]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/rtlanal.c
Update copyright years.
[thirdparty/gcc.git] / gcc / rtlanal.c
CommitLineData
af082de3 1/* Analyze RTL for GNU compiler.
818ab71a 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
2c88418c 3
1322177d 4This file is part of GCC.
2c88418c 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
2c88418c 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
2c88418c
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
2c88418c
RS
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5 25#include "target.h"
9f02e6a5 26#include "rtl.h"
957060b5
AM
27#include "tree.h"
28#include "predict.h"
c7131fb2 29#include "df.h"
957060b5 30#include "tm_p.h"
bc204393 31#include "insn-config.h"
957060b5
AM
32#include "regs.h"
33#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
bc204393 34#include "recog.h"
277f65de 35#include "addresses.h"
476dd0ce 36#include "rtl-iter.h"
2c88418c 37
e2373f95 38/* Forward declarations */
7bc980e1 39static void set_of_1 (rtx, const_rtx, void *);
f7d504c2
KG
40static bool covers_regno_p (const_rtx, unsigned int);
41static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
f7d504c2 42static int computed_jump_p_1 (const_rtx);
7bc980e1 43static void parms_set (rtx, const_rtx, void *);
2a1777af 44
ef4bddc2
RS
45static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
2f93eea8 47 unsigned HOST_WIDE_INT);
ef4bddc2
RS
48static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
2f93eea8 50 unsigned HOST_WIDE_INT);
ef4bddc2
RS
51static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
2f93eea8 53 unsigned int);
ef4bddc2
RS
54static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
2f93eea8 56
476dd0ce
RS
57rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
59
b12cbf2c
AN
60/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
64
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
72
73static unsigned int
74num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
2c88418c 75\f
476dd0ce
RS
76/* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
78
79template <typename T>
80typename T::value_type *
81generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
84{
85 if (base == array.stack)
86 {
87 if (i < LOCAL_ELEMS)
88 {
89 base[i] = x;
90 return base;
91 }
92 gcc_checking_assert (i == LOCAL_ELEMS);
cb6f4591
RS
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
476dd0ce
RS
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
101 }
102 unsigned int length = array.heap->length ();
103 if (length > i)
104 {
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
108 }
109 else
110 {
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
114 }
115}
116
117/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
119
120template <typename T>
121size_t
122generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
125{
641123eb
RS
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
476dd0ce 128 size_t orig_end = end;
641123eb
RS
129 if (__builtin_expect (INSN_P (x), false))
130 {
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
136 {
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
142 }
143 }
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
147 {
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
153 }
154 else if (format[i] == 'E')
155 {
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
172 {
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
176 }
177 }
476dd0ce
RS
178 return end - orig_end;
179}
180
181template <typename T>
182void
183generic_subrtx_iterator <T>::free_array (array_type &array)
184{
185 vec_free (array.heap);
186}
187
188template <typename T>
189const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
190
191template class generic_subrtx_iterator <const_rtx_accessor>;
192template class generic_subrtx_iterator <rtx_var_accessor>;
193template class generic_subrtx_iterator <rtx_ptr_accessor>;
194
2c88418c
RS
195/* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
199
200int
f7d504c2 201rtx_unstable_p (const_rtx x)
2c88418c 202{
f7d504c2 203 const RTX_CODE code = GET_CODE (x);
b3694847
SS
204 int i;
205 const char *fmt;
2c88418c 206
ae0fb1b9
JW
207 switch (code)
208 {
209 case MEM:
389fdba0 210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
2c88418c 211
ae0fb1b9 212 case CONST:
d8116890 213 CASE_CONST_ANY:
ae0fb1b9
JW
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
2c88418c 217
ae0fb1b9
JW
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
c0fc376b 220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9 221 /* The arg pointer varies if it is not a fixed register. */
389fdba0 222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 223 return 0;
c0fc376b
RH
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
f8fe0a4a 227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
c0fc376b 228 return 0;
c0fc376b 229 return 1;
ae0fb1b9
JW
230
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
234
5d3cc252 235 /* Fall through. */
ae0fb1b9
JW
236
237 default:
238 break;
239 }
2c88418c
RS
240
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
9c82ac6b
JW
244 {
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
247 }
248 else if (fmt[i] == 'E')
249 {
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
254 }
255
2c88418c
RS
256 return 0;
257}
258
259/* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
e38fe8e0
BS
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
2c88418c
RS
264 The frame pointer and the arg pointer are considered constant. */
265
4f588890
KG
266bool
267rtx_varies_p (const_rtx x, bool for_alias)
2c88418c 268{
e978d62e 269 RTX_CODE code;
b3694847
SS
270 int i;
271 const char *fmt;
2c88418c 272
e978d62e
PB
273 if (!x)
274 return 0;
275
276 code = GET_CODE (x);
2c88418c
RS
277 switch (code)
278 {
279 case MEM:
389fdba0 280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
55efb413 281
2c88418c 282 case CONST:
d8116890 283 CASE_CONST_ANY:
2c88418c
RS
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
287
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
c0fc376b 293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9
JL
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 296 return 0;
e38fe8e0 297 if (x == pic_offset_table_rtx
e38fe8e0
BS
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
f8fe0a4a 302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
e38fe8e0 303 return 0;
c0fc376b 304 return 1;
2c88418c
RS
305
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
e7d96a83
JW
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
a6a2274a 312
ae0fb1b9
JW
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
316
5d3cc252 317 /* Fall through. */
ae0fb1b9 318
e9a25f70
JL
319 default:
320 break;
2c88418c
RS
321 }
322
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
9c82ac6b 326 {
e38fe8e0 327 if (rtx_varies_p (XEXP (x, i), for_alias))
9c82ac6b
JW
328 return 1;
329 }
330 else if (fmt[i] == 'E')
331 {
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
9c82ac6b
JW
335 return 1;
336 }
337
2c88418c
RS
338 return 0;
339}
340
1e677938
BE
341/* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
344
345static HOST_WIDE_INT
346get_initial_register_offset (int from, int to)
347{
348#ifdef ELIMINABLE_REGS
349 static const struct elim_table_t
350 {
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
356
357 if (to == from)
358 return 0;
359
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
364 {
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366#if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368#endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
375 }
376
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
379 {
380 if (table[i].to == to)
381 {
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
385 }
386 for (j = 0; j < ARRAY_SIZE (table); j++)
387 {
388 if (table[j].to == to
389 && table[j].from == table[i].to)
390 {
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
396 }
397 if (table[j].from == to
398 && table[j].to == table[i].to)
399 {
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
405 }
406 }
407 }
408 else if (table[i].to == from)
409 {
410 if (table[i].from == to)
411 {
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
415 }
416 for (j = 0; j < ARRAY_SIZE (table); j++)
417 {
418 if (table[j].to == to
419 && table[j].from == table[i].from)
420 {
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
426 }
427 if (table[j].from == to
428 && table[j].to == table[i].from)
429 {
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
435 }
436 }
437 }
438
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
451
452#else
453 HOST_WIDE_INT offset;
454
455 if (to == from)
456 return 0;
457
458 if (reload_completed)
459 {
460 INITIAL_FRAME_POINTER_OFFSET (offset);
461 }
462 else
463 {
464 offset = crtl->outgoing_args_size + get_frame_size ();
465#if !STACK_GROWS_DOWNWARD
466 offset = - offset;
467#endif
468 }
469
470 if (to == STACK_POINTER_REGNUM)
471 return offset;
472 else if (from == STACK_POINTER_REGNUM)
473 return - offset;
474 else
475 return 0;
476
477#endif
478}
479
c7e30a96
EB
480/* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
481 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
482 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
483 references on strict alignment machines. */
2c88418c 484
2358ff91 485static int
48e8382e 486rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
ef4bddc2 487 machine_mode mode, bool unaligned_mems)
2c88418c 488{
b3694847 489 enum rtx_code code = GET_CODE (x);
2c88418c 490
c7e30a96
EB
491 /* The offset must be a multiple of the mode size if we are considering
492 unaligned memory references on strict alignment machines. */
493 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
48e8382e
PB
494 {
495 HOST_WIDE_INT actual_offset = offset;
c7e30a96 496
48e8382e
PB
497#ifdef SPARC_STACK_BOUNDARY_HACK
498 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
499 the real alignment of %sp. However, when it does this, the
500 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
501 if (SPARC_STACK_BOUNDARY_HACK
502 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
503 actual_offset -= STACK_POINTER_OFFSET;
504#endif
505
65a74b5d
PB
506 if (actual_offset % GET_MODE_SIZE (mode) != 0)
507 return 1;
48e8382e
PB
508 }
509
2c88418c
RS
510 switch (code)
511 {
512 case SYMBOL_REF:
48e8382e
PB
513 if (SYMBOL_REF_WEAK (x))
514 return 1;
515 if (!CONSTANT_POOL_ADDRESS_P (x))
516 {
517 tree decl;
518 HOST_WIDE_INT decl_size;
519
520 if (offset < 0)
521 return 1;
522 if (size == 0)
523 size = GET_MODE_SIZE (mode);
524 if (size == 0)
525 return offset != 0;
526
527 /* If the size of the access or of the symbol is unknown,
528 assume the worst. */
529 decl = SYMBOL_REF_DECL (x);
530
531 /* Else check that the access is in bounds. TODO: restructure
71c00b5c 532 expr_size/tree_expr_size/int_expr_size and just use the latter. */
48e8382e
PB
533 if (!decl)
534 decl_size = -1;
535 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
9541ffee 536 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
9439e9a1 537 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
48e8382e
PB
538 : -1);
539 else if (TREE_CODE (decl) == STRING_CST)
540 decl_size = TREE_STRING_LENGTH (decl);
541 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
542 decl_size = int_size_in_bytes (TREE_TYPE (decl));
543 else
544 decl_size = -1;
545
546 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
547 }
548
549 return 0;
ff0b6b99 550
2c88418c 551 case LABEL_REF:
2c88418c
RS
552 return 0;
553
554 case REG:
c7e30a96
EB
555 /* Stack references are assumed not to trap, but we need to deal with
556 nonsensical offsets. */
1e677938
BE
557 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
558 || x == stack_pointer_rtx
559 /* The arg pointer varies if it is not a fixed register. */
560 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c7e30a96 561 {
1e677938
BE
562#ifdef RED_ZONE_SIZE
563 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
564#else
565 HOST_WIDE_INT red_zone_size = 0;
566#endif
567 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
568 / BITS_PER_UNIT;
569 HOST_WIDE_INT low_bound, high_bound;
570
c7e30a96
EB
571 if (size == 0)
572 size = GET_MODE_SIZE (mode);
1e677938
BE
573
574 if (x == frame_pointer_rtx)
575 {
576 if (FRAME_GROWS_DOWNWARD)
577 {
578 high_bound = STARTING_FRAME_OFFSET;
579 low_bound = high_bound - get_frame_size ();
580 }
581 else
582 {
583 low_bound = STARTING_FRAME_OFFSET;
584 high_bound = low_bound + get_frame_size ();
585 }
586 }
587 else if (x == hard_frame_pointer_rtx)
c7e30a96 588 {
1e677938
BE
589 HOST_WIDE_INT sp_offset
590 = get_initial_register_offset (STACK_POINTER_REGNUM,
591 HARD_FRAME_POINTER_REGNUM);
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
595
596#if STACK_GROWS_DOWNWARD
597 low_bound = sp_offset - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600#if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602#endif
603 + stack_boundary;
604#else
605 high_bound = sp_offset + red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608#if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610#endif
611 - stack_boundary;
612#endif
613 }
614 else if (x == stack_pointer_rtx)
615 {
616 HOST_WIDE_INT ap_offset
617 = get_initial_register_offset (ARG_POINTER_REGNUM,
618 STACK_POINTER_REGNUM);
619
620#if STACK_GROWS_DOWNWARD
621 low_bound = - red_zone_size - stack_boundary;
622 high_bound = ap_offset
623 + FIRST_PARM_OFFSET (current_function_decl)
624#if !ARGS_GROW_DOWNWARD
625 + crtl->args.size
626#endif
627 + stack_boundary;
628#else
629 high_bound = red_zone_size + stack_boundary;
630 low_bound = ap_offset
631 + FIRST_PARM_OFFSET (current_function_decl)
632#if ARGS_GROW_DOWNWARD
633 - crtl->args.size
634#endif
635 - stack_boundary;
636#endif
c7e30a96
EB
637 }
638 else
639 {
1e677938
BE
640 /* We assume that accesses are safe to at least the
641 next stack boundary.
642 Examples are varargs and __builtin_return_address. */
643#if ARGS_GROW_DOWNWARD
644 high_bound = FIRST_PARM_OFFSET (current_function_decl)
645 + stack_boundary;
646 low_bound = FIRST_PARM_OFFSET (current_function_decl)
647 - crtl->args.size - stack_boundary;
648#else
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - stack_boundary;
651 high_bound = FIRST_PARM_OFFSET (current_function_decl)
652 + crtl->args.size + stack_boundary;
653#endif
c7e30a96 654 }
1e677938
BE
655
656 if (offset >= low_bound && offset <= high_bound - size)
657 return 0;
658 return 1;
c7e30a96 659 }
4f73495e
RH
660 /* All of the virtual frame registers are stack references. */
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return 0;
664 return 1;
2c88418c
RS
665
666 case CONST:
48e8382e
PB
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
2c88418c
RS
669
670 case PLUS:
2358ff91 671 /* An address is assumed not to trap if:
48e8382e
PB
672 - it is the pic register plus a constant. */
673 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
674 return 0;
675
c7e30a96 676 /* - or it is an address that can't trap plus a constant integer. */
481683e1 677 if (CONST_INT_P (XEXP (x, 1))
48e8382e
PB
678 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
679 size, mode, unaligned_mems))
2358ff91
EB
680 return 0;
681
682 return 1;
2c88418c
RS
683
684 case LO_SUM:
4f73495e 685 case PRE_MODIFY:
48e8382e
PB
686 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
687 mode, unaligned_mems);
4f73495e
RH
688
689 case PRE_DEC:
690 case PRE_INC:
691 case POST_DEC:
692 case POST_INC:
693 case POST_MODIFY:
48e8382e
PB
694 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
695 mode, unaligned_mems);
4f73495e 696
e9a25f70
JL
697 default:
698 break;
2c88418c
RS
699 }
700
701 /* If it isn't one of the case above, it can cause a trap. */
702 return 1;
703}
704
2358ff91
EB
705/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
706
707int
f7d504c2 708rtx_addr_can_trap_p (const_rtx x)
2358ff91 709{
48e8382e 710 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
2358ff91
EB
711}
712
4977bab6
ZW
713/* Return true if X is an address that is known to not be zero. */
714
715bool
f7d504c2 716nonzero_address_p (const_rtx x)
4977bab6 717{
f7d504c2 718 const enum rtx_code code = GET_CODE (x);
4977bab6
ZW
719
720 switch (code)
721 {
722 case SYMBOL_REF:
06da803c 723 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
4977bab6
ZW
724
725 case LABEL_REF:
726 return true;
727
4977bab6
ZW
728 case REG:
729 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
730 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
731 || x == stack_pointer_rtx
732 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
733 return true;
734 /* All of the virtual frame registers are stack references. */
735 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
736 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
737 return true;
738 return false;
739
740 case CONST:
741 return nonzero_address_p (XEXP (x, 0));
742
743 case PLUS:
4977bab6 744 /* Handle PIC references. */
bc2164e8 745 if (XEXP (x, 0) == pic_offset_table_rtx
4977bab6
ZW
746 && CONSTANT_P (XEXP (x, 1)))
747 return true;
748 return false;
749
750 case PRE_MODIFY:
751 /* Similar to the above; allow positive offsets. Further, since
752 auto-inc is only allowed in memories, the register must be a
753 pointer. */
481683e1 754 if (CONST_INT_P (XEXP (x, 1))
4977bab6
ZW
755 && INTVAL (XEXP (x, 1)) > 0)
756 return true;
757 return nonzero_address_p (XEXP (x, 0));
758
759 case PRE_INC:
760 /* Similarly. Further, the offset is always positive. */
761 return true;
762
763 case PRE_DEC:
764 case POST_DEC:
765 case POST_INC:
766 case POST_MODIFY:
767 return nonzero_address_p (XEXP (x, 0));
768
769 case LO_SUM:
770 return nonzero_address_p (XEXP (x, 1));
771
772 default:
773 break;
774 }
775
776 /* If it isn't one of the case above, might be zero. */
777 return false;
778}
779
a6a2274a 780/* Return 1 if X refers to a memory location whose address
2c88418c 781 cannot be compared reliably with constant addresses,
a6a2274a 782 or if X refers to a BLKmode memory object.
e38fe8e0
BS
783 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
784 zero, we are slightly more conservative. */
2c88418c 785
4f588890
KG
786bool
787rtx_addr_varies_p (const_rtx x, bool for_alias)
2c88418c 788{
b3694847
SS
789 enum rtx_code code;
790 int i;
791 const char *fmt;
2c88418c
RS
792
793 if (x == 0)
794 return 0;
795
796 code = GET_CODE (x);
797 if (code == MEM)
e38fe8e0 798 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
2c88418c
RS
799
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 if (fmt[i] == 'e')
833c0b26 803 {
e38fe8e0 804 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
833c0b26
RK
805 return 1;
806 }
807 else if (fmt[i] == 'E')
808 {
809 int j;
810 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 811 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
833c0b26
RK
812 return 1;
813 }
2c88418c
RS
814 return 0;
815}
816\f
da4fdf2d
SB
817/* Return the CALL in X if there is one. */
818
819rtx
820get_call_rtx_from (rtx x)
821{
822 if (INSN_P (x))
823 x = PATTERN (x);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
831}
832\f
2c88418c
RS
833/* Return the value of the integer term in X, if one is apparent;
834 otherwise return 0.
835 Only obvious integer terms are detected.
3ef42a0c 836 This is used in cse.c with the `related_value' field. */
2c88418c 837
c166a311 838HOST_WIDE_INT
f7d504c2 839get_integer_term (const_rtx x)
2c88418c
RS
840{
841 if (GET_CODE (x) == CONST)
842 x = XEXP (x, 0);
843
844 if (GET_CODE (x) == MINUS
481683e1 845 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
846 return - INTVAL (XEXP (x, 1));
847 if (GET_CODE (x) == PLUS
481683e1 848 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
849 return INTVAL (XEXP (x, 1));
850 return 0;
851}
852
853/* If X is a constant, return the value sans apparent integer term;
854 otherwise return 0.
855 Only obvious integer terms are detected. */
856
857rtx
f7d504c2 858get_related_value (const_rtx x)
2c88418c
RS
859{
860 if (GET_CODE (x) != CONST)
861 return 0;
862 x = XEXP (x, 0);
863 if (GET_CODE (x) == PLUS
481683e1 864 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
865 return XEXP (x, 0);
866 else if (GET_CODE (x) == MINUS
481683e1 867 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
868 return XEXP (x, 0);
869 return 0;
870}
871\f
7ffb5e78
RS
872/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
873 to somewhere in the same object or object_block as SYMBOL. */
874
875bool
f7d504c2 876offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
7ffb5e78
RS
877{
878 tree decl;
879
880 if (GET_CODE (symbol) != SYMBOL_REF)
881 return false;
882
883 if (offset == 0)
884 return true;
885
886 if (offset > 0)
887 {
888 if (CONSTANT_POOL_ADDRESS_P (symbol)
889 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
890 return true;
891
892 decl = SYMBOL_REF_DECL (symbol);
893 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
894 return true;
895 }
896
897 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
898 && SYMBOL_REF_BLOCK (symbol)
899 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
900 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
901 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
902 return true;
903
904 return false;
905}
906
907/* Split X into a base and a constant offset, storing them in *BASE_OUT
908 and *OFFSET_OUT respectively. */
909
910void
911split_const (rtx x, rtx *base_out, rtx *offset_out)
912{
913 if (GET_CODE (x) == CONST)
914 {
915 x = XEXP (x, 0);
481683e1 916 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
7ffb5e78
RS
917 {
918 *base_out = XEXP (x, 0);
919 *offset_out = XEXP (x, 1);
920 return;
921 }
922 }
923 *base_out = x;
924 *offset_out = const0_rtx;
925}
926\f
4b983fdc
RH
927/* Return the number of places FIND appears within X. If COUNT_DEST is
928 zero, we do not count occurrences inside the destination of a SET. */
929
930int
f7d504c2 931count_occurrences (const_rtx x, const_rtx find, int count_dest)
4b983fdc
RH
932{
933 int i, j;
934 enum rtx_code code;
935 const char *format_ptr;
936 int count;
937
938 if (x == find)
939 return 1;
940
941 code = GET_CODE (x);
942
943 switch (code)
944 {
945 case REG:
d8116890 946 CASE_CONST_ANY:
4b983fdc
RH
947 case SYMBOL_REF:
948 case CODE_LABEL:
949 case PC:
950 case CC0:
951 return 0;
952
2372a062
BS
953 case EXPR_LIST:
954 count = count_occurrences (XEXP (x, 0), find, count_dest);
955 if (XEXP (x, 1))
956 count += count_occurrences (XEXP (x, 1), find, count_dest);
957 return count;
b8698a0f 958
4b983fdc 959 case MEM:
3c0cb5de 960 if (MEM_P (find) && rtx_equal_p (x, find))
4b983fdc
RH
961 return 1;
962 break;
963
964 case SET:
965 if (SET_DEST (x) == find && ! count_dest)
966 return count_occurrences (SET_SRC (x), find, count_dest);
967 break;
968
969 default:
970 break;
971 }
972
973 format_ptr = GET_RTX_FORMAT (code);
974 count = 0;
975
976 for (i = 0; i < GET_RTX_LENGTH (code); i++)
977 {
978 switch (*format_ptr++)
979 {
980 case 'e':
981 count += count_occurrences (XEXP (x, i), find, count_dest);
982 break;
983
984 case 'E':
985 for (j = 0; j < XVECLEN (x, i); j++)
986 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
987 break;
988 }
989 }
990 return count;
991}
6fb5fa3c 992
7bc14a04
PB
993\f
994/* Return TRUE if OP is a register or subreg of a register that
995 holds an unsigned quantity. Otherwise, return FALSE. */
996
997bool
998unsigned_reg_p (rtx op)
999{
1000 if (REG_P (op)
1001 && REG_EXPR (op)
1002 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1003 return true;
1004
1005 if (GET_CODE (op) == SUBREG
362d42dc 1006 && SUBREG_PROMOTED_SIGN (op))
7bc14a04
PB
1007 return true;
1008
1009 return false;
1010}
1011
4b983fdc 1012\f
2c88418c
RS
1013/* Nonzero if register REG appears somewhere within IN.
