]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
darwin.h (FRAME_POINTER_REGNUM): Rename to ...
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
9bf3c9cc
RH
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
a2f945c6
VM
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
a2f945c6
VM
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
6de9b8ff
PDM
39#include <sys/types.h>
40
a2f945c6
VM
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
cf8e4b78
DH
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
9bf3c9cc
RH
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
cf8e4b78 56
36dd3a44
JL
57#include <stdio.h>
58
a2f945c6 59#include "libiberty.h"
9bf3c9cc 60#include "ansidecl.h"
a2f945c6
VM
61#include "hashtab.h"
62
9bf3c9cc
RH
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
a2f945c6
VM
67/* This macro defines reserved value for empty table entry. */
68
35e9340f 69#define EMPTY_ENTRY ((PTR) 0)
a2f945c6
VM
70
71/* This macro defines reserved value for table entry which contained
72 a deleted element. */
73
35e9340f 74#define DELETED_ENTRY ((PTR) 1)
a2f945c6 75
6da879de
GDR
76static unsigned int higher_prime_index (unsigned long);
77static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
78static hashval_t htab_mod (hashval_t, htab_t);
79static hashval_t htab_mod_m2 (hashval_t, htab_t);
80static hashval_t hash_pointer (const void *);
81static int eq_pointer (const void *, const void *);
82static int htab_expand (htab_t);
83static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
84
85/* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88htab_hash htab_hash_pointer = hash_pointer;
89htab_eq htab_eq_pointer = eq_pointer;
0194e877 90
9bf3c9cc
RH
91/* Table of primes and multiplicative inverses.
92
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
96
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
99
100#if 0
101unsigned int
102ceil_log2 (unsigned int x)
103{
104 int i;
105 for (i = 31; i >= 0 ; --i)
106 if (x > (1u << i))
107 return i+1;
108 abort ();
109}
a2f945c6 110
9bf3c9cc
RH
111unsigned int
112choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
113{
114 unsigned long long mhigh;
115 double nx;
116 int lgup, post_shift;
117 int pow, pow2;
118 int n = 32, precision = 32;
119
120 lgup = ceil_log2 (d);
121 pow = n + lgup;
122 pow2 = n + lgup - precision;
123
124 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
125 mhigh = nx / d;
126
127 *shiftp = lgup - 1;
128 *mlp = mhigh;
129 return mhigh >> 32;
130}
131#endif
132
133struct prime_ent
134{
135 hashval_t prime;
136 hashval_t inv;
137 hashval_t inv_m2; /* inverse of prime-2 */
138 hashval_t shift;
139};
140
141static struct prime_ent const prime_tab[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
173};
174
175/* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
177
178static unsigned int
6da879de 179higher_prime_index (unsigned long n)
a2f945c6 180{
9bf3c9cc
RH
181 unsigned int low = 0;
182 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
183
184 while (low != high)
185 {
9bf3c9cc
RH
186 unsigned int mid = low + (high - low) / 2;
187 if (n > prime_tab[mid].prime)
a4c9b97e
MM
188 low = mid + 1;
189 else
190 high = mid;
191 }
192
193 /* If we've run out of primes, abort. */
9bf3c9cc 194 if (n > prime_tab[low].prime)
a4c9b97e
MM
195 {
196 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
197 abort ();
198 }
199
9bf3c9cc 200 return low;
a2f945c6
VM
201}
202
18a94a2f
MM
203/* Returns a hash code for P. */
204
4feeaae3 205static hashval_t
6da879de 206hash_pointer (const PTR p)
18a94a2f 207{
1d2da2e1 208 return (hashval_t) ((long)p >> 3);
18a94a2f
MM
209}
210
211/* Returns non-zero if P1 and P2 are equal. */
212
4feeaae3 213static int
6da879de 214eq_pointer (const PTR p1, const PTR p2)
18a94a2f
MM
215{
216 return p1 == p2;
217}
218
d9175b87 219
d7cf8390
GDR
220/* The parens around the function names in the next two definitions
221 are essential in order to prevent macro expansions of the name.
