]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/libgnat/a-chtgop.adb
[Ada] Bump copyright year
[thirdparty/gcc.git] / gcc / ada / libgnat / a-chtgop.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.HASH_TABLES.GENERIC_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
29
30 with Ada.Containers.Prime_Numbers;
31 with Ada.Unchecked_Deallocation;
32
33 with System; use type System.Address;
34
35 package body Ada.Containers.Hash_Tables.Generic_Operations is
36
37 pragma Warnings (Off, "variable ""Busy*"" is not referenced");
38 pragma Warnings (Off, "variable ""Lock*"" is not referenced");
39 -- See comment in Ada.Containers.Helpers
40
41 type Buckets_Allocation is access all Buckets_Type;
42 -- Used for allocation and deallocation (see New_Buckets and Free_Buckets).
43 -- This is necessary because Buckets_Access has an empty storage pool.
44
45 ------------
46 -- Adjust --
47 ------------
48
49 procedure Adjust (HT : in out Hash_Table_Type) is
50 Src_Buckets : constant Buckets_Access := HT.Buckets;
51 N : constant Count_Type := HT.Length;
52 Src_Node : Node_Access;
53 Dst_Prev : Node_Access;
54
55 begin
56 -- If the counts are nonzero, execution is technically erroneous, but
57 -- it seems friendly to allow things like concurrent "=" on shared
58 -- constants.
59
60 Zero_Counts (HT.TC);
61
62 HT.Buckets := null;
63 HT.Length := 0;
64
65 if N = 0 then
66 return;
67 end if;
68
69 -- Technically it isn't necessary to allocate the exact same length
70 -- buckets array, because our only requirement is that following
71 -- assignment the source and target containers compare equal (that is,
72 -- operator "=" returns True). We can satisfy this requirement with any
73 -- hash table length, but we decide here to match the length of the
74 -- source table. This has the benefit that when iterating, elements of
75 -- the target are delivered in the exact same order as for the source.
76
77 HT.Buckets := New_Buckets (Length => Src_Buckets'Length);
78
79 for Src_Index in Src_Buckets'Range loop
80 Src_Node := Src_Buckets (Src_Index);
81
82 if Src_Node /= null then
83 declare
84 Dst_Node : constant Node_Access := Copy_Node (Src_Node);
85
86 -- See note above
87
88 pragma Assert (Checked_Index (HT, Dst_Node) = Src_Index);
89
90 begin
91 HT.Buckets (Src_Index) := Dst_Node;
92 HT.Length := HT.Length + 1;
93
94 Dst_Prev := Dst_Node;
95 end;
96
97 Src_Node := Next (Src_Node);
98 while Src_Node /= null loop
99 declare
100 Dst_Node : constant Node_Access := Copy_Node (Src_Node);
101
102 -- See note above
103
104 pragma Assert (Checked_Index (HT, Dst_Node) = Src_Index);
105
106 begin
107 Set_Next (Node => Dst_Prev, Next => Dst_Node);
108 HT.Length := HT.Length + 1;
109
110 Dst_Prev := Dst_Node;
111 end;
112
113 Src_Node := Next (Src_Node);
114 end loop;
115 end if;
116 end loop;
117
118 pragma Assert (HT.Length = N);
119 end Adjust;
120
121 --------------
122 -- Capacity --
123 --------------
124
125 function Capacity (HT : Hash_Table_Type) return Count_Type is
126 begin
127 if HT.Buckets = null then
128 return 0;
129 end if;
130
131 return HT.Buckets'Length;
132 end Capacity;
133
134 -------------------
135 -- Checked_Index --
136 -------------------
137
138 function Checked_Index
139 (Hash_Table : aliased in out Hash_Table_Type;
140 Buckets : Buckets_Type;
141 Node : Node_Access) return Hash_Type
142 is
143 Lock : With_Lock (Hash_Table.TC'Unrestricted_Access);
144 begin
145 return Index (Buckets, Node);
146 end Checked_Index;
147
148 function Checked_Index
149 (Hash_Table : aliased in out Hash_Table_Type;
150 Node : Node_Access) return Hash_Type
151 is
152 begin
153 return Checked_Index (Hash_Table, Hash_Table.Buckets.all, Node);
154 end Checked_Index;
155
156 -----------
157 -- Clear --
158 -----------
159
160 procedure Clear (HT : in out Hash_Table_Type) is
161 Index : Hash_Type := 0;
162 Node : Node_Access;
163
164 begin
