]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_ch13.adb
[Ada] Fix scope computation for loop statements
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
73
74 with GNAT.Heap_Sort_G;
75
76 package body Sem_Ch13 is
77
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
80
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
84
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
88
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
94
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
109
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
116
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- preanalyzed at this point, to catch visibility errors.
123
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
135
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
139
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
146
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
151
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
157
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
168 --
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
171 --
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
175 --
176 -- "ABC" < "DEF"
177 --
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
180 --
181 -- subtype S is String with Static_Predicate => S < "DEF"
182 --
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
185
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
199 --
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
205
206 procedure Register_Address_Clause_Check
207 (N : Node_Id;
208 X : Entity_Id;
209 A : Uint;
210 Y : Entity_Id;
211 Off : Boolean);
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
214
215 procedure Resolve_Iterable_Operation
216 (N : Node_Id;
217 Cursor : Entity_Id;
218 Typ : Entity_Id;
219 Nam : Name_Id);
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
222
223 procedure Set_Biased
224 (E : Entity_Id;
225 N : Node_Id;
226 Msg : String;
227 Biased : Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
231 -- causing biasing.
232
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
236
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
244
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
248
249 type CTWE_Entry is record
250 Eloc : Source_Ptr;
251 -- Source location used in warnings and error messages
252
253 Prag : Node_Id;
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
255
256 Scope : Node_Id;
257 -- The scope which encloses the pragma
258 end record;
259
260 package Compile_Time_Warnings_Errors is new Table.Table (
261 Table_Component_Type => CTWE_Entry,
262 Table_Index_Type => Int,
263 Table_Low_Bound => 1,
264 Table_Initial => 50,
265 Table_Increment => 200,
266 Table_Name => "Compile_Time_Warnings_Errors");
267
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
271
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
277 -- the back end.
278
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
282
283 type UC_Entry is record
284 Eloc : Source_Ptr; -- node used for posting warnings
285 Source : Entity_Id; -- source type for unchecked conversion
286 Target : Entity_Id; -- target type for unchecked conversion
287 Act_Unit : Entity_Id; -- actual function instantiated
288 end record;
289
290 package Unchecked_Conversions is new Table.Table (
291 Table_Component_Type => UC_Entry,
292 Table_Index_Type => Int,
293 Table_Low_Bound => 1,
294 Table_Initial => 50,
295 Table_Increment => 200,
296 Table_Name => "Unchecked_Conversions");
297
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
301
302 -- If an address clause has the form
303
304 -- for X'Address use Expr
305
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
314
315 type Address_Clause_Check_Record is record
316 N : Node_Id;
317 -- The address clause
318
319 X : Entity_Id;
320 -- The entity of the object subject to the address clause
321
322 A : Uint;
323 -- The value of the address in the first case
324
325 Y : Entity_Id;
326 -- The entity of the object being overlaid in the second case
327
328 Off : Boolean;
329 -- Whether the address is offset within Y in the second case
330
331 Alignment_Checks_Suppressed : Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
335 end record;
336
337 package Address_Clause_Checks is new Table.Table (
338 Table_Component_Type => Address_Clause_Check_Record,
339 Table_Index_Type => Int,
340 Table_Low_Bound => 1,
341 Table_Initial => 20,
342 Table_Increment => 200,
343 Table_Name => "Address_Clause_Checks");
344
345 function Alignment_Checks_Suppressed
346 (ACCR : Address_Clause_Check_Record) return Boolean;
347 -- Return whether the alignment check generated for the address clause
348 -- is suppressed.
349
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
353
354 function Alignment_Checks_Suppressed
355 (ACCR : Address_Clause_Check_Record) return Boolean
356 is
357 begin
358 if Checks_May_Be_Suppressed (ACCR.X) then
359 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
360 else
361 return ACCR.Alignment_Checks_Suppressed;
362 end if;
363 end Alignment_Checks_Suppressed;
364
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
368
369 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
373 -- We use this as the maximum machine scalar size
374
375 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
376
377 CC : Node_Id;
378 Comp : Node_Id;
379 Num_CC : Natural;
380
381 begin
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
387
388 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
390 return;
391 end if;
392
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
397
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
403 -- later processing.
404
405 Num_CC := 0;
406 Comp := First_Component_Or_Discriminant (R);
407 while Present (Comp) loop
408 CC := Component_Clause (Comp);
409
410 if Present (CC) then
411 declare
412 Fbit : constant Uint := Static_Integer (First_Bit (CC));
413 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
414
415 begin
416 -- Case of component with last bit >= max machine scalar
417
418 if Lbit >= Max_Machine_Scalar_Size then
419
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
422
423 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
424
425 -- This is the case to give a warning if enabled
426
427 if Warn_On_Reverse_Bit_Order then
428 Error_Msg_N
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC);
431
432 if Bytes_Big_Endian then
433 Error_Msg_N
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC);
436 else
437 Error_Msg_N
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC);
440 end if;
441 end if;
442
443 -- Give error message for RM 13.5.1(10) violation
444
445 else
446 Error_Msg_FE
447 ("machine scalar rules not followed for&",
448 First_Bit (CC), Comp);
449
450 Error_Msg_Uint_1 := Lbit + 1;
451 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
452 Error_Msg_F
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit (CC));
455
456 if (Lbit + 1) mod SSU /= 0 then
457 Error_Msg_Uint_1 := SSU;
458 Error_Msg_F
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit (CC));
461
462 else
463 Error_Msg_Uint_1 := Fbit;
464 Error_Msg_F
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit (CC));
467 end if;
468 end if;
469
470 -- OK case of machine scalar related component clause. For now,
471 -- just count them.
472
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
478
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
481
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
485
486 Sort_CC : declare
487 Comps : array (0 .. Num_CC) of Entity_Id;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
490
491 function CP_Lt (Op1, Op2 : Natural) return Boolean;
492 -- Compare routine for Sort
493
494 procedure CP_Move (From : Natural; To : Natural);
495 -- Move routine for Sort
496
497 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
498
499 MaxL : Uint;
500 -- Maximum last bit value of any component in this set
501
502 MSS : Uint;
503 -- Corresponding machine scalar size
504
505 Start : Natural;
506 Stop : Natural;
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
510
511 -----------
512 -- CP_Lt --
513 -----------
514
515 function CP_Lt (Op1, Op2 : Natural) return Boolean is
516 begin
517 return
518 Position (Component_Clause (Comps (Op1))) <
519 Position (Component_Clause (Comps (Op2)));
520 end CP_Lt;
521
522 -------------
523 -- CP_Move --
524 -------------
525
526 procedure CP_Move (From : Natural; To : Natural) is
527 begin
528 Comps (To) := Comps (From);
529 end CP_Move;
530
531 -- Start of processing for Sort_CC
532
533 begin
534 -- Collect the machine scalar relevant component clauses
535
536 Num_CC := 0;
537 Comp := First_Component_Or_Discriminant (R);
538 while Present (Comp) loop
539 declare
540 CC : constant Node_Id := Component_Clause (Comp);
541
542 begin
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
548 -- error.
549
550 if Present (CC)
551 and then not Error_Posted (Last_Bit (CC))
552 and then Static_Integer (Last_Bit (CC)) <
553 Max_Machine_Scalar_Size
554 then
555 Num_CC := Num_CC + 1;
556 Comps (Num_CC) := Comp;
557 end if;
558 end;
559
560 Next_Component_Or_Discriminant (Comp);
561 end loop;
562
563 -- Sort by ascending position number
564
565 Sorting.Sort (Num_CC);
566
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
571
572 Stop := 0;
573 while Stop < Num_CC loop
574 Start := Stop + 1;
575 Stop := Start;
576 MaxL :=
577 Static_Integer
578 (Last_Bit (Component_Clause (Comps (Start))));
579 while Stop < Num_CC loop
580 if Static_Integer
581 (Position (Component_Clause (Comps (Stop + 1)))) =
582 Static_Integer
583 (Position (Component_Clause (Comps (Stop))))
584 then
585 Stop := Stop + 1;
586 MaxL :=
587 UI_Max
588 (MaxL,
589 Static_Integer
590 (Last_Bit
591 (Component_Clause (Comps (Stop)))));
592 else
593 exit;
594 end if;
595 end loop;
596
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
600
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
604 -- smaller one.
605
606 MSS := Max_Machine_Scalar_Size;
607 while MSS mod 2 = 0
608 and then (MSS / 2) >= SSU
609 and then (MSS / 2) > MaxL
610 loop
611 MSS := MSS / 2;
612 end loop;
613
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
617
618 -- First_Bit .. Last_Bit Component_Bit_Offset
619 -- old new old new
620
621 -- 0 .. 0 7 .. 7 0 7
622 -- 0 .. 1 6 .. 7 0 6
623 -- 0 .. 2 5 .. 7 0 5
624 -- 0 .. 7 0 .. 7 0 4
625
626 -- 1 .. 1 6 .. 6 1 6
627 -- 1 .. 4 3 .. 6 1 3
628 -- 4 .. 7 0 .. 3 4 0
629
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
632
633 for C in Start .. Stop loop
634 declare
635 Comp : constant Entity_Id := Comps (C);
636 CC : constant Node_Id := Component_Clause (Comp);
637
638 LB : constant Uint := Static_Integer (Last_Bit (CC));
639 NFB : constant Uint := MSS - Uint_1 - LB;
640 NLB : constant Uint := NFB + Esize (Comp) - 1;
641 Pos : constant Uint := Static_Integer (Position (CC));
642
643 begin
644 if Warn_On_Reverse_Bit_Order then
645 Error_Msg_Uint_1 := MSS;
646 Error_Msg_N
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit (CC));
649 Error_Msg_Uint_1 := NFB;
650 Error_Msg_Uint_2 := NLB;
651
652 if Bytes_Big_Endian then
653 Error_Msg_NE
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit (CC), Comp);
656 else
657 Error_Msg_NE
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit (CC), Comp);
660 end if;
661 end if;
662
663 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
664 Set_Normalized_Position (Comp, Pos + NFB / SSU);
665 Set_Normalized_First_Bit (Comp, NFB mod SSU);
666 end;
667 end loop;
668 end loop;
669 end Sort_CC;
670 end Adjust_Record_For_Reverse_Bit_Order;
671
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
675
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
677 CC : Node_Id;
678 Comp : Node_Id;
679
680 begin
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
684
685 Comp := First_Component_Or_Discriminant (R);
686 while Present (Comp) loop
687 CC := Component_Clause (Comp);
688
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
691
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
695
696 if Present (CC) and then Ekind (R) = E_Record_Type then
697 declare
698 CFB : constant Uint := Component_Bit_Offset (Comp);
699 CSZ : constant Uint := Esize (Comp);
700 CLC : constant Node_Id := Component_Clause (Comp);
701 Pos : constant Node_Id := Position (CLC);
702 FB : constant Node_Id := First_Bit (CLC);
703
704 Storage_Unit_Offset : constant Uint :=
705 CFB / System_Storage_Unit;
706
707 Start_Bit : constant Uint :=
708 CFB mod System_Storage_Unit;
709
710 begin
711 -- Cases where field goes over storage unit boundary
712
713 if Start_Bit + CSZ > System_Storage_Unit then
714
715 -- Allow multi-byte field but generate warning
716
717 if Start_Bit mod System_Storage_Unit = 0
718 and then CSZ mod System_Storage_Unit = 0
719 then
720 Error_Msg_N
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC);
723
724 if Bytes_Big_Endian then
725 Error_Msg_N
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC);
728 else
729 Error_Msg_N
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC);
732 end if;
733
734 -- Do not allow non-contiguous field
735
736 else
737 Error_Msg_N
738 ("attempt to specify non-contiguous field not "
739 & "permitted", CLC);
740 Error_Msg_N
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC);
743 end if;
744
745 -- Case where field fits in one storage unit
746
747 else
748 -- Give warning if suspicious component clause
749
750 if Intval (FB) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
752 then
753 Error_Msg_N
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos);
756 Error_Msg_Uint_1 :=
757 Intval (Pos) + Intval (FB) /
758 System_Storage_Unit;
759 Error_Msg_N
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos);
762 end if;
763
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
767
768 -- First_Bit .. Last_Bit Component_Bit_Offset
769 -- old new old new
770
771 -- 0 .. 0 7 .. 7 0 7
772 -- 0 .. 1 6 .. 7 0 6
773 -- 0 .. 2 5 .. 7 0 5
774 -- 0 .. 7 0 .. 7 0 4
775
776 -- 1 .. 1 6 .. 6 1 6
777 -- 1 .. 4 3 .. 6 1 3
778 -- 4 .. 7 0 .. 3 4 0
779
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
782
783 Set_Component_Bit_Offset (Comp,
784 (Storage_Unit_Offset * System_Storage_Unit) +
785 (System_Storage_Unit - 1) -
786 (Start_Bit + CSZ - 1));
787
788 Set_Normalized_Position (Comp,
789 Component_Bit_Offset (Comp) / System_Storage_Unit);
790
791 Set_Normalized_First_Bit (Comp,
792 Component_Bit_Offset (Comp) mod System_Storage_Unit);
793 end if;
794 end;
795 end if;
796
797 Next_Component_Or_Discriminant (Comp);
798 end loop;
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
800
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
804
805 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
806 begin
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
811
812 if Known_Alignment (Typ)
813 and then not Has_Alignment_Clause (Typ)
814 and then Size mod (Alignment (Typ) * SSU) /= 0
815 then
816 Init_Alignment (Typ);
817 end if;
818 end Alignment_Check_For_Size_Change;
819
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
823
824 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
825 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
828
829 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
833 --
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
836 -- ..
837 -- type B is new A;
838 -- ..
839 -- Not_Defined_Yet : constant := 64;
840 --
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
851
852 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
856
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
860
861 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
862 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
863 Ent : constant Entity_Id := Entity (ASN);
864 Expr : constant Node_Id := Expression (ASN);
865 Id : constant Node_Id := Identifier (ASN);
866
867 begin
868 Error_Msg_Name_1 := Chars (Id);
869
870 if not Is_Type (Ent) then
871 Error_Msg_N ("aspect% can only apply to a type", Id);
872 return;
873
874 elsif not Is_First_Subtype (Ent) then
875 Error_Msg_N ("aspect% cannot apply to subtype", Id);
876 return;
877
878 elsif A_Id = Aspect_Default_Value
879 and then not Is_Scalar_Type (Ent)
880 then
881 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
882 return;
883
884 elsif A_Id = Aspect_Default_Component_Value then
885 if not Is_Array_Type (Ent) then
886 Error_Msg_N ("aspect% can only be applied to array type", Id);
887 return;
888
889 elsif not Is_Scalar_Type (Component_Type (Ent)) then
890 Error_Msg_N ("aspect% requires scalar components", Id);
891 return;
892 end if;
893 end if;
894
895 Set_Has_Default_Aspect (Base_Type (Ent));
896
897 if Is_Scalar_Type (Ent) then
898 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
899 else
900 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
901 end if;
902 end Analyze_Aspect_Default_Value;
903
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
907
908 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
909 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
910 P : constant Entity_Id := Entity (ASN);
911 -- Entithy for parent type
912
913 N : Node_Id;
914 -- Item from Rep_Item chain
915
916 A : Aspect_Id;
917
918 begin
919 -- Loop through delayed aspects for the parent type
920
921 N := ASN;
922 while Present (N) loop
923 if Nkind (N) = N_Aspect_Specification then
924 exit when Entity (N) /= P;
925
926 if Is_Delayed_Aspect (N) then
927 A := Get_Aspect_Id (Chars (Identifier (N)));
928
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
935
936 case A is
937
938 -- Alignment
939
940 when Aspect_Alignment =>
941 if not Has_Alignment_Clause (E) then
942 Set_Alignment (E, Alignment (P));
943 end if;
944
945 -- Atomic
946
947 when Aspect_Atomic =>
948 if Is_Atomic (P) then
949 Set_Is_Atomic (E);
950 end if;
951
952 -- Atomic_Components
953
954 when Aspect_Atomic_Components =>
955 if Has_Atomic_Components (P) then
956 Set_Has_Atomic_Components (Base_Type (E));
957 end if;
958
959 -- Bit_Order
960
961 when Aspect_Bit_Order =>
962 if Is_Record_Type (E)
963 and then No (Get_Attribute_Definition_Clause
964 (E, Attribute_Bit_Order))
965 and then Reverse_Bit_Order (P)
966 then
967 Set_Reverse_Bit_Order (Base_Type (E));
968 end if;
969
970 -- Component_Size
971
972 when Aspect_Component_Size =>
973 if Is_Array_Type (E)
974 and then not Has_Component_Size_Clause (E)
975 then
976 Set_Component_Size
977 (Base_Type (E), Component_Size (P));
978 end if;
979
980 -- Machine_Radix
981
982 when Aspect_Machine_Radix =>
983 if Is_Decimal_Fixed_Point_Type (E)
984 and then not Has_Machine_Radix_Clause (E)
985 then
986 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
987 end if;
988
989 -- Object_Size (also Size which also sets Object_Size)
990
991 when Aspect_Object_Size
992 | Aspect_Size
993 =>
994 if not Has_Size_Clause (E)
995 and then
996 No (Get_Attribute_Definition_Clause
997 (E, Attribute_Object_Size))
998 then
999 Set_Esize (E, Esize (P));
1000 end if;
1001
1002 -- Pack
1003
1004 when Aspect_Pack =>
1005 if not Is_Packed (E) then
1006 Set_Is_Packed (Base_Type (E));
1007
1008 if Is_Bit_Packed_Array (P) then
1009 Set_Is_Bit_Packed_Array (Base_Type (E));
1010 Set_Packed_Array_Impl_Type
1011 (E, Packed_Array_Impl_Type (P));
1012 end if;
1013 end if;
1014
1015 -- Scalar_Storage_Order
1016
1017 when Aspect_Scalar_Storage_Order =>
1018 if (Is_Record_Type (E) or else Is_Array_Type (E))
1019 and then No (Get_Attribute_Definition_Clause
1020 (E, Attribute_Scalar_Storage_Order))
1021 and then Reverse_Storage_Order (P)
1022 then
1023 Set_Reverse_Storage_Order (Base_Type (E));
1024
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1027
1028 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1029 Set_SSO_Set_High_By_Default (Base_Type (E), False);
1030 end if;
1031
1032 -- Small
1033
1034 when Aspect_Small =>
1035 if Is_Fixed_Point_Type (E)
1036 and then not Has_Small_Clause (E)
1037 then
1038 Set_Small_Value (E, Small_Value (P));
1039 end if;
1040
1041 -- Storage_Size
1042
1043 when Aspect_Storage_Size =>
1044 if (Is_Access_Type (E) or else Is_Task_Type (E))
1045 and then not Has_Storage_Size_Clause (E)
1046 then
1047 Set_Storage_Size_Variable
1048 (Base_Type (E), Storage_Size_Variable (P));
1049 end if;
1050
1051 -- Value_Size
1052
1053 when Aspect_Value_Size =>
1054
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1058
1059 null;
1060
1061 -- Volatile
1062
1063 when Aspect_Volatile =>
1064 if Is_Volatile (P) then
1065 Set_Is_Volatile (E);
1066 end if;
1067
1068 -- Volatile_Full_Access
1069
1070 when Aspect_Volatile_Full_Access =>
1071 if Is_Volatile_Full_Access (P) then
1072 Set_Is_Volatile_Full_Access (E);
1073 end if;
1074
1075 -- Volatile_Components
1076
1077 when Aspect_Volatile_Components =>
1078 if Has_Volatile_Components (P) then
1079 Set_Has_Volatile_Components (Base_Type (E));
1080 end if;
1081
1082 -- That should be all the Rep Aspects
1083
1084 when others =>
1085 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1086 null;
1087 end case;
1088 end if;
1089 end if;
1090
1091 N := Next_Rep_Item (N);
1092 end loop;
1093 end Inherit_Delayed_Rep_Aspects;
1094
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1098
1099 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1100 Ident : constant Node_Id := Identifier (ASN);
1101 A_Name : constant Name_Id := Chars (Ident);
1102 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1103 Ent : constant Entity_Id := Entity (ASN);
1104 Expr : constant Node_Id := Expression (ASN);
1105 Loc : constant Source_Ptr := Sloc (ASN);
1106
1107 procedure Check_False_Aspect_For_Derived_Type;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1110 -- the parent.
1111
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1115
1116 procedure Check_False_Aspect_For_Derived_Type is
1117 Par : Node_Id;
1118
1119 begin
1120 -- We are only checking derived types
1121
1122 if not Is_Derived_Type (E) then
1123 return;
1124 end if;
1125
1126 Par := Nearest_Ancestor (E);
1127
1128 case A_Id is
1129 when Aspect_Atomic
1130 | Aspect_Shared
1131 =>
1132 if not Is_Atomic (Par) then
1133 return;
1134 end if;
1135
1136 when Aspect_Atomic_Components =>
1137 if not Has_Atomic_Components (Par) then
1138 return;
1139 end if;
1140
1141 when Aspect_Discard_Names =>
1142 if not Discard_Names (Par) then
1143 return;
1144 end if;
1145
1146 when Aspect_Pack =>
1147 if not Is_Packed (Par) then
1148 return;
1149 end if;
1150
1151 when Aspect_Unchecked_Union =>
1152 if not Is_Unchecked_Union (Par) then
1153 return;
1154 end if;
1155
1156 when Aspect_Volatile =>
1157 if not Is_Volatile (Par) then
1158 return;
1159 end if;
1160
1161 when Aspect_Volatile_Components =>
1162 if not Has_Volatile_Components (Par) then
1163 return;
1164 end if;
1165
1166 when Aspect_Volatile_Full_Access =>
1167 if not Is_Volatile_Full_Access (Par) then
1168 return;
1169 end if;
1170
1171 when others =>
1172 return;
1173 end case;
1174
1175 -- Fall through means we are canceling an inherited aspect
1176
1177 Error_Msg_Name_1 := A_Name;
1178 Error_Msg_NE
1179 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1180 end Check_False_Aspect_For_Derived_Type;
1181
1182 -- Local variables
1183
1184 Prag : Node_Id;
1185
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1187
1188 begin
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1192
1193 if Is_False (Static_Boolean (Expr)) then
1194 Check_False_Aspect_For_Derived_Type;
1195
1196 else
1197 Prag :=
1198 Make_Pragma (Loc,
1199 Pragma_Identifier =>
1200 Make_Identifier (Sloc (Ident), Chars (Ident)),
1201 Pragma_Argument_Associations => New_List (
1202 Make_Pragma_Argument_Association (Sloc (Ident),
1203 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1204
1205 Set_From_Aspect_Specification (Prag, True);
1206 Set_Corresponding_Aspect (Prag, ASN);
1207 Set_Aspect_Rep_Item (ASN, Prag);
1208 Set_Is_Delayed_Aspect (Prag);
1209 Set_Parent (Prag, ASN);
1210 end if;
1211 end Make_Pragma_From_Boolean_Aspect;
1212
1213 -- Local variables
1214
1215 A_Id : Aspect_Id;
1216 ASN : Node_Id;
1217 Ritem : Node_Id;
1218
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1220
1221 begin
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1227
1228 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1229 if Is_Type (E) and then From_Nested_Package (E) then
1230 declare
1231 Pack : constant Entity_Id := Scope (E);
1232
1233 begin
1234 Push_Scope (Pack);
1235 Install_Visible_Declarations (Pack);
1236 Install_Private_Declarations (Pack);
1237 Analyze_Aspects_At_Freeze_Point (E);
1238
1239 if Is_Private_Type (E)
1240 and then Present (Full_View (E))
1241 then
1242 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1243 end if;
1244
1245 End_Package_Scope (Pack);
1246 return;
1247 end;
1248
1249 -- Aspects from other entities in different contexts are analyzed
1250 -- elsewhere.
1251
1252 else
1253 return;
1254 end if;
1255 end if;
1256
1257 -- Look for aspect specification entries for this entity
1258
1259 ASN := First_Rep_Item (E);
1260 while Present (ASN) loop
1261 if Nkind (ASN) = N_Aspect_Specification then
1262 exit when Entity (ASN) /= E;
1263
1264 if Is_Delayed_Aspect (ASN) then
1265 A_Id := Get_Aspect_Id (ASN);
1266
1267 case A_Id is
1268
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1271
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1274 =>
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1284
1285 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1286 null;
1287
1288 -- Otherwise create a corresponding pragma
1289
1290 else
1291 Make_Pragma_From_Boolean_Aspect (ASN);
1292 end if;
1293
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1296
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1299 =>
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1304
1305 if Is_Derived_Type (E)
1306 and then not Comes_From_Source (E)
1307 and then E /= First_Subtype (E)
1308 then
1309 null;
1310 else
1311 Analyze_Aspect_Default_Value (ASN);
1312 end if;
1313
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1316
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1321 =>
1322 Analyze (Expression (ASN));
1323
1324 if Etype (Expression (ASN)) = Any_Type then
1325 Error_Msg_NE
1326 ("\aspect must be fully defined before & is frozen",
1327 ASN, E);
1328 end if;
1329
1330 when Aspect_Iterable =>
1331 Validate_Iterable_Aspect (E, ASN);
1332
1333 when others =>
1334 null;
1335 end case;
1336
1337 Ritem := Aspect_Rep_Item (ASN);
1338
1339 if Present (Ritem) then
1340 Analyze (Ritem);
1341 end if;
1342 end if;
1343 end if;
1344
1345 Next_Rep_Item (ASN);
1346 end loop;
1347
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1352
1353 if May_Inherit_Delayed_Rep_Aspects (E) then
1354 Inherit_Delayed_Rep_Aspects (ASN);
1355 end if;
1356 end Analyze_Aspects_At_Freeze_Point;
1357
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1361
1362 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1363 pragma Assert (Present (E));
1364
1365 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1366 -- Establish linkages between an aspect and its corresponding pragma
1367
1368 procedure Insert_Pragma
1369 (Prag : Node_Id;
1370 Is_Instance : Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1372 -- Abstract_State
1373 -- Attach_Handler
1374 -- Contract_Cases
1375 -- Depends
1376 -- Ghost
1377 -- Global
1378 -- Initial_Condition
1379 -- Initializes
1380 -- Post
1381 -- Pre
1382 -- Refined_Depends
1383 -- Refined_Global
1384 -- Refined_State
1385 -- SPARK_Mode
1386 -- Warnings
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1390
1391 --------------
1392 -- Decorate --
1393 --------------
1394
1395 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1396 begin
1397 Set_Aspect_Rep_Item (Asp, Prag);
1398 Set_Corresponding_Aspect (Prag, Asp);
1399 Set_From_Aspect_Specification (Prag);
1400 Set_Parent (Prag, Asp);
1401 end Decorate;
1402
1403 -------------------
1404 -- Insert_Pragma --
1405 -------------------
1406
1407 procedure Insert_Pragma
1408 (Prag : Node_Id;
1409 Is_Instance : Boolean := False)
1410 is
1411 Aux : Node_Id;
1412 Decl : Node_Id;
1413 Decls : List_Id;
1414 Def : Node_Id;
1415 Inserted : Boolean := False;
1416
1417 begin
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1421 -- pragma.
1422
1423 -- package body Pack with Aspect is
1424
1425 -- package body Pack is
1426 -- pragma Prag;
1427
1428 if Nkind_In (N, N_Entry_Body,
1429 N_Package_Body,
1430 N_Protected_Body,
1431 N_Subprogram_Body,
1432 N_Task_Body)
1433 then
1434 Decls := Declarations (N);
1435
1436 if No (Decls) then
1437 Decls := New_List;
1438 Set_Declarations (N, Decls);
1439 end if;
1440
1441 Prepend_To (Decls, Prag);
1442
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1446
1447 -- package Pack with Aspect is
1448
1449 -- package Pack is
1450 -- pragma Prag;
1451
1452 elsif Nkind_In (N, N_Generic_Package_Declaration,
1453 N_Package_Declaration)
1454 then
1455 Decls := Visible_Declarations (Specification (N));
1456
1457 if No (Decls) then
1458 Decls := New_List;
1459 Set_Visible_Declarations (Specification (N), Decls);
1460 end if;
1461
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1464
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1468
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1471 -- all formals.
1472
1473 if Is_Instance then
1474 Decl := First (Decls);
1475 while Present (Decl) loop
1476 if Comes_From_Source (Decl) then
1477 Insert_Before (Decl, Prag);
1478 Inserted := True;
1479 exit;
1480 else
1481 Next (Decl);
1482 end if;
1483 end loop;
1484
1485 -- The pragma is placed after the instance "header"
1486
1487 if not Inserted then
1488 Append_To (Decls, Prag);
1489 end if;
1490
1491 -- Otherwise this is not a generic instance
1492
1493 else
1494 Prepend_To (Decls, Prag);
1495 end if;
1496
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1500
1501 -- protected [type] Prot with Aspect is
1502
1503 -- protected [type] Prot is
1504 -- pragma Prag;
1505
1506 elsif Nkind (N) = N_Protected_Type_Declaration then
1507 Def := Protected_Definition (N);
1508
1509 if No (Def) then
1510 Def :=
1511 Make_Protected_Definition (Sloc (N),
1512 Visible_Declarations => New_List,
1513 End_Label => Empty);
1514
1515 Set_Protected_Definition (N, Def);
1516 end if;
1517
1518 Decls := Visible_Declarations (Def);
1519
1520 if No (Decls) then
1521 Decls := New_List;
1522 Set_Visible_Declarations (Def, Decls);
1523 end if;
1524
1525 Prepend_To (Decls, Prag);
1526
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1530
1531 -- task [type] Prot with Aspect is
1532
1533 -- task [type] Prot is
1534 -- pragma Prag;
1535
1536 elsif Nkind (N) = N_Task_Type_Declaration then
1537 Def := Task_Definition (N);
1538
1539 if No (Def) then
1540 Def :=
1541 Make_Task_Definition (Sloc (N),
1542 Visible_Declarations => New_List,
1543 End_Label => Empty);
1544
1545 Set_Task_Definition (N, Def);
1546 end if;
1547
1548 Decls := Visible_Declarations (Def);
1549
1550 if No (Decls) then
1551 Decls := New_List;
1552 Set_Visible_Declarations (Def, Decls);
1553 end if;
1554
1555 Prepend_To (Decls, Prag);
1556
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1559
1560 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1561 Aux := Aux_Decls_Node (Parent (N));
1562
1563 if No (Pragmas_After (Aux)) then
1564 Set_Pragmas_After (Aux, New_List);
1565 end if;
1566
1567 Prepend (Prag, Pragmas_After (Aux));
1568
1569 -- Default, the pragma is inserted after the context
1570
1571 else
1572 Insert_After (N, Prag);
1573 end if;
1574 end Insert_Pragma;
1575
1576 -- Local variables
1577
1578 Aspect : Node_Id;
1579 Aitem : Node_Id;
1580 Ent : Node_Id;
1581
1582 L : constant List_Id := Aspect_Specifications (N);
1583 pragma Assert (Present (L));
1584
1585 Ins_Node : Node_Id := N;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1588
1589 -- Start of processing for Analyze_Aspect_Specifications
1590
1591 begin
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1601
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1604
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1610
1611 -- Loop through aspects
1612
1613 Aspect := First (L);
1614 Aspect_Loop : while Present (Aspect) loop
1615 Analyze_One_Aspect : declare
1616 Expr : constant Node_Id := Expression (Aspect);
1617 Id : constant Node_Id := Identifier (Aspect);
1618 Loc : constant Source_Ptr := Sloc (Aspect);
1619 Nam : constant Name_Id := Chars (Id);
1620 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1621 Anod : Node_Id;
1622
1623 Delay_Required : Boolean;
1624 -- Set False if delay is not required
1625
1626 Eloc : Source_Ptr := No_Location;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1629
1630 procedure Analyze_Aspect_Convention;
1631 -- Perform analysis of aspect Convention
1632
1633 procedure Analyze_Aspect_Disable_Controlled;
1634 -- Perform analysis of aspect Disable_Controlled
1635
1636 procedure Analyze_Aspect_Export_Import;
1637 -- Perform analysis of aspects Export or Import
1638
1639 procedure Analyze_Aspect_External_Link_Name;
1640 -- Perform analysis of aspects External_Name or Link_Name
1641
1642 procedure Analyze_Aspect_Implicit_Dereference;
1643 -- Perform analysis of the Implicit_Dereference aspects
1644
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations : List_Id;
1647 Pragma_Name : Name_Id);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1656
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1660
1661 procedure Analyze_Aspect_Convention is
1662 Conv : Node_Id;
1663 Dummy_1 : Node_Id;
1664 Dummy_2 : Node_Id;
1665 Dummy_3 : Node_Id;
1666 Expo : Node_Id;
1667 Imp : Node_Id;
1668
1669 begin
1670 -- Obtain all interfacing aspects that apply to the related
1671 -- entity.