222 The bodies, however, are expanded as expected, so they are not
223 recursive definitions. */
224
225/* Return the current size of given hash table. */
226
227#define htab_size(htab) ((htab)->size)
228
229size_t
230(htab_size) (htab_t htab)
d9175b87 231{
d7cf8390 232 return htab_size (htab);
d9175b87
RH
233}
234
235/* Return the current number of elements in given hash table. */
236
d7cf8390
GDR
237#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
238
239size_t
240(htab_elements) (htab_t htab)
d9175b87 241{
d7cf8390 242 return htab_elements (htab);
d9175b87
RH
243}
244
9bf3c9cc
RH
245/* Return X % Y. */
246
247static inline hashval_t
6da879de 248htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
249{
250 /* The multiplicative inverses computed above are for 32-bit types, and
251 requires that we be able to compute a highpart multiply. */
252#ifdef UNSIGNED_64BIT_TYPE
253 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
254 if (sizeof (hashval_t) * CHAR_BIT <= 32)
255 {
256 hashval_t t1, t2, t3, t4, q, r;
257
258 t1 = ((ull)x * inv) >> 32;
259 t2 = x - t1;
260 t3 = t2 >> 1;
261 t4 = t1 + t3;
262 q = t4 >> shift;
263 r = x - (q * y);
264
265 return r;
266 }
267#endif
268
269 /* Otherwise just use the native division routines. */
270 return x % y;
271}
272
d9175b87
RH
273/* Compute the primary hash for HASH given HTAB's current size. */
274
275static inline hashval_t
6da879de 276htab_mod (hashval_t hash, htab_t htab)
d9175b87 277{
9bf3c9cc
RH
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
280}
281
282/* Compute the secondary hash for HASH given HTAB's current size. */
283
284static inline hashval_t
6da879de 285htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 286{
9bf3c9cc
RH
287 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
288 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
289}
290
a2f945c6
VM
291/* This function creates table with length slightly longer than given
292 source length. Created hash table is initiated as empty (all the
293 hash table entries are EMPTY_ENTRY). The function returns the
e2500fed 294 created hash table, or NULL if memory allocation fails. */
a2f945c6 295
5194cf08 296htab_t
6da879de
GDR
297htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
298 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a2f945c6 299{
5194cf08 300 htab_t result;
9bf3c9cc
RH
301 unsigned int size_prime_index;
302
303 size_prime_index = higher_prime_index (size);
304 size = prime_tab[size_prime_index].prime;
a2f945c6 305
e2500fed 306 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
d50d20ec
HPN
307 if (result == NULL)
308 return NULL;
e2500fed 309 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
d50d20ec
HPN
310 if (result->entries == NULL)
311 {
e2500fed
GK
312 if (free_f != NULL)
313 (*free_f) (result);
d50d20ec
HPN
314 return NULL;
315 }
d50d20ec 316 result->size = size;
9bf3c9cc 317 result->size_prime_index = size_prime_index;
d50d20ec
HPN
318 result->hash_f = hash_f;
319 result->eq_f = eq_f;
320 result->del_f = del_f;
e2500fed
GK
321 result->alloc_f = alloc_f;
322 result->free_f = free_f;
a2f945c6
VM
323 return result;
324}
325
74828682
DJ
326/* As above, but use the variants of alloc_f and free_f which accept
327 an extra argument. */
328
329htab_t
d7cf8390
GDR
330htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
331 htab_del del_f, void *alloc_arg,
332 htab_alloc_with_arg alloc_f,
333 htab_free_with_arg free_f)
74828682
DJ
334{
335 htab_t result;
9bf3c9cc
RH
336 unsigned int size_prime_index;
337
338 size_prime_index = higher_prime_index (size);
339 size = prime_tab[size_prime_index].prime;
74828682 340
74828682
DJ
341 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
342 if (result == NULL)
343 return NULL;
344 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
345 if (result->entries == NULL)
346 {
347 if (free_f != NULL)
348 (*free_f) (alloc_arg, result);
349 return NULL;
350 }
351 result->size = size;
9bf3c9cc 352 result->size_prime_index = size_prime_index;
74828682
DJ
353 result->hash_f = hash_f;
354 result->eq_f = eq_f;
355 result->del_f = del_f;
356 result->alloc_arg = alloc_arg;
357 result->alloc_with_arg_f = alloc_f;
358 result->free_with_arg_f = free_f;
359 return result;
360}
361
362/* Update the function pointers and allocation parameter in the htab_t. */
363
364void
6da879de
GDR
365htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
366 htab_del del_f, PTR alloc_arg,
367 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
368{
369 htab->hash_f = hash_f;
370 htab->eq_f = eq_f;
371 htab->del_f = del_f;
372 htab->alloc_arg = alloc_arg;
373 htab->alloc_with_arg_f = alloc_f;
374 htab->free_with_arg_f = free_f;
375}
376
045b3a49
GK
377/* These functions exist solely for backward compatibility. */
378
379#undef htab_create
380htab_t
6da879de 381htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
382{
383 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
384}
385
386htab_t
6da879de 387htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
388{
389 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
390}
391
a2f945c6
VM
392/* This function frees all memory allocated for given hash table.
