]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
[Ada] Get rid of more references to Universal_Integer in expanded code
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
8d9254fc 2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9dcd6f09 9 the Free Software Foundation; either version 3, or (at your option)
f8032688
MM
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
9dcd6f09
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
f8032688
MM
20
21/* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
29
a1f300c0 30 The algorithm computes this dominator tree implicitly by computing for
f8032688 31 each block its immediate dominator. We use tree balancing and path
f3b569ca 32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
33 slowly growing functional inverse of the Ackerman function. */
34
35#include "config.h"
36#include "system.h"
4977bab6 37#include "coretypes.h"
c7131fb2 38#include "backend.h"
74c96e0c 39#include "timevar.h"
957060b5
AM
40#include "diagnostic-core.h"
41#include "cfganal.h"
42#include "et-forest.h"
66f97d31 43#include "graphds.h"
f8032688 44
f8032688
MM
45/* We name our nodes with integers, beginning with 1. Zero is reserved for
46 'undefined' or 'end of list'. The name of each node is given by the dfs
47 number of the corresponding basic block. Please note, that we include the
48 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 49 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
50
51/* Type of Basic Block aka. TBB */
52typedef unsigned int TBB;
53
2321dd91 54namespace {
f8032688 55
2321dd91
MM
56/* This class holds various arrays reflecting the (sub)structure of the
57 flowgraph. Most of them are of type TBB and are also indexed by TBB. */
58
59class dom_info
f8032688 60{
2321dd91
MM
61public:
62 dom_info (function *, cdi_direction);
1d30acf6 63 dom_info (vec <basic_block>, cdi_direction);
2321dd91
MM
64 ~dom_info ();
65 void calc_dfs_tree ();
66 void calc_idoms ();
67
68 inline basic_block get_idom (basic_block);
69private:
70 void calc_dfs_tree_nonrec (basic_block);
71 void compress (TBB);
1d30acf6 72 void dom_init (void);
2321dd91
MM
73 TBB eval (TBB);
74 void link_roots (TBB, TBB);
75
f8032688 76 /* The parent of a node in the DFS tree. */
2321dd91
MM
77 TBB *m_dfs_parent;
78 /* For a node x m_key[x] is roughly the node nearest to the root from which
f8032688
MM
79 exists a way to x only over nodes behind x. Such a node is also called
80 semidominator. */
2321dd91
MM
81 TBB *m_key;
82 /* The value in m_path_min[x] is the node y on the path from x to the root of
83 the tree x is in with the smallest m_key[y]. */
84 TBB *m_path_min;
85 /* m_bucket[x] points to the first node of the set of nodes having x as
86 key. */
87 TBB *m_bucket;
88 /* And m_next_bucket[x] points to the next node. */
89 TBB *m_next_bucket;
90 /* After the algorithm is done, m_dom[x] contains the immediate dominator
f8032688 91 of x. */
2321dd91 92 TBB *m_dom;
f8032688
MM
93
94 /* The following few fields implement the structures needed for disjoint
95 sets. */
2321dd91
MM
96 /* m_set_chain[x] is the next node on the path from x to the representative
97 of the set containing x. If m_set_chain[x]==0 then x is a root. */
98 TBB *m_set_chain;
99 /* m_set_size[x] is the number of elements in the set named by x. */
100 unsigned int *m_set_size;
101 /* m_set_child[x] is used for balancing the tree representing a set. It can
f8032688 102 be understood as the next sibling of x. */
2321dd91 103 TBB *m_set_child;
f8032688 104
2321dd91 105 /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
f8032688
MM
106 number of that node in DFS order counted from 1. This is an index
107 into most of the other arrays in this structure. */
2321dd91
MM
108 TBB *m_dfs_order;
109 /* Points to last element in m_dfs_order array. */
110 TBB *m_dfs_last;
09da1532 111 /* If x is the DFS-index of a node which corresponds with a basic block,
2321dd91
MM
112 m_dfs_to_bb[x] is that basic block. Note, that in our structure there are
113 more nodes that basic blocks, so only
114 m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
115 but not the opposite. */
116 basic_block *m_dfs_to_bb;
f8032688 117
26e0e410 118 /* This is the next free DFS number when creating the DFS tree. */
2321dd91
MM
119 unsigned int m_dfsnum;
120 /* The number of nodes in the DFS tree (==m_dfsnum-1). */
121 unsigned int m_nodes;
26e0e410
RH
122
123 /* Blocks with bits set here have a fake edge to EXIT. These are used
124 to turn a DFS forest into a proper tree. */
2321dd91
MM
125 bitmap m_fake_exit_edge;
126
127 /* Number of basic blocks in the function being compiled. */
8e640712 128 unsigned m_n_basic_blocks;
2321dd91
MM
129
130 /* True, if we are computing postdominators (rather than dominators). */
131 bool m_reverse;
132
133 /* Start block (the entry block for forward problem, exit block for backward
134 problem). */
135 basic_block m_start_block;
136 /* Ending block. */
137 basic_block m_end_block;
f8032688
MM
138};
139
2321dd91 140} // anonymous namespace
f8032688 141
2321dd91
MM
142void debug_dominance_info (cdi_direction);
143void debug_dominance_tree (cdi_direction, basic_block);
144
145/* Allocate and zero-initialize NUM elements of type T (T must be a
146 POD-type). Note: after transition to C++11 or later,
147 `x = new_zero_array <T> (num);' can be replaced with
148 `x = new T[num] {};'. */
149
150template<typename T>
8e640712 151inline T *new_zero_array (unsigned num)
2321dd91
MM
152{
153 T *result = new T[num];
154 memset (result, 0, sizeof (T) * num);
155 return result;
156}
157
1d30acf6 158/* Helper function for constructors to initialize a part of class members. */
2321dd91 159
1d30acf6
YR
160void
161dom_info::dom_init (void)
f8032688 162{
8e640712
MS
163 unsigned num = m_n_basic_blocks;
164
2321dd91
MM
165 m_dfs_parent = new_zero_array <TBB> (num);
166 m_dom = new_zero_array <TBB> (num);
167
168 m_path_min = new TBB[num];
169 m_key = new TBB[num];
170 m_set_size = new unsigned int[num];
8e640712 171 for (unsigned i = 0; i < num; i++)
2321dd91
MM
172 {
173 m_path_min[i] = m_key[i] = i;
174 m_set_size[i] = 1;
175 }
f8032688 176
2321dd91
MM
177 m_bucket = new_zero_array <TBB> (num);
178 m_next_bucket = new_zero_array <TBB> (num);
f8032688 179
2321dd91
MM
180 m_set_chain = new_zero_array <TBB> (num);
181 m_set_child = new_zero_array <TBB> (num);
f8032688 182
2321dd91 183 m_dfs_to_bb = new_zero_array <basic_block> (num);
f8032688 184
2321dd91
MM
185 m_dfsnum = 1;
186 m_nodes = 0;
1d30acf6
YR
187}
188
189/* Allocate all needed memory in a pessimistic fashion (so we round up). */
190
191dom_info::dom_info (function *fn, cdi_direction dir)
192{
193 m_n_basic_blocks = n_basic_blocks_for_fn (fn);
194
195 dom_init ();
196
197 unsigned last_bb_index = last_basic_block_for_fn (fn);
198 m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
