]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
e7ba564f 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
d935a36e 33with Fname; use Fname;
996ae0b0 34with Itypes; use Itypes;
d935a36e 35with Lib; use Lib;
996ae0b0
RK
36with Lib.Xref; use Lib.Xref;
37with Namet; use Namet;
d469eabe 38with Namet.Sp; use Namet.Sp;
996ae0b0
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Output; use Output;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
996ae0b0 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
19d846a0 47with Sem_Case; use Sem_Case;
996ae0b0
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch3; use Sem_Ch3;
d469eabe 50with Sem_Ch6; use Sem_Ch6;
996ae0b0 51with Sem_Ch8; use Sem_Ch8;
dec6faf1 52with Sem_Dim; use Sem_Dim;
b67a385c 53with Sem_Disp; use Sem_Disp;
996ae0b0
RK
54with Sem_Dist; use Sem_Dist;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
996ae0b0 57with Sem_Type; use Sem_Type;
19d846a0
RD
58with Sem_Util; use Sem_Util;
59with Sem_Warn; use Sem_Warn;
996ae0b0
RK
60with Stand; use Stand;
61with Sinfo; use Sinfo;
62with Snames; use Snames;
63with Tbuild; use Tbuild;
b727a82b 64with Uintp; use Uintp;
996ae0b0 65
996ae0b0
RK
66package body Sem_Ch4 is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
fe39cf20
BD
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
75
996ae0b0
RK
76 procedure Analyze_Expression (N : Node_Id);
77 -- For expressions that are not names, this is just a call to analyze.
78 -- If the expression is a name, it may be a call to a parameterless
79 -- function, and if so must be converted into an explicit call node
80 -- and analyzed as such. This deproceduring must be done during the first
81 -- pass of overload resolution, because otherwise a procedure call with
b4592168 82 -- overloaded actuals may fail to resolve.
996ae0b0
RK
83
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
86 -- is an operator name or an expanded name whose selector is an operator
87 -- name, and one possible interpretation is as a predefined operator.
88
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
93
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
98
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
103
104 procedure Ambiguous_Operands (N : Node_Id);
0877856b 105 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
106 -- arguments, list possible interpretations.
107
996ae0b0 108 procedure Analyze_One_Call
ec6078e3
ES
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
996ae0b0
RK
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
118 --
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
ec6078e3
ES
124 --
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
131
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
8dbf3473
AC
135 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
996ae0b0
RK
139
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 141 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
145
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
150 -- L and R are the operands of an arithmetic operator. Find
151 -- consistent pairs of interpretations for L and R that have a
152 -- numeric type consistent with the semantics of the operator.
153
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
158 -- L and R are operands of a comparison operator. Find consistent
159 -- pairs of interpretations for L and R.
160
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
6e73e3ab 165 -- For the four varieties of concatenation
996ae0b0
RK
166
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
6e73e3ab 171 -- Ditto for equality operators
996ae0b0
RK
172
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
6e73e3ab 177 -- Ditto for binary logical operations
996ae0b0
RK
178
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
6e73e3ab 183 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
184
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
be4c5193
AC
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
996ae0b0 198
d469eabe
HK
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
202
996ae0b0
RK
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
6e73e3ab 207 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
208
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
401093c1 218 -- designator. In both cases Op_Id is the operator name itself.
996ae0b0
RK
219
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
224
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
229
230 procedure Operator_Check (N : Node_Id);
da709d08
AC
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
996ae0b0 237
d469eabe 238 function Process_Implicit_Dereference_Prefix
da709d08 239 (E : Entity_Id;
d469eabe 240 P : Node_Id) return Entity_Id;
da709d08 241 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
6e73e3ab 250
30c20106
AC
251 procedure Remove_Abstract_Operations (N : Node_Id);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
254
d50f4827
AC
255 function Try_Container_Indexing
256 (N : Node_Id;
257 Prefix : Node_Id;
50878404 258 Exprs : List_Id) return Boolean;
d50f4827
AC
259 -- AI05-0139: Generalized indexing to support iterators over containers
260
996ae0b0 261 function Try_Indexed_Call
aab883ec
ES
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id;
265 Skip_First : Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
273
274 function Try_Indirect_Call
91b1417d
AC
275 (N : Node_Id;
276 Nam : Entity_Id;
277 Typ : Entity_Id) return Boolean;
aab883ec
ES
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
996ae0b0 281
8cf23b91 282 function Try_Object_Operation
11bc76df
AC
283 (N : Node_Id;
284 CW_Test_Only : Boolean := False) return Boolean;
0d57c6f4
RD
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
8cf23b91
AC
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
35ae2ed8 293
b4592168
GD
294 procedure wpo (T : Entity_Id);
295 pragma Warnings (Off, wpo);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
298
996ae0b0
RK
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
302
303 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 304 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 305
4c46b835
AC
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
309
fbf5a39b 310 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
311 Nam : Node_Id;
312 Err : Node_Id := N;
313
314 begin
315 if Is_Overloaded (Opnd) then
316 if Nkind (Opnd) in N_Op then
317 Nam := Opnd;
996ae0b0
RK
318 elsif Nkind (Opnd) = N_Function_Call then
319 Nam := Name (Opnd);
44a10091
AC
320 elsif Ada_Version >= Ada_2012 then
321 declare
322 It : Interp;
323 I : Interp_Index;
324
325 begin
326 Get_First_Interp (Opnd, I, It);
327 while Present (It.Nam) loop
328 if Has_Implicit_Dereference (It.Typ) then
329 Error_Msg_N
330 ("can be interpreted as implicit dereference", Opnd);
331 return;
332 end if;
333
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
337
996ae0b0
RK
338 return;
339 end if;
340
341 else
342 return;
343 end if;
344
345 if Opnd = Left_Opnd (N) then
ed2233dc 346 Error_Msg_N ("\left operand has the following interpretations", N);
996ae0b0 347 else
ed2233dc 348 Error_Msg_N
996ae0b0
RK
349 ("\right operand has the following interpretations", N);
350 Err := Opnd;
351 end if;
352
fbf5a39b
AC
353 List_Interps (Nam, Err);
354 end List_Operand_Interps;
996ae0b0 355
4c46b835
AC
356 -- Start of processing for Ambiguous_Operands
357
996ae0b0 358 begin
b67a385c 359 if Nkind (N) in N_Membership_Test then
ed2233dc 360 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 361
d469eabe 362 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 363 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
364
365 else
ed2233dc 366 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
367 end if;
368
369 if All_Errors_Mode then
fbf5a39b
AC
370 List_Operand_Interps (Left_Opnd (N));
371 List_Operand_Interps (Right_Opnd (N));
996ae0b0 372 else
555360a5 373 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
374 end if;
375 end Ambiguous_Operands;
376
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
380
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
383
384 procedure Analyze_Aggregate (N : Node_Id) is
385 begin
386 if No (Etype (N)) then
387 Set_Etype (N, Any_Composite);
388 end if;
389 end Analyze_Aggregate;
390
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
394
395 procedure Analyze_Allocator (N : Node_Id) is
396 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 397 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 398 E : Node_Id := Expression (N);
996ae0b0
RK
399 Acc_Type : Entity_Id;
400 Type_Id : Entity_Id;
87003b28
RD
401 P : Node_Id;
402 C : Node_Id;
b3b26ace 403 Onode : Node_Id;
996ae0b0
RK
404
405 begin
2ba431e5 406 Check_SPARK_Restriction ("allocator is not allowed", N);
1d801f21 407
87003b28
RD
408 -- Deal with allocator restrictions
409
50cff367 410 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28 411 -- to user-written allocators. The same consideration applies to the
d8941160 412 -- No_Standard_Allocators_Before_Elaboration restriction.
50cff367
GD
413
414 if Comes_From_Source (N) then
415 Check_Restriction (No_Allocators, N);
87003b28 416
57f4c288 417 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
489c6e19 418 -- look at enclosing context, checking task/main subprogram case.
87003b28
RD
419
420 C := N;
421 P := Parent (C);
422 while Present (P) loop
423
b3b26ace
AC
424 -- For the task case we need a handled sequence of statements,
425 -- where the occurrence of the allocator is within the statements
426 -- and the parent is a task body
87003b28
RD
427
428 if Nkind (P) = N_Handled_Sequence_Of_Statements
429 and then Is_List_Member (C)
430 and then List_Containing (C) = Statements (P)
431 then
b3b26ace
AC
432 Onode := Original_Node (Parent (P));
433
87003b28 434 -- Check for allocator within task body, this is a definite
d8941160
RD
435 -- violation of No_Allocators_After_Elaboration we can detect
436 -- at compile time.
87003b28 437
b3b26ace 438 if Nkind (Onode) = N_Task_Body then
57f4c288
ES
439 Check_Restriction
440 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
441 exit;
442 end if;
b3b26ace 443 end if;
87003b28 444
b3b26ace
AC
445 -- The other case is appearance in a subprogram body. This is
446 -- a violation if this is a library level subprogram with no
447 -- parameters. Note that this is now a static error even if the
448 -- subprogram is not the main program (this is a change, in an
449 -- earlier version only the main program was affected, and the
450 -- check had to be done in the binder.
87003b28 451
b3b26ace
AC
452 if Nkind (P) = N_Subprogram_Body
453 and then Nkind (Parent (P)) = N_Compilation_Unit
454 and then No (Parameter_Specifications (Specification (P)))
455 then
456 Check_Restriction
457 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
458 end if;
459
460 C := P;
461 P := Parent (C);
462 end loop;
50cff367 463 end if;
996ae0b0 464
df170605
AC
465 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
466 -- any. The expected type for the name is any type. A non-overloading
467 -- rule then requires it to be of a type descended from
f0f88eb6
RD
468 -- System.Storage_Pools.Subpools.Subpool_Handle.
469
470 -- This isn't exactly what the AI says, but it seems to be the right
471 -- rule. The AI should be fixed.???
df170605
AC
472
473 declare
474 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 475
df170605
AC
476 begin
477 if Present (Subpool) then
478 Analyze (Subpool);
f0f88eb6 479
df170605
AC
480 if Is_Overloaded (Subpool) then
481 Error_Msg_N ("ambiguous subpool handle", Subpool);
482 end if;
483
f0f88eb6 484 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
485
486 Resolve (Subpool);
487 end if;
488 end;
489
490 -- Analyze the qualified expression or subtype indication
87003b28 491
996ae0b0
RK
492 if Nkind (E) = N_Qualified_Expression then
493 Acc_Type := Create_Itype (E_Allocator_Type, N);
494 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 495 Find_Type (Subtype_Mark (E));
45c8b94b
ES
496
497 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 498 -- rule given in 4.7(3).
45c8b94b
ES
499
500 Analyze (E);
501 Type_Id := Etype (E);
996ae0b0
RK
502 Set_Directly_Designated_Type (Acc_Type, Type_Id);
503
45c8b94b 504 Resolve (Expression (E), Type_Id);
b67a385c 505
f7bb41af
AC
506 -- Allocators generated by the build-in-place expansion mechanism
507 -- are explicitly marked as coming from source but do not need to be
508 -- checked for limited initialization. To exclude this case, ensure
509 -- that the parent of the allocator is a source node.
510
d05ef0ab 511 if Is_Limited_Type (Type_Id)
996ae0b0 512 and then Comes_From_Source (N)
f7bb41af 513 and then Comes_From_Source (Parent (N))
996ae0b0
RK
514 and then not In_Instance_Body
515 then
2a31c32b 516 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
d05ef0ab
AC
517 Error_Msg_N ("initialization not allowed for limited types", N);
518 Explain_Limited_Type (Type_Id, N);
519 end if;
996ae0b0
RK
520 end if;
521
996ae0b0
RK
522 -- A qualified expression requires an exact match of the type,
523 -- class-wide matching is not allowed.
524
45c8b94b
ES
525 -- if Is_Class_Wide_Type (Type_Id)
526 -- and then Base_Type
527 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
528 -- then
529 -- Wrong_Type (Expression (E), Type_Id);
530 -- end if;
996ae0b0
RK
531
532 Check_Non_Static_Context (Expression (E));
533
534 -- We don't analyze the qualified expression itself because it's
535 -- part of the allocator
536
537 Set_Etype (E, Type_Id);
538
aab883ec 539 -- Case where allocator has a subtype indication
4c46b835 540
996ae0b0
RK
541 else
542 declare
758c442c
GD
543 Def_Id : Entity_Id;
544 Base_Typ : Entity_Id;
996ae0b0
RK
545
546 begin
547 -- If the allocator includes a N_Subtype_Indication then a
548 -- constraint is present, otherwise the node is a subtype mark.
549 -- Introduce an explicit subtype declaration into the tree
550 -- defining some anonymous subtype and rewrite the allocator to
551 -- use this subtype rather than the subtype indication.
552
553 -- It is important to introduce the explicit subtype declaration
554 -- so that the bounds of the subtype indication are attached to
555 -- the tree in case the allocator is inside a generic unit.
556
557 if Nkind (E) = N_Subtype_Indication then
558
559 -- A constraint is only allowed for a composite type in Ada
560 -- 95. In Ada 83, a constraint is also allowed for an
561 -- access-to-composite type, but the constraint is ignored.
562
563 Find_Type (Subtype_Mark (E));
758c442c 564 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 565
758c442c 566 if Is_Elementary_Type (Base_Typ) then
0ab80019 567 if not (Ada_Version = Ada_83
758c442c 568 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
569 then
570 Error_Msg_N ("constraint not allowed here", E);
571
24657705
HK
572 if Nkind (Constraint (E)) =
573 N_Index_Or_Discriminant_Constraint
996ae0b0 574 then
4e7a4f6e 575 Error_Msg_N -- CODEFIX
996ae0b0
RK
576 ("\if qualified expression was meant, " &
577 "use apostrophe", Constraint (E));
578 end if;
579 end if;
580
581 -- Get rid of the bogus constraint:
582
583 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
584 Analyze_Allocator (N);
585 return;
586 end if;
587
588 if Expander_Active then
092ef350 589 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
590
591 Insert_Action (E,
592 Make_Subtype_Declaration (Loc,
593 Defining_Identifier => Def_Id,
594 Subtype_Indication => Relocate_Node (E)));
595
07fc65c4 596 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
597 and then Nkind (Constraint (E)) =
598 N_Index_Or_Discriminant_Constraint
996ae0b0 599 then
4e7a4f6e 600 Error_Msg_N -- CODEFIX
a90bd866
RD
601 ("if qualified expression was meant, "
602 & "use apostrophe!", Constraint (E));
996ae0b0
RK
603 end if;
604
605 E := New_Occurrence_Of (Def_Id, Loc);
606 Rewrite (Expression (N), E);
607 end if;
608 end if;
609
610 Type_Id := Process_Subtype (E, N);
611 Acc_Type := Create_Itype (E_Allocator_Type, N);
612 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
613 Set_Directly_Designated_Type (Acc_Type, Type_Id);
614 Check_Fully_Declared (Type_Id, N);
615
1baa4d2d 616 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 617 -- type that excludes null, its default initialization will
75ad5042
ES
618 -- be a null object, and we can insert an unconditional raise
619 -- before the allocator.
2820d220 620
bfae1846 621 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
622 -- illegal.
623
2820d220 624 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
625 declare
626 Not_Null_Check : constant Node_Id :=
627 Make_Raise_Constraint_Error (Sloc (E),
628 Reason => CE_Null_Not_Allowed);
40b93859 629
75ad5042 630 begin
7b55fea6 631 if Expander_Active then
75ad5042
ES
632 Insert_Action (N, Not_Null_Check);
633 Analyze (Not_Null_Check);
40b93859 634
685bc70f
AC
635 elsif Warn_On_Ada_2012_Compatibility then
636 Error_Msg_N
637 ("null value not allowed here in Ada 2012?y?", E);
75ad5042
ES
638 end if;
639 end;
2820d220
AC
640 end if;
641
91b1417d
AC
642 -- Check restriction against dynamically allocated protected
643 -- objects. Note that when limited aggregates are supported,
644 -- a similar test should be applied to an allocator with a
645 -- qualified expression ???
646
647 if Is_Protected_Type (Type_Id) then
648 Check_Restriction (No_Protected_Type_Allocators, N);
649 end if;
650
996ae0b0
RK
651 -- Check for missing initialization. Skip this check if we already
652 -- had errors on analyzing the allocator, since in that case these
24657705 653 -- are probably cascaded errors.
996ae0b0
RK
654
655 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 656 and then Serious_Errors_Detected = Sav_Errs
996ae0b0 657 then
a4956515
AC
658 -- The build-in-place machinery may produce an allocator when
659 -- the designated type is indefinite but the underlying type is
660 -- not. In this case the unknown discriminants are meaningless
661 -- and should not trigger error messages. Check the parent node
662 -- because the allocator is marked as coming from source.
663
664 if Present (Underlying_Type (Type_Id))
665 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
666 and then not Comes_From_Source (Parent (N))
667 then
668 null;
669
670 elsif Is_Class_Wide_Type (Type_Id) then
996ae0b0
RK
671 Error_Msg_N
672 ("initialization required in class-wide allocation", N);
a4956515 673
996ae0b0 674 else
0791fbe9 675 if Ada_Version < Ada_2005
24657705
HK
676 and then Is_Limited_Type (Type_Id)
677 then
678 Error_Msg_N ("unconstrained allocation not allowed", N);
679
680 if Is_Array_Type (Type_Id) then
681 Error_Msg_N
682 ("\constraint with array bounds required", N);
683
684 elsif Has_Unknown_Discriminants (Type_Id) then
685 null;
686
687 else pragma Assert (Has_Discriminants (Type_Id));
688 Error_Msg_N
689 ("\constraint with discriminant values required", N);
690 end if;
691
692 -- Limited Ada 2005 and general non-limited case
693
694 else
695 Error_Msg_N
696 ("uninitialized unconstrained allocation not allowed",
697 N);
698
699 if Is_Array_Type (Type_Id) then
700 Error_Msg_N
701 ("\qualified expression or constraint with " &
702 "array bounds required", N);
703
704 elsif Has_Unknown_Discriminants (Type_Id) then
705 Error_Msg_N ("\qualified expression required", N);
706
707 else pragma Assert (Has_Discriminants (Type_Id));
708 Error_Msg_N
709 ("\qualified expression or constraint with " &
710 "discriminant values required", N);
711 end if;
712 end if;
996ae0b0
RK
713 end if;
714 end if;
715 end;
716 end if;
717
aab883ec 718 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
719 Error_Msg_N ("cannot allocate abstract object", E);
720 end if;
721
722 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 723 Check_Restriction (No_Tasking, N);
fbf5a39b 724 Check_Restriction (Max_Tasks, N);
996ae0b0 725 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
726 end if;
727
646e2823
AC
728 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
729 -- type is nested, and the designated type needs finalization. The rule
730 -- is conservative in that class-wide types need finalization.
731
732 if Needs_Finalization (Designated_Type (Acc_Type))
733 and then not Is_Library_Level_Entity (Acc_Type)
734 then
735 Check_Restriction (No_Nested_Finalization, N);
736 end if;
737
70b3b953
GD
738 -- Check that an allocator of a nested access type doesn't create a
739 -- protected object when restriction No_Local_Protected_Objects applies.
740 -- We don't have an equivalent to Has_Task for protected types, so only
741 -- cases where the designated type itself is a protected type are
742 -- currently checked. ???
743
744 if Is_Protected_Type (Designated_Type (Acc_Type))
745 and then not Is_Library_Level_Entity (Acc_Type)
746 then
747 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
748 end if;
749
ffe9aba8
AC
750 -- If the No_Streams restriction is set, check that the type of the
751 -- object is not, and does not contain, any subtype derived from
752 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
753 -- Has_Stream just for efficiency reasons. There is no point in
754 -- spending time on a Has_Stream check if the restriction is not set.
755
7a963087 756 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
757 if Has_Stream (Designated_Type (Acc_Type)) then
758 Check_Restriction (No_Streams, N);
759 end if;
760 end if;
761
996ae0b0
RK
762 Set_Etype (N, Acc_Type);
763
764 if not Is_Library_Level_Entity (Acc_Type) then
765 Check_Restriction (No_Local_Allocators, N);
766 end if;
2820d220 767
07fc65c4 768 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
769 Set_Error_Posted (N);
770 Set_Etype (N, Any_Type);
771 end if;
996ae0b0
RK
772 end Analyze_Allocator;
773
774 ---------------------------
775 -- Analyze_Arithmetic_Op --
776 ---------------------------
777
778 procedure Analyze_Arithmetic_Op (N : Node_Id) is
779 L : constant Node_Id := Left_Opnd (N);
780 R : constant Node_Id := Right_Opnd (N);
781 Op_Id : Entity_Id;
782
783 begin
784 Candidate_Type := Empty;
785 Analyze_Expression (L);
786 Analyze_Expression (R);
787
d469eabe
HK
788 -- If the entity is already set, the node is the instantiation of a
789 -- generic node with a non-local reference, or was manufactured by a
790 -- call to Make_Op_xxx. In either case the entity is known to be valid,
791 -- and we do not need to collect interpretations, instead we just get
792 -- the single possible interpretation.
996ae0b0
RK
793
794 Op_Id := Entity (N);
795
796 if Present (Op_Id) then
797 if Ekind (Op_Id) = E_Operator then
798
d469eabe 799 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
800 and then Treat_Fixed_As_Integer (N)
801 then
802 null;
803 else
804 Set_Etype (N, Any_Type);
805 Find_Arithmetic_Types (L, R, Op_Id, N);
806 end if;
807
808 else
809 Set_Etype (N, Any_Type);
810 Add_One_Interp (N, Op_Id, Etype (Op_Id));
811 end if;
812
813 -- Entity is not already set, so we do need to collect interpretations
814
815 else
816 Op_Id := Get_Name_Entity_Id (Chars (N));
817 Set_Etype (N, Any_Type);
818
819 while Present (Op_Id) loop
820 if Ekind (Op_Id) = E_Operator
821 and then Present (Next_Entity (First_Entity (Op_Id)))
822 then
823 Find_Arithmetic_Types (L, R, Op_Id, N);
824
825 -- The following may seem superfluous, because an operator cannot
826 -- be generic, but this ignores the cleverness of the author of
827 -- ACVC bc1013a.
828
829 elsif Is_Overloadable (Op_Id) then
830 Analyze_User_Defined_Binary_Op (N, Op_Id);
831 end if;
832
833 Op_Id := Homonym (Op_Id);
834 end loop;
835 end if;
836
837 Operator_Check (N);
838 end Analyze_Arithmetic_Op;
839
840 ------------------
841 -- Analyze_Call --
842 ------------------
843
4c46b835
AC
844 -- Function, procedure, and entry calls are checked here. The Name in
845 -- the call may be overloaded. The actuals have been analyzed and may
846 -- themselves be overloaded. On exit from this procedure, the node N
847 -- may have zero, one or more interpretations. In the first case an
848 -- error message is produced. In the last case, the node is flagged
849 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
850
851 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
852 -- the type-checking is similar to that of other calls.
853
854 procedure Analyze_Call (N : Node_Id) is
855 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 856 Nam : Node_Id;
996ae0b0
RK
857 X : Interp_Index;
858 It : Interp;
859 Nam_Ent : Entity_Id;
63319f58
RD
860 Success : Boolean := False;
861
862 Deref : Boolean := False;
1cb17b78
AC
863 -- Flag indicates whether an interpretation of the prefix is a
864 -- parameterless call that returns an access_to_subprogram.
996ae0b0 865
9f6aaa5c
AC
866 procedure Check_Ghost_Subprogram_Call;
867 -- Verify the legality of a call to a ghost subprogram. Such calls can
a7e68e7f 868 -- appear only in assertion expressions except subtype predicates or
9f6aaa5c 869 -- from within another ghost subprogram.
a7e68e7f 870
23685ae6
AC
871 procedure Check_Mixed_Parameter_And_Named_Associations;
872 -- Check that parameter and named associations are not mixed. This is
873 -- a restriction in SPARK mode.
874
996ae0b0 875 function Name_Denotes_Function return Boolean;
5ff22245
ES
876 -- If the type of the name is an access to subprogram, this may be the
877 -- type of a name, or the return type of the function being called. If
878 -- the name is not an entity then it can denote a protected function.
879 -- Until we distinguish Etype from Return_Type, we must use this routine
880 -- to resolve the meaning of the name in the call.
881
882 procedure No_Interpretation;
883 -- Output error message when no valid interpretation exists
996ae0b0 884
9f6aaa5c
AC
885 ---------------------------------
886 -- Check_Ghost_Subprogram_Call --
887 ---------------------------------
a7e68e7f 888
9f6aaa5c 889 procedure Check_Ghost_Subprogram_Call is
a7e68e7f
HK
890 S : Entity_Id;
891
892 begin
5884c232
AC
893 -- Do not perform the check while preanalyzing the enclosing context
894 -- because the call is not in its final place. Premature attempts to
895 -- verify the placement lead to bogus errors.
896
897 if In_Spec_Expression then
898 return;
899
2c9f8c0a
AC
900 -- The ghost subprogram appears inside an assertion expression which
901 -- is one of the allowed cases.
a7e68e7f 902
2c9f8c0a 903 elsif In_Assertion_Expression_Pragma (N) then
a7e68e7f
HK
904 return;
905
5884c232
AC
906 -- Otherwise see if it inside another ghost subprogram
907
a7e68e7f 908 else
5884c232
AC
909 -- Loop to climb scopes
910
a7e68e7f
HK
911 S := Current_Scope;
912 while Present (S) and then S /= Standard_Standard loop
913
9f6aaa5c 914 -- The call appears inside another ghost subprogram
a7e68e7f 915
9f6aaa5c 916 if Is_Ghost_Subprogram (S) then
a7e68e7f
HK
917 return;
918 end if;
919
920 S := Scope (S);
921 end loop;
a7e68e7f 922
5884c232
AC
923 -- If we fall through the loop it was not within another
924 -- ghost subprogram, so we have bad placement.
925
926 Error_Msg_N
927 ("call to ghost subprogram must appear in assertion expression "
928 & "or another ghost subprogram", N);
929 end if;
9f6aaa5c 930 end Check_Ghost_Subprogram_Call;
a7e68e7f 931
23685ae6
AC
932 --------------------------------------------------
933 -- Check_Mixed_Parameter_And_Named_Associations --
934 --------------------------------------------------
935
936 procedure Check_Mixed_Parameter_And_Named_Associations is
937 Actual : Node_Id;
938 Named_Seen : Boolean;
f5afb270 939
23685ae6 940 begin
23685ae6 941 Named_Seen := False;
f5afb270
AC
942
943 Actual := First (Actuals);
23685ae6
AC
944 while Present (Actual) loop
945 case Nkind (Actual) is
946 when N_Parameter_Association =>
947 if Named_Seen then
2ba431e5 948 Check_SPARK_Restriction
23685ae6
AC
949 ("named association cannot follow positional one",
950 Actual);
951 exit;
952 end if;
953 when others =>
954 Named_Seen := True;
955 end case;
956
957 Next (Actual);
958 end loop;
959 end Check_Mixed_Parameter_And_Named_Associations;
960
996ae0b0
RK
961 ---------------------------
962 -- Name_Denotes_Function --
963 ---------------------------
964
965 function Name_Denotes_Function return Boolean is
966 begin
967 if Is_Entity_Name (Nam) then
968 return Ekind (Entity (Nam)) = E_Function;
969
970 elsif Nkind (Nam) = N_Selected_Component then
971 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
972
973 else
974 return False;
975 end if;
976 end Name_Denotes_Function;
977
5ff22245
ES
978 -----------------------
979 -- No_Interpretation --
980 -----------------------
981
982 procedure No_Interpretation is
983 L : constant Boolean := Is_List_Member (N);
984 K : constant Node_Kind := Nkind (Parent (N));
985
986 begin
987 -- If the node is in a list whose parent is not an expression then it
988 -- must be an attempted procedure call.
989
990 if L and then K not in N_Subexpr then
991 if Ekind (Entity (Nam)) = E_Generic_Procedure then
992 Error_Msg_NE
993 ("must instantiate generic procedure& before call",
994 Nam, Entity (Nam));
995 else
996 Error_Msg_N
997 ("procedure or entry name expected", Nam);
998 end if;
999
1000 -- Check for tasking cases where only an entry call will do
1001
1002 elsif not L
1003 and then Nkind_In (K, N_Entry_Call_Alternative,
1004 N_Triggering_Alternative)
1005 then
1006 Error_Msg_N ("entry name expected", Nam);
1007
1008 -- Otherwise give general error message
1009
1010 else
1011 Error_Msg_N ("invalid prefix in call", Nam);
1012 end if;
1013 end No_Interpretation;
1014
996ae0b0
RK
1015 -- Start of processing for Analyze_Call
1016
1017 begin
6480338a 1018 if Restriction_Check_Required (SPARK_05) then
23685ae6
AC
1019 Check_Mixed_Parameter_And_Named_Associations;
1020 end if;
1021
996ae0b0
RK
1022 -- Initialize the type of the result of the call to the error type,
1023 -- which will be reset if the type is successfully resolved.
1024
1025 Set_Etype (N, Any_Type);
1026
63319f58
RD
1027 Nam := Name (N);
1028
996ae0b0
RK
1029 if not Is_Overloaded (Nam) then
1030
1031 -- Only one interpretation to check
1032
1033 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1034 Nam_Ent := Etype (Nam);
1035
758c442c
GD
1036 -- If the prefix is an access_to_subprogram, this may be an indirect
1037 -- call. This is the case if the name in the call is not an entity
1038 -- name, or if it is a function name in the context of a procedure
1039 -- call. In this latter case, we have a call to a parameterless
1040 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
1041 -- being called. Finally, F (X) may be a call to a parameterless
1042 -- function that returns a pointer to a function with parameters.
80e59506 1043 -- Note that if F returns an access-to-subprogram whose designated
4bb9c7b9
AC
1044 -- type is an array, F (X) cannot be interpreted as an indirect call
1045 -- through the result of the call to F.
758c442c 1046
996ae0b0
RK
1047 elsif Is_Access_Type (Etype (Nam))
1048 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
1049 and then
1050 (not Name_Denotes_Function
b2834fbd
AC
1051 or else Nkind (N) = N_Procedure_Call_Statement
1052 or else
1053 (Nkind (Parent (N)) /= N_Explicit_Dereference
1054 and then Is_Entity_Name (Nam)
1055 and then No (First_Formal (Entity (Nam)))
1056 and then not
1057 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1058 and then Present (Actuals)))
996ae0b0
RK
1059 then
1060 Nam_Ent := Designated_Type (Etype (Nam));
1061 Insert_Explicit_Dereference (Nam);
1062
1063 -- Selected component case. Simple entry or protected operation,
1064 -- where the entry name is given by the selector name.
1065
1066 elsif Nkind (Nam) = N_Selected_Component then
1067 Nam_Ent := Entity (Selector_Name (Nam));
1068
bce79204
AC
1069 if not Ekind_In (Nam_Ent, E_Entry,
1070 E_Entry_Family,
1071 E_Function,
1072 E_Procedure)
996ae0b0
RK
1073 then
1074 Error_Msg_N ("name in call is not a callable entity", Nam);
1075 Set_Etype (N, Any_Type);
1076 return;
1077 end if;
1078
1079 -- If the name is an Indexed component, it can be a call to a member
1080 -- of an entry family. The prefix must be a selected component whose
1081 -- selector is the entry. Analyze_Procedure_Call normalizes several
1082 -- kinds of call into this form.
1083
1084 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1085 if Nkind (Prefix (Nam)) = N_Selected_Component then
1086 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1087 else
1088 Error_Msg_N ("name in call is not a callable entity", Nam);
1089 Set_Etype (N, Any_Type);
1090 return;
996ae0b0
RK
1091 end if;
1092
1093 elsif not Is_Entity_Name (Nam) then
1094 Error_Msg_N ("name in call is not a callable entity", Nam);
1095 Set_Etype (N, Any_Type);
1096 return;
1097
1098 else
1099 Nam_Ent := Entity (Nam);
1100
5f50020a
ES
1101 -- If not overloadable, this may be a generalized indexing
1102 -- operation with named associations. Rewrite again as an
1103 -- indexed component and analyze as container indexing.
996ae0b0
RK
1104
1105 if not Is_Overloadable (Nam_Ent) then
32bba3c9
AC
1106 if Present
1107 (Find_Value_Of_Aspect
1108 (Etype (Nam_Ent), Aspect_Constant_Indexing))
5f50020a
ES
1109 then
1110 Replace (N,
1111 Make_Indexed_Component (Sloc (N),
32bba3c9 1112 Prefix => Nam,
5f50020a
ES
1113 Expressions => Parameter_Associations (N)));
1114
1115 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1116 return;
1117 else
1118 No_Interpretation;
1119 end if;
1120
1121 else
1122 No_Interpretation;
1123 end if;
32bba3c9 1124
5ff22245
ES
1125 return;
1126 end if;
1127 end if;
996ae0b0 1128
5ff22245
ES
1129 -- Operations generated for RACW stub types are called only through
1130 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1131
5ff22245
ES
1132 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1133 No_Interpretation;
1134 return;
996ae0b0
RK
1135 end if;
1136
1137 Analyze_One_Call (N, Nam_Ent, True, Success);
1138
ec6078e3
ES
1139 -- If this is an indirect call, the return type of the access_to
1140 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1141 -- use the full type if available, and at the same time update the
1142 -- return type of the access_to_subprogram.
ec6078e3
ES
1143
1144 if Success
d469eabe 1145 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1146 and then Ekind (Etype (N)) = E_Incomplete_Type
1147 and then Present (Full_View (Etype (N)))
1148 then
1149 Set_Etype (N, Full_View (Etype (N)));
1150 Set_Etype (Nam_Ent, Etype (N));
1151 end if;
1152
a7e68e7f
HK
1153 -- Overloaded call
1154
996ae0b0 1155 else
5ff22245
ES
1156 -- An overloaded selected component must denote overloaded operations
1157 -- of a concurrent type. The interpretations are attached to the
1158 -- simple name of those operations.
996ae0b0
RK
1159
1160 if Nkind (Nam) = N_Selected_Component then
1161 Nam := Selector_Name (Nam);
1162 end if;
1163
1164 Get_First_Interp (Nam, X, It);
1165
1166 while Present (It.Nam) loop
1167 Nam_Ent := It.Nam;
1cb17b78 1168 Deref := False;
996ae0b0
RK
1169
1170 -- Name may be call that returns an access to subprogram, or more
1171 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1172 -- yields an access to subprogram. If the name is an entity, we do
1173 -- not dereference, because the node is a call that returns the
1174 -- access type: note difference between f(x), where the call may
1175 -- return an access subprogram type, and f(x)(y), where the type
1176 -- returned by the call to f is implicitly dereferenced to analyze
1177 -- the outer call.
996ae0b0
RK
1178
1179 if Is_Access_Type (Nam_Ent) then
1180 Nam_Ent := Designated_Type (Nam_Ent);
1181
1182 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1183 and then
1184 (not Is_Entity_Name (Nam)
1185 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1186 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1187 = E_Subprogram_Type
1188 then
1189 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1190
1191 if Is_Entity_Name (Nam) then
1192 Deref := True;
1193 end if;
996ae0b0
RK
1194 end if;
1195
7415029d
AC
1196 -- If the call has been rewritten from a prefixed call, the first
1197 -- parameter has been analyzed, but may need a subsequent
1198 -- dereference, so skip its analysis now.
1199
1200 if N /= Original_Node (N)
1201 and then Nkind (Original_Node (N)) = Nkind (N)
1202 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1203 and then Present (Parameter_Associations (N))
1204 and then Present (Etype (First (Parameter_Associations (N))))
1205 then
1206 Analyze_One_Call
1207 (N, Nam_Ent, False, Success, Skip_First => True);
1208 else
1209 Analyze_One_Call (N, Nam_Ent, False, Success);
1210 end if;
996ae0b0
RK
1211
1212 -- If the interpretation succeeds, mark the proper type of the
1213 -- prefix (any valid candidate will do). If not, remove the
1214 -- candidate interpretation. This only needs to be done for
1215 -- overloaded protected operations, for other entities disambi-
1216 -- guation is done directly in Resolve.
