]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/par-ch4.adb
[Ada] Typo corrections and minor reformatting
[thirdparty/gcc.git] / gcc / ada / par-ch4.adb
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R . C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 pragma Style_Checks (All_Checks);
27 -- Turn off subprogram body ordering check. Subprograms are in order
28 -- by RM section rather than alphabetical
29
30 with Stringt; use Stringt;
31
32 separate (Par)
33 package body Ch4 is
34
35 -- Attributes that cannot have arguments
36
37 Is_Parameterless_Attribute : constant Attribute_Class_Array :=
38 (Attribute_Base => True,
39 Attribute_Body_Version => True,
40 Attribute_Class => True,
41 Attribute_External_Tag => True,
42 Attribute_Img => True,
43 Attribute_Loop_Entry => True,
44 Attribute_Old => True,
45 Attribute_Result => True,
46 Attribute_Stub_Type => True,
47 Attribute_Version => True,
48 Attribute_Type_Key => True,
49 others => False);
50 -- This map contains True for parameterless attributes that return a string
51 -- or a type. For those attributes, a left parenthesis after the attribute
52 -- should not be analyzed as the beginning of a parameters list because it
53 -- may denote a slice operation (X'Img (1 .. 2)) or a type conversion
54 -- (X'Class (Y)). The Ada 2012 attribute 'Old is in this category.
55
56 -- Note: Loop_Entry is in this list because, although it can take an
57 -- optional argument (the loop name), we can't distinguish that at parse
58 -- time from the case where no loop name is given and a legitimate index
59 -- expression is present. So we parse the argument as an indexed component
60 -- and the semantic analysis sorts out this syntactic ambiguity based on
61 -- the type and form of the expression.
62
63 -- Note that this map designates the minimum set of attributes where a
64 -- construct in parentheses that is not an argument can appear right
65 -- after the attribute. For attributes like 'Size, we do not put them
66 -- in the map. If someone writes X'Size (3), that's illegal in any case,
67 -- but we get a better error message by parsing the (3) as an illegal
68 -- argument to the attribute, rather than some meaningless junk that
69 -- follows the attribute.
70
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
74
75 function P_Aggregate_Or_Paren_Expr return Node_Id;
76 function P_Allocator return Node_Id;
77 function P_Case_Expression_Alternative return Node_Id;
78 function P_Iterated_Component_Association return Node_Id;
79 function P_Record_Or_Array_Component_Association return Node_Id;
80 function P_Factor return Node_Id;
81 function P_Primary return Node_Id;
82 function P_Relation return Node_Id;
83 function P_Term return Node_Id;
84 function P_Reduction_Attribute_Reference (S : Node_Id)
85 return Node_Id;
86
87 function P_Binary_Adding_Operator return Node_Kind;
88 function P_Logical_Operator return Node_Kind;
89 function P_Multiplying_Operator return Node_Kind;
90 function P_Relational_Operator return Node_Kind;
91 function P_Unary_Adding_Operator return Node_Kind;
92
93 procedure Bad_Range_Attribute (Loc : Source_Ptr);
94 -- Called to place complaint about bad range attribute at the given
95 -- source location. Terminates by raising Error_Resync.
96
97 procedure Check_Bad_Exp;
98 -- Called after scanning a**b, posts error if ** detected
99
100 procedure P_Membership_Test (N : Node_Id);
101 -- N is the node for a N_In or N_Not_In node whose right operand has not
102 -- yet been processed. It is called just after scanning out the IN keyword.
103 -- On return, either Right_Opnd or Alternatives is set, as appropriate.
104
105 function P_Range_Attribute_Reference (Prefix_Node : Node_Id) return Node_Id;
106 -- Scan a range attribute reference. The caller has scanned out the
107 -- prefix. The current token is known to be an apostrophe and the
108 -- following token is known to be RANGE.
109
110 function P_Unparen_Cond_Case_Quant_Expression return Node_Id;
111 -- This function is called with Token pointing to IF, CASE, or FOR, in a
112 -- context that allows a case, conditional, or quantified expression if
113 -- it is surrounded by parentheses. If not surrounded by parentheses, the
114 -- expression is still returned, but an error message is issued.
115
116 -------------------------
117 -- Bad_Range_Attribute --
118 -------------------------
119
120 procedure Bad_Range_Attribute (Loc : Source_Ptr) is
121 begin
122 Error_Msg ("range attribute cannot be used in expression!", Loc);
123 Resync_Expression;
124 end Bad_Range_Attribute;
125
126 -------------------
127 -- Check_Bad_Exp --
128 -------------------
129
130 procedure Check_Bad_Exp is
131 begin
132 if Token = Tok_Double_Asterisk then
133 Error_Msg_SC ("parenthesization required for '*'*");
134 Scan; -- past **
135 Discard_Junk_Node (P_Primary);
136 Check_Bad_Exp;
137 end if;
138 end Check_Bad_Exp;
139
140 --------------------------
141 -- 4.1 Name (also 6.4) --
142 --------------------------
143
144 -- NAME ::=
145 -- DIRECT_NAME | EXPLICIT_DEREFERENCE
146 -- | INDEXED_COMPONENT | SLICE
147 -- | SELECTED_COMPONENT | ATTRIBUTE
148 -- | TYPE_CONVERSION | FUNCTION_CALL
149 -- | CHARACTER_LITERAL | TARGET_NAME
150
151 -- DIRECT_NAME ::= IDENTIFIER | OPERATOR_SYMBOL
152
153 -- PREFIX ::= NAME | IMPLICIT_DEREFERENCE
154
155 -- EXPLICIT_DEREFERENCE ::= NAME . all
156
157 -- IMPLICIT_DEREFERENCE ::= NAME
158
159 -- INDEXED_COMPONENT ::= PREFIX (EXPRESSION {, EXPRESSION})
160
161 -- SLICE ::= PREFIX (DISCRETE_RANGE)
162
163 -- SELECTED_COMPONENT ::= PREFIX . SELECTOR_NAME
164
165 -- SELECTOR_NAME ::= IDENTIFIER | CHARACTER_LITERAL | OPERATOR_SYMBOL
166
167 -- ATTRIBUTE_REFERENCE ::= PREFIX ' ATTRIBUTE_DESIGNATOR
168
169 -- ATTRIBUTE_DESIGNATOR ::=
170 -- IDENTIFIER [(static_EXPRESSION)]
171 -- | access | delta | digits
172
173 -- FUNCTION_CALL ::=
174 -- function_NAME
175 -- | function_PREFIX ACTUAL_PARAMETER_PART
176
177 -- ACTUAL_PARAMETER_PART ::=
178 -- (PARAMETER_ASSOCIATION {,PARAMETER_ASSOCIATION})
179
180 -- PARAMETER_ASSOCIATION ::=
181 -- [formal_parameter_SELECTOR_NAME =>] EXPLICIT_ACTUAL_PARAMETER
182
183 -- EXPLICIT_ACTUAL_PARAMETER ::= EXPRESSION | variable_NAME
184
185 -- TARGET_NAME ::= @ (AI12-0125-3: abbreviation for LHS)
186
187 -- Note: syntactically a procedure call looks just like a function call,
188 -- so this routine is in practice used to scan out procedure calls as well.
189
190 -- On return, Expr_Form is set to either EF_Name or EF_Simple_Name
191
192 -- Error recovery: can raise Error_Resync
193
194 -- Note: if on return Token = Tok_Apostrophe, then the apostrophe must be
195 -- followed by either a left paren (qualified expression case), or by
196 -- range (range attribute case). All other uses of apostrophe (i.e. all
197 -- other attributes) are handled in this routine.
198
199 -- Error recovery: can raise Error_Resync
200
201 function P_Name return Node_Id is
202 Scan_State : Saved_Scan_State;
203 Name_Node : Node_Id;
204 Prefix_Node : Node_Id;
205 Ident_Node : Node_Id;
206 Expr_Node : Node_Id;
207 Range_Node : Node_Id;
208 Arg_Node : Node_Id;
209
210 Arg_List : List_Id := No_List; -- kill junk warning
211 Attr_Name : Name_Id := No_Name; -- kill junk warning
212
213 begin
214 -- Case of not a name
215
216 if Token not in Token_Class_Name then
217
218 -- If it looks like start of expression, complain and scan expression
219
220 if Token in Token_Class_Literal
221 or else Token = Tok_Left_Paren
222 then
223 Error_Msg_SC ("name expected");
224 return P_Expression;
225
226 -- Otherwise some other junk, not much we can do
227
228 else
229 Error_Msg_AP ("name expected");
230 raise Error_Resync;
231 end if;
232 end if;
233
234 -- Loop through designators in qualified name
235 -- AI12-0125 : target_name
236
237 if Token = Tok_At_Sign then
238 Scan_Reserved_Identifier (Force_Msg => False);
239
240 if Present (Current_Assign_Node) then
241 Set_Has_Target_Names (Current_Assign_Node);
242 end if;
243 end if;
244
245 Name_Node := Token_Node;
246
247 loop
248 Scan; -- past designator
249 exit when Token /= Tok_Dot;
250 Save_Scan_State (Scan_State); -- at dot
251 Scan; -- past dot
252
253 -- If we do not have another designator after the dot, then join
254 -- the normal circuit to handle a dot extension (may be .all or
255 -- character literal case). Otherwise loop back to scan the next
256 -- designator.
257
258 if Token not in Token_Class_Desig then
259 goto Scan_Name_Extension_Dot;
260 else
261 Prefix_Node := Name_Node;
262 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
263 Set_Prefix (Name_Node, Prefix_Node);
264 Set_Selector_Name (Name_Node, Token_Node);
265 end if;
266 end loop;
267
268 -- We have now scanned out a qualified designator. If the last token is
269 -- an operator symbol, then we certainly do not have the Snam case, so
270 -- we can just use the normal name extension check circuit
271
272 if Prev_Token = Tok_Operator_Symbol then
273 goto Scan_Name_Extension;
274 end if;
275
276 -- We have scanned out a qualified simple name, check for name extension
277 -- Note that we know there is no dot here at this stage, so the only
278 -- possible cases of name extension are apostrophe and left paren.
279
280 if Token = Tok_Apostrophe then
281 Save_Scan_State (Scan_State); -- at apostrophe
282 Scan; -- past apostrophe
283
284 -- Qualified expression in Ada 2012 mode (treated as a name)
285
286 if Ada_Version >= Ada_2012 and then Token = Tok_Left_Paren then
287 goto Scan_Name_Extension_Apostrophe;
288
289 -- If left paren not in Ada 2012, then it is not part of the name,
290 -- since qualified expressions are not names in prior versions of
291 -- Ada, so return with Token backed up to point to the apostrophe.
292 -- The treatment for the range attribute is similar (we do not
293 -- consider x'range to be a name in this grammar).
294
295 elsif Token = Tok_Left_Paren or else Token = Tok_Range then
296 Restore_Scan_State (Scan_State); -- to apostrophe
297 Expr_Form := EF_Simple_Name;
298 return Name_Node;
299
300 -- Otherwise we have the case of a name extended by an attribute
301
302 else
303 goto Scan_Name_Extension_Apostrophe;
304 end if;
305
306 -- Check case of qualified simple name extended by a left parenthesis
307
308 elsif Token = Tok_Left_Paren then
309 Scan; -- past left paren
310 goto Scan_Name_Extension_Left_Paren;
311
312 -- Otherwise the qualified simple name is not extended, so return
313
314 else
315 Expr_Form := EF_Simple_Name;
316 return Name_Node;
317 end if;
318
319 -- Loop scanning past name extensions. A label is used for control
320 -- transfer for this loop for ease of interfacing with the finite state
321 -- machine in the parenthesis scanning circuit, and also to allow for
322 -- passing in control to the appropriate point from the above code.
323
324 <<Scan_Name_Extension>>
325
326 -- Character literal used as name cannot be extended. Also this
327 -- cannot be a call, since the name for a call must be a designator.
328 -- Return in these cases, or if there is no name extension
329
330 if Token not in Token_Class_Namext
331 or else Prev_Token = Tok_Char_Literal
332 then
333 Expr_Form := EF_Name;
334 return Name_Node;
335 end if;
336
337 -- Merge here when we know there is a name extension
338
339 <<Scan_Name_Extension_OK>>
340
341 if Token = Tok_Left_Paren then
342 Scan; -- past left paren
343 goto Scan_Name_Extension_Left_Paren;
344
345 elsif Token = Tok_Apostrophe then
346 Save_Scan_State (Scan_State); -- at apostrophe
347 Scan; -- past apostrophe
348 goto Scan_Name_Extension_Apostrophe;
349
350 else -- Token = Tok_Dot
351 Save_Scan_State (Scan_State); -- at dot
352 Scan; -- past dot
353 goto Scan_Name_Extension_Dot;
354 end if;
355
356 -- Case of name extended by dot (selection), dot is already skipped
357 -- and the scan state at the point of the dot is saved in Scan_State.
358
359 <<Scan_Name_Extension_Dot>>
360
361 -- Explicit dereference case
362
363 if Token = Tok_All then
364 Prefix_Node := Name_Node;
365 Name_Node := New_Node (N_Explicit_Dereference, Token_Ptr);
366 Set_Prefix (Name_Node, Prefix_Node);
367 Scan; -- past ALL
368 goto Scan_Name_Extension;
369
370 -- Selected component case
371
372 elsif Token in Token_Class_Name then
373 Prefix_Node := Name_Node;
374 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
375 Set_Prefix (Name_Node, Prefix_Node);
376 Set_Selector_Name (Name_Node, Token_Node);
377 Scan; -- past selector
378 goto Scan_Name_Extension;
379
380 -- Reserved identifier as selector
381
382 elsif Is_Reserved_Identifier then
383 Scan_Reserved_Identifier (Force_Msg => False);
384 Prefix_Node := Name_Node;
385 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
386 Set_Prefix (Name_Node, Prefix_Node);
387 Set_Selector_Name (Name_Node, Token_Node);
388 Scan; -- past identifier used as selector
389 goto Scan_Name_Extension;
390
391 -- If dot is at end of line and followed by nothing legal,
392 -- then assume end of name and quit (dot will be taken as
393 -- an incorrect form of some other punctuation by our caller).
394
395 elsif Token_Is_At_Start_Of_Line then
396 Restore_Scan_State (Scan_State);
397 return Name_Node;
398
399 -- Here if nothing legal after the dot
400
401 else
402 Error_Msg_AP ("selector expected");
403 raise Error_Resync;
404 end if;
405
406 -- Here for an apostrophe as name extension. The scan position at the
407 -- apostrophe has already been saved, and the apostrophe scanned out.
408
409 <<Scan_Name_Extension_Apostrophe>>
410
411 Scan_Apostrophe : declare
412 function Apostrophe_Should_Be_Semicolon return Boolean;
413 -- Checks for case where apostrophe should probably be
414 -- a semicolon, and if so, gives appropriate message,
415 -- resets the scan pointer to the apostrophe, changes
416 -- the current token to Tok_Semicolon, and returns True.
417 -- Otherwise returns False.
418
419 ------------------------------------
420 -- Apostrophe_Should_Be_Semicolon --
421 ------------------------------------
422
423 function Apostrophe_Should_Be_Semicolon return Boolean is
424 begin
425 if Token_Is_At_Start_Of_Line then
426 Restore_Scan_State (Scan_State); -- to apostrophe
427 Error_Msg_SC ("|""''"" should be "";""");
428 Token := Tok_Semicolon;
429 return True;
430 else
431 return False;
432 end if;
433 end Apostrophe_Should_Be_Semicolon;
434
435 -- Start of processing for Scan_Apostrophe
436
437 begin
438 -- Check for qualified expression case in Ada 2012 mode
439
440 if Ada_Version >= Ada_2012 and then Token = Tok_Left_Paren then
441 Name_Node := P_Qualified_Expression (Name_Node);
442 goto Scan_Name_Extension;
443
444 -- If range attribute after apostrophe, then return with Token
445 -- pointing to the apostrophe. Note that in this case the prefix
446 -- need not be a simple name (cases like A.all'range). Similarly
447 -- if there is a left paren after the apostrophe, then we also
448 -- return with Token pointing to the apostrophe (this is the
449 -- aggregate case, or some error case).