199 m_dfs_last = &m_dfs_order[last_bb_index];
26e0e410 200
2b28c07a
JC
201 switch (dir)
202 {
203 case CDI_DOMINATORS:
2321dd91
MM
204 m_reverse = false;
205 m_fake_exit_edge = NULL;
206 m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
207 m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
2b28c07a
JC
208 break;
209 case CDI_POST_DOMINATORS:
2321dd91
MM
210 m_reverse = true;
211 m_fake_exit_edge = BITMAP_ALLOC (NULL);
212 m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
213 m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
2b28c07a
JC
214 break;
215 default:
216 gcc_unreachable ();
2b28c07a 217 }
f8032688
MM
218}
219
1d30acf6
YR
220/* Constructor for reducible region REGION. */
221
222dom_info::dom_info (vec<basic_block> region, cdi_direction dir)
223{
224 m_n_basic_blocks = region.length ();
8e640712 225 unsigned nm1 = m_n_basic_blocks - 1;
1d30acf6
YR
226
227 dom_init ();
228
229 /* Determine max basic block index in region. */
230 int max_index = region[0]->index;
8e640712 231 for (unsigned i = 1; i <= nm1; i++)
1d30acf6
YR
232 if (region[i]->index > max_index)
233 max_index = region[i]->index;
234 max_index += 1; /* set index on the first bb out of region. */
235
236 m_dfs_order = new_zero_array <TBB> (max_index + 1);
237 m_dfs_last = &m_dfs_order[max_index];
238
239 m_fake_exit_edge = NULL; /* Assume that region is reducible. */
240
241 switch (dir)
242 {
243 case CDI_DOMINATORS:
244 m_reverse = false;
245 m_start_block = region[0];
246 m_end_block = region[nm1];
247 break;
248 case CDI_POST_DOMINATORS:
249 m_reverse = true;
250 m_start_block = region[nm1];
251 m_end_block = region[0];
252 break;
253 default:
254 gcc_unreachable ();
255 }
256}
257
2321dd91
MM
258inline basic_block
259dom_info::get_idom (basic_block bb)
260{
261 TBB d = m_dom[m_dfs_order[bb->index]];
262 return m_dfs_to_bb[d];
263}
f8032688 264
2b28c07a
JC
265/* Map dominance calculation type to array index used for various
266 dominance information arrays. This version is simple -- it will need
267 to be modified, obviously, if additional values are added to
268 cdi_direction. */
269
2321dd91
MM
270static inline unsigned int
271dom_convert_dir_to_idx (cdi_direction dir)
2b28c07a 272{
2ba31c05 273 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
2b28c07a
JC
274 return dir - 1;
275}
276
2321dd91 277/* Free all allocated memory in dom_info. */
f8032688 278
2321dd91 279dom_info::~dom_info ()
f8032688 280{
2321dd91
MM
281 delete[] m_dfs_parent;
282 delete[] m_path_min;
283 delete[] m_key;
284 delete[] m_dom;
285 delete[] m_bucket;
286 delete[] m_next_bucket;
287 delete[] m_set_chain;
288 delete[] m_set_size;
289 delete[] m_set_child;
290 delete[] m_dfs_order;
291 delete[] m_dfs_to_bb;
292 BITMAP_FREE (m_fake_exit_edge);
f8032688
MM
293}
294
2321dd91
MM
295/* The nonrecursive variant of creating a DFS tree. BB is the starting basic
296 block for this tree and m_reverse is true, if predecessors should be visited
297 instead of successors of a node. After this is done all nodes reachable
298 from BB were visited, have assigned their dfs number and are linked together
299 to form a tree. */
f8032688 300
2321dd91
MM
301void
302dom_info::calc_dfs_tree_nonrec (basic_block bb)
f8032688 303{
2321dd91
MM
304 edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
305 int sp = 0;
1d30acf6
YR
306 unsigned d_i = dom_convert_dir_to_idx (m_reverse ? CDI_POST_DOMINATORS
307 : CDI_DOMINATORS);
f8032688 308
2321dd91
MM
309 /* Initialize the first edge. */
310 edge_iterator ei = m_reverse ? ei_start (bb->preds)
311 : ei_start (bb->succs);
f8032688
MM
312
313 /* When the stack is empty we break out of this loop. */
314 while (1)
315 {
316 basic_block bn;
2321dd91 317 edge_iterator einext;
f8032688
MM
318
319 /* This loop traverses edges e in depth first manner, and fills the
320 stack. */
628f6a4e 321 while (!ei_end_p (ei))
f8032688 322 {
2321dd91 323 edge e = ei_edge (ei);
f8032688
MM
324
325 /* Deduce from E the current and the next block (BB and BN), and the
326 next edge. */
2321dd91 327 if (m_reverse)
f8032688
MM
328 {
329 bn = e->src;
330
331 /* If the next node BN is either already visited or a border
1d30acf6
YR
332 block or out of region the current edge is useless, and simply
333 overwritten with the next edge out of the current node. */
334 if (bn == m_end_block || bn->dom[d_i] == NULL
335 || m_dfs_order[bn->index])
f8032688 336 {
628f6a4e 337 ei_next (&ei);
f8032688
MM
338 continue;
339 }
340 bb = e->dest;
628f6a4e 341 einext = ei_start (bn->preds);
f8032688
MM
342 }
343 else
344 {
345 bn = e->dest;
1d30acf6
YR
346 if (bn == m_end_block || bn->dom[d_i] == NULL
347 || m_dfs_order[bn->index])
f8032688 348 {
628f6a4e 349 ei_next (&ei);
f8032688
MM
350 continue;
351 }
352 bb = e->src;
628f6a4e 353 einext = ei_start (bn->succs);
f8032688
MM
354 }
355
2321dd91 356 gcc_assert (bn != m_start_block);
f8032688
MM
357
358 /* Fill the DFS tree info calculatable _before_ recursing. */
2321dd91
MM
359 TBB my_i;
360 if (bb != m_start_block)
361 my_i = m_dfs_order[bb->index];
f8032688 362 else
2321dd91
MM
363 my_i = *m_dfs_last;
364 TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
365 m_dfs_to_bb[child_i] = bn;
366 m_dfs_parent[child_i] = my_i;
f8032688
MM
367
368 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
369 stack[sp++] = ei;
370 ei = einext;
f8032688
MM
371 }
372
373 if (!sp)
374 break;
628f6a4e 375 ei = stack[--sp];
f8032688
MM
376
377 /* OK. The edge-list was exhausted, meaning normally we would
378 end the recursion. After returning from the recursive call,
379 there were (may be) other statements which were run after a
380 child node was completely considered by DFS. Here is the
381 point to do it in the non-recursive variant.
382 E.g. The block just completed is in e->dest for forward DFS,
383 the block not yet completed (the parent of the one above)
384 in e->src. This could be used e.g. for computing the number of
385 descendants or the tree depth. */
628f6a4e 386 ei_next (&ei);
f8032688 387 }
2321dd91 388 delete[] stack;
f8032688
MM
389}
390
2321dd91
MM
391/* The main entry for calculating the DFS tree or forest. m_reverse is true,
392 if we are interested in the reverse flow graph. In that case the result is
393 not necessarily a tree but a forest, because there may be nodes from which
394 the EXIT_BLOCK is unreachable. */
f8032688 395
2321dd91
MM
396void
397dom_info::calc_dfs_tree ()
f8032688 398{
2321dd91
MM
399 *m_dfs_last = m_dfsnum;
400 m_dfs_to_bb[m_dfsnum] = m_start_block;
401 m_dfsnum++;
f8032688 402
2321dd91 403 calc_dfs_tree_nonrec (m_start_block);
f8032688 404
1d30acf6 405 if (m_fake_exit_edge)
f8032688
MM
406 {
407 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
408 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
409 nodes, but in post-dom we have to deal with them.
