 Model_Num := UR_Trunc (Hival / Small) * Small;
6038
6039 if Hival = Model_Num then
6040 Hival_Incl_EP := Model_Num;
6041 else
6042 Hival_Incl_EP := Model_Num + Small;
6043 end if;
6044
6045 if UR_Is_Positive (Hival_Incl_EP) then
6046 Hival_Excl_EP := Hival_Incl_EP - Small;
6047 else
6048 Hival_Excl_EP := Hival_Incl_EP;
6049 end if;
6050
ee094616
RD
6051 -- One further adjustment is needed. In the case of subtypes, we
6052 -- cannot go outside the range of the base type, or we get
70482933 6053 -- peculiarities, and the base type range is already set. This
ee094616
RD
6054 -- only applies to the Incl values, since clearly the Excl values
6055 -- are already as restricted as they are allowed to be.
70482933
RK
6056
6057 if Typ /= Btyp then
6058 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
6059 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
6060 end if;
6061
6062 -- Get size including and excluding end points
6063
6064 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
6065 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
6066
6067 -- No need to exclude end-points if it does not reduce size
6068
6069 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
6070 Loval_Excl_EP := Loval_Incl_EP;
6071 end if;
6072
6073 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
6074 Hival_Excl_EP := Hival_Incl_EP;
6075 end if;
6076
6077 -- Now we set the actual size to be used. We want to use the
6078 -- bounds fudged up to include the end-points but only if this
6079 -- can be done without violating a specifically given size
6080 -- size clause or causing an unacceptable increase in size.
6081
6082 -- Case of size clause given
6083
6084 if Has_Size_Clause (Typ) then
6085
6086 -- Use the inclusive size only if it is consistent with
6087 -- the explicitly specified size.
6088
6089 if Size_Incl_EP <= RM_Size (Typ) then
6090 Actual_Lo := Loval_Incl_EP;
6091 Actual_Hi := Hival_Incl_EP;
6092 Actual_Size := Size_Incl_EP;
6093
6094 -- If the inclusive size is too large, we try excluding
6095 -- the end-points (will be caught later if does not work).
6096
6097 else
6098 Actual_Lo := Loval_Excl_EP;
6099 Actual_Hi := Hival_Excl_EP;
6100 Actual_Size := Size_Excl_EP;
6101 end if;
6102
6103 -- Case of size clause not given
6104
6105 else
6106 -- If we have a base type whose corresponding first subtype
6107 -- has an explicit size that is large enough to include our
6108 -- end-points, then do so. There is no point in working hard
6109 -- to get a base type whose size is smaller than the specified
6110 -- size of the first subtype.
6111
6112 First_Subt := First_Subtype (Typ);
6113
6114 if Has_Size_Clause (First_Subt)
6115 and then Size_Incl_EP <= Esize (First_Subt)
6116 then
6117 Actual_Size := Size_Incl_EP;
6118 Actual_Lo := Loval_Incl_EP;
6119 Actual_Hi := Hival_Incl_EP;
6120
6121 -- If excluding the end-points makes the size smaller and
6122 -- results in a size of 8,16,32,64, then we take the smaller
6123 -- size. For the 64 case, this is compulsory. For the other
6124 -- cases, it seems reasonable. We like to include end points
6125 -- if we can, but not at the expense of moving to the next
6126 -- natural boundary of size.
6127
6128 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 6129 and then Addressable (Size_Excl_EP)
70482933
RK
6130 then
6131 Actual_Size := Size_Excl_EP;
6132 Actual_Lo := Loval_Excl_EP;
6133 Actual_Hi := Hival_Excl_EP;
6134
6135 -- Otherwise we can definitely include the end points
6136
6137 else
6138 Actual_Size := Size_Incl_EP;
6139 Actual_Lo := Loval_Incl_EP;
6140 Actual_Hi := Hival_Incl_EP;
6141 end if;
6142
edd63e9b
ES
6143 -- One pathological case: normally we never fudge a low bound
6144 -- down, since it would seem to increase the size (if it has
6145 -- any effect), but for ranges containing single value, or no
6146 -- values, the high bound can be small too large. Consider:
70482933
RK
6147
6148 -- type t is delta 2.0**(-14)
6149 -- range 131072.0 .. 0;
6150
edd63e9b
ES
6151 -- That lower bound is *just* outside the range of 32 bits, and
6152 -- does need fudging down in this case. Note that the bounds
6153 -- will always have crossed here, since the high bound will be
6154 -- fudged down if necessary, as in the case of:
70482933
RK
6155
6156 -- type t is delta 2.0**(-14)
6157 -- range 131072.0 .. 131072.0;
6158
edd63e9b
ES
6159 -- So we detect the situation by looking for crossed bounds,
6160 -- and if the bounds are crossed, and the low bound is greater
6161 -- than zero, we will always back it off by small, since this
6162 -- is completely harmless.