450
451 elsif Token = Tok_Range or else Token = Tok_Left_Paren then
452 Restore_Scan_State (Scan_State); -- to apostrophe
453 Expr_Form := EF_Name;
454 return Name_Node;
455
456 -- Here for cases where attribute designator is an identifier
457
458 elsif Token = Tok_Identifier then
459 Attr_Name := Token_Name;
460
461 if not Is_Attribute_Name (Attr_Name) then
462 if Apostrophe_Should_Be_Semicolon then
463 Expr_Form := EF_Name;
464 return Name_Node;
465
466 -- Here for a bad attribute name
467
468 else
469 Signal_Bad_Attribute;
470 Scan; -- past bad identifier
471
472 if Token = Tok_Left_Paren then
473 Scan; -- past left paren
474
475 loop
476 Discard_Junk_Node (P_Expression_If_OK);
477 exit when not Comma_Present;
478 end loop;
479
480 T_Right_Paren;
481 end if;
482
483 return Error;
484 end if;
485 end if;
486
487 if Style_Check then
488 Style.Check_Attribute_Name (False);
489 end if;
490
491 -- Here for case of attribute designator is not an identifier
492
493 else
494 if Token = Tok_Delta then
495 Attr_Name := Name_Delta;
496
497 elsif Token = Tok_Digits then
498 Attr_Name := Name_Digits;
499
500 elsif Token = Tok_Access then
501 Attr_Name := Name_Access;
502
503 elsif Token = Tok_Mod and then Ada_Version >= Ada_95 then
504 Attr_Name := Name_Mod;
505
506 elsif Apostrophe_Should_Be_Semicolon then
507 Expr_Form := EF_Name;
508 return Name_Node;
509
510 else
511 Error_Msg_AP ("attribute designator expected");
512 raise Error_Resync;
513 end if;
514
515 if Style_Check then
516 Style.Check_Attribute_Name (True);
517 end if;
518 end if;
519
520 -- We come here with an OK attribute scanned, and corresponding
521 -- Attribute identifier node stored in Ident_Node.
522
523 Prefix_Node := Name_Node;
524 Name_Node := New_Node (N_Attribute_Reference, Prev_Token_Ptr);
525 Scan; -- past attribute designator
526 Set_Prefix (Name_Node, Prefix_Node);
527 Set_Attribute_Name (Name_Node, Attr_Name);
528
529 -- Scan attribute arguments/designator. We skip this if we know
530 -- that the attribute cannot have an argument (see documentation
531 -- of Is_Parameterless_Attribute for further details).
532
533 if Token = Tok_Left_Paren
534 and then not
535 Is_Parameterless_Attribute (Get_Attribute_Id (Attr_Name))
536 then
537 -- Attribute Update contains an array or record association
538 -- list which provides new values for various components or
539 -- elements. The list is parsed as an aggregate, and we get
540 -- better error handling by knowing that in the parser.
541
542 if Attr_Name = Name_Update then
543 Set_Expressions (Name_Node, New_List);
544 Append (P_Aggregate, Expressions (Name_Node));
545
546 -- All other cases of parsing attribute arguments
547
548 else
549 Set_Expressions (Name_Node, New_List);
550 Scan; -- past left paren
551
552 loop
553 declare
554 Expr : constant Node_Id := P_Expression_If_OK;
555 Rnam : Node_Id;
556
557 begin
558 -- Case of => for named notation
559
560 if Token = Tok_Arrow then
561
562 -- Named notation allowed only for the special
563 -- case of System'Restriction_Set (No_Dependence =>
564 -- unit_NAME), in which case construct a parameter
565 -- assocation node and append to the arguments.
566
567 if Attr_Name = Name_Restriction_Set
568 and then Nkind (Expr) = N_Identifier
569 and then Chars (Expr) = Name_No_Dependence
570 then
571 Scan; -- past arrow
572 Rnam := P_Name;
573 Append_To (Expressions (Name_Node),
574 Make_Parameter_Association (Sloc (Rnam),
575 Selector_Name => Expr,
576 Explicit_Actual_Parameter => Rnam));
577 exit;
578
579 -- For all other cases named notation is illegal
580
581 else
582 Error_Msg_SC
583 ("named parameters not permitted "
584 & "for attributes");
585 Scan; -- past junk arrow
586 end if;
587
588 -- Here for normal case (not => for named parameter)
589
590 else
591 -- Special handling for 'Image in Ada 2012, where
592 -- the attribute can be parameterless and its value
593 -- can be the prefix of a slice. Rewrite name as a
594 -- slice, Expr is its low bound.
595
596 if Token = Tok_Dot_Dot
597 and then Attr_Name = Name_Image
598 and then Ada_Version >= Ada_2012
599 then
600 Set_Expressions (Name_Node, No_List);
601 Prefix_Node := Name_Node;
602 Name_Node :=
603 New_Node (N_Slice, Sloc (Prefix_Node));
604 Set_Prefix (Name_Node, Prefix_Node);
605 Range_Node := New_Node (N_Range, Token_Ptr);
606 Set_Low_Bound (Range_Node, Expr);
607 Scan; -- past ..
608 Expr_Node := P_Expression;
609 Check_Simple_Expression (Expr_Node);
610 Set_High_Bound (Range_Node, Expr_Node);
611 Set_Discrete_Range (Name_Node, Range_Node);
612 T_Right_Paren;
613
614 goto Scan_Name_Extension;
615
616 else
617 Append (Expr, Expressions (Name_Node));
618 exit when not Comma_Present;
619 end if;
620 end if;
621 end;
622 end loop;
623
624 T_Right_Paren;
625 end if;
626 end if;
627
628 goto Scan_Name_Extension;
629 end Scan_Apostrophe;
630
631 -- Here for left parenthesis extending name (left paren skipped)
632
633 <<Scan_Name_Extension_Left_Paren>>
634
635 -- We now have to scan through a list of items, terminated by a
636 -- right parenthesis. The scan is handled by a finite state
637 -- machine. The possibilities are:
638
639 -- (discrete_range)
640
641 -- This is a slice. This case is handled in LP_State_Init
642
643 -- (expression, expression, ..)
644
645 -- This is interpreted as an indexed component, i.e. as a
646 -- case of a name which can be extended in the normal manner.
647 -- This case is handled by LP_State_Name or LP_State_Expr.
648
649 -- Note: if and case expressions (without an extra level of
650 -- parentheses) are permitted in this context).
651
652 -- (..., identifier => expression , ...)
653
654 -- If there is at least one occurrence of identifier => (but
655 -- none of the other cases apply), then we have a call.
656
657 -- Test for Id => case
658
659 if Token = Tok_Identifier then
660 Save_Scan_State (Scan_State); -- at Id
661 Scan; -- past Id
662
663 -- Test for => (allow := as an error substitute)
664
665 if Token = Tok_Arrow or else Token = Tok_Colon_Equal then
666 Restore_Scan_State (Scan_State); -- to Id
667 Arg_List := New_List;
668 goto LP_State_Call;
669
670 else
671 Restore_Scan_State (Scan_State); -- to Id
672 end if;
673 end if;
674
675 -- Here we have an expression after all
676
677 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
678
679 -- Check cases of discrete range for a slice
680
681 -- First possibility: Range_Attribute_Reference
682
683 if Expr_Form = EF_Range_Attr then
684 Range_Node := Expr_Node;
685
686 -- Second possibility: Simple_expression .. Simple_expression
687
688 elsif Token = Tok_Dot_Dot then
689 Check_Simple_Expression (Expr_Node);
690 Range_Node := New_Node (N_Range, Token_Ptr);
691 Set_Low_Bound (Range_Node, Expr_Node);
692 Scan; -- past ..
693 Expr_Node := P_Expression;
694 Check_Simple_Expression (Expr_Node);
695 Set_High_Bound (Range_Node, Expr_Node);
696
697 -- Third possibility: Type_name range Range
698
699 elsif Token = Tok_Range then
700 if Expr_Form /= EF_Simple_Name then
701 Error_Msg_SC ("subtype mark must precede RANGE");
702 raise Error_Resync;
703 end if;
704
705 Range_Node := P_Subtype_Indication (Expr_Node);
706
707 -- Otherwise we just have an expression. It is true that we might
708 -- have a subtype mark without a range constraint but this case
709 -- is syntactically indistinguishable from the expression case.
710
711 else
712 Arg_List := New_List;
713 goto LP_State_Expr;
714 end if;
715
716 -- Fall through here with unmistakable Discrete range scanned,
717 -- which means that we definitely have the case of a slice. The
718 -- Discrete range is in Range_Node.
719
720 if Token = Tok_Comma then
721 Error_Msg_SC ("slice cannot have more than one dimension");
722 raise Error_Resync;
723
724 elsif Token /= Tok_Right_Paren then
725 if Token = Tok_Arrow then
726
727 -- This may be an aggregate that is missing a qualification
728
729 Error_Msg_SC
730 ("context of aggregate must be a qualified expression");
731 raise Error_Resync;
732
733 else
734 T_Right_Paren;
735 raise Error_Resync;
736 end if;
737
738 else
739 Scan; -- past right paren
740 Prefix_Node := Name_Node;
741 Name_Node := New_Node (N_Slice, Sloc (Prefix_Node));
742 Set_Prefix (Name_Node, Prefix_Node);
743 Set_Discrete_Range (Name_Node, Range_Node);
744
745 -- An operator node is legal as a prefix to other names,
746 -- but not for a slice.
747
748 if Nkind (Prefix_Node) = N_Operator_Symbol then
749 Error_Msg_N ("illegal prefix for slice", Prefix_Node);
750 end if;
751
752 -- If we have a name extension, go scan it
753
754 if Token in Token_Class_Namext then
755 goto Scan_Name_Extension_OK;
756
757 -- Otherwise return (a slice is a name, but is not a call)
758
759 else
760 Expr_Form := EF_Name;
761 return Name_Node;
762 end if;
763 end if;
764
765 -- In LP_State_Expr, we have scanned one or more expressions, and
766 -- so we have a call or an indexed component which is a name. On
767 -- entry we have the expression just scanned in Expr_Node and
768 -- Arg_List contains the list of expressions encountered so far
769
770 <<LP_State_Expr>>
771 Append (Expr_Node, Arg_List);
772
773 if Token = Tok_Arrow then
774 Error_Msg
775 ("expect identifier in parameter association", Sloc (Expr_Node));
776 Scan; -- past arrow
777
778 elsif not Comma_Present then
779 T_Right_Paren;
780
781 Prefix_Node := Name_Node;
782 Name_Node := New_Node (N_Indexed_Component, Sloc (Prefix_Node));
783 Set_Prefix (Name_Node, Prefix_Node);
784 Set_Expressions (Name_Node, Arg_List);
785
786 goto Scan_Name_Extension;
787 end if;
788
789 -- Comma present (and scanned out), test for identifier => case
790 -- Test for identifier => case
791
792 if Token = Tok_Identifier then
793 Save_Scan_State (Scan_State); -- at Id
794 Scan; -- past Id
795
796 -- Test for => (allow := as error substitute)
797
798 if Token = Tok_Arrow or else Token = Tok_Colon_Equal then
799 Restore_Scan_State (Scan_State); -- to Id
800 goto LP_State_Call;
801
802 -- Otherwise it's just an expression after all, so backup
803
804 else
805 Restore_Scan_State (Scan_State); -- to Id
806 end if;
807 end if;
808
809 -- Here we have an expression after all, so stay in this state
810
811 Expr_Node := P_Expression_If_OK;
812 goto LP_State_Expr;
813
814 -- LP_State_Call corresponds to the situation in which at least one
815 -- instance of Id => Expression has been encountered, so we know that
816 -- we do not have a name, but rather a call. We enter it with the
817 -- scan pointer pointing to the next argument to scan, and Arg_List
818 -- containing the list of arguments scanned so far.
819
820 <<LP_State_Call>>
821
822 -- Test for case of Id => Expression (named parameter)
823
824 if Token = Tok_Identifier then
825 Save_Scan_State (Scan_State); -- at Id
826 Ident_Node := Token_Node;
827 Scan; -- past Id
828
829 -- Deal with => (allow := as incorrect substitute)
830
831 if Token = Tok_Arrow or else Token = Tok_Colon_Equal then
832 Arg_Node := New_Node (N_Parameter_Association, Prev_Token_Ptr);
833 Set_Selector_Name (Arg_Node, Ident_Node);
834 T_Arrow;
835 Set_Explicit_Actual_Parameter (Arg_Node, P_Expression);
836 Append (Arg_Node, Arg_List);
837
838 -- If a comma follows, go back and scan next entry
839
840 if Comma_Present then
841 goto LP_State_Call;
842
843 -- Otherwise we have the end of a call
844
845 else
846 Prefix_Node := Name_Node;
847 Name_Node := New_Node (N_Function_Call, Sloc (Prefix_Node));
848 Set_Name (Name_Node, Prefix_Node);
849 Set_Parameter_Associations (Name_Node, Arg_List);
850 T_Right_Paren;
851
852 if Token in Token_Class_Namext then
853 goto Scan_Name_Extension_OK;
854
855 -- This is a case of a call which cannot be a name
856
857 else
858 Expr_Form := EF_Name;
859 return Name_Node;
860 end if;
861 end if;
862
863 -- Not named parameter: Id started an expression after all
864
865 else
866 Restore_Scan_State (Scan_State); -- to Id
867 end if;
868 end if;
869
870 -- Here if entry did not start with Id => which means that it
871 -- is a positional parameter, which is not allowed, since we
872 -- have seen at least one named parameter already.
873
874 Error_Msg_SC
875 ("positional parameter association " &
876 "not allowed after named one");
877
878 Expr_Node := P_Expression_If_OK;
879
880 -- Leaving the '>' in an association is not unusual, so suggest
881 -- a possible fix.
882
883 if Nkind (Expr_Node) = N_Op_Eq then
884 Error_Msg_N ("\maybe `='>` was intended", Expr_Node);
885 end if;
886
887 -- We go back to scanning out expressions, so that we do not get
888 -- multiple error messages when several positional parameters
889 -- follow a named parameter.
890
891 goto LP_State_Expr;
892
893 -- End of treatment for name extensions starting with left paren
894
895 -- End of loop through name extensions
896
897 end P_Name;
898
899 -- This function parses a restricted form of Names which are either
900 -- designators, or designators preceded by a sequence of prefixes
901 -- that are direct names.
902
903 -- Error recovery: cannot raise Error_Resync
904
905 function P_Function_Name return Node_Id is
906 Designator_Node : Node_Id;
907 Prefix_Node : Node_Id;
908 Selector_Node : Node_Id;
909 Dot_Sloc : Source_Ptr := No_Location;
910
911 begin
912 -- Prefix_Node is set to the gathered prefix so far, Empty means that
913 -- no prefix has been scanned. This allows us to build up the result
914 -- in the required right recursive manner.