393 Naturally the hash table must already exist. */
394
395void
6da879de 396htab_delete (htab_t htab)
a2f945c6 397{
d9175b87
RH
398 size_t size = htab_size (htab);
399 PTR *entries = htab->entries;
5dc9cffd 400 int i;
e38992e8 401
5dc9cffd 402 if (htab->del_f)
d9175b87
RH
403 for (i = size - 1; i >= 0; i--)
404 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
405 (*htab->del_f) (entries[i]);
5dc9cffd 406
e2500fed
GK
407 if (htab->free_f != NULL)
408 {
d9175b87 409 (*htab->free_f) (entries);
e2500fed
GK
410 (*htab->free_f) (htab);
411 }
74828682
DJ
412 else if (htab->free_with_arg_f != NULL)
413 {
d9175b87 414 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
415 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
416 }
a2f945c6
VM
417}
418
419/* This function clears all entries in the given hash table. */
420
421void
6da879de 422htab_empty (htab_t htab)
a2f945c6 423{
d9175b87
RH
424 size_t size = htab_size (htab);
425 PTR *entries = htab->entries;
5dc9cffd 426 int i;
e38992e8 427
5dc9cffd 428 if (htab->del_f)
d9175b87
RH
429 for (i = size - 1; i >= 0; i--)
430 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
431 (*htab->del_f) (entries[i]);
5dc9cffd 432
d9175b87 433 memset (entries, 0, size * sizeof (PTR));
a2f945c6
VM
434}
435
8c5d513f
BS
436/* Similar to htab_find_slot, but without several unwanted side effects:
437 - Does not call htab->eq_f when it finds an existing entry.
438 - Does not change the count of elements/searches/collisions in the
439 hash table.
440 This function also assumes there are no deleted entries in the table.
441 HASH is the hash value for the element to be inserted. */
e38992e8 442
35e9340f 443static PTR *
6da879de 444find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 445{
d9175b87
RH
446 hashval_t index = htab_mod (hash, htab);
447 size_t size = htab_size (htab);
4fc4e478
RH
448 PTR *slot = htab->entries + index;
449 hashval_t hash2;
450
451 if (*slot == EMPTY_ENTRY)
452 return slot;
453 else if (*slot == DELETED_ENTRY)
454 abort ();
8c5d513f 455
d9175b87 456 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
457 for (;;)
458 {
4fc4e478
RH
459 index += hash2;
460 if (index >= size)
461 index -= size;
e38992e8 462
4fc4e478 463 slot = htab->entries + index;
8c5d513f
BS
464 if (*slot == EMPTY_ENTRY)
465 return slot;
e38992e8 466 else if (*slot == DELETED_ENTRY)
8c5d513f 467 abort ();
8c5d513f
BS
468 }
469}
470
a2f945c6
VM
471/* The following function changes size of memory allocated for the
472 entries and repeatedly inserts the table elements. The occupancy
473 of the table after the call will be about 50%. Naturally the hash
474 table must already exist. Remember also that the place of the
d50d20ec
HPN
475 table entries is changed. If memory allocation failures are allowed,
476 this function will return zero, indicating that the table could not be
477 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 478
d50d20ec 479static int
6da879de 480htab_expand (htab_t htab)
a2f945c6 481{
35e9340f
HPN
482 PTR *oentries;
483 PTR *olimit;
484 PTR *p;
e2500fed 485 PTR *nentries;
9bf3c9cc
RH
486 size_t nsize, osize, elts;
487 unsigned int oindex, nindex;
5194cf08
ZW
488
489 oentries = htab->entries;
9bf3c9cc
RH
490 oindex = htab->size_prime_index;
491 osize = htab->size;
492 olimit = oentries + osize;
493 elts = htab_elements (htab);
5194cf08 494
0a8e3de3
JH
495 /* Resize only when table after removal of unused elements is either
496 too full or too empty. */