70482933
RK
6163
6164 if Actual_Lo > Actual_Hi then
6165 if UR_Is_Positive (Actual_Lo) then
6166 Actual_Lo := Loval_Incl_EP - Small;
6167 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6168
6169 -- And of course, we need to do exactly the same parallel
6170 -- fudge for flat ranges in the negative region.
6171
6172 elsif UR_Is_Negative (Actual_Hi) then
6173 Actual_Hi := Hival_Incl_EP + Small;
6174 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6175 end if;
6176 end if;
6177 end if;
6178
6179 Set_Realval (Lo, Actual_Lo);
6180 Set_Realval (Hi, Actual_Hi);
6181 end Fudge;
6182
6183 -- For the decimal case, none of this fudging is required, since there
6184 -- are no end-point problems in the decimal case (the end-points are
6185 -- always included).
6186
6187 else
6188 Actual_Size := Fsize (Loval, Hival);
6189 end if;
6190
6191 -- At this stage, the actual size has been calculated and the proper
6192 -- required bounds are stored in the low and high bounds.
6193
6194 if Actual_Size > 64 then
6195 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
6196 Error_Msg_N
7d8b9c99
RD
6197 ("size required (^) for type& too large, maximum allowed is 64",
6198 Typ);
70482933
RK
6199 Actual_Size := 64;
6200 end if;
6201
6202 -- Check size against explicit given size
6203
6204 if Has_Size_Clause (Typ) then
6205 if Actual_Size > RM_Size (Typ) then
6206 Error_Msg_Uint_1 := RM_Size (Typ);
6207 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
6208 Error_Msg_NE
7d8b9c99 6209 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
6210 Size_Clause (Typ), Typ);
6211
6212 else
6213 Actual_Size := UI_To_Int (Esize (Typ));
6214 end if;
6215
6216 -- Increase size to next natural boundary if no size clause given
6217
6218 else
6219 if Actual_Size <= 8 then
6220 Actual_Size := 8;
6221 elsif Actual_Size <= 16 then
6222 Actual_Size := 16;
6223 elsif Actual_Size <= 32 then
6224 Actual_Size := 32;
6225 else
6226 Actual_Size := 64;
6227 end if;
6228
6229 Init_Esize (Typ, Actual_Size);
6230 Adjust_Esize_For_Alignment (Typ);
6231 end if;
6232
edd63e9b
ES
6233 -- If we have a base type, then expand the bounds so that they extend to
6234 -- the full width of the allocated size in bits, to avoid junk range
6235 -- checks on intermediate computations.
70482933
RK
6236
6237 if Base_Type (Typ) = Typ then
6238 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
6239 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
6240 end if;
6241
6242 -- Final step is to reanalyze the bounds using the proper type
6243 -- and set the Corresponding_Integer_Value fields of the literals.
6244
6245 Set_Etype (Lo, Empty);
6246 Set_Analyzed (Lo, False);
6247 Analyze (Lo);
6248
edd63e9b
ES
6249 -- Resolve with universal fixed if the base type, and the base type if
6250 -- it is a subtype. Note we can't resolve the base type with itself,
6251 -- that would be a reference before definition.
70482933
RK
6252
6253 if Typ = Btyp then
6254 Resolve (Lo, Universal_Fixed);
6255 else
6256 Resolve (Lo, Btyp);
6257 end if;
6258
6259 -- Set corresponding integer value for bound
6260
6261 Set_Corresponding_Integer_Value
6262 (Lo, UR_To_Uint (Realval (Lo) / Small));
6263
6264 -- Similar processing for high bound
6265
6266 Set_Etype (Hi, Empty);
6267 Set_Analyzed (Hi, False);
6268 Analyze (Hi);
6269
6270 if Typ = Btyp then
6271 Resolve (Hi, Universal_Fixed);
6272 else
6273 Resolve (Hi, Btyp);
6274 end if;
6275
6276 Set_Corresponding_Integer_Value
6277 (Hi, UR_To_Uint (Realval (Hi) / Small));
6278
6279 -- Set type of range to correspond to bounds
6280
6281 Set_Etype (Rng, Etype (Lo));
6282
fbf5a39b 6283 -- Set Esize to calculated size if not set already
70482933 6284
fbf5a39b
AC
6285 if Unknown_Esize (Typ) then
6286 Init_Esize (Typ, Actual_Size);
6287 end if;
70482933
RK
6288
6289 -- Set RM_Size if not already set. If already set, check value
6290
6291 declare
6292 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
6293
6294 begin
6295 if RM_Size (Typ) /= Uint_0 then
6296 if RM_Size (Typ) < Minsiz then
6297 Error_Msg_Uint_1 := RM_Size (Typ);
6298 Error_Msg_Uint_2 := Minsiz;
6299 Error_Msg_NE
7d8b9c99 6300 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
6301 Size_Clause (Typ), Typ);
6302 end if;
6303
6304 else
6305 Set_RM_Size (Typ, Minsiz);
6306 end if;
6307 end;
70482933
RK
6308 end Freeze_Fixed_Point_Type;
6309
6310 ------------------
6311 -- Freeze_Itype --
6312 ------------------
6313
6314 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
6315 L : List_Id;
6316
6317 begin
6318 Set_Has_Delayed_Freeze (T);
c159409f 6319 L := Freeze_Entity (T, N);
70482933
RK
6320
6321 if Is_Non_Empty_List (L) then
6322 Insert_Actions (N, L);
6323 end if;
6324 end Freeze_Itype;
6325
6326 --------------------------
6327 -- Freeze_Static_Object --
6328 --------------------------
6329
6330 procedure Freeze_Static_Object (E : Entity_Id) is
6331
6332 Cannot_Be_Static : exception;
6333 -- Exception raised if the type of a static object cannot be made
6334 -- static. This happens if the type depends on non-global objects.