165 TC_Check (HT.TC);
166
167 while HT.Length > 0 loop
168 while HT.Buckets (Index) = null loop
169 Index := Index + 1;
170 end loop;
171
172 declare
173 Bucket : Node_Access renames HT.Buckets (Index);
174 begin
175 loop
176 Node := Bucket;
177 Bucket := Next (Bucket);
178 HT.Length := HT.Length - 1;
179 Free (Node);
180 exit when Bucket = null;
181 end loop;
182 end;
183 end loop;
184 end Clear;
185
186 --------------------------
187 -- Delete_Node_At_Index --
188 --------------------------
189
190 procedure Delete_Node_At_Index
191 (HT : in out Hash_Table_Type;
192 Indx : Hash_Type;
193 X : in out Node_Access)
194 is
195 Prev : Node_Access;
196 Curr : Node_Access;
197
198 begin
199 Prev := HT.Buckets (Indx);
200
201 if Prev = X then
202 HT.Buckets (Indx) := Next (Prev);
203 HT.Length := HT.Length - 1;
204 Free (X);
205 return;
206 end if;
207
208 if Checks and then HT.Length = 1 then
209 raise Program_Error with
210 "attempt to delete node not in its proper hash bucket";
211 end if;
212
213 loop
214 Curr := Next (Prev);
215
216 if Checks and then Curr = null then
217 raise Program_Error with
218 "attempt to delete node not in its proper hash bucket";
219 end if;
220
221 if Curr = X then
222 Set_Next (Node => Prev, Next => Next (Curr));
223 HT.Length := HT.Length - 1;
224 Free (X);
225 return;
226 end if;
227
228 Prev := Curr;
229 end loop;
230 end Delete_Node_At_Index;
231
232 ---------------------------
233 -- Delete_Node_Sans_Free --
234 ---------------------------
235
236 procedure Delete_Node_Sans_Free
237 (HT : in out Hash_Table_Type;
238 X : Node_Access)
239 is
240 pragma Assert (X /= null);
241
242 Indx : Hash_Type;
243 Prev : Node_Access;
244 Curr : Node_Access;
245
246 begin
247 if Checks and then HT.Length = 0 then
248 raise Program_Error with
249 "attempt to delete node from empty hashed container";
250 end if;
251
252 Indx := Checked_Index (HT, X);
253 Prev := HT.Buckets (Indx);
254
255 if Checks and then Prev = null then
256 raise Program_Error with
257 "attempt to delete node from empty hash bucket";
258 end if;
259
260 if Prev = X then
261 HT.Buckets (Indx) := Next (Prev);
262 HT.Length := HT.Length - 1;
263 return;
264 end if;
265
266 if Checks and then HT.Length = 1 then
267 raise Program_Error with
268 "attempt to delete node not in its proper hash bucket";
269 end if;
270
271 loop
272 Curr := Next (Prev);
273
274 if Checks and then Curr = null then
275 raise Program_Error with
276 "attempt to delete node not in its proper hash bucket";
277 end if;
278
279 if Curr = X then
280 Set_Next (Node => Prev, Next => Next (Curr));
281 HT.Length := HT.Length - 1;
282 return;
283 end if;
284
285 Prev := Curr;
286 end loop;
287 end Delete_Node_Sans_Free;
288
289 --------------
290 -- Finalize --
291 --------------
292
293 procedure Finalize (HT : in out Hash_Table_Type) is
294 begin
295 Clear (HT);
296 Free_Buckets (HT.Buckets);
297 end Finalize;
298
299 -----------
300 -- First --
301 -----------
302
303 function First
304 (HT : Hash_Table_Type) return Node_Access
305 is
306 Dummy : Hash_Type;
307 begin
308 return First (HT, Dummy);
309 end First;
310
311 function First
312 (HT : Hash_Table_Type;
313 Position : out Hash_Type) return Node_Access is
314 begin
315 if HT.Length = 0 then
316 Position := Hash_Type'Last;
317 return null;
318 end if;
319
320 Position := HT.Buckets'First;
321 loop
322 if HT.Buckets (Position) /= null then
323 return HT.Buckets (Position);
324 end if;
325
326 Position := Position + 1;
327 end loop;
328 end First;
329
330 ------------------
331 -- Free_Buckets --
332 ------------------
333
334 procedure Free_Buckets (Buckets : in out Buckets_Access) is
335 procedure Free is
336 new Ada.Unchecked_Deallocation (Buckets_Type, Buckets_Allocation);
337
338 begin
339 -- Buckets must have been created by New_Buckets. Here, we convert back
340 -- to the Buckets_Allocation type, and do the free on that.