9bf3c9cc
RH
497 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
498 {
499 nindex = higher_prime_index (elts * 2);
500 nsize = prime_tab[nindex].prime;
501 }
0a8e3de3 502 else
9bf3c9cc
RH
503 {
504 nindex = oindex;
505 nsize = osize;
506 }
d50d20ec 507
74828682
DJ
508 if (htab->alloc_with_arg_f != NULL)
509 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
510 sizeof (PTR *));
511 else
512 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
513 if (nentries == NULL)
514 return 0;
515 htab->entries = nentries;
120cdf68 516 htab->size = nsize;
9bf3c9cc 517 htab->size_prime_index = nindex;
5194cf08
ZW
518 htab->n_elements -= htab->n_deleted;
519 htab->n_deleted = 0;
520
521 p = oentries;
522 do
523 {
35e9340f 524 PTR x = *p;
e38992e8 525
5194cf08
ZW
526 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
527 {
35e9340f 528 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 529
5194cf08
ZW
530 *q = x;
531 }
e38992e8 532
5194cf08
ZW
533 p++;
534 }
535 while (p < olimit);
e38992e8 536
e2500fed
GK
537 if (htab->free_f != NULL)
538 (*htab->free_f) (oentries);
74828682
DJ
539 else if (htab->free_with_arg_f != NULL)
540 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 541 return 1;
a2f945c6
VM
542}
543
5194cf08
ZW
544/* This function searches for a hash table entry equal to the given
545 element. It cannot be used to insert or delete an element. */
546
35e9340f 547PTR
6da879de 548htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
a2f945c6 549{
d9175b87 550 hashval_t index, hash2;
5194cf08 551 size_t size;
35e9340f 552 PTR entry;
5194cf08
ZW
553
554 htab->searches++;
d9175b87
RH
555 size = htab_size (htab);
556 index = htab_mod (hash, htab);
a2f945c6 557
0194e877
ZW
558 entry = htab->entries[index];
559 if (entry == EMPTY_ENTRY
560 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
561 return entry;
562
d9175b87 563 hash2 = htab_mod_m2 (hash, htab);
5194cf08 564 for (;;)
a2f945c6 565 {
5194cf08
ZW
566 htab->collisions++;
567 index += hash2;
568 if (index >= size)
569 index -= size;
0194e877
ZW
570
571 entry = htab->entries[index];
572 if (entry == EMPTY_ENTRY
573 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
574 return entry;
a2f945c6 575 }
5194cf08
ZW
576}
577
8c5d513f
BS
578/* Like htab_find_slot_with_hash, but compute the hash value from the
579 element. */
e38992e8 580
35e9340f 581PTR
6da879de 582htab_find (htab_t htab, const PTR element)
8c5d513f
BS
583{
584 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
585}
586
5194cf08
ZW
587/* This function searches for a hash table slot containing an entry
588 equal to the given element. To delete an entry, call this with
6a88516c
BE
589 insert=NO_INSERT, then call htab_clear_slot on the slot returned
590 (possibly after doing some checks). To insert an entry, call this
591 with insert=INSERT, then write the value you want into the returned
592 slot. When inserting an entry, NULL may be returned if memory
593 allocation fails. */
5194cf08 594
35e9340f 595PTR *
6da879de
GDR
596htab_find_slot_with_hash (htab_t htab, const PTR element,
597 hashval_t hash, enum insert_option insert)
5194cf08 598{
35e9340f 599 PTR *first_deleted_slot;
d9175b87 600 hashval_t index, hash2;
5194cf08 601 size_t size;
4fc4e478 602 PTR entry;
5194cf08 603
d9175b87
RH
604 size = htab_size (htab);
605 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
606 {
607 if (htab_expand (htab) == 0)
608 return NULL;
609 size = htab_size (htab);
610 }
5194cf08 611