6335
6336 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
6337 -- Called to ensure that an expression used as part of a type definition
6338 -- is statically allocatable, which means that the expression type is
6339 -- statically allocatable, and the expression is either static, or a
6340 -- reference to a library level constant.
70482933
RK
6341
6342 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
6343 -- Called to mark a type as static, checking that it is possible
6344 -- to set the type as static. If it is not possible, then the
6345 -- exception Cannot_Be_Static is raised.
6346
6347 -----------------------------
6348 -- Ensure_Expression_Is_SA --
6349 -----------------------------
6350
6351 procedure Ensure_Expression_Is_SA (N : Node_Id) is
6352 Ent : Entity_Id;
6353
6354 begin
6355 Ensure_Type_Is_SA (Etype (N));
6356
6357 if Is_Static_Expression (N) then
6358 return;
6359
6360 elsif Nkind (N) = N_Identifier then
6361 Ent := Entity (N);
6362
6363 if Present (Ent)
6364 and then Ekind (Ent) = E_Constant
6365 and then Is_Library_Level_Entity (Ent)
6366 then
6367 return;
6368 end if;
6369 end if;
6370
6371 raise Cannot_Be_Static;
6372 end Ensure_Expression_Is_SA;
6373
6374 -----------------------
6375 -- Ensure_Type_Is_SA --
6376 -----------------------
6377
6378 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
6379 N : Node_Id;
6380 C : Entity_Id;
6381
6382 begin
6383 -- If type is library level, we are all set
6384
6385 if Is_Library_Level_Entity (Typ) then
6386 return;
6387 end if;
6388
ee094616
RD
6389 -- We are also OK if the type already marked as statically allocated,
6390 -- which means we processed it before.
70482933
RK
6391
6392 if Is_Statically_Allocated (Typ) then
6393 return;
6394 end if;
6395
6396 -- Mark type as statically allocated
6397
6398 Set_Is_Statically_Allocated (Typ);
6399
6400 -- Check that it is safe to statically allocate this type
6401
6402 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
6403 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
6404 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
6405
6406 elsif Is_Array_Type (Typ) then
6407 N := First_Index (Typ);
6408 while Present (N) loop
6409 Ensure_Type_Is_SA (Etype (N));
6410 Next_Index (N);
6411 end loop;
6412
6413 Ensure_Type_Is_SA (Component_Type (Typ));
6414
6415 elsif Is_Access_Type (Typ) then
6416 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
6417
6418 declare
6419 F : Entity_Id;
6420 T : constant Entity_Id := Etype (Designated_Type (Typ));
6421
6422 begin
6423 if T /= Standard_Void_Type then
6424 Ensure_Type_Is_SA (T);
6425 end if;
6426
6427 F := First_Formal (Designated_Type (Typ));
70482933
RK
6428 while Present (F) loop
6429 Ensure_Type_Is_SA (Etype (F));
6430 Next_Formal (F);
6431 end loop;
6432 end;
6433
6434 else
6435 Ensure_Type_Is_SA (Designated_Type (Typ));
6436 end if;
6437
6438 elsif Is_Record_Type (Typ) then
6439 C := First_Entity (Typ);
70482933
RK
6440 while Present (C) loop
6441 if Ekind (C) = E_Discriminant
6442 or else Ekind (C) = E_Component
6443 then
6444 Ensure_Type_Is_SA (Etype (C));
6445
6446 elsif Is_Type (C) then
6447 Ensure_Type_Is_SA (C);
6448 end if;
6449
6450 Next_Entity (C);
6451 end loop;
6452
6453 elsif Ekind (Typ) = E_Subprogram_Type then
6454 Ensure_Type_Is_SA (Etype (Typ));
6455
6456 C := First_Formal (Typ);
6457 while Present (C) loop
6458 Ensure_Type_Is_SA (Etype (C));
6459 Next_Formal (C);
6460 end loop;
6461
6462 else
6463 raise Cannot_Be_Static;
6464 end if;
6465 end Ensure_Type_Is_SA;
6466
6467 -- Start of processing for Freeze_Static_Object
6468
6469 begin
6470 Ensure_Type_Is_SA (Etype (E));
6471
6472 exception
6473 when Cannot_Be_Static =>
6474
09494c32
AC
6475 -- If the object that cannot be static is imported or exported, then
6476 -- issue an error message saying that this object cannot be imported
6477 -- or exported. If it has an address clause it is an overlay in the
6478 -- current partition and the static requirement is not relevant.