1217
1218 if Success then
1cb17b78
AC
1219 if Deref
1220 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1221 then
1222 Set_Entity (Nam, It.Nam);
1223 Insert_Explicit_Dereference (Nam);
1224 Set_Etype (Nam, Nam_Ent);
1225
1226 else
1227 Set_Etype (Nam, It.Typ);
1228 end if;
996ae0b0 1229
d469eabe
HK
1230 elsif Nkind_In (Name (N), N_Selected_Component,
1231 N_Function_Call)
fbf5a39b 1232 then
996ae0b0
RK
1233 Remove_Interp (X);
1234 end if;
1235
1236 Get_Next_Interp (X, It);
1237 end loop;
1238
a7e68e7f
HK
1239 -- If the name is the result of a function call, it can only be a
1240 -- call to a function returning an access to subprogram. Insert
1241 -- explicit dereference.
996ae0b0
RK
1242
1243 if Nkind (Nam) = N_Function_Call then
1244 Insert_Explicit_Dereference (Nam);
1245 end if;
1246
1247 if Etype (N) = Any_Type then
1248
1249 -- None of the interpretations is compatible with the actuals
1250
1251 Diagnose_Call (N, Nam);
1252
1253 -- Special checks for uninstantiated put routines
1254
1255 if Nkind (N) = N_Procedure_Call_Statement
1256 and then Is_Entity_Name (Nam)
1257 and then Chars (Nam) = Name_Put
1258 and then List_Length (Actuals) = 1
1259 then
1260 declare
1261 Arg : constant Node_Id := First (Actuals);
1262 Typ : Entity_Id;
1263
1264 begin
1265 if Nkind (Arg) = N_Parameter_Association then
1266 Typ := Etype (Explicit_Actual_Parameter (Arg));
1267 else
1268 Typ := Etype (Arg);
1269 end if;
1270
1271 if Is_Signed_Integer_Type (Typ) then
1272 Error_Msg_N
a90bd866
RD
1273 ("possible missing instantiation of "
1274 & "'Text_'I'O.'Integer_'I'O!", Nam);
996ae0b0
RK
1275
1276 elsif Is_Modular_Integer_Type (Typ) then
1277 Error_Msg_N
a90bd866
RD
1278 ("possible missing instantiation of "
1279 & "'Text_'I'O.'Modular_'I'O!", Nam);
996ae0b0
RK
1280
1281 elsif Is_Floating_Point_Type (Typ) then
1282 Error_Msg_N
a90bd866
RD
1283 ("possible missing instantiation of "
1284 & "'Text_'I'O.'Float_'I'O!", Nam);
996ae0b0
RK
1285
1286 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1287 Error_Msg_N
a90bd866
RD
1288 ("possible missing instantiation of "
1289 & "'Text_'I'O.'Fixed_'I'O!", Nam);
996ae0b0
RK
1290
1291 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1292 Error_Msg_N
a90bd866
RD
1293 ("possible missing instantiation of "
1294 & "'Text_'I'O.'Decimal_'I'O!", Nam);
996ae0b0
RK
1295
1296 elsif Is_Enumeration_Type (Typ) then
1297 Error_Msg_N
a90bd866
RD
1298 ("possible missing instantiation of "
1299 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
996ae0b0
RK
1300 end if;
1301 end;
1302 end if;
1303
1304 elsif not Is_Overloaded (N)
1305 and then Is_Entity_Name (Nam)
1306 then
aab883ec
ES
1307 -- Resolution yields a single interpretation. Verify that the
1308 -- reference has capitalization consistent with the declaration.
996ae0b0 1309
e7ba564f 1310 Set_Entity_With_Checks (Nam, Entity (Nam));
996ae0b0
RK
1311 Generate_Reference (Entity (Nam), Nam);
1312
1313 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1314 else
1315 Remove_Abstract_Operations (N);
996ae0b0
RK
1316 end if;
1317
1318 End_Interp_List;
1319 end if;
a7e68e7f 1320
9f6aaa5c
AC
1321 -- A call to a ghost subprogram is allowed only in assertion expressions
1322 -- excluding subtype predicates or from within another ghost subprogram.
a7e68e7f 1323
9f6aaa5c
AC
1324 if Is_Ghost_Subprogram (Get_Subprogram_Entity (N)) then
1325 Check_Ghost_Subprogram_Call;
a7e68e7f 1326 end if;
996ae0b0
RK
1327 end Analyze_Call;
1328
19d846a0
RD
1329 -----------------------------
1330 -- Analyze_Case_Expression --
1331 -----------------------------
1332
1333 procedure Analyze_Case_Expression (N : Node_Id) is
752b81d9
AC
1334 function Has_Static_Predicate (Subtyp : Entity_Id) return Boolean;
1335 -- Determine whether subtype Subtyp has aspect Static_Predicate
19d846a0
RD
1336
1337 procedure Non_Static_Choice_Error (Choice : Node_Id);
1338 -- Error routine invoked by the generic instantiation below when
1339 -- the case expression has a non static choice.
1340
15918371
AC
1341 package Case_Choices_Analysis is new
1342 Generic_Analyze_Choices
1343 (Process_Associated_Node => No_OP);
1344 use Case_Choices_Analysis;
1345
1346 package Case_Choices_Checking is new
1347 Generic_Check_Choices
1348 (Process_Empty_Choice => No_OP,
19d846a0
RD
1349 Process_Non_Static_Choice => Non_Static_Choice_Error,
1350 Process_Associated_Node => No_OP);
15918371 1351 use Case_Choices_Checking;
19d846a0 1352
752b81d9
AC
1353 --------------------------
1354 -- Has_Static_Predicate --
1355 --------------------------
1356
1357 function Has_Static_Predicate (Subtyp : Entity_Id) return Boolean is
1358 Item : Node_Id;
1359
1360 begin
1361 Item := First_Rep_Item (Subtyp);
1362 while Present (Item) loop
1363 if Nkind (Item) = N_Aspect_Specification
1364 and then Chars (Identifier (Item)) = Name_Static_Predicate
1365 then
1366 return True;
1367 end if;
1368
1369 Next_Rep_Item (Item);
1370 end loop;
1371
1372 return False;
1373 end Has_Static_Predicate;
1374
19d846a0
RD
1375 -----------------------------
1376 -- Non_Static_Choice_Error --
1377 -----------------------------
1378
1379 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1380 begin
1381 Flag_Non_Static_Expr
1382 ("choice given in case expression is not static!", Choice);
1383 end Non_Static_Choice_Error;
1384
752b81d9
AC
1385 -- Local variables
1386
1387 Expr : constant Node_Id := Expression (N);
752b81d9
AC
1388 Alt : Node_Id;
1389 Exp_Type : Entity_Id;
1390 Exp_Btype : Entity_Id;
1391
308aab0b
AC
1392 FirstX : Node_Id := Empty;
1393 -- First expression in the case for which there is some type information
1394 -- available, i.e. it is not Any_Type, which can happen because of some
1395 -- error, or from the use of e.g. raise Constraint_Error.
1396
752b81d9 1397 Others_Present : Boolean;
15918371 1398 -- Indicates if Others was present
752b81d9 1399
19d846a0
RD
1400 -- Start of processing for Analyze_Case_Expression
1401
1402 begin
1403 if Comes_From_Source (N) then
c86cf714 1404 Check_Compiler_Unit ("case expression", N);
19d846a0
RD
1405 end if;
1406
1407 Analyze_And_Resolve (Expr, Any_Discrete);
1408 Check_Unset_Reference (Expr);
1409 Exp_Type := Etype (Expr);
1410 Exp_Btype := Base_Type (Exp_Type);
1411
1412 Alt := First (Alternatives (N));
1413 while Present (Alt) loop
1414 Analyze (Expression (Alt));
308aab0b
AC
1415
1416 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1417 FirstX := Expression (Alt);
1418 end if;
1419
19d846a0
RD
1420 Next (Alt);
1421 end loop;
1422
308aab0b
AC
1423 -- Get our initial type from the first expression for which we got some
1424 -- useful type information from the expression.
1425
19d846a0
RD
1426 if not Is_Overloaded (FirstX) then
1427 Set_Etype (N, Etype (FirstX));
1428
1429 else
1430 declare
1431 I : Interp_Index;
1432 It : Interp;
1433
1434 begin
1435 Set_Etype (N, Any_Type);
1436
1437 Get_First_Interp (FirstX, I, It);
1438 while Present (It.Nam) loop
1439
308e6f3a
RW
1440 -- For each interpretation of the first expression, we only
1441 -- add the interpretation if every other expression in the
19d846a0
RD
1442 -- case expression alternatives has a compatible type.
1443
1444 Alt := Next (First (Alternatives (N)));
1445 while Present (Alt) loop
1446 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1447 Next (Alt);
1448 end loop;
1449
1450 if No (Alt) then
1451 Add_One_Interp (N, It.Typ, It.Typ);
1452 end if;
1453
1454 Get_Next_Interp (I, It);
1455 end loop;
1456 end;
1457 end if;
1458
1459 Exp_Btype := Base_Type (Exp_Type);
1460
1461 -- The expression must be of a discrete type which must be determinable
1462 -- independently of the context in which the expression occurs, but
1463 -- using the fact that the expression must be of a discrete type.
1464 -- Moreover, the type this expression must not be a character literal
1465 -- (which is always ambiguous).
1466
1467 -- If error already reported by Resolve, nothing more to do
1468
15918371 1469 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
19d846a0
RD
1470 return;
1471
1472 elsif Exp_Btype = Any_Character then
1473 Error_Msg_N
1474 ("character literal as case expression is ambiguous", Expr);
1475 return;
1476 end if;
1477
1478 -- If the case expression is a formal object of mode in out, then
1479 -- treat it as having a nonstatic subtype by forcing use of the base
1480 -- type (which has to get passed to Check_Case_Choices below). Also
1481 -- use base type when the case expression is parenthesized.
1482
1483 if Paren_Count (Expr) > 0
1484 or else (Is_Entity_Name (Expr)
1485 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1486 then
1487 Exp_Type := Exp_Btype;
1488 end if;
1489
752b81d9
AC
1490 -- The case expression alternatives cover the range of a static subtype
1491 -- subject to aspect Static_Predicate. Do not check the choices when the
1492 -- case expression has not been fully analyzed yet because this may lead
1493 -- to bogus errors.
1494
1495 if Is_Static_Subtype (Exp_Type)
1496 and then Has_Static_Predicate (Exp_Type)
1497 and then In_Spec_Expression
1498 then
1499 null;
1500
15918371 1501 -- Call Analyze_Choices and Check_Choices to do the rest of the work
19d846a0 1502
752b81d9 1503 else
15918371
AC
1504 Analyze_Choices (Alternatives (N), Exp_Type);
1505 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
752b81d9 1506 end if;
19d846a0
RD
1507
1508 if Exp_Type = Universal_Integer and then not Others_Present then
1509 Error_Msg_N
1510 ("case on universal integer requires OTHERS choice", Expr);
1511 end if;
1512 end Analyze_Case_Expression;
1513
996ae0b0
RK
1514 ---------------------------
1515 -- Analyze_Comparison_Op --
1516 ---------------------------
1517
1518 procedure Analyze_Comparison_Op (N : Node_Id) is
1519 L : constant Node_Id := Left_Opnd (N);
1520 R : constant Node_Id := Right_Opnd (N);
1521 Op_Id : Entity_Id := Entity (N);
1522
1523 begin
1524 Set_Etype (N, Any_Type);
1525 Candidate_Type := Empty;
1526
1527 Analyze_Expression (L);
1528 Analyze_Expression (R);
1529
1530 if Present (Op_Id) then
996ae0b0
RK
1531 if Ekind (Op_Id) = E_Operator then
1532 Find_Comparison_Types (L, R, Op_Id, N);
1533 else
1534 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1535 end if;
1536
1537 if Is_Overloaded (L) then
1538 Set_Etype (L, Intersect_Types (L, R));
1539 end if;
1540
1541 else
1542 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1543 while Present (Op_Id) loop
996ae0b0
RK
1544 if Ekind (Op_Id) = E_Operator then
1545 Find_Comparison_Types (L, R, Op_Id, N);
1546 else
1547 Analyze_User_Defined_Binary_Op (N, Op_Id);
1548 end if;
1549
1550 Op_Id := Homonym (Op_Id);
1551 end loop;
1552 end if;
1553
1554 Operator_Check (N);
1555 end Analyze_Comparison_Op;
1556
1557 ---------------------------
1558 -- Analyze_Concatenation --
1559 ---------------------------
1560
fe39cf20
BD
1561 procedure Analyze_Concatenation (N : Node_Id) is
1562
1563 -- We wish to avoid deep recursion, because concatenations are often
1564 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1565 -- operands nonrecursively until we find something that is not a
1566 -- concatenation (A in this case), or has already been analyzed. We
1567 -- analyze that, and then walk back up the tree following Parent
1568 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1569 -- work at each level. The Parent pointers allow us to avoid recursion,
1570 -- and thus avoid running out of memory.
1571
1572 NN : Node_Id := N;
1573 L : Node_Id;
1574
1575 begin
1576 Candidate_Type := Empty;
1577
1578 -- The following code is equivalent to:
1579
1580 -- Set_Etype (N, Any_Type);
1581 -- Analyze_Expression (Left_Opnd (N));
1582 -- Analyze_Concatenation_Rest (N);
1583
1584 -- where the Analyze_Expression call recurses back here if the left
1585 -- operand is a concatenation.
1586
1587 -- Walk down left operands
1588
1589 loop
1590 Set_Etype (NN, Any_Type);
1591 L := Left_Opnd (NN);
1592 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1593 NN := L;
1594 end loop;
1595
1596 -- Now (given the above example) NN is A&B and L is A
1597
1598 -- First analyze L ...
1599
1600 Analyze_Expression (L);
1601
1602 -- ... then walk NN back up until we reach N (where we started), calling
1603 -- Analyze_Concatenation_Rest along the way.
1604
1605 loop
1606 Analyze_Concatenation_Rest (NN);
1607 exit when NN = N;
1608 NN := Parent (NN);
1609 end loop;
1610 end Analyze_Concatenation;
1611
1612 --------------------------------
1613 -- Analyze_Concatenation_Rest --
1614 --------------------------------
1615
996ae0b0
RK
1616 -- If the only one-dimensional array type in scope is String,
1617 -- this is the resulting type of the operation. Otherwise there
1618 -- will be a concatenation operation defined for each user-defined
1619 -- one-dimensional array.
1620
fe39cf20 1621 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1622 L : constant Node_Id := Left_Opnd (N);
1623 R : constant Node_Id := Right_Opnd (N);
1624 Op_Id : Entity_Id := Entity (N);
1625 LT : Entity_Id;
1626 RT : Entity_Id;
1627
1628 begin
996ae0b0
RK
1629 Analyze_Expression (R);
1630
cd3cd5b1
AC
1631 -- If the entity is present, the node appears in an instance, and
1632 -- denotes a predefined concatenation operation. The resulting type is
1633 -- obtained from the arguments when possible. If the arguments are
1634 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1635 -- visible.
996ae0b0
RK
1636
1637 if Present (Op_Id) then
1638 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1639 LT := Base_Type (Etype (L));
1640 RT := Base_Type (Etype (R));
1641
1642 if Is_Array_Type (LT)
1643 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1644 then
1645 Add_One_Interp (N, Op_Id, LT);
1646
1647 elsif Is_Array_Type (RT)
1648 and then LT = Base_Type (Component_Type (RT))
1649 then
1650 Add_One_Interp (N, Op_Id, RT);
1651
fbf5a39b
AC
1652 -- If one operand is a string type or a user-defined array type,
1653 -- and the other is a literal, result is of the specific type.
1654
1655 elsif
1656 (Root_Type (LT) = Standard_String
1657 or else Scope (LT) /= Standard_Standard)
1658 and then Etype (R) = Any_String
1659 then
1660 Add_One_Interp (N, Op_Id, LT);
1661
1662 elsif
1663 (Root_Type (RT) = Standard_String
1664 or else Scope (RT) /= Standard_Standard)
1665 and then Etype (L) = Any_String
1666 then
1667 Add_One_Interp (N, Op_Id, RT);
1668
1669 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1670 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1671
1672 else
4c46b835 1673 -- Type and its operations must be visible
fbf5a39b
AC
1674
1675 Set_Entity (N, Empty);
1676 Analyze_Concatenation (N);
996ae0b0
RK
1677 end if;
1678
1679 else
1680 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1681 end if;
1682
1683 else
1a8fae99 1684 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1685 while Present (Op_Id) loop
1686 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1687
1688 -- Do not consider operators declared in dead code, they can
1689 -- not be part of the resolution.
1690
1691 if Is_Eliminated (Op_Id) then
1692 null;
1693 else
1694 Find_Concatenation_Types (L, R, Op_Id, N);
1695 end if;
1696
996ae0b0
RK
1697 else
1698 Analyze_User_Defined_Binary_Op (N, Op_Id);
1699 end if;
1700
1701 Op_Id := Homonym (Op_Id);
1702 end loop;
1703 end if;
1704
1705 Operator_Check (N);
fe39cf20 1706 end Analyze_Concatenation_Rest;
996ae0b0 1707
996ae0b0
RK
1708 -------------------------
1709 -- Analyze_Equality_Op --
1710 -------------------------
1711
1712 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1713 Loc : constant Source_Ptr := Sloc (N);
1714 L : constant Node_Id := Left_Opnd (N);
1715 R : constant Node_Id := Right_Opnd (N);
1716 Op_Id : Entity_Id;
996ae0b0
RK
1717
1718 begin
1719 Set_Etype (N, Any_Type);
1720 Candidate_Type := Empty;
1721
1722 Analyze_Expression (L);
1723 Analyze_Expression (R);
1724
1725 -- If the entity is set, the node is a generic instance with a non-local
1726 -- reference to the predefined operator or to a user-defined function.
1727 -- It can also be an inequality that is expanded into the negation of a
1728 -- call to a user-defined equality operator.
1729
1730 -- For the predefined case, the result is Boolean, regardless of the
1731 -- type of the operands. The operands may even be limited, if they are
1732 -- generic actuals. If they are overloaded, label the left argument with
1733 -- the common type that must be present, or with the type of the formal
1734 -- of the user-defined function.
1735
1736 if Present (Entity (N)) then
996ae0b0
RK
1737 Op_Id := Entity (N);
1738
1739 if Ekind (Op_Id) = E_Operator then
1740 Add_One_Interp (N, Op_Id, Standard_Boolean);
1741 else
1742 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1743 end if;
1744
1745 if Is_Overloaded (L) then
996ae0b0
RK
1746 if Ekind (Op_Id) = E_Operator then
1747 Set_Etype (L, Intersect_Types (L, R));
1748 else
1749 Set_Etype (L, Etype (First_Formal (Op_Id)));
1750 end if;
1751 end if;
1752
1753 else
1754 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1755 while Present (Op_Id) loop
996ae0b0
RK
1756 if Ekind (Op_Id) = E_Operator then
1757 Find_Equality_Types (L, R, Op_Id, N);
1758 else
1759 Analyze_User_Defined_Binary_Op (N, Op_Id);
1760 end if;
1761
1762 Op_Id := Homonym (Op_Id);
1763 end loop;
1764 end if;
1765
1766 -- If there was no match, and the operator is inequality, this may
1767 -- be a case where inequality has not been made explicit, as for
1768 -- tagged types. Analyze the node as the negation of an equality
1769 -- operation. This cannot be done earlier, because before analysis
1770 -- we cannot rule out the presence of an explicit inequality.
1771
1772 if Etype (N) = Any_Type
1773 and then Nkind (N) = N_Op_Ne
1774 then
1775 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1776 while Present (Op_Id) loop
996ae0b0
RK
1777 if Ekind (Op_Id) = E_Operator then
1778 Find_Equality_Types (L, R, Op_Id, N);
1779 else
1780 Analyze_User_Defined_Binary_Op (N, Op_Id);
1781 end if;
1782
1783 Op_Id := Homonym (Op_Id);
1784 end loop;
1785
1786 if Etype (N) /= Any_Type then
1787 Op_Id := Entity (N);
1788
1789 Rewrite (N,
1790 Make_Op_Not (Loc,
1791 Right_Opnd =>
1792 Make_Op_Eq (Loc,
aab883ec
ES
1793 Left_Opnd => Left_Opnd (N),
1794 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1795
1796 Set_Entity (Right_Opnd (N), Op_Id);
1797 Analyze (N);
1798 end if;
1799 end if;
1800
1801 Operator_Check (N);
1802 end Analyze_Equality_Op;
1803
1804 ----------------------------------
1805 -- Analyze_Explicit_Dereference --
1806 ----------------------------------
1807
1808 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1809 Loc : constant Source_Ptr := Sloc (N);
1810 P : constant Node_Id := Prefix (N);
1811 T : Entity_Id;
1812 I : Interp_Index;
1813 It : Interp;
1814 New_N : Node_Id;
1815
1816 function Is_Function_Type return Boolean;
4c46b835
AC
1817 -- Check whether node may be interpreted as an implicit function call
1818
1819 ----------------------
1820 -- Is_Function_Type --
1821 ----------------------
996ae0b0
RK
1822
1823 function Is_Function_Type return Boolean is
4c46b835
AC
1824 I : Interp_Index;
1825 It : Interp;
996ae0b0
RK
1826
1827 begin
1828 if not Is_Overloaded (N) then
1829 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1830 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1831
1832 else
1833 Get_First_Interp (N, I, It);
996ae0b0
RK
1834 while Present (It.Nam) loop
1835 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1836 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1837 then
1838 return False;
1839 end if;
1840
1841 Get_Next_Interp (I, It);
1842 end loop;
1843
1844 return True;
1845 end if;
1846 end Is_Function_Type;
1847
98123480 1848 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1849
996ae0b0 1850 begin
11bc76df
AC
1851 -- If source node, check SPARK restriction. We guard this with the
1852 -- source node check, because ???
1853
36b8f95f
AC
1854 if Comes_From_Source (N) then
1855 Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1856 end if;
1d801f21 1857
226a7fa4
AC
1858 -- In formal verification mode, keep track of all reads and writes
1859 -- through explicit dereferences.
1860
f5da7a97 1861 if GNATprove_Mode then
06b599fd 1862 SPARK_Specific.Generate_Dereference (N);
226a7fa4
AC
1863 end if;
1864
996ae0b0
RK
1865 Analyze (P);
1866 Set_Etype (N, Any_Type);
1867
1868 -- Test for remote access to subprogram type, and if so return
1869 -- after rewriting the original tree.
1870
1871 if Remote_AST_E_Dereference (P) then
1872 return;
1873 end if;
1874
1875 -- Normal processing for other than remote access to subprogram type
1876
1877 if not Is_Overloaded (P) then
1878 if Is_Access_Type (Etype (P)) then
1879
f3d57416 1880 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1881 -- avoid other problems caused by the Private_Subtype and it is
1882 -- safe to go to the Base_Type because this is the same as
1883 -- converting the access value to its Base_Type.
996ae0b0
RK
1884
1885 declare
1886 DT : Entity_Id := Designated_Type (Etype (P));
1887
1888 begin
1889 if Ekind (DT) = E_Private_Subtype
1890 and then Is_For_Access_Subtype (DT)
1891 then
1892 DT := Base_Type (DT);
1893 end if;
1894
0a36105d
JM
1895 -- An explicit dereference is a legal occurrence of an
1896 -- incomplete type imported through a limited_with clause,
1897 -- if the full view is visible.
1898
7b56a91b
AC
1899 if From_Limited_With (DT)
1900 and then not From_Limited_With (Scope (DT))
0a36105d
JM
1901 and then
1902 (Is_Immediately_Visible (Scope (DT))
1903 or else
1904 (Is_Child_Unit (Scope (DT))
8398e82e 1905 and then Is_Visible_Lib_Unit (Scope (DT))))
0a36105d
JM
1906 then
1907 Set_Etype (N, Available_View (DT));
1908
1909 else
1910 Set_Etype (N, DT);
1911 end if;
996ae0b0
RK
1912 end;
1913
1914 elsif Etype (P) /= Any_Type then
1915 Error_Msg_N ("prefix of dereference must be an access type", N);
1916 return;
1917 end if;
1918
1919 else
1920 Get_First_Interp (P, I, It);
996ae0b0
RK
1921 while Present (It.Nam) loop
1922 T := It.Typ;
1923
1924 if Is_Access_Type (T) then
1925 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1926 end if;
1927
1928 Get_Next_Interp (I, It);
1929 end loop;
1930
6e73e3ab 1931 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1932
1933 if Etype (N) = Any_Type then
1934 Error_Msg_N
1935 ("access type required in prefix of explicit dereference", P);
1936 Set_Etype (N, Any_Type);
1937 return;
1938 end if;
1939 end if;
1940
1941 if Is_Function_Type
1942 and then Nkind (Parent (N)) /= N_Indexed_Component
1943
1944 and then (Nkind (Parent (N)) /= N_Function_Call
1945 or else N /= Name (Parent (N)))
1946
1947 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1948 or else N /= Name (Parent (N)))
1949
1950 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1951 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1952 or else
1953 (Attribute_Name (Parent (N)) /= Name_Address
1954 and then
1955 Attribute_Name (Parent (N)) /= Name_Access))
1956 then
1957 -- Name is a function call with no actuals, in a context that
1958 -- requires deproceduring (including as an actual in an enclosing
98123480 1959 -- function or procedure call). There are some pathological cases
996ae0b0
RK
1960 -- where the prefix might include functions that return access to
1961 -- subprograms and others that return a regular type. Disambiguation
98123480 1962 -- of those has to take place in Resolve.
996ae0b0
RK
1963
1964 New_N :=
1965 Make_Function_Call (Loc,
1966 Name => Make_Explicit_Dereference (Loc, P),
1967 Parameter_Associations => New_List);
1968
1969 -- If the prefix is overloaded, remove operations that have formals,
1970 -- we know that this is a parameterless call.
1971
1972 if Is_Overloaded (P) then
1973 Get_First_Interp (P, I, It);
996ae0b0
RK
1974 while Present (It.Nam) loop
1975 T := It.Typ;
1976
1977 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1978 Set_Etype (P, T);
1979 else
1980 Remove_Interp (I);
1981 end if;
1982
1983 Get_Next_Interp (I, It);
1984 end loop;
1985 end if;
1986
1987 Rewrite (N, New_N);
1988 Analyze (N);
98123480
ES
1989
1990 elsif not Is_Function_Type
1991 and then Is_Overloaded (N)
1992 then
1993 -- The prefix may include access to subprograms and other access
1cb17b78 1994 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
1995 -- function call (not a procedure call) we cannot rewrite the node
1996 -- yet, but we include the result of the call interpretation.
98123480
ES
1997
1998 Get_First_Interp (N, I, It);
1999 while Present (It.Nam) loop
2000 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2001 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 2002 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
2003 then
2004 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2005 end if;
2006
2007 Get_Next_Interp (I, It);
2008 end loop;
996ae0b0
RK
2009 end if;
2010
2011 -- A value of remote access-to-class-wide must not be dereferenced
2012 -- (RM E.2.2(16)).
2013
2014 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
2015 end Analyze_Explicit_Dereference;
2016
2017 ------------------------
2018 -- Analyze_Expression --
2019 ------------------------
2020
2021 procedure Analyze_Expression (N : Node_Id) is
2022 begin
5f50020a
ES
2023
2024 -- If the expression is an indexed component that will be rewritten
2025 -- as a container indexing, it has already been analyzed.
2026
2027 if Nkind (N) = N_Indexed_Component
2028 and then Present (Generalized_Indexing (N))
2029 then
2030 null;
2031
2032 else
2033 Analyze (N);
2034 Check_Parameterless_Call (N);
2035 end if;
996ae0b0
RK
2036 end Analyze_Expression;
2037
955871d3
AC
2038 -------------------------------------
2039 -- Analyze_Expression_With_Actions --
2040 -------------------------------------
2041
2042 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2043 A : Node_Id;
2044
2045 begin
2046 A := First (Actions (N));
752b81d9 2047 while Present (A) loop
955871d3
AC
2048 Analyze (A);
2049 Next (A);
955871d3
AC
2050 end loop;
2051
2ffcbaa5
AC
2052 Analyze_Expression (Expression (N));
2053 Set_Etype (N, Etype (Expression (N)));
955871d3
AC
2054 end Analyze_Expression_With_Actions;
2055
9b16cb57
RD
2056 ---------------------------
2057 -- Analyze_If_Expression --
2058 ---------------------------
2059
2060 procedure Analyze_If_Expression (N : Node_Id) is
2061 Condition : constant Node_Id := First (Expressions (N));
2062 Then_Expr : constant Node_Id := Next (Condition);
2063 Else_Expr : Node_Id;
2064
2065 begin
2066 -- Defend against error of missing expressions from previous error
2067
2068 if No (Then_Expr) then
ee2ba856 2069 Check_Error_Detected;
9b16cb57
RD
2070 return;
2071 end if;
2072
08988ed9
AC
2073 if Comes_From_Source (N) then
2074 Check_SPARK_Restriction ("if expression is not allowed", N);
2075 end if;
9b16cb57
RD
2076
2077 Else_Expr := Next (Then_Expr);
2078
2079 if Comes_From_Source (N) then
c86cf714 2080 Check_Compiler_Unit ("if expression", N);
9b16cb57
RD
2081 end if;
2082
2083 Analyze_Expression (Condition);
2084 Analyze_Expression (Then_Expr);
2085
2086 if Present (Else_Expr) then
2087 Analyze_Expression (Else_Expr);
2088 end if;
2089
2090 -- If then expression not overloaded, then that decides the type
2091
2092 if not Is_Overloaded (Then_Expr) then
2093 Set_Etype (N, Etype (Then_Expr));
2094
2095 -- Case where then expression is overloaded
2096
2097 else
2098 declare
2099 I : Interp_Index;
2100 It : Interp;
2101
2102 begin
2103 Set_Etype (N, Any_Type);
2104
2105 -- Shouldn't the following statement be down in the ELSE of the
2106 -- following loop? ???
2107
2108 Get_First_Interp (Then_Expr, I, It);
2109
2110 -- if no Else_Expression the conditional must be boolean
2111
2112 if No (Else_Expr) then
2113 Set_Etype (N, Standard_Boolean);
2114
2115 -- Else_Expression Present. For each possible intepretation of
2116 -- the Then_Expression, add it only if the Else_Expression has
2117 -- a compatible type.
2118
2119 else
2120 while Present (It.Nam) loop
2121 if Has_Compatible_Type (Else_Expr, It.Typ) then
2122 Add_One_Interp (N, It.Typ, It.Typ);
2123 end if;
2124
2125 Get_Next_Interp (I, It);
2126 end loop;
2127 end if;
2128 end;
2129 end if;
2130 end Analyze_If_Expression;
2131
996ae0b0
RK
2132 ------------------------------------
2133 -- Analyze_Indexed_Component_Form --
2134 ------------------------------------
2135
2136 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
2137 P : constant Node_Id := Prefix (N);
2138 Exprs : constant List_Id := Expressions (N);
2139 Exp : Node_Id;
2140 P_T : Entity_Id;
2141 E : Node_Id;
2142 U_N : Entity_Id;
996ae0b0
RK
2143
2144 procedure Process_Function_Call;
2145 -- Prefix in indexed component form is an overloadable entity,
2146 -- so the node is a function call. Reformat it as such.
2147
2148 procedure Process_Indexed_Component;
2149 -- Prefix in indexed component form is actually an indexed component.
2150 -- This routine processes it, knowing that the prefix is already
2151 -- resolved.
2152
2153 procedure Process_Indexed_Component_Or_Slice;
2154 -- An indexed component with a single index may designate a slice if
2155 -- the index is a subtype mark. This routine disambiguates these two
2156 -- cases by resolving the prefix to see if it is a subtype mark.
2157
2158 procedure Process_Overloaded_Indexed_Component;
2159 -- If the prefix of an indexed component is overloaded, the proper
2160 -- interpretation is selected by the index types and the context.
2161
2162 ---------------------------
2163 -- Process_Function_Call --
2164 ---------------------------
2165
2166 procedure Process_Function_Call is
f5afb270
AC
2167 Actual : Node_Id;
2168
996ae0b0
RK
2169 begin
2170 Change_Node (N, N_Function_Call);
2171 Set_Name (N, P);
2172 Set_Parameter_Associations (N, Exprs);
996ae0b0 2173
401093c1 2174 -- Analyze actuals prior to analyzing the call itself
0a36105d 2175
4c46b835 2176 Actual := First (Parameter_Associations (N));
996ae0b0
RK
2177 while Present (Actual) loop
2178 Analyze (Actual);
2179 Check_Parameterless_Call (Actual);
0a36105d
JM
2180
2181 -- Move to next actual. Note that we use Next, not Next_Actual
2182 -- here. The reason for this is a bit subtle. If a function call
2183 -- includes named associations, the parser recognizes the node as
2184 -- a call, and it is analyzed as such. If all associations are
2185 -- positional, the parser builds an indexed_component node, and
2186 -- it is only after analysis of the prefix that the construct
2187 -- is recognized as a call, in which case Process_Function_Call
2188 -- rewrites the node and analyzes the actuals. If the list of
2189 -- actuals is malformed, the parser may leave the node as an
2190 -- indexed component (despite the presence of named associations).
2191 -- The iterator Next_Actual is equivalent to Next if the list is
2192 -- positional, but follows the normalized chain of actuals when
2193 -- named associations are present. In this case normalization has
2194 -- not taken place, and actuals remain unanalyzed, which leads to
2195 -- subsequent crashes or loops if there is an attempt to continue
2196 -- analysis of the program.
2197
2198 Next (Actual);
996ae0b0
RK
2199 end loop;
2200
2201 Analyze_Call (N);
2202 end Process_Function_Call;
2203
2204 -------------------------------
2205 -- Process_Indexed_Component --
2206 -------------------------------
2207
2208 procedure Process_Indexed_Component is
fe39cf20
BD
2209 Exp : Node_Id;
2210 Array_Type : Entity_Id;
2211 Index : Node_Id;
2212 Pent : Entity_Id := Empty;
996ae0b0
RK
2213
2214 begin
2215 Exp := First (Exprs);
2216
2217 if Is_Overloaded (P) then
2218 Process_Overloaded_Indexed_Component;
2219
2220 else
2221 Array_Type := Etype (P);
2222
6e73e3ab
AC
2223 if Is_Entity_Name (P) then
2224 Pent := Entity (P);
2225 elsif Nkind (P) = N_Selected_Component
2226 and then Is_Entity_Name (Selector_Name (P))
2227 then
2228 Pent := Entity (Selector_Name (P));
2229 end if;
2230
2231 -- Prefix must be appropriate for an array type, taking into
2232 -- account a possible implicit dereference.
996ae0b0
RK
2233
2234 if Is_Access_Type (Array_Type) then
324ac540
AC
2235 Error_Msg_NW
2236 (Warn_On_Dereference, "?d?implicit dereference", N);
d469eabe 2237 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2238 end if;
2239
2240 if Is_Array_Type (Array_Type) then
2241 null;
2242
6e73e3ab 2243 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2244 Analyze (Exp);
2245 Set_Etype (N, Any_Type);
2246
2247 if not Has_Compatible_Type
6e73e3ab 2248 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
2249 then
2250 Error_Msg_N ("invalid index type in entry name", N);
2251
2252 elsif Present (Next (Exp)) then
2253 Error_Msg_N ("too many subscripts in entry reference", N);
2254
2255 else
2256 Set_Etype (N, Etype (P));
2257 end if;
2258
2259 return;
2260
2261 elsif Is_Record_Type (Array_Type)
2262 and then Remote_AST_I_Dereference (P)
2263 then
2264 return;
2265
50878404 2266 elsif Try_Container_Indexing (N, P, Exprs) then
d50f4827
AC
2267 return;
2268
996ae0b0
RK
2269 elsif Array_Type = Any_Type then
2270 Set_Etype (N, Any_Type);
6465b6a7
AC
2271
2272 -- In most cases the analysis of the prefix will have emitted
2273 -- an error already, but if the prefix may be interpreted as a
2274 -- call in prefixed notation, the report is left to the caller.