d9175b87 612 index = htab_mod (hash, htab);
5194cf08 613
a2f945c6 614 htab->searches++;
5194cf08
ZW
615 first_deleted_slot = NULL;
616
4fc4e478
RH
617 entry = htab->entries[index];
618 if (entry == EMPTY_ENTRY)
619 goto empty_entry;
620 else if (entry == DELETED_ENTRY)
621 first_deleted_slot = &htab->entries[index];
622 else if ((*htab->eq_f) (entry, element))
623 return &htab->entries[index];
624
d9175b87 625 hash2 = htab_mod_m2 (hash, htab);
5194cf08 626 for (;;)
a2f945c6 627 {
4fc4e478
RH
628 htab->collisions++;
629 index += hash2;
630 if (index >= size)
631 index -= size;
632
633 entry = htab->entries[index];
5194cf08 634 if (entry == EMPTY_ENTRY)
4fc4e478
RH
635 goto empty_entry;
636 else if (entry == DELETED_ENTRY)
5194cf08
ZW
637 {
638 if (!first_deleted_slot)
639 first_deleted_slot = &htab->entries[index];
640 }
4fc4e478 641 else if ((*htab->eq_f) (entry, element))
e38992e8 642 return &htab->entries[index];
a2f945c6 643 }
4fc4e478
RH
644
645 empty_entry:
646 if (insert == NO_INSERT)
647 return NULL;
648
4fc4e478
RH
649 if (first_deleted_slot)
650 {
e0432c1c 651 htab->n_deleted--;
4fc4e478
RH
652 *first_deleted_slot = EMPTY_ENTRY;
653 return first_deleted_slot;
654 }
655
e0432c1c 656 htab->n_elements++;
4fc4e478 657 return &htab->entries[index];
a2f945c6
VM
658}
659
8c5d513f
BS
660/* Like htab_find_slot_with_hash, but compute the hash value from the
661 element. */
e38992e8 662
35e9340f 663PTR *
6da879de 664htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
8c5d513f
BS
665{
666 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
667 insert);
668}
669
7f96816a
JL
670/* This function deletes an element with the given value from hash
671 table (the hash is computed from the element). If there is no matching
672 element in the hash table, this function does nothing. */
673
674void
6da879de 675htab_remove_elt (htab_t htab, PTR element)
7f96816a
JL
676{
677 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
678}
679
680
5194cf08
ZW
681/* This function deletes an element with the given value from hash
682 table. If there is no matching element in the hash table, this
683 function does nothing. */
a2f945c6
VM
684
685void
6da879de 686htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
a2f945c6 687{
35e9340f 688 PTR *slot;
a2f945c6 689
7f96816a 690 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
5194cf08
ZW
691 if (*slot == EMPTY_ENTRY)
692 return;
693
5dc9cffd
ZW
694 if (htab->del_f)
695 (*htab->del_f) (*slot);
696
5194cf08
ZW
697 *slot = DELETED_ENTRY;
698 htab->n_deleted++;
a2f945c6
VM
699}
700
5194cf08
ZW
701/* This function clears a specified slot in a hash table. It is
702 useful when you've already done the lookup and don't want to do it
703 again. */
ed38f5d5
ZW
704
705void
6da879de 706htab_clear_slot (htab_t htab, PTR *slot)
ed38f5d5 707{
d9175b87 708 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
ed38f5d5
ZW
709 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
710 abort ();
e38992e8 711
5dc9cffd
ZW
712 if (htab->del_f)
713 (*htab->del_f) (*slot);
e38992e8 714
ed38f5d5 715 *slot = DELETED_ENTRY;
5194cf08 716 htab->n_deleted++;
ed38f5d5
ZW
717}
718
719/* This function scans over the entire hash table calling
720 CALLBACK for each live entry. If CALLBACK returns false,
721 the iteration stops. INFO is passed as CALLBACK's second
722 argument. */
723
724void
6da879de 725htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
ed38f5d5 726{
0a8e3de3
JH
727 PTR *slot;