410
411 There are two situations in which this occurs. First, noreturn
412 functions. Second, infinite loops. In the first case we need to
413 pretend that there is an edge to the exit block. In the second
414 case, we wind up with a forest. We need to process all noreturn
415 blocks before we know if we've got any infinite loops. */
416
e0082a72 417 basic_block b;
26e0e410
RH
418 bool saw_unconnected = false;
419
2321dd91 420 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
f8032688 421 {
628f6a4e 422 if (EDGE_COUNT (b->succs) > 0)
26e0e410 423 {
2321dd91 424 if (m_dfs_order[b->index] == 0)
26e0e410
RH
425 saw_unconnected = true;
426 continue;
427 }
2321dd91
MM
428 bitmap_set_bit (m_fake_exit_edge, b->index);
429 m_dfs_order[b->index] = m_dfsnum;
430 m_dfs_to_bb[m_dfsnum] = b;
431 m_dfs_parent[m_dfsnum] = *m_dfs_last;
432 m_dfsnum++;
433 calc_dfs_tree_nonrec (b);
f8032688 434 }
26e0e410
RH
435
436 if (saw_unconnected)
437 {
2321dd91 438 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
26e0e410 439 {
2321dd91 440 if (m_dfs_order[b->index])
26e0e410 441 continue;
2321dd91
MM
442 basic_block b2 = dfs_find_deadend (b);
443 gcc_checking_assert (m_dfs_order[b2->index] == 0);
444 bitmap_set_bit (m_fake_exit_edge, b2->index);
445 m_dfs_order[b2->index] = m_dfsnum;
446 m_dfs_to_bb[m_dfsnum] = b2;
447 m_dfs_parent[m_dfsnum] = *m_dfs_last;
448 m_dfsnum++;
449 calc_dfs_tree_nonrec (b2);
450 gcc_checking_assert (m_dfs_order[b->index]);
26e0e410
RH
451 }
452 }
f8032688
MM
453 }
454
2321dd91 455 m_nodes = m_dfsnum - 1;
f8032688 456
24bd1a0b 457 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
2321dd91 458 gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
f8032688
MM
459}
460
461/* Compress the path from V to the root of its set and update path_min at the
462 same time. After compress(di, V) set_chain[V] is the root of the set V is
463 in and path_min[V] is the node with the smallest key[] value on the path
464 from V to that root. */
465
2321dd91
MM
466void
467dom_info::compress (TBB v)
f8032688
MM
468{
469 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
470 greater than 5 even for huge graphs (I've not seen call depth > 4).
471 Also performance wise compress() ranges _far_ behind eval(). */
2321dd91
MM
472 TBB parent = m_set_chain[v];
473 if (m_set_chain[parent])
f8032688 474 {
2321dd91
MM
475 compress (parent);
476 if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
477 m_path_min[v] = m_path_min[parent];
478 m_set_chain[v] = m_set_chain[parent];
f8032688
MM
479 }
480}
481
482/* Compress the path from V to the set root of V if needed (when the root has
483 changed since the last call). Returns the node with the smallest key[]
484 value on the path from V to the root. */
485
2321dd91
MM
486inline TBB
487dom_info::eval (TBB v)
f8032688 488{
fa10beec 489 /* The representative of the set V is in, also called root (as the set
f8032688 490 representation is a tree). */
2321dd91 491 TBB rep = m_set_chain[v];
f8032688
MM
492
493 /* V itself is the root. */
494 if (!rep)
2321dd91 495 return m_path_min[v];
f8032688
MM
496
497 /* Compress only if necessary. */
2321dd91 498 if (m_set_chain[rep])
f8032688 499 {
2321dd91
MM
500 compress (v);
501 rep = m_set_chain[v];
f8032688
MM
502 }
503
2321dd91
MM
504 if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
505 return m_path_min[v];
f8032688 506 else
2321dd91 507 return m_path_min[rep];
f8032688
MM
508}
509
510/* This essentially merges the two sets of V and W, giving a single set with
511 the new root V. The internal representation of these disjoint sets is a
512 balanced tree. Currently link(V,W) is only used with V being the parent
513 of W. */
514
2321dd91
MM
515void
516dom_info::link_roots (TBB v, TBB w)
f8032688
MM
517{
518 TBB s = w;
519
520 /* Rebalance the tree. */
2321dd91 521 while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
f8032688 522 {
2321dd91
MM
523 if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
524 >= 2 * m_set_size[m_set_child[s]])
f8032688 525 {
2321dd91
MM
526 m_set_chain[m_set_child[s]] = s;
527 m_set_child[s] = m_set_child[m_set_child[s]];
f8032688
MM
528 }
529 else
530 {
2321dd91
MM
531 m_set_size[m_set_child[s]] = m_set_size[s];
532 s = m_set_chain[s] = m_set_child[s];
f8032688
MM
533 }
534 }
535
2321dd91
MM
536 m_path_min[s] = m_path_min[w];
537 m_set_size[v] += m_set_size[w];
538 if (m_set_size[v] < 2 * m_set_size[w])
539 std::swap (m_set_child[v], s);
f8032688
MM
540
541 /* Merge all subtrees. */
542 while (s)
543 {
2321dd91
MM
544 m_set_chain[s] = v;
545 s = m_set_child[s];
f8032688
MM
546 }
547}
548
2321dd91
MM
549/* This calculates the immediate dominators (or post-dominators). THIS is our
550 working structure and should hold the DFS forest.