2275 -- To prevent cascaded errors, report only if no previous ones.
2276
2277 if Serious_Errors_Detected = 0 then
2278 Error_Msg_N ("invalid prefix in indexed component", P);
2279
2280 if Nkind (P) = N_Expanded_Name then
2281 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2282 end if;
2283 end if;
2284
996ae0b0
RK
2285 return;
2286
2287 -- Here we definitely have a bad indexing
2288
2289 else
2290 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2291 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2292 then
2293 Error_Msg_N
2294 ("REQUEUE does not permit parameters", First (Exprs));
2295
2296 elsif Is_Entity_Name (P)
2297 and then Etype (P) = Standard_Void_Type
2298 then
2299 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2300
2301 else
2302 Error_Msg_N ("array type required in indexed component", P);
2303 end if;
2304
2305 Set_Etype (N, Any_Type);
2306 return;
2307 end if;
2308
2309 Index := First_Index (Array_Type);
996ae0b0
RK
2310 while Present (Index) and then Present (Exp) loop
2311 if not Has_Compatible_Type (Exp, Etype (Index)) then
2312 Wrong_Type (Exp, Etype (Index));
2313 Set_Etype (N, Any_Type);
2314 return;
2315 end if;
2316
2317 Next_Index (Index);
2318 Next (Exp);
2319 end loop;
2320
2321 Set_Etype (N, Component_Type (Array_Type));
44a10091 2322 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2323
2324 if Present (Index) then
2325 Error_Msg_N
2326 ("too few subscripts in array reference", First (Exprs));
2327
2328 elsif Present (Exp) then
2329 Error_Msg_N ("too many subscripts in array reference", Exp);
2330 end if;
2331 end if;
996ae0b0
RK
2332 end Process_Indexed_Component;
2333
2334 ----------------------------------------
2335 -- Process_Indexed_Component_Or_Slice --
2336 ----------------------------------------
2337
2338 procedure Process_Indexed_Component_Or_Slice is
2339 begin
2340 Exp := First (Exprs);
996ae0b0
RK
2341 while Present (Exp) loop
2342 Analyze_Expression (Exp);
2343 Next (Exp);
2344 end loop;
2345
2346 Exp := First (Exprs);
2347
2348 -- If one index is present, and it is a subtype name, then the
2349 -- node denotes a slice (note that the case of an explicit range
2350 -- for a slice was already built as an N_Slice node in the first
2351 -- place, so that case is not handled here).
2352
2353 -- We use a replace rather than a rewrite here because this is one
2354 -- of the cases in which the tree built by the parser is plain wrong.
2355
2356 if No (Next (Exp))
2357 and then Is_Entity_Name (Exp)
2358 and then Is_Type (Entity (Exp))
2359 then
2360 Replace (N,
2361 Make_Slice (Sloc (N),
2362 Prefix => P,
2363 Discrete_Range => New_Copy (Exp)));
2364 Analyze (N);
2365
2366 -- Otherwise (more than one index present, or single index is not
2367 -- a subtype name), then we have the indexed component case.
2368
2369 else
2370 Process_Indexed_Component;
2371 end if;
2372 end Process_Indexed_Component_Or_Slice;
2373
2374 ------------------------------------------
2375 -- Process_Overloaded_Indexed_Component --
2376 ------------------------------------------
2377
2378 procedure Process_Overloaded_Indexed_Component is
2379 Exp : Node_Id;
2380 I : Interp_Index;
2381 It : Interp;
2382 Typ : Entity_Id;
2383 Index : Node_Id;
2384 Found : Boolean;
2385
2386 begin
2387 Set_Etype (N, Any_Type);
996ae0b0 2388
4c46b835 2389 Get_First_Interp (P, I, It);
996ae0b0
RK
2390 while Present (It.Nam) loop
2391 Typ := It.Typ;
2392
2393 if Is_Access_Type (Typ) then
2394 Typ := Designated_Type (Typ);
324ac540
AC
2395 Error_Msg_NW
2396 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
2397 end if;
2398
2399 if Is_Array_Type (Typ) then
2400
2401 -- Got a candidate: verify that index types are compatible
2402
2403 Index := First_Index (Typ);
2404 Found := True;
996ae0b0 2405 Exp := First (Exprs);
996ae0b0
RK
2406 while Present (Index) and then Present (Exp) loop
2407 if Has_Compatible_Type (Exp, Etype (Index)) then
2408 null;
2409 else
2410 Found := False;
2411 Remove_Interp (I);
2412 exit;
2413 end if;
2414
2415 Next_Index (Index);
2416 Next (Exp);
2417 end loop;
2418
2419 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2420 declare
2421 CT : constant Entity_Id :=
2422 Base_Type (Component_Type (Typ));
2423 begin
2424 Add_One_Interp (N, CT, CT);
2425 Check_Implicit_Dereference (N, CT);
2426 end;
996ae0b0 2427 end if;
57a8057a 2428
50878404 2429 elsif Try_Container_Indexing (N, P, Exprs) then
57a8057a
AC
2430 return;
2431
996ae0b0
RK
2432 end if;
2433
2434 Get_Next_Interp (I, It);
2435 end loop;
2436
2437 if Etype (N) = Any_Type then
ad6b5b00 2438 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2439 Set_Is_Overloaded (N, False);
2440 end if;
2441
2442 End_Interp_List;
2443 end Process_Overloaded_Indexed_Component;
2444
4c46b835 2445 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2446
2447 begin
2448 -- Get name of array, function or type
2449
2450 Analyze (P);
d469eabe 2451
24778dbb
AC
2452 -- If P is an explicit dereference whose prefix is of a remote access-
2453 -- to-subprogram type, then N has already been rewritten as a subprogram
2454 -- call and analyzed.
2455
d3b00ce3 2456 if Nkind (N) in N_Subprogram_Call then
24778dbb 2457 return;
d469eabe 2458
24778dbb
AC
2459 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2460 -- the indexed component denotes a loop name, the indexed form is turned
2461 -- into an attribute reference.
fbf5a39b 2462
24778dbb
AC
2463 elsif Nkind (N) = N_Attribute_Reference
2464 and then Attribute_Name (N) = Name_Loop_Entry
2465 then
fbf5a39b
AC
2466 return;
2467 end if;
2468
2469 pragma Assert (Nkind (N) = N_Indexed_Component);
2470
996ae0b0
RK
2471 P_T := Base_Type (Etype (P));
2472
878f708a 2473 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2474 U_N := Entity (P);
2475
aab883ec 2476 if Is_Type (U_N) then
996ae0b0 2477
4c46b835 2478 -- Reformat node as a type conversion
996ae0b0
RK
2479
2480 E := Remove_Head (Exprs);
2481
2482 if Present (First (Exprs)) then
2483 Error_Msg_N
2484 ("argument of type conversion must be single expression", N);
2485 end if;
2486
2487 Change_Node (N, N_Type_Conversion);
2488 Set_Subtype_Mark (N, P);
2489 Set_Etype (N, U_N);
2490 Set_Expression (N, E);
2491
2492 -- After changing the node, call for the specific Analysis
2493 -- routine directly, to avoid a double call to the expander.
2494
2495 Analyze_Type_Conversion (N);
2496 return;
2497 end if;
2498
2499 if Is_Overloadable (U_N) then
2500 Process_Function_Call;
2501
2502 elsif Ekind (Etype (P)) = E_Subprogram_Type
2503 or else (Is_Access_Type (Etype (P))
2504 and then
bce79204
AC
2505 Ekind (Designated_Type (Etype (P))) =
2506 E_Subprogram_Type)
996ae0b0
RK
2507 then
2508 -- Call to access_to-subprogram with possible implicit dereference
2509
2510 Process_Function_Call;
2511
fbf5a39b
AC
2512 elsif Is_Generic_Subprogram (U_N) then
2513
4c46b835 2514 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2515
2516 Error_Msg_N ("generic subprogram cannot be called", N);
2517 Set_Etype (N, Any_Type);
2518 return;
2519
2520 else
2521 Process_Indexed_Component_Or_Slice;
2522 end if;
2523
2524 -- If not an entity name, prefix is an expression that may denote
2525 -- an array or an access-to-subprogram.
2526
2527 else
fbf5a39b 2528 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2529 or else (Is_Access_Type (P_T)
2530 and then
bce79204 2531 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2532 then
2533 Process_Function_Call;
2534
2535 elsif Nkind (P) = N_Selected_Component
3d918396 2536 and then Present (Entity (Selector_Name (P)))
ffe9aba8 2537 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2538 then
2539 Process_Function_Call;
2540
3d918396
AC
2541 -- In ASIS mode within a generic, a prefixed call is analyzed and
2542 -- partially rewritten but the original indexed component has not
2543 -- yet been rewritten as a call. Perform the replacement now.
2544
2545 elsif Nkind (P) = N_Selected_Component
2546 and then Nkind (Parent (P)) = N_Function_Call
2547 and then ASIS_Mode
2548 then
2549 Rewrite (N, Parent (P));
2550 Analyze (N);
2551
996ae0b0
RK
2552 else
2553 -- Indexed component, slice, or a call to a member of a family
2554 -- entry, which will be converted to an entry call later.
fbf5a39b 2555
996ae0b0
RK
2556 Process_Indexed_Component_Or_Slice;
2557 end if;
2558 end if;
5f49133f
AC
2559
2560 Analyze_Dimension (N);
996ae0b0
RK
2561 end Analyze_Indexed_Component_Form;
2562
2563 ------------------------
2564 -- Analyze_Logical_Op --
2565 ------------------------
2566
2567 procedure Analyze_Logical_Op (N : Node_Id) is
2568 L : constant Node_Id := Left_Opnd (N);
2569 R : constant Node_Id := Right_Opnd (N);
2570 Op_Id : Entity_Id := Entity (N);
2571
2572 begin
2573 Set_Etype (N, Any_Type);
2574 Candidate_Type := Empty;
2575
2576 Analyze_Expression (L);
2577 Analyze_Expression (R);
2578
2579 if Present (Op_Id) then
2580
2581 if Ekind (Op_Id) = E_Operator then
2582 Find_Boolean_Types (L, R, Op_Id, N);
2583 else
2584 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2585 end if;
2586
2587 else
2588 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2589 while Present (Op_Id) loop
2590 if Ekind (Op_Id) = E_Operator then
2591 Find_Boolean_Types (L, R, Op_Id, N);
2592 else
2593 Analyze_User_Defined_Binary_Op (N, Op_Id);
2594 end if;
2595
2596 Op_Id := Homonym (Op_Id);
2597 end loop;
2598 end if;
2599
2600 Operator_Check (N);
2601 end Analyze_Logical_Op;
2602
2603 ---------------------------
2604 -- Analyze_Membership_Op --
2605 ---------------------------
2606
2607 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2608 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2609 L : constant Node_Id := Left_Opnd (N);
2610 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2611
2612 Index : Interp_Index;
2613 It : Interp;
2614 Found : Boolean := False;
2615 I_F : Interp_Index;
2616 T_F : Entity_Id;
2617
2618 procedure Try_One_Interp (T1 : Entity_Id);
2619 -- Routine to try one proposed interpretation. Note that the context
2620 -- of the operation plays no role in resolving the arguments, so that
2621 -- if there is more than one interpretation of the operands that is
2622 -- compatible with a membership test, the operation is ambiguous.
2623
4c46b835
AC
2624 --------------------
2625 -- Try_One_Interp --
2626 --------------------
2627
996ae0b0
RK
2628 procedure Try_One_Interp (T1 : Entity_Id) is
2629 begin
2630 if Has_Compatible_Type (R, T1) then
2631 if Found
2632 and then Base_Type (T1) /= Base_Type (T_F)
2633 then
2634 It := Disambiguate (L, I_F, Index, Any_Type);
2635
2636 if It = No_Interp then
2637 Ambiguous_Operands (N);
2638 Set_Etype (L, Any_Type);
2639 return;
2640
2641 else
2642 T_F := It.Typ;
2643 end if;
2644
2645 else
2646 Found := True;
2647 T_F := T1;
2648 I_F := Index;
2649 end if;
2650
2651 Set_Etype (L, T_F);
2652 end if;
996ae0b0
RK
2653 end Try_One_Interp;
2654
197e4514
AC
2655 procedure Analyze_Set_Membership;
2656 -- If a set of alternatives is present, analyze each and find the
2657 -- common type to which they must all resolve.
2658
2659 ----------------------------
2660 -- Analyze_Set_Membership --
2661 ----------------------------
2662
2663 procedure Analyze_Set_Membership is
2664 Alt : Node_Id;
2665 Index : Interp_Index;
2666 It : Interp;
197e4514
AC
2667 Candidate_Interps : Node_Id;
2668 Common_Type : Entity_Id := Empty;
2669
2670 begin
e917e3b8 2671 if Comes_From_Source (N) then
c86cf714 2672 Check_Compiler_Unit ("set membership", N);
e917e3b8
AC
2673 end if;
2674
197e4514
AC
2675 Analyze (L);
2676 Candidate_Interps := L;
2677
2678 if not Is_Overloaded (L) then
2679 Common_Type := Etype (L);
2680
2681 Alt := First (Alternatives (N));
2682 while Present (Alt) loop
2683 Analyze (Alt);
2684
2685 if not Has_Compatible_Type (Alt, Common_Type) then
2686 Wrong_Type (Alt, Common_Type);
2687 end if;
2688
2689 Next (Alt);
2690 end loop;
2691
2692 else
2693 Alt := First (Alternatives (N));
2694 while Present (Alt) loop
2695 Analyze (Alt);
2696 if not Is_Overloaded (Alt) then
2697 Common_Type := Etype (Alt);
2698
2699 else
2700 Get_First_Interp (Alt, Index, It);
2701 while Present (It.Typ) loop
442c0581
RD
2702 if not
2703 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2704 then
2705 Remove_Interp (Index);
2706 end if;
442c0581 2707
197e4514
AC
2708 Get_Next_Interp (Index, It);
2709 end loop;
2710
2711 Get_First_Interp (Alt, Index, It);
442c0581 2712
197e4514
AC
2713 if No (It.Typ) then
2714 Error_Msg_N ("alternative has no legal type", Alt);
2715 return;
2716 end if;
2717
442c0581
RD
2718 -- If alternative is not overloaded, we have a unique type
2719 -- for all of them.
197e4514
AC
2720
2721 Set_Etype (Alt, It.Typ);
2722 Get_Next_Interp (Index, It);
2723
2724 if No (It.Typ) then
2725 Set_Is_Overloaded (Alt, False);
2726 Common_Type := Etype (Alt);
2727 end if;
2728
2729 Candidate_Interps := Alt;
2730 end if;
2731
2732 Next (Alt);
2733 end loop;
2734 end if;
2735
2736 Set_Etype (N, Standard_Boolean);
2737
2738 if Present (Common_Type) then
2739 Set_Etype (L, Common_Type);
2740 Set_Is_Overloaded (L, False);
2741
2742 else
2743 Error_Msg_N ("cannot resolve membership operation", N);
2744 end if;
2745 end Analyze_Set_Membership;
2746
996ae0b0
RK
2747 -- Start of processing for Analyze_Membership_Op
2748
2749 begin
2750 Analyze_Expression (L);
2751
e917e3b8 2752 if No (R) and then Ada_Version >= Ada_2012 then
197e4514
AC
2753 Analyze_Set_Membership;
2754 return;
2755 end if;
2756
996ae0b0
RK
2757 if Nkind (R) = N_Range
2758 or else (Nkind (R) = N_Attribute_Reference
2759 and then Attribute_Name (R) = Name_Range)
2760 then
2761 Analyze (R);
2762
2763 if not Is_Overloaded (L) then
2764 Try_One_Interp (Etype (L));
2765
2766 else
2767 Get_First_Interp (L, Index, It);
996ae0b0
RK
2768 while Present (It.Typ) loop
2769 Try_One_Interp (It.Typ);
2770 Get_Next_Interp (Index, It);
2771 end loop;
2772 end if;
2773
f6b5dc8e 2774 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2775 -- membership test with a singleton value, i.e. a test for equality,
2776 -- if the types are compatible.
996ae0b0
RK
2777
2778 else
66150d01 2779 Analyze (R);
7483c888 2780
66150d01
AC
2781 if Is_Entity_Name (R)
2782 and then Is_Type (Entity (R))
2783 then
2784 Find_Type (R);
996ae0b0 2785 Check_Fully_Declared (Entity (R), R);
66150d01 2786
b0186f71
AC
2787 elsif Ada_Version >= Ada_2012
2788 and then Has_Compatible_Type (R, Etype (L))
2789 then
66150d01
AC
2790 if Nkind (N) = N_In then
2791 Rewrite (N,
2792 Make_Op_Eq (Loc,
2793 Left_Opnd => L,
2794 Right_Opnd => R));
2795 else
2796 Rewrite (N,
2797 Make_Op_Ne (Loc,
2798 Left_Opnd => L,
2799 Right_Opnd => R));
2800 end if;
2801
2802 Analyze (N);
2803 return;
2804
2805 else
b0186f71
AC
2806 -- In all versions of the language, if we reach this point there
2807 -- is a previous error that will be diagnosed below.
66150d01
AC
2808
2809 Find_Type (R);
996ae0b0
RK
2810 end if;
2811 end if;
2812
2813 -- Compatibility between expression and subtype mark or range is
2814 -- checked during resolution. The result of the operation is Boolean
2815 -- in any case.
2816
2817 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2818
2819 if Comes_From_Source (N)
197e4514 2820 and then Present (Right_Opnd (N))
fe45e59e
ES
2821 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2822 then
2823 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2824 end if;
996ae0b0
RK
2825 end Analyze_Membership_Op;
2826
b727a82b
AC
2827 -----------------
2828 -- Analyze_Mod --
2829 -----------------
2830
2831 procedure Analyze_Mod (N : Node_Id) is
2832 begin
2833 -- A special warning check, if we have an expression of the form:
2834 -- expr mod 2 * literal
2835 -- where literal is 64 or less, then probably what was meant was
2836 -- expr mod 2 ** literal
2837 -- so issue an appropriate warning.
2838
2839 if Warn_On_Suspicious_Modulus_Value
2840 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2841 and then Intval (Right_Opnd (N)) = Uint_2
2842 and then Nkind (Parent (N)) = N_Op_Multiply
2843 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2844 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2845 then
2846 Error_Msg_N
324ac540 2847 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
b727a82b
AC
2848 end if;
2849
2850 -- Remaining processing is same as for other arithmetic operators
2851
2852 Analyze_Arithmetic_Op (N);
2853 end Analyze_Mod;
2854
996ae0b0
RK
2855 ----------------------
2856 -- Analyze_Negation --
2857 ----------------------
2858
2859 procedure Analyze_Negation (N : Node_Id) is
2860 R : constant Node_Id := Right_Opnd (N);
2861 Op_Id : Entity_Id := Entity (N);
2862
2863 begin
2864 Set_Etype (N, Any_Type);
2865 Candidate_Type := Empty;
2866
2867 Analyze_Expression (R);
2868
2869 if Present (Op_Id) then
2870 if Ekind (Op_Id) = E_Operator then
2871 Find_Negation_Types (R, Op_Id, N);
2872 else
2873 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2874 end if;
2875
2876 else
2877 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2878 while Present (Op_Id) loop
2879 if Ekind (Op_Id) = E_Operator then
2880 Find_Negation_Types (R, Op_Id, N);
2881 else
2882 Analyze_User_Defined_Unary_Op (N, Op_Id);
2883 end if;
2884
2885 Op_Id := Homonym (Op_Id);
2886 end loop;
2887 end if;
2888
2889 Operator_Check (N);
2890 end Analyze_Negation;
2891
15ce9ca2
AC
2892 ------------------
2893 -- Analyze_Null --
2894 ------------------
996ae0b0
RK
2895
2896 procedure Analyze_Null (N : Node_Id) is
2897 begin
2ba431e5 2898 Check_SPARK_Restriction ("null is not allowed", N);
1d801f21 2899
996ae0b0
RK
2900 Set_Etype (N, Any_Access);
2901 end Analyze_Null;
2902
2903 ----------------------
2904 -- Analyze_One_Call --
2905 ----------------------
2906
2907 procedure Analyze_One_Call
ec6078e3
ES
2908 (N : Node_Id;
2909 Nam : Entity_Id;
2910 Report : Boolean;
2911 Success : out Boolean;
2912 Skip_First : Boolean := False)
996ae0b0 2913 is
d469eabe
HK
2914 Actuals : constant List_Id := Parameter_Associations (N);
2915 Prev_T : constant Entity_Id := Etype (N);
2916
aab883ec
ES
2917 Must_Skip : constant Boolean := Skip_First
2918 or else Nkind (Original_Node (N)) = N_Selected_Component
2919 or else
2920 (Nkind (Original_Node (N)) = N_Indexed_Component
2921 and then Nkind (Prefix (Original_Node (N)))
2922 = N_Selected_Component);
2923 -- The first formal must be omitted from the match when trying to find
2924 -- a primitive operation that is a possible interpretation, and also
2925 -- after the call has been rewritten, because the corresponding actual
2926 -- is already known to be compatible, and because this may be an
2927 -- indexing of a call with default parameters.
2928
53cf4600
ES
2929 Formal : Entity_Id;
2930 Actual : Node_Id;
2931 Is_Indexed : Boolean := False;
2932 Is_Indirect : Boolean := False;
2933 Subp_Type : constant Entity_Id := Etype (Nam);
2934 Norm_OK : Boolean;
996ae0b0 2935
157a9bf5
ES
2936 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2937 -- There may be a user-defined operator that hides the current
2938 -- interpretation. We must check for this independently of the
2939 -- analysis of the call with the user-defined operation, because
2940 -- the parameter names may be wrong and yet the hiding takes place.
2941 -- This fixes a problem with ACATS test B34014O.
2942 --
2943 -- When the type Address is a visible integer type, and the DEC
2944 -- system extension is visible, the predefined operator may be
2945 -- hidden as well, by one of the address operations in auxdec.
2946 -- Finally, The abstract operations on address do not hide the
2947 -- predefined operator (this is the purpose of making them abstract).
2948
fbf5a39b 2949 procedure Indicate_Name_And_Type;
996ae0b0
RK
2950 -- If candidate interpretation matches, indicate name and type of
2951 -- result on call node.
2952
fbf5a39b
AC
2953 ----------------------------
2954 -- Indicate_Name_And_Type --
2955 ----------------------------
996ae0b0 2956
fbf5a39b 2957 procedure Indicate_Name_And_Type is
996ae0b0
RK
2958 begin
2959 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 2960 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
2961 Success := True;
2962
2963 -- If the prefix of the call is a name, indicate the entity
2964 -- being called. If it is not a name, it is an expression that
2965 -- denotes an access to subprogram or else an entry or family. In
2966 -- the latter case, the name is a selected component, and the entity
2967 -- being called is noted on the selector.
2968
2969 if not Is_Type (Nam) then
a3f2babd 2970 if Is_Entity_Name (Name (N)) then
996ae0b0
RK
2971 Set_Entity (Name (N), Nam);
2972
2973 elsif Nkind (Name (N)) = N_Selected_Component then
2974 Set_Entity (Selector_Name (Name (N)), Nam);
2975 end if;
2976 end if;
2977
2978 if Debug_Flag_E and not Report then
2979 Write_Str (" Overloaded call ");
2980 Write_Int (Int (N));
2981 Write_Str (" compatible with ");
2982 Write_Int (Int (Nam));
2983 Write_Eol;
2984 end if;
fbf5a39b 2985 end Indicate_Name_And_Type;
996ae0b0 2986
157a9bf5
ES
2987 ------------------------
2988 -- Operator_Hidden_By --
2989 ------------------------
2990
2991 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2992 Act1 : constant Node_Id := First_Actual (N);
2993 Act2 : constant Node_Id := Next_Actual (Act1);
2994 Form1 : constant Entity_Id := First_Formal (Fun);
2995 Form2 : constant Entity_Id := Next_Formal (Form1);
2996
2997 begin
e4deba8e 2998 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
157a9bf5
ES
2999 return False;
3000
3001 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3002 return False;
3003
3004 elsif Present (Form2) then
e4deba8e
RD
3005 if No (Act2)
3006 or else not Has_Compatible_Type (Act2, Etype (Form2))
157a9bf5
ES
3007 then
3008 return False;
3009 end if;
3010
3011 elsif Present (Act2) then
3012 return False;
3013 end if;
3014
3015 -- Now we know that the arity of the operator matches the function,
3016 -- and the function call is a valid interpretation. The function
3017 -- hides the operator if it has the right signature, or if one of
3018 -- its operands is a non-abstract operation on Address when this is
3019 -- a visible integer type.
3020
3021 return Hides_Op (Fun, Nam)
3022 or else Is_Descendent_Of_Address (Etype (Form1))
3023 or else
3024 (Present (Form2)
3025 and then Is_Descendent_Of_Address (Etype (Form2)));
3026 end Operator_Hidden_By;
3027
996ae0b0
RK
3028 -- Start of processing for Analyze_One_Call
3029
3030 begin
3031 Success := False;
3032
157a9bf5
ES
3033 -- If the subprogram has no formals or if all the formals have defaults,
3034 -- and the return type is an array type, the node may denote an indexing
3035 -- of the result of a parameterless call. In Ada 2005, the subprogram
3036 -- may have one non-defaulted formal, and the call may have been written
3037 -- in prefix notation, so that the rebuilt parameter list has more than
3038 -- one actual.
996ae0b0 3039
53cf4600
ES
3040 if not Is_Overloadable (Nam)
3041 and then Ekind (Nam) /= E_Subprogram_Type
3042 and then Ekind (Nam) /= E_Entry_Family
3043 then
3044 return;
3045 end if;
3046
80e59506 3047 -- An indexing requires at least one actual. The name of the call cannot
4bb9c7b9
AC
3048 -- be an implicit indirect call, so it cannot be a generated explicit
3049 -- dereference.
e1f3cb58
AC
3050
3051 if not Is_Empty_List (Actuals)
aab883ec
ES
3052 and then
3053 (Needs_No_Actuals (Nam)
3054 or else
3055 (Needs_One_Actual (Nam)
e4deba8e 3056 and then Present (Next_Actual (First (Actuals)))))
996ae0b0 3057 then
4bb9c7b9
AC
3058 if Is_Array_Type (Subp_Type)
3059 and then
3060 (Nkind (Name (N)) /= N_Explicit_Dereference
3061 or else Comes_From_Source (Name (N)))
3062 then
aab883ec 3063 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
3064
3065 elsif Is_Access_Type (Subp_Type)
3066 and then Is_Array_Type (Designated_Type (Subp_Type))
3067 then
3068 Is_Indexed :=
aab883ec
ES
3069 Try_Indexed_Call
3070 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 3071
758c442c 3072 -- The prefix can also be a parameterless function that returns an
f3d57416 3073 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
3074 -- If this succeeds, an explicit dereference is added later on,
3075 -- in Analyze_Call or Resolve_Call.
758c442c 3076
996ae0b0 3077 elsif Is_Access_Type (Subp_Type)
401093c1 3078 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 3079 then
53cf4600 3080 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
3081 end if;
3082
3083 end if;
3084
5ff22245 3085 -- If the call has been transformed into a slice, it is of the form
30783513 3086 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
3087 -- Try_Indexed_Call and there is nothing else to do.
3088
3089 if Is_Indexed
3090 and then Nkind (N) = N_Slice
3091 then
3092 return;
3093 end if;
3094
53cf4600
ES
3095 Normalize_Actuals
3096 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
3097
3098 if not Norm_OK then
3099
53cf4600 3100 -- If an indirect call is a possible interpretation, indicate
80e59506 3101 -- success to the caller. This may be an indexing of an explicit
4bb9c7b9 3102 -- dereference of a call that returns an access type (see above).
53cf4600 3103
4bb9c7b9
AC
3104 if Is_Indirect
3105 or else (Is_Indexed
3106 and then Nkind (Name (N)) = N_Explicit_Dereference
3107 and then Comes_From_Source (Name (N)))
3108 then
53cf4600
ES
3109 Success := True;
3110 return;
3111
996ae0b0
RK
3112 -- Mismatch in number or names of parameters
3113
53cf4600 3114 elsif Debug_Flag_E then
996ae0b0
RK
3115 Write_Str (" normalization fails in call ");
3116 Write_Int (Int (N));
3117 Write_Str (" with subprogram ");
3118 Write_Int (Int (Nam));
3119 Write_Eol;
3120 end if;
3121
3122 -- If the context expects a function call, discard any interpretation
3123 -- that is a procedure. If the node is not overloaded, leave as is for
3124 -- better error reporting when type mismatch is found.
3125
3126 elsif Nkind (N) = N_Function_Call
3127 and then Is_Overloaded (Name (N))
3128 and then Ekind (Nam) = E_Procedure
3129 then
3130 return;
3131
4c46b835 3132 -- Ditto for function calls in a procedure context
996ae0b0
RK
3133
3134 elsif Nkind (N) = N_Procedure_Call_Statement
3135 and then Is_Overloaded (Name (N))
3136 and then Etype (Nam) /= Standard_Void_Type
3137 then
3138 return;
3139
fe45e59e 3140 elsif No (Actuals) then
996ae0b0
RK
3141
3142 -- If Normalize succeeds, then there are default parameters for
3143 -- all formals.
3144
fbf5a39b 3145 Indicate_Name_And_Type;
996ae0b0
RK
3146
3147 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
3148 if Nkind (N) = N_Procedure_Call_Statement then
3149 return;
3150 end if;
3151
3152 -- This can occur when the prefix of the call is an operator
3153 -- name or an expanded name whose selector is an operator name.
3154
3155 Analyze_Operator_Call (N, Nam);
3156
3157 if Etype (N) /= Prev_T then
3158
157a9bf5 3159 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
3160
3161 if Is_Overloaded (Name (N)) then
3162 declare
3163 I : Interp_Index;
3164 It : Interp;
3165
3166 begin
3167 Get_First_Interp (Name (N), I, It);
996ae0b0 3168 while Present (It.Nam) loop
157a9bf5 3169 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
3170 Set_Etype (N, Prev_T);
3171 return;
3172 end if;
3173
3174 Get_Next_Interp (I, It);
3175 end loop;
3176 end;
3177 end if;
3178
3179 -- If operator matches formals, record its name on the call.
3180 -- If the operator is overloaded, Resolve will select the
3181 -- correct one from the list of interpretations. The call
3182 -- node itself carries the first candidate.
3183
3184 Set_Entity (Name (N), Nam);
3185 Success := True;
3186
3187 elsif Report and then Etype (N) = Any_Type then
3188 Error_Msg_N ("incompatible arguments for operator", N);
3189 end if;
3190
3191 else
3192 -- Normalize_Actuals has chained the named associations in the
3193 -- correct order of the formals.
3194
3195 Actual := First_Actual (N);
3196 Formal := First_Formal (Nam);
ec6078e3 3197
df3e68b1
HK
3198 -- If we are analyzing a call rewritten from object notation, skip
3199 -- first actual, which may be rewritten later as an explicit
3200 -- dereference.
ec6078e3 3201
aab883ec 3202 if Must_Skip then
ec6078e3
ES
3203 Next_Actual (Actual);
3204 Next_Formal (Formal);
3205 end if;
3206
996ae0b0 3207 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
3208 if Nkind (Parent (Actual)) /= N_Parameter_Association
3209 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 3210 then
9c510803
ES
3211 -- The actual can be compatible with the formal, but we must
3212 -- also check that the context is not an address type that is
3213 -- visibly an integer type, as is the case in VMS_64. In this
3214 -- case the use of literals is illegal, except in the body of
3215 -- descendents of system, where arithmetic operations on
3216 -- address are of course used.
3217
3218 if Has_Compatible_Type (Actual, Etype (Formal))
3219 and then
3220 (Etype (Actual) /= Universal_Integer
3221 or else not Is_Descendent_Of_Address (Etype (Formal))
3222 or else
3223 Is_Predefined_File_Name
3224 (Unit_File_Name (Get_Source_Unit (N))))
3225 then
996ae0b0
RK
3226 Next_Actual (Actual);
3227 Next_Formal (Formal);
3228
061828e3
AC
3229 -- In Allow_Integer_Address mode, we allow an actual integer to
3230 -- match a formal address type and vice versa. We only do this
3231 -- if we are certain that an error will otherwise be issued
3232
3233 elsif Address_Integer_Convert_OK
3234 (Etype (Actual), Etype (Formal))
3235 and then (Report and not Is_Indexed and not Is_Indirect)
3236 then
3237 -- Handle this case by introducing an unchecked conversion
3238
3239 Rewrite (Actual,
3240 Unchecked_Convert_To (Etype (Formal),
3241 Relocate_Node (Actual)));
3242 Analyze_And_Resolve (Actual, Etype (Formal));
3243 Next_Actual (Actual);
3244 Next_Formal (Formal);
3245
996ae0b0
RK
3246 else
3247 if Debug_Flag_E then
3248 Write_Str (" type checking fails in call ");
3249 Write_Int (Int (N));
3250 Write_Str (" with formal ");
3251 Write_Int (Int (Formal));
3252 Write_Str (" in subprogram ");
3253 Write_Int (Int (Nam));
3254 Write_Eol;
3255 end if;
3256
061828e3
AC
3257 -- Comment needed on the following test???
3258
53cf4600 3259 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
3260
3261 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 3262 -- to help new Ada 2005 users.
758c442c
GD
3263
3264 if Is_Class_Wide_Type (Etype (Formal))
3265 and then Is_Interface (Etype (Etype (Formal)))
3266 and then not Interface_Present_In_Ancestor
3267 (Typ => Etype (Actual),
3268 Iface => Etype (Etype (Formal)))
3269 then
758c442c 3270 Error_Msg_NE
ec6078e3 3271 ("(Ada 2005) does not implement interface }",
758c442c
GD
3272 Actual, Etype (Etype (Formal)));
3273 end if;
3274
996ae0b0
RK
3275 Wrong_Type (Actual, Etype (Formal));
3276
3277 if Nkind (Actual) = N_Op_Eq
3278 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3279 then
3280 Formal := First_Formal (Nam);
996ae0b0 3281 while Present (Formal) loop
996ae0b0 3282 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3283 Error_Msg_N -- CODEFIX
fbf5a39b 3284 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3285 exit;
3286 end if;
3287
3288 Next_Formal (Formal);
3289 end loop;
3290 end if;
3291
3292 if All_Errors_Mode then
3293 Error_Msg_Sloc := Sloc (Nam);
3294
3b42c566
RD
3295 if Etype (Formal) = Any_Type then
3296 Error_Msg_N
3297 ("there is no legal actual parameter", Actual);
3298 end if;
3299
996ae0b0
RK
3300 if Is_Overloadable (Nam)
3301 and then Present (Alias (Nam))
3302 and then not Comes_From_Source (Nam)
3303 then
3304 Error_Msg_NE
401093c1
ES
3305 ("\\ =='> in call to inherited operation & #!",
3306 Actual, Nam);
7324bf49
AC
3307
3308 elsif Ekind (Nam) = E_Subprogram_Type then
3309 declare
3310 Access_To_Subprogram_Typ :
3311 constant Entity_Id :=
3312 Defining_Identifier
3313 (Associated_Node_For_Itype (Nam));
3314 begin
a90bd866
RD
3315 Error_Msg_NE
3316 ("\\ =='> in call to dereference of &#!",
3317 Actual, Access_To_Subprogram_Typ);
7324bf49
AC
3318 end;
3319
996ae0b0 3320 else
401093c1
ES
3321 Error_Msg_NE
3322 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3323
996ae0b0
RK
3324 end if;
3325 end if;
3326 end if;
3327
3328 return;
3329 end if;
3330
3331 else
3332 -- Normalize_Actuals has verified that a default value exists
3333 -- for this formal. Current actual names a subsequent formal.