1014 Also works if REG is not a register; in this case it checks
1015 for a subexpression of IN that is Lisp "equal" to REG. */
1016
1017int
f7d504c2 1018reg_mentioned_p (const_rtx reg, const_rtx in)
2c88418c 1019{
b3694847
SS
1020 const char *fmt;
1021 int i;
1022 enum rtx_code code;
2c88418c
RS
1023
1024 if (in == 0)
1025 return 0;
1026
1027 if (reg == in)
1028 return 1;
1029
1030 if (GET_CODE (in) == LABEL_REF)
a827d9b1 1031 return reg == LABEL_REF_LABEL (in);
2c88418c
RS
1032
1033 code = GET_CODE (in);
1034
1035 switch (code)
1036 {
1037 /* Compare registers by number. */
1038 case REG:
f8cfc6aa 1039 return REG_P (reg) && REGNO (in) == REGNO (reg);
2c88418c
RS
1040
1041 /* These codes have no constituent expressions
1042 and are unique. */
1043 case SCRATCH:
1044 case CC0:
1045 case PC:
1046 return 0;
1047
d8116890 1048 CASE_CONST_ANY:
2c88418c
RS
1049 /* These are kept unique for a given value. */
1050 return 0;
a6a2274a 1051
e9a25f70
JL
1052 default:
1053 break;
2c88418c
RS
1054 }
1055
1056 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1057 return 1;
1058
1059 fmt = GET_RTX_FORMAT (code);
1060
1061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1062 {
1063 if (fmt[i] == 'E')
1064 {
b3694847 1065 int j;
2c88418c
RS
1066 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1067 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1068 return 1;
1069 }
1070 else if (fmt[i] == 'e'
1071 && reg_mentioned_p (reg, XEXP (in, i)))
1072 return 1;
1073 }
1074 return 0;
1075}
1076\f
1077/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1078 no CODE_LABEL insn. */
1079
1080int
b32d5189 1081no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
2c88418c 1082{
b32d5189 1083 rtx_insn *p;
978f547f
JH
1084 if (beg == end)
1085 return 0;
2c88418c 1086 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
4b4bf941 1087 if (LABEL_P (p))
2c88418c
RS
1088 return 0;
1089 return 1;
1090}
1091
1092/* Nonzero if register REG is used in an insn between
1093 FROM_INSN and TO_INSN (exclusive of those two). */
1094
1095int
b32d5189
DM
1096reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1097 const rtx_insn *to_insn)
2c88418c 1098{
1bbbc4a3 1099 rtx_insn *insn;
2c88418c
RS
1100
1101 if (from_insn == to_insn)
1102 return 0;
1103
1104 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
b5b8b0ac 1105 if (NONDEBUG_INSN_P (insn)
8f3e7a26 1106 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
76dd5923 1107 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
2c88418c
RS
1108 return 1;
1109 return 0;
1110}
1111\f
1112/* Nonzero if the old value of X, a register, is referenced in BODY. If X
1113 is entirely replaced by a new value and the only use is as a SET_DEST,
1114 we do not consider it a reference. */
1115
1116int
f7d504c2 1117reg_referenced_p (const_rtx x, const_rtx body)
2c88418c
RS
1118{
1119 int i;
1120
1121 switch (GET_CODE (body))
1122 {
1123 case SET:
1124 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1125 return 1;
1126
1127 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1128 of a REG that occupies all of the REG, the insn references X if
1129 it is mentioned in the destination. */
1130 if (GET_CODE (SET_DEST (body)) != CC0
1131 && GET_CODE (SET_DEST (body)) != PC
f8cfc6aa 1132 && !REG_P (SET_DEST (body))
2c88418c 1133 && ! (GET_CODE (SET_DEST (body)) == SUBREG
f8cfc6aa 1134 && REG_P (SUBREG_REG (SET_DEST (body)))
2c88418c
RS
1135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1137 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1139 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1140 return 1;
e9a25f70 1141 return 0;
2c88418c
RS
1142
1143 case ASM_OPERANDS:
1144 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1145 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1146 return 1;
e9a25f70 1147 return 0;
2c88418c
RS
1148
1149 case CALL:
1150 case USE:
14a774a9 1151 case IF_THEN_ELSE:
2c88418c
RS
1152 return reg_overlap_mentioned_p (x, body);
1153
1154 case TRAP_IF:
1155 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1156
21b8482a
JJ
1157 case PREFETCH:
1158 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1159
2ac4fed0
RK
1160 case UNSPEC:
1161 case UNSPEC_VOLATILE:
2f9fb4c2
R
1162 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1163 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1164 return 1;
1165 return 0;
1166
2c88418c
RS
1167 case PARALLEL:
1168 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1169 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1170 return 1;
e9a25f70 1171 return 0;
a6a2274a 1172
0d3ffb5a 1173 case CLOBBER:
3c0cb5de 1174 if (MEM_P (XEXP (body, 0)))
0d3ffb5a
GK
1175 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1176 return 1;
1177 return 0;
1178
0c99ec5c
RH
1179 case COND_EXEC:
1180 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1181 return 1;
1182 return reg_referenced_p (x, COND_EXEC_CODE (body));
1183
e9a25f70
JL
1184 default:
1185 return 0;
2c88418c 1186 }
2c88418c 1187}
2c88418c
RS
1188\f
1189/* Nonzero if register REG is set or clobbered in an insn between
1190 FROM_INSN and TO_INSN (exclusive of those two). */
1191
1192int
a5d567ec
DM
1193reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1194 const rtx_insn *to_insn)
2c88418c 1195{
1bbbc4a3 1196 const rtx_insn *insn;
2c88418c
RS
1197
1198 if (from_insn == to_insn)
1199 return 0;
1200
1201 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
2c3c49de 1202 if (INSN_P (insn) && reg_set_p (reg, insn))
2c88418c
RS
1203 return 1;
1204 return 0;
1205}
1206
a69a0436
KT
1207/* Return true if REG is set or clobbered inside INSN. */
1208
2c88418c 1209int
ed7a4b4b 1210reg_set_p (const_rtx reg, const_rtx insn)
2c88418c 1211{
d9a5f0cc
OE
1212 /* After delay slot handling, call and branch insns might be in a
1213 sequence. Check all the elements there. */
1214 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1215 {
1216 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1217 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1218 return true;
1219
1220 return false;
1221 }
1222
2c88418c
RS
1223 /* We can be passed an insn or part of one. If we are passed an insn,
1224 check if a side-effect of the insn clobbers REG. */
4977bab6
ZW
1225 if (INSN_P (insn)
1226 && (FIND_REG_INC_NOTE (insn, reg)
4b4bf941 1227 || (CALL_P (insn)
f8cfc6aa 1228 && ((REG_P (reg)
4f1605d2 1229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
5da20cfe
RS
1230 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1231 GET_MODE (reg), REGNO (reg)))
3c0cb5de 1232 || MEM_P (reg)
4977bab6 1233 || find_reg_fusage (insn, CLOBBER, reg)))))
d9a5f0cc 1234 return true;
2c88418c 1235
91b2d119 1236 return set_of (reg, insn) != NULL_RTX;
2c88418c
RS
1237}
1238
1239/* Similar to reg_set_between_p, but check all registers in X. Return 0
1240 only if none of them are modified between START and END. Return 1 if
fa10beec 1241 X contains a MEM; this routine does use memory aliasing. */
2c88418c
RS
1242
1243int
8f6bce51 1244modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
2c88418c 1245{
9678086d 1246 const enum rtx_code code = GET_CODE (x);
6f7d635c 1247 const char *fmt;
f8163c92 1248 int i, j;
1bbbc4a3 1249 rtx_insn *insn;
7b52eede
JH
1250
1251 if (start == end)
1252 return 0;
2c88418c
RS
1253
1254 switch (code)
1255 {
d8116890 1256 CASE_CONST_ANY:
2c88418c
RS
1257 case CONST:
1258 case SYMBOL_REF:
1259 case LABEL_REF:
1260 return 0;
1261
1262 case PC:
1263 case CC0:
1264 return 1;
1265
1266 case MEM:
7b52eede 1267 if (modified_between_p (XEXP (x, 0), start, end))
2c88418c 1268 return 1;
550b7784
KK
1269 if (MEM_READONLY_P (x))
1270 return 0;
7b52eede
JH
1271 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1272 if (memory_modified_in_insn_p (x, insn))
1273 return 1;
1274 return 0;
2c88418c
RS
1275 break;
1276
1277 case REG:
1278 return reg_set_between_p (x, start, end);
a6a2274a 1279
e9a25f70
JL
1280 default:
1281 break;
2c88418c
RS
1282 }
1283
1284 fmt = GET_RTX_FORMAT (code);
1285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
f8163c92
RK
1286 {
1287 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1288 return 1;
1289
d4757e6a 1290 else if (fmt[i] == 'E')
f8163c92
RK
1291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1292 if (modified_between_p (XVECEXP (x, i, j), start, end))
1293 return 1;
1294 }
1295
1296 return 0;
1297}
1298
1299/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1300 of them are modified in INSN. Return 1 if X contains a MEM; this routine
7b52eede 1301 does use memory aliasing. */
f8163c92
RK
1302
1303int
9678086d 1304modified_in_p (const_rtx x, const_rtx insn)
f8163c92 1305{
9678086d 1306 const enum rtx_code code = GET_CODE (x);
6f7d635c 1307 const char *fmt;
f8163c92
RK
1308 int i, j;
1309
1310 switch (code)
1311 {
d8116890 1312 CASE_CONST_ANY:
f8163c92
RK
1313 case CONST:
1314 case SYMBOL_REF:
1315 case LABEL_REF:
1316 return 0;
1317
1318 case PC:
1319 case CC0:
2c88418c
RS
1320 return 1;
1321
f8163c92 1322 case MEM:
7b52eede 1323 if (modified_in_p (XEXP (x, 0), insn))
f8163c92 1324 return 1;
550b7784
KK
1325 if (MEM_READONLY_P (x))
1326 return 0;
7b52eede
JH
1327 if (memory_modified_in_insn_p (x, insn))
1328 return 1;
1329 return 0;
f8163c92
RK
1330 break;
1331
1332 case REG:
1333 return reg_set_p (x, insn);
e9a25f70
JL
1334
1335 default:
1336 break;
f8163c92
RK
1337 }
1338
1339 fmt = GET_RTX_FORMAT (code);
1340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1341 {
1342 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1343 return 1;
1344
d4757e6a 1345 else if (fmt[i] == 'E')
f8163c92
RK
1346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1347 if (modified_in_p (XVECEXP (x, i, j), insn))
1348 return 1;
1349 }
1350
2c88418c
RS
1351 return 0;
1352}
1353\f
91b2d119
JH
1354/* Helper function for set_of. */
1355struct set_of_data
1356 {
7bc980e1
KG
1357 const_rtx found;
1358 const_rtx pat;
91b2d119
JH
1359 };
1360
1361static void
7bc980e1 1362set_of_1 (rtx x, const_rtx pat, void *data1)
91b2d119 1363{
7bc980e1
KG
1364 struct set_of_data *const data = (struct set_of_data *) (data1);
1365 if (rtx_equal_p (x, data->pat)
1366 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1367 data->found = pat;
91b2d119
JH
1368}
1369
1370/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
eaec9b3d 1371 (either directly or via STRICT_LOW_PART and similar modifiers). */
7bc980e1
KG
1372const_rtx
1373set_of (const_rtx pat, const_rtx insn)
91b2d119
JH
1374{
1375 struct set_of_data data;
1376 data.found = NULL_RTX;
1377 data.pat = pat;
1378 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1379 return data.found;
1380}
e2724e63 1381
f7d0b0fc
RS
1382/* Add all hard register in X to *PSET. */
1383void
1384find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1385{
1386 subrtx_iterator::array_type array;
1387 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1388 {
1389 const_rtx x = *iter;
1390 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1391 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1392 }
1393}
1394
e2724e63
BS
1395/* This function, called through note_stores, collects sets and
1396 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1397 by DATA. */
1398void
1399record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1400{
1401 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1402 if (REG_P (x) && HARD_REGISTER_P (x))
1403 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1404}
1405
1406/* Examine INSN, and compute the set of hard registers written by it.
1407 Store it in *PSET. Should only be called after reload. */
1408void
fd769c94 1409find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
e2724e63
BS
1410{
1411 rtx link;
1412
1413 CLEAR_HARD_REG_SET (*pset);
1414 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
3ee634fd
TV
1415 if (CALL_P (insn))
1416 {
1417 if (implicit)
1418 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1419
1420 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1421 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1422 }
e2724e63
BS
1423 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1424 if (REG_NOTE_KIND (link) == REG_INC)
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1426}
1427
e2724e63
BS
1428/* Like record_hard_reg_sets, but called through note_uses. */
1429void
1430record_hard_reg_uses (rtx *px, void *data)
1431{
f7d0b0fc 1432 find_all_hard_regs (*px, (HARD_REG_SET *) data);
e2724e63 1433}
91b2d119 1434\f
2c88418c
RS
1435/* Given an INSN, return a SET expression if this insn has only a single SET.
1436 It may also have CLOBBERs, USEs, or SET whose output
1437 will not be used, which we ignore. */
1438
1439rtx
e8a54173 1440single_set_2 (const rtx_insn *insn, const_rtx pat)
2c88418c 1441{
c9b89a21
JH
1442 rtx set = NULL;
1443 int set_verified = 1;
2c88418c 1444 int i;
c9b89a21 1445
b1cdafbb 1446 if (GET_CODE (pat) == PARALLEL)
2c88418c 1447 {
c9b89a21 1448 for (i = 0; i < XVECLEN (pat, 0); i++)
b1cdafbb 1449 {
c9b89a21
JH
1450 rtx sub = XVECEXP (pat, 0, i);
1451 switch (GET_CODE (sub))
1452 {
1453 case USE:
1454 case CLOBBER:
1455 break;
1456
1457 case SET:
1458 /* We can consider insns having multiple sets, where all
1459 but one are dead as single set insns. In common case
1460 only single set is present in the pattern so we want
f63d1bf7 1461 to avoid checking for REG_UNUSED notes unless necessary.
c9b89a21
JH
1462
1463 When we reach set first time, we just expect this is
1464 the single set we are looking for and only when more
1465 sets are found in the insn, we check them. */
1466 if (!set_verified)
1467 {
1468 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1469 && !side_effects_p (set))
1470 set = NULL;
1471 else
1472 set_verified = 1;
1473 }
1474 if (!set)
1475 set = sub, set_verified = 0;
1476 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1477 || side_effects_p (sub))
1478 return NULL_RTX;
1479 break;
1480
1481 default:
1482 return NULL_RTX;
1483 }
787ccee0 1484 }
2c88418c 1485 }
c9b89a21 1486 return set;
2c88418c 1487}
941c63ac
JL
1488
1489/* Given an INSN, return nonzero if it has more than one SET, else return
1490 zero. */
1491
5f7d3786 1492int
f7d504c2 1493multiple_sets (const_rtx insn)
941c63ac 1494{
cae8acdd 1495 int found;
941c63ac 1496 int i;
a6a2274a 1497
941c63ac 1498 /* INSN must be an insn. */
2c3c49de 1499 if (! INSN_P (insn))
941c63ac
JL
1500 return 0;
1501
1502 /* Only a PARALLEL can have multiple SETs. */
1503 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1504 {
1505 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1506 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1507 {
1508 /* If we have already found a SET, then return now. */
1509 if (found)
1510 return 1;
1511 else
1512 found = 1;
1513 }
1514 }
a6a2274a 1515
941c63ac
JL
1516 /* Either zero or one SET. */
1517 return 0;
1518}
2c88418c 1519\f
7142e318
JW
1520/* Return nonzero if the destination of SET equals the source
1521 and there are no side effects. */
1522
1523int
f7d504c2 1524set_noop_p (const_rtx set)
7142e318
JW
1525{
1526 rtx src = SET_SRC (set);
1527 rtx dst = SET_DEST (set);
1528
371b8fc0
JH
1529 if (dst == pc_rtx && src == pc_rtx)
1530 return 1;
1531
3c0cb5de 1532 if (MEM_P (dst) && MEM_P (src))
cd648cec
JH
1533 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1534
46d096a3 1535 if (GET_CODE (dst) == ZERO_EXTRACT)
7142e318 1536 return rtx_equal_p (XEXP (dst, 0), src)
0c91a1fb 1537 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
cd648cec 1538 && !side_effects_p (src);
7142e318
JW
1539
1540 if (GET_CODE (dst) == STRICT_LOW_PART)
1541 dst = XEXP (dst, 0);
1542
1543 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1544 {
1545 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1546 return 0;
1547 src = SUBREG_REG (src);
1548 dst = SUBREG_REG (dst);
1549 }
1550
8c895291
TB
1551 /* It is a NOOP if destination overlaps with selected src vector
1552 elements. */
1553 if (GET_CODE (src) == VEC_SELECT
1554 && REG_P (XEXP (src, 0)) && REG_P (dst)
1555 && HARD_REGISTER_P (XEXP (src, 0))
1556 && HARD_REGISTER_P (dst))
1557 {
1558 int i;
1559 rtx par = XEXP (src, 1);
1560 rtx src0 = XEXP (src, 0);
1561 int c0 = INTVAL (XVECEXP (par, 0, 0));
1562 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1563
1564 for (i = 1; i < XVECLEN (par, 0); i++)
1565 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1566 return 0;
1567 return
1568 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1569 offset, GET_MODE (dst)) == (int) REGNO (dst);
1570 }
1571
f8cfc6aa 1572 return (REG_P (src) && REG_P (dst)
7142e318
JW
1573 && REGNO (src) == REGNO (dst));
1574}
0005550b
JH
1575\f
1576/* Return nonzero if an insn consists only of SETs, each of which only sets a
1577 value to itself. */
1578
1579int
8a1b6388 1580noop_move_p (const rtx_insn *insn)
0005550b
JH
1581{
1582 rtx pat = PATTERN (insn);
1583
b5832b43
JH
1584 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1585 return 1;
1586
0005550b
JH
1587 /* Insns carrying these notes are useful later on. */
1588 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1589 return 0;
1590
8f7e6e33
BC
1591 /* Check the code to be executed for COND_EXEC. */
1592 if (GET_CODE (pat) == COND_EXEC)
1593 pat = COND_EXEC_CODE (pat);
1594
0005550b
JH
1595 if (GET_CODE (pat) == SET && set_noop_p (pat))
1596 return 1;
1597
1598 if (GET_CODE (pat) == PARALLEL)
1599 {
1600 int i;
1601 /* If nothing but SETs of registers to themselves,
1602 this insn can also be deleted. */
1603 for (i = 0; i < XVECLEN (pat, 0); i++)
1604 {
1605 rtx tem = XVECEXP (pat, 0, i);
1606
1607 if (GET_CODE (tem) == USE
1608 || GET_CODE (tem) == CLOBBER)
1609 continue;
1610
1611 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1612 return 0;
1613 }
1614
1615 return 1;
1616 }
1617 return 0;
1618}
1619\f
7142e318 1620
2c88418c
RS
1621/* Return nonzero if register in range [REGNO, ENDREGNO)
1622 appears either explicitly or implicitly in X
1623 other than being stored into.
1624
1625 References contained within the substructure at LOC do not count.
1626 LOC may be zero, meaning don't ignore anything. */
1627
c9bd6bcd 1628bool
f7d504c2 1629refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
0c20a65f 1630 rtx *loc)
2c88418c 1631{
770ae6cc
RK
1632 int i;
1633 unsigned int x_regno;
1634 RTX_CODE code;
1635 const char *fmt;
2c88418c
RS
1636
1637 repeat:
1638 /* The contents of a REG_NONNEG note is always zero, so we must come here
1639 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1640 if (x == 0)
c9bd6bcd 1641 return false;
2c88418c
RS
1642
1643 code = GET_CODE (x);
1644
1645 switch (code)
1646 {
1647 case REG:
770ae6cc 1648 x_regno = REGNO (x);
f8163c92
RK
1649
1650 /* If we modifying the stack, frame, or argument pointer, it will
1651 clobber a virtual register. In fact, we could be more precise,
1652 but it isn't worth it. */
770ae6cc 1653 if ((x_regno == STACK_POINTER_REGNUM
3f393fc6
TS
1654 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1655 && x_regno == ARG_POINTER_REGNUM)
770ae6cc 1656 || x_regno == FRAME_POINTER_REGNUM)
f8163c92 1657 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
c9bd6bcd 1658 return true;
f8163c92 1659
09e18274 1660 return endregno > x_regno && regno < END_REGNO (x);
2c88418c
RS
1661
1662 case SUBREG:
1663 /* If this is a SUBREG of a hard reg, we can see exactly which
1664 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 1665 if (REG_P (SUBREG_REG (x))
2c88418c
RS
1666 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1667 {
ddef6bc7 1668 unsigned int inner_regno = subreg_regno (x);
770ae6cc 1669 unsigned int inner_endregno
403c659c 1670 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 1671 ? subreg_nregs (x) : 1);
2c88418c
RS
1672
1673 return endregno > inner_regno && regno < inner_endregno;
1674 }
1675 break;
1676
1677 case CLOBBER:
1678 case SET:
1679 if (&SET_DEST (x) != loc
1680 /* Note setting a SUBREG counts as referring to the REG it is in for
1681 a pseudo but not for hard registers since we can
1682 treat each word individually. */
1683 && ((GET_CODE (SET_DEST (x)) == SUBREG
1684 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 1685 && REG_P (SUBREG_REG (SET_DEST (x)))
2c88418c
RS
1686 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1687 && refers_to_regno_p (regno, endregno,
1688 SUBREG_REG (SET_DEST (x)), loc))
f8cfc6aa 1689 || (!REG_P (SET_DEST (x))
2c88418c 1690 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
c9bd6bcd 1691 return true;
2c88418c
RS
1692
1693 if (code == CLOBBER || loc == &SET_SRC (x))
c9bd6bcd 1694 return false;
2c88418c
RS
1695 x = SET_SRC (x);
1696 goto repeat;
e9a25f70
JL
1697
1698 default:
1699 break;
2c88418c
RS
1700 }
1701
1702 /* X does not match, so try its subexpressions. */
1703
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1706 {
1707 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1708 {
1709 if (i == 0)
1710 {
1711 x = XEXP (x, 0);
1712 goto repeat;
1713 }
1714 else
1715 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
c9bd6bcd 1716 return true;
2c88418c
RS
1717 }
1718 else if (fmt[i] == 'E')
1719 {
b3694847 1720 int j;
6a87d634 1721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2c88418c
RS
1722 if (loc != &XVECEXP (x, i, j)
1723 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
c9bd6bcd 1724 return true;
2c88418c
RS
1725 }
1726 }
c9bd6bcd 1727 return false;
2c88418c
RS
1728}
1729
1730/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1731 we check if any register number in X conflicts with the relevant register
1732 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1733 contains a MEM (we don't bother checking for memory addresses that can't
1734 conflict because we expect this to be a rare case. */
1735
1736int
f7d504c2 1737reg_overlap_mentioned_p (const_rtx x, const_rtx in)
2c88418c 1738{
770ae6cc 1739 unsigned int regno, endregno;
2c88418c 1740
6f626d1b
PB
1741 /* If either argument is a constant, then modifying X can not
1742 affect IN. Here we look at IN, we can profitably combine
1743 CONSTANT_P (x) with the switch statement below. */
1744 if (CONSTANT_P (in))
b98b49ac 1745 return 0;
0c99ec5c 1746
6f626d1b 1747 recurse:
0c99ec5c 1748 switch (GET_CODE (x))
2c88418c 1749 {
6f626d1b
PB
1750 case STRICT_LOW_PART:
1751 case ZERO_EXTRACT:
1752 case SIGN_EXTRACT:
1753 /* Overly conservative. */
1754 x = XEXP (x, 0);
1755 goto recurse;
1756
0c99ec5c 1757 case SUBREG:
2c88418c
RS
1758 regno = REGNO (SUBREG_REG (x));
1759 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 1760 regno = subreg_regno (x);
f1f4e530
JM
1761 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1762 ? subreg_nregs (x) : 1);
0c99ec5c 1763 goto do_reg;
2c88418c 1764
0c99ec5c
RH
1765 case REG:
1766 regno = REGNO (x);
09e18274 1767 endregno = END_REGNO (x);
f1f4e530 1768 do_reg:
8e2e89f7 1769 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
2c88418c 1770
0c99ec5c
RH
1771 case MEM:
1772 {
1773 const char *fmt;
1774 int i;
2c88418c 1775
3c0cb5de 1776 if (MEM_P (in))
2c88418c
RS
1777 return 1;
1778
0c99ec5c
RH
1779 fmt = GET_RTX_FORMAT (GET_CODE (in));
1780 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
3b009185
RH
1781 if (fmt[i] == 'e')
1782 {
1783 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1784 return 1;
1785 }
1786 else if (fmt[i] == 'E')
1787 {
1788 int j;
1789 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1790 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1791 return 1;
1792 }
c0222c21 1793
0c99ec5c
RH
1794 return 0;
1795 }
1796
1797 case SCRATCH:
1798 case PC:
1799 case CC0:
1800 return reg_mentioned_p (x, in);
1801
1802 case PARALLEL:
37ceff9d 1803 {
90d036a0 1804 int i;
37ceff9d
RH
1805
1806 /* If any register in here refers to it we return true. */
7193d1dc
RK
1807 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1808 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1809 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
6f626d1b 1810 return 1;
7193d1dc 1811 return 0;
37ceff9d 1812 }
2c88418c 1813
0c99ec5c 1814 default:
41374e13 1815 gcc_assert (CONSTANT_P (x));
6f626d1b
PB
1816 return 0;
1817 }
2c88418c
RS
1818}
1819\f
2c88418c 1820/* Call FUN on each register or MEM that is stored into or clobbered by X.
c3a1ef9d
MM
1821 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1822 ignored by note_stores, but passed to FUN.
1823
1824 FUN receives three arguments:
1825 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1826 2. the SET or CLOBBER rtx that does the store,
1827 3. the pointer DATA provided to note_stores.