1672
1673 Get_Interfacing_Aspects
1674 (Iface_Asp => Aspect,
1675 Conv_Asp => Dummy_1,
1676 EN_Asp => Dummy_2,
1677 Expo_Asp => Expo,
1678 Imp_Asp => Imp,
1679 LN_Asp => Dummy_3,
1680 Do_Checks => True);
1681
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1685
1686 if Present (Expo) or else Present (Imp) then
1687 return;
1688
1689 -- Otherwise Convention appears by itself
1690
1691 else
1692 -- The aspect specifies a particular convention
1693
1694 if Present (Expr) then
1695 Conv := New_Copy_Tree (Expr);
1696
1697 -- Otherwise assume convention Ada
1698
1699 else
1700 Conv := Make_Identifier (Loc, Name_Ada);
1701 end if;
1702
1703 -- Generate:
1704 -- pragma Convention (<Conv>, <E>);
1705
1706 Make_Aitem_Pragma
1707 (Pragma_Name => Name_Convention,
1708 Pragma_Argument_Associations => New_List (
1709 Make_Pragma_Argument_Association (Loc,
1710 Expression => Conv),
1711 Make_Pragma_Argument_Association (Loc,
1712 Expression => New_Occurrence_Of (E, Loc))));
1713
1714 Decorate (Aspect, Aitem);
1715 Insert_Pragma (Aitem);
1716 end if;
1717 end Analyze_Aspect_Convention;
1718
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1722
1723 procedure Analyze_Aspect_Disable_Controlled is
1724 begin
1725 -- The aspect applies only to controlled records
1726
1727 if not (Ekind (E) = E_Record_Type
1728 and then Is_Controlled_Active (E))
1729 then
1730 Error_Msg_N
1731 ("aspect % requires controlled record type", Aspect);
1732 return;
1733 end if;
1734
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1737
1738 if Inside_A_Generic then
1739 if Present (Expr) then
1740 Preanalyze_And_Resolve (Expr, Any_Boolean);
1741 end if;
1742
1743 -- Otherwise the aspect resides in a nongeneric context
1744
1745 else
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1748
1749 if Present (Expr) then
1750 Analyze_And_Resolve (Expr, Any_Boolean);
1751
1752 if Is_OK_Static_Expression (Expr) then
1753 if Is_True (Static_Boolean (Expr)) then
1754 Set_Disable_Controlled (E);
1755 end if;
1756
1757 -- Otherwise the expression is not static
1758
1759 else
1760 Error_Msg_N
1761 ("expression of aspect % must be static", Aspect);
1762 end if;
1763
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1766
1767 else
1768 Set_Disable_Controlled (E);
1769 end if;
1770 end if;
1771 end Analyze_Aspect_Disable_Controlled;
1772
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1776
1777 procedure Analyze_Aspect_Export_Import is
1778 Dummy_1 : Node_Id;
1779 Dummy_2 : Node_Id;
1780 Dummy_3 : Node_Id;
1781 Expo : Node_Id;
1782 Imp : Node_Id;
1783
1784 begin
1785 -- Obtain all interfacing aspects that apply to the related
1786 -- entity.
1787
1788 Get_Interfacing_Aspects
1789 (Iface_Asp => Aspect,
1790 Conv_Asp => Dummy_1,
1791 EN_Asp => Dummy_2,
1792 Expo_Asp => Expo,
1793 Imp_Asp => Imp,
1794 LN_Asp => Dummy_3,
1795 Do_Checks => True);
1796
1797 -- The related entity cannot be subject to both aspects Export
1798 -- and Import.
1799
1800 if Present (Expo) and then Present (Imp) then
1801 Error_Msg_N
1802 ("incompatible interfacing aspects given for &", E);
1803 Error_Msg_Sloc := Sloc (Expo);
1804 Error_Msg_N ("\aspect `Export` #", E);
1805 Error_Msg_Sloc := Sloc (Imp);
1806 Error_Msg_N ("\aspect `Import` #", E);
1807 end if;
1808
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1811
1812 if Ekind (E) = E_Variable then
1813 Set_Never_Set_In_Source (E, False);
1814 end if;
1815
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1822
1823 if not Present (Expr)
1824 or else Is_True (Static_Boolean (Expr))
1825 then
1826 if A_Id = Aspect_Import then
1827 Set_Has_Completion (E);
1828 Set_Is_Imported (E);
1829
1830 -- An imported object cannot be explicitly initialized
1831
1832 if Nkind (N) = N_Object_Declaration
1833 and then Present (Expression (N))
1834 then
1835 Error_Msg_N
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression (N));
1838 end if;
1839
1840 else
1841 pragma Assert (A_Id = Aspect_Export);
1842 Set_Is_Exported (E);
1843 end if;
1844
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1847
1848 Aitem := Build_Export_Import_Pragma (Aspect, E);
1849
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1852
1853 else
1854 Aitem := Empty;
1855 end if;
1856 end Analyze_Aspect_Export_Import;
1857
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1861
1862 procedure Analyze_Aspect_External_Link_Name is
1863 Dummy_1 : Node_Id;
1864 Dummy_2 : Node_Id;
1865 Dummy_3 : Node_Id;
1866 Expo : Node_Id;
1867 Imp : Node_Id;
1868
1869 begin
1870 -- Obtain all interfacing aspects that apply to the related
1871 -- entity.
1872
1873 Get_Interfacing_Aspects
1874 (Iface_Asp => Aspect,
1875 Conv_Asp => Dummy_1,
1876 EN_Asp => Dummy_2,
1877 Expo_Asp => Expo,
1878 Imp_Asp => Imp,
1879 LN_Asp => Dummy_3,
1880 Do_Checks => True);
1881
1882 -- Ensure that aspect External_Name applies to aspect Export or
1883 -- Import.
1884
1885 if A_Id = Aspect_External_Name then
1886 if No (Expo) and then No (Imp) then
1887 Error_Msg_N
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect);
1890 end if;
1891
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1894
1895 else
1896 pragma Assert (A_Id = Aspect_Link_Name);
1897 if No (Expo) and then No (Imp) then
1898 Error_Msg_N
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect);
1901 end if;
1902 end if;
1903 end Analyze_Aspect_External_Link_Name;
1904
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1908
1909 procedure Analyze_Aspect_Implicit_Dereference is
1910 begin
1911 if not Is_Type (E) or else not Has_Discriminants (E) then
1912 Error_Msg_N
1913 ("aspect must apply to a type with discriminants", Expr);
1914
1915 elsif not Is_Entity_Name (Expr) then
1916 Error_Msg_N
1917 ("aspect must name a discriminant of current type", Expr);
1918
1919 else
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1922
1923 -- Missing synchronized types???
1924
1925 declare
1926 Disc : Entity_Id := First_Discriminant (E);
1927 begin
1928 while Present (Disc) loop
1929 if Chars (Expr) = Chars (Disc)
1930 and then Ekind_In
1931 (Etype (Disc),
1932 E_Anonymous_Access_Subprogram_Type,
1933 E_Anonymous_Access_Type)
1934 then
1935 Set_Has_Implicit_Dereference (E);
1936 Set_Has_Implicit_Dereference (Disc);
1937 exit;
1938 end if;
1939
1940 Next_Discriminant (Disc);
1941 end loop;
1942
1943 -- Error if no proper access discriminant
1944
1945 if Present (Disc) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1948 -- proper.
1949
1950 if Is_Derived_Type (E)
1951 and then Has_Discriminants (Etype (E))
1952 then
1953 declare
1954 Parent_Disc : constant Entity_Id :=
1955 Get_Reference_Discriminant (Etype (E));
1956 begin
1957 if Present (Parent_Disc)
1958 and then Corresponding_Discriminant (Disc) /=
1959 Parent_Disc
1960 then
1961 Error_Msg_N
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr);
1964 end if;
1965 end;
1966 end if;
1967
1968 else
1969 Error_Msg_NE
1970 ("not an access discriminant of&", Expr, E);
1971 end if;
1972 end;
1973 end if;
1974
1975 end Analyze_Aspect_Implicit_Dereference;
1976
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1980
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations : List_Id;
1983 Pragma_Name : Name_Id)
1984 is
1985 Args : List_Id := Pragma_Argument_Associations;
1986
1987 begin
1988 -- We should never get here if aspect was disabled
1989
1990 pragma Assert (not Is_Disabled (Aspect));
1991
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1994
1995 if No (Args) or else No (Expression (First (Args))) then
1996 Args := No_List;
1997 end if;
1998
1999 -- Build the pragma
2000
2001 Aitem :=
2002 Make_Pragma (Loc,
2003 Pragma_Argument_Associations => Args,
2004 Pragma_Identifier =>
2005 Make_Identifier (Sloc (Id), Pragma_Name),
2006 Class_Present => Class_Present (Aspect),
2007 Split_PPC => Split_PPC (Aspect));
2008
2009 -- Set additional semantic fields
2010
2011 if Is_Ignored (Aspect) then
2012 Set_Is_Ignored (Aitem);
2013 elsif Is_Checked (Aspect) then
2014 Set_Is_Checked (Aitem);
2015 end if;
2016
2017 Set_Corresponding_Aspect (Aitem, Aspect);
2018 Set_From_Aspect_Specification (Aitem);
2019 end Make_Aitem_Pragma;
2020
2021 -- Start of processing for Analyze_One_Aspect
2022
2023 begin
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2025
2026 if Analyzed (Aspect) then
2027 goto Continue;
2028 end if;
2029
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2033
2034 Check_Applicable_Policy (Aspect);
2035
2036 if Is_Disabled (Aspect) then
2037 goto Continue;
2038 end if;
2039
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2047
2048 if Present (Expr) then
2049 Eloc := Sloc (First_Node (Expr));
2050 end if;
2051
2052 -- Check restriction No_Implementation_Aspect_Specifications
2053
2054 if Implementation_Defined_Aspect (A_Id) then
2055 Check_Restriction
2056 (No_Implementation_Aspect_Specifications, Aspect);
2057 end if;
2058
2059 -- Check restriction No_Specification_Of_Aspect
2060
2061 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2062
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2064
2065 Set_Analyzed (Aspect);
2066 Set_Entity (Aspect, E);
2067
2068 -- Build the reference to E that will be used in the built pragmas
2069
2070 Ent := New_Occurrence_Of (E, Sloc (Id));
2071
2072 if A_Id = Aspect_Attach_Handler
2073 or else A_Id = Aspect_Interrupt_Handler
2074 then
2075
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2079
2080 Generate_Reference (E, Id);
2081 end if;
2082
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2086
2087 if No_Duplicates_Allowed (A_Id) then
2088 Anod := First (L);
2089 while Anod /= Aspect loop
2090 if Comes_From_Source (Aspect)
2091 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2092 then
2093 Error_Msg_Name_1 := Nam;
2094 Error_Msg_Sloc := Sloc (Anod);
2095
2096 -- Case of same aspect specified twice
2097
2098 if Class_Present (Anod) = Class_Present (Aspect) then
2099 if not Class_Present (Anod) then
2100 Error_Msg_NE
2101 ("aspect% for & previously given#",
2102 Id, E);
2103 else
2104 Error_Msg_NE
2105 ("aspect `%''Class` for & previously given#",
2106 Id, E);
2107 end if;
2108 end if;
2109 end if;
2110
2111 Next (Anod);
2112 end loop;
2113 end if;
2114
2115 -- Check some general restrictions on language defined aspects
2116
2117 if not Implementation_Defined_Aspect (A_Id) then
2118 Error_Msg_Name_1 := Nam;
2119
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2122 -- as a body.
2123
2124 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2125 Error_Msg_N
2126 ("aspect % not allowed for renaming declaration",
2127 Aspect);
2128 end if;
2129
2130 -- Not allowed for formal type declarations
2131
2132 if Nkind (N) = N_Formal_Type_Declaration then
2133 Error_Msg_N
2134 ("aspect % not allowed for formal type declaration",
2135 Aspect);
2136 end if;
2137 end if;
2138
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2141
2142 Set_Entity (Id, New_Copy_Tree (Expr));
2143
2144 -- Set Delay_Required as appropriate to aspect
2145
2146 case Aspect_Delay (A_Id) is
2147 when Always_Delay =>
2148 Delay_Required := True;
2149
2150 when Never_Delay =>
2151 Delay_Required := False;
2152
2153 when Rep_Aspect =>
2154
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2158
2159 -- For Boolean aspects, don't delay if no expression
2160
2161 if A_Id in Boolean_Aspects and then No (Expr) then
2162 Delay_Required := False;
2163
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2167
2168 elsif A_Id not in Boolean_Aspects
2169 and then A_Id /= Aspect_Alignment
2170 and then Present (Expr)
2171 and then Nkind (Expr) = N_Integer_Literal
2172 then
2173 Delay_Required := False;
2174
2175 -- All other cases are delayed
2176
2177 else
2178 Delay_Required := True;
2179 Set_Has_Delayed_Rep_Aspects (E);
2180 end if;
2181 end case;
2182
2183 -- Processing based on specific aspect
2184
2185 case A_Id is
2186 when Aspect_Unimplemented =>
2187 null; -- ??? temp for now
2188
2189 -- No_Aspect should be impossible
2190
2191 when No_Aspect =>
2192 raise Program_Error;
2193
2194 -- Case 1: Aspects corresponding to attribute definition
2195 -- clauses.
2196
2197 when Aspect_Address
2198 | Aspect_Alignment
2199 | Aspect_Bit_Order
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2205 | Aspect_Input
2206 | Aspect_Iterable
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2210 | Aspect_Output
2211 | Aspect_Read
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Simple_Storage_Pool
2214 | Aspect_Size
2215 | Aspect_Small
2216 | Aspect_Storage_Pool
2217 | Aspect_Stream_Size
2218 | Aspect_Value_Size
2219 | Aspect_Variable_Indexing
2220 | Aspect_Write
2221 =>
2222 -- Indexing aspects apply only to tagged type
2223
2224 if (A_Id = Aspect_Constant_Indexing
2225 or else
2226 A_Id = Aspect_Variable_Indexing)
2227 and then not (Is_Type (E)
2228 and then Is_Tagged_Type (E))
2229 then
2230 Error_Msg_N
2231 ("indexing aspect can only apply to a tagged type",
2232 Aspect);
2233 goto Continue;
2234 end if;
2235
2236 -- For the case of aspect Address, we don't consider that we
2237 -- know the entity is never set in the source, since it is
2238 -- is likely aliasing is occurring.
2239
2240 -- Note: one might think that the analysis of the resulting
2241 -- attribute definition clause would take care of that, but
2242 -- that's not the case since it won't be from source.
2243
2244 if A_Id = Aspect_Address then
2245 Set_Never_Set_In_Source (E, False);
2246 end if;
2247
2248 -- Correctness of the profile of a stream operation is
2249 -- verified at the freeze point, but we must detect the
2250 -- illegal specification of this aspect for a subtype now,
2251 -- to prevent malformed rep_item chains.
2252
2253 if A_Id = Aspect_Input or else
2254 A_Id = Aspect_Output or else
2255 A_Id = Aspect_Read or else
2256 A_Id = Aspect_Write
2257 then
2258 if not Is_First_Subtype (E) then
2259 Error_Msg_N
2260 ("local name must be a first subtype", Aspect);
2261 goto Continue;
2262
2263 -- If stream aspect applies to the class-wide type,
2264 -- the generated attribute definition applies to the
2265 -- class-wide type as well.
2266
2267 elsif Class_Present (Aspect) then
2268 Ent :=
2269 Make_Attribute_Reference (Loc,
2270 Prefix => Ent,
2271 Attribute_Name => Name_Class);
2272 end if;
2273 end if;
2274
2275 -- Construct the attribute_definition_clause. The expression
2276 -- in the aspect specification is simply shared with the
2277 -- constructed attribute, because it will be fully analyzed
2278 -- when the attribute is processed. However, in ASIS mode
2279 -- the aspect expression itself is preanalyzed and resolved
2280 -- to catch visibility errors that are otherwise caught
2281 -- later, and we create a separate copy of the expression
2282 -- to prevent analysis of a malformed tree (e.g. a function
2283 -- call with parameter associations).
2284
2285 if ASIS_Mode then
2286 Aitem :=
2287 Make_Attribute_Definition_Clause (Loc,
2288 Name => Ent,
2289 Chars => Chars (Id),
2290 Expression => New_Copy_Tree (Expr));
2291 else
2292 Aitem :=
2293 Make_Attribute_Definition_Clause (Loc,
2294 Name => Ent,
2295 Chars => Chars (Id),
2296 Expression => Relocate_Node (Expr));
2297 end if;
2298
2299 -- If the address is specified, then we treat the entity as
2300 -- referenced, to avoid spurious warnings. This is analogous
2301 -- to what is done with an attribute definition clause, but
2302 -- here we don't want to generate a reference because this
2303 -- is the point of definition of the entity.
2304
2305 if A_Id = Aspect_Address then
2306 Set_Referenced (E);
2307 end if;
2308
2309 -- Case 2: Aspects corresponding to pragmas
2310
2311 -- Case 2a: Aspects corresponding to pragmas with two
2312 -- arguments, where the first argument is a local name
2313 -- referring to the entity, and the second argument is the
2314 -- aspect definition expression.
2315
2316 -- Linker_Section/Suppress/Unsuppress
2317
2318 when Aspect_Linker_Section
2319 | Aspect_Suppress
2320 | Aspect_Unsuppress
2321 =>
2322 Make_Aitem_Pragma
2323 (Pragma_Argument_Associations => New_List (
2324 Make_Pragma_Argument_Association (Loc,
2325 Expression => New_Occurrence_Of (E, Loc)),
2326 Make_Pragma_Argument_Association (Sloc (Expr),
2327 Expression => Relocate_Node (Expr))),
2328 Pragma_Name => Chars (Id));
2329
2330 -- Linker_Section does not need delaying, as its argument
2331 -- must be a static string. Furthermore, if applied to
2332 -- an object with an explicit initialization, the object
2333 -- must be frozen in order to elaborate the initialization
2334 -- code. (This is already done for types with implicit
2335 -- initialization, such as protected types.)
2336
2337 if A_Id = Aspect_Linker_Section
2338 and then Nkind (N) = N_Object_Declaration
2339 and then Has_Init_Expression (N)
2340 then
2341 Delay_Required := False;
2342 end if;
2343
2344 -- Synchronization
2345
2346 -- Corresponds to pragma Implemented, construct the pragma
2347
2348 when Aspect_Synchronization =>
2349 Make_Aitem_Pragma
2350 (Pragma_Argument_Associations => New_List (
2351 Make_Pragma_Argument_Association (Loc,
2352 Expression => New_Occurrence_Of (E, Loc)),
2353 Make_Pragma_Argument_Association (Sloc (Expr),
2354 Expression => Relocate_Node (Expr))),
2355 Pragma_Name => Name_Implemented);
2356
2357 -- Attach_Handler
2358
2359 when Aspect_Attach_Handler =>
2360 Make_Aitem_Pragma
2361 (Pragma_Argument_Associations => New_List (
2362 Make_Pragma_Argument_Association (Sloc (Ent),
2363 Expression => Ent),
2364 Make_Pragma_Argument_Association (Sloc (Expr),
2365 Expression => Relocate_Node (Expr))),
2366 Pragma_Name => Name_Attach_Handler);
2367
2368 -- We need to insert this pragma into the tree to get proper
2369 -- processing and to look valid from a placement viewpoint.
2370
2371 Insert_Pragma (Aitem);
2372 goto Continue;
2373
2374 -- Dynamic_Predicate, Predicate, Static_Predicate
2375
2376 when Aspect_Dynamic_Predicate
2377 | Aspect_Predicate
2378 | Aspect_Static_Predicate
2379 =>
2380 -- These aspects apply only to subtypes
2381
2382 if not Is_Type (E) then
2383 Error_Msg_N
2384 ("predicate can only be specified for a subtype",
2385 Aspect);
2386 goto Continue;
2387
2388 elsif Is_Incomplete_Type (E) then
2389 Error_Msg_N
2390 ("predicate cannot apply to incomplete view", Aspect);
2391
2392 elsif Is_Generic_Type (E) then
2393 Error_Msg_N
2394 ("predicate cannot apply to formal type", Aspect);
2395 goto Continue;
2396 end if;
2397
2398 -- Construct the pragma (always a pragma Predicate, with
2399 -- flags recording whether it is static/dynamic). We also
2400 -- set flags recording this in the type itself.
2401
2402 Make_Aitem_Pragma
2403 (Pragma_Argument_Associations => New_List (
2404 Make_Pragma_Argument_Association (Sloc (Ent),
2405 Expression => Ent),
2406 Make_Pragma_Argument_Association (Sloc (Expr),
2407 Expression => Relocate_Node (Expr))),
2408 Pragma_Name => Name_Predicate);
2409
2410 -- Mark type has predicates, and remember what kind of
2411 -- aspect lead to this predicate (we need this to access
2412 -- the right set of check policies later on).
2413
2414 Set_Has_Predicates (E);
2415
2416 if A_Id = Aspect_Dynamic_Predicate then
2417 Set_Has_Dynamic_Predicate_Aspect (E);
2418
2419 -- If the entity has a dynamic predicate, any inherited
2420 -- static predicate becomes dynamic as well, and the
2421 -- predicate function includes the conjunction of both.
2422
2423 Set_Has_Static_Predicate_Aspect (E, False);
2424
2425 elsif A_Id = Aspect_Static_Predicate then
2426 Set_Has_Static_Predicate_Aspect (E);
2427 end if;
2428
2429 -- If the type is private, indicate that its completion
2430 -- has a freeze node, because that is the one that will
2431 -- be visible at freeze time.
2432
2433 if Is_Private_Type (E) and then Present (Full_View (E)) then
2434 Set_Has_Predicates (Full_View (E));
2435
2436 if A_Id = Aspect_Dynamic_Predicate then
2437 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2438 elsif A_Id = Aspect_Static_Predicate then
2439 Set_Has_Static_Predicate_Aspect (Full_View (E));
2440 end if;
2441
2442 Set_Has_Delayed_Aspects (Full_View (E));
2443 Ensure_Freeze_Node (Full_View (E));
2444 end if;
2445
2446 -- Predicate_Failure
2447
2448 when Aspect_Predicate_Failure =>
2449
2450 -- This aspect applies only to subtypes
2451
2452 if not Is_Type (E) then
2453 Error_Msg_N
2454 ("predicate can only be specified for a subtype",
2455 Aspect);
2456 goto Continue;
2457
2458 elsif Is_Incomplete_Type (E) then
2459 Error_Msg_N
2460 ("predicate cannot apply to incomplete view", Aspect);
2461 goto Continue;
2462 end if;
2463
2464 -- Construct the pragma
2465
2466 Make_Aitem_Pragma
2467 (Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Sloc (Ent),
2469 Expression => Ent),
2470 Make_Pragma_Argument_Association (Sloc (Expr),
2471 Expression => Relocate_Node (Expr))),
2472 Pragma_Name => Name_Predicate_Failure);
2473
2474 Set_Has_Predicates (E);
2475
2476 -- If the type is private, indicate that its completion
2477 -- has a freeze node, because that is the one that will
2478 -- be visible at freeze time.
2479
2480 if Is_Private_Type (E) and then Present (Full_View (E)) then
2481 Set_Has_Predicates (Full_View (E));
2482 Set_Has_Delayed_Aspects (Full_View (E));
2483 Ensure_Freeze_Node (Full_View (E));
2484 end if;
2485
2486 -- Case 2b: Aspects corresponding to pragmas with two
2487 -- arguments, where the second argument is a local name
2488 -- referring to the entity, and the first argument is the
2489 -- aspect definition expression.
2490
2491 -- Convention
2492
2493 when Aspect_Convention =>
2494 Analyze_Aspect_Convention;
2495 goto Continue;
2496
2497 -- External_Name, Link_Name
2498
2499 when Aspect_External_Name
2500 | Aspect_Link_Name
2501 =>
2502 Analyze_Aspect_External_Link_Name;
2503 goto Continue;
2504
2505 -- CPU, Interrupt_Priority, Priority
2506
2507 -- These three aspects can be specified for a subprogram spec
2508 -- or body, in which case we analyze the expression and export
2509 -- the value of the aspect.
2510
2511 -- Previously, we generated an equivalent pragma for bodies
2512 -- (note that the specs cannot contain these pragmas). The
2513 -- pragma was inserted ahead of local declarations, rather than
2514 -- after the body. This leads to a certain duplication between
2515 -- the processing performed for the aspect and the pragma, but
2516 -- given the straightforward handling required it is simpler
2517 -- to duplicate than to translate the aspect in the spec into
2518 -- a pragma in the declarative part of the body.
2519
2520 when Aspect_CPU
2521 | Aspect_Interrupt_Priority
2522 | Aspect_Priority
2523 =>
2524 if Nkind_In (N, N_Subprogram_Body,
2525 N_Subprogram_Declaration)
2526 then
2527 -- Analyze the aspect expression
2528
2529 Analyze_And_Resolve (Expr, Standard_Integer);
2530
2531 -- Interrupt_Priority aspect not allowed for main
2532 -- subprograms. RM D.1 does not forbid this explicitly,
2533 -- but RM J.15.11(6/3) does not permit pragma
2534 -- Interrupt_Priority for subprograms.
2535
2536 if A_Id = Aspect_Interrupt_Priority then
2537 Error_Msg_N
2538 ("Interrupt_Priority aspect cannot apply to "
2539 & "subprogram", Expr);
2540
2541 -- The expression must be static
2542
2543 elsif not Is_OK_Static_Expression (Expr) then
2544 Flag_Non_Static_Expr
2545 ("aspect requires static expression!", Expr);
2546
2547 -- Check whether this is the main subprogram. Issue a
2548 -- warning only if it is obviously not a main program
2549 -- (when it has parameters or when the subprogram is
2550 -- within a package).
2551
2552 elsif Present (Parameter_Specifications
2553 (Specification (N)))
2554 or else not Is_Compilation_Unit (Defining_Entity (N))
2555 then
2556 -- See RM D.1(14/3) and D.16(12/3)
2557
2558 Error_Msg_N
2559 ("aspect applied to subprogram other than the "
2560 & "main subprogram has no effect??", Expr);
2561
2562 -- Otherwise check in range and export the value
2563
2564 -- For the CPU aspect
2565
2566 elsif A_Id = Aspect_CPU then
2567 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2568
2569 -- Value is correct so we export the value to make
2570 -- it available at execution time.
2571
2572 Set_Main_CPU
2573 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2574
2575 else
2576 Error_Msg_N
2577 ("main subprogram CPU is out of range", Expr);
2578 end if;
2579
2580 -- For the Priority aspect
2581
2582 elsif A_Id = Aspect_Priority then
2583 if Is_In_Range (Expr, RTE (RE_Priority)) then
2584
2585 -- Value is correct so we export the value to make
2586 -- it available at execution time.
2587
2588 Set_Main_Priority
2589 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2590
2591 -- Ignore pragma if Relaxed_RM_Semantics to support
2592 -- other targets/non GNAT compilers.
2593
2594 elsif not Relaxed_RM_Semantics then
2595 Error_Msg_N
2596 ("main subprogram priority is out of range",
2597 Expr);
2598 end if;
2599 end if;
2600
2601 -- Load an arbitrary entity from System.Tasking.Stages
2602 -- or System.Tasking.Restricted.Stages (depending on
2603 -- the supported profile) to make sure that one of these
2604 -- packages is implicitly with'ed, since we need to have
2605 -- the tasking run time active for the pragma Priority to
2606 -- have any effect. Previously we with'ed the package
2607 -- System.Tasking, but this package does not trigger the
2608 -- required initialization of the run-time library.
2609
2610 declare
2611 Discard : Entity_Id;
2612 begin
2613 if Restricted_Profile then
2614 Discard := RTE (RE_Activate_Restricted_Tasks);
2615 else
2616 Discard := RTE (RE_Activate_Tasks);
2617 end if;
2618 end;
2619
2620 -- Handling for these aspects in subprograms is complete
2621
2622 goto Continue;
2623
2624 -- For task and protected types pass the aspect as an
2625 -- attribute.
2626
2627 else
2628 Aitem :=
2629 Make_Attribute_Definition_Clause (Loc,
2630 Name => Ent,
2631 Chars => Chars (Id),
2632 Expression => Relocate_Node (Expr));
2633 end if;
2634
2635 -- Warnings
2636
2637 when Aspect_Warnings =>
2638 Make_Aitem_Pragma
2639 (Pragma_Argument_Associations => New_List (
2640 Make_Pragma_Argument_Association (Sloc (Expr),
2641 Expression => Relocate_Node (Expr)),
2642 Make_Pragma_Argument_Association (Loc,
2643 Expression => New_Occurrence_Of (E, Loc))),
2644 Pragma_Name => Chars (Id));
2645
2646 Decorate (Aspect, Aitem);
2647 Insert_Pragma (Aitem);
2648 goto Continue;
2649
2650 -- Case 2c: Aspects corresponding to pragmas with three
2651 -- arguments.
2652
2653 -- Invariant aspects have a first argument that references the
2654 -- entity, a second argument that is the expression and a third
2655 -- argument that is an appropriate message.
2656
2657 -- Invariant, Type_Invariant
2658
2659 when Aspect_Invariant
2660 | Aspect_Type_Invariant
2661 =>
2662 -- Analysis of the pragma will verify placement legality:
2663 -- an invariant must apply to a private type, or appear in
2664 -- the private part of a spec and apply to a completion.
2665
2666 Make_Aitem_Pragma
2667 (Pragma_Argument_Associations => New_List (
2668 Make_Pragma_Argument_Association (Sloc (Ent),
2669 Expression => Ent),
2670 Make_Pragma_Argument_Association (Sloc (Expr),
2671 Expression => Relocate_Node (Expr))),
2672 Pragma_Name => Name_Invariant);
2673
2674 -- Add message unless exception messages are suppressed
2675
2676 if not Opt.Exception_Locations_Suppressed then
2677 Append_To (Pragma_Argument_Associations (Aitem),
2678 Make_Pragma_Argument_Association (Eloc,
2679 Chars => Name_Message,
2680 Expression =>
2681 Make_String_Literal (Eloc,
2682 Strval => "failed invariant from "
2683 & Build_Location_String (Eloc))));
2684 end if;
2685
2686 -- For Invariant case, insert immediately after the entity
2687 -- declaration. We do not have to worry about delay issues
2688 -- since the pragma processing takes care of this.
2689
2690 Delay_Required := False;
2691
2692 -- Case 2d : Aspects that correspond to a pragma with one
2693 -- argument.
2694
2695 -- Abstract_State
2696
2697 -- Aspect Abstract_State introduces implicit declarations for
2698 -- all state abstraction entities it defines. To emulate this
2699 -- behavior, insert the pragma at the beginning of the visible
2700 -- declarations of the related package so that it is analyzed
2701 -- immediately.
2702
2703 when Aspect_Abstract_State => Abstract_State : declare
2704 Context : Node_Id := N;
2705
2706 begin
2707 -- When aspect Abstract_State appears on a generic package,
2708 -- it is propageted to the package instance. The context in
2709 -- this case is the instance spec.
2710
2711 if Nkind (Context) = N_Package_Instantiation then
2712 Context := Instance_Spec (Context);
2713 end if;
2714
2715 if Nkind_In (Context, N_Generic_Package_Declaration,
2716 N_Package_Declaration)
2717 then
2718 Make_Aitem_Pragma
2719 (Pragma_Argument_Associations => New_List (
2720 Make_Pragma_Argument_Association (Loc,
2721 Expression => Relocate_Node (Expr))),
2722 Pragma_Name => Name_Abstract_State);
2723
2724 Decorate (Aspect, Aitem);
2725 Insert_Pragma
2726 (Prag => Aitem,
2727 Is_Instance =>
2728 Is_Generic_Instance (Defining_Entity (Context)));
2729
2730 else
2731 Error_Msg_NE
2732 ("aspect & must apply to a package declaration",
2733 Aspect, Id);
2734 end if;
2735
2736 goto Continue;
2737 end Abstract_State;
2738
2739 -- Aspect Async_Readers is never delayed because it is
2740 -- equivalent to a source pragma which appears after the
2741 -- related object declaration.
2742
2743 when Aspect_Async_Readers =>
2744 Make_Aitem_Pragma
2745 (Pragma_Argument_Associations => New_List (
2746 Make_Pragma_Argument_Association (Loc,
2747 Expression => Relocate_Node (Expr))),
2748 Pragma_Name => Name_Async_Readers);
2749
2750 Decorate (Aspect, Aitem);
2751 Insert_Pragma (Aitem);
2752 goto Continue;
2753
2754 -- Aspect Async_Writers is never delayed because it is
2755 -- equivalent to a source pragma which appears after the
2756 -- related object declaration.
2757
2758 when Aspect_Async_Writers =>
2759 Make_Aitem_Pragma
2760 (Pragma_Argument_Associations => New_List (
2761 Make_Pragma_Argument_Association (Loc,
2762 Expression => Relocate_Node (Expr))),
2763 Pragma_Name => Name_Async_Writers);
2764
2765 Decorate (Aspect, Aitem);
2766 Insert_Pragma (Aitem);
2767 goto Continue;
2768
2769 -- Aspect Constant_After_Elaboration is never delayed because
2770 -- it is equivalent to a source pragma which appears after the
2771 -- related object declaration.