3334
3335 Next_Formal (Formal);
3336 end if;
3337 end loop;
3338
4c46b835 3339 -- On exit, all actuals match
996ae0b0 3340
fbf5a39b 3341 Indicate_Name_And_Type;
996ae0b0
RK
3342 end if;
3343 end Analyze_One_Call;
3344
15ce9ca2
AC
3345 ---------------------------
3346 -- Analyze_Operator_Call --
3347 ---------------------------
996ae0b0
RK
3348
3349 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3350 Op_Name : constant Name_Id := Chars (Op_Id);
3351 Act1 : constant Node_Id := First_Actual (N);
3352 Act2 : constant Node_Id := Next_Actual (Act1);
3353
3354 begin
4c46b835
AC
3355 -- Binary operator case
3356
996ae0b0
RK
3357 if Present (Act2) then
3358
4c46b835 3359 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3360
3361 if Present (Next_Actual (Act2)) then
996ae0b0 3362 return;
b7539c3b 3363 end if;
996ae0b0 3364
b7539c3b 3365 -- Otherwise action depends on operator
996ae0b0 3366
b7539c3b
AC
3367 case Op_Name is
3368 when Name_Op_Add |
3369 Name_Op_Subtract |
3370 Name_Op_Multiply |
3371 Name_Op_Divide |
3372 Name_Op_Mod |
3373 Name_Op_Rem |
3374 Name_Op_Expon =>
3375 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
996ae0b0 3376
b7539c3b
AC
3377 when Name_Op_And |
3378 Name_Op_Or |
3379 Name_Op_Xor =>
3380 Find_Boolean_Types (Act1, Act2, Op_Id, N);
996ae0b0 3381
b7539c3b
AC
3382 when Name_Op_Lt |
3383 Name_Op_Le |
3384 Name_Op_Gt |
3385 Name_Op_Ge =>
3386 Find_Comparison_Types (Act1, Act2, Op_Id, N);
996ae0b0 3387
b7539c3b
AC
3388 when Name_Op_Eq |
3389 Name_Op_Ne =>
3390 Find_Equality_Types (Act1, Act2, Op_Id, N);
996ae0b0 3391
b7539c3b
AC
3392 when Name_Op_Concat =>
3393 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
996ae0b0 3394
b7539c3b
AC
3395 -- Is this when others, or should it be an abort???
3396
3397 when others =>
3398 null;
3399 end case;
996ae0b0 3400
4c46b835 3401 -- Unary operator case
996ae0b0 3402
4c46b835 3403 else
b7539c3b
AC
3404 case Op_Name is
3405 when Name_Op_Subtract |
3406 Name_Op_Add |
3407 Name_Op_Abs =>
3408 Find_Unary_Types (Act1, Op_Id, N);
996ae0b0 3409
b7539c3b
AC
3410 when Name_Op_Not =>
3411 Find_Negation_Types (Act1, Op_Id, N);
996ae0b0 3412
b7539c3b 3413 -- Is this when others correct, or should it be an abort???
996ae0b0 3414
b7539c3b
AC
3415 when others =>
3416 null;
3417 end case;
996ae0b0
RK
3418 end if;
3419 end Analyze_Operator_Call;
3420
3421 -------------------------------------------
3422 -- Analyze_Overloaded_Selected_Component --
3423 -------------------------------------------
3424
3425 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3426 Nam : constant Node_Id := Prefix (N);
3427 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3428 Comp : Entity_Id;
996ae0b0
RK
3429 I : Interp_Index;
3430 It : Interp;
3431 T : Entity_Id;
3432
3433 begin
4c46b835 3434 Set_Etype (Sel, Any_Type);
996ae0b0 3435
4c46b835 3436 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3437 while Present (It.Typ) loop
3438 if Is_Access_Type (It.Typ) then
3439 T := Designated_Type (It.Typ);
324ac540 3440 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3441 else
3442 T := It.Typ;
3443 end if;
3444
95eb8b69
AC
3445 -- Locate the component. For a private prefix the selector can denote
3446 -- a discriminant.
3447
3448 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3449
3450 -- If the prefix is a class-wide type, the visible components are
3451 -- those of the base type.
3452
3453 if Is_Class_Wide_Type (T) then
3454 T := Etype (T);
3455 end if;
3456
996ae0b0 3457 Comp := First_Entity (T);
996ae0b0 3458 while Present (Comp) loop
996ae0b0
RK
3459 if Chars (Comp) = Chars (Sel)
3460 and then Is_Visible_Component (Comp)
3461 then
996ae0b0 3462
f16d05d9
AC
3463 -- AI05-105: if the context is an object renaming with
3464 -- an anonymous access type, the expected type of the
3465 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3466
f16d05d9
AC
3467 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3468 or else No (Access_Definition (Parent (N)))
3469 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3470 or else
3471 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3472 then
3473 Set_Entity (Sel, Comp);
3474 Set_Etype (Sel, Etype (Comp));
3475 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3476 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3477
3478 -- This also specifies a candidate to resolve the name.
3479 -- Further overloading will be resolved from context.
3480 -- The selector name itself does not carry overloading
3481 -- information.
3482
3483 Set_Etype (Nam, It.Typ);
3484
3485 else
b61ee1aa 3486 -- Named access type in the context of a renaming
f16d05d9
AC
3487 -- declaration with an access definition. Remove
3488 -- inapplicable candidate.
3489
3490 Remove_Interp (I);
3491 end if;
996ae0b0
RK
3492 end if;
3493
3494 Next_Entity (Comp);
3495 end loop;
3496
3497 elsif Is_Concurrent_Type (T) then
3498 Comp := First_Entity (T);
996ae0b0
RK
3499 while Present (Comp)
3500 and then Comp /= First_Private_Entity (T)
3501 loop
3502 if Chars (Comp) = Chars (Sel) then
3503 if Is_Overloadable (Comp) then
3504 Add_One_Interp (Sel, Comp, Etype (Comp));
3505 else
e7ba564f 3506 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
3507 Generate_Reference (Comp, Sel);
3508 end if;
3509
3510 Set_Etype (Sel, Etype (Comp));
3511 Set_Etype (N, Etype (Comp));
3512 Set_Etype (Nam, It.Typ);
3513
09494c32
AC
3514 -- For access type case, introduce explicit dereference for
3515 -- more uniform treatment of entry calls. Do this only once
3516 -- if several interpretations yield an access type.
996ae0b0 3517
d469eabe
HK
3518 if Is_Access_Type (Etype (Nam))
3519 and then Nkind (Nam) /= N_Explicit_Dereference
3520 then
996ae0b0 3521 Insert_Explicit_Dereference (Nam);
fbf5a39b 3522 Error_Msg_NW
324ac540 3523 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3524 end if;
3525 end if;
3526
3527 Next_Entity (Comp);
3528 end loop;
3529
3530 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3531 end if;
3532
3533 Get_Next_Interp (I, It);
3534 end loop;
3535
0a36105d
JM
3536 if Etype (N) = Any_Type
3537 and then not Try_Object_Operation (N)
3538 then
996ae0b0
RK
3539 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3540 Set_Entity (Sel, Any_Id);
3541 Set_Etype (Sel, Any_Type);
3542 end if;
996ae0b0
RK
3543 end Analyze_Overloaded_Selected_Component;
3544
3545 ----------------------------------
3546 -- Analyze_Qualified_Expression --
3547 ----------------------------------
3548
3549 procedure Analyze_Qualified_Expression (N : Node_Id) is
3550 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3551 Expr : constant Node_Id := Expression (N);
3552 I : Interp_Index;
3553 It : Interp;
996ae0b0
RK
3554 T : Entity_Id;
3555
3556 begin
45c8b94b
ES
3557 Analyze_Expression (Expr);
3558
996ae0b0
RK
3559 Set_Etype (N, Any_Type);
3560 Find_Type (Mark);
3561 T := Entity (Mark);
45c8b94b 3562 Set_Etype (N, T);
996ae0b0
RK
3563
3564 if T = Any_Type then
3565 return;
3566 end if;
996ae0b0 3567
4c46b835 3568 Check_Fully_Declared (T, N);
45c8b94b
ES
3569
3570 -- If expected type is class-wide, check for exact match before
3571 -- expansion, because if the expression is a dispatching call it
3572 -- may be rewritten as explicit dereference with class-wide result.
3573 -- If expression is overloaded, retain only interpretations that
3574 -- will yield exact matches.
3575
3576 if Is_Class_Wide_Type (T) then
3577 if not Is_Overloaded (Expr) then
3578 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3579 if Nkind (Expr) = N_Aggregate then
3580 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3581 else
3582 Wrong_Type (Expr, T);
3583 end if;
3584 end if;
3585
3586 else
3587 Get_First_Interp (Expr, I, It);
3588
3589 while Present (It.Nam) loop
3590 if Base_Type (It.Typ) /= Base_Type (T) then
3591 Remove_Interp (I);
3592 end if;
3593
3594 Get_Next_Interp (I, It);
3595 end loop;
3596 end if;
3597 end if;
3598
996ae0b0
RK
3599 Set_Etype (N, T);
3600 end Analyze_Qualified_Expression;
3601
a961aa79
AC
3602 -----------------------------------
3603 -- Analyze_Quantified_Expression --
3604 -----------------------------------
3605
3606 procedure Analyze_Quantified_Expression (N : Node_Id) is
4856cc2a 3607 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
538dbb56
AC
3608 -- If the iterator is part of a quantified expression, and the range is
3609 -- known to be statically empty, emit a warning and replace expression
4856cc2a 3610 -- with its static value. Returns True if the replacement occurs.
538dbb56 3611
0812b84e
AC
3612 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3613 -- Determine whether if expression If_Expr lacks an else part or if it
3614 -- has one, it evaluates to True.
3615
4856cc2a
ES
3616 --------------------
3617 -- Is_Empty_Range --
3618 --------------------
3619
3620 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3621 Loc : constant Source_Ptr := Sloc (N);
538dbb56
AC
3622
3623 begin
3624 if Is_Array_Type (Typ)
4856cc2a
ES
3625 and then Compile_Time_Known_Bounds (Typ)
3626 and then
9a6dc470
RD
3627 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3628 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
538dbb56 3629 then
4856cc2a
ES
3630 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3631
538dbb56 3632 if All_Present (N) then
4856cc2a 3633 Error_Msg_N
324ac540 3634 ("??quantified expression with ALL "
4856cc2a 3635 & "over a null range has value True", N);
538dbb56
AC
3636 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3637
3638 else
4856cc2a 3639 Error_Msg_N
324ac540 3640 ("??quantified expression with SOME "
4856cc2a 3641 & "over a null range has value False", N);
538dbb56
AC
3642 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3643 end if;
3644
3645 Analyze (N);
3646 return True;
3647
3648 else
3649 return False;
3650 end if;
3651 end Is_Empty_Range;
3652
0812b84e
AC
3653 -----------------------------
3654 -- No_Else_Or_Trivial_True --
3655 -----------------------------
3656
3657 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3658 Else_Expr : constant Node_Id :=
3659 Next (Next (First (Expressions (If_Expr))));
3660 begin
3661 return
3662 No (Else_Expr)
3663 or else (Compile_Time_Known_Value (Else_Expr)
3664 and then Is_True (Expr_Value (Else_Expr)));
3665 end No_Else_Or_Trivial_True;
3666
3667 -- Local variables
3668
3669 Cond : constant Node_Id := Condition (N);
57081559 3670 Loop_Id : Entity_Id;
0812b84e
AC
3671 QE_Scop : Entity_Id;
3672
4856cc2a
ES
3673 -- Start of processing for Analyze_Quantified_Expression
3674
a961aa79 3675 begin
2ba431e5 3676 Check_SPARK_Restriction ("quantified expression is not allowed", N);
1d801f21 3677
804670f1
AC
3678 -- Create a scope to emulate the loop-like behavior of the quantified
3679 -- expression. The scope is needed to provide proper visibility of the
3680 -- loop variable.
b3e42de5 3681
804670f1
AC
3682 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3683 Set_Etype (QE_Scop, Standard_Void_Type);
3684 Set_Scope (QE_Scop, Current_Scope);
3685 Set_Parent (QE_Scop, N);
a961aa79 3686
804670f1 3687 Push_Scope (QE_Scop);
c56a9ba4 3688
804670f1
AC
3689 -- All constituents are preanalyzed and resolved to avoid untimely
3690 -- generation of various temporaries and types. Full analysis and
3691 -- expansion is carried out when the quantified expression is
3692 -- transformed into an expression with actions.
c56a9ba4 3693
804670f1
AC
3694 if Present (Iterator_Specification (N)) then
3695 Preanalyze (Iterator_Specification (N));
538dbb56 3696
57081559
AC
3697 -- Do not proceed with the analysis when the range of iteration is
3698 -- empty. The appropriate error is issued by Is_Empty_Range.
3699
538dbb56
AC
3700 if Is_Entity_Name (Name (Iterator_Specification (N)))
3701 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3702 then
3703 return;
3704 end if;
3705
57081559 3706 else pragma Assert (Present (Loop_Parameter_Specification (N)));
a736f6e6
AC
3707 declare
3708 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3709
3710 begin
3711 Preanalyze (Loop_Par);
3712
e4deba8e 3713 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
a736f6e6
AC
3714 and then Parent (Loop_Par) /= N
3715 then
3716 -- The parser cannot distinguish between a loop specification
3717 -- and an iterator specification. If after pre-analysis the
3718 -- proper form has been recognized, rewrite the expression to
5f0c4d67
AC
3719 -- reflect the right kind. This is needed for proper ASIS
3720 -- navigation. If expansion is enabled, the transformation is
3721 -- performed when the expression is rewritten as a loop.
a736f6e6 3722
a736f6e6
AC
3723 Set_Iterator_Specification (N,
3724 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
5f0c4d67
AC
3725
3726 Set_Defining_Identifier (Iterator_Specification (N),
3727 Relocate_Node (Defining_Identifier (Loop_Par)));
3728 Set_Name (Iterator_Specification (N),
3729 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3730 Set_Comes_From_Source (Iterator_Specification (N),
3731 Comes_From_Source (Loop_Parameter_Specification (N)));
3732 Set_Loop_Parameter_Specification (N, Empty);
a736f6e6
AC
3733 end if;
3734 end;
ce6002ec
AC
3735 end if;
3736
0812b84e 3737 Preanalyze_And_Resolve (Cond, Standard_Boolean);
804670f1 3738
a961aa79
AC
3739 End_Scope;
3740 Set_Etype (N, Standard_Boolean);
0812b84e 3741
57081559
AC
3742 -- Verify that the loop variable is used within the condition of the
3743 -- quantified expression.
3744
3745 if Present (Iterator_Specification (N)) then
3746 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3747 else
3748 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3749 end if;
3750
3751 if Warn_On_Suspicious_Contract
3752 and then not Referenced (Loop_Id, Cond)
3753 then
3754 Error_Msg_N ("?T?unused variable &", Loop_Id);
3755 end if;
3756
e19fd0bd 3757 -- Diagnose a possible misuse of the SOME existential quantifier. When
d1ec4768
RD
3758 -- we have a quantified expression of the form:
3759
0812b84e 3760 -- for some X => (if P then Q [else True])
d1ec4768 3761
e19fd0bd
AC
3762 -- any value for X that makes P False results in the if expression being
3763 -- trivially True, and so also results in the the quantified expression
3764 -- being trivially True.
0812b84e 3765
e19fd0bd 3766 if Warn_On_Suspicious_Contract
0812b84e
AC
3767 and then not All_Present (N)
3768 and then Nkind (Cond) = N_If_Expression
3769 and then No_Else_Or_Trivial_True (Cond)
3770 then
e19fd0bd 3771 Error_Msg_N ("?T?suspicious expression", N);
0812b84e
AC
3772 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3773 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3774 end if;
a961aa79
AC
3775 end Analyze_Quantified_Expression;
3776
996ae0b0
RK
3777 -------------------
3778 -- Analyze_Range --
3779 -------------------
3780
3781 procedure Analyze_Range (N : Node_Id) is
3782 L : constant Node_Id := Low_Bound (N);
3783 H : constant Node_Id := High_Bound (N);
3784 I1, I2 : Interp_Index;
3785 It1, It2 : Interp;
3786
3787 procedure Check_Common_Type (T1, T2 : Entity_Id);
3788 -- Verify the compatibility of two types, and choose the
3789 -- non universal one if the other is universal.
3790
3791 procedure Check_High_Bound (T : Entity_Id);
3792 -- Test one interpretation of the low bound against all those
3793 -- of the high bound.
3794
fbf5a39b 3795 procedure Check_Universal_Expression (N : Node_Id);
a1092b48
AC
3796 -- In Ada 83, reject bounds of a universal range that are not literals
3797 -- or entity names.
fbf5a39b 3798
996ae0b0
RK
3799 -----------------------
3800 -- Check_Common_Type --
3801 -----------------------
3802
3803 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3804 begin
b4592168
GD
3805 if Covers (T1 => T1, T2 => T2)
3806 or else
3807 Covers (T1 => T2, T2 => T1)
3808 then
996ae0b0
RK
3809 if T1 = Universal_Integer
3810 or else T1 = Universal_Real
3811 or else T1 = Any_Character
3812 then
3813 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3814
fbf5a39b 3815 elsif T1 = T2 then
996ae0b0
RK
3816 Add_One_Interp (N, T1, T1);
3817
3818 else
3819 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3820 end if;
3821 end if;
3822 end Check_Common_Type;
3823
3824 ----------------------
3825 -- Check_High_Bound --
3826 ----------------------
3827
3828 procedure Check_High_Bound (T : Entity_Id) is
3829 begin
3830 if not Is_Overloaded (H) then
3831 Check_Common_Type (T, Etype (H));
3832 else
3833 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3834 while Present (It2.Typ) loop
3835 Check_Common_Type (T, It2.Typ);
3836 Get_Next_Interp (I2, It2);
3837 end loop;
3838 end if;
3839 end Check_High_Bound;
3840
fbf5a39b
AC
3841 -----------------------------
3842 -- Is_Universal_Expression --
3843 -----------------------------
3844
3845 procedure Check_Universal_Expression (N : Node_Id) is
3846 begin
3847 if Etype (N) = Universal_Integer
3848 and then Nkind (N) /= N_Integer_Literal
3849 and then not Is_Entity_Name (N)
3850 and then Nkind (N) /= N_Attribute_Reference
3851 then
3852 Error_Msg_N ("illegal bound in discrete range", N);
3853 end if;
3854 end Check_Universal_Expression;
3855
996ae0b0
RK
3856 -- Start of processing for Analyze_Range
3857
3858 begin
3859 Set_Etype (N, Any_Type);
3860 Analyze_Expression (L);
3861 Analyze_Expression (H);
3862
3863 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3864 return;
3865
3866 else
3867 if not Is_Overloaded (L) then
3868 Check_High_Bound (Etype (L));
3869 else
3870 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3871 while Present (It1.Typ) loop
3872 Check_High_Bound (It1.Typ);
3873 Get_Next_Interp (I1, It1);
3874 end loop;
3875 end if;
3876
3877 -- If result is Any_Type, then we did not find a compatible pair
3878
3879 if Etype (N) = Any_Type then
3880 Error_Msg_N ("incompatible types in range ", N);
3881 end if;
3882 end if;
fbf5a39b 3883
0ab80019 3884 if Ada_Version = Ada_83
fbf5a39b
AC
3885 and then
3886 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3887 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3888 then
3889 Check_Universal_Expression (L);
3890 Check_Universal_Expression (H);
3891 end if;
d3820795
JM
3892
3893 Check_Function_Writable_Actuals (N);
996ae0b0
RK
3894 end Analyze_Range;
3895
3896 -----------------------
3897 -- Analyze_Reference --
3898 -----------------------
3899
3900 procedure Analyze_Reference (N : Node_Id) is
3901 P : constant Node_Id := Prefix (N);
b4592168
GD
3902 E : Entity_Id;
3903 T : Entity_Id;
996ae0b0 3904 Acc_Type : Entity_Id;
b4592168 3905
996ae0b0
RK
3906 begin
3907 Analyze (P);
b4592168
GD
3908
3909 -- An interesting error check, if we take the 'Reference of an object
3910 -- for which a pragma Atomic or Volatile has been given, and the type
3911 -- of the object is not Atomic or Volatile, then we are in trouble. The
3912 -- problem is that no trace of the atomic/volatile status will remain
3913 -- for the backend to respect when it deals with the resulting pointer,
3914 -- since the pointer type will not be marked atomic (it is a pointer to
3915 -- the base type of the object).
3916
3917 -- It is not clear if that can ever occur, but in case it does, we will
3918 -- generate an error message. Not clear if this message can ever be
3919 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
3920 -- seems worth checking, except in CodePeer mode where we do not really
3921 -- care and don't want to bother the user.
b4592168
GD
3922
3923 T := Etype (P);
3924
3925 if Is_Entity_Name (P)
3926 and then Is_Object_Reference (P)
d2f25cd1 3927 and then not CodePeer_Mode
b4592168
GD
3928 then
3929 E := Entity (P);
3930 T := Etype (P);
3931
3932 if (Has_Atomic_Components (E)
3933 and then not Has_Atomic_Components (T))
3934 or else
3935 (Has_Volatile_Components (E)
3936 and then not Has_Volatile_Components (T))
3937 or else (Is_Atomic (E) and then not Is_Atomic (T))
3938 or else (Is_Volatile (E) and then not Is_Volatile (T))
3939 then
3940 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3941 end if;
3942 end if;
3943
3944 -- Carry on with normal processing
3945
996ae0b0 3946 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 3947 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
3948 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3949 Set_Etype (N, Acc_Type);
3950 end Analyze_Reference;
3951
3952 --------------------------------
3953 -- Analyze_Selected_Component --
3954 --------------------------------
3955
2383acbd
AC
3956 -- Prefix is a record type or a task or protected type. In the latter case,
3957 -- the selector must denote a visible entry.
996ae0b0
RK
3958
3959 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
3960 Name : constant Node_Id := Prefix (N);
3961 Sel : constant Node_Id := Selector_Name (N);
3962 Act_Decl : Node_Id;
3963 Comp : Entity_Id;
3964 Has_Candidate : Boolean := False;
3965 In_Scope : Boolean;
3966 Parent_N : Node_Id;
3967 Pent : Entity_Id := Empty;
3968 Prefix_Type : Entity_Id;
401093c1
ES
3969
3970 Type_To_Use : Entity_Id;
3971 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3972 -- a class-wide type, we use its root type, whose components are
3973 -- present in the class-wide type.
3974
2383acbd
AC
3975 Is_Single_Concurrent_Object : Boolean;
3976 -- Set True if the prefix is a single task or a single protected object
3977
20261dc1
AC
3978 procedure Find_Component_In_Instance (Rec : Entity_Id);
3979 -- In an instance, a component of a private extension may not be visible
3980 -- while it was visible in the generic. Search candidate scope for a
3981 -- component with the proper identifier. This is only done if all other
f90d14ac
AC
3982 -- searches have failed. If a match is found, the Etype of both N and
3983 -- Sel are set from this component, and the entity of Sel is set to
3984 -- reference this component. If no match is found, Entity (Sel) remains
3985 -- unset.
20261dc1 3986
d469eabe
HK
3987 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3988 -- It is known that the parent of N denotes a subprogram call. Comp
3989 -- is an overloadable component of the concurrent type of the prefix.
3990 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
3991 -- conformant. If the parent node is not analyzed yet it may be an
3992 -- indexed component rather than a function call.
d469eabe 3993
20261dc1
AC
3994 --------------------------------
3995 -- Find_Component_In_Instance --
3996 --------------------------------
3997
3998 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3999 Comp : Entity_Id;
4000
4001 begin
4002 Comp := First_Component (Rec);
4003 while Present (Comp) loop
4004 if Chars (Comp) = Chars (Sel) then
e7ba564f 4005 Set_Entity_With_Checks (Sel, Comp);
20261dc1
AC
4006 Set_Etype (Sel, Etype (Comp));
4007 Set_Etype (N, Etype (Comp));
4008 return;
4009 end if;
4010
4011 Next_Component (Comp);
4012 end loop;
4013
cf3e6845
AC
4014 -- If we fall through, no match, so no changes made
4015
4016 return;
20261dc1
AC
4017 end Find_Component_In_Instance;
4018
d469eabe
HK
4019 ------------------------------
4020 -- Has_Mode_Conformant_Spec --
4021 ------------------------------
4022
4023 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4024 Comp_Param : Entity_Id;
4025 Param : Node_Id;
4026 Param_Typ : Entity_Id;
4027
4028 begin
4029 Comp_Param := First_Formal (Comp);
b4592168
GD
4030
4031 if Nkind (Parent (N)) = N_Indexed_Component then
4032 Param := First (Expressions (Parent (N)));
4033 else
4034 Param := First (Parameter_Associations (Parent (N)));
4035 end if;
4036
d469eabe
HK
4037 while Present (Comp_Param)
4038 and then Present (Param)
4039 loop
4040 Param_Typ := Find_Parameter_Type (Param);
4041
4042 if Present (Param_Typ)
4043 and then
4044 not Conforming_Types
4045 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4046 then
4047 return False;
4048 end if;
4049
4050 Next_Formal (Comp_Param);
4051 Next (Param);
4052 end loop;
4053
9e92ad49
AC
4054 -- One of the specs has additional formals; there is no match, unless
4055 -- this may be an indexing of a parameterless call.
f0e7963f
AC
4056
4057 -- Note that when expansion is disabled, the corresponding record
4058 -- type of synchronized types is not constructed, so that there is
4059 -- no point is attempting an interpretation as a prefixed call, as
4060 -- this is bound to fail because the primitive operations will not
4061 -- be properly located.
d469eabe
HK
4062
4063 if Present (Comp_Param) or else Present (Param) then
f0e7963f
AC
4064 if Needs_No_Actuals (Comp)
4065 and then Is_Array_Type (Etype (Comp))
4066 and then not Expander_Active
4067 then
4068 return True;
f0e7963f
AC
4069 else
4070 return False;
4071 end if;
d469eabe
HK
4072 end if;
4073
4074 return True;
4075 end Has_Mode_Conformant_Spec;
996ae0b0
RK
4076
4077 -- Start of processing for Analyze_Selected_Component
4078
4079 begin
4080 Set_Etype (N, Any_Type);
4081
4082 if Is_Overloaded (Name) then
4083 Analyze_Overloaded_Selected_Component (N);
4084 return;
4085
4086 elsif Etype (Name) = Any_Type then
4087 Set_Entity (Sel, Any_Id);
4088 Set_Etype (Sel, Any_Type);
4089 return;
4090
4091 else
996ae0b0
RK
4092 Prefix_Type := Etype (Name);
4093 end if;
4094
4095 if Is_Access_Type (Prefix_Type) then
07fc65c4 4096
0d57c6f4
RD
4097 -- A RACW object can never be used as prefix of a selected component
4098 -- since that means it is dereferenced without being a controlling
4099 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4100 -- reporting an error, we must check whether this is actually a
4101 -- dispatching call in prefix form.
07fc65c4 4102
996ae0b0
RK
4103 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4104 and then Comes_From_Source (N)
4105 then
b4592168
GD
4106 if Try_Object_Operation (N) then
4107 return;
4108 else
4109 Error_Msg_N
4110 ("invalid dereference of a remote access-to-class-wide value",
4111 N);
4112 end if;
07fc65c4
GB
4113
4114 -- Normal case of selected component applied to access type
4115
4116 else
324ac540 4117 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
da709d08 4118
6e73e3ab
AC
4119 if Is_Entity_Name (Name) then
4120 Pent := Entity (Name);
4121 elsif Nkind (Name) = N_Selected_Component
4122 and then Is_Entity_Name (Selector_Name (Name))
4123 then
4124 Pent := Entity (Selector_Name (Name));
4125 end if;
da709d08 4126
d469eabe 4127 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 4128 end if;
b4592168
GD
4129
4130 -- If we have an explicit dereference of a remote access-to-class-wide
4131 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4132 -- have to check for the case of a prefix that is a controlling operand
4133 -- of a prefixed dispatching call, as the dereference is legal in that
4134 -- case. Normally this condition is checked in Validate_Remote_Access_
4135 -- To_Class_Wide_Type, but we have to defer the checking for selected
4136 -- component prefixes because of the prefixed dispatching call case.
4137 -- Note that implicit dereferences are checked for this just above.
4138
4139 elsif Nkind (Name) = N_Explicit_Dereference
4140 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4141 and then Comes_From_Source (N)
4142 then
4143 if Try_Object_Operation (N) then
4144 return;
4145 else
4146 Error_Msg_N
4147 ("invalid dereference of a remote access-to-class-wide value",
4148 N);
4149 end if;
aab883ec 4150 end if;
b67a385c 4151
aab883ec
ES
4152 -- (Ada 2005): if the prefix is the limited view of a type, and
4153 -- the context already includes the full view, use the full view
4154 -- in what follows, either to retrieve a component of to find
4155 -- a primitive operation. If the prefix is an explicit dereference,
4156 -- set the type of the prefix to reflect this transformation.
401093c1
ES
4157 -- If the non-limited view is itself an incomplete type, get the
4158 -- full view if available.
aab883ec
ES
4159
4160 if Is_Incomplete_Type (Prefix_Type)
7b56a91b 4161 and then From_Limited_With (Prefix_Type)
aab883ec
ES
4162 and then Present (Non_Limited_View (Prefix_Type))
4163 then
401093c1 4164 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
4165
4166 if Nkind (N) = N_Explicit_Dereference then
4167 Set_Etype (Prefix (N), Prefix_Type);
4168 end if;
4169
4170 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
7b56a91b 4171 and then From_Limited_With (Prefix_Type)
aab883ec
ES
4172 and then Present (Non_Limited_View (Etype (Prefix_Type)))
4173 then
4174 Prefix_Type :=
4175 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
4176
4177 if Nkind (N) = N_Explicit_Dereference then
4178 Set_Etype (Prefix (N), Prefix_Type);
b67a385c 4179 end if;
996ae0b0
RK
4180 end if;
4181
4182 if Ekind (Prefix_Type) = E_Private_Subtype then
4183 Prefix_Type := Base_Type (Prefix_Type);
4184 end if;
4185
401093c1 4186 Type_To_Use := Prefix_Type;
996ae0b0
RK
4187
4188 -- For class-wide types, use the entity list of the root type. This
4189 -- indirection is specially important for private extensions because
4190 -- only the root type get switched (not the class-wide type).
4191
4192 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 4193 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
4194 end if;
4195
2383acbd
AC
4196 -- If the prefix is a single concurrent object, use its name in error
4197 -- messages, rather than that of its anonymous type.
4198
4199 Is_Single_Concurrent_Object :=
4200 Is_Concurrent_Type (Prefix_Type)
4201 and then Is_Internal_Name (Chars (Prefix_Type))
4202 and then not Is_Derived_Type (Prefix_Type)
4203 and then Is_Entity_Name (Name);
4204
401093c1 4205 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4206
4207 -- If the selector has an original discriminant, the node appears in
4208 -- an instance. Replace the discriminant with the corresponding one
4209 -- in the current discriminated type. For nested generics, this must
4210 -- be done transitively, so note the new original discriminant.
4211
4212 if Nkind (Sel) = N_Identifier
c0b11850 4213 and then In_Instance
996ae0b0
RK
4214 and then Present (Original_Discriminant (Sel))
4215 then
4216 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4217
4218 -- Mark entity before rewriting, for completeness and because
4219 -- subsequent semantic checks might examine the original node.
4220
4221 Set_Entity (Sel, Comp);
ee2ba856 4222 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
996ae0b0
RK
4223 Set_Original_Discriminant (Selector_Name (N), Comp);
4224 Set_Etype (N, Etype (Comp));
44a10091 4225 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
4226
4227 if Is_Access_Type (Etype (Name)) then
4228 Insert_Explicit_Dereference (Name);
324ac540 4229 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4230 end if;
4231
4232 elsif Is_Record_Type (Prefix_Type) then
4233
ee2ba856
AC
4234 -- Find component with given name. In an instance, if the node is
4235 -- known as a prefixed call, do not examine components whose
4236 -- visibility may be accidental.
996ae0b0 4237
4913e24c 4238 while Present (Comp) and then not Is_Prefixed_Call (N) loop
996ae0b0 4239 if Chars (Comp) = Chars (Sel)
a53c5613 4240 and then Is_Visible_Component (Comp, N)
996ae0b0 4241 then
e7ba564f 4242 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4243 Set_Etype (Sel, Etype (Comp));
4244
4245 if Ekind (Comp) = E_Discriminant then
5d09245e 4246 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0 4247 Error_Msg_N
02f58834 4248 ("cannot reference discriminant of unchecked union",
996ae0b0
RK
4249 Sel);
4250 end if;
4251
4252 if Is_Generic_Type (Prefix_Type)
4253 or else
4254 Is_Generic_Type (Root_Type (Prefix_Type))
4255 then
4256 Set_Original_Discriminant (Sel, Comp);
4257 end if;
4258 end if;
4259
4260 -- Resolve the prefix early otherwise it is not possible to
4261 -- build the actual subtype of the component: it may need
4262 -- to duplicate this prefix and duplication is only allowed
4263 -- on fully resolved expressions.
4264
fbf5a39b 4265 Resolve (Name);
996ae0b0 4266
b67a385c
ES
4267 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4268 -- subtypes in a package specification.
28be29ce
ES
4269 -- Example:
4270
4271 -- limited with Pkg;
4272 -- package Pkg is
4273 -- type Acc_Inc is access Pkg.T;
4274 -- X : Acc_Inc;
b67a385c
ES
4275 -- N : Natural := X.all.Comp; -- ERROR, limited view
4276 -- end Pkg; -- Comp is not visible
28be29ce
ES
4277
4278 if Nkind (Name) = N_Explicit_Dereference
7b56a91b 4279 and then From_Limited_With (Etype (Prefix (Name)))
28be29ce 4280 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
4281 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4282 N_Package_Specification
28be29ce
ES
4283 then
4284 Error_Msg_NE
4285 ("premature usage of incomplete}", Prefix (Name),
4286 Etype (Prefix (Name)));
4287 end if;
4288
996ae0b0
RK
4289 -- We never need an actual subtype for the case of a selection
4290 -- for a indexed component of a non-packed array, since in
4291 -- this case gigi generates all the checks and can find the
4292 -- necessary bounds information.
4293
0d57c6f4
RD
4294 -- We also do not need an actual subtype for the case of a
4295 -- first, last, length, or range attribute applied to a
996ae0b0
RK
4296 -- non-packed array, since gigi can again get the bounds in
4297 -- these cases (gigi cannot handle the packed case, since it
4298 -- has the bounds of the packed array type, not the original
4299 -- bounds of the type). However, if the prefix is itself a
4300 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4301 -- as a dynamic-sized temporary, so we do generate an actual
4302 -- subtype for this case.
4303
4304 Parent_N := Parent (N);
4305
4306 if not Is_Packed (Etype (Comp))
4307 and then
4308 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 4309 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
4310 or else
4311 (Nkind (Parent_N) = N_Attribute_Reference
b69cd36a
AC
4312 and then
4313 Nam_In (Attribute_Name (Parent_N), Name_First,
4314 Name_Last,
4315 Name_Length,
4316 Name_Range)))
996ae0b0
RK
4317 then
4318 Set_Etype (N, Etype (Comp));
4319
98123480
ES
4320 -- If full analysis is not enabled, we do not generate an
4321 -- actual subtype, because in the absence of expansion
4322 -- reference to a formal of a protected type, for example,
4323 -- will not be properly transformed, and will lead to
4324 -- out-of-scope references in gigi.
4325
4326 -- In all other cases, we currently build an actual subtype.
4327 -- It seems likely that many of these cases can be avoided,
4328 -- but right now, the front end makes direct references to the
fbf5a39b 4329 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 4330 -- not make an actual subtype, we end up getting a direct
98123480 4331 -- reference to a discriminant, which will not do.
996ae0b0 4332
98123480 4333 elsif Full_Analysis then
996ae0b0
RK
4334 Act_Decl :=
4335 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4336 Insert_Action (N, Act_Decl);
4337
4338 if No (Act_Decl) then
4339 Set_Etype (N, Etype (Comp));
4340
4341 else
4342 -- Component type depends on discriminants. Enter the
4343 -- main attributes of the subtype.