2c88418c
RS
1828
1829 If the item being stored in or clobbered is a SUBREG of a hard register,
1830 the SUBREG will be passed. */
a6a2274a 1831
2c88418c 1832void
7bc980e1 1833note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
2c88418c 1834{
aa317c97 1835 int i;
90d036a0 1836
aa317c97
KG
1837 if (GET_CODE (x) == COND_EXEC)
1838 x = COND_EXEC_CODE (x);
90d036a0 1839
aa317c97
KG
1840 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1841 {
1842 rtx dest = SET_DEST (x);
1843
1844 while ((GET_CODE (dest) == SUBREG
1845 && (!REG_P (SUBREG_REG (dest))
1846 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1847 || GET_CODE (dest) == ZERO_EXTRACT
1848 || GET_CODE (dest) == STRICT_LOW_PART)
1849 dest = XEXP (dest, 0);
1850
1851 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1852 each of whose first operand is a register. */
1853 if (GET_CODE (dest) == PARALLEL)
1854 {
1855 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1856 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1857 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1858 }
1859 else
1860 (*fun) (dest, x, data);
1861 }
770ae6cc 1862
aa317c97
KG
1863 else if (GET_CODE (x) == PARALLEL)
1864 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1865 note_stores (XVECEXP (x, 0, i), fun, data);
1866}
2c88418c 1867\f
e2373f95
RK
1868/* Like notes_stores, but call FUN for each expression that is being
1869 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1870 FUN for each expression, not any interior subexpressions. FUN receives a
1871 pointer to the expression and the DATA passed to this function.
1872
1873 Note that this is not quite the same test as that done in reg_referenced_p
1874 since that considers something as being referenced if it is being
1875 partially set, while we do not. */
1876
1877void
0c20a65f 1878note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
e2373f95
RK
1879{
1880 rtx body = *pbody;
1881 int i;
1882
1883 switch (GET_CODE (body))
1884 {
1885 case COND_EXEC:
1886 (*fun) (&COND_EXEC_TEST (body), data);
1887 note_uses (&COND_EXEC_CODE (body), fun, data);
1888 return;
1889
1890 case PARALLEL:
1891 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1892 note_uses (&XVECEXP (body, 0, i), fun, data);
1893 return;
1894
bbbc206e
BS
1895 case SEQUENCE:
1896 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1897 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1898 return;
1899
e2373f95
RK
1900 case USE:
1901 (*fun) (&XEXP (body, 0), data);
1902 return;
1903
1904 case ASM_OPERANDS:
1905 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1906 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1907 return;
1908
1909 case TRAP_IF:
1910 (*fun) (&TRAP_CONDITION (body), data);
1911 return;
1912
21b8482a
JJ
1913 case PREFETCH:
1914 (*fun) (&XEXP (body, 0), data);
1915 return;
1916
e2373f95
RK
1917 case UNSPEC:
1918 case UNSPEC_VOLATILE:
1919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1920 (*fun) (&XVECEXP (body, 0, i), data);
1921 return;
1922
1923 case CLOBBER:
3c0cb5de 1924 if (MEM_P (XEXP (body, 0)))
e2373f95
RK
1925 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1926 return;
1927
1928 case SET:
1929 {
1930 rtx dest = SET_DEST (body);
1931
1932 /* For sets we replace everything in source plus registers in memory
1933 expression in store and operands of a ZERO_EXTRACT. */
1934 (*fun) (&SET_SRC (body), data);
1935
1936 if (GET_CODE (dest) == ZERO_EXTRACT)
1937 {
1938 (*fun) (&XEXP (dest, 1), data);
1939 (*fun) (&XEXP (dest, 2), data);
1940 }
1941
1942 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1943 dest = XEXP (dest, 0);
1944
3c0cb5de 1945 if (MEM_P (dest))
e2373f95
RK
1946 (*fun) (&XEXP (dest, 0), data);
1947 }
1948 return;
1949
1950 default:
1951 /* All the other possibilities never store. */
1952 (*fun) (pbody, data);
1953 return;
1954 }
1955}
1956\f
2c88418c
RS
1957/* Return nonzero if X's old contents don't survive after INSN.
1958 This will be true if X is (cc0) or if X is a register and
1959 X dies in INSN or because INSN entirely sets X.
1960
46d096a3
SB
1961 "Entirely set" means set directly and not through a SUBREG, or
1962 ZERO_EXTRACT, so no trace of the old contents remains.
2c88418c
RS
1963 Likewise, REG_INC does not count.
1964
1965 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1966 but for this use that makes no difference, since regs don't overlap
1967 during their lifetimes. Therefore, this function may be used
6fb5fa3c 1968 at any time after deaths have been computed.
2c88418c
RS
1969
1970 If REG is a hard reg that occupies multiple machine registers, this
1971 function will only return 1 if each of those registers will be replaced
1972 by INSN. */
1973
1974int
f7d504c2 1975dead_or_set_p (const_rtx insn, const_rtx x)
2c88418c 1976{
09e18274 1977 unsigned int regno, end_regno;
770ae6cc 1978 unsigned int i;
2c88418c
RS
1979
1980 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1981 if (GET_CODE (x) == CC0)
1982 return 1;
1983
41374e13 1984 gcc_assert (REG_P (x));
2c88418c
RS
1985
1986 regno = REGNO (x);
09e18274
RS
1987 end_regno = END_REGNO (x);
1988 for (i = regno; i < end_regno; i++)
2c88418c
RS
1989 if (! dead_or_set_regno_p (insn, i))
1990 return 0;
1991
1992 return 1;
1993}
1994
194acded
HPN
1995/* Return TRUE iff DEST is a register or subreg of a register and
1996 doesn't change the number of words of the inner register, and any
1997 part of the register is TEST_REGNO. */
1998
1999static bool
f7d504c2 2000covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
2001{
2002 unsigned int regno, endregno;
2003
2004 if (GET_CODE (dest) == SUBREG
2005 && (((GET_MODE_SIZE (GET_MODE (dest))
2006 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2007 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2009 dest = SUBREG_REG (dest);
2010
2011 if (!REG_P (dest))
2012 return false;
2013
2014 regno = REGNO (dest);
09e18274 2015 endregno = END_REGNO (dest);
194acded
HPN
2016 return (test_regno >= regno && test_regno < endregno);
2017}
2018
2019/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2020 any member matches the covers_regno_no_parallel_p criteria. */
2021
2022static bool
f7d504c2 2023covers_regno_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
2024{
2025 if (GET_CODE (dest) == PARALLEL)
2026 {
2027 /* Some targets place small structures in registers for return
2028 values of functions, and those registers are wrapped in
2029 PARALLELs that we may see as the destination of a SET. */
2030 int i;
2031
2032 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2033 {
2034 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2035 if (inner != NULL_RTX
2036 && covers_regno_no_parallel_p (inner, test_regno))
2037 return true;
2038 }
2039
2040 return false;
2041 }
2042 else
2043 return covers_regno_no_parallel_p (dest, test_regno);
2044}
2045
6fb5fa3c 2046/* Utility function for dead_or_set_p to check an individual register. */
2c88418c
RS
2047
2048int
f7d504c2 2049dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2c88418c 2050{
f7d504c2 2051 const_rtx pattern;
2c88418c 2052
0a2287bf
RH
2053 /* See if there is a death note for something that includes TEST_REGNO. */
2054 if (find_regno_note (insn, REG_DEAD, test_regno))
2055 return 1;
2c88418c 2056
4b4bf941 2057 if (CALL_P (insn)
8f3e7a26
RK
2058 && find_regno_fusage (insn, CLOBBER, test_regno))
2059 return 1;
2060
0c99ec5c
RH
2061 pattern = PATTERN (insn);
2062
10439b59 2063 /* If a COND_EXEC is not executed, the value survives. */
0c99ec5c 2064 if (GET_CODE (pattern) == COND_EXEC)
10439b59 2065 return 0;
0c99ec5c
RH
2066
2067 if (GET_CODE (pattern) == SET)
194acded 2068 return covers_regno_p (SET_DEST (pattern), test_regno);
0c99ec5c 2069 else if (GET_CODE (pattern) == PARALLEL)
2c88418c 2070 {
b3694847 2071 int i;
2c88418c 2072
0c99ec5c 2073 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2c88418c 2074 {
0c99ec5c
RH
2075 rtx body = XVECEXP (pattern, 0, i);
2076
2077 if (GET_CODE (body) == COND_EXEC)
2078 body = COND_EXEC_CODE (body);
2c88418c 2079
194acded
HPN
2080 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2081 && covers_regno_p (SET_DEST (body), test_regno))
2082 return 1;
2c88418c
RS
2083 }
2084 }
2085
2086 return 0;
2087}
2088
2089/* Return the reg-note of kind KIND in insn INSN, if there is one.
2090 If DATUM is nonzero, look for one whose datum is DATUM. */
2091
2092rtx
f7d504c2 2093find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2c88418c 2094{
b3694847 2095 rtx link;
2c88418c 2096
7a40b8b1 2097 gcc_checking_assert (insn);
af082de3 2098
ae78d276 2099 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 2100 if (! INSN_P (insn))
ae78d276 2101 return 0;
cd798543
AP
2102 if (datum == 0)
2103 {
2104 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2105 if (REG_NOTE_KIND (link) == kind)
2106 return link;
2107 return 0;
2108 }
ae78d276 2109
2c88418c 2110 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cd798543 2111 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2c88418c
RS
2112 return link;
2113 return 0;
2114}
2115
2116/* Return the reg-note of kind KIND in insn INSN which applies to register
99309f3b
RK
2117 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2118 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2119 it might be the case that the note overlaps REGNO. */
2c88418c
RS
2120
2121rtx
f7d504c2 2122find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2c88418c 2123{
b3694847 2124 rtx link;
2c88418c 2125
ae78d276 2126 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 2127 if (! INSN_P (insn))
ae78d276
MM
2128 return 0;
2129
2c88418c
RS
2130 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2131 if (REG_NOTE_KIND (link) == kind
2132 /* Verify that it is a register, so that scratch and MEM won't cause a
2133 problem here. */
f8cfc6aa 2134 && REG_P (XEXP (link, 0))
99309f3b 2135 && REGNO (XEXP (link, 0)) <= regno
09e18274 2136 && END_REGNO (XEXP (link, 0)) > regno)
2c88418c
RS
2137 return link;
2138 return 0;
2139}
8f3e7a26 2140
d9c695ff
RK
2141/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2142 has such a note. */
2143
2144rtx
f7d504c2 2145find_reg_equal_equiv_note (const_rtx insn)
d9c695ff 2146{
cd648cec 2147 rtx link;
d9c695ff 2148
cd648cec 2149 if (!INSN_P (insn))
d9c695ff 2150 return 0;
ea8f106d 2151
cd648cec
JH
2152 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2153 if (REG_NOTE_KIND (link) == REG_EQUAL
2154 || REG_NOTE_KIND (link) == REG_EQUIV)
2155 {
ea8f106d
SB
2156 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2157 insns that have multiple sets. Checking single_set to
2158 make sure of this is not the proper check, as explained
2159 in the comment in set_unique_reg_note.
2160
2161 This should be changed into an assert. */
2162 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
cd648cec
JH
2163 return 0;
2164 return link;
2165 }
2166 return NULL;
d9c695ff
RK
2167}
2168
2a450639
RS
2169/* Check whether INSN is a single_set whose source is known to be
2170 equivalent to a constant. Return that constant if so, otherwise
2171 return null. */
2172
2173rtx
68a1a6c0 2174find_constant_src (const rtx_insn *insn)
2a450639
RS
2175{
2176 rtx note, set, x;
2177
2178 set = single_set (insn);
2179 if (set)
2180 {
2181 x = avoid_constant_pool_reference (SET_SRC (set));
2182 if (CONSTANT_P (x))
2183 return x;
2184 }
2185
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && CONSTANT_P (XEXP (note, 0)))
2188 return XEXP (note, 0);
2189
2190 return NULL_RTX;
2191}
2192
8f3e7a26
RK
2193/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2194 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2195
2196int
f7d504c2 2197find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
8f3e7a26
RK
2198{
2199 /* If it's not a CALL_INSN, it can't possibly have a
2200 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
4b4bf941 2201 if (!CALL_P (insn))
8f3e7a26
RK
2202 return 0;
2203
41374e13 2204 gcc_assert (datum);
8f3e7a26 2205
f8cfc6aa 2206 if (!REG_P (datum))
8f3e7a26 2207 {
b3694847 2208 rtx link;
8f3e7a26
RK
2209
2210 for (link = CALL_INSN_FUNCTION_USAGE (insn);
a6a2274a 2211 link;
8f3e7a26 2212 link = XEXP (link, 1))
a6a2274a 2213 if (GET_CODE (XEXP (link, 0)) == code
cc863bea 2214 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
a6a2274a 2215 return 1;
8f3e7a26
RK
2216 }
2217 else
2218 {
770ae6cc 2219 unsigned int regno = REGNO (datum);
8f3e7a26
RK
2220
2221 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2222 to pseudo registers, so don't bother checking. */
2223
2224 if (regno < FIRST_PSEUDO_REGISTER)
a6a2274a 2225 {
72d19505 2226 unsigned int end_regno = END_REGNO (datum);
770ae6cc 2227 unsigned int i;
8f3e7a26
RK
2228
2229 for (i = regno; i < end_regno; i++)
2230 if (find_regno_fusage (insn, code, i))
2231 return 1;
a6a2274a 2232 }
8f3e7a26
RK
2233 }
2234
2235 return 0;
2236}
2237
2238/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2239 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2240
2241int
f7d504c2 2242find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
8f3e7a26 2243{
b3694847 2244 rtx link;
8f3e7a26
RK
2245
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2248
2249 if (regno >= FIRST_PSEUDO_REGISTER
4b4bf941 2250 || !CALL_P (insn) )
8f3e7a26
RK
2251 return 0;
2252
2253 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
83ab3839 2254 {
770ae6cc 2255 rtx op, reg;
83ab3839
RH
2256
2257 if (GET_CODE (op = XEXP (link, 0)) == code
f8cfc6aa 2258 && REG_P (reg = XEXP (op, 0))
09e18274 2259 && REGNO (reg) <= regno
72d19505 2260 && END_REGNO (reg) > regno)
83ab3839
RH
2261 return 1;
2262 }
8f3e7a26
RK
2263
2264 return 0;
2265}
a6a063b8 2266
2c88418c 2267\f
e5af9ddd
RS
2268/* Return true if KIND is an integer REG_NOTE. */
2269
2270static bool
2271int_reg_note_p (enum reg_note kind)
2272{
2273 return kind == REG_BR_PROB;
2274}
2275
efc0b2bd
ILT
2276/* Allocate a register note with kind KIND and datum DATUM. LIST is
2277 stored as the pointer to the next register note. */
65c5f2a6 2278
efc0b2bd
ILT
2279rtx
2280alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
65c5f2a6
ILT
2281{
2282 rtx note;
2283
e5af9ddd 2284 gcc_checking_assert (!int_reg_note_p (kind));
65c5f2a6
ILT
2285 switch (kind)
2286 {
2287 case REG_CC_SETTER:
2288 case REG_CC_USER:
2289 case REG_LABEL_TARGET:
2290 case REG_LABEL_OPERAND:
0a35513e 2291 case REG_TM:
65c5f2a6
ILT
2292 /* These types of register notes use an INSN_LIST rather than an
2293 EXPR_LIST, so that copying is done right and dumps look
2294 better. */
efc0b2bd 2295 note = alloc_INSN_LIST (datum, list);
65c5f2a6
ILT
2296 PUT_REG_NOTE_KIND (note, kind);
2297 break;
2298
2299 default:
efc0b2bd 2300 note = alloc_EXPR_LIST (kind, datum, list);
65c5f2a6
ILT
2301 break;
2302 }
2303
efc0b2bd
ILT
2304 return note;
2305}
2306
2307/* Add register note with kind KIND and datum DATUM to INSN. */
2308
2309void
2310add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2311{
2312 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
65c5f2a6
ILT
2313}
2314
e5af9ddd
RS
2315/* Add an integer register note with kind KIND and datum DATUM to INSN. */
2316
2317void
2318add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2319{
2320 gcc_checking_assert (int_reg_note_p (kind));
ef4bddc2 2321 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
e5af9ddd
RS
2322 datum, REG_NOTES (insn));
2323}
2324
2325/* Add a register note like NOTE to INSN. */
2326
2327void
9b8d3c60 2328add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
e5af9ddd
RS
2329{
2330 if (GET_CODE (note) == INT_LIST)
2331 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2332 else
2333 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2334}
2335
2c88418c
RS
2336/* Remove register note NOTE from the REG_NOTES of INSN. */
2337
2338void
f7d504c2 2339remove_note (rtx insn, const_rtx note)
2c88418c 2340{
b3694847 2341 rtx link;
2c88418c 2342
49c3bb12
RH
2343 if (note == NULL_RTX)
2344 return;
2345
2c88418c 2346 if (REG_NOTES (insn) == note)
6fb5fa3c
DB
2347 REG_NOTES (insn) = XEXP (note, 1);
2348 else
2349 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2350 if (XEXP (link, 1) == note)
2351 {
2352 XEXP (link, 1) = XEXP (note, 1);
2353 break;
2354 }
2355
2356 switch (REG_NOTE_KIND (note))
2c88418c 2357 {
6fb5fa3c
DB
2358 case REG_EQUAL:
2359 case REG_EQUIV:
b2908ba6 2360 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
2361 break;
2362 default:
2363 break;
2c88418c 2364 }
2c88418c 2365}
55a98783 2366
7cd689bc
SB
2367/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2368
2369void
43534595 2370remove_reg_equal_equiv_notes (rtx_insn *insn)
7cd689bc
SB
2371{
2372 rtx *loc;
2373
2374 loc = &REG_NOTES (insn);
2375 while (*loc)
2376 {
2377 enum reg_note kind = REG_NOTE_KIND (*loc);
2378 if (kind == REG_EQUAL || kind == REG_EQUIV)
2379 *loc = XEXP (*loc, 1);
2380 else
2381 loc = &XEXP (*loc, 1);
2382 }
2383}
885c9b5d
EB
2384
2385/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2386
2387void
2388remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2389{
2390 df_ref eq_use;
2391
2392 if (!df)
2393 return;
2394
2395 /* This loop is a little tricky. We cannot just go down the chain because
2396 it is being modified by some actions in the loop. So we just iterate
2397 over the head. We plan to drain the list anyway. */
2398 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2399 {
1bbbc4a3 2400 rtx_insn *insn = DF_REF_INSN (eq_use);
885c9b5d
EB
2401 rtx note = find_reg_equal_equiv_note (insn);
2402
2403 /* This assert is generally triggered when someone deletes a REG_EQUAL
2404 or REG_EQUIV note by hacking the list manually rather than calling
2405 remove_note. */
2406 gcc_assert (note);
2407
2408 remove_note (insn, note);
2409 }
2410}
7cd689bc 2411
5f0d2358
RK
2412/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2413 return 1 if it is found. A simple equality test is used to determine if
2414 NODE matches. */
2415
0d53e74e
TS
2416bool
2417in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
5f0d2358 2418{
f7d504c2 2419 const_rtx x;
5f0d2358
RK
2420
2421 for (x = listp; x; x = XEXP (x, 1))
2422 if (node == XEXP (x, 0))
0d53e74e 2423 return true;
5f0d2358 2424
0d53e74e 2425 return false;
5f0d2358
RK
2426}
2427
dd248abd
RK
2428/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
55a98783 2430
dd248abd 2431 A simple equality test is used to determine if NODE matches. */
55a98783
JL
2432
2433void
2382940b 2434remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
55a98783 2435{
2382940b 2436 rtx_expr_list *temp = *listp;
e67d1102 2437 rtx_expr_list *prev = NULL;
55a98783
JL
2438
2439 while (temp)
2440 {
2382940b 2441 if (node == temp->element ())
55a98783
JL
2442 {
2443 /* Splice the node out of the list. */
2444 if (prev)
2382940b 2445 XEXP (prev, 1) = temp->next ();
55a98783 2446 else
2382940b 2447 *listp = temp->next ();
55a98783
JL
2448
2449 return;
2450 }
dd248abd
RK
2451
2452 prev = temp;
2382940b 2453 temp = temp->next ();
55a98783
JL
2454 }
2455}
b5241a5a
DM
2456
2457/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2458 remove that entry from the list if it is found.
2459
2460 A simple equality test is used to determine if NODE matches. */
2461
2462void
2463remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2464{
2465 rtx_insn_list *temp = *listp;
e67d1102 2466 rtx_insn_list *prev = NULL;
b5241a5a
DM
2467
2468 while (temp)
2469 {
2470 if (node == temp->insn ())
2471 {
2472 /* Splice the node out of the list. */
2473 if (prev)
2474 XEXP (prev, 1) = temp->next ();
2475 else
2476 *listp = temp->next ();
2477
2478 return;
2479 }
2480
2481 prev = temp;
2482 temp = temp->next ();
2483 }
2484}
2c88418c 2485\f
2b067faf
RS
2486/* Nonzero if X contains any volatile instructions. These are instructions
2487 which may cause unpredictable machine state instructions, and thus no
adddc347
HPN
2488 instructions or register uses should be moved or combined across them.
2489 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2b067faf
RS
2490
2491int
f7d504c2 2492volatile_insn_p (const_rtx x)
2b067faf 2493{
f7d504c2 2494 const RTX_CODE code = GET_CODE (x);
2b067faf
RS
2495 switch (code)
2496 {
2497 case LABEL_REF:
2498 case SYMBOL_REF:
2b067faf 2499 case CONST:
d8116890 2500 CASE_CONST_ANY:
2b067faf
RS
2501 case CC0:
2502 case PC:
2503 case REG:
2504 case SCRATCH:
2505 case CLOBBER:
2b067faf
RS
2506 case ADDR_VEC:
2507 case ADDR_DIFF_VEC:
2508 case CALL:
2509 case MEM:
2510 return 0;
2511
2512 case UNSPEC_VOLATILE:
2b067faf
RS
2513 return 1;
2514
4c46ea23 2515 case ASM_INPUT:
2b067faf
RS
2516 case ASM_OPERANDS:
2517 if (MEM_VOLATILE_P (x))
2518 return 1;
e9a25f70
JL
2519
2520 default:
2521 break;
2b067faf
RS
2522 }
2523
2524 /* Recursively scan the operands of this expression. */
2525
2526 {
f7d504c2 2527 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2528 int i;
a6a2274a 2529
2b067faf
RS
2530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2531 {
2532 if (fmt[i] == 'e')
2533 {
31001f72 2534 if (volatile_insn_p (XEXP (x, i)))
2b067faf
RS
2535 return 1;
2536 }
d4757e6a 2537 else if (fmt[i] == 'E')
2b067faf 2538 {
b3694847 2539 int j;
2b067faf 2540 for (j = 0; j < XVECLEN (x, i); j++)
31001f72 2541 if (volatile_insn_p (XVECEXP (x, i, j)))
2b067faf
RS
2542 return 1;
2543 }
2544 }
2545 }
2546 return 0;
2547}
2548
2c88418c 2549/* Nonzero if X contains any volatile memory references
2ac4fed0 2550 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2c88418c
RS
2551
2552int
f7d504c2 2553volatile_refs_p (const_rtx x)
2c88418c 2554{
f7d504c2 2555 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2556 switch (code)
2557 {
2558 case LABEL_REF:
2559 case SYMBOL_REF:
2c88418c 2560 case CONST:
d8116890 2561 CASE_CONST_ANY:
2c88418c
RS
2562 case CC0:
2563 case PC:
2564 case REG:
2565 case SCRATCH:
2566 case CLOBBER:
2c88418c
RS
2567 case ADDR_VEC:
2568 case ADDR_DIFF_VEC:
2569 return 0;
2570
2ac4fed0 2571 case UNSPEC_VOLATILE:
2c88418c
RS
2572 return 1;
2573
2574 case MEM:
4c46ea23 2575 case ASM_INPUT:
2c88418c
RS
2576 case ASM_OPERANDS:
2577 if (MEM_VOLATILE_P (x))
2578 return 1;
e9a25f70
JL
2579
2580 default:
2581 break;
2c88418c
RS
2582 }
2583
2584 /* Recursively scan the operands of this expression. */
2585
2586 {
f7d504c2 2587 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2588 int i;
a6a2274a 2589
2c88418c
RS
2590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2591 {
2592 if (fmt[i] == 'e')
2593 {
2594 if (volatile_refs_p (XEXP (x, i)))
2595 return 1;
2596 }
d4757e6a 2597 else if (fmt[i] == 'E')
2c88418c 2598 {
b3694847 2599 int j;
2c88418c
RS
2600 for (j = 0; j < XVECLEN (x, i); j++)
2601 if (volatile_refs_p (XVECEXP (x, i, j)))
2602 return 1;
2603 }
2604 }
2605 }
2606 return 0;
2607}
2608
2609/* Similar to above, except that it also rejects register pre- and post-
2610 incrementing. */
2611
2612int
f7d504c2 2613side_effects_p (const_rtx x)
2c88418c 2614{
f7d504c2 2615 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2616 switch (code)
2617 {
2618 case LABEL_REF:
2619 case SYMBOL_REF:
2c88418c 2620 case CONST:
d8116890 2621 CASE_CONST_ANY:
2c88418c
RS
2622 case CC0:
2623 case PC:
2624 case REG:
2625 case SCRATCH:
2c88418c
RS
2626 case ADDR_VEC:
2627 case ADDR_DIFF_VEC:
b5b8b0ac 2628 case VAR_LOCATION:
2c88418c
RS
2629 return 0;
2630
2631 case CLOBBER:
2632 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2633 when some combination can't be done. If we see one, don't think
2634 that we can simplify the expression. */
2635 return (GET_MODE (x) != VOIDmode);
2636
2637 case PRE_INC:
2638 case PRE_DEC:
2639 case POST_INC:
2640 case POST_DEC:
1fb9c5cd
MH
2641 case PRE_MODIFY:
2642 case POST_MODIFY:
2c88418c 2643 case CALL:
2ac4fed0 2644 case UNSPEC_VOLATILE:
2c88418c
RS
2645 return 1;
2646
2647 case MEM:
4c46ea23 2648 case ASM_INPUT:
2c88418c
RS
2649 case ASM_OPERANDS:
2650 if (MEM_VOLATILE_P (x))
2651 return 1;
e9a25f70
JL
2652
2653 default:
2654 break;
2c88418c
RS
2655 }
2656
2657 /* Recursively scan the operands of this expression. */
2658
2659 {
b3694847
SS
2660 const char *fmt = GET_RTX_FORMAT (code);
2661 int i;
a6a2274a 2662
2c88418c
RS
2663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2664 {
2665 if (fmt[i] == 'e')
2666 {
2667 if (side_effects_p (XEXP (x, i)))
2668 return 1;
2669 }
d4757e6a 2670 else if (fmt[i] == 'E')
2c88418c 2671 {
b3694847 2672 int j;
2c88418c
RS
2673 for (j = 0; j < XVECLEN (x, i); j++)
2674 if (side_effects_p (XVECEXP (x, i, j)))
2675 return 1;
2676 }
2677 }
2678 }
2679 return 0;
2680}
2681\f
e755fcf5 2682/* Return nonzero if evaluating rtx X might cause a trap.