728 PTR *limit;
729
0a8e3de3 730 slot = htab->entries;
d9175b87 731 limit = slot + htab_size (htab);
e38992e8 732
5194cf08
ZW
733 do
734 {
35e9340f 735 PTR x = *slot;
e38992e8 736
5194cf08 737 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
8c5d513f 738 if (!(*callback) (slot, info))
5194cf08
ZW
739 break;
740 }
741 while (++slot < limit);
ed38f5d5
ZW
742}
743
dbccdc42
JH
744/* Like htab_traverse_noresize, but does resize the table when it is
745 too empty to improve effectivity of subsequent calls. */
746
747void
6da879de 748htab_traverse (htab_t htab, htab_trav callback, PTR info)
dbccdc42 749{
d9175b87 750 if (htab_elements (htab) * 8 < htab_size (htab))
dbccdc42
JH
751 htab_expand (htab);
752
753 htab_traverse_noresize (htab, callback, info);
754}
755
e38992e8
RK
756/* Return the fraction of fixed collisions during all work with given
757 hash table. */
a2f945c6 758
5194cf08 759double
6da879de 760htab_collisions (htab_t htab)
a2f945c6 761{
e38992e8 762 if (htab->searches == 0)
5194cf08 763 return 0.0;
e38992e8
RK
764
765 return (double) htab->collisions / (double) htab->searches;
a2f945c6 766}
9e0ba685 767
0ed5305d
RH
768/* Hash P as a null-terminated string.
769
770 Copied from gcc/hashtable.c. Zack had the following to say with respect
771 to applicability, though note that unlike hashtable.c, this hash table
772 implementation re-hashes rather than chain buckets.
773
774 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
775 From: Zack Weinberg <zackw@panix.com>
776 Date: Fri, 17 Aug 2001 02:15:56 -0400
777
778 I got it by extracting all the identifiers from all the source code
779 I had lying around in mid-1999, and testing many recurrences of
780 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
781 prime numbers or the appropriate identity. This was the best one.
782 I don't remember exactly what constituted "best", except I was
783 looking at bucket-length distributions mostly.
784
785 So it should be very good at hashing identifiers, but might not be
786 as good at arbitrary strings.
787
788 I'll add that it thoroughly trounces the hash functions recommended
789 for this use at http://burtleburtle.net/bob/hash/index.html, both
790 on speed and bucket distribution. I haven't tried it against the
791 function they just started using for Perl's hashes. */
9e0ba685
RH
792
793hashval_t
6da879de 794htab_hash_string (const PTR p)
9e0ba685
RH
795{
796 const unsigned char *str = (const unsigned char *) p;
797 hashval_t r = 0;
798 unsigned char c;
799
800 while ((c = *str++) != 0)
801 r = r * 67 + c - 113;
802
803 return r;
804}
5cc5a0d0
JM
805
806/* DERIVED FROM:
807--------------------------------------------------------------------
808lookup2.c, by Bob Jenkins, December 1996, Public Domain.
809hash(), hash2(), hash3, and mix() are externally useful functions.
810Routines to test the hash are included if SELF_TEST is defined.
811You can use this free for any purpose. It has no warranty.
812--------------------------------------------------------------------
813*/
814
815/*
816--------------------------------------------------------------------
817mix -- mix 3 32-bit values reversibly.
818For every delta with one or two bit set, and the deltas of all three
819 high bits or all three low bits, whether the original value of a,b,c
820 is almost all zero or is uniformly distributed,
821* If mix() is run forward or backward, at least 32 bits in a,b,c
822 have at least 1/4 probability of changing.