4344
4345 declare
fbf5a39b
AC
4346 Subt : constant Entity_Id :=
4347 Defining_Identifier (Act_Decl);
996ae0b0
RK
4348
4349 begin
4350 Set_Etype (Subt, Base_Type (Etype (Comp)));
4351 Set_Ekind (Subt, Ekind (Etype (Comp)));
4352 Set_Etype (N, Subt);
4353 end;
4354 end if;
98123480
ES
4355
4356 -- If Full_Analysis not enabled, just set the Etype
4357
4358 else
4359 Set_Etype (N, Etype (Comp));
996ae0b0
RK
4360 end if;
4361
44a10091 4362 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4363 return;
4364 end if;
4365
aab883ec 4366 -- If the prefix is a private extension, check only the visible
9c510803 4367 -- components of the partial view. This must include the tag,
f3d57416 4368 -- which can appear in expanded code in a tag check.
aab883ec 4369
9c510803 4370 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 4371 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 4372 then
401093c1 4373 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
4374 end if;
4375
996ae0b0
RK
4376 Next_Entity (Comp);
4377 end loop;
4378
d469eabe
HK
4379 -- Ada 2005 (AI-252): The selected component can be interpreted as
4380 -- a prefixed view of a subprogram. Depending on the context, this is
4381 -- either a name that can appear in a renaming declaration, or part
4382 -- of an enclosing call given in prefix form.
4383
4384 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4385 -- selected component should resolve to a name.
35ae2ed8 4386
0791fbe9 4387 if Ada_Version >= Ada_2005
35ae2ed8 4388 and then Is_Tagged_Type (Prefix_Type)
d469eabe 4389 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 4390 then
d469eabe
HK
4391 if Nkind (Parent (N)) = N_Generic_Association
4392 or else Nkind (Parent (N)) = N_Requeue_Statement
4393 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4394 then
4395 if Find_Primitive_Operation (N) then
4396 return;
4397 end if;
4398
4399 elsif Try_Object_Operation (N) then
4400 return;
4401 end if;
4c46b835 4402
98123480
ES
4403 -- If the transformation fails, it will be necessary to redo the
4404 -- analysis with all errors enabled, to indicate candidate
4405 -- interpretations and reasons for each failure ???
4c46b835 4406
35ae2ed8
AC
4407 end if;
4408
996ae0b0 4409 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4410
98123480
ES
4411 -- Allow access only to discriminants of the type. If the type has
4412 -- no full view, gigi uses the parent type for the components, so we
4413 -- do the same here.
996ae0b0
RK
4414
4415 if No (Full_View (Prefix_Type)) then
401093c1
ES
4416 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4417 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4418 end if;
4419
4420 while Present (Comp) loop
996ae0b0
RK
4421 if Chars (Comp) = Chars (Sel) then
4422 if Ekind (Comp) = E_Discriminant then
e7ba564f 4423 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4424 Generate_Reference (Comp, Sel);
4425
4426 Set_Etype (Sel, Etype (Comp));
4427 Set_Etype (N, Etype (Comp));
44a10091 4428 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4429
4430 if Is_Generic_Type (Prefix_Type)
d469eabe 4431 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4432 then
4433 Set_Original_Discriminant (Sel, Comp);
4434 end if;
4435
f3d57416 4436 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4437 -- private type and a call to a primitive operation.
4438
0791fbe9 4439 elsif Ada_Version >= Ada_2005
aab883ec
ES
4440 and then Is_Tagged_Type (Prefix_Type)
4441 and then Try_Object_Operation (N)
4442 then
4443 return;
4444
996ae0b0 4445 else
2383acbd
AC
4446 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4447 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4448 Set_Entity (Sel, Any_Id);
4449 Set_Etype (N, Any_Type);
4450 end if;
4451
4452 return;
4453 end if;
4454
4455 Next_Entity (Comp);
4456 end loop;
4457
4458 elsif Is_Concurrent_Type (Prefix_Type) then
4459
d469eabe
HK
4460 -- Find visible operation with given name. For a protected type,
4461 -- the possible candidates are discriminants, entries or protected
4462 -- procedures. For a task type, the set can only include entries or
4463 -- discriminants if the task type is not an enclosing scope. If it
4464 -- is an enclosing scope (e.g. in an inner task) then all entities
4465 -- are visible, but the prefix must denote the enclosing scope, i.e.
4466 -- can only be a direct name or an expanded name.
996ae0b0 4467
d469eabe 4468 Set_Etype (Sel, Any_Type);
996ae0b0
RK
4469 In_Scope := In_Open_Scopes (Prefix_Type);
4470
4471 while Present (Comp) loop
4472 if Chars (Comp) = Chars (Sel) then
4473 if Is_Overloadable (Comp) then
4474 Add_One_Interp (Sel, Comp, Etype (Comp));
4475
d469eabe
HK
4476 -- If the prefix is tagged, the correct interpretation may
4477 -- lie in the primitive or class-wide operations of the
4478 -- type. Perform a simple conformance check to determine
4479 -- whether Try_Object_Operation should be invoked even if
4480 -- a visible entity is found.
4481
4482 if Is_Tagged_Type (Prefix_Type)
4483 and then
4484 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
4485 N_Function_Call,
4486 N_Indexed_Component)
d469eabe
HK
4487 and then Has_Mode_Conformant_Spec (Comp)
4488 then
4489 Has_Candidate := True;
4490 end if;
4491
2383acbd
AC
4492 -- Note: a selected component may not denote a component of a
4493 -- protected type (4.1.3(7)).
4494
bce79204 4495 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4496 or else (In_Scope
4497 and then not Is_Protected_Type (Prefix_Type)
4498 and then Is_Entity_Name (Name))
996ae0b0 4499 then
e7ba564f 4500 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4501 Generate_Reference (Comp, Sel);
4502
65e78a74
AC
4503 -- The selector is not overloadable, so we have a candidate
4504 -- interpretation.
4505
4506 Has_Candidate := True;
4507
996ae0b0
RK
4508 else
4509 goto Next_Comp;
4510 end if;
4511
4512 Set_Etype (Sel, Etype (Comp));
4513 Set_Etype (N, Etype (Comp));
4514
4515 if Ekind (Comp) = E_Discriminant then
4516 Set_Original_Discriminant (Sel, Comp);
4517 end if;
4518
09494c32
AC
4519 -- For access type case, introduce explicit dereference for
4520 -- more uniform treatment of entry calls.
996ae0b0
RK
4521
4522 if Is_Access_Type (Etype (Name)) then
4523 Insert_Explicit_Dereference (Name);
fbf5a39b 4524 Error_Msg_NW
324ac540 4525 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4526 end if;
4527 end if;
4528
4529 <<Next_Comp>>
4530 Next_Entity (Comp);
4531 exit when not In_Scope
9bc856dd
AC
4532 and then
4533 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4534 end loop;
4535
d469eabe
HK
4536 -- If there is no visible entity with the given name or none of the
4537 -- visible entities are plausible interpretations, check whether
4538 -- there is some other primitive operation with that name.
aab883ec 4539
0791fbe9 4540 if Ada_Version >= Ada_2005
aab883ec 4541 and then Is_Tagged_Type (Prefix_Type)
aab883ec 4542 then
d469eabe
HK
4543 if (Etype (N) = Any_Type
4544 or else not Has_Candidate)
0a36105d
JM
4545 and then Try_Object_Operation (N)
4546 then
4547 return;
4548
4549 -- If the context is not syntactically a procedure call, it
4550 -- may be a call to a primitive function declared outside of
4551 -- the synchronized type.
4552
4553 -- If the context is a procedure call, there might still be
4554 -- an overloading between an entry and a primitive procedure
4555 -- declared outside of the synchronized type, called in prefix
4556 -- notation. This is harder to disambiguate because in one case
4557 -- the controlling formal is implicit ???
4558
4559 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 4560 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
4561 and then Try_Object_Operation (N)
4562 then
4563 return;
4564 end if;
8cf23b91
AC
4565
4566 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4567 -- entry or procedure of a tagged concurrent type we must check
4568 -- if there are class-wide subprograms covering the primitive. If
4569 -- true then Try_Object_Operation reports the error.
4570
4571 if Has_Candidate
4572 and then Is_Concurrent_Type (Prefix_Type)
4573 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4574
4575 -- Duplicate the call. This is required to avoid problems with
4576 -- the tree transformations performed by Try_Object_Operation.
d7a44b14
AC
4577 -- Set properly the parent of the copied call, because it is
4578 -- about to be reanalyzed.
8cf23b91 4579
8cf23b91 4580 then
d7a44b14
AC
4581 declare
4582 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4583
4584 begin
4585 Set_Parent (Par, Parent (Parent (N)));
29ba9f52 4586
d7a44b14 4587 if Try_Object_Operation
29ba9f52 4588 (Sinfo.Name (Par), CW_Test_Only => True)
d7a44b14
AC
4589 then
4590 return;
4591 end if;
4592 end;
8cf23b91 4593 end if;
aab883ec
ES
4594 end if;
4595
2383acbd 4596 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
11bc76df 4597
2383acbd
AC
4598 -- Case of a prefix of a protected type: selector might denote
4599 -- an invisible private component.
4600
4601 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4602 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4603 Next_Entity (Comp);
4604 end loop;
4605
4606 if Present (Comp) then
4607 if Is_Single_Concurrent_Object then
4608 Error_Msg_Node_2 := Entity (Name);
4609 Error_Msg_NE ("invisible selector& for &", N, Sel);
4610
4611 else
4612 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4613 Error_Msg_NE ("invisible selector& for }", N, Sel);
4614 end if;
4615 return;
4616 end if;
4617 end if;
4618
996ae0b0
RK
4619 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4620
4621 else
4622 -- Invalid prefix
4623
4624 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4625 end if;
4626
4c46b835 4627 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
4628
4629 if Etype (N) = Any_Type then
4630
2383acbd 4631 if Is_Single_Concurrent_Object then
996ae0b0
RK
4632 Error_Msg_Node_2 := Entity (Name);
4633 Error_Msg_NE ("no selector& for&", N, Sel);
4634
401093c1 4635 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 4636
8b4230c8
AC
4637 -- If this is a derived formal type, the parent may have different
4638 -- visibility at this point. Try for an inherited component before
4639 -- reporting an error.
4640
de76a39c
GB
4641 elsif Is_Generic_Type (Prefix_Type)
4642 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 4643 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
4644 and then Is_Record_Type (Etype (Prefix_Type))
4645 then
de76a39c
GB
4646 Set_Etype (Prefix (N), Etype (Prefix_Type));
4647 Analyze_Selected_Component (N);
4648 return;
4649
b1d12996
AC
4650 -- Similarly, if this is the actual for a formal derived type, or
4651 -- a derived type thereof, the component inherited from the generic
4652 -- parent may not be visible in the actual, but the selected
4653 -- component is legal. Climb up the derivation chain of the generic
4654 -- parent type until we find the proper ancestor type.
20261dc1 4655
b1d12996
AC
4656 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4657 declare
4658 Par : Entity_Id := Prefix_Type;
4659 begin
4660 -- Climb up derivation chain to generic actual subtype
4661
4662 while not Is_Generic_Actual_Type (Par) loop
4663 if Ekind (Par) = E_Record_Type then
4664 Par := Parent_Subtype (Par);
4665 exit when No (Par);
4666 else
4667 exit when Par = Etype (Par);
4668 Par := Etype (Par);
4669 end if;
4670 end loop;
4c46b835 4671
b1d12996
AC
4672 if Present (Par) and then Is_Generic_Actual_Type (Par) then
4673 -- Now look for component in ancestor types
fbf5a39b 4674
b1d12996
AC
4675 Par := Generic_Parent_Type (Declaration_Node (Par));
4676 loop
4677 Find_Component_In_Instance (Par);
4678 exit when Present (Entity (Sel))
4679 or else Par = Etype (Par);
4680 Par := Etype (Par);
4681 end loop;
4682 end if;
4683 end;
4684
4685 -- The search above must have eventually succeeded, since the
4686 -- selected component was legal in the generic.
4687
4688 if No (Entity (Sel)) then
4689 raise Program_Error;
4690 end if;
20261dc1 4691 return;
fbf5a39b 4692
20261dc1 4693 -- Component not found, specialize error message when appropriate
fbf5a39b 4694
996ae0b0
RK
4695 else
4696 if Ekind (Prefix_Type) = E_Record_Subtype then
4697
f4b049db
AC
4698 -- Check whether this is a component of the base type which
4699 -- is absent from a statically constrained subtype. This will
4700 -- raise constraint error at run time, but is not a compile-
4701 -- time error. When the selector is illegal for base type as
4702 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
4703
4704 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 4705 while Present (Comp) loop
996ae0b0
RK
4706 if Chars (Comp) = Chars (Sel)
4707 and then Is_Visible_Component (Comp)
4708 then
e7ba564f 4709 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4710 Generate_Reference (Comp, Sel);
4711 Set_Etype (Sel, Etype (Comp));
4712 Set_Etype (N, Etype (Comp));
4713
637a41a5
AC
4714 -- Emit appropriate message. The node will be replaced
4715 -- by an appropriate raise statement.
996ae0b0 4716
637a41a5
AC
4717 -- Note that in SPARK mode, as with all calls to apply a
4718 -- compile time constraint error, this will be made into
4719 -- an error to simplify the processing of the formal
4720 -- verification backend.
d7f41b2d 4721
4a28b181 4722 Apply_Compile_Time_Constraint_Error
637a41a5 4723 (N, "component not present in }??",
4a28b181
AC
4724 CE_Discriminant_Check_Failed,
4725 Ent => Prefix_Type, Rep => False);
d7f41b2d 4726
996ae0b0
RK
4727 Set_Raises_Constraint_Error (N);
4728 return;
4729 end if;
4730
4731 Next_Component (Comp);
4732 end loop;
4733
4734 end if;
4735
4736 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4737 Error_Msg_NE ("no selector& for}", N, Sel);
4738
94bbf008 4739 -- Add information in the case of an incomplete prefix
99d520ad
ES
4740
4741 if Is_Incomplete_Type (Type_To_Use) then
4742 declare
4743 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4744
4745 begin
7b56a91b 4746 if From_Limited_With (Scope (Type_To_Use)) then
99d520ad
ES
4747 Error_Msg_NE
4748 ("\limited view of& has no components", N, Inc);
bd38b431 4749
99d520ad
ES
4750 else
4751 Error_Msg_NE
4752 ("\premature usage of incomplete type&", N, Inc);
bd38b431
AC
4753
4754 if Nkind (Parent (Inc)) =
4755 N_Incomplete_Type_Declaration
99d520ad 4756 then
94bbf008
AC
4757 -- Record location of premature use in entity so that
4758 -- a continuation message is generated when the
4759 -- completion is seen.
4760
99d520ad
ES
4761 Set_Premature_Use (Parent (Inc), N);
4762 end if;
4763 end if;
4764 end;
4765 end if;
4766
401093c1 4767 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
4768 end if;
4769
4770 Set_Entity (Sel, Any_Id);
4771 Set_Etype (Sel, Any_Type);
4772 end if;
4773 end Analyze_Selected_Component;
4774
4775 ---------------------------
4776 -- Analyze_Short_Circuit --
4777 ---------------------------
4778
4779 procedure Analyze_Short_Circuit (N : Node_Id) is
4780 L : constant Node_Id := Left_Opnd (N);
4781 R : constant Node_Id := Right_Opnd (N);
4782 Ind : Interp_Index;
4783 It : Interp;
4784
4785 begin
4786 Analyze_Expression (L);
4787 Analyze_Expression (R);
4788 Set_Etype (N, Any_Type);
4789
4790 if not Is_Overloaded (L) then
996ae0b0
RK
4791 if Root_Type (Etype (L)) = Standard_Boolean
4792 and then Has_Compatible_Type (R, Etype (L))
4793 then
4794 Add_One_Interp (N, Etype (L), Etype (L));
4795 end if;
4796
4797 else
4798 Get_First_Interp (L, Ind, It);
996ae0b0
RK
4799 while Present (It.Typ) loop
4800 if Root_Type (It.Typ) = Standard_Boolean
4801 and then Has_Compatible_Type (R, It.Typ)
4802 then
4803 Add_One_Interp (N, It.Typ, It.Typ);
4804 end if;
4805
4806 Get_Next_Interp (Ind, It);
4807 end loop;
4808 end if;
4809
d469eabe
HK
4810 -- Here we have failed to find an interpretation. Clearly we know that
4811 -- it is not the case that both operands can have an interpretation of
4812 -- Boolean, but this is by far the most likely intended interpretation.
4813 -- So we simply resolve both operands as Booleans, and at least one of
4814 -- these resolutions will generate an error message, and we do not need
4815 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4816
4817 if Etype (N) = Any_Type then
4818 Resolve (L, Standard_Boolean);
4819 Resolve (R, Standard_Boolean);
4820 Set_Etype (N, Standard_Boolean);
4821 end if;
4822 end Analyze_Short_Circuit;
4823
4824 -------------------
4825 -- Analyze_Slice --
4826 -------------------
4827
4828 procedure Analyze_Slice (N : Node_Id) is
996ae0b0 4829 D : constant Node_Id := Discrete_Range (N);
5f44f0d4 4830 P : constant Node_Id := Prefix (N);
996ae0b0 4831 Array_Type : Entity_Id;
5f44f0d4 4832 Index_Type : Entity_Id;
996ae0b0
RK
4833
4834 procedure Analyze_Overloaded_Slice;
4835 -- If the prefix is overloaded, select those interpretations that
4836 -- yield a one-dimensional array type.
4837
4c46b835
AC
4838 ------------------------------
4839 -- Analyze_Overloaded_Slice --
4840 ------------------------------
4841
996ae0b0
RK
4842 procedure Analyze_Overloaded_Slice is
4843 I : Interp_Index;
4844 It : Interp;
4845 Typ : Entity_Id;
4846
4847 begin
4848 Set_Etype (N, Any_Type);
996ae0b0 4849
4c46b835 4850 Get_First_Interp (P, I, It);
996ae0b0
RK
4851 while Present (It.Nam) loop
4852 Typ := It.Typ;
4853
4854 if Is_Access_Type (Typ) then
4855 Typ := Designated_Type (Typ);
324ac540
AC
4856 Error_Msg_NW
4857 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4858 end if;
4859
4860 if Is_Array_Type (Typ)
4861 and then Number_Dimensions (Typ) = 1
4862 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4863 then
4864 Add_One_Interp (N, Typ, Typ);
4865 end if;
4866
4867 Get_Next_Interp (I, It);
4868 end loop;
4869
4870 if Etype (N) = Any_Type then
4871 Error_Msg_N ("expect array type in prefix of slice", N);
4872 end if;
4873 end Analyze_Overloaded_Slice;
4874
4875 -- Start of processing for Analyze_Slice
4876
4877 begin
36b8f95f
AC
4878 if Comes_From_Source (N) then
4879 Check_SPARK_Restriction ("slice is not allowed", N);
4880 end if;
1d801f21 4881
523456db 4882 Analyze (P);
996ae0b0
RK
4883 Analyze (D);
4884
4885 if Is_Overloaded (P) then
4886 Analyze_Overloaded_Slice;
4887
4888 else
4889 Array_Type := Etype (P);
4890 Set_Etype (N, Any_Type);
4891
4892 if Is_Access_Type (Array_Type) then
4893 Array_Type := Designated_Type (Array_Type);
324ac540 4894 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4895 end if;
4896
4897 if not Is_Array_Type (Array_Type) then
4898 Wrong_Type (P, Any_Array);
4899
4900 elsif Number_Dimensions (Array_Type) > 1 then
4901 Error_Msg_N
4902 ("type is not one-dimensional array in slice prefix", N);
4903
996ae0b0 4904 else
5f44f0d4
AC
4905 if Ekind (Array_Type) = E_String_Literal_Subtype then
4906 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4907 else
4908 Index_Type := Etype (First_Index (Array_Type));
4909 end if;
4910
4911 if not Has_Compatible_Type (D, Index_Type) then
4912 Wrong_Type (D, Index_Type);
4913 else
4914 Set_Etype (N, Array_Type);
4915 end if;
996ae0b0
RK
4916 end if;
4917 end if;
4918 end Analyze_Slice;
4919
4920 -----------------------------
4921 -- Analyze_Type_Conversion --
4922 -----------------------------
4923
4924 procedure Analyze_Type_Conversion (N : Node_Id) is
4925 Expr : constant Node_Id := Expression (N);
4926 T : Entity_Id;
4927
4928 begin
4929 -- If Conversion_OK is set, then the Etype is already set, and the
4930 -- only processing required is to analyze the expression. This is
4931 -- used to construct certain "illegal" conversions which are not
4932 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4933 -- Sinfo for further details.
4934
4935 if Conversion_OK (N) then
4936 Analyze (Expr);
4937 return;
4938 end if;
4939
4940 -- Otherwise full type analysis is required, as well as some semantic
4941 -- checks to make sure the argument of the conversion is appropriate.
4942
4943 Find_Type (Subtype_Mark (N));
4944 T := Entity (Subtype_Mark (N));
4945 Set_Etype (N, T);
4946 Check_Fully_Declared (T, N);
4947 Analyze_Expression (Expr);
4948 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 4949
996ae0b0
RK
4950 -- Only remaining step is validity checks on the argument. These
4951 -- are skipped if the conversion does not come from the source.
4952
4953 if not Comes_From_Source (N) then
4954 return;
4955
b67a385c
ES
4956 -- If there was an error in a generic unit, no need to replicate the
4957 -- error message. Conversely, constant-folding in the generic may
4958 -- transform the argument of a conversion into a string literal, which
4959 -- is legal. Therefore the following tests are not performed in an
4960 -- instance.
4961
4962 elsif In_Instance then
4963 return;
4964
996ae0b0
RK
4965 elsif Nkind (Expr) = N_Null then
4966 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 4967 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4968 Set_Etype (N, Any_Type);
4969
4970 elsif Nkind (Expr) = N_Aggregate then
4971 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 4972 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4973
4974 elsif Nkind (Expr) = N_Allocator then
4975 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 4976 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4977
4978 elsif Nkind (Expr) = N_String_Literal then
4979 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 4980 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4981
4982 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 4983 if Ada_Version = Ada_83 then
996ae0b0
RK
4984 Resolve (Expr, T);
4985 else
4986 Error_Msg_N ("argument of conversion cannot be character literal",
4987 N);
ed2233dc 4988 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4989 end if;
4990
4991 elsif Nkind (Expr) = N_Attribute_Reference
4992 and then
b69cd36a
AC
4993 Nam_In (Attribute_Name (Expr), Name_Access,
4994 Name_Unchecked_Access,
4995 Name_Unrestricted_Access)
996ae0b0
RK
4996 then
4997 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 4998 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 4999 end if;
996ae0b0
RK
5000 end Analyze_Type_Conversion;
5001
5002 ----------------------
5003 -- Analyze_Unary_Op --
5004 ----------------------
5005
5006 procedure Analyze_Unary_Op (N : Node_Id) is
5007 R : constant Node_Id := Right_Opnd (N);
5008 Op_Id : Entity_Id := Entity (N);
5009
5010 begin
5011 Set_Etype (N, Any_Type);
5012 Candidate_Type := Empty;
5013
5014 Analyze_Expression (R);
5015
5016 if Present (Op_Id) then
5017 if Ekind (Op_Id) = E_Operator then
5018 Find_Unary_Types (R, Op_Id, N);
5019 else
5020 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5021 end if;
5022
5023 else
5024 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 5025 while Present (Op_Id) loop
996ae0b0
RK
5026 if Ekind (Op_Id) = E_Operator then
5027 if No (Next_Entity (First_Entity (Op_Id))) then
5028 Find_Unary_Types (R, Op_Id, N);
5029 end if;
5030
5031 elsif Is_Overloadable (Op_Id) then
5032 Analyze_User_Defined_Unary_Op (N, Op_Id);
5033 end if;
5034
5035 Op_Id := Homonym (Op_Id);
5036 end loop;
5037 end if;
5038
5039 Operator_Check (N);
5040 end Analyze_Unary_Op;
5041
5042 ----------------------------------
5043 -- Analyze_Unchecked_Expression --
5044 ----------------------------------
5045
5046 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5047 begin
5048 Analyze (Expression (N), Suppress => All_Checks);
5049 Set_Etype (N, Etype (Expression (N)));
5050 Save_Interps (Expression (N), N);
5051 end Analyze_Unchecked_Expression;
5052
5053 ---------------------------------------
5054 -- Analyze_Unchecked_Type_Conversion --
5055 ---------------------------------------
5056
5057 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5058 begin
5059 Find_Type (Subtype_Mark (N));
5060 Analyze_Expression (Expression (N));
5061 Set_Etype (N, Entity (Subtype_Mark (N)));
5062 end Analyze_Unchecked_Type_Conversion;
5063
5064 ------------------------------------
5065 -- Analyze_User_Defined_Binary_Op --
5066 ------------------------------------
5067
5068 procedure Analyze_User_Defined_Binary_Op
5069 (N : Node_Id;
5070 Op_Id : Entity_Id)
5071 is
5072 begin
5073 -- Only do analysis if the operator Comes_From_Source, since otherwise
5074 -- the operator was generated by the expander, and all such operators
5075 -- always refer to the operators in package Standard.
5076
5077 if Comes_From_Source (N) then
5078 declare
5079 F1 : constant Entity_Id := First_Formal (Op_Id);
5080 F2 : constant Entity_Id := Next_Formal (F1);
5081
5082 begin
5083 -- Verify that Op_Id is a visible binary function. Note that since
5084 -- we know Op_Id is overloaded, potentially use visible means use
5085 -- visible for sure (RM 9.4(11)).
5086
5087 if Ekind (Op_Id) = E_Function
5088 and then Present (F2)
5089 and then (Is_Immediately_Visible (Op_Id)
5090 or else Is_Potentially_Use_Visible (Op_Id))
5091 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5092 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5093 then
5094 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5095
8b4230c8
AC
5096 -- If the left operand is overloaded, indicate that the current
5097 -- type is a viable candidate. This is redundant in most cases,
5098 -- but for equality and comparison operators where the context
5099 -- does not impose a type on the operands, setting the proper
5100 -- type is necessary to avoid subsequent ambiguities during
5101 -- resolution, when both user-defined and predefined operators
5102 -- may be candidates.
7340e432
AC
5103
5104 if Is_Overloaded (Left_Opnd (N)) then
5105 Set_Etype (Left_Opnd (N), Etype (F1));
5106 end if;
5107
996ae0b0
RK
5108 if Debug_Flag_E then
5109 Write_Str ("user defined operator ");
5110 Write_Name (Chars (Op_Id));
5111 Write_Str (" on node ");
5112 Write_Int (Int (N));
5113 Write_Eol;
5114 end if;
5115 end if;
5116 end;
5117 end if;
5118 end Analyze_User_Defined_Binary_Op;
5119
5120 -----------------------------------
5121 -- Analyze_User_Defined_Unary_Op --
5122 -----------------------------------
5123
5124 procedure Analyze_User_Defined_Unary_Op
5125 (N : Node_Id;
5126 Op_Id : Entity_Id)
5127 is
5128 begin
5129 -- Only do analysis if the operator Comes_From_Source, since otherwise
5130 -- the operator was generated by the expander, and all such operators
5131 -- always refer to the operators in package Standard.
5132
5133 if Comes_From_Source (N) then
5134 declare
5135 F : constant Entity_Id := First_Formal (Op_Id);
5136
5137 begin
5138 -- Verify that Op_Id is a visible unary function. Note that since
5139 -- we know Op_Id is overloaded, potentially use visible means use
5140 -- visible for sure (RM 9.4(11)).
5141
5142 if Ekind (Op_Id) = E_Function
5143 and then No (Next_Formal (F))
5144 and then (Is_Immediately_Visible (Op_Id)
5145 or else Is_Potentially_Use_Visible (Op_Id))
5146 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5147 then
5148 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5149 end if;
5150 end;
5151 end if;
5152 end Analyze_User_Defined_Unary_Op;
5153
5154 ---------------------------
5155 -- Check_Arithmetic_Pair --
5156 ---------------------------
5157
5158 procedure Check_Arithmetic_Pair
5159 (T1, T2 : Entity_Id;
5160 Op_Id : Entity_Id;
5161 N : Node_Id)
5162 is
401093c1 5163 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 5164
da709d08
AC
5165 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5166 -- Check whether the fixed-point type Typ has a user-defined operator
5167 -- (multiplication or division) that should hide the corresponding
5168 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5169 -- such operators more visible and therefore useful.
8b4230c8 5170 --
50cff367
GD
5171 -- If the name of the operation is an expanded name with prefix
5172 -- Standard, the predefined universal fixed operator is available,
5173 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5174
996ae0b0
RK
5175 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5176 -- Get specific type (i.e. non-universal type if there is one)
5177
da709d08
AC
5178 ------------------
5179 -- Has_Fixed_Op --
5180 ------------------
5181
5182 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 5183 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
5184 Ent : Entity_Id;
5185 F1 : Entity_Id;
5186 F2 : Entity_Id;
5187
5188 begin
50cff367
GD
5189 -- If the universal_fixed operation is given explicitly the rule
5190 -- concerning primitive operations of the type do not apply.
5191
5192 if Nkind (N) = N_Function_Call
5193 and then Nkind (Name (N)) = N_Expanded_Name
5194 and then Entity (Prefix (Name (N))) = Standard_Standard
5195 then
5196 return False;
5197 end if;
5198
da709d08
AC
5199 -- The operation is treated as primitive if it is declared in the
5200 -- same scope as the type, and therefore on the same entity chain.
5201
5202 Ent := Next_Entity (Typ);
5203 while Present (Ent) loop
5204 if Chars (Ent) = Chars (Op) then
5205 F1 := First_Formal (Ent);
5206 F2 := Next_Formal (F1);
5207
5208 -- The operation counts as primitive if either operand or
401093c1
ES
5209 -- result are of the given base type, and both operands are
5210 -- fixed point types.
da709d08 5211
401093c1 5212 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
5213 and then Is_Fixed_Point_Type (Etype (F2)))
5214
5215 or else
401093c1 5216 (Base_Type (Etype (F2)) = Bas
da709d08
AC
5217 and then Is_Fixed_Point_Type (Etype (F1)))
5218
5219 or else
401093c1 5220 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
5221 and then Is_Fixed_Point_Type (Etype (F1))
5222 and then Is_Fixed_Point_Type (Etype (F2)))
5223 then
5224 return True;
5225 end if;
5226 end if;
5227
5228 Next_Entity (Ent);
5229 end loop;
5230
5231 return False;
5232 end Has_Fixed_Op;
5233
4c46b835
AC
5234 -------------------
5235 -- Specific_Type --
5236 -------------------
5237
996ae0b0
RK
5238 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5239 begin
5240 if T1 = Universal_Integer or else T1 = Universal_Real then
5241 return Base_Type (T2);
5242 else
5243 return Base_Type (T1);
5244 end if;
5245 end Specific_Type;
5246
5247 -- Start of processing for Check_Arithmetic_Pair
5248
5249 begin
b69cd36a 5250 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
5251 if Is_Numeric_Type (T1)
5252 and then Is_Numeric_Type (T2)
b4592168
GD
5253 and then (Covers (T1 => T1, T2 => T2)
5254 or else
5255 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5256 then
5257 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5258 end if;
5259
b69cd36a 5260 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
996ae0b0 5261 if Is_Fixed_Point_Type (T1)
b69cd36a 5262 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
996ae0b0
RK
5263 then
5264 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5265 -- and no further processing is required (this is the case of an
5266 -- operator constructed by Exp_Fixd for a fixed point operation)
5267 -- Otherwise add one interpretation with universal fixed result
5268 -- If the operator is given in functional notation, it comes
5269 -- from source and Fixed_As_Integer cannot apply.
5270
da709d08
AC
5271 if (Nkind (N) not in N_Op
5272 or else not Treat_Fixed_As_Integer (N))
5273 and then
401093c1 5274 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5275 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 5276 then
996ae0b0
RK
5277 Add_One_Interp (N, Op_Id, Universal_Fixed);
5278 end if;
5279
5280 elsif Is_Fixed_Point_Type (T2)
5281 and then (Nkind (N) not in N_Op
5282 or else not Treat_Fixed_As_Integer (N))
5283 and then T1 = Universal_Real
da709d08 5284 and then
401093c1 5285 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5286 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
5287 then
5288 Add_One_Interp (N, Op_Id, Universal_Fixed);
5289
5290 elsif Is_Numeric_Type (T1)
5291 and then Is_Numeric_Type (T2)
b4592168
GD
5292 and then (Covers (T1 => T1, T2 => T2)
5293 or else
5294 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5295 then
5296 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5297
5298 elsif Is_Fixed_Point_Type (T1)
5299 and then (Base_Type (T2) = Base_Type (Standard_Integer)
b69cd36a 5300 or else T2 = Universal_Integer)
996ae0b0
RK
5301 then
5302 Add_One_Interp (N, Op_Id, T1);
5303
5304 elsif T2 = Universal_Real
5305 and then Base_Type (T1) = Base_Type (Standard_Integer)
5306 and then Op_Name = Name_Op_Multiply
5307 then
5308 Add_One_Interp (N, Op_Id, Any_Fixed);
5309
5310 elsif T1 = Universal_Real
5311 and then Base_Type (T2) = Base_Type (Standard_Integer)
5312 then
5313 Add_One_Interp (N, Op_Id, Any_Fixed);
5314
5315 elsif Is_Fixed_Point_Type (T2)
5316 and then (Base_Type (T1) = Base_Type (Standard_Integer)
b69cd36a 5317 or else T1 = Universal_Integer)
996ae0b0
RK
5318 and then Op_Name = Name_Op_Multiply
5319 then
5320 Add_One_Interp (N, Op_Id, T2);
5321
5322 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5323 Add_One_Interp (N, Op_Id, T1);
5324
5325 elsif T2 = Universal_Real
5326 and then T1 = Universal_Integer
5327 and then Op_Name = Name_Op_Multiply
5328 then
5329 Add_One_Interp (N, Op_Id, T2);
5330 end if;
5331
5332 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5333
5334 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5335 -- set does not require any special processing, since the Etype is
5336 -- already set (case of operation constructed by Exp_Fixed).
5337
5338 if Is_Integer_Type (T1)
b4592168
GD
5339 and then (Covers (T1 => T1, T2 => T2)
5340 or else
5341 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5342 then
5343 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5344 end if;
5345
5346 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
5347 if Is_Numeric_Type (T1)
5348 and then not Is_Fixed_Point_Type (T1)
5349 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5350 or else T2 = Universal_Integer)
5351 then
5352 Add_One_Interp (N, Op_Id, Base_Type (T1));
5353 end if;
5354
5355 else pragma Assert (Nkind (N) in N_Op_Shift);
5356
5357 -- If not one of the predefined operators, the node may be one
5358 -- of the intrinsic functions. Its kind is always specific, and
5359 -- we can use it directly, rather than the name of the operation.
5360
5361 if Is_Integer_Type (T1)
5362 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5363 or else T2 = Universal_Integer)
5364 then
5365 Add_One_Interp (N, Op_Id, Base_Type (T1));
5366 end if;
5367 end if;
5368 end Check_Arithmetic_Pair;
5369
5370 -------------------------------
5371 -- Check_Misspelled_Selector --
5372 -------------------------------
5373
5374 procedure Check_Misspelled_Selector
5375 (Prefix : Entity_Id;
5376 Sel : Node_Id)
5377 is
5378 Max_Suggestions : constant := 2;
5379 Nr_Of_Suggestions : Natural := 0;
5380
5381 Suggestion_1 : Entity_Id := Empty;
5382 Suggestion_2 : Entity_Id := Empty;
5383
5384 Comp : Entity_Id;
5385
5386 begin
8b4230c8
AC
5387 -- All the components of the prefix of selector Sel are matched against
5388 -- Sel and a count is maintained of possible misspellings. When at
a90bd866 5389 -- the end of the analysis there are one or two (not more) possible
8b4230c8
AC
5390 -- misspellings, these misspellings will be suggested as possible
5391 -- correction.
996ae0b0 5392
4c46b835
AC
5393 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5394
996ae0b0 5395 -- Concurrent types should be handled as well ???