2772
2773 when Aspect_Constant_After_Elaboration =>
2774 Make_Aitem_Pragma
2775 (Pragma_Argument_Associations => New_List (
2776 Make_Pragma_Argument_Association (Loc,
2777 Expression => Relocate_Node (Expr))),
2778 Pragma_Name =>
2779 Name_Constant_After_Elaboration);
2780
2781 Decorate (Aspect, Aitem);
2782 Insert_Pragma (Aitem);
2783 goto Continue;
2784
2785 -- Aspect Default_Internal_Condition is never delayed because
2786 -- it is equivalent to a source pragma which appears after the
2787 -- related private type. To deal with forward references, the
2788 -- generated pragma is stored in the rep chain of the related
2789 -- private type as types do not carry contracts. The pragma is
2790 -- wrapped inside of a procedure at the freeze point of the
2791 -- private type's full view.
2792
2793 when Aspect_Default_Initial_Condition =>
2794 Make_Aitem_Pragma
2795 (Pragma_Argument_Associations => New_List (
2796 Make_Pragma_Argument_Association (Loc,
2797 Expression => Relocate_Node (Expr))),
2798 Pragma_Name =>
2799 Name_Default_Initial_Condition);
2800
2801 Decorate (Aspect, Aitem);
2802 Insert_Pragma (Aitem);
2803 goto Continue;
2804
2805 -- Default_Storage_Pool
2806
2807 when Aspect_Default_Storage_Pool =>
2808 Make_Aitem_Pragma
2809 (Pragma_Argument_Associations => New_List (
2810 Make_Pragma_Argument_Association (Loc,
2811 Expression => Relocate_Node (Expr))),
2812 Pragma_Name =>
2813 Name_Default_Storage_Pool);
2814
2815 Decorate (Aspect, Aitem);
2816 Insert_Pragma (Aitem);
2817 goto Continue;
2818
2819 -- Depends
2820
2821 -- Aspect Depends is never delayed because it is equivalent to
2822 -- a source pragma which appears after the related subprogram.
2823 -- To deal with forward references, the generated pragma is
2824 -- stored in the contract of the related subprogram and later
2825 -- analyzed at the end of the declarative region. See routine
2826 -- Analyze_Depends_In_Decl_Part for details.
2827
2828 when Aspect_Depends =>
2829 Make_Aitem_Pragma
2830 (Pragma_Argument_Associations => New_List (
2831 Make_Pragma_Argument_Association (Loc,
2832 Expression => Relocate_Node (Expr))),
2833 Pragma_Name => Name_Depends);
2834
2835 Decorate (Aspect, Aitem);
2836 Insert_Pragma (Aitem);
2837 goto Continue;
2838
2839 -- Aspect Effecitve_Reads is never delayed because it is
2840 -- equivalent to a source pragma which appears after the
2841 -- related object declaration.
2842
2843 when Aspect_Effective_Reads =>
2844 Make_Aitem_Pragma
2845 (Pragma_Argument_Associations => New_List (
2846 Make_Pragma_Argument_Association (Loc,
2847 Expression => Relocate_Node (Expr))),
2848 Pragma_Name => Name_Effective_Reads);
2849
2850 Decorate (Aspect, Aitem);
2851 Insert_Pragma (Aitem);
2852 goto Continue;
2853
2854 -- Aspect Effective_Writes is never delayed because it is
2855 -- equivalent to a source pragma which appears after the
2856 -- related object declaration.
2857
2858 when Aspect_Effective_Writes =>
2859 Make_Aitem_Pragma
2860 (Pragma_Argument_Associations => New_List (
2861 Make_Pragma_Argument_Association (Loc,
2862 Expression => Relocate_Node (Expr))),
2863 Pragma_Name => Name_Effective_Writes);
2864
2865 Decorate (Aspect, Aitem);
2866 Insert_Pragma (Aitem);
2867 goto Continue;
2868
2869 -- Aspect Extensions_Visible is never delayed because it is
2870 -- equivalent to a source pragma which appears after the
2871 -- related subprogram.
2872
2873 when Aspect_Extensions_Visible =>
2874 Make_Aitem_Pragma
2875 (Pragma_Argument_Associations => New_List (
2876 Make_Pragma_Argument_Association (Loc,
2877 Expression => Relocate_Node (Expr))),
2878 Pragma_Name => Name_Extensions_Visible);
2879
2880 Decorate (Aspect, Aitem);
2881 Insert_Pragma (Aitem);
2882 goto Continue;
2883
2884 -- Aspect Ghost is never delayed because it is equivalent to a
2885 -- source pragma which appears at the top of [generic] package
2886 -- declarations or after an object, a [generic] subprogram, or
2887 -- a type declaration.
2888
2889 when Aspect_Ghost =>
2890 Make_Aitem_Pragma
2891 (Pragma_Argument_Associations => New_List (
2892 Make_Pragma_Argument_Association (Loc,
2893 Expression => Relocate_Node (Expr))),
2894 Pragma_Name => Name_Ghost);
2895
2896 Decorate (Aspect, Aitem);
2897 Insert_Pragma (Aitem);
2898 goto Continue;
2899
2900 -- Global
2901
2902 -- Aspect Global is never delayed because it is equivalent to
2903 -- a source pragma which appears after the related subprogram.
2904 -- To deal with forward references, the generated pragma is
2905 -- stored in the contract of the related subprogram and later
2906 -- analyzed at the end of the declarative region. See routine
2907 -- Analyze_Global_In_Decl_Part for details.
2908
2909 when Aspect_Global =>
2910 Make_Aitem_Pragma
2911 (Pragma_Argument_Associations => New_List (
2912 Make_Pragma_Argument_Association (Loc,
2913 Expression => Relocate_Node (Expr))),
2914 Pragma_Name => Name_Global);
2915
2916 Decorate (Aspect, Aitem);
2917 Insert_Pragma (Aitem);
2918 goto Continue;
2919
2920 -- Initial_Condition
2921
2922 -- Aspect Initial_Condition is never delayed because it is
2923 -- equivalent to a source pragma which appears after the
2924 -- related package. To deal with forward references, the
2925 -- generated pragma is stored in the contract of the related
2926 -- package and later analyzed at the end of the declarative
2927 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2928 -- for details.
2929
2930 when Aspect_Initial_Condition => Initial_Condition : declare
2931 Context : Node_Id := N;
2932
2933 begin
2934 -- When aspect Initial_Condition appears on a generic
2935 -- package, it is propageted to the package instance. The
2936 -- context in this case is the instance spec.
2937
2938 if Nkind (Context) = N_Package_Instantiation then
2939 Context := Instance_Spec (Context);
2940 end if;
2941
2942 if Nkind_In (Context, N_Generic_Package_Declaration,
2943 N_Package_Declaration)
2944 then
2945 Make_Aitem_Pragma
2946 (Pragma_Argument_Associations => New_List (
2947 Make_Pragma_Argument_Association (Loc,
2948 Expression => Relocate_Node (Expr))),
2949 Pragma_Name =>
2950 Name_Initial_Condition);
2951
2952 Decorate (Aspect, Aitem);
2953 Insert_Pragma
2954 (Prag => Aitem,
2955 Is_Instance =>
2956 Is_Generic_Instance (Defining_Entity (Context)));
2957
2958 -- Otherwise the context is illegal
2959
2960 else
2961 Error_Msg_NE
2962 ("aspect & must apply to a package declaration",
2963 Aspect, Id);
2964 end if;
2965
2966 goto Continue;
2967 end Initial_Condition;
2968
2969 -- Initializes
2970
2971 -- Aspect Initializes is never delayed because it is equivalent
2972 -- to a source pragma appearing after the related package. To
2973 -- deal with forward references, the generated pragma is stored
2974 -- in the contract of the related package and later analyzed at
2975 -- the end of the declarative region. For details, see routine
2976 -- Analyze_Initializes_In_Decl_Part.
2977
2978 when Aspect_Initializes => Initializes : declare
2979 Context : Node_Id := N;
2980
2981 begin
2982 -- When aspect Initializes appears on a generic package,
2983 -- it is propageted to the package instance. The context
2984 -- in this case is the instance spec.
2985
2986 if Nkind (Context) = N_Package_Instantiation then
2987 Context := Instance_Spec (Context);
2988 end if;
2989
2990 if Nkind_In (Context, N_Generic_Package_Declaration,
2991 N_Package_Declaration)
2992 then
2993 Make_Aitem_Pragma
2994 (Pragma_Argument_Associations => New_List (
2995 Make_Pragma_Argument_Association (Loc,
2996 Expression => Relocate_Node (Expr))),
2997 Pragma_Name => Name_Initializes);
2998
2999 Decorate (Aspect, Aitem);
3000 Insert_Pragma
3001 (Prag => Aitem,
3002 Is_Instance =>
3003 Is_Generic_Instance (Defining_Entity (Context)));
3004
3005 -- Otherwise the context is illegal
3006
3007 else
3008 Error_Msg_NE
3009 ("aspect & must apply to a package declaration",
3010 Aspect, Id);
3011 end if;
3012
3013 goto Continue;
3014 end Initializes;
3015
3016 -- Max_Entry_Queue_Depth
3017
3018 when Aspect_Max_Entry_Queue_Depth =>
3019 Make_Aitem_Pragma
3020 (Pragma_Argument_Associations => New_List (
3021 Make_Pragma_Argument_Association (Loc,
3022 Expression => Relocate_Node (Expr))),
3023 Pragma_Name => Name_Max_Entry_Queue_Depth);
3024
3025 Decorate (Aspect, Aitem);
3026 Insert_Pragma (Aitem);
3027 goto Continue;
3028
3029 -- Max_Queue_Length
3030
3031 when Aspect_Max_Queue_Length =>
3032 Make_Aitem_Pragma
3033 (Pragma_Argument_Associations => New_List (
3034 Make_Pragma_Argument_Association (Loc,
3035 Expression => Relocate_Node (Expr))),
3036 Pragma_Name => Name_Max_Queue_Length);
3037
3038 Decorate (Aspect, Aitem);
3039 Insert_Pragma (Aitem);
3040 goto Continue;
3041
3042 -- Obsolescent
3043
3044 when Aspect_Obsolescent => declare
3045 Args : List_Id;
3046
3047 begin
3048 if No (Expr) then
3049 Args := No_List;
3050 else
3051 Args := New_List (
3052 Make_Pragma_Argument_Association (Sloc (Expr),
3053 Expression => Relocate_Node (Expr)));
3054 end if;
3055
3056 Make_Aitem_Pragma
3057 (Pragma_Argument_Associations => Args,
3058 Pragma_Name => Chars (Id));
3059 end;
3060
3061 -- Part_Of
3062
3063 when Aspect_Part_Of =>
3064 if Nkind_In (N, N_Object_Declaration,
3065 N_Package_Instantiation)
3066 or else Is_Single_Concurrent_Type_Declaration (N)
3067 then
3068 Make_Aitem_Pragma
3069 (Pragma_Argument_Associations => New_List (
3070 Make_Pragma_Argument_Association (Loc,
3071 Expression => Relocate_Node (Expr))),
3072 Pragma_Name => Name_Part_Of);
3073
3074 Decorate (Aspect, Aitem);
3075 Insert_Pragma (Aitem);
3076
3077 else
3078 Error_Msg_NE
3079 ("aspect & must apply to package instantiation, "
3080 & "object, single protected type or single task type",
3081 Aspect, Id);
3082 end if;
3083
3084 goto Continue;
3085
3086 -- SPARK_Mode
3087
3088 when Aspect_SPARK_Mode =>
3089 Make_Aitem_Pragma
3090 (Pragma_Argument_Associations => New_List (
3091 Make_Pragma_Argument_Association (Loc,
3092 Expression => Relocate_Node (Expr))),
3093 Pragma_Name => Name_SPARK_Mode);
3094
3095 Decorate (Aspect, Aitem);
3096 Insert_Pragma (Aitem);
3097 goto Continue;
3098
3099 -- Refined_Depends
3100
3101 -- Aspect Refined_Depends is never delayed because it is
3102 -- equivalent to a source pragma which appears in the
3103 -- declarations of the related subprogram body. To deal with
3104 -- forward references, the generated pragma is stored in the
3105 -- contract of the related subprogram body and later analyzed
3106 -- at the end of the declarative region. For details, see
3107 -- routine Analyze_Refined_Depends_In_Decl_Part.
3108
3109 when Aspect_Refined_Depends =>
3110 Make_Aitem_Pragma
3111 (Pragma_Argument_Associations => New_List (
3112 Make_Pragma_Argument_Association (Loc,
3113 Expression => Relocate_Node (Expr))),
3114 Pragma_Name => Name_Refined_Depends);
3115
3116 Decorate (Aspect, Aitem);
3117 Insert_Pragma (Aitem);
3118 goto Continue;
3119
3120 -- Refined_Global
3121
3122 -- Aspect Refined_Global is never delayed because it is
3123 -- equivalent to a source pragma which appears in the
3124 -- declarations of the related subprogram body. To deal with
3125 -- forward references, the generated pragma is stored in the
3126 -- contract of the related subprogram body and later analyzed
3127 -- at the end of the declarative region. For details, see
3128 -- routine Analyze_Refined_Global_In_Decl_Part.
3129
3130 when Aspect_Refined_Global =>
3131 Make_Aitem_Pragma
3132 (Pragma_Argument_Associations => New_List (
3133 Make_Pragma_Argument_Association (Loc,
3134 Expression => Relocate_Node (Expr))),
3135 Pragma_Name => Name_Refined_Global);
3136
3137 Decorate (Aspect, Aitem);
3138 Insert_Pragma (Aitem);
3139 goto Continue;
3140
3141 -- Refined_Post
3142
3143 when Aspect_Refined_Post =>
3144 Make_Aitem_Pragma
3145 (Pragma_Argument_Associations => New_List (
3146 Make_Pragma_Argument_Association (Loc,
3147 Expression => Relocate_Node (Expr))),
3148 Pragma_Name => Name_Refined_Post);
3149
3150 Decorate (Aspect, Aitem);
3151 Insert_Pragma (Aitem);
3152 goto Continue;
3153
3154 -- Refined_State
3155
3156 when Aspect_Refined_State =>
3157
3158 -- The corresponding pragma for Refined_State is inserted in
3159 -- the declarations of the related package body. This action
3160 -- synchronizes both the source and from-aspect versions of
3161 -- the pragma.
3162
3163 if Nkind (N) = N_Package_Body then
3164 Make_Aitem_Pragma
3165 (Pragma_Argument_Associations => New_List (
3166 Make_Pragma_Argument_Association (Loc,
3167 Expression => Relocate_Node (Expr))),
3168 Pragma_Name => Name_Refined_State);
3169
3170 Decorate (Aspect, Aitem);
3171 Insert_Pragma (Aitem);
3172
3173 -- Otherwise the context is illegal
3174
3175 else
3176 Error_Msg_NE
3177 ("aspect & must apply to a package body", Aspect, Id);
3178 end if;
3179
3180 goto Continue;
3181
3182 -- Relative_Deadline
3183
3184 when Aspect_Relative_Deadline =>
3185 Make_Aitem_Pragma
3186 (Pragma_Argument_Associations => New_List (
3187 Make_Pragma_Argument_Association (Loc,
3188 Expression => Relocate_Node (Expr))),
3189 Pragma_Name => Name_Relative_Deadline);
3190
3191 -- If the aspect applies to a task, the corresponding pragma
3192 -- must appear within its declarations, not after.
3193
3194 if Nkind (N) = N_Task_Type_Declaration then
3195 declare
3196 Def : Node_Id;
3197 V : List_Id;
3198
3199 begin
3200 if No (Task_Definition (N)) then
3201 Set_Task_Definition (N,
3202 Make_Task_Definition (Loc,
3203 Visible_Declarations => New_List,
3204 End_Label => Empty));
3205 end if;
3206
3207 Def := Task_Definition (N);
3208 V := Visible_Declarations (Def);
3209 if not Is_Empty_List (V) then
3210 Insert_Before (First (V), Aitem);
3211
3212 else
3213 Set_Visible_Declarations (Def, New_List (Aitem));
3214 end if;
3215
3216 goto Continue;
3217 end;
3218 end if;
3219
3220 -- Secondary_Stack_Size
3221
3222 -- Aspect Secondary_Stack_Size needs to be converted into a
3223 -- pragma for two reasons: the attribute is not analyzed until
3224 -- after the expansion of the task type declaration and the
3225 -- attribute does not have visibility on the discriminant.
3226
3227 when Aspect_Secondary_Stack_Size =>
3228 Make_Aitem_Pragma
3229 (Pragma_Argument_Associations => New_List (
3230 Make_Pragma_Argument_Association (Loc,
3231 Expression => Relocate_Node (Expr))),
3232 Pragma_Name =>
3233 Name_Secondary_Stack_Size);
3234
3235 Decorate (Aspect, Aitem);
3236 Insert_Pragma (Aitem);
3237 goto Continue;
3238
3239 -- Volatile_Function
3240
3241 -- Aspect Volatile_Function is never delayed because it is
3242 -- equivalent to a source pragma which appears after the
3243 -- related subprogram.
3244
3245 when Aspect_Volatile_Function =>
3246 Make_Aitem_Pragma
3247 (Pragma_Argument_Associations => New_List (
3248 Make_Pragma_Argument_Association (Loc,
3249 Expression => Relocate_Node (Expr))),
3250 Pragma_Name => Name_Volatile_Function);
3251
3252 Decorate (Aspect, Aitem);
3253 Insert_Pragma (Aitem);
3254 goto Continue;
3255
3256 -- Case 2e: Annotate aspect
3257
3258 when Aspect_Annotate =>
3259 declare
3260 Args : List_Id;
3261 Pargs : List_Id;
3262 Arg : Node_Id;
3263
3264 begin
3265 -- The argument can be a single identifier
3266
3267 if Nkind (Expr) = N_Identifier then
3268
3269 -- One level of parens is allowed
3270
3271 if Paren_Count (Expr) > 1 then
3272 Error_Msg_F ("extra parentheses ignored", Expr);
3273 end if;
3274
3275 Set_Paren_Count (Expr, 0);
3276
3277 -- Add the single item to the list
3278
3279 Args := New_List (Expr);
3280
3281 -- Otherwise we must have an aggregate
3282
3283 elsif Nkind (Expr) = N_Aggregate then
3284
3285 -- Must be positional
3286
3287 if Present (Component_Associations (Expr)) then
3288 Error_Msg_F
3289 ("purely positional aggregate required", Expr);
3290 goto Continue;
3291 end if;
3292
3293 -- Must not be parenthesized
3294
3295 if Paren_Count (Expr) /= 0 then
3296 Error_Msg_F ("extra parentheses ignored", Expr);
3297 end if;
3298
3299 -- List of arguments is list of aggregate expressions
3300
3301 Args := Expressions (Expr);
3302
3303 -- Anything else is illegal
3304
3305 else
3306 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3307 goto Continue;
3308 end if;
3309
3310 -- Prepare pragma arguments
3311
3312 Pargs := New_List;
3313 Arg := First (Args);
3314 while Present (Arg) loop
3315 Append_To (Pargs,
3316 Make_Pragma_Argument_Association (Sloc (Arg),
3317 Expression => Relocate_Node (Arg)));
3318 Next (Arg);
3319 end loop;
3320
3321 Append_To (Pargs,
3322 Make_Pragma_Argument_Association (Sloc (Ent),
3323 Chars => Name_Entity,
3324 Expression => Ent));
3325
3326 Make_Aitem_Pragma
3327 (Pragma_Argument_Associations => Pargs,
3328 Pragma_Name => Name_Annotate);
3329 end;
3330
3331 -- Case 3 : Aspects that don't correspond to pragma/attribute
3332 -- definition clause.
3333
3334 -- Case 3a: The aspects listed below don't correspond to
3335 -- pragmas/attributes but do require delayed analysis.
3336
3337 -- Default_Value can only apply to a scalar type
3338
3339 when Aspect_Default_Value =>
3340 if not Is_Scalar_Type (E) then
3341 Error_Msg_N
3342 ("aspect Default_Value must apply to a scalar type", N);
3343 end if;
3344
3345 Aitem := Empty;
3346
3347 -- Default_Component_Value can only apply to an array type
3348 -- with scalar components.
3349
3350 when Aspect_Default_Component_Value =>
3351 if not (Is_Array_Type (E)
3352 and then Is_Scalar_Type (Component_Type (E)))
3353 then
3354 Error_Msg_N
3355 ("aspect Default_Component_Value can only apply to an "
3356 & "array of scalar components", N);
3357 end if;
3358
3359 Aitem := Empty;
3360
3361 -- Case 3b: The aspects listed below don't correspond to
3362 -- pragmas/attributes and don't need delayed analysis.
3363
3364 -- Implicit_Dereference
3365
3366 -- For Implicit_Dereference, External_Name and Link_Name, only
3367 -- the legality checks are done during the analysis, thus no
3368 -- delay is required.
3369
3370 when Aspect_Implicit_Dereference =>
3371 Analyze_Aspect_Implicit_Dereference;
3372 goto Continue;
3373
3374 -- Dimension
3375
3376 when Aspect_Dimension =>
3377 Analyze_Aspect_Dimension (N, Id, Expr);
3378 goto Continue;
3379
3380 -- Dimension_System
3381
3382 when Aspect_Dimension_System =>
3383 Analyze_Aspect_Dimension_System (N, Id, Expr);
3384 goto Continue;
3385
3386 -- Case 4: Aspects requiring special handling
3387
3388 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3389 -- pragmas take care of the delay.
3390
3391 -- Pre/Post
3392
3393 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3394 -- with a first argument that is the expression, and a second
3395 -- argument that is an informative message if the test fails.
3396 -- This is inserted right after the declaration, to get the
3397 -- required pragma placement. The processing for the pragmas
3398 -- takes care of the required delay.
3399
3400 when Pre_Post_Aspects => Pre_Post : declare
3401 Pname : Name_Id;
3402
3403 begin
3404 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3405 Pname := Name_Precondition;
3406 else
3407 Pname := Name_Postcondition;
3408 end if;
3409
3410 -- Check that the class-wide predicate cannot be applied to
3411 -- an operation of a synchronized type. AI12-0182 forbids
3412 -- these altogether, while earlier language semantics made
3413 -- them legal on tagged synchronized types.
3414
3415 -- Other legality checks are performed when analyzing the
3416 -- contract of the operation.
3417
3418 if Class_Present (Aspect)
3419 and then Is_Concurrent_Type (Current_Scope)
3420 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3421 then
3422 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3423 Error_Msg_N
3424 ("aspect % can only be specified for a primitive "
3425 & "operation of a tagged type", Aspect);
3426
3427 goto Continue;
3428 end if;
3429
3430 -- If the expressions is of the form A and then B, then
3431 -- we generate separate Pre/Post aspects for the separate
3432 -- clauses. Since we allow multiple pragmas, there is no
3433 -- problem in allowing multiple Pre/Post aspects internally.
3434 -- These should be treated in reverse order (B first and
3435 -- A second) since they are later inserted just after N in
3436 -- the order they are treated. This way, the pragma for A
3437 -- ends up preceding the pragma for B, which may have an
3438 -- importance for the error raised (either constraint error
3439 -- or precondition error).
3440
3441 -- We do not do this for Pre'Class, since we have to put
3442 -- these conditions together in a complex OR expression.
3443
3444 -- We do not do this in ASIS mode, as ASIS relies on the
3445 -- original node representing the complete expression, when
3446 -- retrieving it through the source aspect table. Also, we
3447 -- don't do this in GNATprove mode, because it brings no
3448 -- benefit for proof and causes annoynace for flow analysis,
3449 -- which prefers to be as close to the original source code
3450 -- as possible.
3451
3452 if not (ASIS_Mode or GNATprove_Mode)
3453 and then (Pname = Name_Postcondition
3454 or else not Class_Present (Aspect))
3455 then
3456 while Nkind (Expr) = N_And_Then loop
3457 Insert_After (Aspect,
3458 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3459 Identifier => Identifier (Aspect),
3460 Expression => Relocate_Node (Left_Opnd (Expr)),
3461 Class_Present => Class_Present (Aspect),
3462 Split_PPC => True));
3463 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3464 Eloc := Sloc (Expr);
3465 end loop;
3466 end if;
3467
3468 -- Build the precondition/postcondition pragma
3469
3470 -- Add note about why we do NOT need Copy_Tree here???
3471
3472 Make_Aitem_Pragma
3473 (Pragma_Argument_Associations => New_List (
3474 Make_Pragma_Argument_Association (Eloc,
3475 Chars => Name_Check,
3476 Expression => Relocate_Node (Expr))),
3477 Pragma_Name => Pname);
3478
3479 -- Add message unless exception messages are suppressed
3480
3481 if not Opt.Exception_Locations_Suppressed then
3482 Append_To (Pragma_Argument_Associations (Aitem),
3483 Make_Pragma_Argument_Association (Eloc,
3484 Chars => Name_Message,
3485 Expression =>
3486 Make_String_Literal (Eloc,
3487 Strval => "failed "
3488 & Get_Name_String (Pname)
3489 & " from "
3490 & Build_Location_String (Eloc))));
3491 end if;
3492
3493 Set_Is_Delayed_Aspect (Aspect);
3494
3495 -- For Pre/Post cases, insert immediately after the entity
3496 -- declaration, since that is the required pragma placement.
3497 -- Note that for these aspects, we do not have to worry
3498 -- about delay issues, since the pragmas themselves deal
3499 -- with delay of visibility for the expression analysis.
3500
3501 Insert_Pragma (Aitem);
3502
3503 goto Continue;
3504 end Pre_Post;
3505
3506 -- Test_Case
3507
3508 when Aspect_Test_Case => Test_Case : declare
3509 Args : List_Id;
3510 Comp_Expr : Node_Id;
3511 Comp_Assn : Node_Id;
3512 New_Expr : Node_Id;
3513
3514 begin
3515 Args := New_List;
3516
3517 if Nkind (Parent (N)) = N_Compilation_Unit then
3518 Error_Msg_Name_1 := Nam;
3519 Error_Msg_N ("incorrect placement of aspect `%`", E);
3520 goto Continue;
3521 end if;
3522
3523 if Nkind (Expr) /= N_Aggregate then
3524 Error_Msg_Name_1 := Nam;
3525 Error_Msg_NE
3526 ("wrong syntax for aspect `%` for &", Id, E);
3527 goto Continue;
3528 end if;
3529
3530 -- Make pragma expressions refer to the original aspect
3531 -- expressions through the Original_Node link. This is used
3532 -- in semantic analysis for ASIS mode, so that the original
3533 -- expression also gets analyzed.
3534
3535 Comp_Expr := First (Expressions (Expr));
3536 while Present (Comp_Expr) loop
3537 New_Expr := Relocate_Node (Comp_Expr);
3538 Append_To (Args,
3539 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3540 Expression => New_Expr));
3541 Next (Comp_Expr);
3542 end loop;
3543
3544 Comp_Assn := First (Component_Associations (Expr));
3545 while Present (Comp_Assn) loop
3546 if List_Length (Choices (Comp_Assn)) /= 1
3547 or else
3548 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3549 then
3550 Error_Msg_Name_1 := Nam;
3551 Error_Msg_NE
3552 ("wrong syntax for aspect `%` for &", Id, E);
3553 goto Continue;
3554 end if;
3555
3556 Append_To (Args,
3557 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3558 Chars => Chars (First (Choices (Comp_Assn))),
3559 Expression =>
3560 Relocate_Node (Expression (Comp_Assn))));
3561 Next (Comp_Assn);
3562 end loop;
3563
3564 -- Build the test-case pragma
3565
3566 Make_Aitem_Pragma
3567 (Pragma_Argument_Associations => Args,
3568 Pragma_Name => Nam);
3569 end Test_Case;
3570
3571 -- Contract_Cases
3572
3573 when Aspect_Contract_Cases =>
3574 Make_Aitem_Pragma
3575 (Pragma_Argument_Associations => New_List (
3576 Make_Pragma_Argument_Association (Loc,
3577 Expression => Relocate_Node (Expr))),
3578 Pragma_Name => Nam);
3579
3580 Decorate (Aspect, Aitem);
3581 Insert_Pragma (Aitem);
3582 goto Continue;
3583
3584 -- Case 5: Special handling for aspects with an optional
3585 -- boolean argument.
3586
3587 -- In the delayed case, the corresponding pragma cannot be
3588 -- generated yet because the evaluation of the boolean needs
3589 -- to be delayed till the freeze point.
3590
3591 when Boolean_Aspects
3592 | Library_Unit_Aspects
3593 =>
3594 Set_Is_Boolean_Aspect (Aspect);
3595
3596 -- Lock_Free aspect only apply to protected objects
3597
3598 if A_Id = Aspect_Lock_Free then
3599 if Ekind (E) /= E_Protected_Type then
3600 Error_Msg_Name_1 := Nam;
3601 Error_Msg_N
3602 ("aspect % only applies to a protected object",
3603 Aspect);
3604
3605 else
3606 -- Set the Uses_Lock_Free flag to True if there is no
3607 -- expression or if the expression is True. The
3608 -- evaluation of this aspect should be delayed to the
3609 -- freeze point (why???)
3610
3611 if No (Expr)
3612 or else Is_True (Static_Boolean (Expr))
3613 then
3614 Set_Uses_Lock_Free (E);
3615 end if;
3616
3617 Record_Rep_Item (E, Aspect);
3618 end if;
3619
3620 goto Continue;
3621
3622 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3623 Analyze_Aspect_Export_Import;
3624
3625 -- Disable_Controlled
3626
3627 elsif A_Id = Aspect_Disable_Controlled then
3628 Analyze_Aspect_Disable_Controlled;
3629 goto Continue;
3630 end if;
3631
3632 -- Library unit aspects require special handling in the case
3633 -- of a package declaration, the pragma needs to be inserted
3634 -- in the list of declarations for the associated package.
3635 -- There is no issue of visibility delay for these aspects.
3636
3637 if A_Id in Library_Unit_Aspects
3638 and then
3639 Nkind_In (N, N_Package_Declaration,
3640 N_Generic_Package_Declaration)
3641 and then Nkind (Parent (N)) /= N_Compilation_Unit
3642
3643 -- Aspect is legal on a local instantiation of a library-
3644 -- level generic unit.
3645
3646 and then not Is_Generic_Instance (Defining_Entity (N))
3647 then
3648 Error_Msg_N
3649 ("incorrect context for library unit aspect&", Id);
3650 goto Continue;
3651 end if;
3652
3653 -- Cases where we do not delay, includes all cases where the
3654 -- expression is missing other than the above cases.
3655
3656 if not Delay_Required or else No (Expr) then
3657
3658 -- Exclude aspects Export and Import because their pragma
3659 -- syntax does not map directly to a Boolean aspect.
3660
3661 if A_Id /= Aspect_Export
3662 and then A_Id /= Aspect_Import
3663 then
3664 Make_Aitem_Pragma
3665 (Pragma_Argument_Associations => New_List (
3666 Make_Pragma_Argument_Association (Sloc (Ent),
3667 Expression => Ent)),
3668 Pragma_Name => Chars (Id));
3669 end if;
3670
3671 Delay_Required := False;
3672
3673 -- In general cases, the corresponding pragma/attribute
3674 -- definition clause will be inserted later at the freezing
3675 -- point, and we do not need to build it now.
3676
3677 else
3678 Aitem := Empty;
3679 end if;
3680
3681 -- Storage_Size
3682
3683 -- This is special because for access types we need to generate
3684 -- an attribute definition clause. This also works for single
3685 -- task declarations, but it does not work for task type
3686 -- declarations, because we have the case where the expression
3687 -- references a discriminant of the task type. That can't use
3688 -- an attribute definition clause because we would not have
3689 -- visibility on the discriminant. For that case we must
3690 -- generate a pragma in the task definition.
3691
3692 when Aspect_Storage_Size =>
3693
3694 -- Task type case
3695
3696 if Ekind (E) = E_Task_Type then
3697 declare
3698 Decl : constant Node_Id := Declaration_Node (E);
3699
3700 begin
3701 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3702
3703 -- If no task definition, create one
3704
3705 if No (Task_Definition (Decl)) then
3706 Set_Task_Definition (Decl,
3707 Make_Task_Definition (Loc,
3708 Visible_Declarations => Empty_List,
3709 End_Label => Empty));
3710 end if;
3711
3712 -- Create a pragma and put it at the start of the task
3713 -- definition for the task type declaration.
3714
3715 Make_Aitem_Pragma
3716 (Pragma_Argument_Associations => New_List (
3717 Make_Pragma_Argument_Association (Loc,
3718 Expression => Relocate_Node (Expr))),
3719 Pragma_Name => Name_Storage_Size);
3720
3721 Prepend
3722 (Aitem,
3723 Visible_Declarations (Task_Definition (Decl)));
3724 goto Continue;
3725 end;
3726
3727 -- All other cases, generate attribute definition
3728
3729 else
3730 Aitem :=
3731 Make_Attribute_Definition_Clause (Loc,
3732 Name => Ent,
3733 Chars => Chars (Id),
3734 Expression => Relocate_Node (Expr));
3735 end if;
3736 end case;
3737
3738 -- Attach the corresponding pragma/attribute definition clause to
3739 -- the aspect specification node.