551 On return the immediate dominator to node V is in m_dom[V]. */
f8032688 552
2321dd91
MM
553void
554dom_info::calc_idoms ()
f8032688 555{
f8032688 556 /* Go backwards in DFS order, to first look at the leafs. */
2321dd91 557 for (TBB v = m_nodes; v > 1; v--)
f8032688 558 {
2321dd91 559 basic_block bb = m_dfs_to_bb[v];
628f6a4e 560 edge e;
f8032688 561
2321dd91
MM
562 TBB par = m_dfs_parent[v];
563 TBB k = v;
628f6a4e 564
2321dd91
MM
565 edge_iterator ei = m_reverse ? ei_start (bb->succs)
566 : ei_start (bb->preds);
567 edge_iterator einext;
628f6a4e 568
1d30acf6 569 if (m_fake_exit_edge)
26e0e410 570 {
26e0e410 571 /* If this block has a fake edge to exit, process that first. */
2321dd91 572 if (bitmap_bit_p (m_fake_exit_edge, bb->index))
26e0e410 573 {
628f6a4e
BE
574 einext = ei;
575 einext.index = 0;
26e0e410
RH
576 goto do_fake_exit_edge;
577 }
578 }
f8032688
MM
579
580 /* Search all direct predecessors for the smallest node with a path
581 to them. That way we have the smallest node with also a path to
582 us only over nodes behind us. In effect we search for our
583 semidominator. */
628f6a4e 584 while (!ei_end_p (ei))
f8032688 585 {
f8032688 586 basic_block b;
2321dd91 587 TBB k1;
f8032688 588
628f6a4e 589 e = ei_edge (ei);
2321dd91 590 b = m_reverse ? e->dest : e->src;
628f6a4e
BE
591 einext = ei;
592 ei_next (&einext);
593
2321dd91 594 if (b == m_start_block)
26e0e410
RH
595 {
596 do_fake_exit_edge:
2321dd91 597 k1 = *m_dfs_last;
26e0e410 598 }
f8032688 599 else
2321dd91 600 k1 = m_dfs_order[b->index];
f8032688
MM
601
602 /* Call eval() only if really needed. If k1 is above V in DFS tree,
603 then we know, that eval(k1) == k1 and key[k1] == k1. */
604 if (k1 > v)
2321dd91 605 k1 = m_key[eval (k1)];
f8032688
MM
606 if (k1 < k)
607 k = k1;
628f6a4e
BE
608
609 ei = einext;
f8032688
MM
610 }
611
2321dd91
MM
612 m_key[v] = k;
613 link_roots (par, v);
614 m_next_bucket[v] = m_bucket[k];
615 m_bucket[k] = v;
f8032688
MM
616
617 /* Transform semidominators into dominators. */
2321dd91 618 for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
f8032688 619 {
2321dd91
MM
620 k = eval (w);
621 if (m_key[k] < m_key[w])
622 m_dom[w] = k;
f8032688 623 else
2321dd91 624 m_dom[w] = par;
f8032688
MM
625 }
626 /* We don't need to cleanup next_bucket[]. */
2321dd91 627 m_bucket[par] = 0;
f8032688
MM
628 }
629
a1f300c0 630 /* Explicitly define the dominators. */
2321dd91
MM
631 m_dom[1] = 0;
632 for (TBB v = 2; v <= m_nodes; v++)
633 if (m_dom[v] != m_key[v])
634 m_dom[v] = m_dom[m_dom[v]];
f8032688
MM
635}
636
d47cc544
SB
637/* Assign dfs numbers starting from NUM to NODE and its sons. */
638
639static void
640assign_dfs_numbers (struct et_node *node, int *num)
641{
642 struct et_node *son;
643
644 node->dfs_num_in = (*num)++;
645
646 if (node->son)
647 {
648 assign_dfs_numbers (node->son, num);
649 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 650 assign_dfs_numbers (son, num);
d47cc544 651 }
f8032688 652
d47cc544
SB
653 node->dfs_num_out = (*num)++;
654}
f8032688 655
5d3cc252 656/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 657 static dominator tree. */
f8032688 658
d47cc544
SB
659static void
660compute_dom_fast_query (enum cdi_direction dir)
661{
662 int num = 0;
663 basic_block bb;
2b28c07a 664 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 665
2ba31c05 666 gcc_checking_assert (dom_info_available_p (dir));
d47cc544 667
2b28c07a 668 if (dom_computed[dir_index] == DOM_OK)
d47cc544
SB
669 return;
670
04a90bec 671 FOR_ALL_BB_FN (bb, cfun)
d47cc544 672 {
2b28c07a
JC
673 if (!bb->dom[dir_index]->father)
674 assign_dfs_numbers (bb->dom[dir_index], &num);
d47cc544
SB
675 }
676
2b28c07a 677 dom_computed[dir_index] = DOM_OK;
d47cc544
SB
678}
679
1d30acf6
YR
680/* Analogous to the previous function but compute the data for reducible
681 region REGION. */
682
683static void
684compute_dom_fast_query_in_region (enum cdi_direction dir,
685 vec<basic_block> region)
686{
687 int num = 0;
688 basic_block bb;
689 unsigned int dir_index = dom_convert_dir_to_idx (dir);
690
691 gcc_checking_assert (dom_info_available_p (dir));
692
693 if (dom_computed[dir_index] == DOM_OK)
694 return;
695
696 /* Assign dfs numbers for region nodes except for entry and exit nodes. */
697 for (unsigned int i = 1; i < region.length () - 1; i++)
698 {
699 bb = region[i];
700 if (!bb->dom[dir_index]->father)
701 assign_dfs_numbers (bb->dom[dir_index], &num);
702 }
703
704 dom_computed[dir_index] = DOM_OK;
705}
706
d47cc544
SB
707/* The main entry point into this module. DIR is set depending on whether
708 we want to compute dominators or postdominators. */
709
710void
2321dd91 711calculate_dominance_info (cdi_direction dir)
f8032688 712{
2b28c07a 713 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 714
2b28c07a 715 if (dom_computed[dir_index] == DOM_OK)
f3c676e1 716 {
b2b29377 717 checking_verify_dominators (dir);
f3c676e1
TV
718 return;
719 }
355be0dc 720
74c96e0c 721 timevar_push (TV_DOMINANCE);
fce22de5 722 if (!dom_info_available_p (dir))
d47cc544 723 {
2b28c07a 724 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
f8032688 725
2321dd91 726 basic_block b;
04a90bec 727 FOR_ALL_BB_FN (b, cfun)
d47cc544 728 {
2b28c07a 729 b->dom[dir_index] = et_new_tree (b);
d47cc544 730 }
0cae8d31 731 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
f8032688 732
2321dd91
MM
733 dom_info di (cfun, dir);
734 di.calc_dfs_tree ();
735 di.calc_idoms ();
355be0dc 736
11cd3bed 737 FOR_EACH_BB_FN (b, cfun)
d47cc544 738 {
2321dd91
MM
739 if (basic_block d = di.get_idom (b))
740 et_set_father (b->dom[dir_index], d->dom[dir_index]);
d47cc544 741 }
e0082a72 742
2b28c07a 743 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc 744 }
4081bdd2 745 else
b2b29377 746 checking_verify_dominators (dir);
355be0dc 747
d47cc544 748 compute_dom_fast_query (dir);
74c96e0c
ZD
749
750 timevar_pop (TV_DOMINANCE);
355be0dc
JH
751}
752
1d30acf6
YR
753/* Analogous to the previous function but compute dominance info for regions
754 which are single entry, multiple exit regions for CDI_DOMINATORs and
755 multiple entry, single exit regions for CDI_POST_DOMINATORs. */
756
757void
758calculate_dominance_info_for_region (cdi_direction dir,
759 vec<basic_block> region)
760{
761 unsigned int dir_index = dom_convert_dir_to_idx (dir);
762 basic_block bb;
763 unsigned int i;
764
765 if (dom_computed[dir_index] == DOM_OK)
766 return;
767
768 timevar_push (TV_DOMINANCE);
769 /* Assume that dom info is not partially computed. */
770 gcc_assert (!dom_info_available_p (dir));
771
772 FOR_EACH_VEC_ELT (region, i, bb)
773 {
774 bb->dom[dir_index] = et_new_tree (bb);
775 }
776 dom_info di (region, dir);
777 di.calc_dfs_tree ();
778 di.calc_idoms ();
779
780 FOR_EACH_VEC_ELT (region, i, bb)
781 if (basic_block d = di.get_idom (bb))
782 et_set_father (bb->dom[dir_index], d->dom[dir_index]);
783
784 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
785 compute_dom_fast_query_in_region (dir, region);
786
787 timevar_pop (TV_DOMINANCE);
788}
789
d47cc544 790/* Free dominance information for direction DIR. */
355be0dc 791void
e3f613cb 792free_dominance_info (function *fn, enum cdi_direction dir)
355be0dc
JH
793{
794 basic_block bb;
2b28c07a 795 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 796
e3f613cb 797 if (!dom_info_available_p (fn, dir))
d47cc544
SB
798 return;
799
e3f613cb 800 FOR_ALL_BB_FN (bb, fn)
d47cc544 801 {
2b28c07a
JC
802 et_free_tree_force (bb->dom[dir_index]);
803 bb->dom[dir_index] = NULL;
d47cc544 804 }
5a6ccafd 805 et_free_pools ();
d47cc544 806
e3f613cb
RB
807 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
808