915
916 Prefix_Node := Empty;
917
918 -- Loop through prefixes
919
920 loop
921 Designator_Node := Token_Node;
922
923 if Token not in Token_Class_Desig then
924 return P_Identifier; -- let P_Identifier issue the error message
925
926 else -- Token in Token_Class_Desig
927 Scan; -- past designator
928 exit when Token /= Tok_Dot;
929 end if;
930
931 -- Here at a dot, with token just before it in Designator_Node
932
933 if No (Prefix_Node) then
934 Prefix_Node := Designator_Node;
935 else
936 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
937 Set_Prefix (Selector_Node, Prefix_Node);
938 Set_Selector_Name (Selector_Node, Designator_Node);
939 Prefix_Node := Selector_Node;
940 end if;
941
942 Dot_Sloc := Token_Ptr;
943 Scan; -- past dot
944 end loop;
945
946 -- Fall out of the loop having just scanned a designator
947
948 if No (Prefix_Node) then
949 return Designator_Node;
950 else
951 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
952 Set_Prefix (Selector_Node, Prefix_Node);
953 Set_Selector_Name (Selector_Node, Designator_Node);
954 return Selector_Node;
955 end if;
956
957 exception
958 when Error_Resync =>
959 return Error;
960 end P_Function_Name;
961
962 -- This function parses a restricted form of Names which are either
963 -- identifiers, or identifiers preceded by a sequence of prefixes
964 -- that are direct names.
965
966 -- Error recovery: cannot raise Error_Resync
967
968 function P_Qualified_Simple_Name return Node_Id is
969 Designator_Node : Node_Id;
970 Prefix_Node : Node_Id;
971 Selector_Node : Node_Id;
972 Dot_Sloc : Source_Ptr := No_Location;
973
974 begin
975 -- Prefix node is set to the gathered prefix so far, Empty means that
976 -- no prefix has been scanned. This allows us to build up the result
977 -- in the required right recursive manner.
978
979 Prefix_Node := Empty;
980
981 -- Loop through prefixes
982
983 loop
984 Designator_Node := Token_Node;
985
986 if Token = Tok_Identifier then
987 Scan; -- past identifier
988 exit when Token /= Tok_Dot;
989
990 elsif Token not in Token_Class_Desig then
991 return P_Identifier; -- let P_Identifier issue the error message
992
993 else
994 Scan; -- past designator
995
996 if Token /= Tok_Dot then
997 Error_Msg_SP ("identifier expected");
998 return Error;
999 end if;
1000 end if;
1001
1002 -- Here at a dot, with token just before it in Designator_Node
1003
1004 if No (Prefix_Node) then
1005 Prefix_Node := Designator_Node;
1006 else
1007 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1008 Set_Prefix (Selector_Node, Prefix_Node);
1009 Set_Selector_Name (Selector_Node, Designator_Node);
1010 Prefix_Node := Selector_Node;
1011 end if;
1012
1013 Dot_Sloc := Token_Ptr;
1014 Scan; -- past dot
1015 end loop;
1016
1017 -- Fall out of the loop having just scanned an identifier
1018
1019 if No (Prefix_Node) then
1020 return Designator_Node;
1021 else
1022 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1023 Set_Prefix (Selector_Node, Prefix_Node);
1024 Set_Selector_Name (Selector_Node, Designator_Node);
1025 return Selector_Node;
1026 end if;
1027
1028 exception
1029 when Error_Resync =>
1030 return Error;
1031 end P_Qualified_Simple_Name;
1032
1033 -- This procedure differs from P_Qualified_Simple_Name only in that it
1034 -- raises Error_Resync if any error is encountered. It only returns after
1035 -- scanning a valid qualified simple name.
1036
1037 -- Error recovery: can raise Error_Resync
1038
1039 function P_Qualified_Simple_Name_Resync return Node_Id is
1040 Designator_Node : Node_Id;
1041 Prefix_Node : Node_Id;
1042 Selector_Node : Node_Id;
1043 Dot_Sloc : Source_Ptr := No_Location;
1044
1045 begin
1046 Prefix_Node := Empty;
1047
1048 -- Loop through prefixes
1049
1050 loop
1051 Designator_Node := Token_Node;
1052
1053 if Token = Tok_Identifier then
1054 Scan; -- past identifier
1055 exit when Token /= Tok_Dot;
1056
1057 elsif Token not in Token_Class_Desig then
1058 Discard_Junk_Node (P_Identifier); -- to issue the error message
1059 raise Error_Resync;
1060
1061 else
1062 Scan; -- past designator
1063
1064 if Token /= Tok_Dot then
1065 Error_Msg_SP ("identifier expected");
1066 raise Error_Resync;
1067 end if;
1068 end if;
1069
1070 -- Here at a dot, with token just before it in Designator_Node
1071
1072 if No (Prefix_Node) then
1073 Prefix_Node := Designator_Node;
1074 else
1075 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1076 Set_Prefix (Selector_Node, Prefix_Node);
1077 Set_Selector_Name (Selector_Node, Designator_Node);
1078 Prefix_Node := Selector_Node;
1079 end if;
1080
1081 Dot_Sloc := Token_Ptr;
1082 Scan; -- past period
1083 end loop;
1084
1085 -- Fall out of the loop having just scanned an identifier
1086
1087 if No (Prefix_Node) then
1088 return Designator_Node;
1089 else
1090 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1091 Set_Prefix (Selector_Node, Prefix_Node);
1092 Set_Selector_Name (Selector_Node, Designator_Node);
1093 return Selector_Node;
1094 end if;
1095 end P_Qualified_Simple_Name_Resync;
1096
1097 ----------------------
1098 -- 4.1 Direct_Name --
1099 ----------------------
1100
1101 -- Parsed by P_Name and other functions in section 4.1
1102
1103 -----------------
1104 -- 4.1 Prefix --
1105 -----------------
1106
1107 -- Parsed by P_Name (4.1)
1108
1109 -------------------------------
1110 -- 4.1 Explicit Dereference --
1111 -------------------------------
1112
1113 -- Parsed by P_Name (4.1)
1114
1115 -------------------------------
1116 -- 4.1 Implicit_Dereference --
1117 -------------------------------
1118
1119 -- Parsed by P_Name (4.1)
1120
1121 ----------------------------
1122 -- 4.1 Indexed Component --
1123 ----------------------------
1124
1125 -- Parsed by P_Name (4.1)
1126
1127 ----------------
1128 -- 4.1 Slice --
1129 ----------------
1130
1131 -- Parsed by P_Name (4.1)
1132
1133 -----------------------------
1134 -- 4.1 Selected_Component --
1135 -----------------------------
1136
1137 -- Parsed by P_Name (4.1)
1138
1139 ------------------------
1140 -- 4.1 Selector Name --
1141 ------------------------
1142
1143 -- Parsed by P_Name (4.1)
1144
1145 ------------------------------
1146 -- 4.1 Attribute Reference --
1147 ------------------------------
1148
1149 -- Parsed by P_Name (4.1)
1150
1151 -------------------------------
1152 -- 4.1 Attribute Designator --
1153 -------------------------------
1154
1155 -- Parsed by P_Name (4.1)
1156
1157 --------------------------------------
1158 -- 4.1.4 Range Attribute Reference --
1159 --------------------------------------
1160
1161 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
1162
1163 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
1164
1165 -- In the grammar, a RANGE attribute is simply a name, but its use is
1166 -- highly restricted, so in the parser, we do not regard it as a name.
1167 -- Instead, P_Name returns without scanning the 'RANGE part of the
1168 -- attribute, and the caller uses the following function to construct
1169 -- a range attribute in places where it is appropriate.
1170
1171 -- Note that RANGE here is treated essentially as an identifier,
1172 -- rather than a reserved word.
1173
1174 -- The caller has parsed the prefix, i.e. a name, and Token points to
1175 -- the apostrophe. The token after the apostrophe is known to be RANGE
1176 -- at this point. The prefix node becomes the prefix of the attribute.
1177
1178 -- Error_Recovery: Cannot raise Error_Resync
1179
1180 function P_Range_Attribute_Reference
1181 (Prefix_Node : Node_Id)
1182 return Node_Id
1183 is
1184 Attr_Node : Node_Id;
1185
1186 begin
1187 Attr_Node := New_Node (N_Attribute_Reference, Token_Ptr);
1188 Set_Prefix (Attr_Node, Prefix_Node);
1189 Scan; -- past apostrophe
1190
1191 if Style_Check then
1192 Style.Check_Attribute_Name (True);
1193 end if;
1194
1195 Set_Attribute_Name (Attr_Node, Name_Range);
1196 Scan; -- past RANGE
1197
1198 if Token = Tok_Left_Paren then
1199 Scan; -- past left paren
1200 Set_Expressions (Attr_Node, New_List (P_Expression_If_OK));
1201 T_Right_Paren;
1202 end if;
1203
1204 return Attr_Node;
1205 end P_Range_Attribute_Reference;
1206
1207 -------------------------------------
1208 -- P_Reduction_Attribute_Reference --
1209 -------------------------------------
1210
1211 function P_Reduction_Attribute_Reference (S : Node_Id)
1212 return Node_Id
1213 is
1214 Attr_Node : Node_Id;
1215 Attr_Name : Name_Id;
1216
1217 begin
1218 Attr_Name := Token_Name;
1219 Scan; -- past Reduce
1220 Attr_Node := New_Node (N_Attribute_Reference, Token_Ptr);
1221 Set_Attribute_Name (Attr_Node, Attr_Name);
1222 if Attr_Name /= Name_Reduce then
1223 Error_Msg ("reduce attribute expected", Prev_Token_Ptr);
1224 end if;
1225
1226 Set_Prefix (Attr_Node, S);
1227 Set_Expressions (Attr_Node, New_List);
1228 T_Left_Paren;
1229 Append (P_Name, Expressions (Attr_Node));
1230 T_Comma;
1231 Append (P_Expression, Expressions (Attr_Node));
1232 T_Right_Paren;
1233
1234 return Attr_Node;
1235 end P_Reduction_Attribute_Reference;
1236
1237 ---------------------------------------
1238 -- 4.1.4 Range Attribute Designator --
1239 ---------------------------------------
1240
1241 -- Parsed by P_Range_Attribute_Reference (4.4)
1242
1243 ---------------------------------------------
1244 -- 4.1.4 (2) Reduction_Attribute_Reference --
1245 ---------------------------------------------
1246
1247 -- parsed by P_Reduction_Attribute_Reference
1248
1249 --------------------
1250 -- 4.3 Aggregate --
1251 --------------------
1252
1253 -- AGGREGATE ::= RECORD_AGGREGATE | EXTENSION_AGGREGATE | ARRAY_AGGREGATE
1254
1255 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3), except in the case where
1256 -- an aggregate is known to be required (code statement, extension
1257 -- aggregate), in which cases this routine performs the necessary check
1258 -- that we have an aggregate rather than a parenthesized expression
1259
1260 -- Error recovery: can raise Error_Resync
1261
1262 function P_Aggregate return Node_Id is
1263 Aggr_Sloc : constant Source_Ptr := Token_Ptr;
1264 Aggr_Node : constant Node_Id := P_Aggregate_Or_Paren_Expr;
1265
1266 begin
1267 if Nkind (Aggr_Node) /= N_Aggregate
1268 and then
1269 Nkind (Aggr_Node) /= N_Extension_Aggregate
1270 and then Ada_Version < Ada_2020
1271 then
1272 Error_Msg
1273 ("aggregate may not have single positional component", Aggr_Sloc);
1274 return Error;
1275 else
1276 return Aggr_Node;
1277 end if;
1278 end P_Aggregate;
1279
1280 ------------------------------------------------
1281 -- 4.3 Aggregate or Parenthesized Expression --
1282 ------------------------------------------------
1283
1284 -- This procedure parses out either an aggregate or a parenthesized
1285 -- expression (these two constructs are closely related, since a
1286 -- parenthesized expression looks like an aggregate with a single
1287 -- positional component).
1288
1289 -- AGGREGATE ::=
1290 -- RECORD_AGGREGATE | EXTENSION_AGGREGATE | ARRAY_AGGREGATE
1291
1292 -- RECORD_AGGREGATE ::= (RECORD_COMPONENT_ASSOCIATION_LIST)
1293
1294 -- RECORD_COMPONENT_ASSOCIATION_LIST ::=
1295 -- RECORD_COMPONENT_ASSOCIATION {, RECORD_COMPONENT_ASSOCIATION}
1296 -- | null record
1297
1298 -- RECORD_COMPONENT_ASSOCIATION ::=
1299 -- [COMPONENT_CHOICE_LIST =>] EXPRESSION
1300
1301 -- COMPONENT_CHOICE_LIST ::=
1302 -- component_SELECTOR_NAME {| component_SELECTOR_NAME}
1303 -- | others
1304
1305 -- EXTENSION_AGGREGATE ::=
1306 -- (ANCESTOR_PART with RECORD_COMPONENT_ASSOCIATION_LIST)
1307
1308 -- ANCESTOR_PART ::= EXPRESSION | SUBTYPE_MARK
1309
1310 -- ARRAY_AGGREGATE ::=
1311 -- POSITIONAL_ARRAY_AGGREGATE | NAMED_ARRAY_AGGREGATE
1312
1313 -- POSITIONAL_ARRAY_AGGREGATE ::=
1314 -- (EXPRESSION, EXPRESSION {, EXPRESSION})
1315 -- | (EXPRESSION {, EXPRESSION}, others => EXPRESSION)
1316 -- | (EXPRESSION {, EXPRESSION}, others => <>)
1317
1318 -- NAMED_ARRAY_AGGREGATE ::=
1319 -- (ARRAY_COMPONENT_ASSOCIATION {, ARRAY_COMPONENT_ASSOCIATION})
1320
1321 -- PRIMARY ::= (EXPRESSION);
1322
1323 -- Error recovery: can raise Error_Resync
1324
1325 -- Note: POSITIONAL_ARRAY_AGGREGATE rule has been extended to give support
1326 -- to Ada 2005 limited aggregates (AI-287)
1327
1328 function P_Aggregate_Or_Paren_Expr return Node_Id is
1329 Aggregate_Node : Node_Id;
1330 Expr_List : List_Id;
1331 Assoc_List : List_Id;
1332 Expr_Node : Node_Id;
1333 Lparen_Sloc : Source_Ptr;
1334 Scan_State : Saved_Scan_State;
1335
1336 procedure Box_Error;
1337 -- Called if <> is encountered as positional aggregate element. Issues
1338 -- error message and sets Expr_Node to Error.
1339
1340 function Is_Quantified_Expression return Boolean;
1341 -- The presence of iterated component associations requires a one
1342 -- token lookahead to distinguish it from quantified expressions.
1343
1344 ---------------
1345 -- Box_Error --
1346 ---------------
1347
1348 procedure Box_Error is
1349 begin
1350 if Ada_Version < Ada_2005 then
1351 Error_Msg_SC ("box in aggregate is an Ada 2005 extension");
1352 end if;
1353
1354 -- Ada 2005 (AI-287): The box notation is allowed only with named
1355 -- notation because positional notation might be error prone. For
1356 -- example, in "(X, <>, Y, <>)", there is no type associated with
1357 -- the boxes, so you might not be leaving out the components you
1358 -- thought you were leaving out.
1359
1360 Error_Msg_SC ("(Ada 2005) box only allowed with named notation");
1361 Scan; -- past box
1362 Expr_Node := Error;
1363 end Box_Error;
1364
1365 ------------------------------
1366 -- Is_Quantified_Expression --
1367 ------------------------------
1368
1369 function Is_Quantified_Expression return Boolean is
1370 Maybe : Boolean;
1371 Scan_State : Saved_Scan_State;
1372
1373 begin
1374 Save_Scan_State (Scan_State);
1375 Scan; -- past FOR
1376 Maybe := Token = Tok_All or else Token = Tok_Some;
1377 Restore_Scan_State (Scan_State); -- to FOR
1378 return Maybe;
1379 end Is_Quantified_Expression;
1380
1381 -- Start of processing for P_Aggregate_Or_Paren_Expr
1382
1383 begin
1384 Lparen_Sloc := Token_Ptr;
1385 if Token = Tok_Left_Bracket and then Ada_Version >= Ada_2020 then
1386 Scan;
1387
1388 -- Special case for null aggregate in Ada 2020
1389
1390 if Token = Tok_Right_Bracket then
1391 Scan; -- past ]
1392 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1393 Set_Expressions (Aggregate_Node, New_List);
1394 Set_Is_Homogeneous_Aggregate (Aggregate_Node);
1395 return Aggregate_Node;
1396 end if;
1397 else
1398 T_Left_Paren;
1399 end if;
1400
1401 -- Note on parentheses count. For cases like an if expression, the
1402 -- parens here really count as real parentheses for the paren count,
1403 -- so we adjust the paren count accordingly after scanning the expr.