3740
3741 if Present (Aitem) then
3742 Set_From_Aspect_Specification (Aitem);
3743 end if;
3744
3745 -- In the context of a compilation unit, we directly put the
3746 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3747 -- node (no delay is required here) except for aspects on a
3748 -- subprogram body (see below) and a generic package, for which we
3749 -- need to introduce the pragma before building the generic copy
3750 -- (see sem_ch12), and for package instantiations, where the
3751 -- library unit pragmas are better handled early.
3752
3753 if Nkind (Parent (N)) = N_Compilation_Unit
3754 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3755 then
3756 declare
3757 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3758
3759 begin
3760 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3761
3762 -- For a Boolean aspect, create the corresponding pragma if
3763 -- no expression or if the value is True.
3764
3765 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3766 if Is_True (Static_Boolean (Expr)) then
3767 Make_Aitem_Pragma
3768 (Pragma_Argument_Associations => New_List (
3769 Make_Pragma_Argument_Association (Sloc (Ent),
3770 Expression => Ent)),
3771 Pragma_Name => Chars (Id));
3772
3773 Set_From_Aspect_Specification (Aitem, True);
3774 Set_Corresponding_Aspect (Aitem, Aspect);
3775
3776 else
3777 goto Continue;
3778 end if;
3779 end if;
3780
3781 -- If the aspect is on a subprogram body (relevant aspect
3782 -- is Inline), add the pragma in front of the declarations.
3783
3784 if Nkind (N) = N_Subprogram_Body then
3785 if No (Declarations (N)) then
3786 Set_Declarations (N, New_List);
3787 end if;
3788
3789 Prepend (Aitem, Declarations (N));
3790
3791 elsif Nkind (N) = N_Generic_Package_Declaration then
3792 if No (Visible_Declarations (Specification (N))) then
3793 Set_Visible_Declarations (Specification (N), New_List);
3794 end if;
3795
3796 Prepend (Aitem,
3797 Visible_Declarations (Specification (N)));
3798
3799 elsif Nkind (N) = N_Package_Instantiation then
3800 declare
3801 Spec : constant Node_Id :=
3802 Specification (Instance_Spec (N));
3803 begin
3804 if No (Visible_Declarations (Spec)) then
3805 Set_Visible_Declarations (Spec, New_List);
3806 end if;
3807
3808 Prepend (Aitem, Visible_Declarations (Spec));
3809 end;
3810
3811 else
3812 if No (Pragmas_After (Aux)) then
3813 Set_Pragmas_After (Aux, New_List);
3814 end if;
3815
3816 Append (Aitem, Pragmas_After (Aux));
3817 end if;
3818
3819 goto Continue;
3820 end;
3821 end if;
3822
3823 -- The evaluation of the aspect is delayed to the freezing point.
3824 -- The pragma or attribute clause if there is one is then attached
3825 -- to the aspect specification which is put in the rep item list.
3826
3827 if Delay_Required then
3828 if Present (Aitem) then
3829 Set_Is_Delayed_Aspect (Aitem);
3830 Set_Aspect_Rep_Item (Aspect, Aitem);
3831 Set_Parent (Aitem, Aspect);
3832 end if;
3833
3834 Set_Is_Delayed_Aspect (Aspect);
3835
3836 -- In the case of Default_Value, link the aspect to base type
3837 -- as well, even though it appears on a first subtype. This is
3838 -- mandated by the semantics of the aspect. Do not establish
3839 -- the link when processing the base type itself as this leads
3840 -- to a rep item circularity. Verify that we are dealing with
3841 -- a scalar type to prevent cascaded errors.
3842
3843 if A_Id = Aspect_Default_Value
3844 and then Is_Scalar_Type (E)
3845 and then Base_Type (E) /= E
3846 then
3847 Set_Has_Delayed_Aspects (Base_Type (E));
3848 Record_Rep_Item (Base_Type (E), Aspect);
3849 end if;
3850
3851 Set_Has_Delayed_Aspects (E);
3852 Record_Rep_Item (E, Aspect);
3853
3854 -- When delay is not required and the context is a package or a
3855 -- subprogram body, insert the pragma in the body declarations.
3856
3857 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3858 if No (Declarations (N)) then
3859 Set_Declarations (N, New_List);
3860 end if;
3861
3862 -- The pragma is added before source declarations
3863
3864 Prepend_To (Declarations (N), Aitem);
3865
3866 -- When delay is not required and the context is not a compilation
3867 -- unit, we simply insert the pragma/attribute definition clause
3868 -- in sequence.
3869
3870 elsif Present (Aitem) then
3871 Insert_After (Ins_Node, Aitem);
3872 Ins_Node := Aitem;
3873 end if;
3874 end Analyze_One_Aspect;
3875
3876 <<Continue>>
3877 Next (Aspect);
3878 end loop Aspect_Loop;
3879
3880 if Has_Delayed_Aspects (E) then
3881 Ensure_Freeze_Node (E);
3882 end if;
3883 end Analyze_Aspect_Specifications;
3884
3885 ------------------------------------------------
3886 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
3887 ------------------------------------------------
3888
3889 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub (N : Node_Id) is
3890 Body_Id : constant Entity_Id := Defining_Entity (N);
3891
3892 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3893 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3894 -- error message depending on the aspects involved. Spec_Id denotes the
3895 -- entity of the corresponding spec.
3896
3897 --------------------------------
3898 -- Diagnose_Misplaced_Aspects --
3899 --------------------------------
3900
3901 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3902 procedure Misplaced_Aspect_Error
3903 (Asp : Node_Id;
3904 Ref_Nam : Name_Id);
3905 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3906 -- the name of the refined version of the aspect.
3907
3908 ----------------------------
3909 -- Misplaced_Aspect_Error --
3910 ----------------------------
3911
3912 procedure Misplaced_Aspect_Error
3913 (Asp : Node_Id;
3914 Ref_Nam : Name_Id)
3915 is
3916 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3917 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3918
3919 begin
3920 -- The corresponding spec already contains the aspect in question
3921 -- and the one appearing on the body must be the refined form:
3922
3923 -- procedure P with Global ...;
3924 -- procedure P with Global ... is ... end P;
3925 -- ^
3926 -- Refined_Global
3927
3928 if Has_Aspect (Spec_Id, Asp_Id) then
3929 Error_Msg_Name_1 := Asp_Nam;
3930
3931 -- Subunits cannot carry aspects that apply to a subprogram
3932 -- declaration.
3933
3934 if Nkind (Parent (N)) = N_Subunit then
3935 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3936
3937 -- Otherwise suggest the refined form
3938
3939 else
3940 Error_Msg_Name_2 := Ref_Nam;
3941 Error_Msg_N ("aspect % should be %", Asp);
3942 end if;
3943
3944 -- Otherwise the aspect must appear on the spec, not on the body
3945
3946 -- procedure P;
3947 -- procedure P with Global ... is ... end P;
3948
3949 else
3950 Error_Msg_N
3951 ("aspect specification must appear on initial declaration",
3952 Asp);
3953 end if;
3954 end Misplaced_Aspect_Error;
3955
3956 -- Local variables
3957
3958 Asp : Node_Id;
3959 Asp_Nam : Name_Id;
3960
3961 -- Start of processing for Diagnose_Misplaced_Aspects
3962
3963 begin
3964 -- Iterate over the aspect specifications and emit specific errors
3965 -- where applicable.
3966
3967 Asp := First (Aspect_Specifications (N));
3968 while Present (Asp) loop
3969 Asp_Nam := Chars (Identifier (Asp));
3970
3971 -- Do not emit errors on aspects that can appear on a subprogram
3972 -- body. This scenario occurs when the aspect specification list
3973 -- contains both misplaced and properly placed aspects.
3974
3975 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3976 null;
3977
3978 -- Special diagnostics for SPARK aspects
3979
3980 elsif Asp_Nam = Name_Depends then
3981 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3982
3983 elsif Asp_Nam = Name_Global then
3984 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3985
3986 elsif Asp_Nam = Name_Post then
3987 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3988
3989 -- Otherwise a language-defined aspect is misplaced
3990
3991 else
3992 Error_Msg_N
3993 ("aspect specification must appear on initial declaration",
3994 Asp);
3995 end if;
3996
3997 Next (Asp);
3998 end loop;
3999 end Diagnose_Misplaced_Aspects;
4000
4001 -- Local variables
4002
4003 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
4004
4005 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
4006
4007 begin
4008 -- Language-defined aspects cannot be associated with a subprogram body
4009 -- [stub] if the subprogram has a spec. Certain implementation defined
4010 -- aspects are allowed to break this rule (for all applicable cases, see
4011 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
4012
4013 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
4014 Diagnose_Misplaced_Aspects (Spec_Id);
4015 else
4016 Analyze_Aspect_Specifications (N, Body_Id);
4017 end if;
4018 end Analyze_Aspects_On_Subprogram_Body_Or_Stub;
4019
4020 -----------------------
4021 -- Analyze_At_Clause --
4022 -----------------------
4023
4024 -- An at clause is replaced by the corresponding Address attribute
4025 -- definition clause that is the preferred approach in Ada 95.
4026
4027 procedure Analyze_At_Clause (N : Node_Id) is
4028 CS : constant Boolean := Comes_From_Source (N);
4029
4030 begin
4031 -- This is an obsolescent feature
4032
4033 Check_Restriction (No_Obsolescent_Features, N);
4034
4035 if Warn_On_Obsolescent_Feature then
4036 Error_Msg_N
4037 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
4038 Error_Msg_N
4039 ("\?j?use address attribute definition clause instead", N);
4040 end if;
4041
4042 -- Rewrite as address clause
4043
4044 Rewrite (N,
4045 Make_Attribute_Definition_Clause (Sloc (N),
4046 Name => Identifier (N),
4047 Chars => Name_Address,
4048 Expression => Expression (N)));
4049
4050 -- We preserve Comes_From_Source, since logically the clause still comes
4051 -- from the source program even though it is changed in form.
4052
4053 Set_Comes_From_Source (N, CS);
4054
4055 -- Analyze rewritten clause
4056
4057 Analyze_Attribute_Definition_Clause (N);
4058 end Analyze_At_Clause;
4059
4060 -----------------------------------------
4061 -- Analyze_Attribute_Definition_Clause --
4062 -----------------------------------------
4063
4064 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
4065 Loc : constant Source_Ptr := Sloc (N);
4066 Nam : constant Node_Id := Name (N);
4067 Attr : constant Name_Id := Chars (N);
4068 Expr : constant Node_Id := Expression (N);
4069 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
4070
4071 Ent : Entity_Id;
4072 -- The entity of Nam after it is analyzed. In the case of an incomplete
4073 -- type, this is the underlying type.
4074
4075 U_Ent : Entity_Id;
4076 -- The underlying entity to which the attribute applies. Generally this
4077 -- is the Underlying_Type of Ent, except in the case where the clause
4078 -- applies to the full view of an incomplete or private type, in which
4079 -- case U_Ent is just a copy of Ent.
4080
4081 FOnly : Boolean := False;
4082 -- Reset to True for subtype specific attribute (Alignment, Size)
4083 -- and for stream attributes, i.e. those cases where in the call to
4084 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4085 -- are checked. Note that the case of stream attributes is not clear
4086 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4087 -- Storage_Size for derived task types, but that is also clearly
4088 -- unintentional.
4089
4090 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4091 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4092 -- definition clauses.
4093
4094 function Duplicate_Clause return Boolean;
4095 -- This routine checks if the aspect for U_Ent being given by attribute
4096 -- definition clause N is for an aspect that has already been specified,
4097 -- and if so gives an error message. If there is a duplicate, True is
4098 -- returned, otherwise if there is no error, False is returned.
4099
4100 procedure Check_Indexing_Functions;
4101 -- Check that the function in Constant_Indexing or Variable_Indexing
4102 -- attribute has the proper type structure. If the name is overloaded,
4103 -- check that some interpretation is legal.
4104
4105 procedure Check_Iterator_Functions;
4106 -- Check that there is a single function in Default_Iterator attribute
4107 -- that has the proper type structure.
4108
4109 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
4110 -- Common legality check for the previous two
4111
4112 -----------------------------------
4113 -- Analyze_Stream_TSS_Definition --
4114 -----------------------------------
4115
4116 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4117 Subp : Entity_Id := Empty;
4118 I : Interp_Index;
4119 It : Interp;
4120 Pnam : Entity_Id;
4121
4122 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
4123 -- True for Read attribute, False for other attributes
4124
4125 function Has_Good_Profile
4126 (Subp : Entity_Id;
4127 Report : Boolean := False) return Boolean;
4128 -- Return true if the entity is a subprogram with an appropriate
4129 -- profile for the attribute being defined. If result is False and
4130 -- Report is True, function emits appropriate error.
4131
4132 ----------------------
4133 -- Has_Good_Profile --
4134 ----------------------
4135
4136 function Has_Good_Profile
4137 (Subp : Entity_Id;
4138 Report : Boolean := False) return Boolean
4139 is
4140 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4141 (False => E_Procedure, True => E_Function);
4142 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4143 F : Entity_Id;
4144 Typ : Entity_Id;
4145
4146 begin
4147 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4148 return False;
4149 end if;
4150
4151 F := First_Formal (Subp);
4152
4153 if No (F)
4154 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4155 or else Designated_Type (Etype (F)) /=
4156 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4157 then
4158 return False;
4159 end if;
4160
4161 if not Is_Function then
4162 Next_Formal (F);
4163
4164 declare
4165 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4166 (False => E_In_Parameter,
4167 True => E_Out_Parameter);
4168 begin
4169 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4170 return False;
4171 end if;
4172 end;
4173
4174 Typ := Etype (F);
4175
4176 -- If the attribute specification comes from an aspect
4177 -- specification for a class-wide stream, the parameter must be
4178 -- a class-wide type of the entity to which the aspect applies.
4179
4180 if From_Aspect_Specification (N)
4181 and then Class_Present (Parent (N))
4182 and then Is_Class_Wide_Type (Typ)
4183 then
4184 Typ := Etype (Typ);
4185 end if;
4186
4187 else
4188 Typ := Etype (Subp);
4189 end if;
4190
4191 -- Verify that the prefix of the attribute and the local name for
4192 -- the type of the formal match, or one is the class-wide of the
4193 -- other, in the case of a class-wide stream operation.
4194
4195 if Base_Type (Typ) = Base_Type (Ent)
4196 or else (Is_Class_Wide_Type (Typ)
4197 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4198 or else (Is_Class_Wide_Type (Ent)
4199 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4200 then
4201 null;
4202 else
4203 return False;
4204 end if;
4205
4206 if Present (Next_Formal (F)) then
4207 return False;
4208
4209 elsif not Is_Scalar_Type (Typ)
4210 and then not Is_First_Subtype (Typ)
4211 and then not Is_Class_Wide_Type (Typ)
4212 then
4213 if Report and not Is_First_Subtype (Typ) then
4214 Error_Msg_N
4215 ("subtype of formal in stream operation must be a first "
4216 & "subtype", Parameter_Type (Parent (F)));
4217 end if;
4218
4219 return False;
4220
4221 else
4222 return True;
4223 end if;
4224 end Has_Good_Profile;
4225
4226 -- Start of processing for Analyze_Stream_TSS_Definition
4227
4228 begin
4229 FOnly := True;
4230
4231 if not Is_Type (U_Ent) then
4232 Error_Msg_N ("local name must be a subtype", Nam);
4233 return;
4234
4235 elsif not Is_First_Subtype (U_Ent) then
4236 Error_Msg_N ("local name must be a first subtype", Nam);
4237 return;
4238 end if;
4239
4240 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4241
4242 -- If Pnam is present, it can be either inherited from an ancestor
4243 -- type (in which case it is legal to redefine it for this type), or
4244 -- be a previous definition of the attribute for the same type (in
4245 -- which case it is illegal).
4246
4247 -- In the first case, it will have been analyzed already, and we
4248 -- can check that its profile does not match the expected profile
4249 -- for a stream attribute of U_Ent. In the second case, either Pnam
4250 -- has been analyzed (and has the expected profile), or it has not
4251 -- been analyzed yet (case of a type that has not been frozen yet
4252 -- and for which the stream attribute has been set using Set_TSS).
4253
4254 if Present (Pnam)
4255 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4256 then
4257 Error_Msg_Sloc := Sloc (Pnam);
4258 Error_Msg_Name_1 := Attr;
4259 Error_Msg_N ("% attribute already defined #", Nam);
4260 return;
4261 end if;
4262
4263 Analyze (Expr);
4264
4265 if Is_Entity_Name (Expr) then
4266 if not Is_Overloaded (Expr) then
4267 if Has_Good_Profile (Entity (Expr), Report => True) then
4268 Subp := Entity (Expr);
4269 end if;
4270
4271 else
4272 Get_First_Interp (Expr, I, It);
4273 while Present (It.Nam) loop
4274 if Has_Good_Profile (It.Nam) then
4275 Subp := It.Nam;
4276 exit;
4277 end if;
4278
4279 Get_Next_Interp (I, It);
4280 end loop;
4281 end if;
4282 end if;
4283
4284 if Present (Subp) then
4285 if Is_Abstract_Subprogram (Subp) then
4286 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4287 return;
4288
4289 -- A stream subprogram for an interface type must be a null
4290 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4291 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4292
4293 elsif Is_Interface (U_Ent)
4294 and then not Is_Class_Wide_Type (U_Ent)
4295 and then not Inside_A_Generic
4296 and then
4297 (Ekind (Subp) = E_Function
4298 or else
4299 not Null_Present
4300 (Specification
4301 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4302 then
4303 Error_Msg_N
4304 ("stream subprogram for interface type must be null "
4305 & "procedure", Expr);
4306 end if;
4307
4308 Set_Entity (Expr, Subp);
4309 Set_Etype (Expr, Etype (Subp));
4310
4311 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4312
4313 else
4314 Error_Msg_Name_1 := Attr;
4315 Error_Msg_N ("incorrect expression for% attribute", Expr);
4316 end if;
4317 end Analyze_Stream_TSS_Definition;
4318
4319 ------------------------------
4320 -- Check_Indexing_Functions --
4321 ------------------------------
4322
4323 procedure Check_Indexing_Functions is
4324 Indexing_Found : Boolean := False;
4325
4326 procedure Check_Inherited_Indexing;
4327 -- For a derived type, check that no indexing aspect is specified
4328 -- for the type if it is also inherited
4329
4330 procedure Check_One_Function (Subp : Entity_Id);
4331 -- Check one possible interpretation. Sets Indexing_Found True if a
4332 -- legal indexing function is found.
4333
4334 procedure Illegal_Indexing (Msg : String);
4335 -- Diagnose illegal indexing function if not overloaded. In the
4336 -- overloaded case indicate that no legal interpretation exists.
4337
4338 ------------------------------
4339 -- Check_Inherited_Indexing --
4340 ------------------------------
4341
4342 procedure Check_Inherited_Indexing is
4343 Inherited : Node_Id;
4344
4345 begin
4346 if Attr = Name_Constant_Indexing then
4347 Inherited :=
4348 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4349 else pragma Assert (Attr = Name_Variable_Indexing);
4350 Inherited :=
4351 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4352 end if;
4353
4354 if Present (Inherited) then
4355 if Debug_Flag_Dot_XX then
4356 null;
4357
4358 -- OK if current attribute_definition_clause is expansion of
4359 -- inherited aspect.
4360
4361 elsif Aspect_Rep_Item (Inherited) = N then
4362 null;
4363
4364 -- Indicate the operation that must be overridden, rather than
4365 -- redefining the indexing aspect.
4366
4367 else
4368 Illegal_Indexing
4369 ("indexing function already inherited from parent type");
4370 Error_Msg_NE
4371 ("!override & instead",
4372 N, Entity (Expression (Inherited)));
4373 end if;
4374 end if;
4375 end Check_Inherited_Indexing;
4376
4377 ------------------------
4378 -- Check_One_Function --
4379 ------------------------
4380
4381 procedure Check_One_Function (Subp : Entity_Id) is
4382 Default_Element : Node_Id;
4383 Ret_Type : constant Entity_Id := Etype (Subp);
4384
4385 begin
4386 if not Is_Overloadable (Subp) then
4387 Illegal_Indexing ("illegal indexing function for type&");
4388 return;
4389
4390 elsif Scope (Subp) /= Scope (Ent) then
4391 if Nkind (Expr) = N_Expanded_Name then
4392
4393 -- Indexing function can't be declared elsewhere
4394
4395 Illegal_Indexing
4396 ("indexing function must be declared in scope of type&");
4397 end if;
4398
4399 return;
4400
4401 elsif No (First_Formal (Subp)) then
4402 Illegal_Indexing
4403 ("Indexing requires a function that applies to type&");
4404 return;
4405
4406 elsif No (Next_Formal (First_Formal (Subp))) then
4407 Illegal_Indexing
4408 ("indexing function must have at least two parameters");
4409 return;
4410
4411 elsif Is_Derived_Type (Ent) then
4412 Check_Inherited_Indexing;
4413 end if;
4414
4415 if not Check_Primitive_Function (Subp) then
4416 Illegal_Indexing
4417 ("Indexing aspect requires a function that applies to type&");
4418 return;
4419 end if;
4420
4421 -- If partial declaration exists, verify that it is not tagged.
4422
4423 if Ekind (Current_Scope) = E_Package
4424 and then Has_Private_Declaration (Ent)
4425 and then From_Aspect_Specification (N)
4426 and then
4427 List_Containing (Parent (Ent)) =
4428 Private_Declarations
4429 (Specification (Unit_Declaration_Node (Current_Scope)))
4430 and then Nkind (N) = N_Attribute_Definition_Clause
4431 then
4432 declare
4433 Decl : Node_Id;
4434
4435 begin
4436 Decl :=
4437 First (Visible_Declarations
4438 (Specification
4439 (Unit_Declaration_Node (Current_Scope))));
4440
4441 while Present (Decl) loop
4442 if Nkind (Decl) = N_Private_Type_Declaration
4443 and then Ent = Full_View (Defining_Identifier (Decl))
4444 and then Tagged_Present (Decl)
4445 and then No (Aspect_Specifications (Decl))
4446 then
4447 Illegal_Indexing
4448 ("Indexing aspect cannot be specified on full view "
4449 & "if partial view is tagged");
4450 return;
4451 end if;
4452
4453 Next (Decl);
4454 end loop;
4455 end;
4456 end if;
4457
4458 -- An indexing function must return either the default element of
4459 -- the container, or a reference type. For variable indexing it
4460 -- must be the latter.
4461
4462 Default_Element :=
4463 Find_Value_Of_Aspect
4464 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4465
4466 if Present (Default_Element) then
4467 Analyze (Default_Element);
4468 end if;
4469
4470 -- For variable_indexing the return type must be a reference type
4471
4472 if Attr = Name_Variable_Indexing then
4473 if not Has_Implicit_Dereference (Ret_Type) then
4474 Illegal_Indexing
4475 ("variable indexing must return a reference type");
4476 return;
4477
4478 elsif Is_Access_Constant
4479 (Etype (First_Discriminant (Ret_Type)))
4480 then
4481 Illegal_Indexing
4482 ("variable indexing must return an access to variable");
4483 return;
4484 end if;
4485
4486 else
4487 if Has_Implicit_Dereference (Ret_Type)
4488 and then not
4489 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4490 then
4491 Illegal_Indexing
4492 ("constant indexing must return an access to constant");
4493 return;
4494
4495 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4496 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4497 then
4498 Illegal_Indexing
4499 ("constant indexing must apply to an access to constant");
4500 return;
4501 end if;
4502 end if;
4503
4504 -- All checks succeeded.
4505
4506 Indexing_Found := True;
4507 end Check_One_Function;
4508
4509 -----------------------
4510 -- Illegal_Indexing --
4511 -----------------------
4512
4513 procedure Illegal_Indexing (Msg : String) is
4514 begin
4515 Error_Msg_NE (Msg, N, Ent);
4516 end Illegal_Indexing;
4517
4518 -- Start of processing for Check_Indexing_Functions
4519
4520 begin
4521 if In_Instance then
4522 Check_Inherited_Indexing;
4523 end if;
4524
4525 Analyze (Expr);
4526
4527 if not Is_Overloaded (Expr) then
4528 Check_One_Function (Entity (Expr));
4529
4530 else
4531 declare
4532 I : Interp_Index;
4533 It : Interp;
4534
4535 begin
4536 Indexing_Found := False;
4537 Get_First_Interp (Expr, I, It);
4538 while Present (It.Nam) loop
4539
4540 -- Note that analysis will have added the interpretation
4541 -- that corresponds to the dereference. We only check the
4542 -- subprogram itself. Ignore homonyms that may come from
4543 -- derived types in the context.
4544
4545 if Is_Overloadable (It.Nam)
4546 and then Comes_From_Source (It.Nam)
4547 then
4548 Check_One_Function (It.Nam);
4549 end if;
4550
4551 Get_Next_Interp (I, It);
4552 end loop;
4553 end;
4554 end if;
4555
4556 if not Indexing_Found and then not Error_Posted (N) then
4557 Error_Msg_NE
4558 ("aspect Indexing requires a local function that applies to "
4559 & "type&", Expr, Ent);
4560 end if;
4561 end Check_Indexing_Functions;
4562
4563 ------------------------------
4564 -- Check_Iterator_Functions --
4565 ------------------------------
4566
4567 procedure Check_Iterator_Functions is
4568 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4569 -- Check one possible interpretation for validity
4570
4571 ----------------------------
4572 -- Valid_Default_Iterator --
4573 ----------------------------
4574
4575 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4576 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4577 Formal : Entity_Id;
4578
4579 begin
4580 if not Check_Primitive_Function (Subp) then
4581 return False;
4582
4583 -- The return type must be derived from a type in an instance
4584 -- of Iterator.Interfaces, and thus its root type must have a
4585 -- predefined name.
4586
4587 elsif Chars (Root_T) /= Name_Forward_Iterator
4588 and then Chars (Root_T) /= Name_Reversible_Iterator
4589 then
4590 return False;
4591
4592 else
4593 Formal := First_Formal (Subp);
4594 end if;
4595
4596 -- False if any subsequent formal has no default expression
4597
4598 Formal := Next_Formal (Formal);
4599 while Present (Formal) loop
4600 if No (Expression (Parent (Formal))) then
4601 return False;
4602 end if;
4603
4604 Next_Formal (Formal);
4605 end loop;
4606
4607 -- True if all subsequent formals have default expressions
4608
4609 return True;
4610 end Valid_Default_Iterator;
4611
4612 -- Start of processing for Check_Iterator_Functions
4613
4614 begin
4615 Analyze (Expr);
4616
4617 if not Is_Entity_Name (Expr) then
4618 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4619 end if;
4620
4621 if not Is_Overloaded (Expr) then
4622 if not Check_Primitive_Function (Entity (Expr)) then
4623 Error_Msg_NE
4624 ("aspect Indexing requires a function that applies to type&",
4625 Entity (Expr), Ent);
4626 end if;
4627
4628 -- Flag the default_iterator as well as the denoted function.
4629
4630 if not Valid_Default_Iterator (Entity (Expr)) then
4631 Error_Msg_N ("improper function for default iterator!", Expr);
4632 end if;
4633
4634 else
4635 declare
4636 Default : Entity_Id := Empty;
4637 I : Interp_Index;
4638 It : Interp;
4639
4640 begin
4641 Get_First_Interp (Expr, I, It);
4642 while Present (It.Nam) loop
4643 if not Check_Primitive_Function (It.Nam)
4644 or else not Valid_Default_Iterator (It.Nam)
4645 then
4646 Remove_Interp (I);
4647
4648 elsif Present (Default) then
4649
4650 -- An explicit one should override an implicit one
4651
4652 if Comes_From_Source (Default) =
4653 Comes_From_Source (It.Nam)
4654 then
4655 Error_Msg_N ("default iterator must be unique", Expr);
4656 Error_Msg_Sloc := Sloc (Default);
4657 Error_Msg_N ("\\possible interpretation#", Expr);
4658 Error_Msg_Sloc := Sloc (It.Nam);
4659 Error_Msg_N ("\\possible interpretation#", Expr);
4660
4661 elsif Comes_From_Source (It.Nam) then
4662 Default := It.Nam;
4663 end if;
4664 else
4665 Default := It.Nam;
4666 end if;
4667
4668 Get_Next_Interp (I, It);
4669 end loop;
4670
4671 if Present (Default) then
4672 Set_Entity (Expr, Default);
4673 Set_Is_Overloaded (Expr, False);
4674 else
4675 Error_Msg_N
4676 ("no interpretation is a valid default iterator!", Expr);
4677 end if;
4678 end;
4679 end if;
4680 end Check_Iterator_Functions;
4681
4682 -------------------------------
4683 -- Check_Primitive_Function --
4684 -------------------------------
4685
4686 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4687 Ctrl : Entity_Id;
4688
4689 begin
4690 if Ekind (Subp) /= E_Function then
4691 return False;
4692 end if;
4693
4694 if No (First_Formal (Subp)) then
4695 return False;
4696 else
4697 Ctrl := Etype (First_Formal (Subp));
4698 end if;
4699
4700 -- To be a primitive operation subprogram has to be in same scope.
4701
4702 if Scope (Ctrl) /= Scope (Subp) then
4703 return False;
4704 end if;
4705
4706 -- Type of formal may be the class-wide type, an access to such,
4707 -- or an incomplete view.
4708
4709 if Ctrl = Ent
4710 or else Ctrl = Class_Wide_Type (Ent)
4711 or else
4712 (Ekind (Ctrl) = E_Anonymous_Access_Type
4713 and then (Designated_Type (Ctrl) = Ent
4714 or else
4715 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4716 or else
4717 (Ekind (Ctrl) = E_Incomplete_Type
4718 and then Full_View (Ctrl) = Ent)
4719 then
4720 null;
4721 else
4722 return False;
4723 end if;
4724
4725 return True;
4726 end Check_Primitive_Function;
4727
4728 ----------------------
4729 -- Duplicate_Clause --
4730 ----------------------
4731
4732 function Duplicate_Clause return Boolean is
4733 A : Node_Id;
4734
4735 begin
4736 -- Nothing to do if this attribute definition clause comes from
4737 -- an aspect specification, since we could not be duplicating an
4738 -- explicit clause, and we dealt with the case of duplicated aspects
4739 -- in Analyze_Aspect_Specifications.
4740
4741 if From_Aspect_Specification (N) then
4742 return False;
4743 end if;
4744
4745 -- Otherwise current clause may duplicate previous clause, or a
4746 -- previously given pragma or aspect specification for the same
4747 -- aspect.
4748
4749 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4750
4751 if Present (A) then
4752 Error_Msg_Name_1 := Chars (N);
4753 Error_Msg_Sloc := Sloc (A);
4754
4755 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4756 return True;
4757 end if;
4758
4759 return False;
4760 end Duplicate_Clause;
4761
4762 -- Start of processing for Analyze_Attribute_Definition_Clause
4763
4764 begin
4765 -- The following code is a defense against recursion. Not clear that
4766 -- this can happen legitimately, but perhaps some error situations can
4767 -- cause it, and we did see this recursion during testing.
4768
4769 if Analyzed (N) then
4770 return;
4771 else
4772 Set_Analyzed (N, True);
4773 end if;
4774
4775 Check_Restriction_No_Use_Of_Attribute (N);
4776
4777 -- Ignore some selected attributes in CodePeer mode since they are not
4778 -- relevant in this context.
4779
4780 if CodePeer_Mode then
4781 case Id is
4782
4783 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4784 -- internal representation of types by implicitly packing them.
4785
4786 when Attribute_Component_Size =>
4787 Rewrite (N, Make_Null_Statement (Sloc (N)));
4788 return;
4789
4790 when others =>
4791 null;
4792 end case;
4793 end if;
4794
4795 -- Process Ignore_Rep_Clauses option
4796
4797 if Ignore_Rep_Clauses then
4798 case Id is
4799
4800 -- The following should be ignored. They do not affect legality
4801 -- and may be target dependent. The basic idea of -gnatI is to
4802 -- ignore any rep clauses that may be target dependent but do not
4803 -- affect legality (except possibly to be rejected because they
4804 -- are incompatible with the compilation target).
4805
4806 when Attribute_Alignment
4807 | Attribute_Bit_Order
4808 | Attribute_Component_Size
4809 | Attribute_Default_Scalar_Storage_Order
4810 | Attribute_Machine_Radix
4811 | Attribute_Object_Size
4812 | Attribute_Scalar_Storage_Order
4813 | Attribute_Size
4814 | Attribute_Small
4815 | Attribute_Stream_Size
4816 | Attribute_Value_Size
4817 =>
4818 Kill_Rep_Clause (N);
4819 return;
4820
4821 -- The following should not be ignored, because in the first place
4822 -- they are reasonably portable, and should not cause problems
4823 -- in compiling code from another target, and also they do affect
4824 -- legality, e.g. failing to provide a stream attribute for a type
4825 -- may make a program illegal.