48e8382e
PB
2683 FLAGS controls how to consider MEMs. A nonzero means the context
2684 of the access may have changed from the original, such that the
2685 address may have become invalid. */
2c88418c 2686
215b063c 2687int
f7d504c2 2688may_trap_p_1 (const_rtx x, unsigned flags)
2c88418c
RS
2689{
2690 int i;
2691 enum rtx_code code;
6f7d635c 2692 const char *fmt;
48e8382e
PB
2693
2694 /* We make no distinction currently, but this function is part of
2695 the internal target-hooks ABI so we keep the parameter as
2696 "unsigned flags". */
2697 bool code_changed = flags != 0;
2c88418c
RS
2698
2699 if (x == 0)
2700 return 0;
2701 code = GET_CODE (x);
2702 switch (code)
2703 {
2704 /* Handle these cases quickly. */
d8116890 2705 CASE_CONST_ANY:
2c88418c
RS
2706 case SYMBOL_REF:
2707 case LABEL_REF:
2708 case CONST:
2709 case PC:
2710 case CC0:
2711 case REG:
2712 case SCRATCH:
2713 return 0;
2714
215b063c 2715 case UNSPEC:
215b063c
PB
2716 return targetm.unspec_may_trap_p (x, flags);
2717
c84a808e 2718 case UNSPEC_VOLATILE:
215b063c 2719 case ASM_INPUT:
2c88418c
RS
2720 case TRAP_IF:
2721 return 1;
2722
22aa60a1
RH
2723 case ASM_OPERANDS:
2724 return MEM_VOLATILE_P (x);
2725
2c88418c
RS
2726 /* Memory ref can trap unless it's a static var or a stack slot. */
2727 case MEM:
d809253a
EB
2728 /* Recognize specific pattern of stack checking probes. */
2729 if (flag_stack_check
2730 && MEM_VOLATILE_P (x)
2731 && XEXP (x, 0) == stack_pointer_rtx)
2732 return 1;
e755fcf5 2733 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
48e8382e
PB
2734 reference; moving it out of context such as when moving code
2735 when optimizing, might cause its address to become invalid. */
2736 code_changed
2737 || !MEM_NOTRAP_P (x))
2738 {
f5541398 2739 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
48e8382e
PB
2740 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2741 GET_MODE (x), code_changed);
2742 }
2743
2744 return 0;
2c88418c
RS
2745
2746 /* Division by a non-constant might trap. */
2747 case DIV:
2748 case MOD:
2749 case UDIV:
2750 case UMOD:
3d3dbadd 2751 if (HONOR_SNANS (x))
52bfebf0 2752 return 1;
3d8bf70f 2753 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
f9013075
DE
2754 return flag_trapping_math;
2755 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2c88418c 2756 return 1;
e9a25f70
JL
2757 break;
2758
b278301b
RK
2759 case EXPR_LIST:
2760 /* An EXPR_LIST is used to represent a function call. This
2761 certainly may trap. */
2762 return 1;
e9a25f70 2763
734508ea
JW
2764 case GE:
2765 case GT:
2766 case LE:
2767 case LT:
19aec195 2768 case LTGT:
55143861 2769 case COMPARE:
734508ea 2770 /* Some floating point comparisons may trap. */
f5eb5fd0
JH
2771 if (!flag_trapping_math)
2772 break;
734508ea
JW
2773 /* ??? There is no machine independent way to check for tests that trap
2774 when COMPARE is used, though many targets do make this distinction.
2775 For instance, sparc uses CCFPE for compares which generate exceptions
2776 and CCFP for compares which do not generate exceptions. */
1b457aa4 2777 if (HONOR_NANS (x))
55143861
JJ
2778 return 1;
2779 /* But often the compare has some CC mode, so check operand
2780 modes as well. */
1b457aa4
MG
2781 if (HONOR_NANS (XEXP (x, 0))
2782 || HONOR_NANS (XEXP (x, 1)))
52bfebf0
RS
2783 return 1;
2784 break;
2785
2786 case EQ:
2787 case NE:
3d3dbadd 2788 if (HONOR_SNANS (x))
52bfebf0
RS
2789 return 1;
2790 /* Often comparison is CC mode, so check operand modes. */
3d3dbadd
MG
2791 if (HONOR_SNANS (XEXP (x, 0))
2792 || HONOR_SNANS (XEXP (x, 1)))
55143861
JJ
2793 return 1;
2794 break;
2795
22fd5743
FH
2796 case FIX:
2797 /* Conversion of floating point might trap. */
1b457aa4 2798 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
22fd5743
FH
2799 return 1;
2800 break;
2801
05cc23e8
RH
2802 case NEG:
2803 case ABS:
e3947b34 2804 case SUBREG:
05cc23e8
RH
2805 /* These operations don't trap even with floating point. */
2806 break;
2807
2c88418c
RS
2808 default:
2809 /* Any floating arithmetic may trap. */
c84a808e 2810 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2c88418c
RS
2811 return 1;
2812 }
2813
2814 fmt = GET_RTX_FORMAT (code);
2815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2816 {
2817 if (fmt[i] == 'e')
2818 {
e755fcf5 2819 if (may_trap_p_1 (XEXP (x, i), flags))
2c88418c
RS
2820 return 1;
2821 }
2822 else if (fmt[i] == 'E')
2823 {
b3694847 2824 int j;
2c88418c 2825 for (j = 0; j < XVECLEN (x, i); j++)
e755fcf5 2826 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2c88418c
RS
2827 return 1;
2828 }
2829 }
2830 return 0;
2831}
2358ff91
EB
2832
2833/* Return nonzero if evaluating rtx X might cause a trap. */
2834
2835int
f7d504c2 2836may_trap_p (const_rtx x)
2358ff91 2837{
e755fcf5
ZD
2838 return may_trap_p_1 (x, 0);
2839}
2840
c0220ea4 2841/* Same as above, but additionally return nonzero if evaluating rtx X might
2358ff91
EB
2842 cause a fault. We define a fault for the purpose of this function as a
2843 erroneous execution condition that cannot be encountered during the normal
2844 execution of a valid program; the typical example is an unaligned memory
2845 access on a strict alignment machine. The compiler guarantees that it
2846 doesn't generate code that will fault from a valid program, but this
2847 guarantee doesn't mean anything for individual instructions. Consider
2848 the following example:
2849
2850 struct S { int d; union { char *cp; int *ip; }; };
2851
2852 int foo(struct S *s)
2853 {
2854 if (s->d == 1)
2855 return *s->ip;
2856 else
2857 return *s->cp;
2858 }
2859
2860 on a strict alignment machine. In a valid program, foo will never be
2861 invoked on a structure for which d is equal to 1 and the underlying
2862 unique field of the union not aligned on a 4-byte boundary, but the
2863 expression *s->ip might cause a fault if considered individually.
2864
2865 At the RTL level, potentially problematic expressions will almost always
2866 verify may_trap_p; for example, the above dereference can be emitted as
2867 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2868 However, suppose that foo is inlined in a caller that causes s->cp to
2869 point to a local character variable and guarantees that s->d is not set
2870 to 1; foo may have been effectively translated into pseudo-RTL as:
2871
2872 if ((reg:SI) == 1)
2873 (set (reg:SI) (mem:SI (%fp - 7)))
2874 else
2875 (set (reg:QI) (mem:QI (%fp - 7)))
2876
2877 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2878 memory reference to a stack slot, but it will certainly cause a fault
2879 on a strict alignment machine. */
2880
2881int
f7d504c2 2882may_trap_or_fault_p (const_rtx x)
2358ff91 2883{
48e8382e 2884 return may_trap_p_1 (x, 1);
2358ff91 2885}
2c88418c
RS
2886\f
2887/* Return nonzero if X contains a comparison that is not either EQ or NE,
2888 i.e., an inequality. */
2889
2890int
f7d504c2 2891inequality_comparisons_p (const_rtx x)
2c88418c 2892{
b3694847
SS
2893 const char *fmt;
2894 int len, i;
f7d504c2 2895 const enum rtx_code code = GET_CODE (x);
2c88418c
RS
2896
2897 switch (code)
2898 {
2899 case REG:
2900 case SCRATCH:
2901 case PC:
2902 case CC0:
d8116890 2903 CASE_CONST_ANY:
2c88418c
RS
2904 case CONST:
2905 case LABEL_REF:
2906 case SYMBOL_REF:
2907 return 0;
2908
2909 case LT:
2910 case LTU:
2911 case GT:
2912 case GTU:
2913 case LE:
2914 case LEU:
2915 case GE:
2916 case GEU:
2917 return 1;
a6a2274a 2918
e9a25f70
JL
2919 default:
2920 break;
2c88418c
RS
2921 }
2922
2923 len = GET_RTX_LENGTH (code);
2924 fmt = GET_RTX_FORMAT (code);
2925
2926 for (i = 0; i < len; i++)
2927 {
2928 if (fmt[i] == 'e')
2929 {
2930 if (inequality_comparisons_p (XEXP (x, i)))
2931 return 1;
2932 }
2933 else if (fmt[i] == 'E')
2934 {
b3694847 2935 int j;
2c88418c
RS
2936 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2937 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2938 return 1;
2939 }
2940 }
a6a2274a 2941
2c88418c
RS
2942 return 0;
2943}
2944\f
1ed0205e
VM
2945/* Replace any occurrence of FROM in X with TO. The function does
2946 not enter into CONST_DOUBLE for the replace.
2c88418c
RS
2947
2948 Note that copying is not done so X must not be shared unless all copies
2949 are to be modified. */
2950
2951rtx
0c20a65f 2952replace_rtx (rtx x, rtx from, rtx to)
2c88418c 2953{
b3694847
SS
2954 int i, j;
2955 const char *fmt;
2c88418c
RS
2956
2957 if (x == from)
2958 return to;
2959
2960 /* Allow this function to make replacements in EXPR_LISTs. */
2961 if (x == 0)
2962 return 0;
2963
9dd791c8
AO
2964 if (GET_CODE (x) == SUBREG)
2965 {
55d796da 2966 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
9dd791c8 2967
481683e1 2968 if (CONST_INT_P (new_rtx))
9dd791c8 2969 {
55d796da 2970 x = simplify_subreg (GET_MODE (x), new_rtx,
9dd791c8
AO
2971 GET_MODE (SUBREG_REG (x)),
2972 SUBREG_BYTE (x));
41374e13 2973 gcc_assert (x);
9dd791c8
AO
2974 }
2975 else
55d796da 2976 SUBREG_REG (x) = new_rtx;
9dd791c8
AO
2977
2978 return x;
2979 }
2980 else if (GET_CODE (x) == ZERO_EXTEND)
2981 {
55d796da 2982 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
9dd791c8 2983
481683e1 2984 if (CONST_INT_P (new_rtx))
9dd791c8
AO
2985 {
2986 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
55d796da 2987 new_rtx, GET_MODE (XEXP (x, 0)));
41374e13 2988 gcc_assert (x);
9dd791c8
AO
2989 }
2990 else
55d796da 2991 XEXP (x, 0) = new_rtx;
9dd791c8
AO
2992
2993 return x;
2994 }
2995
2c88418c
RS
2996 fmt = GET_RTX_FORMAT (GET_CODE (x));
2997 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2998 {
2999 if (fmt[i] == 'e')
3000 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
3001 else if (fmt[i] == 'E')
3002 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3003 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
3004 }
3005
3006 return x;
a6a2274a 3007}
2c88418c 3008\f
a2b7026c
RS
3009/* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3010 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
39811184 3011
a2b7026c
RS
3012void
3013replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
39811184 3014{
a2b7026c
RS
3015 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3016 rtx x = *loc;
3017 if (JUMP_TABLE_DATA_P (x))
4af16369 3018 {
a2b7026c
RS
3019 x = PATTERN (x);
3020 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3021 int len = GET_NUM_ELEM (vec);
3022 for (int i = 0; i < len; ++i)
4af16369 3023 {
a2b7026c
RS
3024 rtx ref = RTVEC_ELT (vec, i);
3025 if (XEXP (ref, 0) == old_label)
3026 {
3027 XEXP (ref, 0) = new_label;
3028 if (update_label_nuses)
3029 {
3030 ++LABEL_NUSES (new_label);
3031 --LABEL_NUSES (old_label);
3032 }
3033 }
4af16369 3034 }
a2b7026c 3035 return;
4af16369
JZ
3036 }
3037
39811184 3038 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
a2b7026c 3039 field. This is not handled by the iterator because it doesn't
39811184 3040 handle unprinted ('0') fields. */
a2b7026c
RS
3041 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3042 JUMP_LABEL (x) = new_label;
39811184 3043
a2b7026c
RS
3044 subrtx_ptr_iterator::array_type array;
3045 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
4af16369 3046 {
a2b7026c
RS
3047 rtx *loc = *iter;
3048 if (rtx x = *loc)
4af16369 3049 {
a2b7026c
RS
3050 if (GET_CODE (x) == SYMBOL_REF
3051 && CONSTANT_POOL_ADDRESS_P (x))
3052 {
3053 rtx c = get_pool_constant (x);
3054 if (rtx_referenced_p (old_label, c))
3055 {
3056 /* Create a copy of constant C; replace the label inside
3057 but do not update LABEL_NUSES because uses in constant pool
3058 are not counted. */
3059 rtx new_c = copy_rtx (c);
3060 replace_label (&new_c, old_label, new_label, false);
3061
3062 /* Add the new constant NEW_C to constant pool and replace
3063 the old reference to constant by new reference. */
3064 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3065 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3066 }
3067 }
3068
3069 if ((GET_CODE (x) == LABEL_REF
3070 || GET_CODE (x) == INSN_LIST)
3071 && XEXP (x, 0) == old_label)
3072 {
3073 XEXP (x, 0) = new_label;
3074 if (update_label_nuses)
3075 {
3076 ++LABEL_NUSES (new_label);
3077 --LABEL_NUSES (old_label);
3078 }
3079 }
4af16369 3080 }
4af16369 3081 }
a2b7026c 3082}
39811184 3083
a2b7026c
RS
3084void
3085replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3086 bool update_label_nuses)
3087{
3088 rtx insn_as_rtx = insn;
3089 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3090 gcc_checking_assert (insn_as_rtx == insn);
39811184
JZ
3091}
3092
e08cf836 3093/* Return true if X is referenced in BODY. */
39811184 3094
e08cf836
RS
3095bool
3096rtx_referenced_p (const_rtx x, const_rtx body)
39811184 3097{
e08cf836
RS
3098 subrtx_iterator::array_type array;
3099 FOR_EACH_SUBRTX (iter, array, body, ALL)
3100 if (const_rtx y = *iter)
3101 {
3102 /* Check if a label_ref Y refers to label X. */
a827d9b1
DM
3103 if (GET_CODE (y) == LABEL_REF
3104 && LABEL_P (x)
3105 && LABEL_REF_LABEL (y) == x)
e08cf836 3106 return true;
39811184 3107
e08cf836
RS
3108 if (rtx_equal_p (x, y))
3109 return true;
39811184 3110
e08cf836
RS
3111 /* If Y is a reference to pool constant traverse the constant. */
3112 if (GET_CODE (y) == SYMBOL_REF
3113 && CONSTANT_POOL_ADDRESS_P (y))
3114 iter.substitute (get_pool_constant (y));
3115 }
3116 return false;
39811184
JZ
3117}
3118
ee735eef
JZ
3119/* If INSN is a tablejump return true and store the label (before jump table) to
3120 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
39811184
JZ
3121
3122bool
c5241a21 3123tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
39811184 3124{
1476d1bd
MM
3125 rtx label;
3126 rtx_insn *table;
ee735eef 3127
dc0ff1c8
BS
3128 if (!JUMP_P (insn))
3129 return false;
3130
3131 label = JUMP_LABEL (insn);
3132 if (label != NULL_RTX && !ANY_RETURN_P (label)
b32d5189 3133 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
481683e1 3134 && JUMP_TABLE_DATA_P (table))
39811184 3135 {
ee735eef
JZ
3136 if (labelp)
3137 *labelp = label;
3138 if (tablep)
8942ee0f 3139 *tablep = as_a <rtx_jump_table_data *> (table);
39811184
JZ
3140 return true;
3141 }
3142 return false;
3143}
3144
fce7e199
RH
3145/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3146 constant that is not in the constant pool and not in the condition
3147 of an IF_THEN_ELSE. */
2a1777af
JL
3148
3149static int
f7d504c2 3150computed_jump_p_1 (const_rtx x)
2a1777af 3151{
f7d504c2 3152 const enum rtx_code code = GET_CODE (x);
2a1777af 3153 int i, j;
6f7d635c 3154 const char *fmt;
2a1777af
JL
3155
3156 switch (code)
3157 {
2a1777af
JL
3158 case LABEL_REF:
3159 case PC:
3160 return 0;
3161
fce7e199 3162 case CONST:
d8116890 3163 CASE_CONST_ANY:
fce7e199 3164 case SYMBOL_REF:
2a1777af
JL
3165 case REG:
3166 return 1;
3167
3168 case MEM:
3169 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3170 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3171
3172 case IF_THEN_ELSE:
fce7e199
RH
3173 return (computed_jump_p_1 (XEXP (x, 1))
3174 || computed_jump_p_1 (XEXP (x, 2)));
1d300e19
KG
3175
3176 default:
3177 break;
2a1777af
JL
3178 }
3179
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3182 {
3183 if (fmt[i] == 'e'
fce7e199 3184 && computed_jump_p_1 (XEXP (x, i)))
2a1777af
JL
3185 return 1;
3186
d4757e6a 3187 else if (fmt[i] == 'E')
2a1777af 3188 for (j = 0; j < XVECLEN (x, i); j++)
fce7e199 3189 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2a1777af
JL
3190 return 1;
3191 }
3192
3193 return 0;
3194}
3195
3196/* Return nonzero if INSN is an indirect jump (aka computed jump).
3197
3198 Tablejumps and casesi insns are not considered indirect jumps;
4eb00163 3199 we can recognize them by a (use (label_ref)). */
2a1777af
JL
3200
3201int
63bd6324 3202computed_jump_p (const rtx_insn *insn)
2a1777af
JL
3203{
3204 int i;
4b4bf941 3205 if (JUMP_P (insn))
2a1777af
JL
3206 {
3207 rtx pat = PATTERN (insn);
2a1777af 3208
cf7c4aa6
HPN
3209 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3210 if (JUMP_LABEL (insn) != NULL)
f759eb8b 3211 return 0;
cf7c4aa6
HPN
3212
3213 if (GET_CODE (pat) == PARALLEL)
2a1777af
JL
3214 {
3215 int len = XVECLEN (pat, 0);
3216 int has_use_labelref = 0;
3217
3218 for (i = len - 1; i >= 0; i--)
3219 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3220 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3221 == LABEL_REF))
c7b3b99f
PCC
3222 {
3223 has_use_labelref = 1;
3224 break;
3225 }
2a1777af
JL
3226
3227 if (! has_use_labelref)
3228 for (i = len - 1; i >= 0; i--)
3229 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3230 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
fce7e199 3231 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2a1777af
JL
3232 return 1;
3233 }
3234 else if (GET_CODE (pat) == SET
3235 && SET_DEST (pat) == pc_rtx
fce7e199 3236 && computed_jump_p_1 (SET_SRC (pat)))
2a1777af
JL
3237 return 1;
3238 }
3239 return 0;
3240}
ccc2d6d0 3241
4deef538
AO
3242\f
3243
8d8e205b
RS
3244/* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3245 the equivalent add insn and pass the result to FN, using DATA as the
3246 final argument. */
4deef538
AO
3247
3248static int
8d8e205b 3249for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
4deef538 3250{
8d8e205b 3251 rtx x = XEXP (mem, 0);
4deef538
AO
3252 switch (GET_CODE (x))
3253 {
3254 case PRE_INC:
3255 case POST_INC:
3256 {
8d8e205b 3257 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3258 rtx r1 = XEXP (x, 0);
3259 rtx c = gen_int_mode (size, GET_MODE (r1));
8d8e205b 3260 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3261 }
3262
3263 case PRE_DEC:
3264 case POST_DEC:
3265 {
8d8e205b 3266 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3267 rtx r1 = XEXP (x, 0);
3268 rtx c = gen_int_mode (-size, GET_MODE (r1));
8d8e205b 3269 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3270 }
3271
3272 case PRE_MODIFY:
3273 case POST_MODIFY:
3274 {
3275 rtx r1 = XEXP (x, 0);
3276 rtx add = XEXP (x, 1);
8d8e205b 3277 return fn (mem, x, r1, add, NULL, data);
4deef538
AO
3278 }
3279
3280 default:
8d8e205b 3281 gcc_unreachable ();
4deef538
AO
3282 }
3283}
3284
8d8e205b
RS
3285/* Traverse *LOC looking for MEMs that have autoinc addresses.