1404
1405 -- If expression
1406
1407 if Token = Tok_If then
1408 Expr_Node := P_If_Expression;
1409 T_Right_Paren;
1410 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1411 return Expr_Node;
1412
1413 -- Case expression
1414
1415 elsif Token = Tok_Case then
1416 Expr_Node := P_Case_Expression;
1417 T_Right_Paren;
1418 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1419 return Expr_Node;
1420
1421 -- Quantified expression
1422
1423 elsif Token = Tok_For and then Is_Quantified_Expression then
1424 Expr_Node := P_Quantified_Expression;
1425 T_Right_Paren;
1426 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1427 return Expr_Node;
1428
1429 -- Note: the mechanism used here of rescanning the initial expression
1430 -- is distinctly unpleasant, but it saves a lot of fiddling in scanning
1431 -- out the discrete choice list.
1432
1433 -- Deal with expression and extension aggregates first
1434
1435 elsif Token /= Tok_Others then
1436 Save_Scan_State (Scan_State); -- at start of expression
1437
1438 -- Deal with (NULL RECORD)
1439
1440 if Token = Tok_Null then
1441 Scan; -- past NULL
1442
1443 if Token = Tok_Record then
1444 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1445 Set_Null_Record_Present (Aggregate_Node, True);
1446 Scan; -- past RECORD
1447 T_Right_Paren;
1448 return Aggregate_Node;
1449 else
1450 Restore_Scan_State (Scan_State); -- to NULL that must be expr
1451 end if;
1452
1453 elsif Token = Tok_For then
1454 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1455 Expr_Node := P_Iterated_Component_Association;
1456 goto Aggregate;
1457 end if;
1458
1459 -- Scan expression, handling box appearing as positional argument
1460
1461 if Token = Tok_Box then
1462 Box_Error;
1463 else
1464 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
1465 end if;
1466
1467 -- Extension or Delta aggregate
1468
1469 if Token = Tok_With then
1470 if Nkind (Expr_Node) = N_Attribute_Reference
1471 and then Attribute_Name (Expr_Node) = Name_Range
1472 then
1473 Bad_Range_Attribute (Sloc (Expr_Node));
1474 return Error;
1475 end if;
1476
1477 if Ada_Version = Ada_83 then
1478 Error_Msg_SC ("(Ada 83) extension aggregate not allowed");
1479 end if;
1480
1481 Scan; -- past WITH
1482 if Token = Tok_Delta then
1483 Scan; -- past DELTA
1484 Aggregate_Node := New_Node (N_Delta_Aggregate, Lparen_Sloc);
1485 Set_Expression (Aggregate_Node, Expr_Node);
1486 Expr_Node := Empty;
1487
1488 goto Aggregate;
1489
1490 else
1491 Aggregate_Node := New_Node (N_Extension_Aggregate, Lparen_Sloc);
1492 Set_Ancestor_Part (Aggregate_Node, Expr_Node);
1493 end if;
1494
1495 -- Deal with WITH NULL RECORD case
1496
1497 if Token = Tok_Null then
1498 Save_Scan_State (Scan_State); -- at NULL
1499 Scan; -- past NULL
1500
1501 if Token = Tok_Record then
1502 Scan; -- past RECORD
1503 Set_Null_Record_Present (Aggregate_Node, True);
1504 T_Right_Paren;
1505 return Aggregate_Node;
1506
1507 else
1508 Restore_Scan_State (Scan_State); -- to NULL that must be expr
1509 end if;
1510 end if;
1511
1512 if Token /= Tok_Others then
1513 Save_Scan_State (Scan_State);
1514 Expr_Node := P_Expression;
1515 else
1516 Expr_Node := Empty;
1517 end if;
1518
1519 -- Expression
1520
1521 elsif Token = Tok_Right_Paren or else Token in Token_Class_Eterm then
1522 if Nkind (Expr_Node) = N_Attribute_Reference
1523 and then Attribute_Name (Expr_Node) = Name_Range
1524 then
1525 Error_Msg
1526 ("|parentheses not allowed for range attribute", Lparen_Sloc);
1527 Scan; -- past right paren
1528 return Expr_Node;
1529 end if;
1530
1531 -- Bump paren count of expression
1532
1533 if Expr_Node /= Error then
1534 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1535 end if;
1536
1537 T_Right_Paren; -- past right paren (error message if none)
1538 return Expr_Node;
1539
1540 -- Normal aggregate
1541
1542 else
1543 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1544 end if;
1545
1546 -- Others
1547
1548 else
1549 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1550 Expr_Node := Empty;
1551 end if;
1552
1553 -- Prepare to scan list of component associations
1554 <<Aggregate>>
1555 Expr_List := No_List; -- don't set yet, maybe all named entries
1556 Assoc_List := No_List; -- don't set yet, maybe all positional entries
1557
1558 -- This loop scans through component associations. On entry to the
1559 -- loop, an expression has been scanned at the start of the current
1560 -- association unless initial token was OTHERS, in which case
1561 -- Expr_Node is set to Empty.
1562
1563 loop
1564 -- Deal with others association first. This is a named association
1565
1566 if No (Expr_Node) then
1567 if No (Assoc_List) then
1568 Assoc_List := New_List;
1569 end if;
1570
1571 Append (P_Record_Or_Array_Component_Association, Assoc_List);
1572
1573 -- Improper use of WITH
1574
1575 elsif Token = Tok_With then
1576 Error_Msg_SC ("WITH must be preceded by single expression in " &
1577 "extension aggregate");
1578 raise Error_Resync;
1579
1580 -- Range attribute can only appear as part of a discrete choice list
1581
1582 elsif Nkind (Expr_Node) = N_Attribute_Reference
1583 and then Attribute_Name (Expr_Node) = Name_Range
1584 and then Token /= Tok_Arrow
1585 and then Token /= Tok_Vertical_Bar
1586 then
1587 Bad_Range_Attribute (Sloc (Expr_Node));
1588 return Error;
1589
1590 -- Assume positional case if comma, right paren, or literal or
1591 -- identifier or OTHERS follows (the latter cases are missing
1592 -- comma cases). Also assume positional if a semicolon follows,
1593 -- which can happen if there are missing parens.
1594
1595 elsif Nkind (Expr_Node) = N_Iterated_Component_Association then
1596 if No (Assoc_List) then
1597 Assoc_List := New_List (Expr_Node);
1598 else
1599 Append_To (Assoc_List, Expr_Node);
1600 end if;
1601
1602 elsif Token = Tok_Comma
1603 or else Token = Tok_Right_Paren
1604 or else Token = Tok_Others
1605 or else Token in Token_Class_Lit_Or_Name
1606 or else Token = Tok_Semicolon
1607 then
1608 if Present (Assoc_List) then
1609 Error_Msg_BC -- CODEFIX
1610 ("""='>"" expected (positional association cannot follow "
1611 & "named association)");
1612 end if;
1613
1614 if No (Expr_List) then
1615 Expr_List := New_List;
1616 end if;
1617
1618 Append (Expr_Node, Expr_List);
1619
1620 -- Check for aggregate followed by left parent, maybe missing comma
1621
1622 elsif Nkind (Expr_Node) = N_Aggregate
1623 and then Token = Tok_Left_Paren
1624 then
1625 T_Comma;
1626
1627 if No (Expr_List) then
1628 Expr_List := New_List;
1629 end if;
1630
1631 Append (Expr_Node, Expr_List);
1632
1633 elsif Token = Tok_Right_Bracket then
1634 if No (Expr_List) then
1635 Expr_List := New_List;
1636 end if;
1637
1638 Append (Expr_Node, Expr_List);
1639 exit;
1640
1641 -- Anything else is assumed to be a named association
1642
1643 else
1644 Restore_Scan_State (Scan_State); -- to start of expression
1645
1646 if No (Assoc_List) then
1647 Assoc_List := New_List;
1648 end if;
1649
1650 Append (P_Record_Or_Array_Component_Association, Assoc_List);
1651 end if;
1652
1653 exit when not Comma_Present;
1654
1655 -- If we are at an expression terminator, something is seriously
1656 -- wrong, so let's get out now, before we start eating up stuff
1657 -- that doesn't belong to us.
1658
1659 if Token in Token_Class_Eterm and then Token /= Tok_For then
1660 Error_Msg_AP
1661 ("expecting expression or component association");
1662 exit;
1663 end if;
1664
1665 -- Deal with misused box
1666
1667 if Token = Tok_Box then
1668 Box_Error;
1669
1670 -- Otherwise initiate for reentry to top of loop by scanning an
1671 -- initial expression, unless the first token is OTHERS or FOR,
1672 -- which indicates an iterated component association.
1673
1674 elsif Token = Tok_Others then
1675 Expr_Node := Empty;
1676
1677 elsif Token = Tok_For then
1678 Expr_Node := P_Iterated_Component_Association;
1679
1680 else
1681 Save_Scan_State (Scan_State); -- at start of expression
1682 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
1683
1684 end if;
1685 end loop;
1686
1687 -- All component associations (positional and named) have been scanned
1688
1689 if Token = Tok_Right_Bracket and then Ada_Version >= Ada_2020 then
1690 Set_Component_Associations (Aggregate_Node, Assoc_List);
1691 Set_Is_Homogeneous_Aggregate (Aggregate_Node);
1692 Scan; -- past right bracket
1693 if Token = Tok_Apostrophe then
1694 Scan;
1695 if Token = Tok_Identifier then
1696 return P_Reduction_Attribute_Reference (Aggregate_Node);
1697 end if;
1698 end if;
1699 else
1700 T_Right_Paren;
1701 end if;
1702
1703 if Nkind (Aggregate_Node) /= N_Delta_Aggregate then
1704 Set_Expressions (Aggregate_Node, Expr_List);
1705 end if;
1706
1707 Set_Component_Associations (Aggregate_Node, Assoc_List);
1708 return Aggregate_Node;
1709 end P_Aggregate_Or_Paren_Expr;
1710
1711 ------------------------------------------------
1712 -- 4.3 Record or Array Component Association --
1713 ------------------------------------------------
1714
1715 -- RECORD_COMPONENT_ASSOCIATION ::=
1716 -- [COMPONENT_CHOICE_LIST =>] EXPRESSION
1717 -- | COMPONENT_CHOICE_LIST => <>
1718
1719 -- COMPONENT_CHOICE_LIST =>
1720 -- component_SELECTOR_NAME {| component_SELECTOR_NAME}
1721 -- | others
1722
1723 -- ARRAY_COMPONENT_ASSOCIATION ::=
1724 -- DISCRETE_CHOICE_LIST => EXPRESSION
1725 -- | DISCRETE_CHOICE_LIST => <>
1726 -- | ITERATED_COMPONENT_ASSOCIATION
1727
1728 -- Note: this routine only handles the named cases, including others.
1729 -- Cases where the component choice list is not present have already
1730 -- been handled directly.
1731
1732 -- Error recovery: can raise Error_Resync
1733
1734 -- Note: RECORD_COMPONENT_ASSOCIATION and ARRAY_COMPONENT_ASSOCIATION
1735 -- rules have been extended to give support to Ada 2005 limited
1736 -- aggregates (AI-287)
1737
1738 function P_Record_Or_Array_Component_Association return Node_Id is
1739 Assoc_Node : Node_Id;
1740
1741 begin
1742 -- A loop indicates an iterated_component_association
1743
1744 if Token = Tok_For then
1745 return P_Iterated_Component_Association;
1746 end if;
1747
1748 Assoc_Node := New_Node (N_Component_Association, Token_Ptr);
1749 Set_Choices (Assoc_Node, P_Discrete_Choice_List);
1750 Set_Sloc (Assoc_Node, Token_Ptr);
1751 TF_Arrow;
1752
1753 if Token = Tok_Box then
1754
1755 -- Ada 2005(AI-287): The box notation is used to indicate the
1756 -- default initialization of aggregate components
1757
1758 if Ada_Version < Ada_2005 then
1759 Error_Msg_SP
1760 ("component association with '<'> is an Ada 2005 extension");
1761 Error_Msg_SP ("\unit must be compiled with -gnat05 switch");
1762 end if;
1763
1764 Set_Box_Present (Assoc_Node);
1765 Scan; -- Past box
1766 else
1767 Set_Expression (Assoc_Node, P_Expression);
1768 end if;
1769
1770 return Assoc_Node;
1771 end P_Record_Or_Array_Component_Association;
1772
1773 -----------------------------
1774 -- 4.3.1 Record Aggregate --
1775 -----------------------------
1776
1777 -- Case of enumeration aggregate is parsed by P_Aggregate (4.3)
1778 -- All other cases are parsed by P_Aggregate_Or_Paren_Expr (4.3)
1779
1780 ----------------------------------------------
1781 -- 4.3.1 Record Component Association List --
1782 ----------------------------------------------
1783
1784 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1785
1786 ----------------------------------
1787 -- 4.3.1 Component Choice List --
1788 ----------------------------------
1789
1790 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1791
1792 --------------------------------
1793 -- 4.3.1 Extension Aggregate --
1794 --------------------------------
1795
1796 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1797
1798 --------------------------
1799 -- 4.3.1 Ancestor Part --
1800 --------------------------
1801
1802 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1803
1804 ----------------------------
1805 -- 4.3.1 Array Aggregate --
1806 ----------------------------
1807
1808 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1809
1810 ---------------------------------------
1811 -- 4.3.1 Positional Array Aggregate --
1812 ---------------------------------------
1813
1814 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1815
1816 ----------------------------------
1817 -- 4.3.1 Named Array Aggregate --
1818 ----------------------------------
1819
1820 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1821
1822 ----------------------------------------
1823 -- 4.3.1 Array Component Association --
1824 ----------------------------------------
1825
1826 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1827
1828 ---------------------
1829 -- 4.4 Expression --
1830 ---------------------
1831
1832 -- This procedure parses EXPRESSION or CHOICE_EXPRESSION
1833
1834 -- EXPRESSION ::=
1835 -- RELATION {LOGICAL_OPERATOR RELATION}
1836
1837 -- CHOICE_EXPRESSION ::=
1838 -- CHOICE_RELATION {LOGICAL_OPERATOR CHOICE_RELATION}
1839
1840 -- LOGICAL_OPERATOR ::= and | and then | or | or else | xor
1841
1842 -- On return, Expr_Form indicates the categorization of the expression
1843 -- EF_Range_Attr is not a possible value (if a range attribute is found,
1844 -- an error message is given, and Error is returned).