d606f1df 6479 -- Do not issue any error message when ignoring rep clauses.
09494c32 6480
d606f1df
AC
6481 if Ignore_Rep_Clauses then
6482 null;
6483
6484 elsif Is_Imported (E) then
6485 if No (Address_Clause (E)) then
6486 Error_Msg_N
6487 ("& cannot be imported (local type is not constant)", E);
6488 end if;
70482933
RK
6489
6490 -- Otherwise must be exported, something is wrong if compiler
6491 -- is marking something as statically allocated which cannot be).
6492
6493 else pragma Assert (Is_Exported (E));
6494 Error_Msg_N
6495 ("& cannot be exported (local type is not constant)", E);
6496 end if;
6497 end Freeze_Static_Object;
6498
6499 -----------------------
6500 -- Freeze_Subprogram --
6501 -----------------------
6502
6503 procedure Freeze_Subprogram (E : Entity_Id) is
6504 Retype : Entity_Id;
6505 F : Entity_Id;
6506
6507 begin
6508 -- Subprogram may not have an address clause unless it is imported
6509
6510 if Present (Address_Clause (E)) then
6511 if not Is_Imported (E) then
6512 Error_Msg_N
6513 ("address clause can only be given " &
6514 "for imported subprogram",
6515 Name (Address_Clause (E)));
6516 end if;
6517 end if;
6518
91b1417d 6519 -- Reset the Pure indication on an imported subprogram unless an
2db5b47e
AC
6520 -- explicit Pure_Function pragma was present or the subprogram is an
6521 -- intrinsic. We do this because otherwise it is an insidious error
6522 -- to call a non-pure function from pure unit and have calls
6523 -- mysteriously optimized away. What happens here is that the Import
6524 -- can bypass the normal check to ensure that pure units call only pure
6525 -- subprograms.
91b1417d 6526
3e247e58
RD
6527 -- The reason for the intrinsic exception is that in general, intrinsic
6528 -- functions (such as shifts) are pure anyway. The only exceptions are
6529 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
6530 -- in any case, so no problem arises.
6531
91b1417d
AC
6532 if Is_Imported (E)
6533 and then Is_Pure (E)
6534 and then not Has_Pragma_Pure_Function (E)
2db5b47e 6535 and then not Is_Intrinsic_Subprogram (E)
91b1417d
AC
6536 then
6537 Set_Is_Pure (E, False);
6538 end if;
6539
70482933
RK
6540 -- For non-foreign convention subprograms, this is where we create
6541 -- the extra formals (for accessibility level and constrained bit
6542 -- information). We delay this till the freeze point precisely so
a90bd866 6543 -- that we know the convention.
70482933
RK
6544
6545 if not Has_Foreign_Convention (E) then
6546 Create_Extra_Formals (E);
6547 Set_Mechanisms (E);
6548
6549 -- If this is convention Ada and a Valued_Procedure, that's odd
6550
6551 if Ekind (E) = E_Procedure
6552 and then Is_Valued_Procedure (E)
6553 and then Convention (E) = Convention_Ada
fbf5a39b 6554 and then Warn_On_Export_Import
70482933
RK
6555 then
6556 Error_Msg_N
685bc70f 6557 ("??Valued_Procedure has no effect for convention Ada", E);
70482933
RK
6558 Set_Is_Valued_Procedure (E, False);
6559 end if;
6560
6561 -- Case of foreign convention
6562
6563 else
6564 Set_Mechanisms (E);
6565
fbf5a39b 6566 -- For foreign conventions, warn about return of an
70482933
RK
6567 -- unconstrained array.
6568
6569 -- Note: we *do* allow a return by descriptor for the VMS case,
6570 -- though here there is probably more to be done ???
6571
6572 if Ekind (E) = E_Function then
6573 Retype := Underlying_Type (Etype (E));
6574
6575 -- If no return type, probably some other error, e.g. a
6576 -- missing full declaration, so ignore.
6577
6578 if No (Retype) then
6579 null;
6580
6581 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
6582 -- earlier on, and there is nothing else to check here. Specific
6583 -- instantiations may lead to erroneous behavior.