4826
4827 when Attribute_External_Tag
4828 | Attribute_Input
4829 | Attribute_Output
4830 | Attribute_Read
4831 | Attribute_Simple_Storage_Pool
4832 | Attribute_Storage_Pool
4833 | Attribute_Storage_Size
4834 | Attribute_Write
4835 =>
4836 null;
4837
4838 -- We do not do anything here with address clauses, they will be
4839 -- removed by Freeze later on, but for now, it works better to
4840 -- keep them in the tree.
4841
4842 when Attribute_Address =>
4843 null;
4844
4845 -- Other cases are errors ("attribute& cannot be set with
4846 -- definition clause"), which will be caught below.
4847
4848 when others =>
4849 null;
4850 end case;
4851 end if;
4852
4853 Analyze (Nam);
4854 Ent := Entity (Nam);
4855
4856 if Rep_Item_Too_Early (Ent, N) then
4857 return;
4858 end if;
4859
4860 -- Rep clause applies to full view of incomplete type or private type if
4861 -- we have one (if not, this is a premature use of the type). However,
4862 -- certain semantic checks need to be done on the specified entity (i.e.
4863 -- the private view), so we save it in Ent.
4864
4865 if Is_Private_Type (Ent)
4866 and then Is_Derived_Type (Ent)
4867 and then not Is_Tagged_Type (Ent)
4868 and then No (Full_View (Ent))
4869 then
4870 -- If this is a private type whose completion is a derivation from
4871 -- another private type, there is no full view, and the attribute
4872 -- belongs to the type itself, not its underlying parent.
4873
4874 U_Ent := Ent;
4875
4876 elsif Ekind (Ent) = E_Incomplete_Type then
4877
4878 -- The attribute applies to the full view, set the entity of the
4879 -- attribute definition accordingly.
4880
4881 Ent := Underlying_Type (Ent);
4882 U_Ent := Ent;
4883 Set_Entity (Nam, Ent);
4884
4885 else
4886 U_Ent := Underlying_Type (Ent);
4887 end if;
4888
4889 -- Avoid cascaded error
4890
4891 if Etype (Nam) = Any_Type then
4892 return;
4893
4894 -- Must be declared in current scope or in case of an aspect
4895 -- specification, must be visible in current scope.
4896
4897 elsif Scope (Ent) /= Current_Scope
4898 and then
4899 not (From_Aspect_Specification (N)
4900 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4901 then
4902 Error_Msg_N ("entity must be declared in this scope", Nam);
4903 return;
4904
4905 -- Must not be a source renaming (we do have some cases where the
4906 -- expander generates a renaming, and those cases are OK, in such
4907 -- cases any attribute applies to the renamed object as well).
4908
4909 elsif Is_Object (Ent)
4910 and then Present (Renamed_Object (Ent))
4911 then
4912 -- Case of renamed object from source, this is an error
4913
4914 if Comes_From_Source (Renamed_Object (Ent)) then
4915 Get_Name_String (Chars (N));
4916 Error_Msg_Strlen := Name_Len;
4917 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4918 Error_Msg_N
4919 ("~ clause not allowed for a renaming declaration "
4920 & "(RM 13.1(6))", Nam);
4921 return;
4922
4923 -- For the case of a compiler generated renaming, the attribute
4924 -- definition clause applies to the renamed object created by the
4925 -- expander. The easiest general way to handle this is to create a
4926 -- copy of the attribute definition clause for this object.
4927
4928 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4929 Insert_Action (N,
4930 Make_Attribute_Definition_Clause (Loc,
4931 Name =>
4932 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4933 Chars => Chars (N),
4934 Expression => Duplicate_Subexpr (Expression (N))));
4935
4936 -- If the renamed object is not an entity, it must be a dereference
4937 -- of an unconstrained function call, and we must introduce a new
4938 -- declaration to capture the expression. This is needed in the case
4939 -- of 'Alignment, where the original declaration must be rewritten.
4940
4941 else
4942 pragma Assert
4943 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4944 null;
4945 end if;
4946
4947 -- If no underlying entity, use entity itself, applies to some
4948 -- previously detected error cases ???
4949
4950 elsif No (U_Ent) then
4951 U_Ent := Ent;
4952
4953 -- Cannot specify for a subtype (exception Object/Value_Size)
4954
4955 elsif Is_Type (U_Ent)
4956 and then not Is_First_Subtype (U_Ent)
4957 and then Id /= Attribute_Object_Size
4958 and then Id /= Attribute_Value_Size
4959 and then not From_At_Mod (N)
4960 then
4961 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4962 return;
4963 end if;
4964
4965 Set_Entity (N, U_Ent);
4966
4967 -- Switch on particular attribute
4968
4969 case Id is
4970
4971 -------------
4972 -- Address --
4973 -------------
4974
4975 -- Address attribute definition clause
4976
4977 when Attribute_Address => Address : begin
4978
4979 -- A little error check, catch for X'Address use X'Address;
4980
4981 if Nkind (Nam) = N_Identifier
4982 and then Nkind (Expr) = N_Attribute_Reference
4983 and then Attribute_Name (Expr) = Name_Address
4984 and then Nkind (Prefix (Expr)) = N_Identifier
4985 and then Chars (Nam) = Chars (Prefix (Expr))
4986 then
4987 Error_Msg_NE
4988 ("address for & is self-referencing", Prefix (Expr), Ent);
4989 return;
4990 end if;
4991
4992 -- Not that special case, carry on with analysis of expression
4993
4994 Analyze_And_Resolve (Expr, RTE (RE_Address));
4995
4996 -- Even when ignoring rep clauses we need to indicate that the
4997 -- entity has an address clause and thus it is legal to declare
4998 -- it imported. Freeze will get rid of the address clause later.
4999 -- Also call Set_Address_Taken to indicate that an address clause
5000 -- was present, even if we are about to remove it.
5001
5002 if Ignore_Rep_Clauses then
5003 Set_Address_Taken (U_Ent);
5004
5005 if Ekind_In (U_Ent, E_Variable, E_Constant) then
5006 Record_Rep_Item (U_Ent, N);
5007 end if;
5008
5009 return;
5010 end if;
5011
5012 if Duplicate_Clause then
5013 null;
5014
5015 -- Case of address clause for subprogram
5016
5017 elsif Is_Subprogram (U_Ent) then
5018 if Has_Homonym (U_Ent) then
5019 Error_Msg_N
5020 ("address clause cannot be given for overloaded "
5021 & "subprogram", Nam);
5022 return;
5023 end if;
5024
5025 -- For subprograms, all address clauses are permitted, and we
5026 -- mark the subprogram as having a deferred freeze so that Gigi
5027 -- will not elaborate it too soon.
5028
5029 -- Above needs more comments, what is too soon about???
5030
5031 Set_Has_Delayed_Freeze (U_Ent);
5032
5033 -- Case of address clause for entry
5034
5035 elsif Ekind (U_Ent) = E_Entry then
5036 if Nkind (Parent (N)) = N_Task_Body then
5037 Error_Msg_N
5038 ("entry address must be specified in task spec", Nam);
5039 return;
5040 end if;
5041
5042 -- For entries, we require a constant address
5043
5044 Check_Constant_Address_Clause (Expr, U_Ent);
5045
5046 -- Special checks for task types
5047
5048 if Is_Task_Type (Scope (U_Ent))
5049 and then Comes_From_Source (Scope (U_Ent))
5050 then
5051 Error_Msg_N
5052 ("??entry address declared for entry in task type", N);
5053 Error_Msg_N
5054 ("\??only one task can be declared of this type", N);
5055 end if;
5056
5057 -- Entry address clauses are obsolescent
5058
5059 Check_Restriction (No_Obsolescent_Features, N);
5060
5061 if Warn_On_Obsolescent_Feature then
5062 Error_Msg_N
5063 ("?j?attaching interrupt to task entry is an obsolescent "
5064 & "feature (RM J.7.1)", N);
5065 Error_Msg_N
5066 ("\?j?use interrupt procedure instead", N);
5067 end if;
5068
5069 -- Case of an address clause for a class-wide object, which is
5070 -- considered erroneous.
5071
5072 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5073 Error_Msg_NE
5074 ("??class-wide object & must not be overlaid", Nam, U_Ent);
5075 Error_Msg_N
5076 ("\??Program_Error will be raised at run time", Nam);
5077 Insert_Action (Declaration_Node (U_Ent),
5078 Make_Raise_Program_Error (Loc,
5079 Reason => PE_Overlaid_Controlled_Object));
5080 return;
5081
5082 -- Case of address clause for an object
5083
5084 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
5085 declare
5086 Expr : constant Node_Id := Expression (N);
5087 O_Ent : Entity_Id;
5088 Off : Boolean;
5089
5090 begin
5091 -- Exported variables cannot have an address clause, because
5092 -- this cancels the effect of the pragma Export.
5093
5094 if Is_Exported (U_Ent) then
5095 Error_Msg_N
5096 ("cannot export object with address clause", Nam);
5097 return;
5098 end if;
5099
5100 Find_Overlaid_Entity (N, O_Ent, Off);
5101
5102 if Present (O_Ent) then
5103
5104 -- If the object overlays a constant object, mark it so
5105
5106 if Is_Constant_Object (O_Ent) then
5107 Set_Overlays_Constant (U_Ent);
5108 end if;
5109
5110 -- If the address clause is of the form:
5111
5112 -- for X'Address use Y'Address;
5113
5114 -- or
5115
5116 -- C : constant Address := Y'Address;
5117 -- ...
5118 -- for X'Address use C;
5119
5120 -- then we make an entry in the table to check the size
5121 -- and alignment of the overlaying variable. But we defer
5122 -- this check till after code generation to take full
5123 -- advantage of the annotation done by the back end.
5124
5125 -- If the entity has a generic type, the check will be
5126 -- performed in the instance if the actual type justifies
5127 -- it, and we do not insert the clause in the table to
5128 -- prevent spurious warnings.
5129
5130 -- Note: we used to test Comes_From_Source and only give
5131 -- this warning for source entities, but we have removed
5132 -- this test. It really seems bogus to generate overlays
5133 -- that would trigger this warning in generated code.
5134 -- Furthermore, by removing the test, we handle the
5135 -- aspect case properly.
5136
5137 if Is_Object (O_Ent)
5138 and then not Is_Generic_Type (Etype (U_Ent))
5139 and then Address_Clause_Overlay_Warnings
5140 then
5141 Register_Address_Clause_Check
5142 (N, U_Ent, No_Uint, O_Ent, Off);
5143 end if;
5144
5145 -- If the overlay changes the storage order, mark the
5146 -- entity as being volatile to block any optimization
5147 -- for it since the construct is not really supported
5148 -- by the back end.
5149
5150 if (Is_Record_Type (Etype (U_Ent))
5151 or else Is_Array_Type (Etype (U_Ent)))
5152 and then (Is_Record_Type (Etype (O_Ent))
5153 or else Is_Array_Type (Etype (O_Ent)))
5154 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5155 Reverse_Storage_Order (Etype (O_Ent))
5156 then
5157 Set_Treat_As_Volatile (U_Ent);
5158 end if;
5159
5160 else
5161 -- If this is not an overlay, mark a variable as being
5162 -- volatile to prevent unwanted optimizations. It's a
5163 -- conservative interpretation of RM 13.3(19) for the
5164 -- cases where the compiler cannot detect potential
5165 -- aliasing issues easily and it also covers the case
5166 -- of an absolute address where the volatile aspect is
5167 -- kind of implicit.
5168
5169 if Ekind (U_Ent) = E_Variable then
5170 Set_Treat_As_Volatile (U_Ent);
5171 end if;
5172
5173 -- Make an entry in the table for an absolute address as
5174 -- above to check that the value is compatible with the
5175 -- alignment of the object.
5176
5177 declare
5178 Addr : constant Node_Id := Address_Value (Expr);
5179 begin
5180 if Compile_Time_Known_Value (Addr)
5181 and then Address_Clause_Overlay_Warnings
5182 then
5183 Register_Address_Clause_Check
5184 (N, U_Ent, Expr_Value (Addr), Empty, False);
5185 end if;
5186 end;
5187 end if;
5188
5189 -- Issue an unconditional warning for a constant overlaying
5190 -- a variable. For the reverse case, we will issue it only
5191 -- if the variable is modified.
5192
5193 if Ekind (U_Ent) = E_Constant
5194 and then Present (O_Ent)
5195 and then not Overlays_Constant (U_Ent)
5196 and then Address_Clause_Overlay_Warnings
5197 then
5198 Error_Msg_N ("??constant overlays a variable", Expr);
5199
5200 -- Imported variables can have an address clause, but then
5201 -- the import is pretty meaningless except to suppress
5202 -- initializations, so we do not need such variables to
5203 -- be statically allocated (and in fact it causes trouble
5204 -- if the address clause is a local value).
5205
5206 elsif Is_Imported (U_Ent) then
5207 Set_Is_Statically_Allocated (U_Ent, False);
5208 end if;
5209
5210 -- We mark a possible modification of a variable with an
5211 -- address clause, since it is likely aliasing is occurring.
5212
5213 Note_Possible_Modification (Nam, Sure => False);
5214
5215 -- Legality checks on the address clause for initialized
5216 -- objects is deferred until the freeze point, because
5217 -- a subsequent pragma might indicate that the object
5218 -- is imported and thus not initialized. Also, the address
5219 -- clause might involve entities that have yet to be
5220 -- elaborated.
5221
5222 Set_Has_Delayed_Freeze (U_Ent);
5223
5224 -- If an initialization call has been generated for this
5225 -- object, it needs to be deferred to after the freeze node
5226 -- we have just now added, otherwise GIGI will see a
5227 -- reference to the variable (as actual to the IP call)
5228 -- before its definition.
5229
5230 declare
5231 Init_Call : constant Node_Id :=
5232 Remove_Init_Call (U_Ent, N);
5233
5234 begin
5235 if Present (Init_Call) then
5236 Append_Freeze_Action (U_Ent, Init_Call);
5237
5238 -- Reset Initialization_Statements pointer so that
5239 -- if there is a pragma Import further down, it can
5240 -- clear any default initialization.
5241
5242 Set_Initialization_Statements (U_Ent, Init_Call);
5243 end if;
5244 end;
5245
5246 -- Entity has delayed freeze, so we will generate an
5247 -- alignment check at the freeze point unless suppressed.
5248
5249 if not Range_Checks_Suppressed (U_Ent)
5250 and then not Alignment_Checks_Suppressed (U_Ent)
5251 then
5252 Set_Check_Address_Alignment (N);
5253 end if;
5254
5255 -- Kill the size check code, since we are not allocating
5256 -- the variable, it is somewhere else.
5257
5258 Kill_Size_Check_Code (U_Ent);
5259 end;
5260
5261 -- Not a valid entity for an address clause
5262
5263 else
5264 Error_Msg_N ("address cannot be given for &", Nam);
5265 end if;
5266 end Address;
5267
5268 ---------------
5269 -- Alignment --
5270 ---------------
5271
5272 -- Alignment attribute definition clause
5273
5274 when Attribute_Alignment => Alignment : declare
5275 Align : constant Uint := Get_Alignment_Value (Expr);
5276 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5277
5278 begin
5279 FOnly := True;
5280
5281 if not Is_Type (U_Ent)
5282 and then Ekind (U_Ent) /= E_Variable
5283 and then Ekind (U_Ent) /= E_Constant
5284 then
5285 Error_Msg_N ("alignment cannot be given for &", Nam);
5286
5287 elsif Duplicate_Clause then
5288 null;
5289
5290 elsif Align /= No_Uint then
5291 Set_Has_Alignment_Clause (U_Ent);
5292
5293 -- Tagged type case, check for attempt to set alignment to a
5294 -- value greater than Max_Align, and reset if so. This error
5295 -- is suppressed in ASIS mode to allow for different ASIS
5296 -- back ends or ASIS-based tools to query the illegal clause.
5297
5298 if Is_Tagged_Type (U_Ent)
5299 and then Align > Max_Align
5300 and then not ASIS_Mode
5301 then
5302 Error_Msg_N
5303 ("alignment for & set to Maximum_Aligment??", Nam);
5304 Set_Alignment (U_Ent, Max_Align);
5305
5306 -- All other cases
5307
5308 else
5309 Set_Alignment (U_Ent, Align);
5310 end if;
5311
5312 -- For an array type, U_Ent is the first subtype. In that case,
5313 -- also set the alignment of the anonymous base type so that
5314 -- other subtypes (such as the itypes for aggregates of the
5315 -- type) also receive the expected alignment.
5316
5317 if Is_Array_Type (U_Ent) then
5318 Set_Alignment (Base_Type (U_Ent), Align);
5319 end if;
5320 end if;
5321 end Alignment;
5322
5323 ---------------
5324 -- Bit_Order --
5325 ---------------
5326
5327 -- Bit_Order attribute definition clause
5328
5329 when Attribute_Bit_Order =>
5330 if not Is_Record_Type (U_Ent) then
5331 Error_Msg_N
5332 ("Bit_Order can only be defined for record type", Nam);
5333
5334 elsif Is_Tagged_Type (U_Ent) and then Is_Derived_Type (U_Ent) then
5335 Error_Msg_N
5336 ("Bit_Order cannot be defined for record extensions", Nam);
5337
5338 elsif Duplicate_Clause then
5339 null;
5340
5341 else
5342 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5343
5344 if Etype (Expr) = Any_Type then
5345 return;
5346
5347 elsif not Is_OK_Static_Expression (Expr) then
5348 Flag_Non_Static_Expr
5349 ("Bit_Order requires static expression!", Expr);
5350
5351 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5352 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5353 end if;
5354 end if;
5355
5356 --------------------
5357 -- Component_Size --
5358 --------------------
5359
5360 -- Component_Size attribute definition clause
5361
5362 when Attribute_Component_Size => Component_Size_Case : declare
5363 Csize : constant Uint := Static_Integer (Expr);
5364 Ctyp : Entity_Id;
5365 Btype : Entity_Id;
5366 Biased : Boolean;
5367 New_Ctyp : Entity_Id;
5368 Decl : Node_Id;
5369
5370 begin
5371 if not Is_Array_Type (U_Ent) then
5372 Error_Msg_N ("component size requires array type", Nam);
5373 return;
5374 end if;
5375
5376 Btype := Base_Type (U_Ent);
5377 Ctyp := Component_Type (Btype);
5378
5379 if Duplicate_Clause then
5380 null;
5381
5382 elsif Rep_Item_Too_Early (Btype, N) then
5383 null;
5384
5385 elsif Csize /= No_Uint then
5386 Check_Size (Expr, Ctyp, Csize, Biased);
5387
5388 -- For the biased case, build a declaration for a subtype that
5389 -- will be used to represent the biased subtype that reflects
5390 -- the biased representation of components. We need the subtype
5391 -- to get proper conversions on referencing elements of the
5392 -- array.
5393
5394 if Biased then
5395 New_Ctyp :=
5396 Make_Defining_Identifier (Loc,
5397 Chars =>
5398 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5399
5400 Decl :=
5401 Make_Subtype_Declaration (Loc,
5402 Defining_Identifier => New_Ctyp,
5403 Subtype_Indication =>
5404 New_Occurrence_Of (Component_Type (Btype), Loc));
5405
5406 Set_Parent (Decl, N);
5407 Analyze (Decl, Suppress => All_Checks);
5408
5409 Set_Has_Delayed_Freeze (New_Ctyp, False);
5410 Set_Esize (New_Ctyp, Csize);
5411 Set_RM_Size (New_Ctyp, Csize);
5412 Init_Alignment (New_Ctyp);
5413 Set_Is_Itype (New_Ctyp, True);
5414 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5415
5416 Set_Component_Type (Btype, New_Ctyp);
5417 Set_Biased (New_Ctyp, N, "component size clause");
5418 end if;
5419
5420 Set_Component_Size (Btype, Csize);
5421
5422 -- Deal with warning on overridden size
5423
5424 if Warn_On_Overridden_Size
5425 and then Has_Size_Clause (Ctyp)
5426 and then RM_Size (Ctyp) /= Csize
5427 then
5428 Error_Msg_NE
5429 ("component size overrides size clause for&?S?", N, Ctyp);
5430 end if;
5431
5432 Set_Has_Component_Size_Clause (Btype, True);
5433 Set_Has_Non_Standard_Rep (Btype, True);
5434 end if;
5435 end Component_Size_Case;
5436
5437 -----------------------
5438 -- Constant_Indexing --
5439 -----------------------
5440
5441 when Attribute_Constant_Indexing =>
5442 Check_Indexing_Functions;
5443
5444 ---------
5445 -- CPU --
5446 ---------
5447
5448 when Attribute_CPU =>
5449
5450 -- CPU attribute definition clause not allowed except from aspect
5451 -- specification.
5452
5453 if From_Aspect_Specification (N) then
5454 if not Is_Task_Type (U_Ent) then
5455 Error_Msg_N ("CPU can only be defined for task", Nam);
5456
5457 elsif Duplicate_Clause then
5458 null;
5459
5460 else
5461 -- The expression must be analyzed in the special manner
5462 -- described in "Handling of Default and Per-Object
5463 -- Expressions" in sem.ads.
5464
5465 -- The visibility to the discriminants must be restored
5466
5467 Push_Scope_And_Install_Discriminants (U_Ent);
5468 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5469 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5470
5471 if not Is_OK_Static_Expression (Expr) then
5472 Check_Restriction (Static_Priorities, Expr);
5473 end if;
5474 end if;
5475
5476 else
5477 Error_Msg_N
5478 ("attribute& cannot be set with definition clause", N);
5479 end if;
5480
5481 ----------------------
5482 -- Default_Iterator --
5483 ----------------------
5484
5485 when Attribute_Default_Iterator => Default_Iterator : declare
5486 Func : Entity_Id;
5487 Typ : Entity_Id;
5488
5489 begin
5490 -- If target type is untagged, further checks are irrelevant
5491
5492 if not Is_Tagged_Type (U_Ent) then
5493 Error_Msg_N
5494 ("aspect Default_Iterator applies to tagged type", Nam);
5495 return;
5496 end if;
5497
5498 Check_Iterator_Functions;
5499
5500 Analyze (Expr);
5501
5502 if not Is_Entity_Name (Expr)
5503 or else Ekind (Entity (Expr)) /= E_Function
5504 then
5505 Error_Msg_N ("aspect Iterator must be a function", Expr);
5506 return;
5507 else
5508 Func := Entity (Expr);
5509 end if;
5510
5511 -- The type of the first parameter must be T, T'class, or a
5512 -- corresponding access type (5.5.1 (8/3). If function is
5513 -- parameterless label type accordingly.
5514
5515 if No (First_Formal (Func)) then
5516 Typ := Any_Type;
5517 else
5518 Typ := Etype (First_Formal (Func));
5519 end if;
5520
5521 if Typ = U_Ent
5522 or else Typ = Class_Wide_Type (U_Ent)
5523 or else (Is_Access_Type (Typ)
5524 and then Designated_Type (Typ) = U_Ent)
5525 or else (Is_Access_Type (Typ)
5526 and then Designated_Type (Typ) =
5527 Class_Wide_Type (U_Ent))
5528 then
5529 null;
5530
5531 else
5532 Error_Msg_NE
5533 ("Default Iterator must be a primitive of&", Func, U_Ent);
5534 end if;
5535 end Default_Iterator;
5536
5537 ------------------------
5538 -- Dispatching_Domain --
5539 ------------------------
5540
5541 when Attribute_Dispatching_Domain =>
5542
5543 -- Dispatching_Domain attribute definition clause not allowed
5544 -- except from aspect specification.
5545
5546 if From_Aspect_Specification (N) then
5547 if not Is_Task_Type (U_Ent) then
5548 Error_Msg_N
5549 ("Dispatching_Domain can only be defined for task", Nam);
5550
5551 elsif Duplicate_Clause then
5552 null;
5553
5554 else
5555 -- The expression must be analyzed in the special manner
5556 -- described in "Handling of Default and Per-Object
5557 -- Expressions" in sem.ads.
5558
5559 -- The visibility to the discriminants must be restored
5560
5561 Push_Scope_And_Install_Discriminants (U_Ent);
5562
5563 Preanalyze_Spec_Expression
5564 (Expr, RTE (RE_Dispatching_Domain));
5565
5566 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5567 end if;
5568
5569 else
5570 Error_Msg_N
5571 ("attribute& cannot be set with definition clause", N);
5572 end if;
5573
5574 ------------------
5575 -- External_Tag --
5576 ------------------
5577
5578 when Attribute_External_Tag =>
5579 if not Is_Tagged_Type (U_Ent) then
5580 Error_Msg_N ("should be a tagged type", Nam);
5581 end if;
5582
5583 if Duplicate_Clause then
5584 null;
5585
5586 else
5587 Analyze_And_Resolve (Expr, Standard_String);
5588
5589 if not Is_OK_Static_Expression (Expr) then
5590 Flag_Non_Static_Expr
5591 ("static string required for tag name!", Nam);
5592 end if;
5593
5594 if not Is_Library_Level_Entity (U_Ent) then
5595 Error_Msg_NE
5596 ("??non-unique external tag supplied for &", N, U_Ent);
5597 Error_Msg_N
5598 ("\??same external tag applies to all subprogram calls",
5599 N);
5600 Error_Msg_N
5601 ("\??corresponding internal tag cannot be obtained", N);
5602 end if;
5603 end if;
5604
5605 --------------------------
5606 -- Implicit_Dereference --
5607 --------------------------
5608
5609 when Attribute_Implicit_Dereference =>
5610
5611 -- Legality checks already performed at the point of the type
5612 -- declaration, aspect is not delayed.
5613
5614 null;
5615
5616 -----------
5617 -- Input --
5618 -----------
5619
5620 when Attribute_Input =>
5621 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5622 Set_Has_Specified_Stream_Input (Ent);
5623
5624 ------------------------
5625 -- Interrupt_Priority --
5626 ------------------------
5627
5628 when Attribute_Interrupt_Priority =>
5629
5630 -- Interrupt_Priority attribute definition clause not allowed
5631 -- except from aspect specification.
5632
5633 if From_Aspect_Specification (N) then
5634 if not Is_Concurrent_Type (U_Ent) then
5635 Error_Msg_N
5636 ("Interrupt_Priority can only be defined for task and "
5637 & "protected object", Nam);
5638
5639 elsif Duplicate_Clause then
5640 null;
5641
5642 else
5643 -- The expression must be analyzed in the special manner
5644 -- described in "Handling of Default and Per-Object
5645 -- Expressions" in sem.ads.
5646
5647 -- The visibility to the discriminants must be restored
5648
5649 Push_Scope_And_Install_Discriminants (U_Ent);
5650
5651 Preanalyze_Spec_Expression
5652 (Expr, RTE (RE_Interrupt_Priority));
5653
5654 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5655
5656 -- Check the No_Task_At_Interrupt_Priority restriction
5657
5658 if Is_Task_Type (U_Ent) then
5659 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5660 end if;
5661 end if;
5662
5663 else
5664 Error_Msg_N
5665 ("attribute& cannot be set with definition clause", N);
5666 end if;
5667
5668 --------------
5669 -- Iterable --
5670 --------------
5671
5672 when Attribute_Iterable =>
5673 Analyze (Expr);
5674
5675 if Nkind (Expr) /= N_Aggregate then
5676 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5677 end if;
5678
5679 declare
5680 Assoc : Node_Id;
5681
5682 begin
5683 Assoc := First (Component_Associations (Expr));
5684 while Present (Assoc) loop
5685 if not Is_Entity_Name (Expression (Assoc)) then
5686 Error_Msg_N ("value must be a function", Assoc);
5687 end if;
5688
5689 Next (Assoc);
5690 end loop;
5691 end;
5692
5693 ----------------------
5694 -- Iterator_Element --
5695 ----------------------
5696
5697 when Attribute_Iterator_Element =>
5698 Analyze (Expr);
5699
5700 if not Is_Entity_Name (Expr)
5701 or else not Is_Type (Entity (Expr))
5702 then
5703 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5704 end if;
5705
5706 -------------------
5707 -- Machine_Radix --
5708 -------------------
5709
5710 -- Machine radix attribute definition clause
5711
5712 when Attribute_Machine_Radix => Machine_Radix : declare
5713 Radix : constant Uint := Static_Integer (Expr);
5714
5715 begin
5716 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5717 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5718
5719 elsif Duplicate_Clause then
5720 null;
5721
5722 elsif Radix /= No_Uint then
5723 Set_Has_Machine_Radix_Clause (U_Ent);
5724 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5725
5726 if Radix = 2 then
5727 null;
5728
5729 elsif Radix = 10 then
5730 Set_Machine_Radix_10 (U_Ent);
5731
5732 -- The following error is suppressed in ASIS mode to allow for
5733 -- different ASIS back ends or ASIS-based tools to query the
5734 -- illegal clause.
5735
5736 elsif not ASIS_Mode then
5737 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5738 end if;
5739 end if;
5740 end Machine_Radix;
5741
5742 -----------------
5743 -- Object_Size --
5744 -----------------
5745
5746 -- Object_Size attribute definition clause
5747
5748 when Attribute_Object_Size => Object_Size : declare
5749 Size : constant Uint := Static_Integer (Expr);
5750
5751 Biased : Boolean;
5752 pragma Warnings (Off, Biased);
5753
5754 begin
5755 if not Is_Type (U_Ent) then
5756 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5757
5758 elsif Duplicate_Clause then
5759 null;
5760
5761 else
5762 Check_Size (Expr, U_Ent, Size, Biased);
5763
5764 -- The following errors are suppressed in ASIS mode to allow
5765 -- for different ASIS back ends or ASIS-based tools to query
5766 -- the illegal clause.
5767
5768 if ASIS_Mode then
5769 null;
5770
5771 elsif Is_Scalar_Type (U_Ent) then
5772 if Size /= 8 and then Size /= 16 and then Size /= 32
5773 and then UI_Mod (Size, 64) /= 0
5774 then
5775 Error_Msg_N
5776 ("Object_Size must be 8, 16, 32, or multiple of 64",
5777 Expr);
5778 end if;
5779
5780 elsif Size mod 8 /= 0 then
5781 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5782 end if;
5783
5784 Set_Esize (U_Ent, Size);
5785 Set_Has_Object_Size_Clause (U_Ent);
5786 Alignment_Check_For_Size_Change (U_Ent, Size);
5787 end if;
5788 end Object_Size;
5789
5790 ------------
5791 -- Output --
5792 ------------
5793
5794 when Attribute_Output =>
5795 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5796 Set_Has_Specified_Stream_Output (Ent);
5797
5798 --------------
5799 -- Priority --
5800 --------------
5801
5802 when Attribute_Priority =>
5803
5804 -- Priority attribute definition clause not allowed except from
5805 -- aspect specification.
5806
5807 if From_Aspect_Specification (N) then
5808 if not (Is_Concurrent_Type (U_Ent)
5809 or else Ekind (U_Ent) = E_Procedure)
5810 then
5811 Error_Msg_N
5812 ("Priority can only be defined for task and protected "
5813 & "object", Nam);
5814
5815 elsif Duplicate_Clause then
5816 null;
5817
5818 else
5819 -- The expression must be analyzed in the special manner
5820 -- described in "Handling of Default and Per-Object
5821 -- Expressions" in sem.ads.
5822
5823 -- The visibility to the discriminants must be restored
5824
5825 Push_Scope_And_Install_Discriminants (U_Ent);
5826 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5827 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5828
5829 if not Is_OK_Static_Expression (Expr) then
5830 Check_Restriction (Static_Priorities, Expr);
5831 end if;
5832 end if;
5833
5834 else
5835 Error_Msg_N
5836 ("attribute& cannot be set with definition clause", N);
5837 end if;
5838
5839 ----------
5840 -- Read --
5841 ----------
5842
5843 when Attribute_Read =>
5844 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5845 Set_Has_Specified_Stream_Read (Ent);
5846
5847 --------------------------
5848 -- Scalar_Storage_Order --
5849 --------------------------
5850
5851 -- Scalar_Storage_Order attribute definition clause
5852
5853 when Attribute_Scalar_Storage_Order =>
5854 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5855 Error_Msg_N
5856 ("Scalar_Storage_Order can only be defined for record or "
5857 & "array type", Nam);
5858
5859 elsif Duplicate_Clause then
5860 null;
5861
5862 else
5863 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5864
5865 if Etype (Expr) = Any_Type then
5866 return;
5867
5868 elsif not Is_OK_Static_Expression (Expr) then
5869 Flag_Non_Static_Expr
5870 ("Scalar_Storage_Order requires static expression!", Expr);
5871
5872 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5873
5874 -- Here for the case of a non-default (i.e. non-confirming)
5875 -- Scalar_Storage_Order attribute definition.
5876
5877 if Support_Nondefault_SSO_On_Target then
5878 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5879 else
5880 Error_Msg_N
5881 ("non-default Scalar_Storage_Order not supported on "
5882 & "target", Expr);
5883 end if;
5884 end if;
5885
5886 -- Clear SSO default indications since explicit setting of the
5887 -- order overrides the defaults.