1845
1846 -- Error recovery: cannot raise Error_Resync
1847
1848 function P_Expression return Node_Id is
1849 Logical_Op : Node_Kind;
1850 Prev_Logical_Op : Node_Kind;
1851 Op_Location : Source_Ptr;
1852 Node1 : Node_Id;
1853 Node2 : Node_Id;
1854
1855 begin
1856 Node1 := P_Relation;
1857
1858 if Token in Token_Class_Logop then
1859 Prev_Logical_Op := N_Empty;
1860
1861 loop
1862 Op_Location := Token_Ptr;
1863 Logical_Op := P_Logical_Operator;
1864
1865 if Prev_Logical_Op /= N_Empty and then
1866 Logical_Op /= Prev_Logical_Op
1867 then
1868 Error_Msg
1869 ("mixed logical operators in expression", Op_Location);
1870 Prev_Logical_Op := N_Empty;
1871 else
1872 Prev_Logical_Op := Logical_Op;
1873 end if;
1874
1875 Node2 := Node1;
1876 Node1 := New_Op_Node (Logical_Op, Op_Location);
1877 Set_Left_Opnd (Node1, Node2);
1878 Set_Right_Opnd (Node1, P_Relation);
1879
1880 -- Check for case of errant comma or semicolon
1881
1882 if Token = Tok_Comma or else Token = Tok_Semicolon then
1883 declare
1884 Com : constant Boolean := Token = Tok_Comma;
1885 Scan_State : Saved_Scan_State;
1886 Logop : Node_Kind;
1887
1888 begin
1889 Save_Scan_State (Scan_State); -- at comma/semicolon
1890 Scan; -- past comma/semicolon
1891
1892 -- Check for AND THEN or OR ELSE after comma/semicolon. We
1893 -- do not deal with AND/OR because those cases get mixed up
1894 -- with the select alternatives case.
1895
1896 if Token = Tok_And or else Token = Tok_Or then
1897 Logop := P_Logical_Operator;
1898 Restore_Scan_State (Scan_State); -- to comma/semicolon
1899
1900 if Nkind_In (Logop, N_And_Then, N_Or_Else) then
1901 Scan; -- past comma/semicolon
1902
1903 if Com then
1904 Error_Msg_SP -- CODEFIX
1905 ("|extra "","" ignored");
1906 else
1907 Error_Msg_SP -- CODEFIX
1908 ("|extra "";"" ignored");
1909 end if;
1910
1911 else
1912 Restore_Scan_State (Scan_State); -- to comma/semicolon
1913 end if;
1914
1915 else
1916 Restore_Scan_State (Scan_State); -- to comma/semicolon
1917 end if;
1918 end;
1919 end if;
1920
1921 exit when Token not in Token_Class_Logop;
1922 end loop;
1923
1924 Expr_Form := EF_Non_Simple;
1925 end if;
1926
1927 if Token = Tok_Apostrophe then
1928 Bad_Range_Attribute (Token_Ptr);
1929 return Error;
1930 else
1931 return Node1;
1932 end if;
1933 end P_Expression;
1934
1935 -- This function is identical to the normal P_Expression, except that it
1936 -- also permits the appearance of a case, conditional, or quantified
1937 -- expression if the call immediately follows a left paren, and followed
1938 -- by a right parenthesis. These forms are allowed if these conditions
1939 -- are not met, but an error message will be issued.
1940
1941 function P_Expression_If_OK return Node_Id is
1942 begin
1943 -- Case of conditional, case or quantified expression
1944
1945 if Token = Tok_Case or else Token = Tok_If or else Token = Tok_For then
1946 return P_Unparen_Cond_Case_Quant_Expression;
1947
1948 -- Normal case, not case/conditional/quantified expression
1949
1950 else
1951 return P_Expression;
1952 end if;
1953 end P_Expression_If_OK;
1954
1955 -- This function is identical to the normal P_Expression, except that it
1956 -- checks that the expression scan did not stop on a right paren. It is
1957 -- called in all contexts where a right parenthesis cannot legitimately
1958 -- follow an expression.
1959
1960 -- Error recovery: cannot raise Error_Resync
1961
1962 function P_Expression_No_Right_Paren return Node_Id is
1963 Expr : constant Node_Id := P_Expression;
1964 begin
1965 Ignore (Tok_Right_Paren);
1966 return Expr;
1967 end P_Expression_No_Right_Paren;
1968
1969 ----------------------------------------
1970 -- 4.4 Expression_Or_Range_Attribute --
1971 ----------------------------------------
1972
1973 -- EXPRESSION ::=
1974 -- RELATION {and RELATION} | RELATION {and then RELATION}
1975 -- | RELATION {or RELATION} | RELATION {or else RELATION}
1976 -- | RELATION {xor RELATION}
1977
1978 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
1979
1980 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
1981
1982 -- On return, Expr_Form indicates the categorization of the expression
1983 -- and EF_Range_Attr is one of the possibilities.
1984
1985 -- Error recovery: cannot raise Error_Resync
1986
1987 -- In the grammar, a RANGE attribute is simply a name, but its use is
1988 -- highly restricted, so in the parser, we do not regard it as a name.
1989 -- Instead, P_Name returns without scanning the 'RANGE part of the
1990 -- attribute, and P_Expression_Or_Range_Attribute handles the range
1991 -- attribute reference. In the normal case where a range attribute is
1992 -- not allowed, an error message is issued by P_Expression.
1993
1994 function P_Expression_Or_Range_Attribute return Node_Id is
1995 Logical_Op : Node_Kind;
1996 Prev_Logical_Op : Node_Kind;
1997 Op_Location : Source_Ptr;
1998 Node1 : Node_Id;
1999 Node2 : Node_Id;
2000 Attr_Node : Node_Id;
2001
2002 begin
2003 Node1 := P_Relation;
2004
2005 if Token = Tok_Apostrophe then
2006 Attr_Node := P_Range_Attribute_Reference (Node1);
2007 Expr_Form := EF_Range_Attr;
2008 return Attr_Node;
2009
2010 elsif Token in Token_Class_Logop then
2011 Prev_Logical_Op := N_Empty;
2012
2013 loop
2014 Op_Location := Token_Ptr;
2015 Logical_Op := P_Logical_Operator;
2016
2017 if Prev_Logical_Op /= N_Empty and then
2018 Logical_Op /= Prev_Logical_Op
2019 then
2020 Error_Msg
2021 ("mixed logical operators in expression", Op_Location);
2022 Prev_Logical_Op := N_Empty;
2023 else
2024 Prev_Logical_Op := Logical_Op;
2025 end if;
2026
2027 Node2 := Node1;
2028 Node1 := New_Op_Node (Logical_Op, Op_Location);
2029 Set_Left_Opnd (Node1, Node2);
2030 Set_Right_Opnd (Node1, P_Relation);
2031 exit when Token not in Token_Class_Logop;
2032 end loop;
2033
2034 Expr_Form := EF_Non_Simple;
2035 end if;
2036
2037 if Token = Tok_Apostrophe then
2038 Bad_Range_Attribute (Token_Ptr);
2039 return Error;
2040 else
2041 return Node1;
2042 end if;
2043 end P_Expression_Or_Range_Attribute;
2044
2045 -- Version that allows a non-parenthesized case, conditional, or quantified
2046 -- expression if the call immediately follows a left paren, and followed
2047 -- by a right parenthesis. These forms are allowed if these conditions
2048 -- are not met, but an error message will be issued.
2049
2050 function P_Expression_Or_Range_Attribute_If_OK return Node_Id is
2051 begin
2052 -- Case of conditional, case or quantified expression
2053
2054 if Token = Tok_Case or else Token = Tok_If or else Token = Tok_For then
2055 return P_Unparen_Cond_Case_Quant_Expression;
2056
2057 -- Normal case, not one of the above expression types
2058
2059 else
2060 return P_Expression_Or_Range_Attribute;
2061 end if;
2062 end P_Expression_Or_Range_Attribute_If_OK;
2063
2064 -------------------
2065 -- 4.4 Relation --
2066 -------------------
2067
2068 -- This procedure scans both relations and choice relations
2069
2070 -- CHOICE_RELATION ::=
2071 -- SIMPLE_EXPRESSION [RELATIONAL_OPERATOR SIMPLE_EXPRESSION]
2072
2073 -- RELATION ::=
2074 -- SIMPLE_EXPRESSION [not] in MEMBERSHIP_CHOICE_LIST
2075 -- | RAISE_EXPRESSION
2076
2077 -- MEMBERSHIP_CHOICE_LIST ::=
2078 -- MEMBERSHIP_CHOICE {'|' MEMBERSHIP CHOICE}
2079
2080 -- MEMBERSHIP_CHOICE ::=
2081 -- CHOICE_EXPRESSION | RANGE | SUBTYPE_MARK
2082
2083 -- RAISE_EXPRESSION ::= raise exception_NAME [with string_EXPRESSION]
2084
2085 -- On return, Expr_Form indicates the categorization of the expression
2086
2087 -- Note: if Token = Tok_Apostrophe on return, then Expr_Form is set to
2088 -- EF_Simple_Name and the following token is RANGE (range attribute case).
2089
2090 -- Error recovery: cannot raise Error_Resync. If an error occurs within an
2091 -- expression, then tokens are scanned until either a non-expression token,
2092 -- a right paren (not matched by a left paren) or a comma, is encountered.
2093
2094 function P_Relation return Node_Id is
2095 Node1, Node2 : Node_Id;
2096 Optok : Source_Ptr;
2097
2098 begin
2099 -- First check for raise expression
2100
2101 if Token = Tok_Raise then
2102 Expr_Form := EF_Non_Simple;
2103 return P_Raise_Expression;
2104 end if;
2105
2106 -- All other cases
2107
2108 Node1 := P_Simple_Expression;
2109
2110 if Token not in Token_Class_Relop then
2111 return Node1;
2112
2113 else
2114 -- Here we have a relational operator following. If so then scan it
2115 -- out. Note that the assignment symbol := is treated as a relational
2116 -- operator to improve the error recovery when it is misused for =.
2117 -- P_Relational_Operator also parses the IN and NOT IN operations.
2118
2119 Optok := Token_Ptr;
2120 Node2 := New_Op_Node (P_Relational_Operator, Optok);
2121 Set_Left_Opnd (Node2, Node1);
2122
2123 -- Case of IN or NOT IN
2124
2125 if Prev_Token = Tok_In then
2126 P_Membership_Test (Node2);
2127
2128 -- Case of relational operator (= /= < <= > >=)
2129
2130 else
2131 Set_Right_Opnd (Node2, P_Simple_Expression);
2132 end if;
2133
2134 Expr_Form := EF_Non_Simple;
2135
2136 if Token in Token_Class_Relop then
2137 Error_Msg_SC ("unexpected relational operator");
2138 raise Error_Resync;
2139 end if;
2140
2141 return Node2;
2142 end if;
2143
2144 -- If any error occurs, then scan to the next expression terminator symbol
2145 -- or comma or right paren at the outer (i.e. current) parentheses level.
2146 -- The flags are set to indicate a normal simple expression.
2147
2148 exception
2149 when Error_Resync =>
2150 Resync_Expression;
2151 Expr_Form := EF_Simple;
2152 return Error;
2153 end P_Relation;
2154
2155 ----------------------------
2156 -- 4.4 Simple Expression --
2157 ----------------------------
2158
2159 -- SIMPLE_EXPRESSION ::=
2160 -- [UNARY_ADDING_OPERATOR] TERM {BINARY_ADDING_OPERATOR TERM}
2161
2162 -- On return, Expr_Form indicates the categorization of the expression
2163
2164 -- Note: if Token = Tok_Apostrophe on return, then Expr_Form is set to
2165 -- EF_Simple_Name and the following token is RANGE (range attribute case).
2166
2167 -- Error recovery: cannot raise Error_Resync. If an error occurs within an
2168 -- expression, then tokens are scanned until either a non-expression token,
2169 -- a right paren (not matched by a left paren) or a comma, is encountered.
2170
2171 -- Note: P_Simple_Expression is called only internally by higher level
2172 -- expression routines. In cases in the grammar where a simple expression
2173 -- is required, the approach is to scan an expression, and then post an
2174 -- appropriate error message if the expression obtained is not simple. This
2175 -- gives better error recovery and treatment.
2176
2177 function P_Simple_Expression return Node_Id is
2178 Scan_State : Saved_Scan_State;
2179 Node1 : Node_Id;
2180 Node2 : Node_Id;
2181 Tokptr : Source_Ptr;
2182
2183 function At_Start_Of_Attribute return Boolean;
2184 -- Tests if we have quote followed by attribute name, if so, return True
2185 -- otherwise return False.
2186
2187 ---------------------------
2188 -- At_Start_Of_Attribute --
2189 ---------------------------
2190
2191 function At_Start_Of_Attribute return Boolean is
2192 begin
2193 if Token /= Tok_Apostrophe then
2194 return False;
2195
2196 else
2197 declare
2198 Scan_State : Saved_Scan_State;
2199
2200 begin
2201 Save_Scan_State (Scan_State);
2202 Scan; -- past quote
2203
2204 if Token = Tok_Identifier
2205 and then Is_Attribute_Name (Chars (Token_Node))
2206 then
2207 Restore_Scan_State (Scan_State);
2208 return True;
2209 else
2210 Restore_Scan_State (Scan_State);
2211 return False;
2212 end if;
2213 end;
2214 end if;
2215 end At_Start_Of_Attribute;
2216
2217 -- Start of processing for P_Simple_Expression
2218
2219 begin
2220 -- Check for cases starting with a name. There are two reasons for
2221 -- special casing. First speed things up by catching a common case
2222 -- without going through several routine layers. Second the caller must
2223 -- be informed via Expr_Form when the simple expression is a name.
2224
2225 if Token in Token_Class_Name then
2226 Node1 := P_Name;
2227
2228 -- Deal with apostrophe cases
2229
2230 if Token = Tok_Apostrophe then
2231 Save_Scan_State (Scan_State); -- at apostrophe
2232 Scan; -- past apostrophe
2233
2234 -- If qualified expression, scan it out and fall through
2235
2236 if Token = Tok_Left_Paren then
2237 Node1 := P_Qualified_Expression (Node1);
2238 Expr_Form := EF_Simple;
2239
2240 -- If range attribute, then we return with Token pointing to the
2241 -- apostrophe. Note: avoid the normal error check on exit. We
2242 -- know that the expression really is complete in this case.
2243
2244 else -- Token = Tok_Range then
2245 Restore_Scan_State (Scan_State); -- to apostrophe
2246 Expr_Form := EF_Simple_Name;
2247 return Node1;
2248 end if;
2249 end if;
2250
2251 -- If an expression terminator follows, the previous processing
2252 -- completely scanned out the expression (a common case), and
2253 -- left Expr_Form set appropriately for returning to our caller.
2254
2255 if Token in Token_Class_Sterm then
2256 null;
2257
2258 -- If we do not have an expression terminator, then complete the
2259 -- scan of a simple expression. This code duplicates the code
2260 -- found in P_Term and P_Factor.
2261
2262 else
2263 if Token = Tok_Double_Asterisk then
2264 if Style_Check then
2265 Style.Check_Exponentiation_Operator;
2266 end if;
2267
2268 Node2 := New_Op_Node (N_Op_Expon, Token_Ptr);
2269 Scan; -- past **
2270 Set_Left_Opnd (Node2, Node1);
2271 Set_Right_Opnd (Node2, P_Primary);
2272 Check_Bad_Exp;
2273 Node1 := Node2;
2274 end if;
2275
2276 loop
2277 exit when Token not in Token_Class_Mulop;
2278 Tokptr := Token_Ptr;
2279 Node2 := New_Op_Node (P_Multiplying_Operator, Tokptr);
2280
2281 if Style_Check then
2282 Style.Check_Binary_Operator;
2283 end if;
2284
2285 Scan; -- past operator
2286 Set_Left_Opnd (Node2, Node1);
2287 Set_Right_Opnd (Node2, P_Factor);
2288 Node1 := Node2;
2289 end loop;
2290
2291 loop
2292 exit when Token not in Token_Class_Binary_Addop;
2293 Tokptr := Token_Ptr;
2294 Node2 := New_Op_Node (P_Binary_Adding_Operator, Tokptr);
2295
2296 if Style_Check then
2297 Style.Check_Binary_Operator;
2298 end if;
2299
2300 Scan; -- past operator
2301 Set_Left_Opnd (Node2, Node1);
2302 Set_Right_Opnd (Node2, P_Term);
2303 Node1 := Node2;
2304 end loop;
2305
2306 Expr_Form := EF_Simple;
2307 end if;
2308
2309 -- Cases where simple expression does not start with a name
2310
2311 else
2312 -- Scan initial sign and initial Term
2313
2314 if Token in Token_Class_Unary_Addop then
2315 Tokptr := Token_Ptr;
2316 Node1 := New_Op_Node (P_Unary_Adding_Operator, Tokptr);
2317
2318 if Style_Check then
2319 Style.Check_Unary_Plus_Or_Minus (Inside_Depends);
2320 end if;
2321
2322 Scan; -- past operator
2323 Set_Right_Opnd (Node1, P_Term);
2324 else
2325 Node1 := P_Term;
2326 end if;
2327
2328 -- In the following, we special-case a sequence of concatenations of
2329 -- string literals, such as "aaa" & "bbb" & ... & "ccc", with nothing
2330 -- else mixed in. For such a sequence, we return a tree representing
2331 -- "" & "aaabbb...ccc" (a single concatenation). This is done only if
2332 -- the number of concatenations is large. If semantic analysis
2333 -- resolves the "&" to a predefined one, then this folding gives the
2334 -- right answer. Otherwise, semantic analysis will complain about a
2335 -- capacity-exceeded error. The purpose of this trick is to avoid
2336 -- creating a deeply nested tree, which would cause deep recursion
2337 -- during semantics, causing stack overflow. This way, we can handle
2338 -- enormous concatenations in the normal case of predefined "&". We
2339 -- first build up the normal tree, and then rewrite it if
2340 -- appropriate.