3286 For each such autoinc operation found, call FN, passing it
4deef538
AO
3287 the innermost enclosing MEM, the operation itself, the RTX modified
3288 by the operation, two RTXs (the second may be NULL) that, once
3289 added, represent the value to be held by the modified RTX
8d8e205b
RS
3290 afterwards, and DATA. FN is to return 0 to continue the
3291 traversal or any other value to have it returned to the caller of
4deef538
AO
3292 for_each_inc_dec. */
3293
3294int
8d8e205b 3295for_each_inc_dec (rtx x,
4deef538 3296 for_each_inc_dec_fn fn,
8d8e205b 3297 void *data)
4deef538 3298{
8d8e205b
RS
3299 subrtx_var_iterator::array_type array;
3300 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3301 {
3302 rtx mem = *iter;
3303 if (mem
3304 && MEM_P (mem)
3305 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3306 {
3307 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3308 if (res != 0)
3309 return res;
3310 iter.skip_subrtxes ();
3311 }
3312 }
3313 return 0;
4deef538
AO
3314}
3315
3316\f
777b1b71
RH
3317/* Searches X for any reference to REGNO, returning the rtx of the
3318 reference found if any. Otherwise, returns NULL_RTX. */
3319
3320rtx
0c20a65f 3321regno_use_in (unsigned int regno, rtx x)
777b1b71 3322{
b3694847 3323 const char *fmt;
777b1b71
RH
3324 int i, j;
3325 rtx tem;
3326
f8cfc6aa 3327 if (REG_P (x) && REGNO (x) == regno)
777b1b71
RH
3328 return x;
3329
3330 fmt = GET_RTX_FORMAT (GET_CODE (x));
3331 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3332 {
3333 if (fmt[i] == 'e')
3334 {
3335 if ((tem = regno_use_in (regno, XEXP (x, i))))
3336 return tem;
3337 }
3338 else if (fmt[i] == 'E')
3339 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3340 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3341 return tem;
3342 }
3343
3344 return NULL_RTX;
3345}
2dfa9a87 3346
e5c56fd9 3347/* Return a value indicating whether OP, an operand of a commutative
350911e6
AM
3348 operation, is preferred as the first or second operand. The more
3349 positive the value, the stronger the preference for being the first
3350 operand. */
e5c56fd9 3351
9b3bd424 3352int
0c20a65f 3353commutative_operand_precedence (rtx op)
e5c56fd9 3354{
e3d6e740 3355 enum rtx_code code = GET_CODE (op);
b8698a0f 3356
350911e6 3357 /* Constants always become the second operand. Prefer "nice" constants. */
e3d6e740 3358 if (code == CONST_INT)
7e0b4eae 3359 return -8;
807e902e
KZ
3360 if (code == CONST_WIDE_INT)
3361 return -8;
e3d6e740 3362 if (code == CONST_DOUBLE)
7e0b4eae 3363 return -7;
091a3ac7
CF
3364 if (code == CONST_FIXED)
3365 return -7;
9ce79a7a 3366 op = avoid_constant_pool_reference (op);
79b82df3 3367 code = GET_CODE (op);
ec8e098d
PB
3368
3369 switch (GET_RTX_CLASS (code))
3370 {
3371 case RTX_CONST_OBJ:
3372 if (code == CONST_INT)
7e0b4eae 3373 return -6;
807e902e
KZ
3374 if (code == CONST_WIDE_INT)
3375 return -6;
ec8e098d 3376 if (code == CONST_DOUBLE)
7e0b4eae 3377 return -5;
091a3ac7
CF
3378 if (code == CONST_FIXED)
3379 return -5;
7e0b4eae 3380 return -4;
ec8e098d
PB
3381
3382 case RTX_EXTRA:
3383 /* SUBREGs of objects should come second. */
3384 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
7e0b4eae 3385 return -3;
6fb5fa3c 3386 return 0;
ec8e098d
PB
3387
3388 case RTX_OBJ:
3389 /* Complex expressions should be the first, so decrease priority
7e0b4eae
PB
3390 of objects. Prefer pointer objects over non pointer objects. */
3391 if ((REG_P (op) && REG_POINTER (op))
3392 || (MEM_P (op) && MEM_POINTER (op)))
3393 return -1;
3394 return -2;
ec8e098d
PB
3395
3396 case RTX_COMM_ARITH:
3397 /* Prefer operands that are themselves commutative to be first.
3398 This helps to make things linear. In particular,
3399 (and (and (reg) (reg)) (not (reg))) is canonical. */
3400 return 4;
3401
3402 case RTX_BIN_ARITH:
3403 /* If only one operand is a binary expression, it will be the first
3404 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3405 is canonical, although it will usually be further simplified. */
3406 return 2;
b8698a0f 3407
ec8e098d
PB
3408 case RTX_UNARY:
3409 /* Then prefer NEG and NOT. */
3410 if (code == NEG || code == NOT)
3411 return 1;
e5c56fd9 3412
ec8e098d
PB
3413 default:
3414 return 0;
3415 }
e5c56fd9
JH
3416}
3417
f63d1bf7 3418/* Return 1 iff it is necessary to swap operands of commutative operation
e5c56fd9
JH
3419 in order to canonicalize expression. */
3420
7e0b4eae 3421bool
0c20a65f 3422swap_commutative_operands_p (rtx x, rtx y)
e5c56fd9 3423{
9b3bd424
RH
3424 return (commutative_operand_precedence (x)
3425 < commutative_operand_precedence (y));
e5c56fd9 3426}
2dfa9a87
MH
3427
3428/* Return 1 if X is an autoincrement side effect and the register is
3429 not the stack pointer. */
3430int
f7d504c2 3431auto_inc_p (const_rtx x)
2dfa9a87
MH
3432{
3433 switch (GET_CODE (x))
3434 {
3435 case PRE_INC:
3436 case POST_INC:
3437 case PRE_DEC:
3438 case POST_DEC:
3439 case PRE_MODIFY:
3440 case POST_MODIFY:
3441 /* There are no REG_INC notes for SP. */
3442 if (XEXP (x, 0) != stack_pointer_rtx)
3443 return 1;
3444 default:
3445 break;
3446 }
3447 return 0;
3448}
3b10cf4b 3449
f9da5064 3450/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
db7ba742 3451int
f7d504c2 3452loc_mentioned_in_p (rtx *loc, const_rtx in)
db7ba742 3453{
a52b023a
PB
3454 enum rtx_code code;
3455 const char *fmt;
db7ba742
R
3456 int i, j;
3457
a52b023a
PB
3458 if (!in)
3459 return 0;
3460
3461 code = GET_CODE (in);
3462 fmt = GET_RTX_FORMAT (code);
db7ba742
R
3463 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3464 {
db7ba742
R
3465 if (fmt[i] == 'e')
3466 {
e0651058 3467 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
db7ba742
R
3468 return 1;
3469 }
3470 else if (fmt[i] == 'E')
3471 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
e0651058
AO
3472 if (loc == &XVECEXP (in, i, j)
3473 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
db7ba742
R
3474 return 1;
3475 }
3476 return 0;
3477}
ddef6bc7 3478
bb51e270
RS
3479/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3480 and SUBREG_BYTE, return the bit offset where the subreg begins
3481 (counting from the least significant bit of the operand). */
33aceff2
JW
3482
3483unsigned int
ef4bddc2
RS
3484subreg_lsb_1 (machine_mode outer_mode,
3485 machine_mode inner_mode,
bb51e270 3486 unsigned int subreg_byte)
33aceff2 3487{
33aceff2
JW
3488 unsigned int bitpos;
3489 unsigned int byte;
3490 unsigned int word;
3491
3492 /* A paradoxical subreg begins at bit position 0. */
5511bc5a 3493 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
33aceff2
JW
3494 return 0;
3495
3496 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3497 /* If the subreg crosses a word boundary ensure that
3498 it also begins and ends on a word boundary. */
41374e13
NS
3499 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3500 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3501 && (subreg_byte % UNITS_PER_WORD
3502 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
33aceff2
JW
3503
3504 if (WORDS_BIG_ENDIAN)
3505 word = (GET_MODE_SIZE (inner_mode)
bb51e270 3506 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
33aceff2 3507 else
bb51e270 3508 word = subreg_byte / UNITS_PER_WORD;
33aceff2
JW
3509 bitpos = word * BITS_PER_WORD;
3510
3511 if (BYTES_BIG_ENDIAN)
3512 byte = (GET_MODE_SIZE (inner_mode)
bb51e270 3513 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
33aceff2 3514 else
bb51e270 3515 byte = subreg_byte % UNITS_PER_WORD;
33aceff2
JW
3516 bitpos += byte * BITS_PER_UNIT;
3517
3518 return bitpos;
3519}
3520
bb51e270
RS
3521/* Given a subreg X, return the bit offset where the subreg begins
3522 (counting from the least significant bit of the reg). */
3523
3524unsigned int
f7d504c2 3525subreg_lsb (const_rtx x)
bb51e270
RS
3526{
3527 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3528 SUBREG_BYTE (x));
3529}
3530
f1f4e530 3531/* Fill in information about a subreg of a hard register.
ddef6bc7
JJ
3532 xregno - A regno of an inner hard subreg_reg (or what will become one).
3533 xmode - The mode of xregno.
3534 offset - The byte offset.
3535 ymode - The mode of a top level SUBREG (or what may become one).
0cb07998
RS
3536 info - Pointer to structure to fill in.
3537
3538 Rather than considering one particular inner register (and thus one
3539 particular "outer" register) in isolation, this function really uses
3540 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3541 function does not check whether adding INFO->offset to XREGNO gives
3542 a valid hard register; even if INFO->offset + XREGNO is out of range,
3543 there might be another register of the same type that is in range.
3544 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3545 register, since that can depend on things like whether the final
3546 register number is even or odd. Callers that want to check whether
3547 this particular subreg can be replaced by a simple (reg ...) should
3548 use simplify_subreg_regno. */
3549
c619e982 3550void
ef4bddc2
RS
3551subreg_get_info (unsigned int xregno, machine_mode xmode,
3552 unsigned int offset, machine_mode ymode,
f1f4e530 3553 struct subreg_info *info)
04c5580f 3554{
8521c414 3555 int nregs_xmode, nregs_ymode;
04c5580f 3556 int mode_multiple, nregs_multiple;
f1f4e530 3557 int offset_adj, y_offset, y_offset_adj;
8521c414 3558 int regsize_xmode, regsize_ymode;
f1f4e530 3559 bool rknown;
04c5580f 3560
41374e13 3561 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
04c5580f 3562
f1f4e530
JM
3563 rknown = false;
3564
dd79bb7e
GK
3565 /* If there are holes in a non-scalar mode in registers, we expect
3566 that it is made up of its units concatenated together. */
8521c414 3567 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
dd79bb7e 3568 {
ef4bddc2 3569 machine_mode xmode_unit;
8521c414
JM
3570
3571 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
1c0e448f 3572 xmode_unit = GET_MODE_INNER (xmode);
8521c414
JM
3573 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3574 gcc_assert (nregs_xmode
3575 == (GET_MODE_NUNITS (xmode)
3576 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3577 gcc_assert (hard_regno_nregs[xregno][xmode]
3578 == (hard_regno_nregs[xregno][xmode_unit]
3579 * GET_MODE_NUNITS (xmode)));
dd79bb7e
GK
3580
3581 /* You can only ask for a SUBREG of a value with holes in the middle
3582 if you don't cross the holes. (Such a SUBREG should be done by
3583 picking a different register class, or doing it in memory if
3584 necessary.) An example of a value with holes is XCmode on 32-bit
3585 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
b8698a0f 3586 3 for each part, but in memory it's two 128-bit parts.
dd79bb7e
GK
3587 Padding is assumed to be at the end (not necessarily the 'high part')
3588 of each unit. */
b8698a0f 3589 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
8521c414
JM
3590 < GET_MODE_NUNITS (xmode))
3591 && (offset / GET_MODE_SIZE (xmode_unit)
dd79bb7e 3592 != ((offset + GET_MODE_SIZE (ymode) - 1)
8521c414 3593 / GET_MODE_SIZE (xmode_unit))))
f1f4e530
JM
3594 {
3595 info->representable_p = false;
3596 rknown = true;
3597 }
dd79bb7e
GK
3598 }
3599 else
3600 nregs_xmode = hard_regno_nregs[xregno][xmode];
b8698a0f 3601
66fd46b6 3602 nregs_ymode = hard_regno_nregs[xregno][ymode];
04c5580f 3603
dd79bb7e 3604 /* Paradoxical subregs are otherwise valid. */
f1f4e530
JM
3605 if (!rknown
3606 && offset == 0
5511bc5a 3607 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
f1f4e530
JM
3608 {
3609 info->representable_p = true;
3610 /* If this is a big endian paradoxical subreg, which uses more
3611 actual hard registers than the original register, we must
3612 return a negative offset so that we find the proper highpart
3613 of the register. */
3614 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
c0a6a1ef 3615 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
f1f4e530
JM
3616 info->offset = nregs_xmode - nregs_ymode;
3617 else
3618 info->offset = 0;
3619 info->nregs = nregs_ymode;
3620 return;
3621 }
04c5580f 3622
8521c414
JM
3623 /* If registers store different numbers of bits in the different
3624 modes, we cannot generally form this subreg. */
f1f4e530 3625 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
5f7fc2b8
JM
3626 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3627 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3628 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
f1f4e530
JM
3629 {
3630 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
f1f4e530 3631 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
f1f4e530
JM
3632 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3633 {
3634 info->representable_p = false;
3635 info->nregs
3636 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3637 info->offset = offset / regsize_xmode;
3638 return;
3639 }
3640 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3641 {
3642 info->representable_p = false;
3643 info->nregs
3644 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3645 info->offset = offset / regsize_xmode;
3646 return;
3647 }
9ab41c76
AH
3648 /* Quick exit for the simple and common case of extracting whole
3649 subregisters from a multiregister value. */
3650 /* ??? It would be better to integrate this into the code below,
3651 if we can generalize the concept enough and figure out how
3652 odd-sized modes can coexist with the other weird cases we support. */
3653 if (!rknown
3654 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3655 && regsize_xmode == regsize_ymode
3656 && (offset % regsize_ymode) == 0)
3657 {
3658 info->representable_p = true;
3659 info->nregs = nregs_ymode;
3660 info->offset = offset / regsize_ymode;
3661 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3662 return;
3663 }
f1f4e530 3664 }
8521c414 3665
dd79bb7e 3666 /* Lowpart subregs are otherwise valid. */
f1f4e530
JM
3667 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3668 {
3669 info->representable_p = true;
3670 rknown = true;
a446b4e8
JM
3671
3672 if (offset == 0 || nregs_xmode == nregs_ymode)
3673 {
3674 info->offset = 0;
3675 info->nregs = nregs_ymode;
3676 return;
3677 }
f1f4e530 3678 }
04c5580f 3679
dd79bb7e
GK
3680 /* This should always pass, otherwise we don't know how to verify
3681 the constraint. These conditions may be relaxed but
3682 subreg_regno_offset would need to be redesigned. */
41374e13 3683 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
41374e13 3684 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
04c5580f 3685
c0a6a1ef
BS
3686 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3687 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3688 {
3689 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3690 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3691 HOST_WIDE_INT off_low = offset & (ysize - 1);
3692 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3693 offset = (xsize - ysize - off_high) | off_low;
3694 }
b20b352b 3695 /* The XMODE value can be seen as a vector of NREGS_XMODE
dcc24678 3696 values. The subreg must represent a lowpart of given field.
04c5580f 3697 Compute what field it is. */
f1f4e530
JM
3698 offset_adj = offset;
3699 offset_adj -= subreg_lowpart_offset (ymode,
3700 mode_for_size (GET_MODE_BITSIZE (xmode)
3701 / nregs_xmode,
3702 MODE_INT, 0));
04c5580f 3703
dd79bb7e 3704 /* Size of ymode must not be greater than the size of xmode. */
04c5580f 3705 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
41374e13 3706 gcc_assert (mode_multiple != 0);
04c5580f
JH
3707
3708 y_offset = offset / GET_MODE_SIZE (ymode);
f1f4e530
JM
3709 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3710 nregs_multiple = nregs_xmode / nregs_ymode;
41374e13 3711
f1f4e530 3712 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
41374e13
NS
3713 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3714
f1f4e530
JM
3715 if (!rknown)
3716 {
3717 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3718 rknown = true;
3719 }
3720 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3721 info->nregs = nregs_ymode;
3722}
3723
3724/* This function returns the regno offset of a subreg expression.
3725 xregno - A regno of an inner hard subreg_reg (or what will become one).
3726 xmode - The mode of xregno.
3727 offset - The byte offset.
3728 ymode - The mode of a top level SUBREG (or what may become one).
3729 RETURN - The regno offset which would be used. */
3730unsigned int
ef4bddc2
RS
3731subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3732 unsigned int offset, machine_mode ymode)
f1f4e530
JM
3733{
3734 struct subreg_info info;
3735 subreg_get_info (xregno, xmode, offset, ymode, &info);
3736 return info.offset;
3737}
3738
3739/* This function returns true when the offset is representable via
3740 subreg_offset in the given regno.
3741 xregno - A regno of an inner hard subreg_reg (or what will become one).
3742 xmode - The mode of xregno.
3743 offset - The byte offset.
3744 ymode - The mode of a top level SUBREG (or what may become one).
3745 RETURN - Whether the offset is representable. */
3746bool
ef4bddc2
RS
3747subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3748 unsigned int offset, machine_mode ymode)
f1f4e530
JM
3749{
3750 struct subreg_info info;
3751 subreg_get_info (xregno, xmode, offset, ymode, &info);
05cee290 3752 return info.representable_p;
04c5580f
JH
3753}
3754
eef302d2
RS
3755/* Return the number of a YMODE register to which
3756
3757 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3758
3759 can be simplified. Return -1 if the subreg can't be simplified.
3760
3761 XREGNO is a hard register number. */
3762
3763int
ef4bddc2
RS
3764simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3765 unsigned int offset, machine_mode ymode)
eef302d2
RS
3766{
3767 struct subreg_info info;
3768 unsigned int yregno;
3769
3770#ifdef CANNOT_CHANGE_MODE_CLASS
3771 /* Give the backend a chance to disallow the mode change. */
3772 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3773 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
55a2c322
VM
3774 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3775 /* We can use mode change in LRA for some transformations. */
3776 && ! lra_in_progress)
eef302d2
RS
3777 return -1;
3778#endif
3779
3780 /* We shouldn't simplify stack-related registers. */
3781 if ((!reload_completed || frame_pointer_needed)
d4e0d036 3782 && xregno == FRAME_POINTER_REGNUM)
eef302d2
RS
3783 return -1;
3784
3785 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
98072ee5 3786 && xregno == ARG_POINTER_REGNUM)
eef302d2
RS
3787 return -1;
3788
55a2c322
VM
3789 if (xregno == STACK_POINTER_REGNUM
3790 /* We should convert hard stack register in LRA if it is
3791 possible. */
3792 && ! lra_in_progress)
eef302d2
RS
3793 return -1;
3794
3795 /* Try to get the register offset. */
3796 subreg_get_info (xregno, xmode, offset, ymode, &info);
3797 if (!info.representable_p)
3798 return -1;
3799
3800 /* Make sure that the offsetted register value is in range. */
3801 yregno = xregno + info.offset;
3802 if (!HARD_REGISTER_NUM_P (yregno))
3803 return -1;
3804
3805 /* See whether (reg:YMODE YREGNO) is valid.
3806
3807 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
eb93b31f
EB
3808 This is a kludge to work around how complex FP arguments are passed
3809 on IA-64 and should be fixed. See PR target/49226. */
eef302d2
RS
3810 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3811 && HARD_REGNO_MODE_OK (xregno, xmode))
3812 return -1;
3813
3814 return (int) yregno;
3815}
3816
dc297297 3817/* Return the final regno that a subreg expression refers to. */
a6a2274a 3818unsigned int
f7d504c2 3819subreg_regno (const_rtx x)
ddef6bc7
JJ
3820{
3821 unsigned int ret;
3822 rtx subreg = SUBREG_REG (x);
3823 int regno = REGNO (subreg);
3824
a6a2274a
KH
3825 ret = regno + subreg_regno_offset (regno,
3826 GET_MODE (subreg),
ddef6bc7
JJ
3827 SUBREG_BYTE (x),
3828 GET_MODE (x));
3829 return ret;
3830
3831}
f1f4e530
JM
3832
3833/* Return the number of registers that a subreg expression refers
3834 to. */
3835unsigned int
f7d504c2 3836subreg_nregs (const_rtx x)
ba49cb7b
KZ
3837{
3838 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3839}
3840
3841/* Return the number of registers that a subreg REG with REGNO
3842 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3843 changed so that the regno can be passed in. */
3844
3845unsigned int
3846subreg_nregs_with_regno (unsigned int regno, const_rtx x)
f1f4e530
JM
3847{
3848 struct subreg_info info;
3849 rtx subreg = SUBREG_REG (x);
f1f4e530
JM
3850
3851 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3852 &info);
3853 return info.nregs;
3854}
3855
ba49cb7b 3856
833366d6
JH
3857struct parms_set_data
3858{
3859 int nregs;
3860 HARD_REG_SET regs;
3861};
3862
3863/* Helper function for noticing stores to parameter registers. */
3864static void
7bc980e1 3865parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
833366d6 3866{
1634b18f 3867 struct parms_set_data *const d = (struct parms_set_data *) data;
833366d6
JH
3868 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3869 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3870 {
3871 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3872 d->nregs--;
3873 }
3874}
3875
a6a2274a 3876/* Look backward for first parameter to be loaded.
b2df20b4
DJ
3877 Note that loads of all parameters will not necessarily be
3878 found if CSE has eliminated some of them (e.g., an argument
3879 to the outer function is passed down as a parameter).
833366d6 3880 Do not skip BOUNDARY. */
62fc98cc 3881rtx_insn *
9321cf00 3882find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
833366d6
JH
3883{
3884 struct parms_set_data parm;
9321cf00
DM
3885 rtx p;
3886 rtx_insn *before, *first_set;
833366d6
JH
3887
3888 /* Since different machines initialize their parameter registers
3889 in different orders, assume nothing. Collect the set of all
3890 parameter registers. */
3891 CLEAR_HARD_REG_SET (parm.regs);
3892 parm.nregs = 0;
3893 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3894 if (GET_CODE (XEXP (p, 0)) == USE
f8cfc6aa 3895 && REG_P (XEXP (XEXP (p, 0), 0)))
833366d6 3896 {
41374e13 3897 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
833366d6
JH
3898
3899 /* We only care about registers which can hold function
3900 arguments. */
3901 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3902 continue;
3903
3904 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3905 parm.nregs++;
3906 }
3907 before = call_insn;
b2df20b4 3908 first_set = call_insn;
833366d6
JH
3909
3910 /* Search backward for the first set of a register in this set. */
3911 while (parm.nregs && before != boundary)
3912 {
3913 before = PREV_INSN (before);
3914
3915 /* It is possible that some loads got CSEed from one call to
3916 another. Stop in that case. */
4b4bf941 3917 if (CALL_P (before))
833366d6
JH
3918 break;
3919
dbc1a163 3920 /* Our caller needs either ensure that we will find all sets
833366d6 3921 (in case code has not been optimized yet), or take care
eaec9b3d 3922 for possible labels in a way by setting boundary to preceding
833366d6 3923 CODE_LABEL. */
4b4bf941 3924 if (LABEL_P (before))
dbc1a163 3925 {
41374e13 3926 gcc_assert (before == boundary);
dbc1a163
RH
3927 break;
3928 }
833366d6 3929
0d025d43 3930 if (INSN_P (before))
b2df20b4
DJ
3931 {
3932 int nregs_old = parm.nregs;
3933 note_stores (PATTERN (before), parms_set, &parm);
3934 /* If we found something that did not set a parameter reg,
3935 we're done. Do not keep going, as that might result
3936 in hoisting an insn before the setting of a pseudo
3937 that is used by the hoisted insn. */
3938 if (nregs_old != parm.nregs)
3939 first_set = before;
3940 else
3941 break;
3942 }
833366d6 3943 }
9321cf00 3944 return first_set;
833366d6 3945}
3dec4024 3946
14b493d6 3947/* Return true if we should avoid inserting code between INSN and preceding
3dec4024
JH
3948 call instruction. */
3949
3950bool
e4685bc8 3951keep_with_call_p (const rtx_insn *insn)
3dec4024
JH
3952{
3953 rtx set;
3954
3955 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3956 {
f8cfc6aa 3957 if (REG_P (SET_DEST (set))
5df533b3 3958 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3dec4024
JH
3959 && fixed_regs[REGNO (SET_DEST (set))]
3960 && general_operand (SET_SRC (set), VOIDmode))
3961 return true;
f8cfc6aa 3962 if (REG_P (SET_SRC (set))
82f81f18 3963 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
f8cfc6aa 3964 && REG_P (SET_DEST (set))
3dec4024
JH
3965 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3966 return true;
bc204393
RH
3967 /* There may be a stack pop just after the call and before the store
3968 of the return register. Search for the actual store when deciding
3969 if we can break or not. */
3dec4024
JH
3970 if (SET_DEST (set) == stack_pointer_rtx)
3971 {
75547801 3972 /* This CONST_CAST is okay because next_nonnote_insn just
4e9b57fa 3973 returns its argument and we assign it to a const_rtx
75547801 3974 variable. */
e4685bc8
TS
3975 const rtx_insn *i2
3976 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
bc204393 3977 if (i2 && keep_with_call_p (i2))
3dec4024
JH
3978 return true;
3979 }
3980 }
3981 return false;
3982}
71d2c5bd 3983
432f982f
JH
3984/* Return true if LABEL is a target of JUMP_INSN. This applies only
3985 to non-complex jumps. That is, direct unconditional, conditional,
3986 and tablejumps, but not computed jumps or returns. It also does
3987 not apply to the fallthru case of a conditional jump. */
3988
3989bool
c5241a21 3990label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
432f982f
JH
3991{
3992 rtx tmp = JUMP_LABEL (jump_insn);
8942ee0f 3993 rtx_jump_table_data *table;
432f982f
JH
3994
3995 if (label == tmp)
3996 return true;
3997
8942ee0f 3998 if (tablejump_p (jump_insn, NULL, &table))
432f982f 3999 {
95c43227 4000 rtvec vec = table->get_labels ();
432f982f
JH
4001 int i, veclen = GET_NUM_ELEM (vec);
4002
4003 for (i = 0; i < veclen; ++i)
4004 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4005 return true;
4006 }
4007
cb2f563b
HPN
4008 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4009 return true;
4010
432f982f
JH
4011 return false;
4012}
4013
f894b69b
PB
4014\f
4015/* Return an estimate of the cost of computing rtx X.