5888
5889 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5890 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5891 end if;
5892
5893 ----------
5894 -- Size --
5895 ----------
5896
5897 -- Size attribute definition clause
5898
5899 when Attribute_Size => Size : declare
5900 Size : constant Uint := Static_Integer (Expr);
5901 Etyp : Entity_Id;
5902 Biased : Boolean;
5903
5904 begin
5905 FOnly := True;
5906
5907 if Duplicate_Clause then
5908 null;
5909
5910 elsif not Is_Type (U_Ent)
5911 and then Ekind (U_Ent) /= E_Variable
5912 and then Ekind (U_Ent) /= E_Constant
5913 then
5914 Error_Msg_N ("size cannot be given for &", Nam);
5915
5916 elsif Is_Array_Type (U_Ent)
5917 and then not Is_Constrained (U_Ent)
5918 then
5919 Error_Msg_N
5920 ("size cannot be given for unconstrained array", Nam);
5921
5922 elsif Size /= No_Uint then
5923 if Is_Type (U_Ent) then
5924 Etyp := U_Ent;
5925 else
5926 Etyp := Etype (U_Ent);
5927 end if;
5928
5929 -- Check size, note that Gigi is in charge of checking that the
5930 -- size of an array or record type is OK. Also we do not check
5931 -- the size in the ordinary fixed-point case, since it is too
5932 -- early to do so (there may be subsequent small clause that
5933 -- affects the size). We can check the size if a small clause
5934 -- has already been given.
5935
5936 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5937 or else Has_Small_Clause (U_Ent)
5938 then
5939 Check_Size (Expr, Etyp, Size, Biased);
5940 Set_Biased (U_Ent, N, "size clause", Biased);
5941 end if;
5942
5943 -- For types set RM_Size and Esize if possible
5944
5945 if Is_Type (U_Ent) then
5946 Set_RM_Size (U_Ent, Size);
5947
5948 -- For elementary types, increase Object_Size to power of 2,
5949 -- but not less than a storage unit in any case (normally
5950 -- this means it will be byte addressable).
5951
5952 -- For all other types, nothing else to do, we leave Esize
5953 -- (object size) unset, the back end will set it from the
5954 -- size and alignment in an appropriate manner.
5955
5956 -- In both cases, we check whether the alignment must be
5957 -- reset in the wake of the size change.
5958
5959 if Is_Elementary_Type (U_Ent) then
5960 if Size <= System_Storage_Unit then
5961 Init_Esize (U_Ent, System_Storage_Unit);
5962 elsif Size <= 16 then
5963 Init_Esize (U_Ent, 16);
5964 elsif Size <= 32 then
5965 Init_Esize (U_Ent, 32);
5966 else
5967 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5968 end if;
5969
5970 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5971 else
5972 Alignment_Check_For_Size_Change (U_Ent, Size);
5973 end if;
5974
5975 -- For objects, set Esize only
5976
5977 else
5978 -- The following error is suppressed in ASIS mode to allow
5979 -- for different ASIS back ends or ASIS-based tools to query
5980 -- the illegal clause.
5981
5982 if Is_Elementary_Type (Etyp)
5983 and then Size /= System_Storage_Unit
5984 and then Size /= System_Storage_Unit * 2
5985 and then Size /= System_Storage_Unit * 4
5986 and then Size /= System_Storage_Unit * 8
5987 and then not ASIS_Mode
5988 then
5989 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5990 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5991 Error_Msg_N
5992 ("size for primitive object must be a power of 2 in "
5993 & "the range ^-^", N);
5994 end if;
5995
5996 Set_Esize (U_Ent, Size);
5997 end if;
5998
5999 Set_Has_Size_Clause (U_Ent);
6000 end if;
6001 end Size;
6002
6003 -----------
6004 -- Small --
6005 -----------
6006
6007 -- Small attribute definition clause
6008
6009 when Attribute_Small => Small : declare
6010 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
6011 Small : Ureal;
6012
6013 begin
6014 Analyze_And_Resolve (Expr, Any_Real);
6015
6016 if Etype (Expr) = Any_Type then
6017 return;
6018
6019 elsif not Is_OK_Static_Expression (Expr) then
6020 Flag_Non_Static_Expr
6021 ("small requires static expression!", Expr);
6022 return;
6023
6024 else
6025 Small := Expr_Value_R (Expr);
6026
6027 if Small <= Ureal_0 then
6028 Error_Msg_N ("small value must be greater than zero", Expr);
6029 return;
6030 end if;
6031
6032 end if;
6033
6034 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6035 Error_Msg_N
6036 ("small requires an ordinary fixed point type", Nam);
6037
6038 elsif Has_Small_Clause (U_Ent) then
6039 Error_Msg_N ("small already given for &", Nam);
6040
6041 elsif Small > Delta_Value (U_Ent) then
6042 Error_Msg_N
6043 ("small value must not be greater than delta value", Nam);
6044
6045 else
6046 Set_Small_Value (U_Ent, Small);
6047 Set_Small_Value (Implicit_Base, Small);
6048 Set_Has_Small_Clause (U_Ent);
6049 Set_Has_Small_Clause (Implicit_Base);
6050 Set_Has_Non_Standard_Rep (Implicit_Base);
6051 end if;
6052 end Small;
6053
6054 ------------------
6055 -- Storage_Pool --
6056 ------------------
6057
6058 -- Storage_Pool attribute definition clause
6059
6060 when Attribute_Simple_Storage_Pool
6061 | Attribute_Storage_Pool
6062 =>
6063 Storage_Pool : declare
6064 Pool : Entity_Id;
6065 T : Entity_Id;
6066
6067 begin
6068 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6069 Error_Msg_N
6070 ("storage pool cannot be given for access-to-subprogram type",
6071 Nam);
6072 return;
6073
6074 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
6075 then
6076 Error_Msg_N
6077 ("storage pool can only be given for access types", Nam);
6078 return;
6079
6080 elsif Is_Derived_Type (U_Ent) then
6081 Error_Msg_N
6082 ("storage pool cannot be given for a derived access type",
6083 Nam);
6084
6085 elsif Duplicate_Clause then
6086 return;
6087
6088 elsif Present (Associated_Storage_Pool (U_Ent)) then
6089 Error_Msg_N ("storage pool already given for &", Nam);
6090 return;
6091 end if;
6092
6093 -- Check for Storage_Size previously given
6094
6095 declare
6096 SS : constant Node_Id :=
6097 Get_Attribute_Definition_Clause
6098 (U_Ent, Attribute_Storage_Size);
6099 begin
6100 if Present (SS) then
6101 Check_Pool_Size_Clash (U_Ent, N, SS);
6102 end if;
6103 end;
6104
6105 -- Storage_Pool case
6106
6107 if Id = Attribute_Storage_Pool then
6108 Analyze_And_Resolve
6109 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6110
6111 -- In the Simple_Storage_Pool case, we allow a variable of any
6112 -- simple storage pool type, so we Resolve without imposing an
6113 -- expected type.
6114
6115 else
6116 Analyze_And_Resolve (Expr);
6117
6118 if not Present (Get_Rep_Pragma
6119 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6120 then
6121 Error_Msg_N
6122 ("expression must be of a simple storage pool type", Expr);
6123 end if;
6124 end if;
6125
6126 if not Denotes_Variable (Expr) then
6127 Error_Msg_N ("storage pool must be a variable", Expr);
6128 return;
6129 end if;
6130
6131 if Nkind (Expr) = N_Type_Conversion then
6132 T := Etype (Expression (Expr));
6133 else
6134 T := Etype (Expr);
6135 end if;
6136
6137 -- The Stack_Bounded_Pool is used internally for implementing
6138 -- access types with a Storage_Size. Since it only work properly
6139 -- when used on one specific type, we need to check that it is not
6140 -- hijacked improperly:
6141
6142 -- type T is access Integer;
6143 -- for T'Storage_Size use n;
6144 -- type Q is access Float;
6145 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6146
6147 if RTE_Available (RE_Stack_Bounded_Pool)
6148 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6149 then
6150 Error_Msg_N ("non-shareable internal Pool", Expr);
6151 return;
6152 end if;
6153
6154 -- If the argument is a name that is not an entity name, then
6155 -- we construct a renaming operation to define an entity of
6156 -- type storage pool.
6157
6158 if not Is_Entity_Name (Expr)
6159 and then Is_Object_Reference (Expr)
6160 then
6161 Pool := Make_Temporary (Loc, 'P', Expr);
6162
6163 declare
6164 Rnode : constant Node_Id :=
6165 Make_Object_Renaming_Declaration (Loc,
6166 Defining_Identifier => Pool,
6167 Subtype_Mark =>
6168 New_Occurrence_Of (Etype (Expr), Loc),
6169 Name => Expr);
6170
6171 begin
6172 -- If the attribute definition clause comes from an aspect
6173 -- clause, then insert the renaming before the associated
6174 -- entity's declaration, since the attribute clause has
6175 -- not yet been appended to the declaration list.
6176
6177 if From_Aspect_Specification (N) then
6178 Insert_Before (Parent (Entity (N)), Rnode);
6179 else
6180 Insert_Before (N, Rnode);
6181 end if;
6182
6183 Analyze (Rnode);
6184 Set_Associated_Storage_Pool (U_Ent, Pool);
6185 end;
6186
6187 elsif Is_Entity_Name (Expr) then
6188 Pool := Entity (Expr);
6189
6190 -- If pool is a renamed object, get original one. This can
6191 -- happen with an explicit renaming, and within instances.
6192
6193 while Present (Renamed_Object (Pool))
6194 and then Is_Entity_Name (Renamed_Object (Pool))
6195 loop
6196 Pool := Entity (Renamed_Object (Pool));
6197 end loop;
6198
6199 if Present (Renamed_Object (Pool))
6200 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6201 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6202 then
6203 Pool := Entity (Expression (Renamed_Object (Pool)));
6204 end if;
6205
6206 Set_Associated_Storage_Pool (U_Ent, Pool);
6207
6208 elsif Nkind (Expr) = N_Type_Conversion
6209 and then Is_Entity_Name (Expression (Expr))
6210 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6211 then
6212 Pool := Entity (Expression (Expr));
6213 Set_Associated_Storage_Pool (U_Ent, Pool);
6214
6215 else
6216 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6217 return;
6218 end if;
6219 end Storage_Pool;
6220
6221 ------------------
6222 -- Storage_Size --
6223 ------------------
6224
6225 -- Storage_Size attribute definition clause
6226
6227 when Attribute_Storage_Size => Storage_Size : declare
6228 Btype : constant Entity_Id := Base_Type (U_Ent);
6229
6230 begin
6231 if Is_Task_Type (U_Ent) then
6232
6233 -- Check obsolescent (but never obsolescent if from aspect)
6234
6235 if not From_Aspect_Specification (N) then
6236 Check_Restriction (No_Obsolescent_Features, N);
6237
6238 if Warn_On_Obsolescent_Feature then
6239 Error_Msg_N
6240 ("?j?storage size clause for task is an obsolescent "
6241 & "feature (RM J.9)", N);
6242 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6243 end if;
6244 end if;
6245
6246 FOnly := True;
6247 end if;
6248
6249 if not Is_Access_Type (U_Ent)
6250 and then Ekind (U_Ent) /= E_Task_Type
6251 then
6252 Error_Msg_N ("storage size cannot be given for &", Nam);
6253
6254 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6255 Error_Msg_N
6256 ("storage size cannot be given for a derived access type",
6257 Nam);
6258
6259 elsif Duplicate_Clause then
6260 null;
6261
6262 else
6263 Analyze_And_Resolve (Expr, Any_Integer);
6264
6265 if Is_Access_Type (U_Ent) then
6266
6267 -- Check for Storage_Pool previously given
6268
6269 declare
6270 SP : constant Node_Id :=
6271 Get_Attribute_Definition_Clause
6272 (U_Ent, Attribute_Storage_Pool);
6273
6274 begin
6275 if Present (SP) then
6276 Check_Pool_Size_Clash (U_Ent, SP, N);
6277 end if;
6278 end;
6279
6280 -- Special case of for x'Storage_Size use 0
6281
6282 if Is_OK_Static_Expression (Expr)
6283 and then Expr_Value (Expr) = 0
6284 then
6285 Set_No_Pool_Assigned (Btype);
6286 end if;
6287 end if;
6288
6289 Set_Has_Storage_Size_Clause (Btype);
6290 end if;
6291 end Storage_Size;
6292
6293 -----------------
6294 -- Stream_Size --
6295 -----------------
6296
6297 when Attribute_Stream_Size => Stream_Size : declare
6298 Size : constant Uint := Static_Integer (Expr);
6299
6300 begin
6301 if Ada_Version <= Ada_95 then
6302 Check_Restriction (No_Implementation_Attributes, N);
6303 end if;
6304
6305 if Duplicate_Clause then
6306 null;
6307
6308 elsif Is_Elementary_Type (U_Ent) then
6309
6310 -- The following errors are suppressed in ASIS mode to allow
6311 -- for different ASIS back ends or ASIS-based tools to query
6312 -- the illegal clause.
6313
6314 if ASIS_Mode then
6315 null;
6316
6317 elsif Size /= System_Storage_Unit
6318 and then Size /= System_Storage_Unit * 2
6319 and then Size /= System_Storage_Unit * 4
6320 and then Size /= System_Storage_Unit * 8
6321 then
6322 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6323 Error_Msg_N
6324 ("stream size for elementary type must be a power of 2 "
6325 & "and at least ^", N);
6326
6327 elsif RM_Size (U_Ent) > Size then
6328 Error_Msg_Uint_1 := RM_Size (U_Ent);
6329 Error_Msg_N
6330 ("stream size for elementary type must be a power of 2 "
6331 & "and at least ^", N);
6332 end if;
6333
6334 Set_Has_Stream_Size_Clause (U_Ent);
6335
6336 else
6337 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6338 end if;
6339 end Stream_Size;
6340
6341 ----------------
6342 -- Value_Size --
6343 ----------------
6344
6345 -- Value_Size attribute definition clause
6346
6347 when Attribute_Value_Size => Value_Size : declare
6348 Size : constant Uint := Static_Integer (Expr);
6349 Biased : Boolean;
6350
6351 begin
6352 if not Is_Type (U_Ent) then
6353 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6354
6355 elsif Duplicate_Clause then
6356 null;
6357
6358 elsif Is_Array_Type (U_Ent)
6359 and then not Is_Constrained (U_Ent)
6360 then
6361 Error_Msg_N
6362 ("Value_Size cannot be given for unconstrained array", Nam);
6363
6364 else
6365 if Is_Elementary_Type (U_Ent) then
6366 Check_Size (Expr, U_Ent, Size, Biased);
6367 Set_Biased (U_Ent, N, "value size clause", Biased);
6368 end if;
6369
6370 Set_RM_Size (U_Ent, Size);
6371 end if;
6372 end Value_Size;
6373
6374 -----------------------
6375 -- Variable_Indexing --
6376 -----------------------
6377
6378 when Attribute_Variable_Indexing =>
6379 Check_Indexing_Functions;
6380
6381 -----------
6382 -- Write --
6383 -----------
6384
6385 when Attribute_Write =>
6386 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6387 Set_Has_Specified_Stream_Write (Ent);
6388
6389 -- All other attributes cannot be set
6390
6391 when others =>
6392 Error_Msg_N
6393 ("attribute& cannot be set with definition clause", N);
6394 end case;
6395
6396 -- The test for the type being frozen must be performed after any
6397 -- expression the clause has been analyzed since the expression itself
6398 -- might cause freezing that makes the clause illegal.
6399
6400 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6401 return;
6402 end if;
6403 end Analyze_Attribute_Definition_Clause;
6404
6405 ----------------------------
6406 -- Analyze_Code_Statement --
6407 ----------------------------
6408
6409 procedure Analyze_Code_Statement (N : Node_Id) is
6410 HSS : constant Node_Id := Parent (N);
6411 SBody : constant Node_Id := Parent (HSS);
6412 Subp : constant Entity_Id := Current_Scope;
6413 Stmt : Node_Id;
6414 Decl : Node_Id;
6415 StmtO : Node_Id;
6416 DeclO : Node_Id;
6417
6418 begin
6419 -- Accept foreign code statements for CodePeer. The analysis is skipped
6420 -- to avoid rejecting unrecognized constructs.
6421
6422 if CodePeer_Mode then
6423 Set_Analyzed (N);
6424 return;
6425 end if;
6426
6427 -- Analyze and check we get right type, note that this implements the
6428 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6429 -- the only way that Asm_Insn could possibly be visible.
6430
6431 Analyze_And_Resolve (Expression (N));
6432
6433 if Etype (Expression (N)) = Any_Type then
6434 return;
6435 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6436 Error_Msg_N ("incorrect type for code statement", N);
6437 return;
6438 end if;
6439
6440 Check_Code_Statement (N);
6441
6442 -- Make sure we appear in the handled statement sequence of a subprogram
6443 -- (RM 13.8(3)).
6444
6445 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6446 or else Nkind (SBody) /= N_Subprogram_Body
6447 then
6448 Error_Msg_N
6449 ("code statement can only appear in body of subprogram", N);
6450 return;
6451 end if;
6452
6453 -- Do remaining checks (RM 13.8(3)) if not already done
6454
6455 if not Is_Machine_Code_Subprogram (Subp) then
6456 Set_Is_Machine_Code_Subprogram (Subp);
6457
6458 -- No exception handlers allowed
6459
6460 if Present (Exception_Handlers (HSS)) then
6461 Error_Msg_N
6462 ("exception handlers not permitted in machine code subprogram",
6463 First (Exception_Handlers (HSS)));
6464 end if;
6465
6466 -- No declarations other than use clauses and pragmas (we allow
6467 -- certain internally generated declarations as well).
6468
6469 Decl := First (Declarations (SBody));
6470 while Present (Decl) loop
6471 DeclO := Original_Node (Decl);
6472 if Comes_From_Source (DeclO)
6473 and not Nkind_In (DeclO, N_Pragma,
6474 N_Use_Package_Clause,
6475 N_Use_Type_Clause,
6476 N_Implicit_Label_Declaration)
6477 then
6478 Error_Msg_N
6479 ("this declaration not allowed in machine code subprogram",
6480 DeclO);
6481 end if;
6482
6483 Next (Decl);
6484 end loop;
6485
6486 -- No statements other than code statements, pragmas, and labels.
6487 -- Again we allow certain internally generated statements.
6488
6489 -- In Ada 2012, qualified expressions are names, and the code
6490 -- statement is initially parsed as a procedure call.
6491
6492 Stmt := First (Statements (HSS));
6493 while Present (Stmt) loop
6494 StmtO := Original_Node (Stmt);
6495
6496 -- A procedure call transformed into a code statement is OK
6497
6498 if Ada_Version >= Ada_2012
6499 and then Nkind (StmtO) = N_Procedure_Call_Statement
6500 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6501 then
6502 null;
6503
6504 elsif Comes_From_Source (StmtO)
6505 and then not Nkind_In (StmtO, N_Pragma,
6506 N_Label,
6507 N_Code_Statement)
6508 then
6509 Error_Msg_N
6510 ("this statement is not allowed in machine code subprogram",
6511 StmtO);
6512 end if;
6513
6514 Next (Stmt);
6515 end loop;
6516 end if;
6517 end Analyze_Code_Statement;
6518
6519 -----------------------------------------------
6520 -- Analyze_Enumeration_Representation_Clause --
6521 -----------------------------------------------
6522
6523 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6524 Ident : constant Node_Id := Identifier (N);
6525 Aggr : constant Node_Id := Array_Aggregate (N);
6526 Enumtype : Entity_Id;
6527 Elit : Entity_Id;
6528 Expr : Node_Id;
6529 Assoc : Node_Id;
6530 Choice : Node_Id;
6531 Val : Uint;
6532
6533 Err : Boolean := False;
6534 -- Set True to avoid cascade errors and crashes on incorrect source code
6535
6536 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6537 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6538 -- Allowed range of universal integer (= allowed range of enum lit vals)
6539
6540 Min : Uint;
6541 Max : Uint;
6542 -- Minimum and maximum values of entries
6543
6544 Max_Node : Node_Id := Empty; -- init to avoid warning
6545 -- Pointer to node for literal providing max value
6546
6547 begin
6548 if Ignore_Rep_Clauses then
6549 Kill_Rep_Clause (N);
6550 return;
6551 end if;
6552
6553 -- Ignore enumeration rep clauses by default in CodePeer mode,
6554 -- unless -gnatd.I is specified, as a work around for potential false
6555 -- positive messages.
6556
6557 if CodePeer_Mode and not Debug_Flag_Dot_II then
6558 return;
6559 end if;
6560
6561 -- First some basic error checks
6562
6563 Find_Type (Ident);
6564 Enumtype := Entity (Ident);
6565
6566 if Enumtype = Any_Type
6567 or else Rep_Item_Too_Early (Enumtype, N)
6568 then
6569 return;
6570 else
6571 Enumtype := Underlying_Type (Enumtype);
6572 end if;
6573
6574 if not Is_Enumeration_Type (Enumtype) then
6575 Error_Msg_NE
6576 ("enumeration type required, found}",
6577 Ident, First_Subtype (Enumtype));
6578 return;
6579 end if;
6580
6581 -- Ignore rep clause on generic actual type. This will already have
6582 -- been flagged on the template as an error, and this is the safest
6583 -- way to ensure we don't get a junk cascaded message in the instance.
6584
6585 if Is_Generic_Actual_Type (Enumtype) then
6586 return;
6587
6588 -- Type must be in current scope
6589
6590 elsif Scope (Enumtype) /= Current_Scope then
6591 Error_Msg_N ("type must be declared in this scope", Ident);
6592 return;
6593
6594 -- Type must be a first subtype
6595
6596 elsif not Is_First_Subtype (Enumtype) then
6597 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6598 return;
6599
6600 -- Ignore duplicate rep clause
6601
6602 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6603 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6604 return;
6605
6606 -- Don't allow rep clause for standard [wide_[wide_]]character
6607
6608 elsif Is_Standard_Character_Type (Enumtype) then
6609 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6610 return;
6611
6612 -- Check that the expression is a proper aggregate (no parentheses)
6613
6614 elsif Paren_Count (Aggr) /= 0 then
6615 Error_Msg
6616 ("extra parentheses surrounding aggregate not allowed",
6617 First_Sloc (Aggr));
6618 return;
6619
6620 -- All tests passed, so set rep clause in place
6621
6622 else
6623 Set_Has_Enumeration_Rep_Clause (Enumtype);
6624 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6625 end if;
6626
6627 -- Now we process the aggregate. Note that we don't use the normal
6628 -- aggregate code for this purpose, because we don't want any of the
6629 -- normal expansion activities, and a number of special semantic
6630 -- rules apply (including the component type being any integer type)
6631
6632 Elit := First_Literal (Enumtype);
6633
6634 -- First the positional entries if any
6635
6636 if Present (Expressions (Aggr)) then
6637 Expr := First (Expressions (Aggr));
6638 while Present (Expr) loop
6639 if No (Elit) then
6640 Error_Msg_N ("too many entries in aggregate", Expr);
6641 return;
6642 end if;
6643
6644 Val := Static_Integer (Expr);
6645
6646 -- Err signals that we found some incorrect entries processing
6647 -- the list. The final checks for completeness and ordering are
6648 -- skipped in this case.
6649
6650 if Val = No_Uint then
6651 Err := True;
6652
6653 elsif Val < Lo or else Hi < Val then
6654 Error_Msg_N ("value outside permitted range", Expr);
6655 Err := True;
6656 end if;
6657
6658 Set_Enumeration_Rep (Elit, Val);
6659 Set_Enumeration_Rep_Expr (Elit, Expr);
6660 Next (Expr);
6661 Next (Elit);
6662 end loop;
6663 end if;
6664
6665 -- Now process the named entries if present
6666
6667 if Present (Component_Associations (Aggr)) then
6668 Assoc := First (Component_Associations (Aggr));
6669 while Present (Assoc) loop
6670 Choice := First (Choices (Assoc));
6671
6672 if Present (Next (Choice)) then
6673 Error_Msg_N
6674 ("multiple choice not allowed here", Next (Choice));
6675 Err := True;
6676 end if;
6677
6678 if Nkind (Choice) = N_Others_Choice then
6679 Error_Msg_N ("others choice not allowed here", Choice);
6680 Err := True;
6681
6682 elsif Nkind (Choice) = N_Range then
6683
6684 -- ??? should allow zero/one element range here
6685
6686 Error_Msg_N ("range not allowed here", Choice);
6687 Err := True;
6688
6689 else
6690 Analyze_And_Resolve (Choice, Enumtype);
6691
6692 if Error_Posted (Choice) then
6693 Err := True;
6694 end if;
6695
6696 if not Err then
6697 if Is_Entity_Name (Choice)
6698 and then Is_Type (Entity (Choice))
6699 then
6700 Error_Msg_N ("subtype name not allowed here", Choice);
6701 Err := True;
6702
6703 -- ??? should allow static subtype with zero/one entry
6704
6705 elsif Etype (Choice) = Base_Type (Enumtype) then
6706 if not Is_OK_Static_Expression (Choice) then
6707 Flag_Non_Static_Expr
6708 ("non-static expression used for choice!", Choice);
6709 Err := True;
6710
6711 else
6712 Elit := Expr_Value_E (Choice);
6713
6714 if Present (Enumeration_Rep_Expr (Elit)) then
6715 Error_Msg_Sloc :=
6716 Sloc (Enumeration_Rep_Expr (Elit));
6717 Error_Msg_NE
6718 ("representation for& previously given#",
6719 Choice, Elit);
6720 Err := True;
6721 end if;
6722
6723 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6724
6725 Expr := Expression (Assoc);
6726 Val := Static_Integer (Expr);
6727
6728 if Val = No_Uint then
6729 Err := True;
6730
6731 elsif Val < Lo or else Hi < Val then
6732 Error_Msg_N ("value outside permitted range", Expr);
6733 Err := True;
6734 end if;
6735
6736 Set_Enumeration_Rep (Elit, Val);
6737 end if;
6738 end if;
6739 end if;
6740 end if;
6741
6742 Next (Assoc);
6743 end loop;
6744 end if;
6745
6746 -- Aggregate is fully processed. Now we check that a full set of
6747 -- representations was given, and that they are in range and in order.
6748 -- These checks are only done if no other errors occurred.
6749
6750 if not Err then
6751 Min := No_Uint;
6752 Max := No_Uint;
6753
6754 Elit := First_Literal (Enumtype);
6755 while Present (Elit) loop
6756 if No (Enumeration_Rep_Expr (Elit)) then
6757 Error_Msg_NE ("missing representation for&!", N, Elit);
6758
6759 else
6760 Val := Enumeration_Rep (Elit);
6761
6762 if Min = No_Uint then
6763 Min := Val;
6764 end if;
6765
6766 if Val /= No_Uint then
6767 if Max /= No_Uint and then Val <= Max then
6768 Error_Msg_NE
6769 ("enumeration value for& not ordered!",
6770 Enumeration_Rep_Expr (Elit), Elit);
6771 end if;
6772
6773 Max_Node := Enumeration_Rep_Expr (Elit);
6774 Max := Val;
6775 end if;
6776
6777 -- If there is at least one literal whose representation is not
6778 -- equal to the Pos value, then note that this enumeration type
6779 -- has a non-standard representation.
6780
6781 if Val /= Enumeration_Pos (Elit) then
6782 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6783 end if;
6784 end if;
6785
6786 Next (Elit);
6787 end loop;
6788
6789 -- Now set proper size information
6790
6791 declare
6792 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6793
6794 begin
6795 if Has_Size_Clause (Enumtype) then
6796
6797 -- All OK, if size is OK now
6798
6799 if RM_Size (Enumtype) >= Minsize then
6800 null;
6801
6802 else
6803 -- Try if we can get by with biasing
6804
6805 Minsize :=
6806 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6807
6808 -- Error message if even biasing does not work
6809
6810 if RM_Size (Enumtype) < Minsize then
6811 Error_Msg_Uint_1 := RM_Size (Enumtype);
6812 Error_Msg_Uint_2 := Max;
6813 Error_Msg_N
6814 ("previously given size (^) is too small "
6815 & "for this value (^)", Max_Node);
6816
6817 -- If biasing worked, indicate that we now have biased rep
6818
6819 else
6820 Set_Biased
6821 (Enumtype, Size_Clause (Enumtype), "size clause");
6822 end if;
6823 end if;
6824
6825 else
6826 Set_RM_Size (Enumtype, Minsize);
6827 Set_Enum_Esize (Enumtype);
6828 end if;
6829
6830 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6831 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6832 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6833 end;
6834 end if;
6835
6836 -- We repeat the too late test in case it froze itself
6837
6838 if Rep_Item_Too_Late (Enumtype, N) then
6839 null;
6840 end if;
6841 end Analyze_Enumeration_Representation_Clause;
6842
6843 ----------------------------
6844 -- Analyze_Free_Statement --
6845 ----------------------------
6846
6847 procedure Analyze_Free_Statement (N : Node_Id) is
6848 begin
6849 Analyze (Expression (N));
6850 end Analyze_Free_Statement;
6851
6852 ---------------------------
6853 -- Analyze_Freeze_Entity --
6854 ---------------------------
6855
6856 procedure Analyze_Freeze_Entity (N : Node_Id) is
6857 begin
6858 Freeze_Entity_Checks (N);
6859 end Analyze_Freeze_Entity;
6860
6861 -----------------------------------
6862 -- Analyze_Freeze_Generic_Entity --
6863 -----------------------------------
6864
6865 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6866 E : constant Entity_Id := Entity (N);
6867
6868 begin
6869 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6870 Analyze_Aspects_At_Freeze_Point (E);
6871 end if;
6872
6873 Freeze_Entity_Checks (N);
6874 end Analyze_Freeze_Generic_Entity;
6875
6876 ------------------------------------------
6877 -- Analyze_Record_Representation_Clause --
6878 ------------------------------------------
6879
6880 -- Note: we check as much as we can here, but we can't do any checks
6881 -- based on the position values (e.g. overlap checks) until freeze time
6882 -- because especially in Ada 2005 (machine scalar mode), the processing
6883 -- for non-standard bit order can substantially change the positions.
6884 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6885 -- for the remainder of this processing.
6886
6887 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6888 Ident : constant Node_Id := Identifier (N);
6889 Biased : Boolean;
6890 CC : Node_Id;
6891 Comp : Entity_Id;
6892 Fbit : Uint;
6893 Hbit : Uint := Uint_0;
6894 Lbit : Uint;
6895 Ocomp : Entity_Id;
6896 Posit : Uint;
6897 Rectype : Entity_Id;
6898 Recdef : Node_Id;
6899
6900 function Is_Inherited (Comp : Entity_Id) return Boolean;
6901 -- True if Comp is an inherited component in a record extension
6902
6903 ------------------
6904 -- Is_Inherited --
6905 ------------------
6906
6907 function Is_Inherited (Comp : Entity_Id) return Boolean is
6908 Comp_Base : Entity_Id;
6909
6910 begin
6911 if Ekind (Rectype) = E_Record_Subtype then
6912 Comp_Base := Original_Record_Component (Comp);
6913 else
6914 Comp_Base := Comp;
6915 end if;
6916
6917 return Comp_Base /= Original_Record_Component (Comp_Base);
6918 end Is_Inherited;
6919
6920 -- Local variables
6921
6922 Is_Record_Extension : Boolean;
6923 -- True if Rectype is a record extension
6924
6925 CR_Pragma : Node_Id := Empty;
6926 -- Points to N_Pragma node if Complete_Representation pragma present
6927
6928 -- Start of processing for Analyze_Record_Representation_Clause
6929
6930 begin
6931 if Ignore_Rep_Clauses then
6932 Kill_Rep_Clause (N);
6933 return;
6934 end if;
6935
6936 Find_Type (Ident);
6937 Rectype := Entity (Ident);
6938
6939 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6940 return;
6941 else
6942 Rectype := Underlying_Type (Rectype);
6943 end if;
6944
6945 -- First some basic error checks
6946
6947 if not Is_Record_Type (Rectype) then
6948 Error_Msg_NE
6949 ("record type required, found}", Ident, First_Subtype (Rectype));
6950 return;
6951
6952 elsif Scope (Rectype) /= Current_Scope then
6953 Error_Msg_N ("type must be declared in this scope", N);
6954 return;
6955
6956 elsif not Is_First_Subtype (Rectype) then
6957 Error_Msg_N ("cannot give record rep clause for subtype", N);
6958 return;
6959
6960 elsif Has_Record_Rep_Clause (Rectype) then
6961 Error_Msg_N ("duplicate record rep clause ignored", N);
6962 return;
6963
6964 elsif Rep_Item_Too_Late (Rectype, N) then
6965 return;
6966 end if;
6967
6968 -- We know we have a first subtype, now possibly go to the anonymous
6969 -- base type to determine whether Rectype is a record extension.