70482933
RK
6584
6585 elsif Is_Generic_Type (Etype (E)) then
6586 null;
6587
e7d72fb9 6588 -- Display warning if returning unconstrained array
59366db6 6589
70482933
RK
6590 elsif Is_Array_Type (Retype)
6591 and then not Is_Constrained (Retype)
e7d72fb9 6592
2c1b72d7
AC
6593 -- Exclude cases where descriptor mechanism is set, since the
6594 -- VMS descriptor mechanisms allow such unconstrained returns.
e7d72fb9 6595
70482933 6596 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9 6597
df3e68b1
HK
6598 -- Check appropriate warning is enabled (should we check for
6599 -- Warnings (Off) on specific entities here, probably so???)
e7d72fb9 6600
fbf5a39b 6601 and then Warn_On_Export_Import
e7d72fb9 6602
2c1b72d7
AC
6603 -- Exclude the VM case, since return of unconstrained arrays
6604 -- is properly handled in both the JVM and .NET cases.
e7d72fb9 6605
f3b57ab0 6606 and then VM_Target = No_VM
70482933 6607 then
fbf5a39b 6608 Error_Msg_N
685bc70f 6609 ("?x?foreign convention function& should not return " &
fbf5a39b 6610 "unconstrained array", E);
70482933
RK
6611 return;
6612 end if;
6613 end if;
6614
6615 -- If any of the formals for an exported foreign convention
edd63e9b
ES
6616 -- subprogram have defaults, then emit an appropriate warning since
6617 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
6618
6619 if Is_Exported (E) then
6620 F := First_Formal (E);
6621 while Present (F) loop
fbf5a39b
AC
6622 if Warn_On_Export_Import
6623 and then Present (Default_Value (F))
6624 then
70482933 6625 Error_Msg_N
685bc70f 6626 ("?x?parameter cannot be defaulted in non-Ada call",
70482933
RK
6627 Default_Value (F));
6628 end if;
6629
6630 Next_Formal (F);
6631 end loop;
6632 end if;
6633 end if;
6634
e7d72fb9
AC
6635 -- For VMS, descriptor mechanisms for parameters are allowed only for
6636 -- imported/exported subprograms. Moreover, the NCA descriptor is not
6637 -- allowed for parameters of exported subprograms.
70482933
RK
6638
6639 if OpenVMS_On_Target then
7d8b9c99
RD
6640 if Is_Exported (E) then
6641 F := First_Formal (E);
6642 while Present (F) loop
6643 if Mechanism (F) = By_Descriptor_NCA then
6644 Error_Msg_N
6645 ("'N'C'A' descriptor for parameter not permitted", F);
6646 Error_Msg_N
6647 ("\can only be used for imported subprogram", F);
6648 end if;
6649
6650 Next_Formal (F);
6651 end loop;
6652
6653 elsif not Is_Imported (E) then
70482933
RK
6654 F := First_Formal (E);
6655 while Present (F) loop
6656 if Mechanism (F) in Descriptor_Codes then
6657 Error_Msg_N
6658 ("descriptor mechanism for parameter not permitted", F);
6659 Error_Msg_N
7d8b9c99 6660 ("\can only be used for imported/exported subprogram", F);
70482933
RK
6661 end if;
6662
6663 Next_Formal (F);
6664 end loop;
6665 end if;
6666 end if;
edd63e9b
ES
6667
6668 -- Pragma Inline_Always is disallowed for dispatching subprograms
6669 -- because the address of such subprograms is saved in the dispatch
6670 -- table to support dispatching calls, and dispatching calls cannot
6671 -- be inlined. This is consistent with the restriction against using
6672 -- 'Access or 'Address on an Inline_Always subprogram.
6673
def46b54
RD
6674 if Is_Dispatching_Operation (E)
6675 and then Has_Pragma_Inline_Always (E)
6676 then
edd63e9b
ES
6677 Error_Msg_N
6678 ("pragma Inline_Always not allowed for dispatching subprograms", E);
6679 end if;
c6a9797e
RD
6680
6681 -- Because of the implicit representation of inherited predefined
6682 -- operators in the front-end, the overriding status of the operation
6683 -- may be affected when a full view of a type is analyzed, and this is
6684 -- not captured by the analysis of the corresponding type declaration.
6685 -- Therefore the correctness of a not-overriding indicator must be
6686 -- rechecked when the subprogram is frozen.