4016 One use is in cse, to decide which expression to keep in the hash table.
4017 Another is in rtl generation, to pick the cheapest way to multiply.
b8698a0f 4018 Other uses like the latter are expected in the future.
f40751dd 4019
68f932c4
RS
4020 X appears as operand OPNO in an expression with code OUTER_CODE.
4021 SPEED specifies whether costs optimized for speed or size should
f40751dd 4022 be returned. */
f894b69b
PB
4023
4024int
e548c9df
AM
4025rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4026 int opno, bool speed)
f894b69b
PB
4027{
4028 int i, j;
4029 enum rtx_code code;
4030 const char *fmt;
4031 int total;
e098c169 4032 int factor;
f894b69b
PB
4033
4034 if (x == 0)
4035 return 0;
4036
e548c9df
AM
4037 if (GET_MODE (x) != VOIDmode)
4038 mode = GET_MODE (x);
4039
e098c169
HPN
4040 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4041 many insns, taking N times as long. */
e548c9df 4042 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
e098c169
HPN
4043 if (factor == 0)
4044 factor = 1;
4045
f894b69b
PB
4046 /* Compute the default costs of certain things.
4047 Note that targetm.rtx_costs can override the defaults. */
4048
4049 code = GET_CODE (x);
4050 switch (code)
4051 {
4052 case MULT:
e098c169
HPN
4053 /* Multiplication has time-complexity O(N*N), where N is the
4054 number of units (translated from digits) when using
4055 schoolbook long multiplication. */
4056 total = factor * factor * COSTS_N_INSNS (5);
f894b69b
PB
4057 break;
4058 case DIV:
4059 case UDIV:
4060 case MOD:
4061 case UMOD:
e098c169
HPN
4062 /* Similarly, complexity for schoolbook long division. */
4063 total = factor * factor * COSTS_N_INSNS (7);
f894b69b
PB
4064 break;
4065 case USE:
db3edc20 4066 /* Used in combine.c as a marker. */
f894b69b
PB
4067 total = 0;
4068 break;
e098c169
HPN
4069 case SET:
4070 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4071 the mode for the factor. */
e548c9df
AM
4072 mode = GET_MODE (SET_DEST (x));
4073 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
e098c169
HPN
4074 if (factor == 0)
4075 factor = 1;
4076 /* Pass through. */
f894b69b 4077 default:
e098c169 4078 total = factor * COSTS_N_INSNS (1);
f894b69b
PB
4079 }
4080
4081 switch (code)
4082 {
4083 case REG:
4084 return 0;
4085
4086 case SUBREG:
edb81165 4087 total = 0;
f894b69b
PB
4088 /* If we can't tie these modes, make this expensive. The larger
4089 the mode, the more expensive it is. */
e548c9df 4090 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
e098c169 4091 return COSTS_N_INSNS (2 + factor);
f894b69b
PB
4092 break;
4093
4094 default:
e548c9df 4095 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
f894b69b
PB
4096 return total;
4097 break;
4098 }
4099
4100 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4101 which is already in total. */
4102
4103 fmt = GET_RTX_FORMAT (code);
4104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4105 if (fmt[i] == 'e')
e548c9df 4106 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
f894b69b
PB
4107 else if (fmt[i] == 'E')
4108 for (j = 0; j < XVECLEN (x, i); j++)
e548c9df 4109 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
f894b69b
PB
4110
4111 return total;
4112}
22939744
BS
4113
4114/* Fill in the structure C with information about both speed and size rtx
68f932c4 4115 costs for X, which is operand OPNO in an expression with code OUTER. */
22939744
BS
4116
4117void
e548c9df 4118get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
68f932c4 4119 struct full_rtx_costs *c)
22939744 4120{
e548c9df
AM
4121 c->speed = rtx_cost (x, mode, outer, opno, true);
4122 c->size = rtx_cost (x, mode, outer, opno, false);
22939744
BS
4123}
4124
f894b69b
PB
4125\f
4126/* Return cost of address expression X.
b8698a0f 4127 Expect that X is properly formed address reference.
f40751dd
JH
4128
4129 SPEED parameter specify whether costs optimized for speed or size should
4130 be returned. */
f894b69b
PB
4131
4132int
ef4bddc2 4133address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
f894b69b 4134{
f894b69b
PB
4135 /* We may be asked for cost of various unusual addresses, such as operands
4136 of push instruction. It is not worthwhile to complicate writing
4137 of the target hook by such cases. */
4138
09e881c9 4139 if (!memory_address_addr_space_p (mode, x, as))
f894b69b
PB
4140 return 1000;
4141
b413068c 4142 return targetm.address_cost (x, mode, as, speed);
f894b69b
PB
4143}
4144
4145/* If the target doesn't override, compute the cost as with arithmetic. */
4146
4147int
ef4bddc2 4148default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
f894b69b 4149{
e548c9df 4150 return rtx_cost (x, Pmode, MEM, 0, speed);
f894b69b 4151}
2f93eea8
PB
4152\f
4153
4154unsigned HOST_WIDE_INT
ef4bddc2 4155nonzero_bits (const_rtx x, machine_mode mode)
2f93eea8
PB
4156{
4157 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4158}
4159
4160unsigned int
ef4bddc2 4161num_sign_bit_copies (const_rtx x, machine_mode mode)
2f93eea8
PB
4162{
4163 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4164}
4165
4166/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4167 It avoids exponential behavior in nonzero_bits1 when X has
4168 identical subexpressions on the first or the second level. */
4169
4170static unsigned HOST_WIDE_INT
ef4bddc2
RS
4171cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4172 machine_mode known_mode,
2f93eea8
PB
4173 unsigned HOST_WIDE_INT known_ret)
4174{
4175 if (x == known_x && mode == known_mode)
4176 return known_ret;
4177
4178 /* Try to find identical subexpressions. If found call
4179 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4180 precomputed value for the subexpression as KNOWN_RET. */
4181
4182 if (ARITHMETIC_P (x))
4183 {
4184 rtx x0 = XEXP (x, 0);
4185 rtx x1 = XEXP (x, 1);
4186
4187 /* Check the first level. */
4188 if (x0 == x1)
4189 return nonzero_bits1 (x, mode, x0, mode,
4190 cached_nonzero_bits (x0, mode, known_x,
4191 known_mode, known_ret));
4192
4193 /* Check the second level. */
4194 if (ARITHMETIC_P (x0)
4195 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4196 return nonzero_bits1 (x, mode, x1, mode,
4197 cached_nonzero_bits (x1, mode, known_x,
4198 known_mode, known_ret));
4199
4200 if (ARITHMETIC_P (x1)
4201 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4202 return nonzero_bits1 (x, mode, x0, mode,
4203 cached_nonzero_bits (x0, mode, known_x,
4204 known_mode, known_ret));
4205 }
4206
4207 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4208}
4209
4210/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4211 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4212 is less useful. We can't allow both, because that results in exponential
4213 run time recursion. There is a nullstone testcase that triggered
4214 this. This macro avoids accidental uses of num_sign_bit_copies. */
4215#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4216
4217/* Given an expression, X, compute which bits in X can be nonzero.
4218 We don't care about bits outside of those defined in MODE.
4219
4220 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4221 an arithmetic operation, we can do better. */
4222
4223static unsigned HOST_WIDE_INT
ef4bddc2
RS
4224nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4225 machine_mode known_mode,
2f93eea8
PB
4226 unsigned HOST_WIDE_INT known_ret)
4227{
4228 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4229 unsigned HOST_WIDE_INT inner_nz;
4230 enum rtx_code code;
ef4bddc2 4231 machine_mode inner_mode;
5511bc5a 4232 unsigned int mode_width = GET_MODE_PRECISION (mode);
2f93eea8 4233
ff596cd2
RL
4234 /* For floating-point and vector values, assume all bits are needed. */
4235 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4236 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4237 return nonzero;
4238
4239 /* If X is wider than MODE, use its mode instead. */
5511bc5a 4240 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
2f93eea8
PB
4241 {
4242 mode = GET_MODE (x);
4243 nonzero = GET_MODE_MASK (mode);
5511bc5a 4244 mode_width = GET_MODE_PRECISION (mode);
2f93eea8
PB
4245 }
4246
4247 if (mode_width > HOST_BITS_PER_WIDE_INT)
4248 /* Our only callers in this case look for single bit values. So
4249 just return the mode mask. Those tests will then be false. */
4250 return nonzero;
4251
2f93eea8
PB
4252 /* If MODE is wider than X, but both are a single word for both the host
4253 and target machines, we can compute this from which bits of the
4254 object might be nonzero in its own mode, taking into account the fact
4255 that on many CISC machines, accessing an object in a wider mode
4256 causes the high-order bits to become undefined. So they are
4257 not known to be zero. */
4258
9e11bfef
TS
4259 if (!WORD_REGISTER_OPERATIONS
4260 && GET_MODE (x) != VOIDmode
4261 && GET_MODE (x) != mode
5511bc5a
BS
4262 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4263 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4264 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4265 {
4266 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4267 known_x, known_mode, known_ret);
4268 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4269 return nonzero;
4270 }
2f93eea8
PB
4271
4272 code = GET_CODE (x);
4273 switch (code)
4274 {
4275 case REG:
2a870875 4276#if defined(POINTERS_EXTEND_UNSIGNED)
2f93eea8
PB
4277 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4278 all the bits above ptr_mode are known to be zero. */
5932a4d4 4279 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4280 we can do this only if the target does not support different pointer
4281 or address modes depending on the address space. */
4282 if (target_default_pointer_address_modes_p ()
4283 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2a870875
RS
4284 && REG_POINTER (x)
4285 && !targetm.have_ptr_extend ())
2f93eea8
PB
4286 nonzero &= GET_MODE_MASK (ptr_mode);
4287#endif
4288
4289 /* Include declared information about alignment of pointers. */
4290 /* ??? We don't properly preserve REG_POINTER changes across
4291 pointer-to-integer casts, so we can't trust it except for
4292 things that we know must be pointers. See execute/960116-1.c. */
4293 if ((x == stack_pointer_rtx
4294 || x == frame_pointer_rtx
4295 || x == arg_pointer_rtx)
4296 && REGNO_POINTER_ALIGN (REGNO (x)))
4297 {
4298 unsigned HOST_WIDE_INT alignment
4299 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4300
4301#ifdef PUSH_ROUNDING
4302 /* If PUSH_ROUNDING is defined, it is possible for the
4303 stack to be momentarily aligned only to that amount,
4304 so we pick the least alignment. */
4305 if (x == stack_pointer_rtx && PUSH_ARGS)
4306 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4307 alignment);
4308#endif
4309
4310 nonzero &= ~(alignment - 1);
4311 }
4312
4313 {
4314 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
55d796da 4315 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
2f93eea8
PB
4316 known_mode, known_ret,
4317 &nonzero_for_hook);
4318
55d796da
KG
4319 if (new_rtx)
4320 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
2f93eea8
PB
4321 known_mode, known_ret);
4322
4323 return nonzero_for_hook;
4324 }
4325
4326 case CONST_INT:
2f93eea8 4327 /* If X is negative in MODE, sign-extend the value. */
58f2ae18 4328 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
c04fc4f0
EB
4329 && mode_width < BITS_PER_WORD
4330 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4331 != 0)
0cadbfaa 4332 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
2f93eea8 4333
c04fc4f0 4334 return UINTVAL (x);
2f93eea8
PB
4335
4336 case MEM:
4337#ifdef LOAD_EXTEND_OP
4338 /* In many, if not most, RISC machines, reading a byte from memory
4339 zeros the rest of the register. Noticing that fact saves a lot
4340 of extra zero-extends. */
4341 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4342 nonzero &= GET_MODE_MASK (GET_MODE (x));
4343#endif
4344 break;
4345
4346 case EQ: case NE:
4347 case UNEQ: case LTGT:
4348 case GT: case GTU: case UNGT:
4349 case LT: case LTU: case UNLT:
4350 case GE: case GEU: case UNGE:
4351 case LE: case LEU: case UNLE:
4352 case UNORDERED: case ORDERED:
2f93eea8
PB
4353 /* If this produces an integer result, we know which bits are set.
4354 Code here used to clear bits outside the mode of X, but that is
4355 now done above. */
b8698a0f
L
4356 /* Mind that MODE is the mode the caller wants to look at this
4357 operation in, and not the actual operation mode. We can wind
505ac507
RH
4358 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4359 that describes the results of a vector compare. */
4360 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
2f93eea8
PB
4361 && mode_width <= HOST_BITS_PER_WIDE_INT)
4362 nonzero = STORE_FLAG_VALUE;
4363 break;
4364
4365 case NEG:
4366#if 0
4367 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4368 and num_sign_bit_copies. */
4369 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4370 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4371 nonzero = 1;
4372#endif
4373
86cdf393 4374 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
2f93eea8
PB
4375 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4376 break;
4377
4378 case ABS:
4379#if 0
4380 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4381 and num_sign_bit_copies. */
4382 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4383 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4384 nonzero = 1;
4385#endif
4386 break;
4387
4388 case TRUNCATE:
4389 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4390 known_x, known_mode, known_ret)
4391 & GET_MODE_MASK (mode));
4392 break;
4393
4394 case ZERO_EXTEND:
4395 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4396 known_x, known_mode, known_ret);
4397 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4398 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4399 break;
4400
4401 case SIGN_EXTEND:
4402 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4403 Otherwise, show all the bits in the outer mode but not the inner
4404 may be nonzero. */
4405 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4406 known_x, known_mode, known_ret);
4407 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4408 {
4409 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
2d0c270f 4410 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
2f93eea8
PB
4411 inner_nz |= (GET_MODE_MASK (mode)
4412 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4413 }
4414
4415 nonzero &= inner_nz;
4416 break;
4417
4418 case AND:
4419 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4420 known_x, known_mode, known_ret)
4421 & cached_nonzero_bits (XEXP (x, 1), mode,
4422 known_x, known_mode, known_ret);
4423 break;
4424
4425 case XOR: case IOR:
4426 case UMIN: case UMAX: case SMIN: case SMAX:
4427 {
c04fc4f0
EB
4428 unsigned HOST_WIDE_INT nonzero0
4429 = cached_nonzero_bits (XEXP (x, 0), mode,
4430 known_x, known_mode, known_ret);
2f93eea8
PB
4431
4432 /* Don't call nonzero_bits for the second time if it cannot change
4433 anything. */
4434 if ((nonzero & nonzero0) != nonzero)
4435 nonzero &= nonzero0
4436 | cached_nonzero_bits (XEXP (x, 1), mode,
4437 known_x, known_mode, known_ret);
4438 }
4439 break;
4440
4441 case PLUS: case MINUS:
4442 case MULT:
4443 case DIV: case UDIV:
4444 case MOD: case UMOD:
4445 /* We can apply the rules of arithmetic to compute the number of
4446 high- and low-order zero bits of these operations. We start by
4447 computing the width (position of the highest-order nonzero bit)
4448 and the number of low-order zero bits for each value. */
4449 {
c04fc4f0
EB
4450 unsigned HOST_WIDE_INT nz0
4451 = cached_nonzero_bits (XEXP (x, 0), mode,
4452 known_x, known_mode, known_ret);
4453 unsigned HOST_WIDE_INT nz1
4454 = cached_nonzero_bits (XEXP (x, 1), mode,
4455 known_x, known_mode, known_ret);
5511bc5a 4456 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
2f93eea8
PB
4457 int width0 = floor_log2 (nz0) + 1;
4458 int width1 = floor_log2 (nz1) + 1;
4459 int low0 = floor_log2 (nz0 & -nz0);
4460 int low1 = floor_log2 (nz1 & -nz1);
c04fc4f0
EB
4461 unsigned HOST_WIDE_INT op0_maybe_minusp
4462 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4463 unsigned HOST_WIDE_INT op1_maybe_minusp
4464 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
2f93eea8
PB
4465 unsigned int result_width = mode_width;
4466 int result_low = 0;
4467
4468 switch (code)
4469 {
4470 case PLUS:
4471 result_width = MAX (width0, width1) + 1;
4472 result_low = MIN (low0, low1);
4473 break;
4474 case MINUS:
4475 result_low = MIN (low0, low1);
4476 break;
4477 case MULT:
4478 result_width = width0 + width1;
4479 result_low = low0 + low1;
4480 break;
4481 case DIV:
4482 if (width1 == 0)
4483 break;
c04fc4f0 4484 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4485 result_width = width0;
4486 break;
4487 case UDIV:
4488 if (width1 == 0)
4489 break;
4490 result_width = width0;
4491 break;
4492 case MOD:
4493 if (width1 == 0)
4494 break;
c04fc4f0 4495 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4496 result_width = MIN (width0, width1);
4497 result_low = MIN (low0, low1);
4498 break;
4499 case UMOD:
4500 if (width1 == 0)
4501 break;
4502 result_width = MIN (width0, width1);
4503 result_low = MIN (low0, low1);
4504 break;
4505 default:
41374e13 4506 gcc_unreachable ();
2f93eea8
PB
4507 }
4508
4509 if (result_width < mode_width)
c04fc4f0 4510 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
2f93eea8
PB
4511
4512 if (result_low > 0)
c04fc4f0 4513 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
2f93eea8
PB
4514 }
4515 break;
4516
4517 case ZERO_EXTRACT:
481683e1 4518 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4519 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
c04fc4f0 4520 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
2f93eea8
PB
4521 break;
4522
4523 case SUBREG:
4524 /* If this is a SUBREG formed for a promoted variable that has
4525 been zero-extended, we know that at least the high-order bits
4526 are zero, though others might be too. */
4527
362d42dc 4528 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
2f93eea8
PB
4529 nonzero = GET_MODE_MASK (GET_MODE (x))
4530 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4531 known_x, known_mode, known_ret);
4532
2d0c270f 4533 inner_mode = GET_MODE (SUBREG_REG (x));
2f93eea8
PB
4534 /* If the inner mode is a single word for both the host and target
4535 machines, we can compute this from which bits of the inner
4536 object might be nonzero. */
5511bc5a
BS
4537 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4538 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
2f93eea8
PB
4539 {
4540 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4541 known_x, known_mode, known_ret);
4542
9e11bfef 4543#if WORD_REGISTER_OPERATIONS && defined (LOAD_EXTEND_OP)
2f93eea8
PB
4544 /* If this is a typical RISC machine, we only have to worry
4545 about the way loads are extended. */
2d0c270f
BS
4546 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4547 ? val_signbit_known_set_p (inner_mode, nonzero)
4548 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
3c0cb5de 4549 || !MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4550#endif
4551 {
4552 /* On many CISC machines, accessing an object in a wider mode
4553 causes the high-order bits to become undefined. So they are
4554 not known to be zero. */
5511bc5a
BS
4555 if (GET_MODE_PRECISION (GET_MODE (x))
4556 > GET_MODE_PRECISION (inner_mode))
2f93eea8 4557 nonzero |= (GET_MODE_MASK (GET_MODE (x))
2d0c270f 4558 & ~GET_MODE_MASK (inner_mode));
2f93eea8
PB
4559 }
4560 }
4561 break;
4562
4563 case ASHIFTRT:
4564 case LSHIFTRT:
4565 case ASHIFT:
4566 case ROTATE:
4567 /* The nonzero bits are in two classes: any bits within MODE
4568 that aren't in GET_MODE (x) are always significant. The rest of the
4569 nonzero bits are those that are significant in the operand of
4570 the shift when shifted the appropriate number of bits. This
4571 shows that high-order bits are cleared by the right shift and
4572 low-order bits by left shifts. */
481683e1 4573 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4574 && INTVAL (XEXP (x, 1)) >= 0
39b2ac74 4575 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5511bc5a 4576 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8 4577 {
ef4bddc2 4578 machine_mode inner_mode = GET_MODE (x);
5511bc5a 4579 unsigned int width = GET_MODE_PRECISION (inner_mode);
2f93eea8
PB
4580 int count = INTVAL (XEXP (x, 1));
4581 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
c04fc4f0
EB
4582 unsigned HOST_WIDE_INT op_nonzero
4583 = cached_nonzero_bits (XEXP (x, 0), mode,
4584 known_x, known_mode, known_ret);
2f93eea8
PB
4585 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4586 unsigned HOST_WIDE_INT outer = 0;
4587
4588 if (mode_width > width)
4589 outer = (op_nonzero & nonzero & ~mode_mask);
4590
4591 if (code == LSHIFTRT)
4592 inner >>= count;
4593 else if (code == ASHIFTRT)
4594 {
4595 inner >>= count;
4596
4597 /* If the sign bit may have been nonzero before the shift, we
4598 need to mark all the places it could have been copied to
4599 by the shift as possibly nonzero. */
c04fc4f0
EB
4600 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4601 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4602 << (width - count);
2f93eea8
PB
4603 }
4604 else if (code == ASHIFT)
4605 inner <<= count;
4606 else
4607 inner = ((inner << (count % width)
4608 | (inner >> (width - (count % width)))) & mode_mask);
4609
4610 nonzero &= (outer | inner);
4611 }
4612 break;
4613
4614 case FFS:
4615 case POPCOUNT:
4616 /* This is at most the number of bits in the mode. */
c04fc4f0 4617 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4618 break;
4619
4620 case CLZ:
4621 /* If CLZ has a known value at zero, then the nonzero bits are
4622 that value, plus the number of bits in the mode minus one. */
4623 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0
EB
4624 nonzero
4625 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4626 else
4627 nonzero = -1;
4628 break;
4629
4630 case CTZ:
4631 /* If CTZ has a known value at zero, then the nonzero bits are
4632 that value, plus the number of bits in the mode minus one. */
4633 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0
EB
4634 nonzero
4635 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4636 else
4637 nonzero = -1;
4638 break;
4639
8840ae2b
JJ
4640 case CLRSB:
4641 /* This is at most the number of bits in the mode minus 1. */
4642 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4643 break;
4644
2f93eea8
PB
4645 case PARITY:
4646 nonzero = 1;
4647 break;
4648
4649 case IF_THEN_ELSE:
4650 {
c04fc4f0
EB
4651 unsigned HOST_WIDE_INT nonzero_true
4652 = cached_nonzero_bits (XEXP (x, 1), mode,
4653 known_x, known_mode, known_ret);
2f93eea8
PB
4654
4655 /* Don't call nonzero_bits for the second time if it cannot change
4656 anything. */
4657 if ((nonzero & nonzero_true) != nonzero)
4658 nonzero &= nonzero_true
4659 | cached_nonzero_bits (XEXP (x, 2), mode,
4660 known_x, known_mode, known_ret);
4661 }
4662 break;
4663
4664 default:
4665 break;
4666 }
4667
4668 return nonzero;
4669}
4670
4671/* See the macro definition above. */
4672#undef cached_num_sign_bit_copies
4673
4674\f
4675/* The function cached_num_sign_bit_copies is a wrapper around
4676 num_sign_bit_copies1. It avoids exponential behavior in
4677 num_sign_bit_copies1 when X has identical subexpressions on the
4678 first or the second level. */
4679
4680static unsigned int
ef4bddc2
RS
4681cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4682 machine_mode known_mode,
2f93eea8
PB
4683 unsigned int known_ret)
4684{
4685 if (x == known_x && mode == known_mode)
4686 return known_ret;
4687
4688 /* Try to find identical subexpressions. If found call
4689 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4690 the precomputed value for the subexpression as KNOWN_RET. */
4691
4692 if (ARITHMETIC_P (x))
4693 {
4694 rtx x0 = XEXP (x, 0);
4695 rtx x1 = XEXP (x, 1);
4696
4697 /* Check the first level. */
4698 if (x0 == x1)
4699 return
4700 num_sign_bit_copies1 (x, mode, x0, mode,
4701 cached_num_sign_bit_copies (x0, mode, known_x,
4702 known_mode,
4703 known_ret));
4704
4705 /* Check the second level. */
4706 if (ARITHMETIC_P (x0)
4707 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4708 return
4709 num_sign_bit_copies1 (x, mode, x1, mode,
4710 cached_num_sign_bit_copies (x1, mode, known_x,
4711 known_mode,
4712 known_ret));
4713
4714 if (ARITHMETIC_P (x1)
4715 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4716 return
4717 num_sign_bit_copies1 (x, mode, x0, mode,
4718 cached_num_sign_bit_copies (x0, mode, known_x,
4719 known_mode,
4720 known_ret));
4721 }
4722
4723 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4724}
4725
4726/* Return the number of bits at the high-order end of X that are known to
4727 be equal to the sign bit. X will be used in mode MODE; if MODE is
4728 VOIDmode, X will be used in its own mode. The returned value will always
4729 be between 1 and the number of bits in MODE. */
4730
4731static unsigned int
ef4bddc2
RS
4732num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4733 machine_mode known_mode,
2f93eea8
PB
4734 unsigned int known_ret)
4735{
4736 enum rtx_code code = GET_CODE (x);
5511bc5a 4737 unsigned int bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
4738 int num0, num1, result;
4739 unsigned HOST_WIDE_INT nonzero;
4740
4741 /* If we weren't given a mode, use the mode of X. If the mode is still
4742 VOIDmode, we don't know anything. Likewise if one of the modes is
4743 floating-point. */
4744
4745 if (mode == VOIDmode)
4746 mode = GET_MODE (x);
4747
ff596cd2
RL
4748 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4749 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4750 return 1;
4751
4752 /* For a smaller object, just ignore the high bits. */
5511bc5a 4753 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4754 {
4755 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4756 known_x, known_mode, known_ret);
4757 return MAX (1,
5511bc5a 4758 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
2f93eea8
PB
4759 }
4760
5511bc5a 4761 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8 4762 {
5511bc5a
BS
4763 /* If this machine does not do all register operations on the entire
4764 register and MODE is wider than the mode of X, we can say nothing
4765 at all about the high-order bits. */
9e11bfef
TS
4766 if (!WORD_REGISTER_OPERATIONS)
4767 return 1;
4768
2f93eea8
PB
4769 /* Likewise on machines that do, if the mode of the object is smaller
4770 than a word and loads of that size don't sign extend, we can say
4771 nothing about the high order bits. */
5511bc5a 4772 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
2f93eea8
PB
4773#ifdef LOAD_EXTEND_OP
4774 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4775#endif
4776 )
4777 return 1;
2f93eea8
PB
4778 }
4779
4780 switch (code)
4781 {
4782 case REG:
4783
2a870875 4784#if defined(POINTERS_EXTEND_UNSIGNED)
2f93eea8
PB
4785 /* If pointers extend signed and this is a pointer in Pmode, say that
4786 all the bits above ptr_mode are known to be sign bit copies. */
5932a4d4 4787 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4788 we can do this only if the target does not support different pointer
4789 or address modes depending on the address space. */
4790 if (target_default_pointer_address_modes_p ()
4791 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2a870875
RS
4792 && mode == Pmode && REG_POINTER (x)
4793 && !targetm.have_ptr_extend ())
5511bc5a 4794 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
2f93eea8
PB
4795#endif
4796
4797 {
4798 unsigned int copies_for_hook = 1, copies = 1;
55d796da 4799 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
2f93eea8
PB
4800 known_mode, known_ret,
4801 &copies_for_hook);
4802
55d796da
KG
4803 if (new_rtx)
4804 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
2f93eea8
PB
4805 known_mode, known_ret);
4806
4807 if (copies > 1 || copies_for_hook > 1)
4808 return MAX (copies, copies_for_hook);
4809
4810 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4811 }
4812 break;
4813
4814 case MEM:
4815#ifdef LOAD_EXTEND_OP
4816 /* Some RISC machines sign-extend all loads of smaller than a word. */
4817 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4818 return MAX (1, ((int) bitwidth
5511bc5a 4819 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
2f93eea8
PB
4820#endif
4821 break;
4822
4823 case CONST_INT:
4824 /* If the constant is negative, take its 1's complement and remask.