4c46b835 5396
996ae0b0
RK
5397 return;
5398 end if;
5399
d469eabe
HK
5400 Comp := First_Entity (Prefix);
5401 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5402 if Is_Visible_Component (Comp) then
5403 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5404 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5405
5406 case Nr_Of_Suggestions is
5407 when 1 => Suggestion_1 := Comp;
5408 when 2 => Suggestion_2 := Comp;
5409 when others => exit;
5410 end case;
996ae0b0 5411 end if;
d469eabe 5412 end if;
996ae0b0 5413
d469eabe
HK
5414 Comp := Next_Entity (Comp);
5415 end loop;
996ae0b0 5416
d469eabe 5417 -- Report at most two suggestions
996ae0b0 5418
d469eabe 5419 if Nr_Of_Suggestions = 1 then
4e7a4f6e 5420 Error_Msg_NE -- CODEFIX
d469eabe 5421 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 5422
d469eabe
HK
5423 elsif Nr_Of_Suggestions = 2 then
5424 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 5425 Error_Msg_NE -- CODEFIX
d469eabe
HK
5426 ("\possible misspelling of& or&", Sel, Suggestion_1);
5427 end if;
996ae0b0
RK
5428 end Check_Misspelled_Selector;
5429
5430 ----------------------
5431 -- Defined_In_Scope --
5432 ----------------------
5433
5434 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5435 is
5436 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
5437 begin
5438 return S1 = S
5439 or else (S1 = System_Aux_Id and then S = Scope (S1));
5440 end Defined_In_Scope;
5441
5442 -------------------
5443 -- Diagnose_Call --
5444 -------------------
5445
5446 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
5447 Actual : Node_Id;
5448 X : Interp_Index;
5449 It : Interp;
fbf5a39b
AC
5450 Err_Mode : Boolean;
5451 New_Nam : Node_Id;
5452 Void_Interp_Seen : Boolean := False;
996ae0b0 5453
24657705
HK
5454 Success : Boolean;
5455 pragma Warnings (Off, Boolean);
5456
996ae0b0 5457 begin
0791fbe9 5458 if Ada_Version >= Ada_2005 then
996ae0b0 5459 Actual := First_Actual (N);
996ae0b0 5460 while Present (Actual) loop
0ab80019
AC
5461
5462 -- Ada 2005 (AI-50217): Post an error in case of premature
5463 -- usage of an entity from the limited view.
19f0526a 5464
996ae0b0 5465 if not Analyzed (Etype (Actual))
7b56a91b 5466 and then From_Limited_With (Etype (Actual))
996ae0b0
RK
5467 then
5468 Error_Msg_Qual_Level := 1;
ed2233dc 5469 Error_Msg_NE
996ae0b0
RK
5470 ("missing with_clause for scope of imported type&",
5471 Actual, Etype (Actual));
5472 Error_Msg_Qual_Level := 0;
5473 end if;
5474
5475 Next_Actual (Actual);
5476 end loop;
5477 end if;
5478
fbf5a39b
AC
5479 -- Analyze each candidate call again, with full error reporting
5480 -- for each.
5481
5482 Error_Msg_N
5483 ("no candidate interpretations match the actuals:!", Nam);
5484 Err_Mode := All_Errors_Mode;
5485 All_Errors_Mode := True;
5486
5487 -- If this is a call to an operation of a concurrent type,
5488 -- the failed interpretations have been removed from the
5489 -- name. Recover them to provide full diagnostics.
5490
5491 if Nkind (Parent (Nam)) = N_Selected_Component then
5492 Set_Entity (Nam, Empty);
5493 New_Nam := New_Copy_Tree (Parent (Nam));
5494 Set_Is_Overloaded (New_Nam, False);
5495 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5496 Set_Parent (New_Nam, Parent (Parent (Nam)));
5497 Analyze_Selected_Component (New_Nam);
5498 Get_First_Interp (Selector_Name (New_Nam), X, It);
5499 else
996ae0b0 5500 Get_First_Interp (Nam, X, It);
fbf5a39b 5501 end if;
996ae0b0 5502
fbf5a39b
AC
5503 while Present (It.Nam) loop
5504 if Etype (It.Nam) = Standard_Void_Type then
5505 Void_Interp_Seen := True;
996ae0b0 5506 end if;
fbf5a39b
AC
5507
5508 Analyze_One_Call (N, It.Nam, True, Success);
5509 Get_Next_Interp (X, It);
5510 end loop;
996ae0b0
RK
5511
5512 if Nkind (N) = N_Function_Call then
5513 Get_First_Interp (Nam, X, It);
996ae0b0 5514 while Present (It.Nam) loop
bce79204 5515 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
5516 return;
5517 else
5518 Get_Next_Interp (X, It);
5519 end if;
5520 end loop;
5521
5522 -- If all interpretations are procedures, this deserves a
5523 -- more precise message. Ditto if this appears as the prefix
5524 -- of a selected component, which may be a lexical error.
5525
4c46b835
AC
5526 Error_Msg_N
5527 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
5528
5529 if Nkind (Parent (N)) = N_Selected_Component
5530 and then N = Prefix (Parent (N))
5531 then
4e7a4f6e
AC
5532 Error_Msg_N -- CODEFIX
5533 ("\period should probably be semicolon", Parent (N));
996ae0b0 5534 end if;
fbf5a39b
AC
5535
5536 elsif Nkind (N) = N_Procedure_Call_Statement
5537 and then not Void_Interp_Seen
5538 then
5539 Error_Msg_N (
5540 "\function name found in procedure call", Nam);
996ae0b0 5541 end if;
fbf5a39b
AC
5542
5543 All_Errors_Mode := Err_Mode;
996ae0b0
RK
5544 end Diagnose_Call;
5545
5546 ---------------------------
5547 -- Find_Arithmetic_Types --
5548 ---------------------------
5549
5550 procedure Find_Arithmetic_Types
5551 (L, R : Node_Id;
5552 Op_Id : Entity_Id;
5553 N : Node_Id)
5554 is
4c46b835
AC
5555 Index1 : Interp_Index;
5556 Index2 : Interp_Index;
5557 It1 : Interp;
5558 It2 : Interp;
996ae0b0
RK
5559
5560 procedure Check_Right_Argument (T : Entity_Id);
5561 -- Check right operand of operator
5562
4c46b835
AC
5563 --------------------------
5564 -- Check_Right_Argument --
5565 --------------------------
5566
996ae0b0
RK
5567 procedure Check_Right_Argument (T : Entity_Id) is
5568 begin
5569 if not Is_Overloaded (R) then
5570 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5571 else
5572 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
5573 while Present (It2.Typ) loop
5574 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5575 Get_Next_Interp (Index2, It2);
5576 end loop;
5577 end if;
5578 end Check_Right_Argument;
5579
d8221f45 5580 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
5581
5582 begin
5583 if not Is_Overloaded (L) then
5584 Check_Right_Argument (Etype (L));
5585
5586 else
5587 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
5588 while Present (It1.Typ) loop
5589 Check_Right_Argument (It1.Typ);
5590 Get_Next_Interp (Index1, It1);
5591 end loop;
5592 end if;
5593
5594 end Find_Arithmetic_Types;
5595
5596 ------------------------
5597 -- Find_Boolean_Types --
5598 ------------------------
5599
5600 procedure Find_Boolean_Types
5601 (L, R : Node_Id;
5602 Op_Id : Entity_Id;
5603 N : Node_Id)
5604 is
5605 Index : Interp_Index;
5606 It : Interp;
5607
5608 procedure Check_Numeric_Argument (T : Entity_Id);
5609 -- Special case for logical operations one of whose operands is an
5610 -- integer literal. If both are literal the result is any modular type.
5611
4c46b835
AC
5612 ----------------------------
5613 -- Check_Numeric_Argument --
5614 ----------------------------
5615
996ae0b0
RK
5616 procedure Check_Numeric_Argument (T : Entity_Id) is
5617 begin
5618 if T = Universal_Integer then
5619 Add_One_Interp (N, Op_Id, Any_Modular);
5620
5621 elsif Is_Modular_Integer_Type (T) then
5622 Add_One_Interp (N, Op_Id, T);
5623 end if;
5624 end Check_Numeric_Argument;
5625
5626 -- Start of processing for Find_Boolean_Types
5627
5628 begin
5629 if not Is_Overloaded (L) then
996ae0b0
RK
5630 if Etype (L) = Universal_Integer
5631 or else Etype (L) = Any_Modular
5632 then
5633 if not Is_Overloaded (R) then
5634 Check_Numeric_Argument (Etype (R));
5635
5636 else
5637 Get_First_Interp (R, Index, It);
996ae0b0
RK
5638 while Present (It.Typ) loop
5639 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
5640 Get_Next_Interp (Index, It);
5641 end loop;
5642 end if;
5643
69e6a03e
ES
5644 -- If operands are aggregates, we must assume that they may be
5645 -- boolean arrays, and leave disambiguation for the second pass.
5646 -- If only one is an aggregate, verify that the other one has an
5647 -- interpretation as a boolean array
5648
5649 elsif Nkind (L) = N_Aggregate then
5650 if Nkind (R) = N_Aggregate then
5651 Add_One_Interp (N, Op_Id, Etype (L));
5652
5653 elsif not Is_Overloaded (R) then
5654 if Valid_Boolean_Arg (Etype (R)) then
5655 Add_One_Interp (N, Op_Id, Etype (R));
5656 end if;
5657
5658 else
5659 Get_First_Interp (R, Index, It);
5660 while Present (It.Typ) loop
5661 if Valid_Boolean_Arg (It.Typ) then
5662 Add_One_Interp (N, Op_Id, It.Typ);
5663 end if;
5664
5665 Get_Next_Interp (Index, It);
5666 end loop;
5667 end if;
5668
996ae0b0
RK
5669 elsif Valid_Boolean_Arg (Etype (L))
5670 and then Has_Compatible_Type (R, Etype (L))
5671 then
5672 Add_One_Interp (N, Op_Id, Etype (L));
5673 end if;
5674
5675 else
5676 Get_First_Interp (L, Index, It);
996ae0b0
RK
5677 while Present (It.Typ) loop
5678 if Valid_Boolean_Arg (It.Typ)
5679 and then Has_Compatible_Type (R, It.Typ)
5680 then
5681 Add_One_Interp (N, Op_Id, It.Typ);
5682 end if;
5683
5684 Get_Next_Interp (Index, It);
5685 end loop;
5686 end if;
5687 end Find_Boolean_Types;
5688
5689 ---------------------------
5690 -- Find_Comparison_Types --
5691 ---------------------------
5692
5693 procedure Find_Comparison_Types
5694 (L, R : Node_Id;
5695 Op_Id : Entity_Id;
5696 N : Node_Id)
5697 is
5698 Index : Interp_Index;
5699 It : Interp;
5700 Found : Boolean := False;
5701 I_F : Interp_Index;
5702 T_F : Entity_Id;
5703 Scop : Entity_Id := Empty;
5704
5705 procedure Try_One_Interp (T1 : Entity_Id);
5706 -- Routine to try one proposed interpretation. Note that the context
5707 -- of the operator plays no role in resolving the arguments, so that
5708 -- if there is more than one interpretation of the operands that is
5709 -- compatible with comparison, the operation is ambiguous.
5710
4c46b835
AC
5711 --------------------
5712 -- Try_One_Interp --
5713 --------------------
5714
996ae0b0
RK
5715 procedure Try_One_Interp (T1 : Entity_Id) is
5716 begin
5717
5718 -- If the operator is an expanded name, then the type of the operand
5719 -- must be defined in the corresponding scope. If the type is
5720 -- universal, the context will impose the correct type.
5721
5722 if Present (Scop)
8b4230c8
AC
5723 and then not Defined_In_Scope (T1, Scop)
5724 and then T1 /= Universal_Integer
5725 and then T1 /= Universal_Real
5726 and then T1 /= Any_String
5727 and then T1 /= Any_Composite
996ae0b0
RK
5728 then
5729 return;
5730 end if;
5731
8b4230c8
AC
5732 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5733 if Found and then Base_Type (T1) /= Base_Type (T_F) then
996ae0b0
RK
5734 It := Disambiguate (L, I_F, Index, Any_Type);
5735
5736 if It = No_Interp then
5737 Ambiguous_Operands (N);
5738 Set_Etype (L, Any_Type);
5739 return;
5740
5741 else
5742 T_F := It.Typ;
5743 end if;
5744
5745 else
5746 Found := True;
5747 T_F := T1;
5748 I_F := Index;
5749 end if;
5750
5751 Set_Etype (L, T_F);
5752 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5753
5754 end if;
5755 end Try_One_Interp;
5756
d8221f45 5757 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
5758
5759 begin
fbf5a39b
AC
5760 -- If left operand is aggregate, the right operand has to
5761 -- provide a usable type for it.
5762
8b4230c8 5763 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
b4592168 5764 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5765 return;
5766 end if;
996ae0b0
RK
5767
5768 if Nkind (N) = N_Function_Call
5769 and then Nkind (Name (N)) = N_Expanded_Name
5770 then
5771 Scop := Entity (Prefix (Name (N)));
5772
5773 -- The prefix may be a package renaming, and the subsequent test
5774 -- requires the original package.
5775
5776 if Ekind (Scop) = E_Package
5777 and then Present (Renamed_Entity (Scop))
5778 then
5779 Scop := Renamed_Entity (Scop);
5780 Set_Entity (Prefix (Name (N)), Scop);
5781 end if;
5782 end if;
5783
5784 if not Is_Overloaded (L) then
5785 Try_One_Interp (Etype (L));
5786
5787 else
5788 Get_First_Interp (L, Index, It);
996ae0b0
RK
5789 while Present (It.Typ) loop
5790 Try_One_Interp (It.Typ);
5791 Get_Next_Interp (Index, It);
5792 end loop;
5793 end if;
5794 end Find_Comparison_Types;
5795
5796 ----------------------------------------
5797 -- Find_Non_Universal_Interpretations --
5798 ----------------------------------------
5799
5800 procedure Find_Non_Universal_Interpretations
5801 (N : Node_Id;
5802 R : Node_Id;
5803 Op_Id : Entity_Id;
5804 T1 : Entity_Id)
5805 is
5806 Index : Interp_Index;
4c46b835 5807 It : Interp;
996ae0b0
RK
5808
5809 begin
8b4230c8 5810 if T1 = Universal_Integer or else T1 = Universal_Real
b9daa96e
AC
5811
5812 -- If the left operand of an equality operator is null, the visibility
5813 -- of the operator must be determined from the interpretation of the
5814 -- right operand. This processing must be done for Any_Access, which
5815 -- is the internal representation of the type of the literal null.
5816
be4c5193 5817 or else T1 = Any_Access
996ae0b0
RK
5818 then
5819 if not Is_Overloaded (R) then
8b4230c8 5820 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
996ae0b0
RK
5821 else
5822 Get_First_Interp (R, Index, It);
996ae0b0
RK
5823 while Present (It.Typ) loop
5824 if Covers (It.Typ, T1) then
5825 Add_One_Interp
5826 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5827 end if;
5828
5829 Get_Next_Interp (Index, It);
5830 end loop;
5831 end if;
5832 else
5833 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5834 end if;
5835 end Find_Non_Universal_Interpretations;
5836
5837 ------------------------------
5838 -- Find_Concatenation_Types --
5839 ------------------------------
5840
5841 procedure Find_Concatenation_Types
5842 (L, R : Node_Id;
5843 Op_Id : Entity_Id;
5844 N : Node_Id)
5845 is
5846 Op_Type : constant Entity_Id := Etype (Op_Id);
5847
5848 begin
5849 if Is_Array_Type (Op_Type)
5850 and then not Is_Limited_Type (Op_Type)
5851
5852 and then (Has_Compatible_Type (L, Op_Type)
5853 or else
5854 Has_Compatible_Type (L, Component_Type (Op_Type)))
5855
5856 and then (Has_Compatible_Type (R, Op_Type)
5857 or else
5858 Has_Compatible_Type (R, Component_Type (Op_Type)))
5859 then
5860 Add_One_Interp (N, Op_Id, Op_Type);
5861 end if;
5862 end Find_Concatenation_Types;
5863
5864 -------------------------
5865 -- Find_Equality_Types --
5866 -------------------------
5867
5868 procedure Find_Equality_Types
5869 (L, R : Node_Id;
5870 Op_Id : Entity_Id;
5871 N : Node_Id)
5872 is
5873 Index : Interp_Index;
5874 It : Interp;
5875 Found : Boolean := False;
5876 I_F : Interp_Index;
5877 T_F : Entity_Id;
5878 Scop : Entity_Id := Empty;
5879
5880 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
5881 -- The context of the equality operator plays no role in resolving the
5882 -- arguments, so that if there is more than one interpretation of the
5883 -- operands that is compatible with equality, the construct is ambiguous
5884 -- and an error can be emitted now, after trying to disambiguate, i.e.
5885 -- applying preference rules.
996ae0b0 5886
4c46b835
AC
5887 --------------------
5888 -- Try_One_Interp --
5889 --------------------
5890
996ae0b0 5891 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
5892 Bas : constant Entity_Id := Base_Type (T1);
5893
996ae0b0 5894 begin
996ae0b0
RK
5895 -- If the operator is an expanded name, then the type of the operand
5896 -- must be defined in the corresponding scope. If the type is
5897 -- universal, the context will impose the correct type. An anonymous
5898 -- type for a 'Access reference is also universal in this sense, as
5899 -- the actual type is obtained from context.
8b4230c8 5900
fe45e59e
ES
5901 -- In Ada 2005, the equality operator for anonymous access types
5902 -- is declared in Standard, and preference rules apply to it.
996ae0b0 5903
fe45e59e
ES
5904 if Present (Scop) then
5905 if Defined_In_Scope (T1, Scop)
5906 or else T1 = Universal_Integer
5907 or else T1 = Universal_Real
5908 or else T1 = Any_Access
5909 or else T1 = Any_String
5910 or else T1 = Any_Composite
5911 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 5912 and then not Comes_From_Source (T1))
fe45e59e
ES
5913 then
5914 null;
5915
5916 elsif Ekind (T1) = E_Anonymous_Access_Type
5917 and then Scop = Standard_Standard
5918 then
5919 null;
5920
5921 else
5922 -- The scope does not contain an operator for the type
5923
5924 return;
5925 end if;
a8e65aa5 5926
9aa04cc7
AC
5927 -- If we have infix notation, the operator must be usable. Within
5928 -- an instance, if the type is already established we know it is
5929 -- correct. If an operand is universal it is compatible with any
5930 -- numeric type.
31af8899 5931
a8e65aa5
AC
5932 elsif In_Open_Scopes (Scope (Bas))
5933 or else Is_Potentially_Use_Visible (Bas)
5934 or else In_Use (Bas)
9aa04cc7 5935 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
a54ffd6c
AC
5936
5937 -- In an instance, the type may have been immediately visible.
5938 -- Either the types are compatible, or one operand is universal
5939 -- (numeric or null).
5940
a8e65aa5 5941 or else (In_Instance
9aa04cc7
AC
5942 and then
5943 (First_Subtype (T1) = First_Subtype (Etype (R))
4f7c83ca 5944 or else Nkind (R) = N_Null
9aa04cc7
AC
5945 or else
5946 (Is_Numeric_Type (T1)
5947 and then Is_Universal_Numeric_Type (Etype (R)))))
a54ffd6c
AC
5948
5949 -- In Ada 2005, the equality on anonymous access types is declared
5950 -- in Standard, and is always visible.
5951
a8e65aa5
AC
5952 or else Ekind (T1) = E_Anonymous_Access_Type
5953 then
5954 null;
5955
5956 else
308e6f3a 5957 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
5958
5959 if not Is_Limited_Type (T1) then
5960 Candidate_Type := T1;
5961 end if;
5962
5963 return;
996ae0b0
RK
5964 end if;
5965
0ab80019
AC
5966 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5967 -- Do not allow anonymous access types in equality operators.
6e937c1c 5968
0791fbe9 5969 if Ada_Version < Ada_2005
6e937c1c
AC
5970 and then Ekind (T1) = E_Anonymous_Access_Type
5971 then
5972 return;
5973 end if;
5974
c92e8586
AC
5975 -- If the right operand has a type compatible with T1, check for an
5976 -- acceptable interpretation, unless T1 is limited (no predefined
5977 -- equality available), or this is use of a "/=" for a tagged type.
8b4230c8
AC
5978 -- In the latter case, possible interpretations of equality need
5979 -- to be considered, we don't want the default inequality declared
5980 -- in Standard to be chosen, and the "/=" will be rewritten as a
c92e8586
AC
5981 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5982 -- that that rewriting happens during analysis rather than being
5983 -- delayed until expansion (this is needed for ASIS, which only sees
5984 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5985 -- is Name_Op_Eq then we still proceed with the interpretation,
5986 -- because that indicates the potential rewriting case where the
5987 -- interpretation to consider is actually "=" and the node may be
5988 -- about to be rewritten by Analyze_Equality_Op.
5989
996ae0b0 5990 if T1 /= Standard_Void_Type
996ae0b0 5991 and then Has_Compatible_Type (R, T1)
c92e8586 5992
9b62eb32
AC
5993 and then
5994 ((not Is_Limited_Type (T1)
5995 and then not Is_Limited_Composite (T1))
5996
5997 or else
2fcc44fa 5998 (Is_Array_Type (T1)
9b62eb32
AC
5999 and then not Is_Limited_Type (Component_Type (T1))
6000 and then Available_Full_View_Of_Component (T1)))
c92e8586
AC
6001
6002 and then
6003 (Nkind (N) /= N_Op_Ne
6004 or else not Is_Tagged_Type (T1)
6005 or else Chars (Op_Id) = Name_Op_Eq)
996ae0b0
RK
6006 then
6007 if Found
6008 and then Base_Type (T1) /= Base_Type (T_F)
6009 then
6010 It := Disambiguate (L, I_F, Index, Any_Type);
6011
6012 if It = No_Interp then
6013 Ambiguous_Operands (N);
6014 Set_Etype (L, Any_Type);
6015 return;
6016
6017 else
6018 T_F := It.Typ;
6019 end if;
6020
6021 else
6022 Found := True;
6023 T_F := T1;
6024 I_F := Index;
6025 end if;
6026
6027 if not Analyzed (L) then
6028 Set_Etype (L, T_F);
6029 end if;
6030
6031 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6032
6e73e3ab 6033 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 6034
6e73e3ab 6035 if Etype (N) = Any_Type then
996ae0b0
RK
6036 Found := False;
6037 end if;
fe45e59e
ES
6038
6039 elsif Scop = Standard_Standard
6040 and then Ekind (T1) = E_Anonymous_Access_Type
6041 then
6042 Found := True;
996ae0b0
RK
6043 end if;
6044 end Try_One_Interp;
6045
6046 -- Start of processing for Find_Equality_Types
6047
6048 begin
fbf5a39b
AC
6049 -- If left operand is aggregate, the right operand has to
6050 -- provide a usable type for it.
6051
6052 if Nkind (L) = N_Aggregate
6053 and then Nkind (R) /= N_Aggregate
6054 then
b4592168 6055 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
6056 return;
6057 end if;
996ae0b0
RK
6058
6059 if Nkind (N) = N_Function_Call
6060 and then Nkind (Name (N)) = N_Expanded_Name
6061 then
6062 Scop := Entity (Prefix (Name (N)));
6063
6064 -- The prefix may be a package renaming, and the subsequent test
6065 -- requires the original package.
6066
6067 if Ekind (Scop) = E_Package
6068 and then Present (Renamed_Entity (Scop))
6069 then
6070 Scop := Renamed_Entity (Scop);
6071 Set_Entity (Prefix (Name (N)), Scop);
6072 end if;
6073 end if;
6074
6075 if not Is_Overloaded (L) then
6076 Try_One_Interp (Etype (L));
996ae0b0 6077
4c46b835 6078 else
996ae0b0 6079 Get_First_Interp (L, Index, It);
996ae0b0
RK
6080 while Present (It.Typ) loop
6081 Try_One_Interp (It.Typ);
6082 Get_Next_Interp (Index, It);
6083 end loop;
6084 end if;
6085 end Find_Equality_Types;
6086
6087 -------------------------
6088 -- Find_Negation_Types --
6089 -------------------------
6090
6091 procedure Find_Negation_Types
6092 (R : Node_Id;
6093 Op_Id : Entity_Id;
6094 N : Node_Id)
6095 is
6096 Index : Interp_Index;
6097 It : Interp;
6098
6099 begin
6100 if not Is_Overloaded (R) then
996ae0b0
RK
6101 if Etype (R) = Universal_Integer then
6102 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
6103 elsif Valid_Boolean_Arg (Etype (R)) then
6104 Add_One_Interp (N, Op_Id, Etype (R));
6105 end if;
6106
6107 else
6108 Get_First_Interp (R, Index, It);
996ae0b0
RK
6109 while Present (It.Typ) loop
6110 if Valid_Boolean_Arg (It.Typ) then
6111 Add_One_Interp (N, Op_Id, It.Typ);
6112 end if;
6113
6114 Get_Next_Interp (Index, It);
6115 end loop;
6116 end if;
6117 end Find_Negation_Types;
6118
d469eabe
HK
6119 ------------------------------
6120 -- Find_Primitive_Operation --
6121 ------------------------------
6122
6123 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6124 Obj : constant Node_Id := Prefix (N);
6125 Op : constant Node_Id := Selector_Name (N);
6126
6127 Prim : Elmt_Id;
6128 Prims : Elist_Id;
6129 Typ : Entity_Id;
6130
6131 begin
6132 Set_Etype (Op, Any_Type);
6133
6134 if Is_Access_Type (Etype (Obj)) then
6135 Typ := Designated_Type (Etype (Obj));
6136 else
6137 Typ := Etype (Obj);
6138 end if;
6139
6140 if Is_Class_Wide_Type (Typ) then
6141 Typ := Root_Type (Typ);
6142 end if;
6143
6144 Prims := Primitive_Operations (Typ);
6145
6146 Prim := First_Elmt (Prims);
6147 while Present (Prim) loop
6148 if Chars (Node (Prim)) = Chars (Op) then
6149 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6150 Set_Etype (N, Etype (Node (Prim)));
6151 end if;
6152
6153 Next_Elmt (Prim);
6154 end loop;
6155
6156 -- Now look for class-wide operations of the type or any of its
6157 -- ancestors by iterating over the homonyms of the selector.
6158
6159 declare
6160 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6161 Hom : Entity_Id;
6162
6163 begin
6164 Hom := Current_Entity (Op);
6165 while Present (Hom) loop
6166 if (Ekind (Hom) = E_Procedure
6167 or else
6168 Ekind (Hom) = E_Function)
6169 and then Scope (Hom) = Scope (Typ)
6170 and then Present (First_Formal (Hom))
6171 and then
6172 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6173 or else
6174 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
6175 and then
6176 Ekind (Etype (First_Formal (Hom))) =
6177 E_Anonymous_Access_Type
6178 and then
6179 Base_Type
6180 (Designated_Type (Etype (First_Formal (Hom)))) =
d469eabe
HK
6181 Cls_Type))
6182 then
6183 Add_One_Interp (Op, Hom, Etype (Hom));
6184 Set_Etype (N, Etype (Hom));
6185 end if;
6186
6187 Hom := Homonym (Hom);
6188 end loop;
6189 end;
6190
6191 return Etype (Op) /= Any_Type;
6192 end Find_Primitive_Operation;
6193
996ae0b0
RK
6194 ----------------------
6195 -- Find_Unary_Types --
6196 ----------------------
6197
6198 procedure Find_Unary_Types
6199 (R : Node_Id;
6200 Op_Id : Entity_Id;
6201 N : Node_Id)
6202 is
6203 Index : Interp_Index;
6204 It : Interp;
6205
6206 begin
6207 if not Is_Overloaded (R) then
6208 if Is_Numeric_Type (Etype (R)) then
65f7ed64
AC
6209
6210 -- In an instance a generic actual may be a numeric type even if
6211 -- the formal in the generic unit was not. In that case, the
6212 -- predefined operator was not a possible interpretation in the
2e70d415
AC
6213 -- generic, and cannot be one in the instance, unless the operator
6214 -- is an actual of an instance.
65f7ed64
AC
6215
6216 if In_Instance
6217 and then
6218 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6219 then
6220 null;
6221 else
6222 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6223 end if;
996ae0b0
RK
6224 end if;
6225
6226 else
6227 Get_First_Interp (R, Index, It);
996ae0b0
RK
6228 while Present (It.Typ) loop
6229 if Is_Numeric_Type (It.Typ) then
65f7ed64
AC
6230 if In_Instance
6231 and then
6232 not Is_Numeric_Type
6233 (Corresponding_Generic_Type (Etype (It.Typ)))
6234 then
6235 null;
6236
6237 else
6238 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6239 end if;
996ae0b0
RK
6240 end if;
6241
6242 Get_Next_Interp (Index, It);
6243 end loop;
6244 end if;
6245 end Find_Unary_Types;
6246
996ae0b0
RK
6247 ------------------
6248 -- Junk_Operand --
6249 ------------------
6250
6251 function Junk_Operand (N : Node_Id) return Boolean is
6252 Enode : Node_Id;
6253
6254 begin
6255 if Error_Posted (N) then
6256 return False;
6257 end if;
6258
6259 -- Get entity to be tested
6260
6261 if Is_Entity_Name (N)
6262 and then Present (Entity (N))
6263 then
6264 Enode := N;
6265
6266 -- An odd case, a procedure name gets converted to a very peculiar
6267 -- function call, and here is where we detect this happening.
6268
6269 elsif Nkind (N) = N_Function_Call
6270 and then Is_Entity_Name (Name (N))
6271 and then Present (Entity (Name (N)))
6272 then
6273 Enode := Name (N);
6274
6275 -- Another odd case, there are at least some cases of selected
6276 -- components where the selected component is not marked as having
6277 -- an entity, even though the selector does have an entity
6278
6279 elsif Nkind (N) = N_Selected_Component
6280 and then Present (Entity (Selector_Name (N)))
6281 then
6282 Enode := Selector_Name (N);
6283
6284 else
6285 return False;
6286 end if;
6287
9de61fcb 6288 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
6289
6290 case Ekind (Entity (Enode)) is
6291
6292 when E_Package =>
6293 Error_Msg_N
6294 ("package name cannot be used as operand", Enode);
6295
6296 when Generic_Unit_Kind =>
6297 Error_Msg_N
6298 ("generic unit name cannot be used as operand", Enode);
6299
6300 when Type_Kind =>
6301 Error_Msg_N
6302 ("subtype name cannot be used as operand", Enode);
6303
6304 when Entry_Kind =>
6305 Error_Msg_N
6306 ("entry name cannot be used as operand", Enode);
6307
6308 when E_Procedure =>
6309 Error_Msg_N
6310 ("procedure name cannot be used as operand", Enode);
6311
6312 when E_Exception =>
6313 Error_Msg_N
6314 ("exception name cannot be used as operand", Enode);
6315
6316 when E_Block | E_Label | E_Loop =>
6317 Error_Msg_N
6318 ("label name cannot be used as operand", Enode);
6319
6320 when others =>
6321 return False;
6322
6323 end case;
6324
6325 return True;
6326 end Junk_Operand;
6327
6328 --------------------
6329 -- Operator_Check --
6330 --------------------
6331
6332 procedure Operator_Check (N : Node_Id) is
6333 begin
30c20106
AC
6334 Remove_Abstract_Operations (N);
6335
996ae0b0
RK
6336 -- Test for case of no interpretation found for operator
6337
6338 if Etype (N) = Any_Type then
6339 declare
b67a385c
ES
6340 L : Node_Id;
6341 R : Node_Id;
6342 Op_Id : Entity_Id := Empty;
996ae0b0
RK
6343
6344 begin
6345 R := Right_Opnd (N);
6346
6347 if Nkind (N) in N_Binary_Op then
6348 L := Left_Opnd (N);
6349 else
6350 L := Empty;
6351 end if;
6352
6353 -- If either operand has no type, then don't complain further,
9de61fcb 6354 -- since this simply means that we have a propagated error.
996ae0b0
RK
6355
6356 if R = Error
6357 or else Etype (R) = Any_Type
6358 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6359 then
7610fee8
AC
6360 -- For the rather unusual case where one of the operands is
6361 -- a Raise_Expression, whose initial type is Any_Type, use
6362 -- the type of the other operand.
6363
6364 if Nkind (L) = N_Raise_Expression then
6365 Set_Etype (L, Etype (R));
6366 Set_Etype (N, Etype (R));
6367
6368 elsif Nkind (R) = N_Raise_Expression then
6369 Set_Etype (R, Etype (L));
6370 Set_Etype (N, Etype (L));
6371 end if;
6372
996ae0b0
RK
6373 return;
6374
4c46b835
AC
6375 -- We explicitly check for the case of concatenation of component
6376 -- with component to avoid reporting spurious matching array types
6377 -- that might happen to be lurking in distant packages (such as
6378 -- run-time packages). This also prevents inconsistencies in the
6379 -- messages for certain ACVC B tests, which can vary depending on
6380 -- types declared in run-time interfaces. Another improvement when
6381 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
6382
6383 elsif Present (Candidate_Type)
6384 and then (Nkind (N) /= N_Op_Concat
6385 or else Is_Array_Type (Etype (L))
6386 or else Is_Array_Type (Etype (R)))
6387 then
996ae0b0
RK
6388 if Nkind (N) = N_Op_Concat then
6389 if Etype (L) /= Any_Composite
6390 and then Is_Array_Type (Etype (L))
6391 then
6392 Candidate_Type := Etype (L);
6393
6394 elsif Etype (R) /= Any_Composite
6395 and then Is_Array_Type (Etype (R))
6396 then
6397 Candidate_Type := Etype (R);
6398 end if;
6399 end if;
6400
19d846a0 6401 Error_Msg_NE -- CODEFIX
996ae0b0
RK
6402 ("operator for} is not directly visible!",
6403 N, First_Subtype (Candidate_Type));
4561baf7
ES
6404
6405 declare
6406 U : constant Node_Id :=
6407 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
6408 begin
6409 if Unit_Is_Visible (U) then
6410 Error_Msg_N -- CODEFIX
6411 ("use clause would make operation legal!", N);
4561baf7
ES
6412 else
6413 Error_Msg_NE -- CODEFIX
6414 ("add with_clause and use_clause for&!",
8b4230c8 6415 N, Defining_Entity (Unit (U)));
4561baf7
ES
6416 end if;
6417 end;
996ae0b0
RK
6418 return;
6419
6420 -- If either operand is a junk operand (e.g. package name), then
6421 -- post appropriate error messages, but do not complain further.
6422
0e0eecec
ES
6423 -- Note that the use of OR in this test instead of OR ELSE is
6424 -- quite deliberate, we may as well check both operands in the
6425 -- binary operator case.
996ae0b0
RK
6426
6427 elsif Junk_Operand (R)
9559eccf
AC
6428 or -- really mean OR here and not OR ELSE, see above
6429 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
996ae0b0
RK
6430 then
6431 return;
6432
6433 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
6434 -- Boolean, then we know that the other operand cannot resolve to
6435 -- Boolean (since we got no interpretations), but in that case we
6436 -- pretty much know that the other operand should be Boolean, so
6437 -- resolve it that way (generating an error)
996ae0b0 6438
d469eabe 6439 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
6440 if Etype (L) = Standard_Boolean then
6441 Resolve (R, Standard_Boolean);
6442 return;
6443 elsif Etype (R) = Standard_Boolean then
6444 Resolve (L, Standard_Boolean);
6445 return;
6446 end if;
6447
6448 -- For an arithmetic operator or comparison operator, if one
6449 -- of the operands is numeric, then we know the other operand
6450 -- is not the same numeric type. If it is a non-numeric type,
6451 -- then probably it is intended to match the other operand.
6452
d469eabe
HK
6453 elsif Nkind_In (N, N_Op_Add,
6454 N_Op_Divide,
6455 N_Op_Ge,
6456 N_Op_Gt,
6457 N_Op_Le)
6458 or else
6459 Nkind_In (N, N_Op_Lt,
6460 N_Op_Mod,
6461 N_Op_Multiply,
6462 N_Op_Rem,
6463 N_Op_Subtract)
996ae0b0 6464 then
7dbd3de9
RD
6465 -- If Allow_Integer_Address is active, check whether the
6466 -- operation becomes legal after converting an operand.