341
342 Free (Buckets_Allocation (Buckets));
343 end Free_Buckets;
344
345 ---------------------
346 -- Free_Hash_Table --
347 ---------------------
348
349 procedure Free_Hash_Table (Buckets : in out Buckets_Access) is
350 Node : Node_Access;
351
352 begin
353 if Buckets = null then
354 return;
355 end if;
356
357 for J in Buckets'Range loop
358 while Buckets (J) /= null loop
359 Node := Buckets (J);
360 Buckets (J) := Next (Node);
361 Free (Node);
362 end loop;
363 end loop;
364
365 Free_Buckets (Buckets);
366 end Free_Hash_Table;
367
368 -------------------
369 -- Generic_Equal --
370 -------------------
371
372 function Generic_Equal
373 (L, R : Hash_Table_Type) return Boolean
374 is
375 begin
376 if L.Length /= R.Length then
377 return False;
378 end if;
379
380 if L.Length = 0 then
381 return True;
382 end if;
383
384 declare
385 -- Per AI05-0022, the container implementation is required to detect
386 -- element tampering by a generic actual subprogram.
387
388 Lock_L : With_Lock (L.TC'Unrestricted_Access);
389 Lock_R : With_Lock (R.TC'Unrestricted_Access);
390
391 L_Index : Hash_Type;
392 L_Node : Node_Access;
393
394 N : Count_Type;
395 begin
396 -- Find the first node of hash table L
397
398 L_Index := 0;
399 loop
400 L_Node := L.Buckets (L_Index);
401 exit when L_Node /= null;
402 L_Index := L_Index + 1;
403 end loop;
404
405 -- For each node of hash table L, search for an equivalent node in
406 -- hash table R.
407
408 N := L.Length;
409 loop
410 if not Find (HT => R, Key => L_Node) then
411 return False;
412 end if;
413
414 N := N - 1;
415
416 L_Node := Next (L_Node);
417
418 if L_Node = null then
419 -- We have exhausted the nodes in this bucket
420
421 if N = 0 then
422 return True;
423 end if;
424
425 -- Find the next bucket
426
427 loop
428 L_Index := L_Index + 1;
429 L_Node := L.Buckets (L_Index);
430 exit when L_Node /= null;
431 end loop;
432 end if;
433 end loop;
434 end;
435 end Generic_Equal;
436
437 -----------------------
438 -- Generic_Iteration --
439 -----------------------
440
441 procedure Generic_Iteration (HT : Hash_Table_Type) is
442 procedure Wrapper (Node : Node_Access; Dummy_Pos : Hash_Type);
443
444 -------------
445 -- Wrapper --
446 -------------
447
448 procedure Wrapper (Node : Node_Access; Dummy_Pos : Hash_Type) is
449 begin
450 Process (Node);
451 end Wrapper;
452
453 procedure Internal_With_Pos is
454 new Generic_Iteration_With_Position (Wrapper);
455
456 -- Start of processing for Generic_Iteration
457
458 begin
459 Internal_With_Pos (HT);
460 end Generic_Iteration;
461
462 -------------------------------------
463 -- Generic_Iteration_With_Position --
464 -------------------------------------
465
466 procedure Generic_Iteration_With_Position
467 (HT : Hash_Table_Type)
468 is
469 Node : Node_Access;
470
471 begin
472 if HT.Length = 0 then
473 return;
474 end if;
475
476 for Indx in HT.Buckets'Range loop
477 Node := HT.Buckets (Indx);
478 while Node /= null loop
479 Process (Node, Indx);
480 Node := Next (Node);
481 end loop;
482 end loop;
483 end Generic_Iteration_With_Position;
484
485 ------------------
486 -- Generic_Read --
487 ------------------
488
489 procedure Generic_Read
490 (Stream : not null access Root_Stream_Type'Class;
491 HT : out Hash_Table_Type)
492 is
493 N : Count_Type'Base;
494 NN : Hash_Type;
495
496 begin
497 Clear (HT);
498
499 Count_Type'Base'Read (Stream, N);
500
501 if Checks and then N < 0 then
502 raise Program_Error with "stream appears to be corrupt";
503 end if;
504
505 if N = 0 then
506 return;
507 end if;
508
509 -- The RM does not specify whether or how the capacity changes when a
510 -- hash table is streamed in. Therefore we decide here to allocate a new
511 -- buckets array only when it's necessary to preserve representation
512 -- invariants.