4825 Then see how many zero bits we have. */
c04fc4f0 4826 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
2f93eea8 4827 if (bitwidth <= HOST_BITS_PER_WIDE_INT
c04fc4f0 4828 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
4829 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4830
4831 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4832
4833 case SUBREG:
4834 /* If this is a SUBREG for a promoted object that is sign-extended
4835 and we are looking at it in a wider mode, we know that at least the
4836 high-order bits are known to be sign bit copies. */
4837
362d42dc 4838 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
2f93eea8
PB
4839 {
4840 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4841 known_x, known_mode, known_ret);
4842 return MAX ((int) bitwidth
5511bc5a 4843 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
2f93eea8
PB
4844 num0);
4845 }
4846
4847 /* For a smaller object, just ignore the high bits. */
5511bc5a 4848 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
2f93eea8
PB
4849 {
4850 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4851 known_x, known_mode, known_ret);
4852 return MAX (1, (num0
5511bc5a 4853 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
2f93eea8
PB
4854 - bitwidth)));
4855 }
4856
2f93eea8
PB
4857#ifdef LOAD_EXTEND_OP
4858 /* For paradoxical SUBREGs on machines where all register operations
4859 affect the entire register, just look inside. Note that we are
4860 passing MODE to the recursive call, so the number of sign bit copies
4861 will remain relative to that mode, not the inner mode. */
4862
4863 /* This works only if loads sign extend. Otherwise, if we get a
4864 reload for the inner part, it may be loaded from the stack, and
4865 then we lose all sign bit copies that existed before the store
4866 to the stack. */
4867
9e11bfef
TS
4868 if (WORD_REGISTER_OPERATIONS
4869 && paradoxical_subreg_p (x)
2f93eea8 4870 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3c0cb5de 4871 && MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4872 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4873 known_x, known_mode, known_ret);
2f93eea8
PB
4874#endif
4875 break;
4876
4877 case SIGN_EXTRACT:
481683e1 4878 if (CONST_INT_P (XEXP (x, 1)))
2f93eea8
PB
4879 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4880 break;
4881
4882 case SIGN_EXTEND:
5511bc5a 4883 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4884 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4885 known_x, known_mode, known_ret));
4886
4887 case TRUNCATE:
4888 /* For a smaller object, just ignore the high bits. */
4889 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4890 known_x, known_mode, known_ret);
5511bc5a 4891 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4892 - bitwidth)));
4893
4894 case NOT:
4895 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4896 known_x, known_mode, known_ret);
4897
4898 case ROTATE: case ROTATERT:
4899 /* If we are rotating left by a number of bits less than the number
4900 of sign bit copies, we can just subtract that amount from the
4901 number. */
481683e1 4902 if (CONST_INT_P (XEXP (x, 1))
2f93eea8
PB
4903 && INTVAL (XEXP (x, 1)) >= 0
4904 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4905 {
4906 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4907 known_x, known_mode, known_ret);
4908 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4909 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4910 }
4911 break;
4912
4913 case NEG:
4914 /* In general, this subtracts one sign bit copy. But if the value
4915 is known to be positive, the number of sign bit copies is the
4916 same as that of the input. Finally, if the input has just one bit
4917 that might be nonzero, all the bits are copies of the sign bit. */
4918 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4919 known_x, known_mode, known_ret);
4920 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4921 return num0 > 1 ? num0 - 1 : 1;
4922
4923 nonzero = nonzero_bits (XEXP (x, 0), mode);
4924 if (nonzero == 1)
4925 return bitwidth;
4926
4927 if (num0 > 1
c04fc4f0 4928 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
2f93eea8
PB
4929 num0--;
4930
4931 return num0;
4932
4933 case IOR: case AND: case XOR:
4934 case SMIN: case SMAX: case UMIN: case UMAX:
4935 /* Logical operations will preserve the number of sign-bit copies.
4936 MIN and MAX operations always return one of the operands. */
4937 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4938 known_x, known_mode, known_ret);
4939 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4940 known_x, known_mode, known_ret);
22761ec3
AN
4941
4942 /* If num1 is clearing some of the top bits then regardless of
4943 the other term, we are guaranteed to have at least that many
4944 high-order zero bits. */
4945 if (code == AND
4946 && num1 > 1
4947 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4948 && CONST_INT_P (XEXP (x, 1))
c04fc4f0
EB
4949 && (UINTVAL (XEXP (x, 1))
4950 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
22761ec3
AN
4951 return num1;
4952
4953 /* Similarly for IOR when setting high-order bits. */
4954 if (code == IOR
4955 && num1 > 1
4956 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4957 && CONST_INT_P (XEXP (x, 1))
c04fc4f0
EB
4958 && (UINTVAL (XEXP (x, 1))
4959 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
22761ec3
AN
4960 return num1;
4961
2f93eea8
PB
4962 return MIN (num0, num1);
4963
4964 case PLUS: case MINUS:
4965 /* For addition and subtraction, we can have a 1-bit carry. However,
4966 if we are subtracting 1 from a positive number, there will not
4967 be such a carry. Furthermore, if the positive number is known to
4968 be 0 or 1, we know the result is either -1 or 0. */
4969
4970 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4971 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4972 {
4973 nonzero = nonzero_bits (XEXP (x, 0), mode);
c04fc4f0 4974 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
2f93eea8
PB
4975 return (nonzero == 1 || nonzero == 0 ? bitwidth
4976 : bitwidth - floor_log2 (nonzero) - 1);
4977 }
4978
4979 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4980 known_x, known_mode, known_ret);
4981 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4982 known_x, known_mode, known_ret);
4983 result = MAX (1, MIN (num0, num1) - 1);
4984
2f93eea8
PB
4985 return result;
4986
4987 case MULT:
4988 /* The number of bits of the product is the sum of the number of
4989 bits of both terms. However, unless one of the terms if known
4990 to be positive, we must allow for an additional bit since negating
4991 a negative number can remove one sign bit copy. */
4992
4993 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4994 known_x, known_mode, known_ret);
4995 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4996 known_x, known_mode, known_ret);
4997
4998 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4999 if (result > 0
5000 && (bitwidth > HOST_BITS_PER_WIDE_INT
5001 || (((nonzero_bits (XEXP (x, 0), mode)
c04fc4f0 5002 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8 5003 && ((nonzero_bits (XEXP (x, 1), mode)
c04fc4f0
EB
5004 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5005 != 0))))
2f93eea8
PB
5006 result--;
5007
5008 return MAX (1, result);
5009
5010 case UDIV:
5011 /* The result must be <= the first operand. If the first operand
5012 has the high bit set, we know nothing about the number of sign
5013 bit copies. */
5014 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5015 return 1;
5016 else if ((nonzero_bits (XEXP (x, 0), mode)
c04fc4f0 5017 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
5018 return 1;
5019 else
5020 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5021 known_x, known_mode, known_ret);
5022
5023 case UMOD:
24d179b4
JJ
5024 /* The result must be <= the second operand. If the second operand
5025 has (or just might have) the high bit set, we know nothing about
5026 the number of sign bit copies. */
5027 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5028 return 1;
5029 else if ((nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 5030 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
24d179b4
JJ
5031 return 1;
5032 else
5033 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
2f93eea8
PB
5034 known_x, known_mode, known_ret);
5035
5036 case DIV:
5037 /* Similar to unsigned division, except that we have to worry about
5038 the case where the divisor is negative, in which case we have
5039 to add 1. */
5040 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5041 known_x, known_mode, known_ret);
5042 if (result > 1
5043 && (bitwidth > HOST_BITS_PER_WIDE_INT
5044 || (nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 5045 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
2f93eea8
PB
5046 result--;
5047
5048 return result;
5049
5050 case MOD:
5051 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5052 known_x, known_mode, known_ret);
5053 if (result > 1
5054 && (bitwidth > HOST_BITS_PER_WIDE_INT
5055 || (nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 5056 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
2f93eea8
PB
5057 result--;
5058
5059 return result;
5060
5061 case ASHIFTRT:
5062 /* Shifts by a constant add to the number of bits equal to the
5063 sign bit. */
5064 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5065 known_x, known_mode, known_ret);
481683e1 5066 if (CONST_INT_P (XEXP (x, 1))
39b2ac74 5067 && INTVAL (XEXP (x, 1)) > 0
5511bc5a 5068 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
5069 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5070
5071 return num0;
5072
5073 case ASHIFT:
5074 /* Left shifts destroy copies. */
481683e1 5075 if (!CONST_INT_P (XEXP (x, 1))
2f93eea8 5076 || INTVAL (XEXP (x, 1)) < 0
39b2ac74 5077 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5511bc5a 5078 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
5079 return 1;
5080
5081 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5082 known_x, known_mode, known_ret);
5083 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5084
5085 case IF_THEN_ELSE:
5086 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5087 known_x, known_mode, known_ret);
5088 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5089 known_x, known_mode, known_ret);
5090 return MIN (num0, num1);
5091
5092 case EQ: case NE: case GE: case GT: case LE: case LT:
5093 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5094 case GEU: case GTU: case LEU: case LTU:
5095 case UNORDERED: case ORDERED:
5096 /* If the constant is negative, take its 1's complement and remask.
5097 Then see how many zero bits we have. */
5098 nonzero = STORE_FLAG_VALUE;
5099 if (bitwidth <= HOST_BITS_PER_WIDE_INT
c04fc4f0 5100 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
5101 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5102
5103 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5104
5105 default:
5106 break;
5107 }
5108
5109 /* If we haven't been able to figure it out by one of the above rules,
5110 see if some of the high-order bits are known to be zero. If so,
5111 count those bits and return one less than that amount. If we can't
5112 safely compute the mask for this mode, always return BITWIDTH. */
5113
5511bc5a 5114 bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
5115 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5116 return 1;
5117
5118 nonzero = nonzero_bits (x, mode);
c04fc4f0 5119 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
2f93eea8
PB
5120 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5121}
6fd21094
RS
5122
5123/* Calculate the rtx_cost of a single instruction. A return value of
5124 zero indicates an instruction pattern without a known cost. */
5125
5126int
f40751dd 5127insn_rtx_cost (rtx pat, bool speed)
6fd21094
RS
5128{
5129 int i, cost;
5130 rtx set;
5131
5132 /* Extract the single set rtx from the instruction pattern.
5133 We can't use single_set since we only have the pattern. */
5134 if (GET_CODE (pat) == SET)
5135 set = pat;
5136 else if (GET_CODE (pat) == PARALLEL)
5137 {
5138 set = NULL_RTX;
5139 for (i = 0; i < XVECLEN (pat, 0); i++)
5140 {
5141 rtx x = XVECEXP (pat, 0, i);
5142 if (GET_CODE (x) == SET)
5143 {
5144 if (set)
5145 return 0;
5146 set = x;
5147 }
5148 }
5149 if (!set)
5150 return 0;
5151 }
5152 else
5153 return 0;
5154
e548c9df 5155 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
6fd21094
RS
5156 return cost > 0 ? cost : COSTS_N_INSNS (1);
5157}
75473b02 5158
11204b2d
ZC
5159/* Returns estimate on cost of computing SEQ. */
5160
5161unsigned
5162seq_cost (const rtx_insn *seq, bool speed)
5163{
5164 unsigned cost = 0;
5165 rtx set;
5166
5167 for (; seq; seq = NEXT_INSN (seq))
5168 {
5169 set = single_set (seq);
5170 if (set)
5171 cost += set_rtx_cost (set, speed);
5172 else
5173 cost++;
5174 }
5175
5176 return cost;
5177}
5178
75473b02
SB
5179/* Given an insn INSN and condition COND, return the condition in a
5180 canonical form to simplify testing by callers. Specifically:
5181
5182 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5183 (2) Both operands will be machine operands; (cc0) will have been replaced.
5184 (3) If an operand is a constant, it will be the second operand.
5185 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5186 for GE, GEU, and LEU.
5187
5188 If the condition cannot be understood, or is an inequality floating-point
5189 comparison which needs to be reversed, 0 will be returned.
5190
5191 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5192
5193 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5194 insn used in locating the condition was found. If a replacement test
5195 of the condition is desired, it should be placed in front of that
5196 insn and we will be sure that the inputs are still valid.
5197
5198 If WANT_REG is nonzero, we wish the condition to be relative to that
5199 register, if possible. Therefore, do not canonicalize the condition
b8698a0f 5200 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
75473b02
SB
5201 to be a compare to a CC mode register.
5202
5203 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5204 and at INSN. */
5205
5206rtx
61aa0978
DM
5207canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5208 rtx_insn **earliest,
75473b02
SB
5209 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5210{
5211 enum rtx_code code;
61aa0978 5212 rtx_insn *prev = insn;
f7d504c2 5213 const_rtx set;
75473b02
SB
5214 rtx tem;
5215 rtx op0, op1;
5216 int reverse_code = 0;
ef4bddc2 5217 machine_mode mode;
569f8d98 5218 basic_block bb = BLOCK_FOR_INSN (insn);
75473b02
SB
5219
5220 code = GET_CODE (cond);
5221 mode = GET_MODE (cond);
5222 op0 = XEXP (cond, 0);
5223 op1 = XEXP (cond, 1);
5224
5225 if (reverse)
5226 code = reversed_comparison_code (cond, insn);
5227 if (code == UNKNOWN)
5228 return 0;
5229
5230 if (earliest)
5231 *earliest = insn;
5232
5233 /* If we are comparing a register with zero, see if the register is set
5234 in the previous insn to a COMPARE or a comparison operation. Perform
5235 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5236 in cse.c */
5237
5238 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5239 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5240 && op1 == CONST0_RTX (GET_MODE (op0))
5241 && op0 != want_reg)
5242 {
5243 /* Set nonzero when we find something of interest. */
5244 rtx x = 0;
5245
75473b02
SB
5246 /* If comparison with cc0, import actual comparison from compare
5247 insn. */
5248 if (op0 == cc0_rtx)
5249 {
5250 if ((prev = prev_nonnote_insn (prev)) == 0
5251 || !NONJUMP_INSN_P (prev)
5252 || (set = single_set (prev)) == 0
5253 || SET_DEST (set) != cc0_rtx)
5254 return 0;
5255
5256 op0 = SET_SRC (set);
5257 op1 = CONST0_RTX (GET_MODE (op0));
5258 if (earliest)
5259 *earliest = prev;
5260 }
75473b02
SB
5261
5262 /* If this is a COMPARE, pick up the two things being compared. */
5263 if (GET_CODE (op0) == COMPARE)
5264 {
5265 op1 = XEXP (op0, 1);
5266 op0 = XEXP (op0, 0);
5267 continue;
5268 }
5269 else if (!REG_P (op0))
5270 break;
5271
5272 /* Go back to the previous insn. Stop if it is not an INSN. We also
5273 stop if it isn't a single set or if it has a REG_INC note because
5274 we don't want to bother dealing with it. */
5275
f0fc0803 5276 prev = prev_nonnote_nondebug_insn (prev);
b5b8b0ac
AO
5277
5278 if (prev == 0
75473b02 5279 || !NONJUMP_INSN_P (prev)
569f8d98
ZD
5280 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5281 /* In cfglayout mode, there do not have to be labels at the
5282 beginning of a block, or jumps at the end, so the previous
5283 conditions would not stop us when we reach bb boundary. */
5284 || BLOCK_FOR_INSN (prev) != bb)
75473b02
SB
5285 break;
5286
5287 set = set_of (op0, prev);
5288
5289 if (set
5290 && (GET_CODE (set) != SET
5291 || !rtx_equal_p (SET_DEST (set), op0)))
5292 break;
5293
5294 /* If this is setting OP0, get what it sets it to if it looks
5295 relevant. */
5296 if (set)
5297 {
ef4bddc2 5298 machine_mode inner_mode = GET_MODE (SET_DEST (set));
75473b02
SB
5299#ifdef FLOAT_STORE_FLAG_VALUE
5300 REAL_VALUE_TYPE fsfv;
5301#endif
5302
5303 /* ??? We may not combine comparisons done in a CCmode with
5304 comparisons not done in a CCmode. This is to aid targets
5305 like Alpha that have an IEEE compliant EQ instruction, and
5306 a non-IEEE compliant BEQ instruction. The use of CCmode is
5307 actually artificial, simply to prevent the combination, but
5308 should not affect other platforms.
5309
5310 However, we must allow VOIDmode comparisons to match either
5311 CCmode or non-CCmode comparison, because some ports have
5312 modeless comparisons inside branch patterns.
5313
5314 ??? This mode check should perhaps look more like the mode check
5315 in simplify_comparison in combine. */
2c8798a2
RS
5316 if (((GET_MODE_CLASS (mode) == MODE_CC)
5317 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5318 && mode != VOIDmode
5319 && inner_mode != VOIDmode)
5320 break;
5321 if (GET_CODE (SET_SRC (set)) == COMPARE
5322 || (((code == NE
5323 || (code == LT
5324 && val_signbit_known_set_p (inner_mode,
5325 STORE_FLAG_VALUE))
75473b02 5326#ifdef FLOAT_STORE_FLAG_VALUE
2c8798a2
RS
5327 || (code == LT
5328 && SCALAR_FLOAT_MODE_P (inner_mode)
5329 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5330 REAL_VALUE_NEGATIVE (fsfv)))
75473b02 5331#endif
2c8798a2
RS
5332 ))
5333 && COMPARISON_P (SET_SRC (set))))
75473b02
SB
5334 x = SET_SRC (set);
5335 else if (((code == EQ
5336 || (code == GE
2d0c270f
BS
5337 && val_signbit_known_set_p (inner_mode,
5338 STORE_FLAG_VALUE))
75473b02
SB
5339#ifdef FLOAT_STORE_FLAG_VALUE
5340 || (code == GE
3d8bf70f 5341 && SCALAR_FLOAT_MODE_P (inner_mode)
75473b02
SB
5342 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5343 REAL_VALUE_NEGATIVE (fsfv)))
5344#endif
5345 ))
2c8798a2 5346 && COMPARISON_P (SET_SRC (set)))
75473b02
SB
5347 {
5348 reverse_code = 1;
5349 x = SET_SRC (set);
5350 }
2c8798a2
RS
5351 else if ((code == EQ || code == NE)
5352 && GET_CODE (SET_SRC (set)) == XOR)
5353 /* Handle sequences like:
5354
5355 (set op0 (xor X Y))
5356 ...(eq|ne op0 (const_int 0))...
5357
5358 in which case:
5359
5360 (eq op0 (const_int 0)) reduces to (eq X Y)
5361 (ne op0 (const_int 0)) reduces to (ne X Y)
5362
5363 This is the form used by MIPS16, for example. */
5364 x = SET_SRC (set);
75473b02
SB
5365 else
5366 break;
5367 }
5368
5369 else if (reg_set_p (op0, prev))
5370 /* If this sets OP0, but not directly, we have to give up. */
5371 break;
5372
5373 if (x)
5374 {
5375 /* If the caller is expecting the condition to be valid at INSN,
5376 make sure X doesn't change before INSN. */
5377 if (valid_at_insn_p)
5378 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5379 break;
5380 if (COMPARISON_P (x))
5381 code = GET_CODE (x);
5382 if (reverse_code)
5383 {
5384 code = reversed_comparison_code (x, prev);
5385 if (code == UNKNOWN)
5386 return 0;
5387 reverse_code = 0;
5388 }
5389
5390 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5391 if (earliest)
5392 *earliest = prev;
5393 }
5394 }
5395
5396 /* If constant is first, put it last. */
5397 if (CONSTANT_P (op0))
5398 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5399
5400 /* If OP0 is the result of a comparison, we weren't able to find what
5401 was really being compared, so fail. */
5402 if (!allow_cc_mode
5403 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5404 return 0;
5405
5406 /* Canonicalize any ordered comparison with integers involving equality
5407 if we can do computations in the relevant mode and we do not
5408 overflow. */
5409
5410 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
481683e1 5411 && CONST_INT_P (op1)
75473b02 5412 && GET_MODE (op0) != VOIDmode
5511bc5a 5413 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
75473b02
SB
5414 {
5415 HOST_WIDE_INT const_val = INTVAL (op1);
5416 unsigned HOST_WIDE_INT uconst_val = const_val;
5417 unsigned HOST_WIDE_INT max_val
5418 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5419
5420 switch (code)
5421 {
5422 case LE:
5423 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5424 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5425 break;
5426
5427 /* When cross-compiling, const_val might be sign-extended from
5428 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5429 case GE:
c04fc4f0
EB
5430 if ((const_val & max_val)
5431 != ((unsigned HOST_WIDE_INT) 1
5511bc5a 5432 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
75473b02
SB
5433 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5434 break;
5435
5436 case LEU:
5437 if (uconst_val < max_val)
5438 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5439 break;
5440
5441 case GEU:
5442 if (uconst_val != 0)
5443 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5444 break;
5445
5446 default:
5447 break;
5448 }
5449 }
5450
5451 /* Never return CC0; return zero instead. */
5452 if (CC0_P (op0))
5453 return 0;
5454
5455 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5456}
5457
5458/* Given a jump insn JUMP, return the condition that will cause it to branch
5459 to its JUMP_LABEL. If the condition cannot be understood, or is an
5460 inequality floating-point comparison which needs to be reversed, 0 will
5461 be returned.
5462
5463 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5464 insn used in locating the condition was found. If a replacement test
5465 of the condition is desired, it should be placed in front of that
5466 insn and we will be sure that the inputs are still valid. If EARLIEST
5467 is null, the returned condition will be valid at INSN.
5468
5469 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5470 compare CC mode register.