823* If mix() is run forward, every bit of c will change between 1/3 and
824 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
825mix() was built out of 36 single-cycle latency instructions in a
826 structure that could supported 2x parallelism, like so:
827 a -= b;
828 a -= c; x = (c>>13);
829 b -= c; a ^= x;
830 b -= a; x = (a<<8);
831 c -= a; b ^= x;
832 c -= b; x = (b>>13);
833 ...
834 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
835 of that parallelism. They've also turned some of those single-cycle
836 latency instructions into multi-cycle latency instructions. Still,
837 this is the fastest good hash I could find. There were about 2^^68
838 to choose from. I only looked at a billion or so.
839--------------------------------------------------------------------
840*/
841/* same, but slower, works on systems that might have 8 byte hashval_t's */
842#define mix(a,b,c) \
843{ \
844 a -= b; a -= c; a ^= (c>>13); \
845 b -= c; b -= a; b ^= (a<< 8); \
846 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
847 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
848 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
849 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
850 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
851 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
852 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
853}
854
855/*
856--------------------------------------------------------------------
857hash() -- hash a variable-length key into a 32-bit value
858 k : the key (the unaligned variable-length array of bytes)
859 len : the length of the key, counting by bytes
860 level : can be any 4-byte value
861Returns a 32-bit value. Every bit of the key affects every bit of
862the return value. Every 1-bit and 2-bit delta achieves avalanche.
863About 36+6len instructions.
864
865The best hash table sizes are powers of 2. There is no need to do
866mod a prime (mod is sooo slow!). If you need less than 32 bits,
867use a bitmask. For example, if you need only 10 bits, do
868 h = (h & hashmask(10));
869In which case, the hash table should have hashsize(10) elements.
870
871If you are hashing n strings (ub1 **)k, do it like this:
872 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
873
874By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
875code any way you wish, private, educational, or commercial. It's free.
876
877See http://burtleburtle.net/bob/hash/evahash.html
878Use for hash table lookup, or anything where one collision in 2^32 is
879acceptable. Do NOT use for cryptographic purposes.
880--------------------------------------------------------------------
881*/
882
6da879de
GDR
883hashval_t
884iterative_hash (const PTR k_in /* the key */,
885 register size_t length /* the length of the key */,
886 register hashval_t initval /* the previous hash, or
887 an arbitrary value */)
5cc5a0d0
JM
888{
889 register const unsigned char *k = (const unsigned char *)k_in;
890 register hashval_t a,b,c,len;
891
892 /* Set up the internal state */
893 len = length;
894 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
895 c = initval; /* the previous hash value */
896
897 /*---------------------------------------- handle most of the key */
898#ifndef WORDS_BIGENDIAN
899 /* On a little-endian machine, if the data is 4-byte aligned we can hash
900 by word for better speed. This gives nondeterministic results on
901 big-endian machines. */
902 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
903 while (len >= 12) /* aligned */
904 {
905 a += *(hashval_t *)(k+0);
906 b += *(hashval_t *)(k+4);
907 c += *(hashval_t *)(k+8);
908 mix(a,b,c);
909 k += 12; len -= 12;
910 }
911 else /* unaligned */
912#endif
913 while (len >= 12)
914 {
915 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
916 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
917 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
918 mix(a,b,c);
919 k += 12; len -= 12;
920 }
921
922 /*------------------------------------- handle the last 11 bytes */
923 c += length;
924 switch(len) /* all the case statements fall through */
925 {
926 case 11: c+=((hashval_t)k[10]<<24);
927 case 10: c+=((hashval_t)k[9]<<16);
928 case 9 : c+=((hashval_t)k[8]<<8);
929 /* the first byte of c is reserved for the length */
930 case 8 : b+=((hashval_t)k[7]<<24);
931 case 7 : b+=((hashval_t)k[6]<<16);
932 case 6 : b+=((hashval_t)k[5]<<8);
933 case 5 : b+=k[4];
934 case 4 : a+=((hashval_t)k[3]<<24);
935 case 3 : a+=((hashval_t)k[2]<<16);
936 case 2 : a+=((hashval_t)k[1]<<8);
937 case 1 : a+=k[0];
938 /* case 0: nothing left to add */
939 }
940 mix(a,b,c);
941 /*-------------------------------------------- report the result */
942 return c;
943}