513
514 if HT.Buckets = null
515 or else HT.Buckets'Length < N
516 then
517 Free_Buckets (HT.Buckets);
518 NN := Prime_Numbers.To_Prime (N);
519 HT.Buckets := New_Buckets (Length => NN);
520 end if;
521
522 for J in 1 .. N loop
523 declare
524 Node : constant Node_Access := New_Node (Stream);
525 Indx : constant Hash_Type := Checked_Index (HT, Node);
526 B : Node_Access renames HT.Buckets (Indx);
527 begin
528 Set_Next (Node => Node, Next => B);
529 B := Node;
530 end;
531
532 HT.Length := HT.Length + 1;
533 end loop;
534 end Generic_Read;
535
536 -------------------
537 -- Generic_Write --
538 -------------------
539
540 procedure Generic_Write
541 (Stream : not null access Root_Stream_Type'Class;
542 HT : Hash_Table_Type)
543 is
544 procedure Write (Node : Node_Access);
545 pragma Inline (Write);
546
547 procedure Write is new Generic_Iteration (Write);
548
549 -----------
550 -- Write --
551 -----------
552
553 procedure Write (Node : Node_Access) is
554 begin
555 Write (Stream, Node);
556 end Write;
557
558 begin
559 -- See Generic_Read for an explanation of why we do not stream out the
560 -- buckets array length too.
561
562 Count_Type'Base'Write (Stream, HT.Length);
563 Write (HT);
564 end Generic_Write;
565
566 -----------
567 -- Index --
568 -----------
569
570 function Index
571 (Buckets : Buckets_Type;
572 Node : Node_Access) return Hash_Type is
573 begin
574 return Hash_Node (Node) mod Buckets'Length;
575 end Index;
576
577 function Index
578 (Hash_Table : Hash_Table_Type;
579 Node : Node_Access) return Hash_Type is
580 begin
581 return Index (Hash_Table.Buckets.all, Node);
582 end Index;
583
584 ----------
585 -- Move --
586 ----------
587
588 procedure Move (Target, Source : in out Hash_Table_Type) is
589 begin
590 if Target'Address = Source'Address then
591 return;
592 end if;
593
594 TC_Check (Source.TC);
595
596 Clear (Target);
597
598 declare
599 Buckets : constant Buckets_Access := Target.Buckets;
600 begin
601 Target.Buckets := Source.Buckets;
602 Source.Buckets := Buckets;
603 end;
604
605 Target.Length := Source.Length;
606 Source.Length := 0;
607 end Move;
608
609 -----------------
610 -- New_Buckets --
611 -----------------
612
613 function New_Buckets (Length : Hash_Type) return Buckets_Access is
614 subtype Rng is Hash_Type range 0 .. Length - 1;
615
616 begin
617 -- Allocate in Buckets_Allocation'Storage_Pool, then convert to
618 -- Buckets_Access.
619
620 return Buckets_Access (Buckets_Allocation'(new Buckets_Type (Rng)));
621 end New_Buckets;
622
623 ----------
624 -- Next --
625 ----------
626
627 function Next
628 (HT : aliased in out Hash_Table_Type;
629 Node : Node_Access;
630 Position : in out Hash_Type) return Node_Access
631 is
632 Result : Node_Access;
633 First : Hash_Type;
634
635 begin
636 -- First, check if the node has other nodes chained to it
637 Result := Next (Node);
638
639 if Result /= null then
640 return Result;
641 end if;
642
643 -- Check if we were supplied a position for Node, from which we
644 -- can start iteration on the buckets.
645
646 if Position /= Hash_Type'Last then
647 First := Position + 1;
648 else
649 First := Checked_Index (HT, Node) + 1;
650 end if;
651
652 for Indx in First .. HT.Buckets'Last loop
653 Result := HT.Buckets (Indx);
654
655 if Result /= null then
656 Position := Indx;
657 return Result;
658 end if;
659 end loop;
660
661 return null;
662 end Next;
663
664 function Next
665 (HT : aliased in out Hash_Table_Type;
666 Node : Node_Access) return Node_Access
667 is
668 Pos : Hash_Type := Hash_Type'Last;
669 begin
670 return Next (HT, Node, Pos);
671 end Next;
672
673 ----------------------
674 -- Reserve_Capacity --
675 ----------------------
676
677 procedure Reserve_Capacity
678 (HT : in out Hash_Table_Type;
679 N : Count_Type)
680 is
681 NN : Hash_Type;
682
683 begin
684 if HT.Buckets = null then
685 if N > 0 then
686 NN := Prime_Numbers.To_Prime (N);
687 HT.Buckets := New_Buckets (Length => NN);
688 end if;
689
690 return;
691 end if;
692
693 if HT.Length = 0 then
694
695 -- This is the easy case. There are no nodes, so no rehashing is
696 -- necessary. All we need to do is allocate a new buckets array
697 -- having a length implied by the specified capacity. (We say
698 -- "implied by" because bucket arrays are always allocated with a
699 -- length that corresponds to a prime number.)