809 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
810}
6de9cd9a 811
e3f613cb
RB
812void
813free_dominance_info (enum cdi_direction dir)
814{
815 free_dominance_info (cfun, dir);
355be0dc
JH
816}
817
1d30acf6
YR
818/* Free dominance information for direction DIR in region REGION. */
819
820void
821free_dominance_info_for_region (function *fn,
822 enum cdi_direction dir,
823 vec<basic_block> region)
824{
825 basic_block bb;
826 unsigned int i;
827 unsigned int dir_index = dom_convert_dir_to_idx (dir);
828
829 if (!dom_info_available_p (dir))
830 return;
831
832 FOR_EACH_VEC_ELT (region, i, bb)
833 {
834 et_free_tree_force (bb->dom[dir_index]);
835 bb->dom[dir_index] = NULL;
836 }
837 et_free_pools ();
838
839 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
840
841 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
842}
843
355be0dc
JH
844/* Return the immediate dominator of basic block BB. */
845basic_block
d47cc544 846get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 847{
2b28c07a
JC
848 unsigned int dir_index = dom_convert_dir_to_idx (dir);
849 struct et_node *node = bb->dom[dir_index];
d47cc544 850
2ba31c05 851 gcc_checking_assert (dom_computed[dir_index]);
d47cc544
SB
852
853 if (!node->father)
854 return NULL;
855
f883e0a7 856 return (basic_block) node->father->data;
355be0dc
JH
857}
858
859/* Set the immediate dominator of the block possibly removing
860 existing edge. NULL can be used to remove any edge. */
7031a8b9 861void
d47cc544
SB
862set_immediate_dominator (enum cdi_direction dir, basic_block bb,
863 basic_block dominated_by)
355be0dc 864{
2b28c07a
JC
865 unsigned int dir_index = dom_convert_dir_to_idx (dir);
866 struct et_node *node = bb->dom[dir_index];
b8698a0f 867
2ba31c05 868 gcc_checking_assert (dom_computed[dir_index]);
355be0dc 869
d47cc544 870 if (node->father)
355be0dc 871 {
d47cc544 872 if (node->father->data == dominated_by)
6de9cd9a 873 return;
d47cc544 874 et_split (node);
355be0dc 875 }
d47cc544
SB
876
877 if (dominated_by)
2b28c07a 878 et_set_father (node, dominated_by->dom[dir_index]);
d47cc544 879
2b28c07a
JC
880 if (dom_computed[dir_index] == DOM_OK)
881 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
882}
883
66f97d31
ZD
884/* Returns the list of basic blocks immediately dominated by BB, in the
885 direction DIR. */
9771b263 886vec<basic_block>
66f97d31 887get_dominated_by (enum cdi_direction dir, basic_block bb)
355be0dc 888{
66f97d31 889 unsigned int dir_index = dom_convert_dir_to_idx (dir);
2b28c07a 890 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
6e1aa848 891 vec<basic_block> bbs = vNULL;
66f97d31 892
2ba31c05 893 gcc_checking_assert (dom_computed[dir_index]);
d47cc544
SB
894
895 if (!son)
6e1aa848 896 return vNULL;
d47cc544 897
9771b263 898 bbs.safe_push ((basic_block) son->data);
2d888286 899 for (ason = son->right; ason != son; ason = ason->right)
9771b263 900 bbs.safe_push ((basic_block) ason->data);
355be0dc 901
66f97d31 902 return bbs;
355be0dc
JH
903}
904
66f97d31
ZD
905/* Returns the list of basic blocks that are immediately dominated (in
906 direction DIR) by some block between N_REGION ones stored in REGION,
907 except for blocks in the REGION itself. */
b8698a0f 908
9771b263 909vec<basic_block>
42759f1e 910get_dominated_by_region (enum cdi_direction dir, basic_block *region,
66f97d31 911 unsigned n_region)
42759f1e 912{
66f97d31 913 unsigned i;
42759f1e 914 basic_block dom;
6e1aa848 915 vec<basic_block> doms = vNULL;
42759f1e
ZD
916
917 for (i = 0; i < n_region; i++)
6580ee77 918 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
919 for (i = 0; i < n_region; i++)
920 for (dom = first_dom_son (dir, region[i]);
921 dom;
922 dom = next_dom_son (dir, dom))
6580ee77 923 if (!(dom->flags & BB_DUPLICATED))
9771b263 924 doms.safe_push (dom);
42759f1e 925 for (i = 0; i < n_region; i++)
6580ee77 926 region[i]->flags &= ~BB_DUPLICATED;
42759f1e 927
66f97d31 928 return doms;
42759f1e
ZD
929}
930
438c239d 931/* Returns the list of basic blocks including BB dominated by BB, in the
cad9aa15
MK
932 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
933 produce a vector containing all dominated blocks. The vector will be sorted
934 in preorder. */
438c239d 935
9771b263 936vec<basic_block>
cad9aa15 937get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
438c239d 938{
6e1aa848 939 vec<basic_block> bbs = vNULL;
438c239d 940 unsigned i;
cad9aa15 941 unsigned next_level_start;
438c239d
RG
942
943 i = 0;
9771b263
DN
944 bbs.safe_push (bb);
945 next_level_start = 1; /* = bbs.length (); */
438c239d
RG
946
947 do
948 {
949 basic_block son;
950
9771b263 951 bb = bbs[i++];
438c239d
RG
952 for (son = first_dom_son (dir, bb);
953 son;
954 son = next_dom_son (dir, son))
9771b263 955 bbs.safe_push (son);
cad9aa15
MK
956
957 if (i == next_level_start && --depth)
9771b263 958 next_level_start = bbs.length ();
438c239d 959 }
cad9aa15 960 while (i < next_level_start);
438c239d
RG
961
962 return bbs;
963}
964
cad9aa15
MK
965/* Returns the list of basic blocks including BB dominated by BB, in the
966 direction DIR. The vector will be sorted in preorder. */
967
9771b263 968vec<basic_block>
cad9aa15
MK
969get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
970{
971 return get_dominated_to_depth (dir, bb, 0);
972}
973
355be0dc
JH
974/* Redirect all edges pointing to BB to TO. */
975void
d47cc544
SB
976redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
977 basic_block to)
355be0dc 978{
2b28c07a
JC
979 unsigned int dir_index = dom_convert_dir_to_idx (dir);
980 struct et_node *bb_node, *to_node, *son;
b8698a0f 981
2b28c07a
JC
982 bb_node = bb->dom[dir_index];
983 to_node = to->dom[dir_index];
d47cc544 984
2ba31c05 985 gcc_checking_assert (dom_computed[dir_index]);
355be0dc 986
d47cc544
SB
987 if (!bb_node->son)
988 return;
989
990 while (bb_node->son)
355be0dc 991 {
d47cc544
SB
992 son = bb_node->son;
993
994 et_split (son);
995 et_set_father (son, to_node);
355be0dc 996 }
d47cc544 997
2b28c07a
JC
998 if (dom_computed[dir_index] == DOM_OK)
999 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
1000}
1001
1002/* Find first basic block in the tree dominating both BB1 and BB2. */
1003basic_block
d47cc544 1004nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 1005{
2b28c07a
JC
1006 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1007
2ba31c05 1008 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1009
355be0dc
JH
1010 if (!bb1)
1011 return bb2;
1012 if (!bb2)
1013 return bb1;
d47cc544 1014
f883e0a7 1015 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
355be0dc
JH
1016}
1017
0bca51f0
DN
1018
1019/* Find the nearest common dominator for the basic blocks in BLOCKS,
1020 using dominance direction DIR. */
1021
1022basic_block
1023nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
1024{
1025 unsigned i, first;
1026 bitmap_iterator bi;
1027 basic_block dom;
b8698a0f 1028
0bca51f0 1029 first = bitmap_first_set_bit (blocks);
06e28de2 1030 dom = BASIC_BLOCK_FOR_FN (cfun, first);
0bca51f0 1031 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
06e28de2
DM
1032 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
1033 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
0bca51f0
DN
1034
1035 return dom;
1036}
1037
b629276a
DB
1038/* Given a dominator tree, we can determine whether one thing
1039 dominates another in constant time by using two DFS numbers:
1040
1041 1. The number for when we visit a node on the way down the tree
1042 2. The number for when we visit a node on the way back up the tree
1043
1044 You can view these as bounds for the range of dfs numbers the
1045 nodes in the subtree of the dominator tree rooted at that node
1046 will contain.