5471
5472 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5473
5474rtx
61aa0978
DM
5475get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5476 int valid_at_insn_p)
75473b02
SB
5477{
5478 rtx cond;
5479 int reverse;
5480 rtx set;
5481
5482 /* If this is not a standard conditional jump, we can't parse it. */
5483 if (!JUMP_P (jump)
5484 || ! any_condjump_p (jump))
5485 return 0;
5486 set = pc_set (jump);
5487
5488 cond = XEXP (SET_SRC (set), 0);
5489
5490 /* If this branches to JUMP_LABEL when the condition is false, reverse
5491 the condition. */
5492 reverse
5493 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
a827d9b1 5494 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
75473b02
SB
5495
5496 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5497 allow_cc_mode, valid_at_insn_p);
5498}
5499
b12cbf2c
AN
5500/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5501 TARGET_MODE_REP_EXTENDED.
5502
5503 Note that we assume that the property of
5504 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5505 narrower than mode B. I.e., if A is a mode narrower than B then in
5506 order to be able to operate on it in mode B, mode A needs to
5507 satisfy the requirements set by the representation of mode B. */
5508
5509static void
5510init_num_sign_bit_copies_in_rep (void)
5511{
ef4bddc2 5512 machine_mode mode, in_mode;
b12cbf2c
AN
5513
5514 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5515 in_mode = GET_MODE_WIDER_MODE (mode))
5516 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5517 mode = GET_MODE_WIDER_MODE (mode))
5518 {
ef4bddc2 5519 machine_mode i;
b12cbf2c
AN
5520
5521 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5522 extends to the next widest mode. */
5523 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5524 || GET_MODE_WIDER_MODE (mode) == in_mode);
5525
5526 /* We are in in_mode. Count how many bits outside of mode
5527 have to be copies of the sign-bit. */
5528 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5529 {
ef4bddc2 5530 machine_mode wider = GET_MODE_WIDER_MODE (i);
b12cbf2c
AN
5531
5532 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5533 /* We can only check sign-bit copies starting from the
5534 top-bit. In order to be able to check the bits we
5535 have already seen we pretend that subsequent bits
5536 have to be sign-bit copies too. */
5537 || num_sign_bit_copies_in_rep [in_mode][mode])
5538 num_sign_bit_copies_in_rep [in_mode][mode]
5511bc5a 5539 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
b12cbf2c
AN
5540 }
5541 }
5542}
5543
d3b72690
PB
5544/* Suppose that truncation from the machine mode of X to MODE is not a
5545 no-op. See if there is anything special about X so that we can
5546 assume it already contains a truncated value of MODE. */
5547
5548bool
ef4bddc2 5549truncated_to_mode (machine_mode mode, const_rtx x)
d3b72690 5550{
b12cbf2c
AN
5551 /* This register has already been used in MODE without explicit
5552 truncation. */
5553 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5554 return true;
5555
5556 /* See if we already satisfy the requirements of MODE. If yes we
5557 can just switch to MODE. */
5558 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5559 && (num_sign_bit_copies (x, GET_MODE (x))
5560 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5561 return true;
d3b72690 5562
b12cbf2c
AN
5563 return false;
5564}
cf94b0fc 5565\f
476dd0ce
RS
5566/* Return true if RTX code CODE has a single sequence of zero or more
5567 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5568 entry in that case. */
5569
5570static bool
5571setup_reg_subrtx_bounds (unsigned int code)
5572{
5573 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5574 unsigned int i = 0;
5575 for (; format[i] != 'e'; ++i)
5576 {
5577 if (!format[i])
5578 /* No subrtxes. Leave start and count as 0. */
5579 return true;
5580 if (format[i] == 'E' || format[i] == 'V')
5581 return false;
5582 }
5583
5584 /* Record the sequence of 'e's. */
5585 rtx_all_subrtx_bounds[code].start = i;
5586 do
5587 ++i;
5588 while (format[i] == 'e');
5589 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5590 /* rtl-iter.h relies on this. */
5591 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5592
5593 for (; format[i]; ++i)
5594 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5595 return false;
5596
5597 return true;
5598}
5599
e02101ff 5600/* Initialize rtx_all_subrtx_bounds. */
cf94b0fc
PB
5601void
5602init_rtlanal (void)
5603{
5604 int i;
5605 for (i = 0; i < NUM_RTX_CODE; i++)
5606 {
476dd0ce
RS
5607 if (!setup_reg_subrtx_bounds (i))
5608 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5609 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5610 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
cf94b0fc 5611 }
b12cbf2c
AN
5612
5613 init_num_sign_bit_copies_in_rep ();
cf94b0fc 5614}
3d8504ac
RS
5615\f
5616/* Check whether this is a constant pool constant. */
5617bool
5618constant_pool_constant_p (rtx x)
5619{
5620 x = avoid_constant_pool_reference (x);
48175537 5621 return CONST_DOUBLE_P (x);
3d8504ac 5622}
842e098c
AN
5623\f
5624/* If M is a bitmask that selects a field of low-order bits within an item but
5625 not the entire word, return the length of the field. Return -1 otherwise.
5626 M is used in machine mode MODE. */
5627
5628int
ef4bddc2 5629low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
842e098c
AN
5630{
5631 if (mode != VOIDmode)
5632 {
5511bc5a 5633 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
842e098c
AN
5634 return -1;
5635 m &= GET_MODE_MASK (mode);
5636 }
5637
5638 return exact_log2 (m + 1);
5639}
372d6395
RS
5640
5641/* Return the mode of MEM's address. */
5642
ef4bddc2 5643machine_mode
372d6395
RS
5644get_address_mode (rtx mem)
5645{
ef4bddc2 5646 machine_mode mode;
372d6395
RS
5647
5648 gcc_assert (MEM_P (mem));
5649 mode = GET_MODE (XEXP (mem, 0));
5650 if (mode != VOIDmode)
5651 return mode;
5652 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5653}
ca3f2950
SB
5654\f
5655/* Split up a CONST_DOUBLE or integer constant rtx
5656 into two rtx's for single words,
5657 storing in *FIRST the word that comes first in memory in the target
807e902e
KZ
5658 and in *SECOND the other.
5659
5660 TODO: This function needs to be rewritten to work on any size
5661 integer. */
ca3f2950
SB
5662
5663void
5664split_double (rtx value, rtx *first, rtx *second)
5665{
5666 if (CONST_INT_P (value))
5667 {
5668 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5669 {
5670 /* In this case the CONST_INT holds both target words.
5671 Extract the bits from it into two word-sized pieces.
5672 Sign extend each half to HOST_WIDE_INT. */
5673 unsigned HOST_WIDE_INT low, high;
5674 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5675 unsigned bits_per_word = BITS_PER_WORD;
5676
5677 /* Set sign_bit to the most significant bit of a word. */
5678 sign_bit = 1;
5679 sign_bit <<= bits_per_word - 1;
5680
5681 /* Set mask so that all bits of the word are set. We could
5682 have used 1 << BITS_PER_WORD instead of basing the
5683 calculation on sign_bit. However, on machines where
5684 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5685 compiler warning, even though the code would never be
5686 executed. */
5687 mask = sign_bit << 1;
5688 mask--;
5689
5690 /* Set sign_extend as any remaining bits. */
5691 sign_extend = ~mask;
5692
5693 /* Pick the lower word and sign-extend it. */
5694 low = INTVAL (value);
5695 low &= mask;
5696 if (low & sign_bit)
5697 low |= sign_extend;
5698
5699 /* Pick the higher word, shifted to the least significant
5700 bits, and sign-extend it. */
5701 high = INTVAL (value);
5702 high >>= bits_per_word - 1;
5703 high >>= 1;
5704 high &= mask;
5705 if (high & sign_bit)
5706 high |= sign_extend;
5707
5708 /* Store the words in the target machine order. */
5709 if (WORDS_BIG_ENDIAN)
5710 {
5711 *first = GEN_INT (high);
5712 *second = GEN_INT (low);
5713 }
5714 else
5715 {
5716 *first = GEN_INT (low);
5717 *second = GEN_INT (high);
5718 }
5719 }
5720 else
5721 {
5722 /* The rule for using CONST_INT for a wider mode
5723 is that we regard the value as signed.
5724 So sign-extend it. */
5725 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5726 if (WORDS_BIG_ENDIAN)
5727 {
5728 *first = high;
5729 *second = value;
5730 }
5731 else
5732 {
5733 *first = value;
5734 *second = high;
5735 }
5736 }
5737 }
807e902e
KZ
5738 else if (GET_CODE (value) == CONST_WIDE_INT)
5739 {
5740 /* All of this is scary code and needs to be converted to
5741 properly work with any size integer. */
5742 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5743 if (WORDS_BIG_ENDIAN)
5744 {
5745 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5746 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5747 }
5748 else
5749 {
5750 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5751 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5752 }
5753 }
48175537 5754 else if (!CONST_DOUBLE_P (value))
ca3f2950
SB
5755 {
5756 if (WORDS_BIG_ENDIAN)
5757 {
5758 *first = const0_rtx;
5759 *second = value;
5760 }
5761 else
5762 {
5763 *first = value;
5764 *second = const0_rtx;
5765 }
5766 }
5767 else if (GET_MODE (value) == VOIDmode
5768 /* This is the old way we did CONST_DOUBLE integers. */
5769 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5770 {
5771 /* In an integer, the words are defined as most and least significant.
5772 So order them by the target's convention. */
5773 if (WORDS_BIG_ENDIAN)
5774 {
5775 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5776 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5777 }
5778 else
5779 {
5780 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5781 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5782 }
5783 }
5784 else
5785 {
ca3f2950 5786 long l[2];
ca3f2950
SB
5787
5788 /* Note, this converts the REAL_VALUE_TYPE to the target's
5789 format, splits up the floating point double and outputs
5790 exactly 32 bits of it into each of l[0] and l[1] --
5791 not necessarily BITS_PER_WORD bits. */
34a72c33 5792 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
ca3f2950
SB
5793
5794 /* If 32 bits is an entire word for the target, but not for the host,
5795 then sign-extend on the host so that the number will look the same
5796 way on the host that it would on the target. See for instance
5797 simplify_unary_operation. The #if is needed to avoid compiler
5798 warnings. */
5799
5800#if HOST_BITS_PER_LONG > 32
5801 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5802 {
5803 if (l[0] & ((long) 1 << 31))
aa256c4a 5804 l[0] |= ((unsigned long) (-1) << 32);
ca3f2950 5805 if (l[1] & ((long) 1 << 31))
aa256c4a 5806 l[1] |= ((unsigned long) (-1) << 32);
ca3f2950
SB
5807 }
5808#endif
5809
5810 *first = GEN_INT (l[0]);
5811 *second = GEN_INT (l[1]);
5812 }
5813}
5814
3936bafc
YR
5815/* Return true if X is a sign_extract or zero_extract from the least
5816 significant bit. */
5817
5818static bool
5819lsb_bitfield_op_p (rtx x)
5820{
5821 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5822 {
ef4bddc2 5823 machine_mode mode = GET_MODE (XEXP (x, 0));
a9195970 5824 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
3936bafc
YR
5825 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5826
5827 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5828 }
5829 return false;
5830}
5831
277f65de
RS
5832/* Strip outer address "mutations" from LOC and return a pointer to the
5833 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5834 stripped expression there.
5835
5836 "Mutations" either convert between modes or apply some kind of
3936bafc 5837 extension, truncation or alignment. */
277f65de
RS
5838
5839rtx *
5840strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5841{
5842 for (;;)
5843 {
5844 enum rtx_code code = GET_CODE (*loc);
5845 if (GET_RTX_CLASS (code) == RTX_UNARY)
5846 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5847 used to convert between pointer sizes. */
5848 loc = &XEXP (*loc, 0);
3936bafc
YR
5849 else if (lsb_bitfield_op_p (*loc))
5850 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5851 acts as a combined truncation and extension. */
5852 loc = &XEXP (*loc, 0);
277f65de
RS
5853 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5854 /* (and ... (const_int -X)) is used to align to X bytes. */
5855 loc = &XEXP (*loc, 0);
163497f1
VM
5856 else if (code == SUBREG
5857 && !OBJECT_P (SUBREG_REG (*loc))
5858 && subreg_lowpart_p (*loc))
5859 /* (subreg (operator ...) ...) inside and is used for mode
5860 conversion too. */
99a0106f 5861 loc = &SUBREG_REG (*loc);
277f65de
RS
5862 else
5863 return loc;
5864 if (outer_code)
5865 *outer_code = code;
5866 }
5867}
5868
ec5a3504
RS
5869/* Return true if CODE applies some kind of scale. The scaled value is
5870 is the first operand and the scale is the second. */
277f65de
RS
5871
5872static bool
ec5a3504 5873binary_scale_code_p (enum rtx_code code)
277f65de 5874{
ec5a3504
RS
5875 return (code == MULT
5876 || code == ASHIFT
5877 /* Needed by ARM targets. */
5878 || code == ASHIFTRT
5879 || code == LSHIFTRT
5880 || code == ROTATE
5881 || code == ROTATERT);
277f65de
RS
5882}
5883
ec5a3504
RS
5884/* If *INNER can be interpreted as a base, return a pointer to the inner term
5885 (see address_info). Return null otherwise. */
277f65de 5886
ec5a3504
RS
5887static rtx *
5888get_base_term (rtx *inner)
277f65de 5889{
ec5a3504
RS
5890 if (GET_CODE (*inner) == LO_SUM)
5891 inner = strip_address_mutations (&XEXP (*inner, 0));
5892 if (REG_P (*inner)
5893 || MEM_P (*inner)
948cd9a5
MK
5894 || GET_CODE (*inner) == SUBREG
5895 || GET_CODE (*inner) == SCRATCH)
ec5a3504
RS
5896 return inner;
5897 return 0;
5898}
5899
5900/* If *INNER can be interpreted as an index, return a pointer to the inner term
5901 (see address_info). Return null otherwise. */
5902
5903static rtx *
5904get_index_term (rtx *inner)
5905{
5906 /* At present, only constant scales are allowed. */
5907 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5908 inner = strip_address_mutations (&XEXP (*inner, 0));
5909 if (REG_P (*inner)
5910 || MEM_P (*inner)
71acd477
MK
5911 || GET_CODE (*inner) == SUBREG
5912 || GET_CODE (*inner) == SCRATCH)
ec5a3504
RS
5913 return inner;
5914 return 0;
277f65de
RS
5915}
5916
5917/* Set the segment part of address INFO to LOC, given that INNER is the
5918 unmutated value. */
5919
5920static void
5921set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5922{
277f65de
RS
5923 gcc_assert (!info->segment);
5924 info->segment = loc;
5925 info->segment_term = inner;
5926}
5927
5928/* Set the base part of address INFO to LOC, given that INNER is the
5929 unmutated value. */
5930
5931static void
5932set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5933{
277f65de
RS
5934 gcc_assert (!info->base);
5935 info->base = loc;
5936 info->base_term = inner;
5937}
5938
5939/* Set the index part of address INFO to LOC, given that INNER is the
5940 unmutated value. */
5941
5942static void
5943set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5944{
277f65de
RS
5945 gcc_assert (!info->index);
5946 info->index = loc;
5947 info->index_term = inner;
5948}
5949
5950/* Set the displacement part of address INFO to LOC, given that INNER
5951 is the constant term. */
5952
5953static void
5954set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5955{
277f65de
RS
5956 gcc_assert (!info->disp);
5957 info->disp = loc;
5958 info->disp_term = inner;
5959}
5960
5961/* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5962 rest of INFO accordingly. */
5963
5964static void
5965decompose_incdec_address (struct address_info *info)
5966{
5967 info->autoinc_p = true;
5968
5969 rtx *base = &XEXP (*info->inner, 0);
5970 set_address_base (info, base, base);
5971 gcc_checking_assert (info->base == info->base_term);
5972
5973 /* These addresses are only valid when the size of the addressed
5974 value is known. */
5975 gcc_checking_assert (info->mode != VOIDmode);
5976}
5977
5978/* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5979 of INFO accordingly. */
5980
5981static void
5982decompose_automod_address (struct address_info *info)
5983{
5984 info->autoinc_p = true;
5985
5986 rtx *base = &XEXP (*info->inner, 0);
5987 set_address_base (info, base, base);
5988 gcc_checking_assert (info->base == info->base_term);
5989
5990 rtx plus = XEXP (*info->inner, 1);
5991 gcc_assert (GET_CODE (plus) == PLUS);
5992
5993 info->base_term2 = &XEXP (plus, 0);
5994 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5995
5996 rtx *step = &XEXP (plus, 1);
5997 rtx *inner_step = strip_address_mutations (step);
5998 if (CONSTANT_P (*inner_step))
5999 set_address_disp (info, step, inner_step);
6000 else
6001 set_address_index (info, step, inner_step);
6002}
6003
6004/* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6005 values in [PTR, END). Return a pointer to the end of the used array. */
6006
6007static rtx **
6008extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6009{
6010 rtx x = *loc;
6011 if (GET_CODE (x) == PLUS)
6012 {
6013 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6014 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6015 }
6016 else
6017 {
6018 gcc_assert (ptr != end);
6019 *ptr++ = loc;
6020 }
6021 return ptr;
6022}
6023
6024/* Evaluate the likelihood of X being a base or index value, returning
6025 positive if it is likely to be a base, negative if it is likely to be
6026 an index, and 0 if we can't tell. Make the magnitude of the return
6027 value reflect the amount of confidence we have in the answer.
6028
6029 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6030
6031static int
ef4bddc2 6032baseness (rtx x, machine_mode mode, addr_space_t as,
277f65de
RS
6033 enum rtx_code outer_code, enum rtx_code index_code)
6034{
277f65de
RS
6035 /* Believe *_POINTER unless the address shape requires otherwise. */
6036 if (REG_P (x) && REG_POINTER (x))
6037 return 2;
6038 if (MEM_P (x) && MEM_POINTER (x))
6039 return 2;
6040
6041 if (REG_P (x) && HARD_REGISTER_P (x))
6042 {
6043 /* X is a hard register. If it only fits one of the base
6044 or index classes, choose that interpretation. */
6045 int regno = REGNO (x);
6046 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6047 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6048 if (base_p != index_p)
6049 return base_p ? 1 : -1;
6050 }
6051 return 0;
6052}
6053
6054/* INFO->INNER describes a normal, non-automodified address.
6055 Fill in the rest of INFO accordingly. */
6056
6057static void
6058decompose_normal_address (struct address_info *info)
6059{
6060 /* Treat the address as the sum of up to four values. */
6061 rtx *ops[4];
6062 size_t n_ops = extract_plus_operands (info->inner, ops,
6063 ops + ARRAY_SIZE (ops)) - ops;
6064
6065 /* If there is more than one component, any base component is in a PLUS. */
6066 if (n_ops > 1)
6067 info->base_outer_code = PLUS;
6068
ec5a3504
RS
6069 /* Try to classify each sum operand now. Leave those that could be
6070 either a base or an index in OPS. */
277f65de
RS
6071 rtx *inner_ops[4];
6072 size_t out = 0;
6073 for (size_t in = 0; in < n_ops; ++in)
6074 {
6075 rtx *loc = ops[in];
6076 rtx *inner = strip_address_mutations (loc);
6077 if (CONSTANT_P (*inner))
6078 set_address_disp (info, loc, inner);
6079 else if (GET_CODE (*inner) == UNSPEC)
6080 set_address_segment (info, loc, inner);
6081 else
6082 {
ec5a3504
RS
6083 /* The only other possibilities are a base or an index. */
6084 rtx *base_term = get_base_term (inner);
6085 rtx *index_term = get_index_term (inner);
6086 gcc_assert (base_term || index_term);
6087 if (!base_term)
6088 set_address_index (info, loc, index_term);
6089 else if (!index_term)
6090 set_address_base (info, loc, base_term);
6091 else
6092 {
6093 gcc_assert (base_term == index_term);
6094 ops[out] = loc;
6095 inner_ops[out] = base_term;
6096 ++out;
6097 }
277f65de
RS
6098 }
6099 }
6100
6101 /* Classify the remaining OPS members as bases and indexes. */
6102 if (out == 1)
6103 {
ec5a3504
RS
6104 /* If we haven't seen a base or an index yet, assume that this is
6105 the base. If we were confident that another term was the base
6106 or index, treat the remaining operand as the other kind. */
6107 if (!info->base)
277f65de
RS
6108 set_address_base (info, ops[0], inner_ops[0]);
6109 else
6110 set_address_index (info, ops[0], inner_ops[0]);
6111 }
6112 else if (out == 2)
6113 {
6114 /* In the event of a tie, assume the base comes first. */
6115 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6116 GET_CODE (*ops[1]))
6117 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6118 GET_CODE (*ops[0])))
6119 {
6120 set_address_base (info, ops[0], inner_ops[0]);
6121 set_address_index (info, ops[1], inner_ops[1]);
6122 }
6123 else
6124 {
6125 set_address_base (info, ops[1], inner_ops[1]);
6126 set_address_index (info, ops[0], inner_ops[0]);
6127 }
6128 }
6129 else
6130 gcc_assert (out == 0);
6131}
6132
6133/* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6134 or VOIDmode if not known. AS is the address space associated with LOC.
6135 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6136
6137void
ef4bddc2 6138decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
277f65de
RS
6139 addr_space_t as, enum rtx_code outer_code)
6140{
6141 memset (info, 0, sizeof (*info));
6142 info->mode = mode;
6143 info->as = as;
6144 info->addr_outer_code = outer_code;
6145 info->outer = loc;
6146 info->inner = strip_address_mutations (loc, &outer_code);
6147 info->base_outer_code = outer_code;
6148 switch (GET_CODE (*info->inner))
6149 {
6150 case PRE_DEC:
6151 case PRE_INC:
6152 case POST_DEC:
6153 case POST_INC:
6154 decompose_incdec_address (info);
6155 break;
6156
6157 case PRE_MODIFY:
6158 case POST_MODIFY:
6159 decompose_automod_address (info);
6160 break;
6161
6162 default:
6163 decompose_normal_address (info);
6164 break;
6165 }
6166}
6167
6168/* Describe address operand LOC in INFO. */
6169
6170void
6171decompose_lea_address (struct address_info *info, rtx *loc)
6172{
6173 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6174}
6175
6176/* Describe the address of MEM X in INFO. */
6177
6178void
6179decompose_mem_address (struct address_info *info, rtx x)
6180{
6181 gcc_assert (MEM_P (x));
6182 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6183 MEM_ADDR_SPACE (x), MEM);
6184}
6185
6186/* Update INFO after a change to the address it describes. */
6187
6188void
6189update_address (struct address_info *info)
6190{
6191 decompose_address (info, info->outer, info->mode, info->as,
6192 info->addr_outer_code);
6193}
6194
6195/* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6196 more complicated than that. */
6197
6198HOST_WIDE_INT
6199get_index_scale (const struct address_info *info)
6200{
6201 rtx index = *info->index;
6202 if (GET_CODE (index) == MULT
6203 && CONST_INT_P (XEXP (index, 1))
6204 && info->index_term == &XEXP (index, 0))
6205 return INTVAL (XEXP (index, 1));
6206
6207 if (GET_CODE (index) == ASHIFT
6208 && CONST_INT_P (XEXP (index, 1))
6209 && info->index_term == &XEXP (index, 0))
6210 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6211
6212 if (info->index == info->index_term)
6213 return 1;
6214
6215 return 0;
6216}
6217
6218/* Return the "index code" of INFO, in the form required by
6219 ok_for_base_p_1. */
6220
6221enum rtx_code
6222get_index_code (const struct address_info *info)
6223{
6224 if (info->index)
6225 return GET_CODE (*info->index);
6226
6227 if (info->disp)
6228 return GET_CODE (*info->disp);
6229
6230 return SCRATCH;
6231}
093a6c99 6232
d614335f
AS
6233/* Return true if RTL X contains a SYMBOL_REF. */
6234
6235bool
6236contains_symbol_ref_p (const_rtx x)
6237{
6238 subrtx_iterator::array_type array;
6239 FOR_EACH_SUBRTX (iter, array, x, ALL)
6240 if (SYMBOL_REF_P (*iter))
6241 return true;
6242
6243 return false;
6244}
6245
093a6c99
RS
6246/* Return true if X contains a thread-local symbol. */
6247
6248bool
6180e3d8 6249tls_referenced_p (const_rtx x)
093a6c99
RS
6250{
6251 if (!targetm.have_tls)
6252 return false;
6253
6180e3d8 6254 subrtx_iterator::array_type array;
ebd3cb12 6255 FOR_EACH_SUBRTX (iter, array, x, ALL)
6180e3d8
RS
6256 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6257 return true;
6258 return false;
093a6c99 6259}