700
701 if N = 0 then
702 Free_Buckets (HT.Buckets);
703 return;
704 end if;
705
706 if N = HT.Buckets'Length then
707 return;
708 end if;
709
710 NN := Prime_Numbers.To_Prime (N);
711
712 if NN = HT.Buckets'Length then
713 return;
714 end if;
715
716 declare
717 X : Buckets_Access := HT.Buckets;
718 pragma Warnings (Off, X);
719 begin
720 HT.Buckets := New_Buckets (Length => NN);
721 Free_Buckets (X);
722 end;
723
724 return;
725 end if;
726
727 if N = HT.Buckets'Length then
728 return;
729 end if;
730
731 if N < HT.Buckets'Length then
732
733 -- This is a request to contract the buckets array. The amount of
734 -- contraction is bounded in order to preserve the invariant that the
735 -- buckets array length is never smaller than the number of elements
736 -- (the load factor is 1).
737
738 if HT.Length >= HT.Buckets'Length then
739 return;
740 end if;
741
742 NN := Prime_Numbers.To_Prime (HT.Length);
743
744 if NN >= HT.Buckets'Length then
745 return;
746 end if;
747
748 else
749 NN := Prime_Numbers.To_Prime (Count_Type'Max (N, HT.Length));
750
751 if NN = HT.Buckets'Length then -- can't expand any more
752 return;
753 end if;
754 end if;
755
756 TC_Check (HT.TC);
757
758 Rehash : declare
759 Dst_Buckets : Buckets_Access := New_Buckets (Length => NN);
760 Src_Buckets : Buckets_Access := HT.Buckets;
761 pragma Warnings (Off, Src_Buckets);
762
763 L : Count_Type renames HT.Length;
764 LL : constant Count_Type := L;
765
766 Src_Index : Hash_Type := Src_Buckets'First;
767
768 begin
769 while L > 0 loop
770 declare
771 Src_Bucket : Node_Access renames Src_Buckets (Src_Index);
772
773 begin
774 while Src_Bucket /= null loop
775 declare
776 Src_Node : constant Node_Access := Src_Bucket;
777
778 Dst_Index : constant Hash_Type :=
779 Checked_Index (HT, Dst_Buckets.all, Src_Node);
780
781 Dst_Bucket : Node_Access renames Dst_Buckets (Dst_Index);
782
783 begin
784 Src_Bucket := Next (Src_Node);
785
786 Set_Next (Src_Node, Dst_Bucket);
787
788 Dst_Bucket := Src_Node;
789 end;
790
791 pragma Assert (L > 0);
792 L := L - 1;
793 end loop;
794
795 exception
796 when others =>
797
798 -- If there's an error computing a hash value during a
799 -- rehash, then AI-302 says the nodes "become lost." The
800 -- issue is whether to actually deallocate these lost nodes,
801 -- since they might be designated by extant cursors. Here
802 -- we decide to deallocate the nodes, since it's better to
803 -- solve real problems (storage consumption) rather than
804 -- imaginary ones (the user might, or might not, dereference
805 -- a cursor designating a node that has been deallocated),
806 -- and because we have a way to vet a dangling cursor
807 -- reference anyway, and hence can actually detect the
808 -- problem.
809
810 for Dst_Index in Dst_Buckets'Range loop
811 declare
812 B : Node_Access renames Dst_Buckets (Dst_Index);
813 X : Node_Access;
814 begin
815 while B /= null loop
816 X := B;
817 B := Next (X);
818 Free (X);
819 end loop;
820 end;
821 end loop;
822
823 Free_Buckets (Dst_Buckets);
824 raise Program_Error with
825 "hash function raised exception during rehash";
826 end;
827
828 Src_Index := Src_Index + 1;
829 end loop;
830
831 HT.Buckets := Dst_Buckets;
832 HT.Length := LL;
833
834 Free_Buckets (Src_Buckets);
835 end Rehash;
836 end Reserve_Capacity;
837
838 end Ada.Containers.Hash_Tables.Generic_Operations;