6687
6688 if Nkind (E) = N_Defining_Operator_Symbol
6689 and then not Error_Posted (Parent (E))
6690 then
6691 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
6692 end if;
70482933
RK
6693 end Freeze_Subprogram;
6694
15ce9ca2
AC
6695 ----------------------
6696 -- Is_Fully_Defined --
6697 ----------------------
70482933 6698
70482933
RK
6699 function Is_Fully_Defined (T : Entity_Id) return Boolean is
6700 begin
6701 if Ekind (T) = E_Class_Wide_Type then
6702 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
6703
6704 elsif Is_Array_Type (T) then
6705 return Is_Fully_Defined (Component_Type (T));
6706
6707 elsif Is_Record_Type (T)
6708 and not Is_Private_Type (T)
6709 then
ee094616
RD
6710 -- Verify that the record type has no components with private types
6711 -- without completion.
657a9dd9
AC
6712
6713 declare
6714 Comp : Entity_Id;
bde58e32 6715
657a9dd9
AC
6716 begin
6717 Comp := First_Component (T);
657a9dd9
AC
6718 while Present (Comp) loop
6719 if not Is_Fully_Defined (Etype (Comp)) then
6720 return False;
6721 end if;
6722
6723 Next_Component (Comp);
6724 end loop;
6725 return True;
6726 end;
6727
30537990 6728 -- For the designated type of an access to subprogram, all types in
4519314c
AC
6729 -- the profile must be fully defined.
6730
6731 elsif Ekind (T) = E_Subprogram_Type then
6732 declare
6733 F : Entity_Id;
6734
6735 begin
6736 F := First_Formal (T);
6737 while Present (F) loop
6738 if not Is_Fully_Defined (Etype (F)) then
6739 return False;
6740 end if;
6741
6742 Next_Formal (F);
6743 end loop;
6744
6745 return Is_Fully_Defined (Etype (T));
6746 end;
6747
86cde7b1
RD
6748 else
6749 return not Is_Private_Type (T)
6750 or else Present (Full_View (Base_Type (T)));
70482933
RK
6751 end if;
6752 end Is_Fully_Defined;
6753
70d904ca 6754 ---------------------------------
70482933
RK
6755 -- Process_Default_Expressions --
6756 ---------------------------------
6757
6758 procedure Process_Default_Expressions
6759 (E : Entity_Id;
6760 After : in out Node_Id)
6761 is
6762 Loc : constant Source_Ptr := Sloc (E);
6763 Dbody : Node_Id;
6764 Formal : Node_Id;
6765 Dcopy : Node_Id;
6766 Dnam : Entity_Id;
6767
6768 begin
6769 Set_Default_Expressions_Processed (E);
6770
ee094616
RD
6771 -- A subprogram instance and its associated anonymous subprogram share
6772 -- their signature. The default expression functions are defined in the
6773 -- wrapper packages for the anonymous subprogram, and should not be
6774 -- generated again for the instance.
70482933
RK
6775
6776 if Is_Generic_Instance (E)
6777 and then Present (Alias (E))
6778 and then Default_Expressions_Processed (Alias (E))
6779 then
6780 return;
6781 end if;
6782
6783 Formal := First_Formal (E);
70482933
RK
6784 while Present (Formal) loop
6785 if Present (Default_Value (Formal)) then
6786
6787 -- We work with a copy of the default expression because we
6788 -- do not want to disturb the original, since this would mess
6789 -- up the conformance checking.
6790
6791 Dcopy := New_Copy_Tree (Default_Value (Formal));
6792
6793 -- The analysis of the expression may generate insert actions,
6794 -- which of course must not be executed. We wrap those actions
6795 -- in a procedure that is not called, and later on eliminated.
6796 -- The following cases have no side-effects, and are analyzed
6797 -- directly.
6798
6799 if Nkind (Dcopy) = N_Identifier
ef1c0511
AC
6800 or else Nkind_In (Dcopy, N_Expanded_Name,
6801 N_Integer_Literal,
6802 N_Character_Literal,
6803 N_String_Literal)
70482933
RK
6804 or else (Nkind (Dcopy) = N_Real_Literal
6805 and then not Vax_Float (Etype (Dcopy)))
70482933 6806 or else (Nkind (Dcopy) = N_Attribute_Reference
ef1c0511
AC
6807 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
6808 or else Known_Null (Dcopy)
70482933 6809 then
70482933 6810 -- If there is no default function, we must still do a full
ee094616
RD
6811 -- analyze call on the default value, to ensure that all error
6812 -- checks are performed, e.g. those associated with static
6813 -- evaluation. Note: this branch will always be taken if the
6814 -- analyzer is turned off (but we still need the error checks).
70482933
RK
6815
6816 -- Note: the setting of parent here is to meet the requirement
6817 -- that we can only analyze the expression while attached to
6818 -- the tree. Really the requirement is that the parent chain
6819 -- be set, we don't actually need to be in the tree.
6820
6821 Set_Parent (Dcopy, Declaration_Node (Formal));
6822 Analyze (Dcopy);
6823
6824 -- Default expressions are resolved with their own type if the
6825 -- context is generic, to avoid anomalies with private types.