2341
2342 declare
2343 Num_Concats_Threshold : constant Positive := 1000;
2344 -- Arbitrary threshold value to enable optimization
2345
2346 First_Node : constant Node_Id := Node1;
2347 Is_Strlit_Concat : Boolean;
2348 -- True iff we've parsed a sequence of concatenations of string
2349 -- literals, with nothing else mixed in.
2350
2351 Num_Concats : Natural;
2352 -- Number of "&" operators if Is_Strlit_Concat is True
2353
2354 begin
2355 Is_Strlit_Concat :=
2356 Nkind (Node1) = N_String_Literal
2357 and then Token = Tok_Ampersand;
2358 Num_Concats := 0;
2359
2360 -- Scan out sequence of terms separated by binary adding operators
2361
2362 loop
2363 exit when Token not in Token_Class_Binary_Addop;
2364 Tokptr := Token_Ptr;
2365 Node2 := New_Op_Node (P_Binary_Adding_Operator, Tokptr);
2366
2367 if Style_Check and then not Debug_Flag_Dot_QQ then
2368 Style.Check_Binary_Operator;
2369 end if;
2370
2371 Scan; -- past operator
2372 Set_Left_Opnd (Node2, Node1);
2373 Node1 := P_Term;
2374 Set_Right_Opnd (Node2, Node1);
2375
2376 -- Check if we're still concatenating string literals
2377
2378 Is_Strlit_Concat :=
2379 Is_Strlit_Concat
2380 and then Nkind (Node2) = N_Op_Concat
2381 and then Nkind (Node1) = N_String_Literal;
2382
2383 if Is_Strlit_Concat then
2384 Num_Concats := Num_Concats + 1;
2385 end if;
2386
2387 Node1 := Node2;
2388 end loop;
2389
2390 -- If we have an enormous series of concatenations of string
2391 -- literals, rewrite as explained above. The Is_Folded_In_Parser
2392 -- flag tells semantic analysis that if the "&" is not predefined,
2393 -- the folded value is wrong.
2394
2395 if Is_Strlit_Concat
2396 and then Num_Concats >= Num_Concats_Threshold
2397 then
2398 declare
2399 Empty_String_Val : String_Id;
2400 -- String_Id for ""
2401
2402 Strlit_Concat_Val : String_Id;
2403 -- Contains the folded value (which will be correct if the
2404 -- "&" operators are the predefined ones).
2405
2406 Cur_Node : Node_Id;
2407 -- For walking up the tree
2408
2409 New_Node : Node_Id;
2410 -- Folded node to replace Node1
2411
2412 Loc : constant Source_Ptr := Sloc (First_Node);
2413
2414 begin
2415 -- Walk up the tree starting at the leftmost string literal
2416 -- (First_Node), building up the Strlit_Concat_Val as we
2417 -- go. Note that we do not use recursion here -- the whole
2418 -- point is to avoid recursively walking that enormous tree.
2419
2420 Start_String;
2421 Store_String_Chars (Strval (First_Node));
2422
2423 Cur_Node := Parent (First_Node);
2424 while Present (Cur_Node) loop
2425 pragma Assert (Nkind (Cur_Node) = N_Op_Concat and then
2426 Nkind (Right_Opnd (Cur_Node)) = N_String_Literal);
2427
2428 Store_String_Chars (Strval (Right_Opnd (Cur_Node)));
2429 Cur_Node := Parent (Cur_Node);
2430 end loop;
2431
2432 Strlit_Concat_Val := End_String;
2433
2434 -- Create new folded node, and rewrite result with a concat-
2435 -- enation of an empty string literal and the folded node.
2436
2437 Start_String;
2438 Empty_String_Val := End_String;
2439 New_Node :=
2440 Make_Op_Concat (Loc,
2441 Make_String_Literal (Loc, Empty_String_Val),
2442 Make_String_Literal (Loc, Strlit_Concat_Val,
2443 Is_Folded_In_Parser => True));
2444 Rewrite (Node1, New_Node);
2445 end;
2446 end if;
2447 end;
2448
2449 -- All done, we clearly do not have name or numeric literal so this
2450 -- is a case of a simple expression which is some other possibility.
2451
2452 Expr_Form := EF_Simple;
2453 end if;
2454
2455 -- Come here at end of simple expression, where we do a couple of
2456 -- special checks to improve error recovery.
2457
2458 -- Special test to improve error recovery. If the current token is a
2459 -- period, then someone is trying to do selection on something that is
2460 -- not a name, e.g. a qualified expression.
2461
2462 if Token = Tok_Dot then
2463 Error_Msg_SC ("prefix for selection is not a name");
2464
2465 -- If qualified expression, comment and continue, otherwise something
2466 -- is pretty nasty so do an Error_Resync call.
2467
2468 if Ada_Version < Ada_2012
2469 and then Nkind (Node1) = N_Qualified_Expression
2470 then
2471 Error_Msg_SC ("\would be legal in Ada 2012 mode");
2472 else
2473 raise Error_Resync;
2474 end if;
2475 end if;
2476
2477 -- Special test to improve error recovery: If the current token is
2478 -- not the first token on a line (as determined by checking the
2479 -- previous token position with the start of the current line),
2480 -- then we insist that we have an appropriate terminating token.
2481 -- Consider the following two examples:
2482
2483 -- 1) if A nad B then ...
2484
2485 -- 2) A := B
2486 -- C := D
2487
2488 -- In the first example, we would like to issue a binary operator
2489 -- expected message and resynchronize to the then. In the second
2490 -- example, we do not want to issue a binary operator message, so
2491 -- that instead we will get the missing semicolon message. This
2492 -- distinction is of course a heuristic which does not always work,
2493 -- but in practice it is quite effective.
2494
2495 -- Note: the one case in which we do not go through this circuit is
2496 -- when we have scanned a range attribute and want to return with
2497 -- Token pointing to the apostrophe. The apostrophe is not normally
2498 -- an expression terminator, and is not in Token_Class_Sterm, but
2499 -- in this special case we know that the expression is complete.
2500
2501 if not Token_Is_At_Start_Of_Line
2502 and then Token not in Token_Class_Sterm
2503 then
2504 -- Normally the right error message is indeed that we expected a
2505 -- binary operator, but in the case of being between a right and left
2506 -- paren, e.g. in an aggregate, a more likely error is missing comma.
2507
2508 if Prev_Token = Tok_Right_Paren and then Token = Tok_Left_Paren then
2509 T_Comma;
2510
2511 -- And if we have a quote, we may have a bad attribute
2512
2513 elsif At_Start_Of_Attribute then
2514 Error_Msg_SC ("prefix of attribute must be a name");
2515
2516 if Ada_Version >= Ada_2012 then
2517 Error_Msg_SC ("\qualify expression to turn it into a name");
2518 end if;
2519
2520 -- Normal case for binary operator expected message
2521
2522 else
2523 Error_Msg_AP ("binary operator expected");
2524 end if;
2525
2526 raise Error_Resync;
2527
2528 else
2529 return Node1;
2530 end if;
2531
2532 -- If any error occurs, then scan to next expression terminator symbol
2533 -- or comma, right paren or vertical bar at the outer (i.e. current) paren
2534 -- level. Expr_Form is set to indicate a normal simple expression.
2535
2536 exception
2537 when Error_Resync =>
2538 Resync_Expression;
2539 Expr_Form := EF_Simple;
2540 return Error;
2541 end P_Simple_Expression;
2542
2543 -----------------------------------------------
2544 -- 4.4 Simple Expression or Range Attribute --
2545 -----------------------------------------------
2546
2547 -- SIMPLE_EXPRESSION ::=
2548 -- [UNARY_ADDING_OPERATOR] TERM {BINARY_ADDING_OPERATOR TERM}
2549
2550 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
2551
2552 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
2553
2554 -- Error recovery: cannot raise Error_Resync
2555
2556 function P_Simple_Expression_Or_Range_Attribute return Node_Id is
2557 Sexpr : Node_Id;
2558 Attr_Node : Node_Id;
2559
2560 begin
2561 -- We don't just want to roar ahead and call P_Simple_Expression
2562 -- here, since we want to handle the case of a parenthesized range
2563 -- attribute cleanly.
2564
2565 if Token = Tok_Left_Paren then
2566 declare
2567 Lptr : constant Source_Ptr := Token_Ptr;
2568 Scan_State : Saved_Scan_State;
2569
2570 begin
2571 Save_Scan_State (Scan_State);
2572 Scan; -- past left paren
2573 Sexpr := P_Simple_Expression;
2574
2575 if Token = Tok_Apostrophe then
2576 Attr_Node := P_Range_Attribute_Reference (Sexpr);
2577 Expr_Form := EF_Range_Attr;
2578
2579 if Token = Tok_Right_Paren then
2580 Scan; -- scan past right paren if present
2581 end if;
2582
2583 Error_Msg ("parentheses not allowed for range attribute", Lptr);
2584
2585 return Attr_Node;
2586 end if;
2587
2588 Restore_Scan_State (Scan_State);
2589 end;
2590 end if;
2591
2592 -- Here after dealing with parenthesized range attribute
2593
2594 Sexpr := P_Simple_Expression;
2595
2596 if Token = Tok_Apostrophe then
2597 Attr_Node := P_Range_Attribute_Reference (Sexpr);
2598 Expr_Form := EF_Range_Attr;
2599 return Attr_Node;
2600
2601 else
2602 return Sexpr;
2603 end if;
2604 end P_Simple_Expression_Or_Range_Attribute;
2605
2606 ---------------
2607 -- 4.4 Term --
2608 ---------------
2609
2610 -- TERM ::= FACTOR {MULTIPLYING_OPERATOR FACTOR}
2611
2612 -- Error recovery: can raise Error_Resync
2613
2614 function P_Term return Node_Id is
2615 Node1, Node2 : Node_Id;
2616 Tokptr : Source_Ptr;
2617
2618 begin
2619 Node1 := P_Factor;
2620
2621 loop
2622 exit when Token not in Token_Class_Mulop;
2623 Tokptr := Token_Ptr;
2624 Node2 := New_Op_Node (P_Multiplying_Operator, Tokptr);
2625
2626 if Style_Check and then not Debug_Flag_Dot_QQ then
2627 Style.Check_Binary_Operator;
2628 end if;
2629
2630 Scan; -- past operator
2631 Set_Left_Opnd (Node2, Node1);
2632 Set_Right_Opnd (Node2, P_Factor);
2633 Node1 := Node2;
2634 end loop;
2635
2636 return Node1;
2637 end P_Term;
2638
2639 -----------------
2640 -- 4.4 Factor --
2641 -----------------
2642
2643 -- FACTOR ::= PRIMARY [** PRIMARY] | abs PRIMARY | not PRIMARY
2644
2645 -- Error recovery: can raise Error_Resync
2646
2647 function P_Factor return Node_Id is
2648 Node1 : Node_Id;
2649 Node2 : Node_Id;
2650
2651 begin
2652 if Token = Tok_Abs then
2653 Node1 := New_Op_Node (N_Op_Abs, Token_Ptr);
2654
2655 if Style_Check then
2656 Style.Check_Abs_Not;
2657 end if;
2658
2659 Scan; -- past ABS
2660 Set_Right_Opnd (Node1, P_Primary);
2661 return Node1;
2662
2663 elsif Token = Tok_Not then
2664 Node1 := New_Op_Node (N_Op_Not, Token_Ptr);
2665
2666 if Style_Check then
2667 Style.Check_Abs_Not;
2668 end if;
2669
2670 Scan; -- past NOT
2671 Set_Right_Opnd (Node1, P_Primary);
2672 return Node1;
2673
2674 else
2675 Node1 := P_Primary;
2676
2677 if Token = Tok_Double_Asterisk then
2678 Node2 := New_Op_Node (N_Op_Expon, Token_Ptr);
2679 Scan; -- past **
2680 Set_Left_Opnd (Node2, Node1);
2681 Set_Right_Opnd (Node2, P_Primary);
2682 Check_Bad_Exp;
2683 return Node2;
2684 else
2685 return Node1;
2686 end if;
2687 end if;
2688 end P_Factor;
2689
2690 ------------------
2691 -- 4.4 Primary --
2692 ------------------
2693
2694 -- PRIMARY ::=
2695 -- NUMERIC_LITERAL | null
2696 -- | STRING_LITERAL | AGGREGATE
2697 -- | NAME | QUALIFIED_EXPRESSION
2698 -- | ALLOCATOR | (EXPRESSION) | QUANTIFIED_EXPRESSION
2699 -- | REDUCTION_ATTRIBUTE_REFERENCE
2700
2701 -- Error recovery: can raise Error_Resync
2702
2703 function P_Primary return Node_Id is
2704 Scan_State : Saved_Scan_State;
2705 Node1 : Node_Id;
2706
2707 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
2708 -- Remember if previous token is a left parenthesis. This is used to
2709 -- deal with checking whether IF/CASE/FOR expressions appearing as
2710 -- primaries require extra parenthesization.
2711
2712 begin
2713 -- The loop runs more than once only if misplaced pragmas are found
2714 -- or if a misplaced unary minus is skipped.
2715
2716 loop
2717 case Token is
2718
2719 -- Name token can start a name, call or qualified expression, all
2720 -- of which are acceptable possibilities for primary. Note also
2721 -- that string literal is included in name (as operator symbol)
2722 -- and type conversion is included in name (as indexed component).
2723
2724 when Tok_Char_Literal
2725 | Tok_Identifier
2726 | Tok_Operator_Symbol
2727 =>
2728 Node1 := P_Name;
2729
2730 -- All done unless apostrophe follows
2731
2732 if Token /= Tok_Apostrophe then
2733 return Node1;
2734
2735 -- Apostrophe following means that we have either just parsed
2736 -- the subtype mark of a qualified expression, or the prefix
2737 -- or a range attribute.
2738
2739 else -- Token = Tok_Apostrophe
2740 Save_Scan_State (Scan_State); -- at apostrophe
2741 Scan; -- past apostrophe
2742
2743 -- If range attribute, then this is always an error, since
2744 -- the only legitimate case (where the scanned expression is
2745 -- a qualified simple name) is handled at the level of the
2746 -- Simple_Expression processing. This case corresponds to a
2747 -- usage such as 3 + A'Range, which is always illegal.