b8698a0f 1047
b629276a
DB
1048 The dominator tree is always a simple acyclic tree, so there are
1049 only three possible relations two nodes in the dominator tree have
1050 to each other:
b8698a0f 1051
b629276a
DB
1052 1. Node A is above Node B (and thus, Node A dominates node B)
1053
1054 A
1055 |
1056 C
1057 / \
1058 B D
1059
1060
1061 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
1062 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
1063 because we must hit A in the dominator tree *before* B on the walk
1064 down, and we will hit A *after* B on the walk back up
b8698a0f 1065
d8701f02 1066 2. Node A is below node B (and thus, node B dominates node A)
b8698a0f
L
1067
1068
b629276a
DB
1069 B
1070 |
1071 A
1072 / \
1073 C D
1074
1075 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
1076 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
b8698a0f 1077
b629276a
DB
1078 This is because we must hit A in the dominator tree *after* B on
1079 the walk down, and we will hit A *before* B on the walk back up
b8698a0f 1080
b629276a
DB
1081 3. Node A and B are siblings (and thus, neither dominates the other)
1082
1083 C
1084 |
1085 D
1086 / \
1087 A B
1088
1089 In the above case, DFS_Number_In of A will *always* be <=
1090 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
1091 DFS_Number_Out of B. This is because we will always finish the dfs
1092 walk of one of the subtrees before the other, and thus, the dfs
1093 numbers for one subtree can't intersect with the range of dfs
1094 numbers for the other subtree. If you swap A and B's position in
1095 the dominator tree, the comparison changes direction, but the point
1096 is that both comparisons will always go the same way if there is no
1097 dominance relationship.
1098
1099 Thus, it is sufficient to write
1100
1101 A_Dominates_B (node A, node B)
1102 {
b8698a0f 1103 return DFS_Number_In(A) <= DFS_Number_In(B)
b629276a
DB
1104 && DFS_Number_Out (A) >= DFS_Number_Out(B);
1105 }
1106
1107 A_Dominated_by_B (node A, node B)
1108 {
048f1a9c 1109 return DFS_Number_In(A) >= DFS_Number_In(B)
b629276a
DB
1110 && DFS_Number_Out (A) <= DFS_Number_Out(B);
1111 } */
0bca51f0 1112
355be0dc
JH
1113/* Return TRUE in case BB1 is dominated by BB2. */
1114bool
ed7a4b4b 1115dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
b8698a0f 1116{
2b28c07a
JC
1117 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1118 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
b8698a0f 1119
2ba31c05 1120 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1121
2b28c07a 1122 if (dom_computed[dir_index] == DOM_OK)
d47cc544 1123 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 1124 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
1125
1126 return et_below (n1, n2);
355be0dc
JH
1127}
1128
f074ff6c
ZD
1129/* Returns the entry dfs number for basic block BB, in the direction DIR. */
1130
1131unsigned
1132bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1133{
2b28c07a
JC
1134 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1135 struct et_node *n = bb->dom[dir_index];
f074ff6c 1136
2ba31c05 1137 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
1138 return n->dfs_num_in;
1139}
1140
1141/* Returns the exit dfs number for basic block BB, in the direction DIR. */
1142
1143unsigned
1144bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1145{
2b28c07a
JC
1146 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1147 struct et_node *n = bb->dom[dir_index];
f074ff6c 1148
2ba31c05 1149 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
1150 return n->dfs_num_out;
1151}
1152
355be0dc 1153/* Verify invariants of dominator structure. */
24e47c76 1154DEBUG_FUNCTION void
2321dd91 1155verify_dominators (cdi_direction dir)
355be0dc 1156{
fce22de5 1157 gcc_assert (dom_info_available_p (dir));
d47cc544 1158
2321dd91
MM
1159 dom_info di (cfun, dir);
1160 di.calc_dfs_tree ();
1161 di.calc_idoms ();
1fc3998d 1162
2321dd91
MM
1163 bool err = false;
1164 basic_block bb;
11cd3bed 1165 FOR_EACH_BB_FN (bb, cfun)
355be0dc 1166 {
2321dd91 1167 basic_block imm_bb = get_immediate_dominator (dir, bb);
1fc3998d 1168 if (!imm_bb)
f8032688 1169 {
66f97d31 1170 error ("dominator of %d status unknown", bb->index);
2321dd91 1171 err = true;
bcfbf257 1172 continue;
355be0dc 1173 }
66f97d31 1174
2321dd91 1175 basic_block imm_bb_correct = di.get_idom (bb);
1fc3998d 1176 if (imm_bb != imm_bb_correct)
e7bd94cc 1177 {
66f97d31 1178 error ("dominator of %d should be %d, not %d",
1fc3998d 1179 bb->index, imm_bb_correct->index, imm_bb->index);
2321dd91 1180 err = true;
e7bd94cc
ZD
1181 }
1182 }
1183
ced3f397 1184 gcc_assert (!err);
355be0dc
JH
1185}
1186
738ed977
ZD
1187/* Determine immediate dominator (or postdominator, according to DIR) of BB,
1188 assuming that dominators of other blocks are correct. We also use it to
1189 recompute the dominators in a restricted area, by iterating it until it
71cc389b 1190 reaches a fixed point. */
738ed977 1191
355be0dc 1192basic_block
66f97d31 1193recompute_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 1194{
2b28c07a 1195 unsigned int dir_index = dom_convert_dir_to_idx (dir);
738ed977
ZD
1196 basic_block dom_bb = NULL;
1197 edge e;
628f6a4e 1198 edge_iterator ei;
355be0dc 1199
2ba31c05 1200 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1201
738ed977
ZD
1202 if (dir == CDI_DOMINATORS)
1203 {
628f6a4e 1204 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977
ZD
1205 {
1206 if (!dominated_by_p (dir, e->src, bb))
1207 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1208 }
1209 }
1210 else
1211 {
628f6a4e 1212 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
1213 {
1214 if (!dominated_by_p (dir, e->dest, bb))
1215 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1216 }
1217 }
f8032688 1218
738ed977 1219 return dom_bb;
355be0dc
JH
1220}
1221
66f97d31
ZD
1222/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1223 of BBS. We assume that all the immediate dominators except for those of the
1224 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1225 currently recorded immediate dominators of blocks in BBS really dominate the
1226 blocks. The basic blocks for that we determine the dominator are removed
1227 from BBS. */
1228
1229static void
9771b263 1230prune_bbs_to_update_dominators (vec<basic_block> bbs,
66f97d31
ZD
1231 bool conservative)
1232{
1233 unsigned i;
1234 bool single;
1235 basic_block bb, dom = NULL;
1236 edge_iterator ei;
1237 edge e;
1238
9771b263 1239 for (i = 0; bbs.iterate (i, &bb);)
66f97d31 1240 {
fefa31b5 1241 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
66f97d31
ZD
1242 goto succeed;
1243
1244 if (single_pred_p (bb))
1245 {
1246 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1247 goto succeed;
1248 }
1249
1250 if (!conservative)
1251 goto fail;
1252
1253 single = true;
1254 dom = NULL;
1255 FOR_EACH_EDGE (e, ei, bb->preds)
1256 {
1257 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1258 continue;
1259
1260 if (!dom)
1261 dom = e->src;