6970
6971 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6972 Is_Record_Extension :=
6973 Nkind (Recdef) = N_Derived_Type_Definition
6974 and then Present (Record_Extension_Part (Recdef));
6975
6976 if Present (Mod_Clause (N)) then
6977 declare
6978 Loc : constant Source_Ptr := Sloc (N);
6979 M : constant Node_Id := Mod_Clause (N);
6980 P : constant List_Id := Pragmas_Before (M);
6981 AtM_Nod : Node_Id;
6982
6983 Mod_Val : Uint;
6984 pragma Warnings (Off, Mod_Val);
6985
6986 begin
6987 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6988
6989 if Warn_On_Obsolescent_Feature then
6990 Error_Msg_N
6991 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6992 Error_Msg_N
6993 ("\?j?use alignment attribute definition clause instead", N);
6994 end if;
6995
6996 if Present (P) then
6997 Analyze_List (P);
6998 end if;
6999
7000 -- In ASIS_Mode mode, expansion is disabled, but we must convert
7001 -- the Mod clause into an alignment clause anyway, so that the
7002 -- back end can compute and back-annotate properly the size and
7003 -- alignment of types that may include this record.
7004
7005 -- This seems dubious, this destroys the source tree in a manner
7006 -- not detectable by ASIS ???
7007
7008 if Operating_Mode = Check_Semantics and then ASIS_Mode then
7009 AtM_Nod :=
7010 Make_Attribute_Definition_Clause (Loc,
7011 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
7012 Chars => Name_Alignment,
7013 Expression => Relocate_Node (Expression (M)));
7014
7015 Set_From_At_Mod (AtM_Nod);
7016 Insert_After (N, AtM_Nod);
7017 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
7018 Set_Mod_Clause (N, Empty);
7019
7020 else
7021 -- Get the alignment value to perform error checking
7022
7023 Mod_Val := Get_Alignment_Value (Expression (M));
7024 end if;
7025 end;
7026 end if;
7027
7028 -- For untagged types, clear any existing component clauses for the
7029 -- type. If the type is derived, this is what allows us to override
7030 -- a rep clause for the parent. For type extensions, the representation
7031 -- of the inherited components is inherited, so we want to keep previous
7032 -- component clauses for completeness.
7033
7034 if not Is_Tagged_Type (Rectype) then
7035 Comp := First_Component_Or_Discriminant (Rectype);
7036 while Present (Comp) loop
7037 Set_Component_Clause (Comp, Empty);
7038 Next_Component_Or_Discriminant (Comp);
7039 end loop;
7040 end if;
7041
7042 -- All done if no component clauses
7043
7044 CC := First (Component_Clauses (N));
7045
7046 if No (CC) then
7047 return;
7048 end if;
7049
7050 -- A representation like this applies to the base type
7051
7052 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7053 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7054 Set_Has_Specified_Layout (Base_Type (Rectype));
7055
7056 -- Process the component clauses
7057
7058 while Present (CC) loop
7059
7060 -- Pragma
7061
7062 if Nkind (CC) = N_Pragma then
7063 Analyze (CC);
7064
7065 -- The only pragma of interest is Complete_Representation
7066
7067 if Pragma_Name (CC) = Name_Complete_Representation then
7068 CR_Pragma := CC;
7069 end if;
7070
7071 -- Processing for real component clause
7072
7073 else
7074 Posit := Static_Integer (Position (CC));
7075 Fbit := Static_Integer (First_Bit (CC));
7076 Lbit := Static_Integer (Last_Bit (CC));
7077
7078 if Posit /= No_Uint
7079 and then Fbit /= No_Uint
7080 and then Lbit /= No_Uint
7081 then
7082 if Posit < 0 then
7083 Error_Msg_N ("position cannot be negative", Position (CC));
7084
7085 elsif Fbit < 0 then
7086 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
7087
7088 -- The Last_Bit specified in a component clause must not be
7089 -- less than the First_Bit minus one (RM-13.5.1(10)).
7090
7091 elsif Lbit < Fbit - 1 then
7092 Error_Msg_N
7093 ("last bit cannot be less than first bit minus one",
7094 Last_Bit (CC));
7095
7096 -- Values look OK, so find the corresponding record component
7097 -- Even though the syntax allows an attribute reference for
7098 -- implementation-defined components, GNAT does not allow the
7099 -- tag to get an explicit position.
7100
7101 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7102 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7103 Error_Msg_N ("position of tag cannot be specified", CC);
7104 else
7105 Error_Msg_N ("illegal component name", CC);
7106 end if;
7107
7108 else
7109 Comp := First_Entity (Rectype);
7110 while Present (Comp) loop
7111 exit when Chars (Comp) = Chars (Component_Name (CC));
7112 Next_Entity (Comp);
7113 end loop;
7114
7115 if No (Comp) then
7116
7117 -- Maybe component of base type that is absent from
7118 -- statically constrained first subtype.
7119
7120 Comp := First_Entity (Base_Type (Rectype));
7121 while Present (Comp) loop
7122 exit when Chars (Comp) = Chars (Component_Name (CC));
7123 Next_Entity (Comp);
7124 end loop;
7125 end if;
7126
7127 if No (Comp) then
7128 Error_Msg_N
7129 ("component clause is for non-existent field", CC);
7130
7131 -- Ada 2012 (AI05-0026): Any name that denotes a
7132 -- discriminant of an object of an unchecked union type
7133 -- shall not occur within a record_representation_clause.
7134
7135 -- The general restriction of using record rep clauses on
7136 -- Unchecked_Union types has now been lifted. Since it is
7137 -- possible to introduce a record rep clause which mentions
7138 -- the discriminant of an Unchecked_Union in non-Ada 2012
7139 -- code, this check is applied to all versions of the
7140 -- language.
7141
7142 elsif Ekind (Comp) = E_Discriminant
7143 and then Is_Unchecked_Union (Rectype)
7144 then
7145 Error_Msg_N
7146 ("cannot reference discriminant of unchecked union",
7147 Component_Name (CC));
7148
7149 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7150 Error_Msg_NE
7151 ("component clause not allowed for inherited "
7152 & "component&", CC, Comp);
7153
7154 elsif Present (Component_Clause (Comp)) then
7155
7156 -- Diagnose duplicate rep clause, or check consistency
7157 -- if this is an inherited component. In a double fault,
7158 -- there may be a duplicate inconsistent clause for an
7159 -- inherited component.
7160
7161 if Scope (Original_Record_Component (Comp)) = Rectype
7162 or else Parent (Component_Clause (Comp)) = N
7163 then
7164 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7165 Error_Msg_N ("component clause previously given#", CC);
7166
7167 else
7168 declare
7169 Rep1 : constant Node_Id := Component_Clause (Comp);
7170 begin
7171 if Intval (Position (Rep1)) /=
7172 Intval (Position (CC))
7173 or else Intval (First_Bit (Rep1)) /=
7174 Intval (First_Bit (CC))
7175 or else Intval (Last_Bit (Rep1)) /=
7176 Intval (Last_Bit (CC))
7177 then
7178 Error_Msg_N
7179 ("component clause inconsistent with "
7180 & "representation of ancestor", CC);
7181
7182 elsif Warn_On_Redundant_Constructs then
7183 Error_Msg_N
7184 ("?r?redundant confirming component clause "
7185 & "for component!", CC);
7186 end if;
7187 end;
7188 end if;
7189
7190 -- Normal case where this is the first component clause we
7191 -- have seen for this entity, so set it up properly.
7192
7193 else
7194 -- Make reference for field in record rep clause and set
7195 -- appropriate entity field in the field identifier.
7196
7197 Generate_Reference
7198 (Comp, Component_Name (CC), Set_Ref => False);
7199 Set_Entity (Component_Name (CC), Comp);
7200
7201 -- Update Fbit and Lbit to the actual bit number
7202
7203 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7204 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7205
7206 if Has_Size_Clause (Rectype)
7207 and then RM_Size (Rectype) <= Lbit
7208 then
7209 Error_Msg_N
7210 ("bit number out of range of specified size",
7211 Last_Bit (CC));
7212 else
7213 Set_Component_Clause (Comp, CC);
7214 Set_Component_Bit_Offset (Comp, Fbit);
7215 Set_Esize (Comp, 1 + (Lbit - Fbit));
7216 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7217 Set_Normalized_Position (Comp, Fbit / SSU);
7218
7219 if Warn_On_Overridden_Size
7220 and then Has_Size_Clause (Etype (Comp))
7221 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7222 then
7223 Error_Msg_NE
7224 ("?S?component size overrides size clause for&",
7225 Component_Name (CC), Etype (Comp));
7226 end if;
7227
7228 -- This information is also set in the corresponding
7229 -- component of the base type, found by accessing the
7230 -- Original_Record_Component link if it is present.
7231
7232 Ocomp := Original_Record_Component (Comp);
7233
7234 if Hbit < Lbit then
7235 Hbit := Lbit;
7236 end if;
7237
7238 Check_Size
7239 (Component_Name (CC),
7240 Etype (Comp),
7241 Esize (Comp),
7242 Biased);
7243
7244 Set_Biased
7245 (Comp, First_Node (CC), "component clause", Biased);
7246
7247 if Present (Ocomp) then
7248 Set_Component_Clause (Ocomp, CC);
7249 Set_Component_Bit_Offset (Ocomp, Fbit);
7250 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7251 Set_Normalized_Position (Ocomp, Fbit / SSU);
7252 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7253
7254 Set_Normalized_Position_Max
7255 (Ocomp, Normalized_Position (Ocomp));
7256
7257 -- Note: we don't use Set_Biased here, because we
7258 -- already gave a warning above if needed, and we
7259 -- would get a duplicate for the same name here.
7260
7261 Set_Has_Biased_Representation
7262 (Ocomp, Has_Biased_Representation (Comp));
7263 end if;
7264
7265 if Esize (Comp) < 0 then
7266 Error_Msg_N ("component size is negative", CC);
7267 end if;
7268 end if;
7269 end if;
7270 end if;
7271 end if;
7272 end if;
7273
7274 Next (CC);
7275 end loop;
7276
7277 -- Check missing components if Complete_Representation pragma appeared
7278
7279 if Present (CR_Pragma) then
7280 Comp := First_Component_Or_Discriminant (Rectype);
7281 while Present (Comp) loop
7282 if No (Component_Clause (Comp)) then
7283 Error_Msg_NE
7284 ("missing component clause for &", CR_Pragma, Comp);
7285 end if;
7286
7287 Next_Component_Or_Discriminant (Comp);
7288 end loop;
7289
7290 -- Give missing components warning if required
7291
7292 elsif Warn_On_Unrepped_Components then
7293 declare
7294 Num_Repped_Components : Nat := 0;
7295 Num_Unrepped_Components : Nat := 0;
7296
7297 begin
7298 -- First count number of repped and unrepped components
7299
7300 Comp := First_Component_Or_Discriminant (Rectype);
7301 while Present (Comp) loop
7302 if Present (Component_Clause (Comp)) then
7303 Num_Repped_Components := Num_Repped_Components + 1;
7304 else
7305 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7306 end if;
7307
7308 Next_Component_Or_Discriminant (Comp);
7309 end loop;
7310
7311 -- We are only interested in the case where there is at least one
7312 -- unrepped component, and at least half the components have rep
7313 -- clauses. We figure that if less than half have them, then the
7314 -- partial rep clause is really intentional. If the component
7315 -- type has no underlying type set at this point (as for a generic
7316 -- formal type), we don't know enough to give a warning on the
7317 -- component.
7318
7319 if Num_Unrepped_Components > 0
7320 and then Num_Unrepped_Components < Num_Repped_Components
7321 then
7322 Comp := First_Component_Or_Discriminant (Rectype);
7323 while Present (Comp) loop
7324 if No (Component_Clause (Comp))
7325 and then Comes_From_Source (Comp)
7326 and then Present (Underlying_Type (Etype (Comp)))
7327 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7328 or else Size_Known_At_Compile_Time
7329 (Underlying_Type (Etype (Comp))))
7330 and then not Has_Warnings_Off (Rectype)
7331
7332 -- Ignore discriminant in unchecked union, since it is
7333 -- not there, and cannot have a component clause.
7334
7335 and then (not Is_Unchecked_Union (Rectype)
7336 or else Ekind (Comp) /= E_Discriminant)
7337 then
7338 Error_Msg_Sloc := Sloc (Comp);
7339 Error_Msg_NE
7340 ("?C?no component clause given for & declared #",
7341 N, Comp);
7342 end if;
7343
7344 Next_Component_Or_Discriminant (Comp);
7345 end loop;
7346 end if;
7347 end;
7348 end if;
7349 end Analyze_Record_Representation_Clause;
7350
7351 -------------------------------------
7352 -- Build_Discrete_Static_Predicate --
7353 -------------------------------------
7354
7355 procedure Build_Discrete_Static_Predicate
7356 (Typ : Entity_Id;
7357 Expr : Node_Id;
7358 Nam : Name_Id)
7359 is
7360 Loc : constant Source_Ptr := Sloc (Expr);
7361
7362 Non_Static : exception;
7363 -- Raised if something non-static is found
7364
7365 Btyp : constant Entity_Id := Base_Type (Typ);
7366
7367 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7368 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7369 -- Low bound and high bound value of base type of Typ
7370
7371 TLo : Uint;
7372 THi : Uint;
7373 -- Bounds for constructing the static predicate. We use the bound of the
7374 -- subtype if it is static, otherwise the corresponding base type bound.
7375 -- Note: a non-static subtype can have a static predicate.
7376
7377 type REnt is record
7378 Lo, Hi : Uint;
7379 end record;
7380 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7381 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7382 -- value.
7383
7384 type RList is array (Nat range <>) of REnt;
7385 -- A list of ranges. The ranges are sorted in increasing order, and are
7386 -- disjoint (there is a gap of at least one value between each range in
7387 -- the table). A value is in the set of ranges in Rlist if it lies
7388 -- within one of these ranges.
7389
7390 False_Range : constant RList :=
7391 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7392 -- An empty set of ranges represents a range list that can never be
7393 -- satisfied, since there are no ranges in which the value could lie,
7394 -- so it does not lie in any of them. False_Range is a canonical value
7395 -- for this empty set, but general processing should test for an Rlist
7396 -- with length zero (see Is_False predicate), since other null ranges
7397 -- may appear which must be treated as False.
7398
7399 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7400 -- Range representing True, value must be in the base range
7401
7402 function "and" (Left : RList; Right : RList) return RList;
7403 -- And's together two range lists, returning a range list. This is a set
7404 -- intersection operation.
7405
7406 function "or" (Left : RList; Right : RList) return RList;
7407 -- Or's together two range lists, returning a range list. This is a set
7408 -- union operation.
7409
7410 function "not" (Right : RList) return RList;
7411 -- Returns complement of a given range list, i.e. a range list
7412 -- representing all the values in TLo .. THi that are not in the input
7413 -- operand Right.
7414
7415 function Build_Val (V : Uint) return Node_Id;
7416 -- Return an analyzed N_Identifier node referencing this value, suitable
7417 -- for use as an entry in the Static_Discrte_Predicate list. This node
7418 -- is typed with the base type.
7419
7420 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7421 -- Return an analyzed N_Range node referencing this range, suitable for
7422 -- use as an entry in the Static_Discrete_Predicate list. This node is
7423 -- typed with the base type.
7424
7425 function Get_RList (Exp : Node_Id) return RList;
7426 -- This is a recursive routine that converts the given expression into a
7427 -- list of ranges, suitable for use in building the static predicate.
7428
7429 function Is_False (R : RList) return Boolean;
7430 pragma Inline (Is_False);
7431 -- Returns True if the given range list is empty, and thus represents a
7432 -- False list of ranges that can never be satisfied.
7433
7434 function Is_True (R : RList) return Boolean;
7435 -- Returns True if R trivially represents the True predicate by having a
7436 -- single range from BLo to BHi.
7437
7438 function Is_Type_Ref (N : Node_Id) return Boolean;
7439 pragma Inline (Is_Type_Ref);
7440 -- Returns if True if N is a reference to the type for the predicate in
7441 -- the expression (i.e. if it is an identifier whose Chars field matches
7442 -- the Nam given in the call). N must not be parenthesized, if the type
7443 -- name appears in parens, this routine will return False.
7444
7445 function Lo_Val (N : Node_Id) return Uint;
7446 -- Given an entry from a Static_Discrete_Predicate list that is either
7447 -- a static expression or static range, gets either the expression value
7448 -- or the low bound of the range.
7449
7450 function Hi_Val (N : Node_Id) return Uint;
7451 -- Given an entry from a Static_Discrete_Predicate list that is either
7452 -- a static expression or static range, gets either the expression value
7453 -- or the high bound of the range.
7454
7455 function Membership_Entry (N : Node_Id) return RList;
7456 -- Given a single membership entry (range, value, or subtype), returns
7457 -- the corresponding range list. Raises Static_Error if not static.
7458
7459 function Membership_Entries (N : Node_Id) return RList;
7460 -- Given an element on an alternatives list of a membership operation,
7461 -- returns the range list corresponding to this entry and all following
7462 -- entries (i.e. returns the "or" of this list of values).
7463
7464 function Stat_Pred (Typ : Entity_Id) return RList;
7465 -- Given a type, if it has a static predicate, then return the predicate
7466 -- as a range list, otherwise raise Non_Static.
7467
7468 -----------
7469 -- "and" --
7470 -----------
7471
7472 function "and" (Left : RList; Right : RList) return RList is
7473 FEnt : REnt;
7474 -- First range of result
7475
7476 SLeft : Nat := Left'First;
7477 -- Start of rest of left entries
7478
7479 SRight : Nat := Right'First;
7480 -- Start of rest of right entries
7481
7482 begin
7483 -- If either range is True, return the other
7484
7485 if Is_True (Left) then
7486 return Right;
7487 elsif Is_True (Right) then
7488 return Left;
7489 end if;
7490
7491 -- If either range is False, return False
7492
7493 if Is_False (Left) or else Is_False (Right) then
7494 return False_Range;
7495 end if;
7496
7497 -- Loop to remove entries at start that are disjoint, and thus just
7498 -- get discarded from the result entirely.
7499
7500 loop
7501 -- If no operands left in either operand, result is false
7502
7503 if SLeft > Left'Last or else SRight > Right'Last then
7504 return False_Range;
7505
7506 -- Discard first left operand entry if disjoint with right
7507
7508 elsif Left (SLeft).Hi < Right (SRight).Lo then
7509 SLeft := SLeft + 1;
7510
7511 -- Discard first right operand entry if disjoint with left
7512
7513 elsif Right (SRight).Hi < Left (SLeft).Lo then
7514 SRight := SRight + 1;
7515
7516 -- Otherwise we have an overlapping entry
7517
7518 else
7519 exit;
7520 end if;
7521 end loop;
7522
7523 -- Now we have two non-null operands, and first entries overlap. The
7524 -- first entry in the result will be the overlapping part of these
7525 -- two entries.
7526
7527 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7528 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7529
7530 -- Now we can remove the entry that ended at a lower value, since its
7531 -- contribution is entirely contained in Fent.
7532
7533 if Left (SLeft).Hi <= Right (SRight).Hi then
7534 SLeft := SLeft + 1;
7535 else
7536 SRight := SRight + 1;
7537 end if;
7538
7539 -- Compute result by concatenating this first entry with the "and" of
7540 -- the remaining parts of the left and right operands. Note that if
7541 -- either of these is empty, "and" will yield empty, so that we will
7542 -- end up with just Fent, which is what we want in that case.
7543
7544 return
7545 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7546 end "and";
7547
7548 -----------
7549 -- "not" --
7550 -----------
7551
7552 function "not" (Right : RList) return RList is
7553 begin
7554 -- Return True if False range
7555
7556 if Is_False (Right) then
7557 return True_Range;
7558 end if;
7559
7560 -- Return False if True range
7561
7562 if Is_True (Right) then
7563 return False_Range;
7564 end if;
7565
7566 -- Here if not trivial case
7567
7568 declare
7569 Result : RList (1 .. Right'Length + 1);
7570 -- May need one more entry for gap at beginning and end
7571
7572 Count : Nat := 0;
7573 -- Number of entries stored in Result
7574
7575 begin
7576 -- Gap at start
7577
7578 if Right (Right'First).Lo > TLo then
7579 Count := Count + 1;
7580 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7581 end if;
7582
7583 -- Gaps between ranges
7584
7585 for J in Right'First .. Right'Last - 1 loop
7586 Count := Count + 1;
7587 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7588 end loop;
7589
7590 -- Gap at end
7591
7592 if Right (Right'Last).Hi < THi then
7593 Count := Count + 1;
7594 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7595 end if;
7596
7597 return Result (1 .. Count);
7598 end;
7599 end "not";
7600
7601 ----------
7602 -- "or" --
7603 ----------
7604
7605 function "or" (Left : RList; Right : RList) return RList is
7606 FEnt : REnt;
7607 -- First range of result
7608
7609 SLeft : Nat := Left'First;
7610 -- Start of rest of left entries
7611
7612 SRight : Nat := Right'First;
7613 -- Start of rest of right entries
7614
7615 begin
7616 -- If either range is True, return True
7617
7618 if Is_True (Left) or else Is_True (Right) then
7619 return True_Range;
7620 end if;
7621
7622 -- If either range is False (empty), return the other
7623
7624 if Is_False (Left) then
7625 return Right;
7626 elsif Is_False (Right) then
7627 return Left;
7628 end if;
7629
7630 -- Initialize result first entry from left or right operand depending
7631 -- on which starts with the lower range.
7632
7633 if Left (SLeft).Lo < Right (SRight).Lo then
7634 FEnt := Left (SLeft);
7635 SLeft := SLeft + 1;
7636 else
7637 FEnt := Right (SRight);
7638 SRight := SRight + 1;
7639 end if;
7640
7641 -- This loop eats ranges from left and right operands that are
7642 -- contiguous with the first range we are gathering.
7643
7644 loop
7645 -- Eat first entry in left operand if contiguous or overlapped by
7646 -- gathered first operand of result.
7647
7648 if SLeft <= Left'Last
7649 and then Left (SLeft).Lo <= FEnt.Hi + 1
7650 then
7651 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7652 SLeft := SLeft + 1;
7653
7654 -- Eat first entry in right operand if contiguous or overlapped by
7655 -- gathered right operand of result.
7656
7657 elsif SRight <= Right'Last
7658 and then Right (SRight).Lo <= FEnt.Hi + 1
7659 then
7660 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7661 SRight := SRight + 1;
7662
7663 -- All done if no more entries to eat
7664
7665 else
7666 exit;
7667 end if;
7668 end loop;
7669
7670 -- Obtain result as the first entry we just computed, concatenated
7671 -- to the "or" of the remaining results (if one operand is empty,
7672 -- this will just concatenate with the other
7673
7674 return
7675 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7676 end "or";
7677
7678 -----------------
7679 -- Build_Range --
7680 -----------------
7681
7682 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7683 Result : Node_Id;
7684 begin
7685 Result :=
7686 Make_Range (Loc,
7687 Low_Bound => Build_Val (Lo),
7688 High_Bound => Build_Val (Hi));
7689 Set_Etype (Result, Btyp);
7690 Set_Analyzed (Result);
7691 return Result;
7692 end Build_Range;
7693
7694 ---------------
7695 -- Build_Val --
7696 ---------------
7697
7698 function Build_Val (V : Uint) return Node_Id is
7699 Result : Node_Id;
7700
7701 begin
7702 if Is_Enumeration_Type (Typ) then
7703 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7704 else
7705 Result := Make_Integer_Literal (Loc, V);
7706 end if;
7707
7708 Set_Etype (Result, Btyp);
7709 Set_Is_Static_Expression (Result);
7710 Set_Analyzed (Result);
7711 return Result;
7712 end Build_Val;
7713
7714 ---------------
7715 -- Get_RList --
7716 ---------------
7717
7718 function Get_RList (Exp : Node_Id) return RList is
7719 Op : Node_Kind;
7720 Val : Uint;
7721
7722 begin
7723 -- Static expression can only be true or false
7724
7725 if Is_OK_Static_Expression (Exp) then
7726 if Expr_Value (Exp) = 0 then
7727 return False_Range;
7728 else
7729 return True_Range;
7730 end if;
7731 end if;
7732
7733 -- Otherwise test node type
7734
7735 Op := Nkind (Exp);
7736
7737 case Op is
7738
7739 -- And
7740
7741 when N_And_Then
7742 | N_Op_And
7743 =>
7744 return Get_RList (Left_Opnd (Exp))
7745 and
7746 Get_RList (Right_Opnd (Exp));
7747
7748 -- Or
7749
7750 when N_Op_Or
7751 | N_Or_Else
7752 =>
7753 return Get_RList (Left_Opnd (Exp))
7754 or
7755 Get_RList (Right_Opnd (Exp));
7756
7757 -- Not
7758
7759 when N_Op_Not =>
7760 return not Get_RList (Right_Opnd (Exp));
7761
7762 -- Comparisons of type with static value
7763
7764 when N_Op_Compare =>
7765
7766 -- Type is left operand
7767
7768 if Is_Type_Ref (Left_Opnd (Exp))
7769 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7770 then
7771 Val := Expr_Value (Right_Opnd (Exp));
7772
7773 -- Typ is right operand
7774
7775 elsif Is_Type_Ref (Right_Opnd (Exp))
7776 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7777 then
7778 Val := Expr_Value (Left_Opnd (Exp));
7779
7780 -- Invert sense of comparison
7781
7782 case Op is
7783 when N_Op_Gt => Op := N_Op_Lt;
7784 when N_Op_Lt => Op := N_Op_Gt;
7785 when N_Op_Ge => Op := N_Op_Le;
7786 when N_Op_Le => Op := N_Op_Ge;
7787 when others => null;
7788 end case;
7789
7790 -- Other cases are non-static
7791
7792 else
7793 raise Non_Static;
7794 end if;
7795
7796 -- Construct range according to comparison operation
7797
7798 case Op is
7799 when N_Op_Eq =>
7800 return RList'(1 => REnt'(Val, Val));
7801
7802 when N_Op_Ge =>
7803 return RList'(1 => REnt'(Val, BHi));
7804
7805 when N_Op_Gt =>
7806 return RList'(1 => REnt'(Val + 1, BHi));
7807
7808 when N_Op_Le =>
7809 return RList'(1 => REnt'(BLo, Val));
7810
7811 when N_Op_Lt =>
7812 return RList'(1 => REnt'(BLo, Val - 1));
7813
7814 when N_Op_Ne =>
7815 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7816
7817 when others =>
7818 raise Program_Error;
7819 end case;
7820
7821 -- Membership (IN)
7822
7823 when N_In =>
7824 if not Is_Type_Ref (Left_Opnd (Exp)) then
7825 raise Non_Static;
7826 end if;
7827
7828 if Present (Right_Opnd (Exp)) then
7829 return Membership_Entry (Right_Opnd (Exp));
7830 else
7831 return Membership_Entries (First (Alternatives (Exp)));
7832 end if;
7833
7834 -- Negative membership (NOT IN)
7835
7836 when N_Not_In =>
7837 if not Is_Type_Ref (Left_Opnd (Exp)) then
7838 raise Non_Static;
7839 end if;
7840
7841 if Present (Right_Opnd (Exp)) then
7842 return not Membership_Entry (Right_Opnd (Exp));
7843 else
7844 return not Membership_Entries (First (Alternatives (Exp)));
7845 end if;
7846
7847 -- Function call, may be call to static predicate
7848
7849 when N_Function_Call =>
7850 if Is_Entity_Name (Name (Exp)) then
7851 declare
7852 Ent : constant Entity_Id := Entity (Name (Exp));
7853 begin
7854 if Is_Predicate_Function (Ent)
7855 or else
7856 Is_Predicate_Function_M (Ent)
7857 then
7858 return Stat_Pred (Etype (First_Formal (Ent)));
7859 end if;
7860 end;
7861 end if;
7862
7863 -- Other function call cases are non-static
7864
7865 raise Non_Static;
7866
7867 -- Qualified expression, dig out the expression
7868
7869 when N_Qualified_Expression =>
7870 return Get_RList (Expression (Exp));
7871
7872 when N_Case_Expression =>
7873 declare
7874 Alt : Node_Id;
7875 Choices : List_Id;
7876 Dep : Node_Id;
7877
7878 begin
7879 if not Is_Entity_Name (Expression (Expr))
7880 or else Etype (Expression (Expr)) /= Typ
7881 then
7882 Error_Msg_N
7883 ("expression must denaote subtype", Expression (Expr));
7884 return False_Range;
7885 end if;
7886
7887 -- Collect discrete choices in all True alternatives
7888
7889 Choices := New_List;
7890 Alt := First (Alternatives (Exp));
7891 while Present (Alt) loop
7892 Dep := Expression (Alt);
7893
7894 if not Is_OK_Static_Expression (Dep) then
7895 raise Non_Static;
7896
7897 elsif Is_True (Expr_Value (Dep)) then
7898 Append_List_To (Choices,
7899 New_Copy_List (Discrete_Choices (Alt)));
7900 end if;
7901
7902 Next (Alt);
7903 end loop;
7904
7905 return Membership_Entries (First (Choices));
7906 end;
7907
7908 -- Expression with actions: if no actions, dig out expression
7909
7910 when N_Expression_With_Actions =>
7911 if Is_Empty_List (Actions (Exp)) then
7912 return Get_RList (Expression (Exp));
7913 else
7914 raise Non_Static;
7915 end if;
7916
7917 -- Xor operator
7918
7919 when N_Op_Xor =>
7920 return (Get_RList (Left_Opnd (Exp))
7921 and not Get_RList (Right_Opnd (Exp)))
7922 or (Get_RList (Right_Opnd (Exp))
7923 and not Get_RList (Left_Opnd (Exp)));
7924
7925 -- Any other node type is non-static
7926
7927 when others =>
7928 raise Non_Static;
7929 end case;
7930 end Get_RList;
7931
7932 ------------
7933 -- Hi_Val --
7934 ------------
7935
7936 function Hi_Val (N : Node_Id) return Uint is
7937 begin
7938 if Is_OK_Static_Expression (N) then
7939 return Expr_Value (N);
7940 else
7941 pragma Assert (Nkind (N) = N_Range);
7942 return Expr_Value (High_Bound (N));
7943 end if;
7944 end Hi_Val;
7945
7946 --------------
7947 -- Is_False --
7948 --------------
7949
7950 function Is_False (R : RList) return Boolean is
7951 begin
7952 return R'Length = 0;
7953 end Is_False;
7954
7955 -------------
7956 -- Is_True --
7957 -------------
7958
7959 function Is_True (R : RList) return Boolean is
7960 begin
7961 return R'Length = 1
7962 and then R (R'First).Lo = BLo
7963 and then R (R'First).Hi = BHi;
7964 end Is_True;
7965
7966 -----------------
7967 -- Is_Type_Ref --
7968 -----------------
7969
7970 function Is_Type_Ref (N : Node_Id) return Boolean is
7971 begin
7972 return Nkind (N) = N_Identifier
7973 and then Chars (N) = Nam
7974 and then Paren_Count (N) = 0;
7975 end Is_Type_Ref;
7976
7977 ------------
7978 -- Lo_Val --
7979 ------------
7980
7981 function Lo_Val (N : Node_Id) return Uint is
7982 begin
7983 if Is_OK_Static_Expression (N) then
7984 return Expr_Value (N);
7985 else
7986 pragma Assert (Nkind (N) = N_Range);
7987 return Expr_Value (Low_Bound (N));
7988 end if;
7989 end Lo_Val;
7990
7991 ------------------------
7992 -- Membership_Entries --
7993 ------------------------
7994
7995 function Membership_Entries (N : Node_Id) return RList is
7996 begin
7997 if No (Next (N)) then
7998 return Membership_Entry (N);
7999 else
8000 return Membership_Entry (N) or Membership_Entries (Next (N));
8001 end if;
8002 end Membership_Entries;
8003
8004 ----------------------
8005 -- Membership_Entry --
8006 ----------------------
8007
8008 function Membership_Entry (N : Node_Id) return RList is
8009 Val : Uint;
8010 SLo : Uint;
8011 SHi : Uint;
8012
8013 begin
8014 -- Range case
8015
8016 if Nkind (N) = N_Range then
8017 if not Is_OK_Static_Expression (Low_Bound (N))
8018 or else
8019 not Is_OK_Static_Expression (High_Bound (N))
8020 then
8021 raise Non_Static;
8022 else
8023 SLo := Expr_Value (Low_Bound (N));
8024 SHi := Expr_Value (High_Bound (N));
8025 return RList'(1 => REnt'(SLo, SHi));
8026 end if;
8027
8028 -- Static expression case
8029
8030 elsif Is_OK_Static_Expression (N) then
8031 Val := Expr_Value (N);
8032 return RList'(1 => REnt'(Val, Val));
8033
8034 -- Identifier (other than static expression) case
8035
8036 else pragma Assert (Nkind (N) = N_Identifier);
8037
8038 -- Type case
8039
8040 if Is_Type (Entity (N)) then
8041
8042 -- If type has predicates, process them
8043
8044 if Has_Predicates (Entity (N)) then
8045 return Stat_Pred (Entity (N));
8046
8047 -- For static subtype without predicates, get range
8048
8049 elsif Is_OK_Static_Subtype (Entity (N)) then
8050 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8051 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8052 return RList'(1 => REnt'(SLo, SHi));
8053
8054 -- Any other type makes us non-static
8055
8056 else
8057 raise Non_Static;
8058 end if;
8059
8060 -- Any other kind of identifier in predicate (e.g. a non-static
8061 -- expression value) means this is not a static predicate.