2748
2749 if Token = Tok_Range then
2750 Restore_Scan_State (Scan_State); -- to apostrophe
2751 Bad_Range_Attribute (Token_Ptr);
2752 return Error;
2753
2754 -- If left paren, then we have a qualified expression.
2755 -- Note that P_Name guarantees that in this case, where
2756 -- Token = Tok_Apostrophe on return, the only two possible
2757 -- tokens following the apostrophe are left paren and
2758 -- RANGE, so we know we have a left paren here.
2759
2760 else -- Token = Tok_Left_Paren
2761 return P_Qualified_Expression (Node1);
2762
2763 end if;
2764 end if;
2765
2766 -- Numeric or string literal
2767
2768 when Tok_Integer_Literal
2769 | Tok_Real_Literal
2770 | Tok_String_Literal
2771 =>
2772 Node1 := Token_Node;
2773 Scan; -- past number
2774 return Node1;
2775
2776 -- Left paren, starts aggregate or parenthesized expression
2777
2778 when Tok_Left_Paren =>
2779 declare
2780 Expr : constant Node_Id := P_Aggregate_Or_Paren_Expr;
2781
2782 begin
2783 if Nkind (Expr) = N_Attribute_Reference
2784 and then Attribute_Name (Expr) = Name_Range
2785 then
2786 Bad_Range_Attribute (Sloc (Expr));
2787 end if;
2788
2789 return Expr;
2790 end;
2791
2792 when Tok_Left_Bracket =>
2793 return P_Aggregate;
2794
2795 -- Allocator
2796
2797 when Tok_New =>
2798 return P_Allocator;
2799
2800 -- Null
2801
2802 when Tok_Null =>
2803 Scan; -- past NULL
2804 return New_Node (N_Null, Prev_Token_Ptr);
2805
2806 -- Pragma, not allowed here, so just skip past it
2807
2808 when Tok_Pragma =>
2809 P_Pragmas_Misplaced;
2810
2811 -- Deal with IF (possible unparenthesized if expression)
2812
2813 when Tok_If =>
2814
2815 -- If this looks like a real if, defined as an IF appearing at
2816 -- the start of a new line, then we consider we have a missing
2817 -- operand. If in Ada 2012 and the IF is not properly indented
2818 -- for a statement, we prefer to issue a message about an ill-
2819 -- parenthesized if expression.
2820
2821 if Token_Is_At_Start_Of_Line
2822 and then not
2823 (Ada_Version >= Ada_2012
2824 and then Style_Check_Indentation /= 0
2825 and then Start_Column rem Style_Check_Indentation /= 0)
2826 then
2827 Error_Msg_AP ("missing operand");
2828 return Error;
2829
2830 -- If this looks like an if expression, then treat it that way
2831 -- with an error message if not explicitly surrounded by
2832 -- parentheses.
2833
2834 elsif Ada_Version >= Ada_2012 then
2835 Node1 := P_If_Expression;
2836
2837 if not (Lparen and then Token = Tok_Right_Paren) then
2838 Error_Msg
2839 ("if expression must be parenthesized", Sloc (Node1));
2840 end if;
2841
2842 return Node1;
2843
2844 -- Otherwise treat as misused identifier
2845
2846 else
2847 return P_Identifier;
2848 end if;
2849
2850 -- Deal with CASE (possible unparenthesized case expression)
2851
2852 when Tok_Case =>
2853
2854 -- If this looks like a real case, defined as a CASE appearing
2855 -- the start of a new line, then we consider we have a missing
2856 -- operand. If in Ada 2012 and the CASE is not properly
2857 -- indented for a statement, we prefer to issue a message about
2858 -- an ill-parenthesized case expression.
2859
2860 if Token_Is_At_Start_Of_Line
2861 and then not
2862 (Ada_Version >= Ada_2012
2863 and then Style_Check_Indentation /= 0
2864 and then Start_Column rem Style_Check_Indentation /= 0)
2865 then
2866 Error_Msg_AP ("missing operand");
2867 return Error;
2868
2869 -- If this looks like a case expression, then treat it that way
2870 -- with an error message if not within parentheses.
2871
2872 elsif Ada_Version >= Ada_2012 then
2873 Node1 := P_Case_Expression;
2874
2875 if not (Lparen and then Token = Tok_Right_Paren) then
2876 Error_Msg
2877 ("case expression must be parenthesized", Sloc (Node1));
2878 end if;
2879
2880 return Node1;
2881
2882 -- Otherwise treat as misused identifier
2883
2884 else
2885 return P_Identifier;
2886 end if;
2887
2888 -- For [all | some] indicates a quantified expression
2889
2890 when Tok_For =>
2891 if Token_Is_At_Start_Of_Line then
2892 Error_Msg_AP ("misplaced loop");
2893 return Error;
2894
2895 elsif Ada_Version >= Ada_2012 then
2896 Save_Scan_State (Scan_State);
2897 Scan; -- past FOR
2898
2899 if Token = Tok_All or else Token = Tok_Some then
2900 Restore_Scan_State (Scan_State); -- To FOR
2901 Node1 := P_Quantified_Expression;
2902
2903 if not (Lparen and then Token = Tok_Right_Paren) then
2904 Error_Msg
2905 ("quantified expression must be parenthesized",
2906 Sloc (Node1));
2907 end if;
2908 else
2909 Restore_Scan_State (Scan_State); -- To FOR
2910 Node1 := P_Iterated_Component_Association;
2911 end if;
2912
2913 return Node1;
2914
2915 -- Otherwise treat as misused identifier
2916
2917 else
2918 return P_Identifier;
2919 end if;
2920
2921 -- Minus may well be an improper attempt at a unary minus. Give
2922 -- a message, skip the minus and keep going.
2923
2924 when Tok_Minus =>
2925 Error_Msg_SC ("parentheses required for unary minus");
2926 Scan; -- past minus
2927
2928 when Tok_At_Sign => -- AI12-0125 : target_name
2929 if Ada_Version < Ada_2020 then
2930 Error_Msg_SC ("target name is an Ada 202x feature");
2931 Error_Msg_SC ("\compile with -gnatX");
2932 end if;
2933
2934 Node1 := P_Name;
2935 return Node1;
2936
2937 -- Anything else is illegal as the first token of a primary, but
2938 -- we test for some common errors, to improve error messages.
2939
2940 when others =>
2941 if Is_Reserved_Identifier then
2942 return P_Identifier;
2943
2944 elsif Prev_Token = Tok_Comma then
2945 Error_Msg_SP -- CODEFIX
2946 ("|extra "","" ignored");
2947 raise Error_Resync;
2948
2949 else
2950 Error_Msg_AP ("missing operand");
2951 raise Error_Resync;
2952 end if;
2953 end case;
2954 end loop;
2955 end P_Primary;
2956
2957 -------------------------------
2958 -- 4.4 Quantified_Expression --
2959 -------------------------------
2960
2961 -- QUANTIFIED_EXPRESSION ::=
2962 -- for QUANTIFIER LOOP_PARAMETER_SPECIFICATION => PREDICATE |
2963 -- for QUANTIFIER ITERATOR_SPECIFICATION => PREDICATE
2964
2965 function P_Quantified_Expression return Node_Id is
2966 I_Spec : Node_Id;
2967 Node1 : Node_Id;
2968
2969 begin
2970 Error_Msg_Ada_2012_Feature ("quantified expression", Token_Ptr);
2971 Scan; -- past FOR
2972 Node1 := New_Node (N_Quantified_Expression, Prev_Token_Ptr);
2973
2974 if Token = Tok_All then
2975 Set_All_Present (Node1);
2976 elsif Token /= Tok_Some then
2977 Error_Msg_AP ("missing quantifier");
2978 raise Error_Resync;
2979 end if;
2980
2981 Scan; -- past ALL or SOME
2982 I_Spec := P_Loop_Parameter_Specification;
2983
2984 if Nkind (I_Spec) = N_Loop_Parameter_Specification then
2985 Set_Loop_Parameter_Specification (Node1, I_Spec);
2986 else
2987 Set_Iterator_Specification (Node1, I_Spec);
2988 end if;
2989
2990 if Token = Tok_Arrow then
2991 Scan;
2992 Set_Condition (Node1, P_Expression);
2993 return Node1;
2994 else
2995 Error_Msg_AP ("missing arrow");
2996 raise Error_Resync;
2997 end if;
2998 end P_Quantified_Expression;
2999
3000 ---------------------------
3001 -- 4.5 Logical Operator --
3002 ---------------------------
3003
3004 -- LOGICAL_OPERATOR ::= and | or | xor
3005
3006 -- Note: AND THEN and OR ELSE are also treated as logical operators
3007 -- by the parser (even though they are not operators semantically)
3008
3009 -- The value returned is the appropriate Node_Kind code for the operator
3010 -- On return, Token points to the token following the scanned operator.
3011
3012 -- The caller has checked that the first token is a legitimate logical
3013 -- operator token (i.e. is either XOR, AND, OR).
3014
3015 -- Error recovery: cannot raise Error_Resync
3016
3017 function P_Logical_Operator return Node_Kind is
3018 begin
3019 if Token = Tok_And then
3020 if Style_Check then
3021 Style.Check_Binary_Operator;
3022 end if;
3023
3024 Scan; -- past AND
3025
3026 if Token = Tok_Then then
3027 Scan; -- past THEN
3028 return N_And_Then;
3029 else
3030 return N_Op_And;
3031 end if;
3032
3033 elsif Token = Tok_Or then
3034 if Style_Check then
3035 Style.Check_Binary_Operator;
3036 end if;
3037
3038 Scan; -- past OR
3039
3040 if Token = Tok_Else then
3041 Scan; -- past ELSE
3042 return N_Or_Else;
3043 else
3044 return N_Op_Or;
3045 end if;
3046
3047 else -- Token = Tok_Xor
3048 if Style_Check then
3049 Style.Check_Binary_Operator;
3050 end if;
3051
3052 Scan; -- past XOR
3053 return N_Op_Xor;
3054 end if;
3055 end P_Logical_Operator;
3056
3057 ------------------------------
3058 -- 4.5 Relational Operator --
3059 ------------------------------
3060
3061 -- RELATIONAL_OPERATOR ::= = | /= | < | <= | > | >=
3062
3063 -- The value returned is the appropriate Node_Kind code for the operator.
3064 -- On return, Token points to the operator token, NOT past it.
3065
3066 -- The caller has checked that the first token is a legitimate relational
3067 -- operator token (i.e. is one of the operator tokens listed above).
3068
3069 -- Error recovery: cannot raise Error_Resync
3070
3071 function P_Relational_Operator return Node_Kind is
3072 Op_Kind : Node_Kind;
3073 Relop_Node : constant array (Token_Class_Relop) of Node_Kind :=
3074 (Tok_Less => N_Op_Lt,
3075 Tok_Equal => N_Op_Eq,
3076 Tok_Greater => N_Op_Gt,
3077 Tok_Not_Equal => N_Op_Ne,
3078 Tok_Greater_Equal => N_Op_Ge,
3079 Tok_Less_Equal => N_Op_Le,
3080 Tok_In => N_In,
3081 Tok_Not => N_Not_In,
3082 Tok_Box => N_Op_Ne);
3083
3084 begin
3085 if Token = Tok_Box then
3086 Error_Msg_SC -- CODEFIX
3087 ("|""'<'>"" should be ""/=""");
3088 end if;
3089
3090 Op_Kind := Relop_Node (Token);
3091
3092 if Style_Check then
3093 Style.Check_Binary_Operator;
3094 end if;
3095
3096 Scan; -- past operator token
3097
3098 -- Deal with NOT IN, if previous token was NOT, we must have IN now
3099
3100 if Prev_Token = Tok_Not then
3101
3102 -- Style check, for NOT IN, we require one space between NOT and IN
3103
3104 if Style_Check and then Token = Tok_In then
3105 Style.Check_Not_In;
3106 end if;
3107
3108 T_In;
3109 end if;
3110
3111 return Op_Kind;
3112 end P_Relational_Operator;
3113
3114 ---------------------------------
3115 -- 4.5 Binary Adding Operator --
3116 ---------------------------------
3117
3118 -- BINARY_ADDING_OPERATOR ::= + | - | &
3119
3120 -- The value returned is the appropriate Node_Kind code for the operator.
3121 -- On return, Token points to the operator token (NOT past it).
3122
3123 -- The caller has checked that the first token is a legitimate adding
3124 -- operator token (i.e. is one of the operator tokens listed above).
3125
3126 -- Error recovery: cannot raise Error_Resync
3127
3128 function P_Binary_Adding_Operator return Node_Kind is
3129 Addop_Node : constant array (Token_Class_Binary_Addop) of Node_Kind :=
3130 (Tok_Ampersand => N_Op_Concat,
3131 Tok_Minus => N_Op_Subtract,
3132 Tok_Plus => N_Op_Add);
3133 begin
3134 return Addop_Node (Token);
3135 end P_Binary_Adding_Operator;
3136
3137 --------------------------------
3138 -- 4.5 Unary Adding Operator --
3139 --------------------------------
3140
3141 -- UNARY_ADDING_OPERATOR ::= + | -
3142
3143 -- The value returned is the appropriate Node_Kind code for the operator.
3144 -- On return, Token points to the operator token (NOT past it).
3145
3146 -- The caller has checked that the first token is a legitimate adding
3147 -- operator token (i.e. is one of the operator tokens listed above).
3148
3149 -- Error recovery: cannot raise Error_Resync
3150
3151 function P_Unary_Adding_Operator return Node_Kind is
3152 Addop_Node : constant array (Token_Class_Unary_Addop) of Node_Kind :=
3153 (Tok_Minus => N_Op_Minus,
3154 Tok_Plus => N_Op_Plus);
3155 begin
3156 return Addop_Node (Token);
3157 end P_Unary_Adding_Operator;
3158
3159 -------------------------------
3160 -- 4.5 Multiplying Operator --
3161 -------------------------------
3162
3163 -- MULTIPLYING_OPERATOR ::= * | / | mod | rem
3164
3165 -- The value returned is the appropriate Node_Kind code for the operator.
3166 -- On return, Token points to the operator token (NOT past it).
3167
3168 -- The caller has checked that the first token is a legitimate multiplying
3169 -- operator token (i.e. is one of the operator tokens listed above).
3170
3171 -- Error recovery: cannot raise Error_Resync
3172
3173 function P_Multiplying_Operator return Node_Kind is
3174 Mulop_Node : constant array (Token_Class_Mulop) of Node_Kind :=
3175 (Tok_Asterisk => N_Op_Multiply,
3176 Tok_Mod => N_Op_Mod,
3177 Tok_Rem => N_Op_Rem,
3178 Tok_Slash => N_Op_Divide);
3179 begin
3180 return Mulop_Node (Token);
3181 end P_Multiplying_Operator;
3182
3183 --------------------------------------
3184 -- 4.5 Highest Precedence Operator --
3185 --------------------------------------
3186
3187 -- Parsed by P_Factor (4.4)
3188
3189 -- Note: this rule is not in fact used by the grammar at any point
3190
3191 --------------------------
3192 -- 4.6 Type Conversion --
3193 --------------------------
3194
3195 -- Parsed by P_Primary as a Name (4.1)
3196
3197 -------------------------------
3198 -- 4.7 Qualified Expression --
3199 -------------------------------
3200
3201 -- QUALIFIED_EXPRESSION ::=
3202 -- SUBTYPE_MARK ' (EXPRESSION) | SUBTYPE_MARK ' AGGREGATE
3203
3204 -- The caller has scanned the name which is the Subtype_Mark parameter
3205 -- and scanned past the single quote following the subtype mark. The
3206 -- caller has not checked that this name is in fact appropriate for
3207 -- a subtype mark name (i.e. it is a selected component or identifier).