6467
996ae0b0
RK
6468 if Is_Numeric_Type (Etype (L))
6469 and then not Is_Numeric_Type (Etype (R))
6470 then
7dbd3de9
RD
6471 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6472 Rewrite (R,
6473 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6474 Analyze_Arithmetic_Op (N);
6475
6476 else
6477 Resolve (R, Etype (L));
6478 end if;
996ae0b0
RK
6479 return;
6480
6481 elsif Is_Numeric_Type (Etype (R))
6482 and then not Is_Numeric_Type (Etype (L))
6483 then
7dbd3de9
RD
6484 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6485 Rewrite (L,
6486 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6487 Analyze_Arithmetic_Op (N);
9559eccf 6488 return;
7dbd3de9
RD
6489
6490 else
6491 Resolve (L, Etype (R));
6492 end if;
9559eccf 6493
996ae0b0 6494 return;
9559eccf
AC
6495
6496 elsif Allow_Integer_Address
6497 and then Is_Descendent_Of_Address (Etype (L))
6498 and then Is_Descendent_Of_Address (Etype (R))
6499 and then not Error_Posted (N)
6500 then
6501 declare
6502 Addr_Type : constant Entity_Id := Etype (L);
6503
6504 begin
6505 Rewrite (L,
6506 Unchecked_Convert_To (
6507 Standard_Integer, Relocate_Node (L)));
6508 Rewrite (R,
6509 Unchecked_Convert_To (
6510 Standard_Integer, Relocate_Node (R)));
6511 Analyze_Arithmetic_Op (N);
6512
6513 -- If this is an operand in an enclosing arithmetic
6514 -- operation, Convert the result as an address so that
6515 -- arithmetic folding of address can continue.
6516
6517 if Nkind (Parent (N)) in N_Op then
6518 Rewrite (N,
6519 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6520 end if;
6521
6522 return;
6523 end;
996ae0b0
RK
6524 end if;
6525
6526 -- Comparisons on A'Access are common enough to deserve a
6527 -- special message.
6528
d469eabe 6529 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
6530 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6531 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6532 then
6533 Error_Msg_N
6534 ("two access attributes cannot be compared directly", N);
6535 Error_Msg_N
aab883ec 6536 ("\use qualified expression for one of the operands",
996ae0b0
RK
6537 N);
6538 return;
6539
6540 -- Another one for C programmers
6541
6542 elsif Nkind (N) = N_Op_Concat
6543 and then Valid_Boolean_Arg (Etype (L))
6544 and then Valid_Boolean_Arg (Etype (R))
6545 then
6546 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
6547 Error_Msg_N -- CODEFIX
6548 ("\maybe AND was meant", N);
996ae0b0
RK
6549 return;
6550
6551 -- A special case for comparison of access parameter with null
6552
6553 elsif Nkind (N) = N_Op_Eq
6554 and then Is_Entity_Name (L)
6555 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6556 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6557 N_Access_Definition
6558 and then Nkind (R) = N_Null
6559 then
6560 Error_Msg_N ("access parameter is not allowed to be null", L);
6561 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6562 return;
61bee0e3
AC
6563
6564 -- Another special case for exponentiation, where the right
6565 -- operand must be Natural, independently of the base.
6566
6567 elsif Nkind (N) = N_Op_Expon
6568 and then Is_Numeric_Type (Etype (L))
6569 and then not Is_Overloaded (R)
6570 and then
6571 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6572 and then Base_Type (Etype (R)) /= Universal_Integer
6573 then
dec6faf1 6574 if Ada_Version >= Ada_2012
15954beb 6575 and then Has_Dimension_System (Etype (L))
dec6faf1
AC
6576 then
6577 Error_Msg_NE
54c04d6c 6578 ("exponent for dimensioned type must be a rational" &
dec6faf1
AC
6579 ", found}", R, Etype (R));
6580 else
6581 Error_Msg_NE
6582 ("exponent must be of type Natural, found}", R, Etype (R));
6583 end if;
54c04d6c 6584
61bee0e3 6585 return;
996ae0b0
RK
6586 end if;
6587
0e0eecec
ES
6588 -- If we fall through then just give general message. Note that in
6589 -- the following messages, if the operand is overloaded we choose
6590 -- an arbitrary type to complain about, but that is probably more
6591 -- useful than not giving a type at all.
996ae0b0
RK
6592
6593 if Nkind (N) in N_Unary_Op then
6594 Error_Msg_Node_2 := Etype (R);
6595 Error_Msg_N ("operator& not defined for}", N);
6596 return;
6597
6598 else
fbf5a39b
AC
6599 if Nkind (N) in N_Binary_Op then
6600 if not Is_Overloaded (L)
6601 and then not Is_Overloaded (R)
6602 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6603 then
7ffd9312 6604 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 6605 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 6606
fbf5a39b 6607 else
b67a385c
ES
6608 -- Another attempt to find a fix: one of the candidate
6609 -- interpretations may not be use-visible. This has
6610 -- already been checked for predefined operators, so
6611 -- we examine only user-defined functions.
6612
6613 Op_Id := Get_Name_Entity_Id (Chars (N));
6614
6615 while Present (Op_Id) loop
6616 if Ekind (Op_Id) /= E_Operator
6617 and then Is_Overloadable (Op_Id)
6618 then
6619 if not Is_Immediately_Visible (Op_Id)
6620 and then not In_Use (Scope (Op_Id))
aab883ec 6621 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
6622 and then not Is_Hidden (Op_Id)
6623 and then Ekind (Scope (Op_Id)) = E_Package
6624 and then
6625 Has_Compatible_Type
6626 (L, Etype (First_Formal (Op_Id)))
6627 and then Present
6628 (Next_Formal (First_Formal (Op_Id)))
6629 and then
6630 Has_Compatible_Type
6631 (R,
6632 Etype (Next_Formal (First_Formal (Op_Id))))
6633 then
ed2233dc 6634 Error_Msg_N
b67a385c 6635 ("No legal interpretation for operator&", N);
ed2233dc 6636 Error_Msg_NE
b67a385c 6637 ("\use clause on& would make operation legal",
8b4230c8 6638 N, Scope (Op_Id));
b67a385c
ES
6639 exit;
6640 end if;
6641 end if;
fbf5a39b 6642
b67a385c
ES
6643 Op_Id := Homonym (Op_Id);
6644 end loop;
6645
6646 if No (Op_Id) then
6647 Error_Msg_N ("invalid operand types for operator&", N);
6648
6649 if Nkind (N) /= N_Op_Concat then
6650 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6651 Error_Msg_NE ("\right operand has}!", N, Etype (R));
2e70d415
AC
6652
6653 -- For concatenation operators it is more difficult to
6654 -- determine which is the wrong operand. It is worth
6655 -- flagging explicitly an access type, for those who
6656 -- might think that a dereference happens here.
6657
6658 elsif Is_Access_Type (Etype (L)) then
6659 Error_Msg_N ("\left operand is access type", N);
6660
6661 elsif Is_Access_Type (Etype (R)) then
6662 Error_Msg_N ("\right operand is access type", N);
b67a385c 6663 end if;
fbf5a39b
AC
6664 end if;
6665 end if;
996ae0b0
RK
6666 end if;
6667 end if;
6668 end;
6669 end if;
6670 end Operator_Check;
6671
6e73e3ab
AC
6672 -----------------------------------------
6673 -- Process_Implicit_Dereference_Prefix --
6674 -----------------------------------------
6675
d469eabe 6676 function Process_Implicit_Dereference_Prefix
da709d08 6677 (E : Entity_Id;
d469eabe 6678 P : Entity_Id) return Entity_Id
6e73e3ab
AC
6679 is
6680 Ref : Node_Id;
d469eabe 6681 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 6682
6e73e3ab 6683 begin
1a8fae99
ES
6684 if Present (E)
6685 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6686 then
8b4230c8
AC
6687 -- We create a dummy reference to E to ensure that the reference is
6688 -- not considered as part of an assignment (an implicit dereference
6689 -- can never assign to its prefix). The Comes_From_Source attribute
6690 -- needs to be propagated for accurate warnings.
6e73e3ab 6691
e4494292 6692 Ref := New_Occurrence_Of (E, Sloc (P));
6e73e3ab
AC
6693 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6694 Generate_Reference (E, Ref);
6695 end if;
d469eabe 6696
8b4230c8
AC
6697 -- An implicit dereference is a legal occurrence of an incomplete type
6698 -- imported through a limited_with clause, if the full view is visible.
d469eabe 6699
7b56a91b
AC
6700 if From_Limited_With (Typ)
6701 and then not From_Limited_With (Scope (Typ))
d469eabe
HK
6702 and then
6703 (Is_Immediately_Visible (Scope (Typ))
6704 or else
6705 (Is_Child_Unit (Scope (Typ))
8398e82e 6706 and then Is_Visible_Lib_Unit (Scope (Typ))))
d469eabe
HK
6707 then
6708 return Available_View (Typ);
6709 else
6710 return Typ;
6711 end if;
6e73e3ab
AC
6712 end Process_Implicit_Dereference_Prefix;
6713
30c20106
AC
6714 --------------------------------
6715 -- Remove_Abstract_Operations --
6716 --------------------------------
6717
6718 procedure Remove_Abstract_Operations (N : Node_Id) is
e80f0cb0
RD
6719 Abstract_Op : Entity_Id := Empty;
6720 Address_Descendent : Boolean := False;
6721 I : Interp_Index;
6722 It : Interp;
30c20106 6723
0e0eecec
ES
6724 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6725 -- activate this if either extensions are enabled, or if the abstract
6726 -- operation in question comes from a predefined file. This latter test
6727 -- allows us to use abstract to make operations invisible to users. In
6728 -- particular, if type Address is non-private and abstract subprograms
6729 -- are used to hide its operators, they will be truly hidden.
30c20106 6730
5950a3ac 6731 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 6732 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
6733
6734 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
6735 -- Ambiguities may arise when the operands are literal and the address
6736 -- operations in s-auxdec are visible. In that case, remove the
8b4230c8
AC
6737 -- interpretation of a literal as Address, to retain the semantics
6738 -- of Address as a private type.
9f4fd324
AC
6739
6740 ------------------------------------
5950a3ac 6741 -- Remove_Address_Interpretations --
9f4fd324
AC
6742 ------------------------------------
6743
5950a3ac 6744 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
6745 Formal : Entity_Id;
6746
6747 begin
6748 if Is_Overloaded (N) then
6749 Get_First_Interp (N, I, It);
6750 while Present (It.Nam) loop
6751 Formal := First_Entity (It.Nam);
6752
5950a3ac
AC
6753 if Op = Second_Op then
6754 Formal := Next_Entity (Formal);
6755 end if;
6756
6757 if Is_Descendent_Of_Address (Etype (Formal)) then
e80f0cb0 6758 Address_Descendent := True;
9f4fd324
AC
6759 Remove_Interp (I);
6760 end if;
6761
6762 Get_Next_Interp (I, It);
6763 end loop;
6764 end if;
6765 end Remove_Address_Interpretations;
6766
6767 -- Start of processing for Remove_Abstract_Operations
6768
30c20106 6769 begin
d935a36e 6770 if Is_Overloaded (N) then
ee1a7572
AC
6771 if Debug_Flag_V then
6772 Write_Str ("Remove_Abstract_Operations: ");
6773 Write_Overloads (N);
6774 end if;
6775
30c20106 6776 Get_First_Interp (N, I, It);
d935a36e 6777
30c20106 6778 while Present (It.Nam) loop
aab883ec
ES
6779 if Is_Overloadable (It.Nam)
6780 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
6781 and then not Is_Dispatching_Operation (It.Nam)
6782 then
af152989 6783 Abstract_Op := It.Nam;
fe45e59e 6784
401093c1 6785 if Is_Descendent_Of_Address (It.Typ) then
e80f0cb0 6786 Address_Descendent := True;
401093c1
ES
6787 Remove_Interp (I);
6788 exit;
6789
76264f60 6790 -- In Ada 2005, this operation does not participate in overload
9c510803 6791 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
6792 -- unit, it is one of the operations declared abstract in some
6793 -- variants of System, and it must be removed as well.
6794
0791fbe9 6795 elsif Ada_Version >= Ada_2005
401093c1
ES
6796 or else Is_Predefined_File_Name
6797 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
6798 then
6799 Remove_Interp (I);
6800 exit;
6801 end if;
30c20106
AC
6802 end if;
6803
6804 Get_Next_Interp (I, It);
6805 end loop;
6806
af152989 6807 if No (Abstract_Op) then
fe45e59e
ES
6808
6809 -- If some interpretation yields an integer type, it is still
6810 -- possible that there are address interpretations. Remove them
6811 -- if one operand is a literal, to avoid spurious ambiguities
6812 -- on systems where Address is a visible integer type.
6813
6814 if Is_Overloaded (N)
401093c1 6815 and then Nkind (N) in N_Op
fe45e59e
ES
6816 and then Is_Integer_Type (Etype (N))
6817 then
6818 if Nkind (N) in N_Binary_Op then
6819 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6820 Remove_Address_Interpretations (Second_Op);
6821
6822 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6823 Remove_Address_Interpretations (First_Op);
6824 end if;
6825 end if;
6826 end if;
3984e89a
AC
6827
6828 elsif Nkind (N) in N_Op then
4c46b835 6829
fe45e59e
ES
6830 -- Remove interpretations that treat literals as addresses. This
6831 -- is never appropriate, even when Address is defined as a visible
6832 -- Integer type. The reason is that we would really prefer Address
6833 -- to behave as a private type, even in this case, which is there
f3d57416
RW
6834 -- only to accommodate oddities of VMS address sizes. If Address
6835 -- is a visible integer type, we get lots of overload ambiguities.
30c20106 6836
5950a3ac
AC
6837 if Nkind (N) in N_Binary_Op then
6838 declare
6839 U1 : constant Boolean :=
8b4230c8 6840 Present (Universal_Interpretation (Right_Opnd (N)));
5950a3ac 6841 U2 : constant Boolean :=
8b4230c8 6842 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 6843
5950a3ac 6844 begin
0e0eecec 6845 if U1 then
5950a3ac 6846 Remove_Address_Interpretations (Second_Op);
0e0eecec 6847 end if;
5950a3ac 6848
0e0eecec 6849 if U2 then
5950a3ac 6850 Remove_Address_Interpretations (First_Op);
30c20106
AC
6851 end if;
6852
5950a3ac
AC
6853 if not (U1 and U2) then
6854
6855 -- Remove corresponding predefined operator, which is
6856 -- always added to the overload set.
6857
6858 Get_First_Interp (N, I, It);
6859 while Present (It.Nam) loop
0ab80019
AC
6860 if Scope (It.Nam) = Standard_Standard
6861 and then Base_Type (It.Typ) =
6862 Base_Type (Etype (Abstract_Op))
6863 then
5950a3ac
AC
6864 Remove_Interp (I);
6865 end if;
6866
8a36a0cc
AC
6867 Get_Next_Interp (I, It);
6868 end loop;
6869
6870 elsif Is_Overloaded (N)
6871 and then Present (Univ_Type)
6872 then
6873 -- If both operands have a universal interpretation,
0e0eecec
ES
6874 -- it is still necessary to remove interpretations that
6875 -- yield Address. Any remaining ambiguities will be
6876 -- removed in Disambiguate.
8a36a0cc
AC
6877
6878 Get_First_Interp (N, I, It);
8a36a0cc 6879 while Present (It.Nam) loop
0e0eecec
ES
6880 if Is_Descendent_Of_Address (It.Typ) then
6881 Remove_Interp (I);
6882
6883 elsif not Is_Type (It.Nam) then
8a36a0cc 6884 Set_Entity (N, It.Nam);
8a36a0cc
AC
6885 end if;
6886
5950a3ac
AC
6887 Get_Next_Interp (I, It);
6888 end loop;
6889 end if;
6890 end;
30c20106 6891 end if;
3984e89a
AC
6892
6893 elsif Nkind (N) = N_Function_Call
6894 and then
6895 (Nkind (Name (N)) = N_Operator_Symbol
6896 or else
6897 (Nkind (Name (N)) = N_Expanded_Name
6898 and then
6899 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6900 then
5950a3ac 6901
3984e89a
AC
6902 declare
6903 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
6904 U1 : constant Boolean :=
6905 Present (Universal_Interpretation (Arg1));
6906 U2 : constant Boolean :=
6907 Present (Next (Arg1)) and then
6908 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
6909
6910 begin
0e0eecec 6911 if U1 then
5950a3ac 6912 Remove_Address_Interpretations (First_Op);
0e0eecec 6913 end if;
3984e89a 6914
0e0eecec 6915 if U2 then
5950a3ac
AC
6916 Remove_Address_Interpretations (Second_Op);
6917 end if;
6918
6919 if not (U1 and U2) then
3984e89a
AC
6920 Get_First_Interp (N, I, It);
6921 while Present (It.Nam) loop
9f4fd324
AC
6922 if Scope (It.Nam) = Standard_Standard
6923 and then It.Typ = Base_Type (Etype (Abstract_Op))
6924 then
3984e89a
AC
6925 Remove_Interp (I);
6926 end if;
6927
6928 Get_Next_Interp (I, It);
6929 end loop;
6930 end if;
6931 end;
30c20106 6932 end if;
af152989 6933
401093c1
ES
6934 -- If the removal has left no valid interpretations, emit an error
6935 -- message now and label node as illegal.
af152989
AC
6936
6937 if Present (Abstract_Op) then
6938 Get_First_Interp (N, I, It);
6939
6940 if No (It.Nam) then
6941
6e73e3ab 6942 -- Removal of abstract operation left no viable candidate
af152989
AC
6943
6944 Set_Etype (N, Any_Type);
6945 Error_Msg_Sloc := Sloc (Abstract_Op);
6946 Error_Msg_NE
6947 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
6948
6949 -- In Ada 2005, an abstract operation may disable predefined
6950 -- operators. Since the context is not yet known, we mark the
6951 -- predefined operators as potentially hidden. Do not include
6952 -- predefined operators when addresses are involved since this
6953 -- case is handled separately.
6954
e80f0cb0 6955 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
401093c1
ES
6956 while Present (It.Nam) loop
6957 if Is_Numeric_Type (It.Typ)
6958 and then Scope (It.Typ) = Standard_Standard
6959 then
6960 Set_Abstract_Op (I, Abstract_Op);
6961 end if;
6962
6963 Get_Next_Interp (I, It);
6964 end loop;
af152989
AC
6965 end if;
6966 end if;
ee1a7572
AC
6967
6968 if Debug_Flag_V then
6969 Write_Str ("Remove_Abstract_Operations done: ");
6970 Write_Overloads (N);
6971 end if;
30c20106
AC
6972 end if;
6973 end Remove_Abstract_Operations;
6974
d50f4827
AC
6975 ----------------------------
6976 -- Try_Container_Indexing --
6977 ----------------------------
6978
6979 function Try_Container_Indexing
6980 (N : Node_Id;
6981 Prefix : Node_Id;
50878404 6982 Exprs : List_Id) return Boolean
d50f4827
AC
6983 is
6984 Loc : constant Source_Ptr := Sloc (N);
50878404 6985 Assoc : List_Id;
d50f4827
AC
6986 Disc : Entity_Id;
6987 Func : Entity_Id;
6988 Func_Name : Node_Id;
6989 Indexing : Node_Id;
d50f4827
AC
6990
6991 begin
6992
af89615f 6993 -- Check whether type has a specified indexing aspect
d50f4827
AC
6994
6995 Func_Name := Empty;
d50f4827 6996
9ee76313 6997 if Is_Variable (Prefix) then
d62520f3
HK
6998 Func_Name :=
6999 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
9ee76313 7000 end if;
dedac3eb 7001
9ee76313 7002 if No (Func_Name) then
d62520f3
HK
7003 Func_Name :=
7004 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
9ee76313 7005 end if;
d50f4827
AC
7006
7007 -- If aspect does not exist the expression is illegal. Error is
7008 -- diagnosed in caller.
7009
7010 if No (Func_Name) then
57a8057a 7011
5ff90f08
AC
7012 -- The prefix itself may be an indexing of a container: rewrite
7013 -- as such and re-analyze.
57a8057a
AC
7014
7015 if Has_Implicit_Dereference (Etype (Prefix)) then
7016 Build_Explicit_Dereference
7017 (Prefix, First_Discriminant (Etype (Prefix)));
50878404 7018 return Try_Container_Indexing (N, Prefix, Exprs);
57a8057a
AC
7019
7020 else
7021 return False;
7022 end if;
3f433bc0 7023
6907542d
AC
7024 -- If the container type is derived from another container type, the
7025 -- value of the inherited aspect is the Reference operation declared
7026 -- for the parent type.
7027
3f433bc0
ES
7028 -- However, Reference is also a primitive operation of the type, and
7029 -- the inherited operation has a different signature. We retrieve the
7030 -- right one from the list of primitive operations of the derived type.
7031
6907542d
AC
7032 -- Note that predefined containers are typically all derived from one
7033 -- of the Controlled types. The code below is motivated by containers
7034 -- that are derived from other types with a Reference aspect.
7035
7036 -- Additional machinery may be needed for types that have several user-
7037 -- defined Reference operations with different signatures ???
7038
7039 elsif Is_Derived_Type (Etype (Prefix))
7040 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7041 then
3f433bc0
ES
7042 Func := Find_Prim_Op (Etype (Prefix), Chars (Func_Name));
7043 Func_Name := New_Occurrence_Of (Func, Loc);
d50f4827
AC
7044 end if;
7045
50878404
AC
7046 Assoc := New_List (Relocate_Node (Prefix));
7047
5f50020a 7048 -- A generalized indexing may have nore than one index expression, so
50878404 7049 -- transfer all of them to the argument list to be used in the call.
5f50020a
ES
7050 -- Note that there may be named associations, in which case the node
7051 -- was rewritten earlier as a call, and has been transformed back into
7052 -- an indexed expression to share the following processing.
e917e3b8 7053
5f50020a
ES
7054 -- The generalized indexing node is the one on which analysis and
7055 -- resolution take place. Before expansion the original node is replaced
7056 -- with the generalized indexing node, which is a call, possibly with
7057 -- a dereference operation.
50878404 7058
e917e3b8 7059 if Comes_From_Source (N) then
c86cf714 7060 Check_Compiler_Unit ("generalized indexing", N);
e917e3b8
AC
7061 end if;
7062
50878404
AC
7063 declare
7064 Arg : Node_Id;
50878404
AC
7065 begin
7066 Arg := First (Exprs);
7067 while Present (Arg) loop
7068 Append (Relocate_Node (Arg), Assoc);
7069 Next (Arg);
7070 end loop;
7071 end;
7072
d50f4827
AC
7073 if not Is_Overloaded (Func_Name) then
7074 Func := Entity (Func_Name);
29ba9f52
RD
7075 Indexing :=
7076 Make_Function_Call (Loc,
7077 Name => New_Occurrence_Of (Func, Loc),
7078 Parameter_Associations => Assoc);
5f50020a
ES
7079 Set_Parent (Indexing, Parent (N));
7080 Set_Generalized_Indexing (N, Indexing);
7081 Analyze (Indexing);
7082 Set_Etype (N, Etype (Indexing));
d50f4827 7083
76d49f49
ES
7084 -- If the return type of the indexing function is a reference type,
7085 -- add the dereference as a possible interpretation. Note that the
7086 -- indexing aspect may be a function that returns the element type
5f50020a
ES
7087 -- with no intervening implicit dereference, and that the reference
7088 -- discriminant is not the first discriminant.
76d49f49
ES
7089
7090 if Has_Discriminants (Etype (Func)) then
7091 Disc := First_Discriminant (Etype (Func));
7092 while Present (Disc) loop
5f50020a
ES
7093 declare
7094 Elmt_Type : Entity_Id;
5f50020a
ES
7095 begin
7096 if Has_Implicit_Dereference (Disc) then
7097 Elmt_Type := Designated_Type (Etype (Disc));
7098 Add_One_Interp (Indexing, Disc, Elmt_Type);
7099 Add_One_Interp (N, Disc, Elmt_Type);
7100 exit;
7101 end if;
7102 end;
d50f4827 7103
76d49f49
ES
7104 Next_Discriminant (Disc);
7105 end loop;
7106 end if;
d50f4827
AC
7107
7108 else
8b4230c8
AC
7109 Indexing :=
7110 Make_Function_Call (Loc,
7111 Name => Make_Identifier (Loc, Chars (Func_Name)),
7112 Parameter_Associations => Assoc);
d50f4827 7113
5f50020a
ES
7114 Set_Parent (Indexing, Parent (N));
7115 Set_Generalized_Indexing (N, Indexing);
d50f4827
AC
7116
7117 declare
8b4230c8
AC
7118 I : Interp_Index;
7119 It : Interp;
d50f4827
AC
7120 Success : Boolean;
7121
7122 begin
7123 Get_First_Interp (Func_Name, I, It);
5f50020a 7124 Set_Etype (Indexing, Any_Type);
d50f4827 7125 while Present (It.Nam) loop
5f50020a 7126 Analyze_One_Call (Indexing, It.Nam, False, Success);
32bba3c9 7127
d50f4827 7128 if Success then
5f50020a
ES
7129 Set_Etype (Name (Indexing), It.Typ);
7130 Set_Entity (Name (Indexing), It.Nam);
7131 Set_Etype (N, Etype (Indexing));
d50f4827 7132
af89615f 7133 -- Add implicit dereference interpretation
d50f4827 7134
76d49f49
ES
7135 if Has_Discriminants (Etype (It.Nam)) then
7136 Disc := First_Discriminant (Etype (It.Nam));
7137 while Present (Disc) loop
7138 if Has_Implicit_Dereference (Disc) then
5f50020a
ES
7139 Add_One_Interp
7140 (Indexing, Disc, Designated_Type (Etype (Disc)));
76d49f49
ES
7141 Add_One_Interp
7142 (N, Disc, Designated_Type (Etype (Disc)));
7143 exit;
7144 end if;
d50f4827 7145
76d49f49
ES
7146 Next_Discriminant (Disc);
7147 end loop;
7148 end if;
b5bf3335 7149
9ee76313 7150 exit;
d50f4827 7151 end if;
32bba3c9 7152
d50f4827
AC
7153 Get_Next_Interp (I, It);
7154 end loop;
7155 end;
7156 end if;
7157
5f50020a 7158 if Etype (Indexing) = Any_Type then
29ba9f52
RD
7159 Error_Msg_NE
7160 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9ee76313 7161 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9ee76313
AC
7162 end if;
7163
d50f4827
AC
7164 return True;
7165 end Try_Container_Indexing;
7166
996ae0b0
RK
7167 -----------------------
7168 -- Try_Indirect_Call --
7169 -----------------------
7170
7171 function Try_Indirect_Call
91b1417d
AC
7172 (N : Node_Id;
7173 Nam : Entity_Id;
7174 Typ : Entity_Id) return Boolean
996ae0b0 7175 is
24657705
HK
7176 Actual : Node_Id;
7177 Formal : Entity_Id;
7178
8a7988f5 7179 Call_OK : Boolean;
24657705 7180 pragma Warnings (Off, Call_OK);
996ae0b0
RK
7181
7182 begin
8a7988f5 7183 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 7184
8a7988f5 7185 Actual := First_Actual (N);
fbf5a39b 7186 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 7187 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
7188 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7189 return False;
7190 end if;
7191
7192 Next (Actual);
7193 Next_Formal (Formal);
7194 end loop;
7195
7196 if No (Actual) and then No (Formal) then
7197 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7198
7199 -- Nam is a candidate interpretation for the name in the call,
7200 -- if it is not an indirect call.
7201
7202 if not Is_Type (Nam)
7203 and then Is_Entity_Name (Name (N))
7204 then
7205 Set_Entity (Name (N), Nam);
7206 end if;
7207
7208 return True;
8b4230c8 7209
996ae0b0
RK
7210 else
7211 return False;
7212 end if;
7213 end Try_Indirect_Call;
7214
7215 ----------------------
7216 -- Try_Indexed_Call --
7217 ----------------------
7218
7219 function Try_Indexed_Call
aab883ec
ES
7220 (N : Node_Id;
7221 Nam : Entity_Id;
7222 Typ : Entity_Id;
7223 Skip_First : Boolean) return Boolean
996ae0b0 7224 is
5ff22245
ES
7225 Loc : constant Source_Ptr := Sloc (N);
7226 Actuals : constant List_Id := Parameter_Associations (N);
7227 Actual : Node_Id;
7228 Index : Entity_Id;
996ae0b0
RK
7229
7230 begin
fbf5a39b 7231 Actual := First (Actuals);
aab883ec
ES
7232
7233 -- If the call was originally written in prefix form, skip the first
7234 -- actual, which is obviously not defaulted.
7235
7236 if Skip_First then
7237 Next (Actual);
7238 end if;
7239
fbf5a39b 7240 Index := First_Index (Typ);
9de61fcb
RD
7241 while Present (Actual) and then Present (Index) loop
7242
996ae0b0
RK
7243 -- If the parameter list has a named association, the expression
7244 -- is definitely a call and not an indexed component.
7245
7246 if Nkind (Actual) = N_Parameter_Association then
7247 return False;
7248 end if;
7249
5ff22245
ES
7250 if Is_Entity_Name (Actual)
7251 and then Is_Type (Entity (Actual))
7252 and then No (Next (Actual))
7253 then
1c218ac3
AC
7254 -- A single actual that is a type name indicates a slice if the
7255 -- type is discrete, and an error otherwise.
7256
7257 if Is_Discrete_Type (Entity (Actual)) then
7258 Rewrite (N,
7259 Make_Slice (Loc,
22b77f68
RD
7260 Prefix =>
7261 Make_Function_Call (Loc,
7262 Name => Relocate_Node (Name (N))),
7263 Discrete_Range =>
1c218ac3
AC
7264 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7265
7266 Analyze (N);
7267
7268 else
7269 Error_Msg_N ("invalid use of type in expression", Actual);
7270 Set_Etype (N, Any_Type);
7271 end if;
5ff22245 7272
5ff22245
ES
7273 return True;
7274
7275 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
7276 return False;
7277 end if;
7278
7279 Next (Actual);
7280 Next_Index (Index);
7281 end loop;
7282
7283 if No (Actual) and then No (Index) then
7284 Add_One_Interp (N, Nam, Component_Type (Typ));
7285
7286 -- Nam is a candidate interpretation for the name in the call,
7287 -- if it is not an indirect call.
7288
7289 if not Is_Type (Nam)
7290 and then Is_Entity_Name (Name (N))
7291 then
7292 Set_Entity (Name (N), Nam);
7293 end if;
7294
7295 return True;
7296 else
7297 return False;
7298 end if;
996ae0b0
RK
7299 end Try_Indexed_Call;
7300
35ae2ed8
AC
7301 --------------------------
7302 -- Try_Object_Operation --
7303 --------------------------
7304
8cf23b91
AC
7305 function Try_Object_Operation
7306 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7307 is
b67a385c 7308 K : constant Node_Kind := Nkind (Parent (N));
d3b00ce3 7309 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
b67a385c 7310 Loc : constant Source_Ptr := Sloc (N);
b67a385c 7311 Obj : constant Node_Id := Prefix (N);
0d57c6f4
RD
7312
7313 Subprog : constant Node_Id :=
7314 Make_Identifier (Sloc (Selector_Name (N)),
7315 Chars => Chars (Selector_Name (N)));
401093c1 7316 -- Identifier on which possible interpretations will be collected
0a36105d 7317
b67a385c 7318 Report_Error : Boolean := False;
8b4230c8
AC
7319 -- If no candidate interpretation matches the context, redo analysis
7320 -- with Report_Error True to provide additional information.
28d6470f
JM
7321
7322 Actual : Node_Id;
d469eabe 7323 Candidate : Entity_Id := Empty;
b67a385c 7324 New_Call_Node : Node_Id := Empty;
4c46b835 7325 Node_To_Replace : Node_Id;
28d6470f 7326 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 7327 Success : Boolean := False;
4c46b835 7328
0a36105d
JM
7329 function Valid_Candidate
7330 (Success : Boolean;
7331 Call : Node_Id;
7332 Subp : Entity_Id) return Entity_Id;
7333 -- If the subprogram is a valid interpretation, record it, and add
11fa950b 7334 -- to the list of interpretations of Subprog. Otherwise return Empty.
0a36105d 7335
4c46b835
AC
7336 procedure Complete_Object_Operation
7337 (Call_Node : Node_Id;
0a36105d 7338 Node_To_Replace : Node_Id);
ec6078e3
ES
7339 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7340 -- Call_Node, insert the object (or its dereference) as the first actual
7341 -- in the call, and complete the analysis of the call.
4c46b835 7342
0a36105d
JM
7343 procedure Report_Ambiguity (Op : Entity_Id);
7344 -- If a prefixed procedure call is ambiguous, indicate whether the
7345 -- call includes an implicit dereference or an implicit 'Access.
7346
4c46b835
AC
7347 procedure Transform_Object_Operation
7348 (Call_Node : out Node_Id;
0a36105d 7349 Node_To_Replace : out Node_Id);
ec6078e3 7350 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
7351 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7352 -- either N or the parent of N, and Subprog is a reference to the
7353 -- subprogram we are trying to match.
35ae2ed8
AC
7354
7355 function Try_Class_Wide_Operation
4c46b835
AC
7356 (Call_Node : Node_Id;
7357 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7358 -- Traverse all ancestor types looking for a class-wide subprogram
7359 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 7360
0a36105d
JM
7361 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7362 -- If prefix is overloaded, its interpretation may include different
7363 -- tagged types, and we must examine the primitive operations and
7364 -- the class-wide operations of each in order to find candidate
7365 -- interpretations for the call as a whole.
7366
4c46b835
AC
7367 function Try_Primitive_Operation
7368 (Call_Node : Node_Id;
7369 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7370 -- Traverse the list of primitive subprograms looking for a dispatching
7371 -- operation for which the current node is a valid call .
4c46b835 7372
0a36105d
JM
7373 ---------------------
7374 -- Valid_Candidate --
7375 ---------------------
7376
7377 function Valid_Candidate
7378 (Success : Boolean;
7379 Call : Node_Id;
7380 Subp : Entity_Id) return Entity_Id
7381 is
ee9aa7b6 7382 Arr_Type : Entity_Id;
0a36105d
JM
7383 Comp_Type : Entity_Id;
7384
7385 begin
7386 -- If the subprogram is a valid interpretation, record it in global
7387 -- variable Subprog, to collect all possible overloadings.
7388
7389 if Success then
7390 if Subp /= Entity (Subprog) then
7391 Add_One_Interp (Subprog, Subp, Etype (Subp));
7392 end if;
7393 end if;
7394
d469eabe
HK
7395 -- If the call may be an indexed call, retrieve component type of
7396 -- resulting expression, and add possible interpretation.