6826
6827 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 6828 Resolve (Dcopy);
70482933
RK
6829 else
6830 Resolve (Dcopy, Etype (Formal));
6831 end if;
6832
6833 -- If that resolved expression will raise constraint error,
6834 -- then flag the default value as raising constraint error.
6835 -- This allows a proper error message on the calls.
6836
6837 if Raises_Constraint_Error (Dcopy) then
6838 Set_Raises_Constraint_Error (Default_Value (Formal));
6839 end if;
6840
6841 -- If the default is a parameterless call, we use the name of
6842 -- the called function directly, and there is no body to build.
6843
6844 elsif Nkind (Dcopy) = N_Function_Call
6845 and then No (Parameter_Associations (Dcopy))
6846 then
6847 null;
6848
6849 -- Else construct and analyze the body of a wrapper procedure
6850 -- that contains an object declaration to hold the expression.
6851 -- Given that this is done only to complete the analysis, it
6852 -- simpler to build a procedure than a function which might
6853 -- involve secondary stack expansion.
6854
6855 else
b29def53 6856 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
6857
6858 Dbody :=
6859 Make_Subprogram_Body (Loc,
6860 Specification =>
6861 Make_Procedure_Specification (Loc,
6862 Defining_Unit_Name => Dnam),
6863
6864 Declarations => New_List (
6865 Make_Object_Declaration (Loc,
2c1b72d7
AC
6866 Defining_Identifier => Make_Temporary (Loc, 'T'),
6867 Object_Definition =>
df3e68b1 6868 New_Occurrence_Of (Etype (Formal), Loc),
2c1b72d7 6869 Expression => New_Copy_Tree (Dcopy))),
70482933
RK
6870
6871 Handled_Statement_Sequence =>
6872 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 6873 Statements => Empty_List));
70482933
RK
6874
6875 Set_Scope (Dnam, Scope (E));
6876 Set_Assignment_OK (First (Declarations (Dbody)));
6877 Set_Is_Eliminated (Dnam);
6878 Insert_After (After, Dbody);
6879 Analyze (Dbody);
6880 After := Dbody;
6881 end if;
6882 end if;
6883
6884 Next_Formal (Formal);
6885 end loop;
70482933
RK
6886 end Process_Default_Expressions;
6887
6888 ----------------------------------------
6889 -- Set_Component_Alignment_If_Not_Set --
6890 ----------------------------------------
6891
6892 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
6893 begin
6894 -- Ignore if not base type, subtypes don't need anything
6895
6896 if Typ /= Base_Type (Typ) then
6897 return;
6898 end if;
6899
6900 -- Do not override existing representation
6901
6902 if Is_Packed (Typ) then
6903 return;
6904
6905 elsif Has_Specified_Layout (Typ) then
6906 return;
6907
6908 elsif Component_Alignment (Typ) /= Calign_Default then
6909 return;
6910
6911 else
6912 Set_Component_Alignment
6913 (Typ, Scope_Stack.Table
6914 (Scope_Stack.Last).Component_Alignment_Default);
6915 end if;
6916 end Set_Component_Alignment_If_Not_Set;
6917
c6823a20
EB
6918 ------------------
6919 -- Undelay_Type --
6920 ------------------
6921
6922 procedure Undelay_Type (T : Entity_Id) is
6923 begin
6924 Set_Has_Delayed_Freeze (T, False);
6925 Set_Freeze_Node (T, Empty);
6926
6927 -- Since we don't want T to have a Freeze_Node, we don't want its
6928 -- Full_View or Corresponding_Record_Type to have one either.
6929
6930 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
6931 -- want is to be sure that for an Itype that's part of record R and is a
6932 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
6933 -- points of R and T. We have no way of doing that directly, so what we
6934 -- do is force most such Itypes to be frozen as part of freezing R via
6935 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
6936 -- (mostly the designated types of access types that are defined as part
6937 -- of the record).