3208
3209 -- Error_Recovery: cannot raise Error_Resync
3210
3211 function P_Qualified_Expression (Subtype_Mark : Node_Id) return Node_Id is
3212 Qual_Node : Node_Id;
3213 begin
3214 Qual_Node := New_Node (N_Qualified_Expression, Prev_Token_Ptr);
3215 Set_Subtype_Mark (Qual_Node, Check_Subtype_Mark (Subtype_Mark));
3216 Set_Expression (Qual_Node, P_Aggregate_Or_Paren_Expr);
3217 return Qual_Node;
3218 end P_Qualified_Expression;
3219
3220 --------------------
3221 -- 4.8 Allocator --
3222 --------------------
3223
3224 -- ALLOCATOR ::=
3225 -- new [SUBPOOL_SPECIFICATION] SUBTYPE_INDICATION
3226 -- | new [SUBPOOL_SPECIFICATION] QUALIFIED_EXPRESSION
3227 --
3228 -- SUBPOOL_SPECIFICATION ::= (subpool_handle_NAME)
3229
3230 -- The caller has checked that the initial token is NEW
3231
3232 -- Error recovery: can raise Error_Resync
3233
3234 function P_Allocator return Node_Id is
3235 Alloc_Node : Node_Id;
3236 Type_Node : Node_Id;
3237 Null_Exclusion_Present : Boolean;
3238
3239 begin
3240 Alloc_Node := New_Node (N_Allocator, Token_Ptr);
3241 T_New;
3242
3243 -- Scan subpool_specification if present (Ada 2012 (AI05-0111-3))
3244
3245 -- Scan Null_Exclusion if present (Ada 2005 (AI-231))
3246
3247 if Token = Tok_Left_Paren then
3248 Scan; -- past (
3249 Set_Subpool_Handle_Name (Alloc_Node, P_Name);
3250 T_Right_Paren;
3251
3252 Error_Msg_Ada_2012_Feature
3253 ("|subpool specification",
3254 Sloc (Subpool_Handle_Name (Alloc_Node)));
3255 end if;
3256
3257 Null_Exclusion_Present := P_Null_Exclusion;
3258 Set_Null_Exclusion_Present (Alloc_Node, Null_Exclusion_Present);
3259 Type_Node := P_Subtype_Mark_Resync;
3260
3261 if Token = Tok_Apostrophe then
3262 Scan; -- past apostrophe
3263 Set_Expression (Alloc_Node, P_Qualified_Expression (Type_Node));
3264 else
3265 Set_Expression
3266 (Alloc_Node,
3267 P_Subtype_Indication (Type_Node, Null_Exclusion_Present));
3268
3269 -- AI05-0104: An explicit null exclusion is not allowed for an
3270 -- allocator without initialization. In previous versions of the
3271 -- language it just raises constraint error.
3272
3273 if Ada_Version >= Ada_2012 and then Null_Exclusion_Present then
3274 Error_Msg_N
3275 ("an allocator with a subtype indication "
3276 & "cannot have a null exclusion", Alloc_Node);
3277 end if;
3278 end if;
3279
3280 return Alloc_Node;
3281 end P_Allocator;
3282
3283 -----------------------
3284 -- P_Case_Expression --
3285 -----------------------
3286
3287 function P_Case_Expression return Node_Id is
3288 Loc : constant Source_Ptr := Token_Ptr;
3289 Case_Node : Node_Id;
3290 Save_State : Saved_Scan_State;
3291
3292 begin
3293 Error_Msg_Ada_2012_Feature ("|case expression", Token_Ptr);
3294 Scan; -- past CASE
3295 Case_Node :=
3296 Make_Case_Expression (Loc,
3297 Expression => P_Expression_No_Right_Paren,
3298 Alternatives => New_List);
3299 T_Is;
3300
3301 -- We now have scanned out CASE expression IS, scan alternatives
3302
3303 loop
3304 T_When;
3305 Append_To (Alternatives (Case_Node), P_Case_Expression_Alternative);
3306
3307 -- Missing comma if WHEN (more alternatives present)
3308
3309 if Token = Tok_When then
3310 T_Comma;
3311
3312 -- A semicolon followed by "when" is probably meant to be a comma
3313
3314 elsif Token = Tok_Semicolon then
3315 Save_Scan_State (Save_State);
3316 Scan; -- past the semicolon
3317
3318 if Token /= Tok_When then
3319 Restore_Scan_State (Save_State);
3320 exit;
3321 end if;
3322
3323 Error_Msg_SP -- CODEFIX
3324 ("|"";"" should be "",""");
3325
3326 -- If comma/WHEN, skip comma and we have another alternative
3327
3328 elsif Token = Tok_Comma then
3329 Save_Scan_State (Save_State);
3330 Scan; -- past comma
3331
3332 if Token /= Tok_When then
3333 Restore_Scan_State (Save_State);
3334 exit;
3335 end if;
3336
3337 -- If no comma or WHEN, definitely done
3338
3339 else
3340 exit;
3341 end if;
3342 end loop;
3343
3344 -- If we have an END CASE, diagnose as not needed
3345
3346 if Token = Tok_End then
3347 Error_Msg_SC ("`END CASE` not allowed at end of case expression");
3348 Scan; -- past END
3349
3350 if Token = Tok_Case then
3351 Scan; -- past CASE;
3352 end if;
3353 end if;
3354
3355 -- Return the Case_Expression node
3356
3357 return Case_Node;
3358 end P_Case_Expression;
3359
3360 -----------------------------------
3361 -- P_Case_Expression_Alternative --
3362 -----------------------------------
3363
3364 -- CASE_STATEMENT_ALTERNATIVE ::=
3365 -- when DISCRETE_CHOICE_LIST =>
3366 -- EXPRESSION
3367
3368 -- The caller has checked that and scanned past the initial WHEN token
3369 -- Error recovery: can raise Error_Resync
3370
3371 function P_Case_Expression_Alternative return Node_Id is
3372 Case_Alt_Node : Node_Id;
3373 begin
3374 Case_Alt_Node := New_Node (N_Case_Expression_Alternative, Token_Ptr);
3375 Set_Discrete_Choices (Case_Alt_Node, P_Discrete_Choice_List);
3376 TF_Arrow;
3377 Set_Expression (Case_Alt_Node, P_Expression);
3378 return Case_Alt_Node;
3379 end P_Case_Expression_Alternative;
3380
3381 --------------------------------------
3382 -- P_Iterated_Component_Association --
3383 --------------------------------------
3384
3385 -- ITERATED_COMPONENT_ASSOCIATION ::=
3386 -- for DEFINING_IDENTIFIER in DISCRETE_CHOICE_LIST => EXPRESSION
3387
3388 function P_Iterated_Component_Association return Node_Id is
3389 Assoc_Node : Node_Id;
3390
3391 -- Start of processing for P_Iterated_Component_Association
3392
3393 begin
3394 Scan; -- past FOR
3395 Assoc_Node :=
3396 New_Node (N_Iterated_Component_Association, Prev_Token_Ptr);
3397
3398 Set_Defining_Identifier (Assoc_Node, P_Defining_Identifier);
3399 T_In;
3400 Set_Discrete_Choices (Assoc_Node, P_Discrete_Choice_List);
3401 TF_Arrow;
3402 Set_Expression (Assoc_Node, P_Expression);
3403
3404 if Ada_Version < Ada_2020 then
3405 Error_Msg_SC ("iterated component is an Ada 202x feature");
3406 Error_Msg_SC ("\compile with -gnatX");
3407 end if;
3408
3409 return Assoc_Node;
3410 end P_Iterated_Component_Association;
3411
3412 ---------------------
3413 -- P_If_Expression --
3414 ---------------------
3415
3416 -- IF_EXPRESSION ::=
3417 -- if CONDITION then DEPENDENT_EXPRESSION
3418 -- {elsif CONDITION then DEPENDENT_EXPRESSION}
3419 -- [else DEPENDENT_EXPRESSION]
3420
3421 -- DEPENDENT_EXPRESSION ::= EXPRESSION
3422
3423 function P_If_Expression return Node_Id is
3424 function P_If_Expression_Internal
3425 (Loc : Source_Ptr;
3426 Cond : Node_Id) return Node_Id;
3427 -- This is the internal recursive routine that does all the work, it is
3428 -- recursive since it is used to process ELSIF parts, which internally
3429 -- are N_If_Expression nodes with the Is_Elsif flag set. The calling
3430 -- sequence is like the outer function except that the caller passes
3431 -- the conditional expression (scanned using P_Expression), and the
3432 -- scan pointer points just past this expression. Loc points to the
3433 -- IF or ELSIF token.
3434
3435 ------------------------------
3436 -- P_If_Expression_Internal --
3437 ------------------------------
3438
3439 function P_If_Expression_Internal
3440 (Loc : Source_Ptr;
3441 Cond : Node_Id) return Node_Id
3442 is
3443 Exprs : constant List_Id := New_List;
3444 Expr : Node_Id;
3445 State : Saved_Scan_State;
3446 Eptr : Source_Ptr;
3447
3448 begin
3449 -- All cases except where we are at right paren
3450
3451 if Token /= Tok_Right_Paren then
3452 TF_Then;
3453 Append_To (Exprs, P_Condition (Cond));
3454 Append_To (Exprs, P_Expression);
3455
3456 -- Case of right paren (missing THEN phrase). Note that we know this
3457 -- is the IF case, since the caller dealt with this possibility in
3458 -- the ELSIF case.
3459
3460 else
3461 Error_Msg_BC ("missing THEN phrase");
3462 Append_To (Exprs, P_Condition (Cond));
3463 end if;
3464
3465 -- We now have scanned out IF expr THEN expr
3466
3467 -- Check for common error of semicolon before the ELSE
3468
3469 if Token = Tok_Semicolon then
3470 Save_Scan_State (State);
3471 Scan; -- past semicolon
3472
3473 if Token = Tok_Else or else Token = Tok_Elsif then
3474 Error_Msg_SP -- CODEFIX
3475 ("|extra "";"" ignored");
3476
3477 else
3478 Restore_Scan_State (State);
3479 end if;
3480 end if;
3481
3482 -- Scan out ELSIF sequence if present
3483
3484 if Token = Tok_Elsif then
3485 Eptr := Token_Ptr;
3486 Scan; -- past ELSIF
3487 Expr := P_Expression;
3488
3489 -- If we are at a right paren, we assume the ELSIF should be ELSE
3490
3491 if Token = Tok_Right_Paren then
3492 Error_Msg ("ELSIF should be ELSE", Eptr);
3493 Append_To (Exprs, Expr);
3494
3495 -- Otherwise we have an OK ELSIF
3496
3497 else
3498 Expr := P_If_Expression_Internal (Eptr, Expr);
3499 Set_Is_Elsif (Expr);
3500 Append_To (Exprs, Expr);
3501 end if;
3502
3503 -- Scan out ELSE phrase if present
3504
3505 elsif Token = Tok_Else then
3506
3507 -- Scan out ELSE expression
3508
3509 Scan; -- Past ELSE
3510 Append_To (Exprs, P_Expression);
3511
3512 -- Skip redundant ELSE parts
3513
3514 while Token = Tok_Else loop
3515 Error_Msg_SC ("only one ELSE part is allowed");
3516 Scan; -- past ELSE
3517 Discard_Junk_Node (P_Expression);
3518 end loop;
3519
3520 -- Two expression case (implied True, filled in during semantics)
3521
3522 else
3523 null;
3524 end if;
3525
3526 -- If we have an END IF, diagnose as not needed
3527
3528 if Token = Tok_End then
3529 Error_Msg_SC ("`END IF` not allowed at end of if expression");
3530 Scan; -- past END
3531
3532 if Token = Tok_If then
3533 Scan; -- past IF;
3534 end if;
3535 end if;
3536
3537 -- Return the If_Expression node
3538
3539 return Make_If_Expression (Loc, Expressions => Exprs);
3540 end P_If_Expression_Internal;
3541
3542 -- Local variables
3543
3544 Loc : constant Source_Ptr := Token_Ptr;
3545 If_Expr : Node_Id;
3546
3547 -- Start of processing for P_If_Expression
3548
3549 begin
3550 Error_Msg_Ada_2012_Feature ("|if expression", Token_Ptr);
3551 Scan; -- past IF
3552 Inside_If_Expression := Inside_If_Expression + 1;
3553 If_Expr := P_If_Expression_Internal (Loc, P_Expression);
3554 Inside_If_Expression := Inside_If_Expression - 1;
3555 return If_Expr;
3556 end P_If_Expression;
3557
3558 -----------------------
3559 -- P_Membership_Test --
3560 -----------------------
3561
3562 -- MEMBERSHIP_CHOICE_LIST ::= MEMBERHIP_CHOICE {'|' MEMBERSHIP_CHOICE}
3563 -- MEMBERSHIP_CHOICE ::= CHOICE_EXPRESSION | range | subtype_mark
3564
3565 procedure P_Membership_Test (N : Node_Id) is
3566 Alt : constant Node_Id :=
3567 P_Range_Or_Subtype_Mark
3568 (Allow_Simple_Expression => (Ada_Version >= Ada_2012));
3569
3570 begin
3571 -- Set case
3572
3573 if Token = Tok_Vertical_Bar then
3574 Error_Msg_Ada_2012_Feature ("set notation", Token_Ptr);
3575 Set_Alternatives (N, New_List (Alt));
3576 Set_Right_Opnd (N, Empty);
3577
3578 -- Loop to accumulate alternatives
3579
3580 while Token = Tok_Vertical_Bar loop
3581 Scan; -- past vertical bar
3582 Append_To
3583 (Alternatives (N),
3584 P_Range_Or_Subtype_Mark (Allow_Simple_Expression => True));
3585 end loop;
3586
3587 -- Not set case
3588
3589 else
3590 Set_Right_Opnd (N, Alt);
3591 Set_Alternatives (N, No_List);
3592 end if;
3593 end P_Membership_Test;
3594
3595 ------------------------------------------
3596 -- P_Unparen_Cond_Case_Quant_Expression --
3597 ------------------------------------------
3598
3599 function P_Unparen_Cond_Case_Quant_Expression return Node_Id is
3600 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
3601
3602 Result : Node_Id;
3603 Scan_State : Saved_Scan_State;
3604
3605 begin
3606 -- Case expression
3607
3608 if Token = Tok_Case then
3609 Result := P_Case_Expression;
3610
3611 if not (Lparen and then Token = Tok_Right_Paren) then
3612 Error_Msg_N ("case expression must be parenthesized!", Result);
3613 end if;
3614
3615 -- If expression
3616
3617 elsif Token = Tok_If then
3618 Result := P_If_Expression;
3619
3620 if not (Lparen and then Token = Tok_Right_Paren) then
3621 Error_Msg_N ("if expression must be parenthesized!", Result);
3622 end if;
3623
3624 -- Quantified expression or iterated component association
3625
3626 elsif Token = Tok_For then
3627
3628 Save_Scan_State (Scan_State);
3629 Scan; -- past FOR
3630
3631 if Token = Tok_All or else Token = Tok_Some then
3632 Restore_Scan_State (Scan_State);
3633 Result := P_Quantified_Expression;
3634
3635 if not (Lparen and then Token = Tok_Right_Paren) then
3636 Error_Msg_N
3637 ("quantified expression must be parenthesized!", Result);
3638 end if;
3639
3640 else
3641 -- If no quantifier keyword, this is an iterated component in
3642 -- an aggregate.
3643
3644 Restore_Scan_State (Scan_State);
3645 Result := P_Iterated_Component_Association;
3646 end if;
3647
3648 -- No other possibility should exist (caller was supposed to check)
3649
3650 else
3651 raise Program_Error;
3652 end if;
3653
3654 -- Return expression (possibly after having given message)
3655
3656 return Result;
3657 end P_Unparen_Cond_Case_Quant_Expression;
3658
3659 end Ch4;