1262 else
1263 {
1264 single = false;
1265 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1266 }
1267 }
1268
1269 gcc_assert (dom != NULL);
1270 if (single
1271 || find_edge (dom, bb))
1272 {
1273 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1274 goto succeed;
1275 }
1276
1277fail:
1278 i++;
1279 continue;
1280
1281succeed:
9771b263 1282 bbs.unordered_remove (i);
66f97d31
ZD
1283 }
1284}
1285
1286/* Returns root of the dominance tree in the direction DIR that contains
1287 BB. */
1288
1289static basic_block
1290root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1291{
f883e0a7 1292 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
66f97d31
ZD
1293}
1294
1295/* See the comment in iterate_fix_dominators. Finds the immediate dominators
1296 for the sons of Y, found using the SON and BROTHER arrays representing
1297 the dominance tree of graph G. BBS maps the vertices of G to the basic
1298 blocks. */
1299
1300static void
9771b263 1301determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
66f97d31
ZD
1302 int y, int *son, int *brother)
1303{
1304 bitmap gprime;
1305 int i, a, nc;
9771b263 1306 vec<int> *sccs;
66f97d31
ZD
1307 basic_block bb, dom, ybb;
1308 unsigned si;
1309 edge e;
1310 edge_iterator ei;
1311
1312 if (son[y] == -1)
1313 return;
9771b263 1314 if (y == (int) bbs.length ())
fefa31b5 1315 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
66f97d31 1316 else
9771b263 1317 ybb = bbs[y];
66f97d31
ZD
1318
1319 if (brother[son[y]] == -1)
1320 {
1321 /* Handle the common case Y has just one son specially. */
9771b263 1322 bb = bbs[son[y]];
66f97d31
ZD
1323 set_immediate_dominator (CDI_DOMINATORS, bb,
1324 recompute_dominator (CDI_DOMINATORS, bb));
1325 identify_vertices (g, y, son[y]);
1326 return;
1327 }
1328
1329 gprime = BITMAP_ALLOC (NULL);
1330 for (a = son[y]; a != -1; a = brother[a])
1331 bitmap_set_bit (gprime, a);
1332
1333 nc = graphds_scc (g, gprime);
1334 BITMAP_FREE (gprime);
1335
9771b263
DN
1336 /* ??? Needed to work around the pre-processor confusion with
1337 using a multi-argument template type as macro argument. */
1338 typedef vec<int> vec_int_heap;
1339 sccs = XCNEWVEC (vec_int_heap, nc);
66f97d31 1340 for (a = son[y]; a != -1; a = brother[a])
9771b263 1341 sccs[g->vertices[a].component].safe_push (a);
66f97d31
ZD
1342
1343 for (i = nc - 1; i >= 0; i--)
1344 {
1345 dom = NULL;
9771b263 1346 FOR_EACH_VEC_ELT (sccs[i], si, a)
66f97d31 1347 {
9771b263 1348 bb = bbs[a];
66f97d31
ZD
1349 FOR_EACH_EDGE (e, ei, bb->preds)
1350 {
1351 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1352 continue;
1353
1354 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1355 }
1356 }
1357
1358 gcc_assert (dom != NULL);
9771b263 1359 FOR_EACH_VEC_ELT (sccs[i], si, a)
66f97d31 1360 {
9771b263 1361 bb = bbs[a];
66f97d31
ZD
1362 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1363 }
1364 }
1365
1366 for (i = 0; i < nc; i++)
9771b263 1367 sccs[i].release ();
66f97d31
ZD
1368 free (sccs);
1369
1370 for (a = son[y]; a != -1; a = brother[a])
1371 identify_vertices (g, y, a);
1372}
1373
1374/* Recompute dominance information for basic blocks in the set BBS. The
1375 function assumes that the immediate dominators of all the other blocks
1376 in CFG are correct, and that there are no unreachable blocks.
1377
1378 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1379 a block of BBS in the current dominance tree dominate it. */
1380
355be0dc 1381void
9771b263 1382iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
66f97d31 1383 bool conservative)
355be0dc 1384{
66f97d31
ZD
1385 unsigned i;
1386 basic_block bb, dom;
1387 struct graph *g;
1388 int n, y;
1389 size_t dom_i;
1390 edge e;
1391 edge_iterator ei;
66f97d31 1392 int *parent, *son, *brother;
2b28c07a 1393 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 1394
66f97d31
ZD
1395 /* We only support updating dominators. There are some problems with
1396 updating postdominators (need to add fake edges from infinite loops
1397 and noreturn functions), and since we do not currently use
1398 iterate_fix_dominators for postdominators, any attempt to handle these
1399 problems would be unused, untested, and almost surely buggy. We keep
1400 the DIR argument for consistency with the rest of the dominator analysis
1401 interface. */
2ba31c05 1402 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
d47cc544 1403
66f97d31
ZD
1404 /* The algorithm we use takes inspiration from the following papers, although
1405 the details are quite different from any of them:
1406
1407 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1408 Dominator Tree of a Reducible Flowgraph
1409 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1410 dominator trees
1411 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1412 Algorithm
1413
1414 First, we use the following heuristics to decrease the size of the BBS
1415 set:
1416 a) if BB has a single predecessor, then its immediate dominator is this
1417 predecessor
1418 additionally, if CONSERVATIVE is true:
1419 b) if all the predecessors of BB except for one (X) are dominated by BB,
1420 then X is the immediate dominator of BB
1421 c) if the nearest common ancestor of the predecessors of BB is X and
1422 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1423
1424 Then, we need to establish the dominance relation among the basic blocks
1425 in BBS. We split the dominance tree by removing the immediate dominator
0d52bcc1 1426 edges from BBS, creating a forest F. We form a graph G whose vertices
66f97d31 1427 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
0d52bcc1 1428 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
66f97d31
ZD
1429 whose root is X. We then determine dominance tree of G. Note that
1430 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1431 In this step, we can use arbitrary algorithm to determine dominators.
1432 We decided to prefer the algorithm [3] to the algorithm of
1433 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1434 10 during gcc bootstrap), and [3] should perform better in this case.
1435
1436 Finally, we need to determine the immediate dominators for the basic
1437 blocks of BBS. If the immediate dominator of X in G is Y, then
1438 the immediate dominator of X in CFG belongs to the tree of F rooted in
1439 Y. We process the dominator tree T of G recursively, starting from leaves.
1440 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1441 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1442 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1443 the following observations:
1444 (i) the immediate dominator of all blocks in a strongly connected
1445 component of G' is the same
1446 (ii) if X has no predecessors in G', then the immediate dominator of X
1447 is the nearest common ancestor of the predecessors of X in the
1448 subtree of F rooted in Y
1449 Therefore, it suffices to find the topological ordering of G', and
1450 process the nodes X_i in this order using the rules (i) and (ii).