0a36105d 7397
ee9aa7b6 7398 Arr_Type := Empty;
0a36105d
JM
7399 Comp_Type := Empty;
7400
7401 if Nkind (Call) = N_Function_Call
d469eabe
HK
7402 and then Nkind (Parent (N)) = N_Indexed_Component
7403 and then Needs_One_Actual (Subp)
0a36105d
JM
7404 then
7405 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 7406 Arr_Type := Etype (Subp);
0a36105d
JM
7407
7408 elsif Is_Access_Type (Etype (Subp))
7409 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7410 then
ee9aa7b6 7411 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
7412 end if;
7413 end if;
7414
ee9aa7b6
AC
7415 if Present (Arr_Type) then
7416
3b42c566
RD
7417 -- Verify that the actuals (excluding the object) match the types
7418 -- of the indexes.
ee9aa7b6
AC
7419
7420 declare
7421 Actual : Node_Id;
7422 Index : Node_Id;
7423
7424 begin
7425 Actual := Next (First_Actual (Call));
7426 Index := First_Index (Arr_Type);
ee9aa7b6
AC
7427 while Present (Actual) and then Present (Index) loop
7428 if not Has_Compatible_Type (Actual, Etype (Index)) then
7429 Arr_Type := Empty;
7430 exit;
7431 end if;
7432
7433 Next_Actual (Actual);
7434 Next_Index (Index);
7435 end loop;
7436
7437 if No (Actual)
7438 and then No (Index)
7439 and then Present (Arr_Type)
7440 then
7441 Comp_Type := Component_Type (Arr_Type);
7442 end if;
7443 end;
7444
7445 if Present (Comp_Type)
7446 and then Etype (Subprog) /= Comp_Type
7447 then
7448 Add_One_Interp (Subprog, Subp, Comp_Type);
7449 end if;
0a36105d
JM
7450 end if;
7451
7452 if Etype (Call) /= Any_Type then
7453 return Subp;
7454 else
7455 return Empty;
7456 end if;
7457 end Valid_Candidate;
7458
4c46b835
AC
7459 -------------------------------
7460 -- Complete_Object_Operation --
7461 -------------------------------
7462
7463 procedure Complete_Object_Operation
7464 (Call_Node : Node_Id;
0a36105d 7465 Node_To_Replace : Node_Id)
4c46b835 7466 is
b4592168
GD
7467 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7468 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
7469 First_Actual : Node_Id;
7470
4c46b835 7471 begin
955871d3
AC
7472 -- Place the name of the operation, with its interpretations,
7473 -- on the rewritten call.
0a36105d 7474
ec6078e3
ES
7475 Set_Name (Call_Node, Subprog);
7476
0a36105d
JM
7477 First_Actual := First (Parameter_Associations (Call_Node));
7478
8b4230c8
AC
7479 -- For cross-reference purposes, treat the new node as being in the
7480 -- source if the original one is. Set entity and type, even though
7481 -- they may be overwritten during resolution if overloaded.
b67a385c
ES
7482
7483 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7484 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7485
ec6078e3 7486 if Nkind (N) = N_Selected_Component
3d918396 7487 and then not Inside_A_Generic
ec6078e3
ES
7488 then
7489 Set_Entity (Selector_Name (N), Entity (Subprog));
b2ab8c33 7490 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
ec6078e3
ES
7491 end if;
7492
8b4230c8
AC
7493 -- If need be, rewrite first actual as an explicit dereference. If
7494 -- the call is overloaded, the rewriting can only be done once the
7495 -- primitive operation is identified.
0a36105d
JM
7496
7497 if Is_Overloaded (Subprog) then
ec6078e3 7498
0a36105d
JM
7499 -- The prefix itself may be overloaded, and its interpretations
7500 -- must be propagated to the new actual in the call.
7501
7502 if Is_Overloaded (Obj) then
7503 Save_Interps (Obj, First_Actual);
7504 end if;
7505
7506 Rewrite (First_Actual, Obj);
7507
7508 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
7509 and then Is_Access_Type (Etype (Obj))
7510 then
7511 Rewrite (First_Actual,
7512 Make_Explicit_Dereference (Sloc (Obj), Obj));
7513 Analyze (First_Actual);
fe45e59e 7514
401093c1
ES
7515 -- If we need to introduce an explicit dereference, verify that
7516 -- the resulting actual is compatible with the mode of the formal.
7517
7518 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7519 and then Is_Access_Constant (Etype (Obj))
7520 then
7521 Error_Msg_NE
7522 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7523 end if;
7524
d469eabe
HK
7525 -- Conversely, if the formal is an access parameter and the object
7526 -- is not, replace the actual with a 'Access reference. Its analysis
7527 -- will check that the object is aliased.
fe45e59e
ES
7528
7529 elsif Is_Access_Type (Formal_Type)
7530 and then not Is_Access_Type (Etype (Obj))
7531 then
b4592168
GD
7532 -- A special case: A.all'access is illegal if A is an access to a
7533 -- constant and the context requires an access to a variable.
7534
7535 if not Is_Access_Constant (Formal_Type) then
7536 if (Nkind (Obj) = N_Explicit_Dereference
7537 and then Is_Access_Constant (Etype (Prefix (Obj))))
7538 or else not Is_Variable (Obj)
7539 then
7540 Error_Msg_NE
7541 ("actual for& must be a variable", Obj, Control);
7542 end if;
7543 end if;
7544
fe45e59e
ES
7545 Rewrite (First_Actual,
7546 Make_Attribute_Reference (Loc,
7547 Attribute_Name => Name_Access,
7548 Prefix => Relocate_Node (Obj)));
0a36105d
JM
7549
7550 if not Is_Aliased_View (Obj) then
ed2233dc 7551 Error_Msg_NE
0a36105d 7552 ("object in prefixed call to& must be aliased"
401093c1 7553 & " (RM-2005 4.3.1 (13))",
0a36105d
JM
7554 Prefix (First_Actual), Subprog);
7555 end if;
7556
fe45e59e
ES
7557 Analyze (First_Actual);
7558
ec6078e3 7559 else
0a36105d
JM
7560 if Is_Overloaded (Obj) then
7561 Save_Interps (Obj, First_Actual);
7562 end if;
ec6078e3 7563
0a36105d 7564 Rewrite (First_Actual, Obj);
aab883ec
ES
7565 end if;
7566
7ffd9312 7567 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
7568
7569 -- Propagate the interpretations collected in subprog to the new
7570 -- function call node, to be resolved from context.
7571
7572 if Is_Overloaded (Subprog) then
7573 Save_Interps (Subprog, Node_To_Replace);
7415029d 7574
0a36105d
JM
7575 else
7576 Analyze (Node_To_Replace);
438ff97c 7577
199c6a10
AC
7578 -- If the operation has been rewritten into a call, which may get
7579 -- subsequently an explicit dereference, preserve the type on the
7580 -- original node (selected component or indexed component) for
7581 -- subsequent legality tests, e.g. Is_Variable. which examines
7582 -- the original node.
438ff97c
ES
7583
7584 if Nkind (Node_To_Replace) = N_Function_Call then
7585 Set_Etype
7586 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7587 end if;
0a36105d 7588 end if;
4c46b835
AC
7589 end Complete_Object_Operation;
7590
0a36105d
JM
7591 ----------------------
7592 -- Report_Ambiguity --
7593 ----------------------
7594
7595 procedure Report_Ambiguity (Op : Entity_Id) is
0a36105d
JM
7596 Access_Actual : constant Boolean :=
7597 Is_Access_Type (Etype (Prefix (N)));
8cf23b91 7598 Access_Formal : Boolean := False;
0a36105d
JM
7599
7600 begin
7601 Error_Msg_Sloc := Sloc (Op);
7602
8cf23b91
AC
7603 if Present (First_Formal (Op)) then
7604 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7605 end if;
7606
0a36105d
JM
7607 if Access_Formal and then not Access_Actual then
7608 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7609 Error_Msg_N
8b4230c8
AC
7610 ("\possible interpretation "
7611 & "(inherited, with implicit 'Access) #", N);
0a36105d 7612 else
ed2233dc 7613 Error_Msg_N
0a36105d
JM
7614 ("\possible interpretation (with implicit 'Access) #", N);
7615 end if;
7616
7617 elsif not Access_Formal and then Access_Actual then
7618 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7619 Error_Msg_N
8b4230c8
AC
7620 ("\possible interpretation "
7621 & "( inherited, with implicit dereference) #", N);
0a36105d 7622 else
ed2233dc 7623 Error_Msg_N
0a36105d
JM
7624 ("\possible interpretation (with implicit dereference) #", N);
7625 end if;
7626
7627 else
7628 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7629 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 7630 else
4e7a4f6e
AC
7631 Error_Msg_N -- CODEFIX
7632 ("\possible interpretation#", N);
0a36105d
JM
7633 end if;
7634 end if;
7635 end Report_Ambiguity;
7636
4c46b835
AC
7637 --------------------------------
7638 -- Transform_Object_Operation --
7639 --------------------------------
7640
7641 procedure Transform_Object_Operation
7642 (Call_Node : out Node_Id;
0a36105d 7643 Node_To_Replace : out Node_Id)
35ae2ed8 7644 is
ec6078e3
ES
7645 Dummy : constant Node_Id := New_Copy (Obj);
7646 -- Placeholder used as a first parameter in the call, replaced
7647 -- eventually by the proper object.
7648
d469eabe
HK
7649 Parent_Node : constant Node_Id := Parent (N);
7650
ec6078e3 7651 Actual : Node_Id;
d469eabe 7652 Actuals : List_Id;
ec6078e3 7653
35ae2ed8 7654 begin
ec6078e3
ES
7655 -- Common case covering 1) Call to a procedure and 2) Call to a
7656 -- function that has some additional actuals.
35ae2ed8 7657
d3b00ce3 7658 if Nkind (Parent_Node) in N_Subprogram_Call
35ae2ed8 7659
ec6078e3
ES
7660 -- N is a selected component node containing the name of the
7661 -- subprogram. If N is not the name of the parent node we must
7662 -- not replace the parent node by the new construct. This case
7663 -- occurs when N is a parameterless call to a subprogram that
7664 -- is an actual parameter of a call to another subprogram. For
7665 -- example:
7666 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 7667
ec6078e3 7668 and then Name (Parent_Node) = N
4c46b835
AC
7669 then
7670 Node_To_Replace := Parent_Node;
35ae2ed8 7671
ec6078e3 7672 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 7673
ec6078e3
ES
7674 if Present (Actuals) then
7675 Prepend (Dummy, Actuals);
7676 else
7677 Actuals := New_List (Dummy);
7678 end if;
4c46b835
AC
7679
7680 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7681 Call_Node :=
7682 Make_Procedure_Call_Statement (Loc,
0a36105d 7683 Name => New_Copy (Subprog),
4c46b835
AC
7684 Parameter_Associations => Actuals);
7685
7686 else
4c46b835
AC
7687 Call_Node :=
7688 Make_Function_Call (Loc,
8b4230c8 7689 Name => New_Copy (Subprog),
4c46b835 7690 Parameter_Associations => Actuals);
35ae2ed8
AC
7691 end if;
7692
d469eabe 7693 -- Before analysis, a function call appears as an indexed component
ec6078e3 7694 -- if there are no named associations.
758c442c 7695
ec6078e3
ES
7696 elsif Nkind (Parent_Node) = N_Indexed_Component
7697 and then N = Prefix (Parent_Node)
7698 then
758c442c 7699 Node_To_Replace := Parent_Node;
ec6078e3
ES
7700 Actuals := Expressions (Parent_Node);
7701
7702 Actual := First (Actuals);
7703 while Present (Actual) loop
7704 Analyze (Actual);
7705 Next (Actual);
7706 end loop;
7707
7708 Prepend (Dummy, Actuals);
758c442c
GD
7709
7710 Call_Node :=
7711 Make_Function_Call (Loc,
8b4230c8 7712 Name => New_Copy (Subprog),
758c442c
GD
7713 Parameter_Associations => Actuals);
7714
d469eabe 7715 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 7716
4c46b835
AC
7717 else
7718 Node_To_Replace := N;
7719
7720 Call_Node :=
7721 Make_Function_Call (Loc,
8b4230c8 7722 Name => New_Copy (Subprog),
ec6078e3 7723 Parameter_Associations => New_List (Dummy));
4c46b835
AC
7724 end if;
7725 end Transform_Object_Operation;
35ae2ed8
AC
7726
7727 ------------------------------
7728 -- Try_Class_Wide_Operation --
7729 ------------------------------
7730
7731 function Try_Class_Wide_Operation
4c46b835
AC
7732 (Call_Node : Node_Id;
7733 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7734 is
0a36105d
JM
7735 Anc_Type : Entity_Id;
7736 Matching_Op : Entity_Id := Empty;
7737 Error : Boolean;
7738
7739 procedure Traverse_Homonyms
7740 (Anc_Type : Entity_Id;
7741 Error : out Boolean);
7742 -- Traverse the homonym chain of the subprogram searching for those
7743 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
7744 -- or an anonymous access type designating the class-wide type. If
7745 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
7746
7747 procedure Traverse_Interfaces
7748 (Anc_Type : Entity_Id;
7749 Error : out Boolean);
7750 -- Traverse the list of interfaces, if any, associated with Anc_Type
7751 -- and search for acceptable class-wide homonyms associated with each
7752 -- interface. If an ambiguity is detected, then Error is set to True.
7753
7754 -----------------------
7755 -- Traverse_Homonyms --
7756 -----------------------
7757
7758 procedure Traverse_Homonyms
7759 (Anc_Type : Entity_Id;
7760 Error : out Boolean)
7761 is
7762 Cls_Type : Entity_Id;
7763 Hom : Entity_Id;
7764 Hom_Ref : Node_Id;
7765 Success : Boolean;
35ae2ed8 7766
0a36105d
JM
7767 begin
7768 Error := False;
ec6078e3 7769
b67a385c
ES
7770 Cls_Type := Class_Wide_Type (Anc_Type);
7771
4c46b835 7772 Hom := Current_Entity (Subprog);
401093c1 7773
383e179e
AC
7774 -- Find a non-hidden operation whose first parameter is of the
7775 -- class-wide type, a subtype thereof, or an anonymous access
a68d415b 7776 -- to same. If in an instance, the operation can be considered
8b4230c8
AC
7777 -- even if hidden (it may be hidden because the instantiation
7778 -- is expanded after the containing package has been analyzed).
401093c1 7779
35ae2ed8 7780 while Present (Hom) loop
6a2e4f0b 7781 if Ekind_In (Hom, E_Procedure, E_Function)
a68d415b 7782 and then (not Is_Hidden (Hom) or else In_Instance)
b67a385c 7783 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 7784 and then Present (First_Formal (Hom))
b67a385c 7785 and then
401093c1 7786 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
7787 or else
7788 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
7789 and then
7790 Ekind (Etype (First_Formal (Hom))) =
7791 E_Anonymous_Access_Type
7792 and then
7793 Base_Type
7794 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 7795 Cls_Type))
35ae2ed8 7796 then
88f47280
AC
7797 -- If the context is a procedure call, ignore functions
7798 -- in the name of the call.
7799
7800 if Ekind (Hom) = E_Function
7801 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7802 and then N = Name (Parent (N))
7803 then
7804 goto Next_Hom;
11fa950b
AC
7805
7806 -- If the context is a function call, ignore procedures
7807 -- in the name of the call.
7808
7809 elsif Ekind (Hom) = E_Procedure
7810 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7811 then
7812 goto Next_Hom;
88f47280
AC
7813 end if;
7814
ec6078e3 7815 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
7816 Set_Is_Overloaded (Call_Node, False);
7817 Success := False;
4c46b835 7818
0a36105d 7819 if No (Matching_Op) then
e4494292 7820 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
0a36105d
JM
7821 Set_Etype (Call_Node, Any_Type);
7822 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 7823
0a36105d 7824 Set_Name (Call_Node, Hom_Ref);
4c46b835 7825
0a36105d
JM
7826 Analyze_One_Call
7827 (N => Call_Node,
7828 Nam => Hom,
7829 Report => Report_Error,
7830 Success => Success,
7831 Skip_First => True);
4c46b835 7832
0a36105d
JM
7833 Matching_Op :=
7834 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 7835
0a36105d
JM
7836 else
7837 Analyze_One_Call
7838 (N => Call_Node,
7839 Nam => Hom,
7840 Report => Report_Error,
7841 Success => Success,
7842 Skip_First => True);
7843
7844 if Present (Valid_Candidate (Success, Call_Node, Hom))
7845 and then Nkind (Call_Node) /= N_Function_Call
7846 then
ed2233dc 7847 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
7848 Report_Ambiguity (Matching_Op);
7849 Report_Ambiguity (Hom);
7850 Error := True;
7851 return;
7852 end if;
35ae2ed8
AC
7853 end if;
7854 end if;
7855
88f47280
AC
7856 <<Next_Hom>>
7857 Hom := Homonym (Hom);
35ae2ed8 7858 end loop;
0a36105d
JM
7859 end Traverse_Homonyms;
7860
7861 -------------------------
7862 -- Traverse_Interfaces --
7863 -------------------------
35ae2ed8 7864
0a36105d
JM
7865 procedure Traverse_Interfaces
7866 (Anc_Type : Entity_Id;
7867 Error : out Boolean)
7868 is
0a36105d
JM
7869 Intface_List : constant List_Id :=
7870 Abstract_Interface_List (Anc_Type);
d469eabe 7871 Intface : Node_Id;
0a36105d
JM
7872
7873 begin
7874 Error := False;
7875
7876 if Is_Non_Empty_List (Intface_List) then
7877 Intface := First (Intface_List);
7878 while Present (Intface) loop
7879
7880 -- Look for acceptable class-wide homonyms associated with
7881 -- the interface.
7882
7883 Traverse_Homonyms (Etype (Intface), Error);
7884
7885 if Error then
7886 return;
7887 end if;
7888
7889 -- Continue the search by looking at each of the interface's
7890 -- associated interface ancestors.
7891
7892 Traverse_Interfaces (Etype (Intface), Error);
7893
7894 if Error then
7895 return;
7896 end if;
7897
7898 Next (Intface);
7899 end loop;
7900 end if;
7901 end Traverse_Interfaces;
7902
7903 -- Start of processing for Try_Class_Wide_Operation
7904
7905 begin
8cf23b91
AC
7906 -- If we are searching only for conflicting class-wide subprograms
7907 -- then initialize directly Matching_Op with the target entity.
7908
7909 if CW_Test_Only then
7910 Matching_Op := Entity (Selector_Name (N));
7911 end if;
7912
d469eabe
HK
7913 -- Loop through ancestor types (including interfaces), traversing
7914 -- the homonym chain of the subprogram, trying out those homonyms
7915 -- whose first formal has the class-wide type of the ancestor, or
7916 -- an anonymous access type designating the class-wide type.
0a36105d
JM
7917
7918 Anc_Type := Obj_Type;
7919 loop
7920 -- Look for a match among homonyms associated with the ancestor
7921
7922 Traverse_Homonyms (Anc_Type, Error);
7923
7924 if Error then
7925 return True;
7926 end if;
7927
7928 -- Continue the search for matches among homonyms associated with
7929 -- any interfaces implemented by the ancestor.
7930
7931 Traverse_Interfaces (Anc_Type, Error);
7932
7933 if Error then
7934 return True;
7935 end if;
35ae2ed8 7936
4c46b835
AC
7937 exit when Etype (Anc_Type) = Anc_Type;
7938 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
7939 end loop;
7940
0a36105d
JM
7941 if Present (Matching_Op) then
7942 Set_Etype (Call_Node, Etype (Matching_Op));
7943 end if;
ec6078e3 7944
0a36105d 7945 return Present (Matching_Op);
35ae2ed8
AC
7946 end Try_Class_Wide_Operation;
7947
0a36105d
JM
7948 -----------------------------------
7949 -- Try_One_Prefix_Interpretation --
7950 -----------------------------------
7951
7952 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7953 begin
7954 Obj_Type := T;
7955
7956 if Is_Access_Type (Obj_Type) then
7957 Obj_Type := Designated_Type (Obj_Type);
7958 end if;
7959
7960 if Ekind (Obj_Type) = E_Private_Subtype then
7961 Obj_Type := Base_Type (Obj_Type);
7962 end if;
7963
7964 if Is_Class_Wide_Type (Obj_Type) then
7965 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7966 end if;
7967
7968 -- The type may have be obtained through a limited_with clause,
7969 -- in which case the primitive operations are available on its
401093c1 7970 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
7971
7972 if Ekind (Obj_Type) = E_Incomplete_Type
7b56a91b 7973 and then From_Limited_With (Obj_Type)
0a36105d 7974 then
401093c1 7975 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
7976 end if;
7977
7978 -- If the object is not tagged, or the type is still an incomplete
7979 -- type, this is not a prefixed call.
7980
7981 if not Is_Tagged_Type (Obj_Type)
7982 or else Is_Incomplete_Type (Obj_Type)
7983 then
7984 return;
7985 end if;
7986
11fa950b
AC
7987 declare
7988 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7989 CW_Result : Boolean;
7990 Prim_Result : Boolean;
7991 pragma Unreferenced (CW_Result);
7992
7993 begin
8cf23b91
AC
7994 if not CW_Test_Only then
7995 Prim_Result :=
7996 Try_Primitive_Operation
7997 (Call_Node => New_Call_Node,
7998 Node_To_Replace => Node_To_Replace);
7999 end if;
11fa950b
AC
8000
8001 -- Check if there is a class-wide subprogram covering the
8002 -- primitive. This check must be done even if a candidate
8003 -- was found in order to report ambiguous calls.
8004
8005 if not (Prim_Result) then
8006 CW_Result :=
8007 Try_Class_Wide_Operation
8008 (Call_Node => New_Call_Node,
8009 Node_To_Replace => Node_To_Replace);
8010
8011 -- If we found a primitive we search for class-wide subprograms
8012 -- using a duplicate of the call node (done to avoid missing its
8013 -- decoration if there is no ambiguity).
8014
8015 else
8016 CW_Result :=
8017 Try_Class_Wide_Operation
8018 (Call_Node => Dup_Call_Node,
8019 Node_To_Replace => Node_To_Replace);
8020 end if;
8021 end;
0a36105d
JM
8022 end Try_One_Prefix_Interpretation;
8023
4c46b835
AC
8024 -----------------------------
8025 -- Try_Primitive_Operation --
8026 -----------------------------
35ae2ed8 8027
4c46b835
AC
8028 function Try_Primitive_Operation
8029 (Call_Node : Node_Id;
8030 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 8031 is
6e73e3ab
AC
8032 Elmt : Elmt_Id;
8033 Prim_Op : Entity_Id;
0a36105d
JM
8034 Matching_Op : Entity_Id := Empty;
8035 Prim_Op_Ref : Node_Id := Empty;
8036
8b4230c8 8037 Corr_Type : Entity_Id := Empty;
0a36105d
JM
8038 -- If the prefix is a synchronized type, the controlling type of
8039 -- the primitive operation is the corresponding record type, else
8040 -- this is the object type itself.
8041
8b4230c8 8042 Success : Boolean := False;
35ae2ed8 8043
401093c1
ES
8044 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8045 -- For tagged types the candidate interpretations are found in
8046 -- the list of primitive operations of the type and its ancestors.
8047 -- For formal tagged types we have to find the operations declared
8048 -- in the same scope as the type (including in the generic formal
8049 -- part) because the type itself carries no primitive operations,
8050 -- except for formal derived types that inherit the operations of
8051 -- the parent and progenitors.
8b4230c8 8052 --
d469eabe
HK
8053 -- If the context is a generic subprogram body, the generic formals
8054 -- are visible by name, but are not in the entity list of the
8055 -- subprogram because that list starts with the subprogram formals.
8056 -- We retrieve the candidate operations from the generic declaration.
401093c1 8057
dfcfdc0a
AC
8058 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8059 -- An operation that overrides an inherited operation in the private
8060 -- part of its package may be hidden, but if the inherited operation
8061 -- is visible a direct call to it will dispatch to the private one,
8062 -- which is therefore a valid candidate.
8063
ec6078e3
ES
8064 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8065 -- Verify that the prefix, dereferenced if need be, is a valid
8066 -- controlling argument in a call to Op. The remaining actuals
8067 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 8068
401093c1
ES
8069 ------------------------------
8070 -- Collect_Generic_Type_Ops --
8071 ------------------------------
8072
8073 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8074 Bas : constant Entity_Id := Base_Type (T);
8075 Candidates : constant Elist_Id := New_Elmt_List;
8076 Subp : Entity_Id;
8077 Formal : Entity_Id;
8078
d469eabe
HK
8079 procedure Check_Candidate;
8080 -- The operation is a candidate if its first parameter is a
8081 -- controlling operand of the desired type.
8082
8083 -----------------------
8084 -- Check_Candidate; --
8085 -----------------------
8086
8087 procedure Check_Candidate is
8088 begin
8089 Formal := First_Formal (Subp);
8090
8091 if Present (Formal)
8092 and then Is_Controlling_Formal (Formal)
8093 and then
8094 (Base_Type (Etype (Formal)) = Bas
8095 or else
8096 (Is_Access_Type (Etype (Formal))
8097 and then Designated_Type (Etype (Formal)) = Bas))
8098 then
8099 Append_Elmt (Subp, Candidates);
8100 end if;
8101 end Check_Candidate;
8102
8103 -- Start of processing for Collect_Generic_Type_Ops
8104
401093c1
ES
8105 begin
8106 if Is_Derived_Type (T) then
8107 return Primitive_Operations (T);
8108
bce79204
AC
8109 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8110
d469eabe
HK
8111 -- Scan the list of generic formals to find subprograms
8112 -- that may have a first controlling formal of the type.
8113
8b4230c8
AC
8114 if Nkind (Unit_Declaration_Node (Scope (T))) =
8115 N_Generic_Subprogram_Declaration
bb10b891
AC
8116 then
8117 declare
8118 Decl : Node_Id;
8119
8120 begin
8121 Decl :=
8122 First (Generic_Formal_Declarations
8123 (Unit_Declaration_Node (Scope (T))));
8124 while Present (Decl) loop
8125 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8126 Subp := Defining_Entity (Decl);
8127 Check_Candidate;
8128 end if;
d469eabe 8129
bb10b891
AC
8130 Next (Decl);
8131 end loop;
8132 end;
8133 end if;
d469eabe
HK
8134 return Candidates;
8135
401093c1
ES
8136 else
8137 -- Scan the list of entities declared in the same scope as
8138 -- the type. In general this will be an open scope, given that
8139 -- the call we are analyzing can only appear within a generic
8140 -- declaration or body (either the one that declares T, or a
8141 -- child unit).
8142
bb10b891
AC
8143 -- For a subtype representing a generic actual type, go to the
8144 -- base type.
8145
8146 if Is_Generic_Actual_Type (T) then
8147 Subp := First_Entity (Scope (Base_Type (T)));
8148 else
8149 Subp := First_Entity (Scope (T));
8150 end if;
8151
401093c1
ES
8152 while Present (Subp) loop
8153 if Is_Overloadable (Subp) then
d469eabe 8154 Check_Candidate;
401093c1
ES
8155 end if;
8156
8157 Next_Entity (Subp);
8158 end loop;
8159
8160 return Candidates;
8161 end if;
8162 end Collect_Generic_Type_Ops;
8163
dfcfdc0a
AC
8164 ---------------------------
8165 -- Is_Private_Overriding --
8166 ---------------------------
8167
8168 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8169 Visible_Op : constant Entity_Id := Homonym (Op);
8170
8171 begin
8172 return Present (Visible_Op)
6465b6a7 8173 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
8174 and then not Comes_From_Source (Visible_Op)
8175 and then Alias (Visible_Op) = Op
8176 and then not Is_Hidden (Visible_Op);
8177 end Is_Private_Overriding;
8178
ec6078e3
ES
8179 -----------------------------
8180 -- Valid_First_Argument_Of --
8181 -----------------------------
35ae2ed8 8182
ec6078e3 8183 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 8184 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 8185
ec6078e3 8186 begin
9febb58f
JM
8187 if Is_Concurrent_Type (Typ)
8188 and then Present (Corresponding_Record_Type (Typ))
8189 then
8190 Typ := Corresponding_Record_Type (Typ);
8191 end if;
8192
d469eabe
HK
8193 -- Simple case. Object may be a subtype of the tagged type or
8194 -- may be the corresponding record of a synchronized type.
5d09245e 8195
aab883ec 8196 return Obj_Type = Typ
d469eabe 8197 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
8198 or else Corr_Type = Typ
8199
8200 -- Prefix can be dereferenced
725e2a15 8201
ec6078e3 8202 or else
0a36105d
JM
8203 (Is_Access_Type (Corr_Type)
8204 and then Designated_Type (Corr_Type) = Typ)
5d09245e 8205
0a36105d
JM
8206 -- Formal is an access parameter, for which the object
8207 -- can provide an access.
35ae2ed8 8208
ec6078e3
ES
8209 or else
8210 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
8211 and then
8212 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 8213 end Valid_First_Argument_Of;
35ae2ed8 8214
ec6078e3 8215 -- Start of processing for Try_Primitive_Operation
35ae2ed8 8216
ec6078e3 8217 begin
d469eabe 8218 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
8219 -- must be identical, and the kind of call indicates the expected
8220 -- kind of operation (function or procedure). If the type is a
d469eabe 8221 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 8222 -- corresponding record (base) type.
aab883ec
ES
8223
8224 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
8225 if Present (Corresponding_Record_Type (Obj_Type)) then
8226 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8227 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8228 else
8229 Corr_Type := Obj_Type;
8230 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
8231 end if;
8232
401093c1 8233 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 8234 Corr_Type := Obj_Type;
aab883ec 8235 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
401093c1
ES
8236
8237 else
8238 Corr_Type := Obj_Type;
8239 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 8240 end if;
35ae2ed8 8241
ec6078e3
ES
8242 while Present (Elmt) loop
8243 Prim_Op := Node (Elmt);
8244
8245 if Chars (Prim_Op) = Chars (Subprog)
8246 and then Present (First_Formal (Prim_Op))
8247 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 8248 and then
7415029d 8249 (Nkind (Call_Node) = N_Function_Call)
8b4230c8
AC
8250 =
8251 (Ekind (Prim_Op) = E_Function)
ec6078e3 8252 then
b67a385c 8253 -- Ada 2005 (AI-251): If this primitive operation corresponds
8b4230c8 8254 -- to an immediate ancestor interface there is no need to add
b67a385c
ES
8255 -- it to the list of interpretations; the corresponding aliased
8256 -- primitive is also in this list of primitive operations and
8257 -- will be used instead.
fe45e59e 8258
ce2b6ba5
JM
8259 if (Present (Interface_Alias (Prim_Op))
8260 and then Is_Ancestor (Find_Dispatching_Type
8261 (Alias (Prim_Op)), Corr_Type))
0a36105d 8262
dfcfdc0a
AC
8263 -- Do not consider hidden primitives unless the type is in an
8264 -- open scope or we are within an instance, where visibility
8265 -- is known to be correct, or else if this is an overriding
8266 -- operation in the private part for an inherited operation.
0a36105d 8267
dfcfdc0a
AC
8268 or else (Is_Hidden (Prim_Op)
8269 and then not Is_Immediately_Visible (Obj_Type)
8270 and then not In_Instance
8271 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
8272 then
8273 goto Continue;
8274 end if;
8275
0a36105d
JM
8276 Set_Etype (Call_Node, Any_Type);
8277 Set_Is_Overloaded (Call_Node, False);
8278
8279 if No (Matching_Op) then
e4494292 8280 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
b67a385c 8281 Candidate := Prim_Op;
35ae2ed8 8282
fe45e59e 8283 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 8284
fe45e59e 8285 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 8286 Success := False;
35ae2ed8 8287
fe45e59e
ES
8288 Analyze_One_Call
8289 (N => Call_Node,
8290 Nam => Prim_Op,
b67a385c 8291 Report => Report_Error,
fe45e59e
ES
8292 Success => Success,
8293 Skip_First => True);
35ae2ed8 8294
0a36105d 8295 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 8296
d469eabe
HK
8297 -- More than one interpretation, collect for subsequent
8298 -- disambiguation. If this is a procedure call and there
8299 -- is another match, report ambiguity now.
0a36105d 8300
d469eabe 8301 else
0a36105d
JM
8302 Analyze_One_Call
8303 (N => Call_Node,
8304 Nam => Prim_Op,
8305 Report => Report_Error,
8306 Success => Success,
8307 Skip_First => True);
fe45e59e 8308
0a36105d
JM
8309 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8310 and then Nkind (Call_Node) /= N_Function_Call
8311 then
ed2233dc 8312 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
8313 Report_Ambiguity (Matching_Op);
8314 Report_Ambiguity (Prim_Op);
8315 return True;
8316 end if;
4c46b835
AC
8317 end if;
8318 end if;
35ae2ed8 8319
fe45e59e 8320 <<Continue>>
4c46b835
AC
8321 Next_Elmt (Elmt);
8322 end loop;
35ae2ed8 8323
0a36105d
JM
8324 if Present (Matching_Op) then
8325 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
8326 end if;
8327
0a36105d 8328 return Present (Matching_Op);
4c46b835 8329 end Try_Primitive_Operation;
35ae2ed8 8330
4c46b835 8331 -- Start of processing for Try_Object_Operation
35ae2ed8 8332
4c46b835 8333 begin
0a36105d 8334 Analyze_Expression (Obj);
ec6078e3 8335
0a36105d 8336 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
8337
8338 if Is_Subprg_Call and then N = Name (Parent (N)) then
8339 Actual := First (Parameter_Associations (Parent (N)));
8340 while Present (Actual) loop
725e2a15 8341 Analyze_Expression (Actual);
28d6470f
JM
8342 Next (Actual);
8343 end loop;
8344 end if;
5d09245e 8345
ec6078e3
ES
8346 -- Build a subprogram call node, using a copy of Obj as its first
8347 -- actual. This is a placeholder, to be replaced by an explicit
8348 -- dereference when needed.
4c46b835 8349
ec6078e3
ES
8350 Transform_Object_Operation
8351 (Call_Node => New_Call_Node,
0a36105d 8352 Node_To_Replace => Node_To_Replace);
4c46b835 8353
ec6078e3 8354 Set_Etype (New_Call_Node, Any_Type);
0a36105d 8355 Set_Etype (Subprog, Any_Type);
ec6078e3 8356 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 8357
0a36105d
JM
8358 if not Is_Overloaded (Obj) then
8359 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 8360
0a36105d
JM
8361 else
8362 declare
8363 I : Interp_Index;
8364 It : Interp;
8365 begin
8366 Get_First_Interp (Obj, I, It);
8367 while Present (It.Nam) loop
8368 Try_One_Prefix_Interpretation (It.Typ);
8369 Get_Next_Interp (I, It);
8370 end loop;
8371 end;
8372 end if;
8373
8374 if Etype (New_Call_Node) /= Any_Type then
8cf23b91
AC
8375
8376 -- No need to complete the tree transformations if we are only
8377 -- searching for conflicting class-wide subprograms
8378
8379 if CW_Test_Only then
8380 return False;
8381 else
8382 Complete_Object_Operation
8383 (Call_Node => New_Call_Node,
8384 Node_To_Replace => Node_To_Replace);
8385 return True;
8386 end if;
b67a385c
ES
8387
8388 elsif Present (Candidate) then
8389
8390 -- The argument list is not type correct. Re-analyze with error
8391 -- reporting enabled, and use one of the possible candidates.
d469eabe 8392 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
8393
8394 if All_Errors_Mode then
8395 Report_Error := True;
8396 if Try_Primitive_Operation
8b4230c8
AC
8397 (Call_Node => New_Call_Node,
8398 Node_To_Replace => Node_To_Replace)
b67a385c
ES
8399
8400 or else
8401 Try_Class_Wide_Operation
8402 (Call_Node => New_Call_Node,
8403 Node_To_Replace => Node_To_Replace)
8404 then
8405 null;
8406 end if;
8407
8408 else
8409 Analyze_One_Call
8410 (N => New_Call_Node,
8411 Nam => Candidate,
8412 Report => True,
8413 Success => Success,
8414 Skip_First => True);
8415 end if;
8416
d469eabe
HK
8417 -- No need for further errors
8418
8419 return True;
b67a385c
ES
8420
8421 else
8422 -- There was no candidate operation, so report it as an error
8423 -- in the caller: Analyze_Selected_Component.
8424
8425 return False;
8426 end if;
35ae2ed8
AC
8427 end Try_Object_Operation;
8428
b4592168
GD
8429 ---------
8430 -- wpo --
8431 ---------
8432
8433 procedure wpo (T : Entity_Id) is
8434 Op : Entity_Id;
8435 E : Elmt_Id;
8436
8437 begin
8438 if not Is_Tagged_Type (T) then
8439 return;
8440 end if;
8441
8442 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8443 while Present (E) loop
8444 Op := Node (E);
8445 Write_Int (Int (Op));
8446 Write_Str (" === ");
8447 Write_Name (Chars (Op));
8448 Write_Str (" in ");
8449 Write_Name (Chars (Scope (Op)));
8450 Next_Elmt (E);
8451 Write_Eol;
8452 end loop;
8453 end wpo;
8454
996ae0b0 8455end Sem_Ch4;