c6823a20
EB
6938
6939 if Is_Private_Type (T)
6940 and then Present (Full_View (T))
6941 and then Is_Itype (Full_View (T))
6942 and then Is_Record_Type (Scope (Full_View (T)))
6943 then
6944 Undelay_Type (Full_View (T));
6945 end if;
6946
6947 if Is_Concurrent_Type (T)
6948 and then Present (Corresponding_Record_Type (T))
6949 and then Is_Itype (Corresponding_Record_Type (T))
6950 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
6951 then
6952 Undelay_Type (Corresponding_Record_Type (T));
6953 end if;
6954 end Undelay_Type;
6955
fbf5a39b
AC
6956 ------------------
6957 -- Warn_Overlay --
6958 ------------------
6959
6960 procedure Warn_Overlay
6961 (Expr : Node_Id;
6962 Typ : Entity_Id;
6963 Nam : Entity_Id)
6964 is
6965 Ent : constant Entity_Id := Entity (Nam);
49e90211 6966 -- The object to which the address clause applies
fbf5a39b
AC
6967
6968 Init : Node_Id;
6969 Old : Entity_Id := Empty;
6970 Decl : Node_Id;
6971
6972 begin
6973 -- No warning if address clause overlay warnings are off
6974
6975 if not Address_Clause_Overlay_Warnings then
6976 return;
6977 end if;
6978
6979 -- No warning if there is an explicit initialization
6980
6981 Init := Original_Node (Expression (Declaration_Node (Ent)));
6982
6983 if Present (Init) and then Comes_From_Source (Init) then
6984 return;
6985 end if;
6986
edd63e9b 6987 -- We only give the warning for non-imported entities of a type for
0ac73189 6988 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 6989 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
6990 -- applies and the type is scalar or a string type (the latter being
6991 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
6992 -- code rather than by an init_proc). Note that we do not give the
6993 -- warning for Initialize_Scalars, since we suppressed initialization
e526d0c7 6994 -- in this case. Also, do not warn if Suppress_Initialization is set.
fbf5a39b
AC
6995
6996 if Present (Expr)
fbf5a39b 6997 and then not Is_Imported (Ent)
e526d0c7 6998 and then not Initialization_Suppressed (Typ)
0ac73189 6999 and then (Has_Non_Null_Base_Init_Proc (Typ)
e526d0c7
AC
7000 or else Is_Access_Type (Typ)
7001 or else (Normalize_Scalars
7002 and then (Is_Scalar_Type (Typ)
7003 or else Is_String_Type (Typ))))
fbf5a39b
AC
7004 then
7005 if Nkind (Expr) = N_Attribute_Reference
7006 and then Is_Entity_Name (Prefix (Expr))
7007 then
7008 Old := Entity (Prefix (Expr));
7009
7010 elsif Is_Entity_Name (Expr)
7011 and then Ekind (Entity (Expr)) = E_Constant
7012 then
7013 Decl := Declaration_Node (Entity (Expr));
7014
7015 if Nkind (Decl) = N_Object_Declaration
7016 and then Present (Expression (Decl))
7017 and then Nkind (Expression (Decl)) = N_Attribute_Reference
7018 and then Is_Entity_Name (Prefix (Expression (Decl)))
7019 then
7020 Old := Entity (Prefix (Expression (Decl)));
7021
7022 elsif Nkind (Expr) = N_Function_Call then
7023 return;
7024 end if;
7025
ee094616
RD
7026 -- A function call (most likely to To_Address) is probably not an
7027 -- overlay, so skip warning. Ditto if the function call was inlined
7028 -- and transformed into an entity.
fbf5a39b
AC
7029
7030 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
7031 return;
7032 end if;
7033
7034 Decl := Next (Parent (Expr));
7035
7036 -- If a pragma Import follows, we assume that it is for the current
7037 -- target of the address clause, and skip the warning.
7038
7039 if Present (Decl)
7040 and then Nkind (Decl) = N_Pragma
1b24ada5 7041 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
7042 then
7043 return;
7044 end if;
7045
7046 if Present (Old) then
7047 Error_Msg_Node_2 := Old;
7048 Error_Msg_N
685bc70f 7049 ("default initialization of & may modify &??",
fbf5a39b
AC
7050 Nam);
7051 else
7052 Error_Msg_N
685bc70f 7053 ("default initialization of & may modify overlaid storage??",
fbf5a39b
AC
7054 Nam);
7055 end if;
7056
7057 -- Add friendly warning if initialization comes from a packed array
7058 -- component.
7059
7060 if Is_Record_Type (Typ) then
7061 declare
7062 Comp : Entity_Id;
7063
7064 begin
7065 Comp := First_Component (Typ);
fbf5a39b
AC
7066 while Present (Comp) loop
7067 if Nkind (Parent (Comp)) = N_Component_Declaration
7068 and then Present (Expression (Parent (Comp)))
7069 then
7070 exit;
7071 elsif Is_Array_Type (Etype (Comp))
7072 and then Present (Packed_Array_Type (Etype (Comp)))
7073 then
7074 Error_Msg_NE
3f1ede06 7075 ("\packed array component& " &
685bc70f 7076 "will be initialized to zero??",
3f1ede06 7077 Nam, Comp);
fbf5a39b
AC
7078 exit;
7079 else
7080 Next_Component (Comp);
7081 end if;
7082 end loop;
7083 end;
7084 end if;
7085
7086 Error_Msg_N
3f1ede06 7087 ("\use pragma Import for & to " &
685bc70f 7088 "suppress initialization (RM B.1(24))??",
3f1ede06 7089 Nam);
fbf5a39b
AC
7090 end if;
7091 end Warn_Overlay;
7092
70482933 7093end Freeze;