1451 Then, we contract all the nodes X_i with Y in G, so that the further
1452 steps work correctly. */
1453
1454 if (!conservative)
1455 {
1456 /* Split the tree now. If the idoms of blocks in BBS are not
1457 conservatively correct, setting the dominators using the
1458 heuristics in prune_bbs_to_update_dominators could
1459 create cycles in the dominance "tree", and cause ICE. */
9771b263 1460 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1461 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1462 }
1463
1464 prune_bbs_to_update_dominators (bbs, conservative);
9771b263 1465 n = bbs.length ();
66f97d31
ZD
1466
1467 if (n == 0)
1468 return;
e7bd94cc 1469
66f97d31 1470 if (n == 1)
355be0dc 1471 {
9771b263 1472 bb = bbs[0];
66f97d31
ZD
1473 set_immediate_dominator (CDI_DOMINATORS, bb,
1474 recompute_dominator (CDI_DOMINATORS, bb));
1475 return;
1476 }
1477
092cb01c
RB
1478 timevar_push (TV_DOMINANCE);
1479
66f97d31 1480 /* Construct the graph G. */
1eb68d2d 1481 hash_map<basic_block, int> map (251);
9771b263 1482 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1483 {
1484 /* If the dominance tree is conservatively correct, split it now. */
1485 if (conservative)
1486 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1eb68d2d 1487 map.put (bb, i);
66f97d31 1488 }
1eb68d2d 1489 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
66f97d31
ZD
1490
1491 g = new_graph (n + 1);
1492 for (y = 0; y < g->n_vertices; y++)
1493 g->vertices[y].data = BITMAP_ALLOC (NULL);
9771b263 1494 FOR_EACH_VEC_ELT (bbs, i, bb)
66f97d31
ZD
1495 {
1496 FOR_EACH_EDGE (e, ei, bb->preds)
355be0dc 1497 {
66f97d31
ZD
1498 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1499 if (dom == bb)
1500 continue;
1501
1eb68d2d 1502 dom_i = *map.get (dom);
66f97d31
ZD
1503
1504 /* Do not include parallel edges to G. */
fcaa4ca4 1505 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
66f97d31
ZD
1506 continue;
1507
66f97d31 1508 add_edge (g, dom_i, i);
f8032688
MM
1509 }
1510 }
66f97d31
ZD
1511 for (y = 0; y < g->n_vertices; y++)
1512 BITMAP_FREE (g->vertices[y].data);
66f97d31
ZD
1513
1514 /* Find the dominator tree of G. */
1515 son = XNEWVEC (int, n + 1);
1516 brother = XNEWVEC (int, n + 1);
1517 parent = XNEWVEC (int, n + 1);
1518 graphds_domtree (g, n, parent, son, brother);
1519
1520 /* Finally, traverse the tree and find the immediate dominators. */
1521 for (y = n; son[y] != -1; y = son[y])
1522 continue;
1523 while (y != -1)
1524 {
1525 determine_dominators_for_sons (g, bbs, y, son, brother);
1526
1527 if (brother[y] != -1)
1528 {
1529 y = brother[y];
1530 while (son[y] != -1)
1531 y = son[y];
1532 }
1533 else
1534 y = parent[y];
1535 }
1536
1537 free (son);
1538 free (brother);
1539 free (parent);
e7bd94cc 1540
66f97d31 1541 free_graph (g);
092cb01c
RB
1542
1543 timevar_pop (TV_DOMINANCE);
355be0dc 1544}
f8032688 1545
355be0dc 1546void
d47cc544 1547add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 1548{
2b28c07a
JC
1549 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1550
2ba31c05 1551 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
d47cc544 1552
2b28c07a 1553 n_bbs_in_dom_tree[dir_index]++;
b8698a0f 1554
2b28c07a 1555 bb->dom[dir_index] = et_new_tree (bb);
d47cc544 1556
2b28c07a
JC
1557 if (dom_computed[dir_index] == DOM_OK)
1558 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
1559}
1560
1561void
d47cc544
SB
1562delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1563{
2b28c07a 1564 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 1565
2ba31c05 1566 gcc_checking_assert (dom_computed[dir_index]);
d47cc544 1567
2b28c07a
JC
1568 et_free_tree (bb->dom[dir_index]);
1569 bb->dom[dir_index] = NULL;
1570 n_bbs_in_dom_tree[dir_index]--;
1571
1572 if (dom_computed[dir_index] == DOM_OK)
1573 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
d47cc544
SB
1574}
1575
1576/* Returns the first son of BB in the dominator or postdominator tree
1577 as determined by DIR. */
1578
1579basic_block
1580first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 1581{
2b28c07a
JC
1582 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1583 struct et_node *son = bb->dom[dir_index]->son;
d47cc544 1584
f883e0a7 1585 return (basic_block) (son ? son->data : NULL);
d47cc544
SB
1586}
1587
1588/* Returns the next dominance son after BB in the dominator or postdominator
1589 tree as determined by DIR, or NULL if it was the last one. */
1590
1591basic_block
1592next_dom_son (enum cdi_direction dir, basic_block bb)
1593{
2b28c07a
JC
1594 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1595 struct et_node *next = bb->dom[dir_index]->right;
d47cc544 1596
f883e0a7 1597 return (basic_block) (next->father->son == next ? NULL : next->data);
355be0dc
JH
1598}
1599
2b28c07a
JC
1600/* Return dominance availability for dominance info DIR. */
1601
1602enum dom_state
e3f613cb 1603dom_info_state (function *fn, enum cdi_direction dir)
2b28c07a 1604{
e3f613cb
RB
1605 if (!fn->cfg)
1606 return DOM_NONE;
1607
2b28c07a 1608 unsigned int dir_index = dom_convert_dir_to_idx (dir);
e3f613cb
RB
1609 return fn->cfg->x_dom_computed[dir_index];
1610}
2b28c07a 1611
e3f613cb
RB
1612enum dom_state
1613dom_info_state (enum cdi_direction dir)
1614{
1615 return dom_info_state (cfun, dir);
2b28c07a
JC
1616}
1617
1618/* Set the dominance availability for dominance info DIR to NEW_STATE. */
1619
1620void
1621set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1622{
1623 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1624
1625 dom_computed[dir_index] = new_state;
1626}
1627
fce22de5
ZD
1628/* Returns true if dominance information for direction DIR is available. */
1629
1630bool
e3f613cb 1631dom_info_available_p (function *fn, enum cdi_direction dir)
fce22de5 1632{
e3f613cb
RB
1633 return dom_info_state (fn, dir) != DOM_NONE;
1634}
2b28c07a 1635
e3f613cb
RB
1636bool
1637dom_info_available_p (enum cdi_direction dir)
1638{
1639 return dom_info_available_p (cfun, dir);
fce22de5
ZD
1640}
1641
24e47c76 1642DEBUG_FUNCTION void
d47cc544 1643debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1644{
1645 basic_block bb, bb2;
11cd3bed 1646 FOR_EACH_BB_FN (bb, cfun)
d47cc544 1647 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1648 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1649}
1fc3998d
ZD
1650
1651/* Prints to stderr representation of the dominance tree (for direction DIR)
cea618ac 1652 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1fc3998d
ZD
1653 the first line of the output is not indented. */
1654
1655static void
1656debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1657 unsigned indent, bool indent_first)
1658{
1659 basic_block son;
1660 unsigned i;
1661 bool first = true;
1662
1663 if (indent_first)
1664 for (i = 0; i < indent; i++)
1665 fprintf (stderr, "\t");
1666 fprintf (stderr, "%d\t", root->index);
1667
1668 for (son = first_dom_son (dir, root);
1669 son;
1670 son = next_dom_son (dir, son))
1671 {
1672 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1673 first = false;
1674 }
1675
1676 if (first)
1677 fprintf (stderr, "\n");
1678}
1679
1680/* Prints to stderr representation of the dominance tree (for direction DIR)
1681 rooted in ROOT. */
1682
24e47c76 1683DEBUG_FUNCTION void
1fc3998d
ZD
1684debug_dominance_tree (enum cdi_direction dir, basic_block root)
1685{
1686 debug_dominance_tree_1 (dir, root, 0, false);
1687}