8062
8063 else
8064 raise Non_Static;
8065 end if;
8066 end if;
8067 end Membership_Entry;
8068
8069 ---------------
8070 -- Stat_Pred --
8071 ---------------
8072
8073 function Stat_Pred (Typ : Entity_Id) return RList is
8074 begin
8075 -- Not static if type does not have static predicates
8076
8077 if not Has_Static_Predicate (Typ) then
8078 raise Non_Static;
8079 end if;
8080
8081 -- Otherwise we convert the predicate list to a range list
8082
8083 declare
8084 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8085 Result : RList (1 .. List_Length (Spred));
8086 P : Node_Id;
8087
8088 begin
8089 P := First (Static_Discrete_Predicate (Typ));
8090 for J in Result'Range loop
8091 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8092 Next (P);
8093 end loop;
8094
8095 return Result;
8096 end;
8097 end Stat_Pred;
8098
8099 -- Start of processing for Build_Discrete_Static_Predicate
8100
8101 begin
8102 -- Establish bounds for the predicate
8103
8104 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8105 TLo := Expr_Value (Type_Low_Bound (Typ));
8106 else
8107 TLo := BLo;
8108 end if;
8109
8110 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8111 THi := Expr_Value (Type_High_Bound (Typ));
8112 else
8113 THi := BHi;
8114 end if;
8115
8116 -- Analyze the expression to see if it is a static predicate
8117
8118 declare
8119 Ranges : constant RList := Get_RList (Expr);
8120 -- Range list from expression if it is static
8121
8122 Plist : List_Id;
8123
8124 begin
8125 -- Convert range list into a form for the static predicate. In the
8126 -- Ranges array, we just have raw ranges, these must be converted
8127 -- to properly typed and analyzed static expressions or range nodes.
8128
8129 -- Note: here we limit ranges to the ranges of the subtype, so that
8130 -- a predicate is always false for values outside the subtype. That
8131 -- seems fine, such values are invalid anyway, and considering them
8132 -- to fail the predicate seems allowed and friendly, and furthermore
8133 -- simplifies processing for case statements and loops.
8134
8135 Plist := New_List;
8136
8137 for J in Ranges'Range loop
8138 declare
8139 Lo : Uint := Ranges (J).Lo;
8140 Hi : Uint := Ranges (J).Hi;
8141
8142 begin
8143 -- Ignore completely out of range entry
8144
8145 if Hi < TLo or else Lo > THi then
8146 null;
8147
8148 -- Otherwise process entry
8149
8150 else
8151 -- Adjust out of range value to subtype range
8152
8153 if Lo < TLo then
8154 Lo := TLo;
8155 end if;
8156
8157 if Hi > THi then
8158 Hi := THi;
8159 end if;
8160
8161 -- Convert range into required form
8162
8163 Append_To (Plist, Build_Range (Lo, Hi));
8164 end if;
8165 end;
8166 end loop;
8167
8168 -- Processing was successful and all entries were static, so now we
8169 -- can store the result as the predicate list.
8170
8171 Set_Static_Discrete_Predicate (Typ, Plist);
8172
8173 -- The processing for static predicates put the expression into
8174 -- canonical form as a series of ranges. It also eliminated
8175 -- duplicates and collapsed and combined ranges. We might as well
8176 -- replace the alternatives list of the right operand of the
8177 -- membership test with the static predicate list, which will
8178 -- usually be more efficient.
8179
8180 declare
8181 New_Alts : constant List_Id := New_List;
8182 Old_Node : Node_Id;
8183 New_Node : Node_Id;
8184
8185 begin
8186 Old_Node := First (Plist);
8187 while Present (Old_Node) loop
8188 New_Node := New_Copy (Old_Node);
8189
8190 if Nkind (New_Node) = N_Range then
8191 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8192 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8193 end if;
8194
8195 Append_To (New_Alts, New_Node);
8196 Next (Old_Node);
8197 end loop;
8198
8199 -- If empty list, replace by False
8200
8201 if Is_Empty_List (New_Alts) then
8202 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8203
8204 -- Else replace by set membership test
8205
8206 else
8207 Rewrite (Expr,
8208 Make_In (Loc,
8209 Left_Opnd => Make_Identifier (Loc, Nam),
8210 Right_Opnd => Empty,
8211 Alternatives => New_Alts));
8212
8213 -- Resolve new expression in function context
8214
8215 Install_Formals (Predicate_Function (Typ));
8216 Push_Scope (Predicate_Function (Typ));
8217 Analyze_And_Resolve (Expr, Standard_Boolean);
8218 Pop_Scope;
8219 end if;
8220 end;
8221 end;
8222
8223 -- If non-static, return doing nothing
8224
8225 exception
8226 when Non_Static =>
8227 return;
8228 end Build_Discrete_Static_Predicate;
8229
8230 --------------------------------
8231 -- Build_Export_Import_Pragma --
8232 --------------------------------
8233
8234 function Build_Export_Import_Pragma
8235 (Asp : Node_Id;
8236 Id : Entity_Id) return Node_Id
8237 is
8238 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8239 Expr : constant Node_Id := Expression (Asp);
8240 Loc : constant Source_Ptr := Sloc (Asp);
8241
8242 Args : List_Id;
8243 Conv : Node_Id;
8244 Conv_Arg : Node_Id;
8245 Dummy_1 : Node_Id;
8246 Dummy_2 : Node_Id;
8247 EN : Node_Id;
8248 LN : Node_Id;
8249 Prag : Node_Id;
8250
8251 Create_Pragma : Boolean := False;
8252 -- This flag is set when the aspect form is such that it warrants the
8253 -- creation of a corresponding pragma.
8254
8255 begin
8256 if Present (Expr) then
8257 if Error_Posted (Expr) then
8258 null;
8259
8260 elsif Is_True (Expr_Value (Expr)) then
8261 Create_Pragma := True;
8262 end if;
8263
8264 -- Otherwise the aspect defaults to True
8265
8266 else
8267 Create_Pragma := True;
8268 end if;
8269
8270 -- Nothing to do when the expression is False or is erroneous
8271
8272 if not Create_Pragma then
8273 return Empty;
8274 end if;
8275
8276 -- Obtain all interfacing aspects that apply to the related entity
8277
8278 Get_Interfacing_Aspects
8279 (Iface_Asp => Asp,
8280 Conv_Asp => Conv,
8281 EN_Asp => EN,
8282 Expo_Asp => Dummy_1,
8283 Imp_Asp => Dummy_2,
8284 LN_Asp => LN);
8285
8286 Args := New_List;
8287
8288 -- Handle the convention argument
8289
8290 if Present (Conv) then
8291 Conv_Arg := New_Copy_Tree (Expression (Conv));
8292
8293 -- Assume convention "Ada' when aspect Convention is missing
8294
8295 else
8296 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8297 end if;
8298
8299 Append_To (Args,
8300 Make_Pragma_Argument_Association (Loc,
8301 Chars => Name_Convention,
8302 Expression => Conv_Arg));
8303
8304 -- Handle the entity argument
8305
8306 Append_To (Args,
8307 Make_Pragma_Argument_Association (Loc,
8308 Chars => Name_Entity,
8309 Expression => New_Occurrence_Of (Id, Loc)));
8310
8311 -- Handle the External_Name argument
8312
8313 if Present (EN) then
8314 Append_To (Args,
8315 Make_Pragma_Argument_Association (Loc,
8316 Chars => Name_External_Name,
8317 Expression => New_Copy_Tree (Expression (EN))));
8318 end if;
8319
8320 -- Handle the Link_Name argument
8321
8322 if Present (LN) then
8323 Append_To (Args,
8324 Make_Pragma_Argument_Association (Loc,
8325 Chars => Name_Link_Name,
8326 Expression => New_Copy_Tree (Expression (LN))));
8327 end if;
8328
8329 -- Generate:
8330 -- pragma Export/Import
8331 -- (Convention => <Conv>/Ada,
8332 -- Entity => <Id>,
8333 -- [External_Name => <EN>,]
8334 -- [Link_Name => <LN>]);
8335
8336 Prag :=
8337 Make_Pragma (Loc,
8338 Pragma_Identifier =>
8339 Make_Identifier (Loc, Chars (Identifier (Asp))),
8340 Pragma_Argument_Associations => Args);
8341
8342 -- Decorate the relevant aspect and the pragma
8343
8344 Set_Aspect_Rep_Item (Asp, Prag);
8345
8346 Set_Corresponding_Aspect (Prag, Asp);
8347 Set_From_Aspect_Specification (Prag);
8348 Set_Parent (Prag, Asp);
8349
8350 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8351 Set_Import_Pragma (Id, Prag);
8352 end if;
8353
8354 return Prag;
8355 end Build_Export_Import_Pragma;
8356
8357 -------------------------------
8358 -- Build_Predicate_Functions --
8359 -------------------------------
8360
8361 -- The functions that are constructed here have the form:
8362
8363 -- function typPredicate (Ixxx : typ) return Boolean is
8364 -- begin
8365 -- return
8366 -- typ1Predicate (typ1 (Ixxx))
8367 -- and then typ2Predicate (typ2 (Ixxx))
8368 -- and then ...
8369 -- and then exp1 and then exp2 and then ...;
8370 -- end typPredicate;
8371
8372 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8373 -- this is the point at which these expressions get analyzed, providing the
8374 -- required delay, and typ1, typ2, are entities from which predicates are
8375 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8376 -- use this function even if checks are off, e.g. for membership tests.
8377
8378 -- Note that the inherited predicates are evaluated first, as required by
8379 -- AI12-0071-1.
8380
8381 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8382 -- the form of this return expression.
8383
8384 -- If the expression has at least one Raise_Expression, then we also build
8385 -- the typPredicateM version of the function, in which any occurrence of a
8386 -- Raise_Expression is converted to "return False".
8387
8388 -- WARNING: This routine manages Ghost regions. Return statements must be
8389 -- replaced by gotos which jump to the end of the routine and restore the
8390 -- Ghost mode.
8391
8392 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8393 Loc : constant Source_Ptr := Sloc (Typ);
8394
8395 Expr : Node_Id;
8396 -- This is the expression for the result of the function. It is
8397 -- is build by connecting the component predicates with AND THEN.
8398
8399 Expr_M : Node_Id := Empty; -- init to avoid warning
8400 -- This is the corresponding return expression for the Predicate_M
8401 -- function. It differs in that raise expressions are marked for
8402 -- special expansion (see Process_REs).
8403
8404 Object_Name : Name_Id;
8405 -- Name for argument of Predicate procedure. Note that we use the same
8406 -- name for both predicate functions. That way the reference within the
8407 -- predicate expression is the same in both functions.
8408
8409 Object_Entity : Entity_Id;
8410 -- Entity for argument of Predicate procedure
8411
8412 Object_Entity_M : Entity_Id;
8413 -- Entity for argument of separate Predicate procedure when exceptions
8414 -- are present in expression.
8415
8416 FDecl : Node_Id;
8417 -- The function declaration
8418
8419 SId : Entity_Id;
8420 -- Its entity
8421
8422 Raise_Expression_Present : Boolean := False;
8423 -- Set True if Expr has at least one Raise_Expression
8424
8425 procedure Add_Condition (Cond : Node_Id);
8426 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8427 -- Expr is empty).
8428
8429 procedure Add_Predicates;
8430 -- Appends expressions for any Predicate pragmas in the rep item chain
8431 -- Typ to Expr. Note that we look only at items for this exact entity.
8432 -- Inheritance of predicates for the parent type is done by calling the
8433 -- Predicate_Function of the parent type, using Add_Call above.
8434
8435 procedure Add_Call (T : Entity_Id);
8436 -- Includes a call to the predicate function for type T in Expr if T
8437 -- has predicates and Predicate_Function (T) is non-empty.
8438
8439 function Process_RE (N : Node_Id) return Traverse_Result;
8440 -- Used in Process REs, tests if node N is a raise expression, and if
8441 -- so, marks it to be converted to return False.
8442
8443 procedure Process_REs is new Traverse_Proc (Process_RE);
8444 -- Marks any raise expressions in Expr_M to return False
8445
8446 function Test_RE (N : Node_Id) return Traverse_Result;
8447 -- Used in Test_REs, tests one node for being a raise expression, and if
8448 -- so sets Raise_Expression_Present True.
8449
8450 procedure Test_REs is new Traverse_Proc (Test_RE);
8451 -- Tests to see if Expr contains any raise expressions
8452
8453 --------------
8454 -- Add_Call --
8455 --------------
8456
8457 procedure Add_Call (T : Entity_Id) is
8458 Exp : Node_Id;
8459
8460 begin
8461 if Present (T) and then Present (Predicate_Function (T)) then
8462 Set_Has_Predicates (Typ);
8463
8464 -- Build the call to the predicate function of T. The type may be
8465 -- derived, so use an unchecked conversion for the actual.
8466
8467 Exp :=
8468 Make_Predicate_Call
8469 (Typ => T,
8470 Expr =>
8471 Unchecked_Convert_To (T,
8472 Make_Identifier (Loc, Object_Name)));
8473
8474 -- "and"-in the call to evolving expression
8475
8476 Add_Condition (Exp);
8477
8478 -- Output info message on inheritance if required. Note we do not
8479 -- give this information for generic actual types, since it is
8480 -- unwelcome noise in that case in instantiations. We also
8481 -- generally suppress the message in instantiations, and also
8482 -- if it involves internal names.
8483
8484 if Opt.List_Inherited_Aspects
8485 and then not Is_Generic_Actual_Type (Typ)
8486 and then Instantiation_Depth (Sloc (Typ)) = 0
8487 and then not Is_Internal_Name (Chars (T))
8488 and then not Is_Internal_Name (Chars (Typ))
8489 then
8490 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8491 Error_Msg_Node_2 := T;
8492 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8493 end if;
8494 end if;
8495 end Add_Call;
8496
8497 -------------------
8498 -- Add_Condition --
8499 -------------------
8500
8501 procedure Add_Condition (Cond : Node_Id) is
8502 begin
8503 -- This is the first predicate expression
8504
8505 if No (Expr) then
8506 Expr := Cond;
8507
8508 -- Otherwise concatenate to the existing predicate expressions by
8509 -- using "and then".
8510
8511 else
8512 Expr :=
8513 Make_And_Then (Loc,
8514 Left_Opnd => Relocate_Node (Expr),
8515 Right_Opnd => Cond);
8516 end if;
8517 end Add_Condition;
8518
8519 --------------------
8520 -- Add_Predicates --
8521 --------------------
8522
8523 procedure Add_Predicates is
8524 procedure Add_Predicate (Prag : Node_Id);
8525 -- Concatenate the expression of predicate pragma Prag to Expr by
8526 -- using a short circuit "and then" operator.
8527
8528 -------------------
8529 -- Add_Predicate --
8530 -------------------
8531
8532 procedure Add_Predicate (Prag : Node_Id) is
8533 procedure Replace_Type_Reference (N : Node_Id);
8534 -- Replace a single occurrence N of the subtype name with a
8535 -- reference to the formal of the predicate function. N can be an
8536 -- identifier referencing the subtype, or a selected component,
8537 -- representing an appropriately qualified occurrence of the
8538 -- subtype name.
8539
8540 procedure Replace_Type_References is
8541 new Replace_Type_References_Generic (Replace_Type_Reference);
8542 -- Traverse an expression changing every occurrence of an
8543 -- identifier whose name matches the name of the subtype with a
8544 -- reference to the formal parameter of the predicate function.
8545
8546 ----------------------------
8547 -- Replace_Type_Reference --
8548 ----------------------------
8549
8550 procedure Replace_Type_Reference (N : Node_Id) is
8551 begin
8552 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8553 -- Use the Sloc of the usage name, not the defining name
8554
8555 Set_Etype (N, Typ);
8556 Set_Entity (N, Object_Entity);
8557
8558 -- We want to treat the node as if it comes from source, so
8559 -- that ASIS will not ignore it.
8560
8561 Set_Comes_From_Source (N, True);
8562 end Replace_Type_Reference;
8563
8564 -- Local variables
8565
8566 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8567 Arg1 : Node_Id;
8568 Arg2 : Node_Id;
8569
8570 -- Start of processing for Add_Predicate
8571
8572 begin
8573 -- Mark corresponding SCO as enabled
8574
8575 Set_SCO_Pragma_Enabled (Sloc (Prag));
8576
8577 -- Extract the arguments of the pragma. The expression itself
8578 -- is copied for use in the predicate function, to preserve the
8579 -- original version for ASIS use.
8580
8581 Arg1 := First (Pragma_Argument_Associations (Prag));
8582 Arg2 := Next (Arg1);
8583
8584 Arg1 := Get_Pragma_Arg (Arg1);
8585 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8586
8587 -- When the predicate pragma applies to the current type or its
8588 -- full view, replace all occurrences of the subtype name with
8589 -- references to the formal parameter of the predicate function.
8590
8591 if Entity (Arg1) = Typ
8592 or else Full_View (Entity (Arg1)) = Typ
8593 then
8594 Replace_Type_References (Arg2, Typ);
8595
8596 -- If the predicate pragma comes from an aspect, replace the
8597 -- saved expression because we need the subtype references
8598 -- replaced for the calls to Preanalyze_Spec_Expression in
8599 -- Check_Aspect_At_xxx routines.
8600
8601 if Present (Asp) then
8602 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8603 end if;
8604
8605 -- "and"-in the Arg2 condition to evolving expression
8606
8607 Add_Condition (Relocate_Node (Arg2));
8608 end if;
8609 end Add_Predicate;
8610
8611 -- Local variables
8612
8613 Ritem : Node_Id;
8614
8615 -- Start of processing for Add_Predicates
8616
8617 begin
8618 Ritem := First_Rep_Item (Typ);
8619
8620 -- If the type is private, check whether full view has inherited
8621 -- predicates.
8622
8623 if Is_Private_Type (Typ) and then No (Ritem) then
8624 Ritem := First_Rep_Item (Full_View (Typ));
8625 end if;
8626
8627 while Present (Ritem) loop
8628 if Nkind (Ritem) = N_Pragma
8629 and then Pragma_Name (Ritem) = Name_Predicate
8630 then
8631 Add_Predicate (Ritem);
8632
8633 -- If the type is declared in an inner package it may be frozen
8634 -- outside of the package, and the generated pragma has not been
8635 -- analyzed yet, so capture the expression for the predicate
8636 -- function at this point.
8637
8638 elsif Nkind (Ritem) = N_Aspect_Specification
8639 and then Present (Aspect_Rep_Item (Ritem))
8640 and then Scope (Typ) /= Current_Scope
8641 then
8642 declare
8643 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8644
8645 begin
8646 if Nkind (Prag) = N_Pragma
8647 and then Pragma_Name (Prag) = Name_Predicate
8648 then
8649 Add_Predicate (Prag);
8650 end if;
8651 end;
8652 end if;
8653
8654 Next_Rep_Item (Ritem);
8655 end loop;
8656 end Add_Predicates;
8657
8658 ----------------
8659 -- Process_RE --
8660 ----------------
8661
8662 function Process_RE (N : Node_Id) return Traverse_Result is
8663 begin
8664 if Nkind (N) = N_Raise_Expression then
8665 Set_Convert_To_Return_False (N);
8666 return Skip;
8667 else
8668 return OK;
8669 end if;
8670 end Process_RE;
8671
8672 -------------
8673 -- Test_RE --
8674 -------------
8675
8676 function Test_RE (N : Node_Id) return Traverse_Result is
8677 begin
8678 if Nkind (N) = N_Raise_Expression then
8679 Raise_Expression_Present := True;
8680 return Abandon;
8681 else
8682 return OK;
8683 end if;
8684 end Test_RE;
8685
8686 -- Local variables
8687
8688 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8689 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
8690 -- Save the Ghost-related attributes to restore on exit
8691
8692 -- Start of processing for Build_Predicate_Functions
8693
8694 begin
8695 -- Return if already built or if type does not have predicates
8696
8697 SId := Predicate_Function (Typ);
8698 if not Has_Predicates (Typ)
8699 or else (Present (SId) and then Has_Completion (SId))
8700 then
8701 return;
8702 end if;
8703
8704 -- The related type may be subject to pragma Ghost. Set the mode now to
8705 -- ensure that the predicate functions are properly marked as Ghost.
8706
8707 Set_Ghost_Mode (Typ);
8708
8709 -- Prepare to construct predicate expression
8710
8711 Expr := Empty;
8712
8713 if Present (SId) then
8714 FDecl := Unit_Declaration_Node (SId);
8715
8716 else
8717 FDecl := Build_Predicate_Function_Declaration (Typ);
8718 SId := Defining_Entity (FDecl);
8719 end if;
8720
8721 -- Recover name of formal parameter of function that replaces references
8722 -- to the type in predicate expressions.
8723
8724 Object_Entity :=
8725 Defining_Identifier
8726 (First (Parameter_Specifications (Specification (FDecl))));
8727
8728 Object_Name := Chars (Object_Entity);
8729 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8730
8731 -- Add predicates for ancestor if present. These must come before the
8732 -- ones for the current type, as required by AI12-0071-1.
8733
8734 declare
8735 Atyp : Entity_Id;
8736 begin
8737 Atyp := Nearest_Ancestor (Typ);
8738
8739 -- The type may be private but the full view may inherit predicates
8740
8741 if No (Atyp) and then Is_Private_Type (Typ) then
8742 Atyp := Nearest_Ancestor (Full_View (Typ));
8743 end if;
8744
8745 if Present (Atyp) then
8746 Add_Call (Atyp);
8747 end if;
8748 end;
8749
8750 -- Add Predicates for the current type
8751
8752 Add_Predicates;
8753
8754 -- Case where predicates are present
8755
8756 if Present (Expr) then
8757 -- Test for raise expression present
8758
8759 Test_REs (Expr);
8760
8761 -- If raise expression is present, capture a copy of Expr for use
8762 -- in building the predicateM function version later on. For this
8763 -- copy we replace references to Object_Entity by Object_Entity_M.
8764
8765 if Raise_Expression_Present then
8766 declare
8767 Map : constant Elist_Id := New_Elmt_List;
8768 New_V : Entity_Id := Empty;
8769
8770 -- The unanalyzed expression will be copied and appear in
8771 -- both functions. Normally expressions do not declare new
8772 -- entities, but quantified expressions do, so we need to
8773 -- create new entities for their bound variables, to prevent
8774 -- multiple definitions in gigi.
8775
8776 function Reset_Loop_Variable (N : Node_Id)
8777 return Traverse_Result;
8778
8779 procedure Collect_Loop_Variables is
8780 new Traverse_Proc (Reset_Loop_Variable);
8781
8782 ------------------------
8783 -- Reset_Loop_Variable --
8784 ------------------------
8785
8786 function Reset_Loop_Variable (N : Node_Id)
8787 return Traverse_Result
8788 is
8789 begin
8790 if Nkind (N) = N_Iterator_Specification then
8791 New_V := Make_Defining_Identifier
8792 (Sloc (N), Chars (Defining_Identifier (N)));
8793
8794 Set_Defining_Identifier (N, New_V);
8795 end if;
8796
8797 return OK;
8798 end Reset_Loop_Variable;
8799
8800 begin
8801 Append_Elmt (Object_Entity, Map);
8802 Append_Elmt (Object_Entity_M, Map);
8803 Expr_M := New_Copy_Tree (Expr, Map => Map);
8804 Collect_Loop_Variables (Expr_M);
8805 end;
8806 end if;
8807
8808 -- Build the main predicate function
8809
8810 declare
8811 SIdB : constant Entity_Id :=
8812 Make_Defining_Identifier (Loc,
8813 Chars => New_External_Name (Chars (Typ), "Predicate"));
8814 -- The entity for the function body
8815
8816 Spec : Node_Id;
8817 FBody : Node_Id;
8818
8819 begin
8820 Set_Ekind (SIdB, E_Function);
8821 Set_Is_Predicate_Function (SIdB);
8822
8823 -- The predicate function is shared between views of a type
8824
8825 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8826 Set_Predicate_Function (Full_View (Typ), SId);
8827 end if;
8828
8829 -- Build function body
8830
8831 Spec :=
8832 Make_Function_Specification (Loc,
8833 Defining_Unit_Name => SIdB,
8834 Parameter_Specifications => New_List (
8835 Make_Parameter_Specification (Loc,
8836 Defining_Identifier =>
8837 Make_Defining_Identifier (Loc, Object_Name),
8838 Parameter_Type =>
8839 New_Occurrence_Of (Typ, Loc))),
8840 Result_Definition =>
8841 New_Occurrence_Of (Standard_Boolean, Loc));
8842
8843 FBody :=
8844 Make_Subprogram_Body (Loc,
8845 Specification => Spec,
8846 Declarations => Empty_List,
8847 Handled_Statement_Sequence =>
8848 Make_Handled_Sequence_Of_Statements (Loc,
8849 Statements => New_List (
8850 Make_Simple_Return_Statement (Loc,
8851 Expression => Expr))));
8852
8853 -- The declaration has been analyzed when created, and placed
8854 -- after type declaration. Insert body itself after freeze node.
8855
8856 Insert_After_And_Analyze (N, FBody);
8857
8858 -- The defining identifier of a quantified expression carries the
8859 -- scope in which the type appears, but when unnesting we need
8860 -- to indicate that its proper scope is the constructed predicate
8861 -- function. The quantified expressions have been converted into
8862 -- loops during analysis and expansion.
8863
8864 declare
8865 function Reset_Quantified_Variable_Scope (N : Node_Id)
8866 return Traverse_Result;
8867
8868 procedure Reset_Quantified_Variables_Scope is
8869 new Traverse_Proc (Reset_Quantified_Variable_Scope);
8870
8871 -------------------------------------
8872 -- Reset_Quantified_Variable_Scope --
8873 -------------------------------------
8874
8875 function Reset_Quantified_Variable_Scope (N : Node_Id)
8876 return Traverse_Result
8877 is
8878 begin
8879 if Nkind_In (N, N_Iterator_Specification,
8880 N_Loop_Parameter_Specification)
8881 then
8882 Set_Scope (Defining_Identifier (N),
8883 Predicate_Function (Typ));
8884 end if;
8885 return OK;
8886 end Reset_Quantified_Variable_Scope;
8887
8888 begin
8889 if Unnest_Subprogram_Mode then
8890 Reset_Quantified_Variables_Scope (Expr);
8891 end if;
8892 end;
8893
8894 -- within a generic unit, prevent a double analysis of the body
8895 -- which will not be marked analyzed yet. This will happen when
8896 -- the freeze node is created during the preanalysis of an
8897 -- expression function.
8898
8899 if Inside_A_Generic then
8900 Set_Analyzed (FBody);
8901 end if;
8902
8903 -- Static predicate functions are always side-effect free, and
8904 -- in most cases dynamic predicate functions are as well. Mark
8905 -- them as such whenever possible, so redundant predicate checks
8906 -- can be optimized. If there is a variable reference within the
8907 -- expression, the function is not pure.
8908
8909 if Expander_Active then
8910 Set_Is_Pure (SId,
8911 Side_Effect_Free (Expr, Variable_Ref => True));
8912 Set_Is_Inlined (SId);
8913 end if;
8914 end;
8915
8916 -- Test for raise expressions present and if so build M version
8917
8918 if Raise_Expression_Present then
8919 declare
8920 SId : constant Entity_Id :=
8921 Make_Defining_Identifier (Loc,
8922 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8923 -- The entity for the function spec
8924
8925 SIdB : constant Entity_Id :=
8926 Make_Defining_Identifier (Loc,
8927 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8928 -- The entity for the function body
8929
8930 Spec : Node_Id;
8931 FBody : Node_Id;
8932 FDecl : Node_Id;
8933 BTemp : Entity_Id;
8934
8935 begin
8936 -- Mark any raise expressions for special expansion
8937
8938 Process_REs (Expr_M);
8939
8940 -- Build function declaration
8941
8942 Set_Ekind (SId, E_Function);
8943 Set_Is_Predicate_Function_M (SId);
8944 Set_Predicate_Function_M (Typ, SId);
8945
8946 -- The predicate function is shared between views of a type
8947
8948 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8949 Set_Predicate_Function_M (Full_View (Typ), SId);
8950 end if;
8951
8952 Spec :=
8953 Make_Function_Specification (Loc,
8954 Defining_Unit_Name => SId,
8955 Parameter_Specifications => New_List (
8956 Make_Parameter_Specification (Loc,
8957 Defining_Identifier => Object_Entity_M,
8958 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8959 Result_Definition =>
8960 New_Occurrence_Of (Standard_Boolean, Loc));
8961
8962 FDecl :=
8963 Make_Subprogram_Declaration (Loc,
8964 Specification => Spec);
8965
8966 -- Build function body
8967
8968 Spec :=
8969 Make_Function_Specification (Loc,
8970 Defining_Unit_Name => SIdB,
8971 Parameter_Specifications => New_List (
8972 Make_Parameter_Specification (Loc,
8973 Defining_Identifier =>
8974 Make_Defining_Identifier (Loc, Object_Name),
8975 Parameter_Type =>
8976 New_Occurrence_Of (Typ, Loc))),
8977 Result_Definition =>
8978 New_Occurrence_Of (Standard_Boolean, Loc));
8979
8980 -- Build the body, we declare the boolean expression before
8981 -- doing the return, because we are not really confident of
8982 -- what happens if a return appears within a return.
8983
8984 BTemp :=
8985 Make_Defining_Identifier (Loc,
8986 Chars => New_Internal_Name ('B'));
8987
8988 FBody :=
8989 Make_Subprogram_Body (Loc,
8990 Specification => Spec,
8991
8992 Declarations => New_List (
8993 Make_Object_Declaration (Loc,
8994 Defining_Identifier => BTemp,
8995 Constant_Present => True,
8996 Object_Definition =>
8997 New_Occurrence_Of (Standard_Boolean, Loc),
8998 Expression => Expr_M)),
8999
9000 Handled_Statement_Sequence =>
9001 Make_Handled_Sequence_Of_Statements (Loc,
9002 Statements => New_List (
9003 Make_Simple_Return_Statement (Loc,
9004 Expression => New_Occurrence_Of (BTemp, Loc)))));
9005
9006 -- Insert declaration before freeze node and body after
9007
9008 Insert_Before_And_Analyze (N, FDecl);
9009 Insert_After_And_Analyze (N, FBody);
9010
9011 -- Should quantified expressions be handled here as well ???
9012 end;
9013 end if;
9014
9015 -- See if we have a static predicate. Note that the answer may be
9016 -- yes even if we have an explicit Dynamic_Predicate present.
9017
9018 declare
9019 PS : Boolean;
9020 EN : Node_Id;
9021
9022 begin
9023 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
9024 PS := False;
9025 else
9026 PS := Is_Predicate_Static (Expr, Object_Name);
9027 end if;
9028
9029 -- Case where we have a predicate-static aspect
9030
9031 if PS then
9032
9033 -- We don't set Has_Static_Predicate_Aspect, since we can have
9034 -- any of the three cases (Predicate, Dynamic_Predicate, or
9035 -- Static_Predicate) generating a predicate with an expression
9036 -- that is predicate-static. We just indicate that we have a
9037 -- predicate that can be treated as static.
9038
9039 Set_Has_Static_Predicate (Typ);
9040
9041 -- For discrete subtype, build the static predicate list
9042
9043 if Is_Discrete_Type (Typ) then
9044 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
9045
9046 -- If we don't get a static predicate list, it means that we
9047 -- have a case where this is not possible, most typically in
9048 -- the case where we inherit a dynamic predicate. We do not
9049 -- consider this an error, we just leave the predicate as
9050 -- dynamic. But if we do succeed in building the list, then
9051 -- we mark the predicate as static.
9052
9053 if No (Static_Discrete_Predicate (Typ)) then
9054 Set_Has_Static_Predicate (Typ, False);
9055 end if;
9056
9057 -- For real or string subtype, save predicate expression
9058
9059 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9060 Set_Static_Real_Or_String_Predicate (Typ, Expr);
9061 end if;
9062
9063 -- Case of dynamic predicate (expression is not predicate-static)
9064
9065 else
9066 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9067 -- is only set if we have an explicit Dynamic_Predicate aspect
9068 -- given. Here we may simply have a Predicate aspect where the
9069 -- expression happens not to be predicate-static.
9070
9071 -- Emit an error when the predicate is categorized as static
9072 -- but its expression is not predicate-static.
9073
9074 -- First a little fiddling to get a nice location for the
9075 -- message. If the expression is of the form (A and then B),
9076 -- where A is an inherited predicate, then use the right
9077 -- operand for the Sloc. This avoids getting confused by a call
9078 -- to an inherited predicate with a less convenient source
9079 -- location.
9080
9081 EN := Expr;
9082 while Nkind (EN) = N_And_Then
9083 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9084 and then Is_Predicate_Function
9085 (Entity (Name (Left_Opnd (EN))))
9086 loop
9087 EN := Right_Opnd (EN);
9088 end loop;
9089
9090 -- Now post appropriate message
9091
9092 if Has_Static_Predicate_Aspect (Typ) then
9093 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9094 Error_Msg_F
9095 ("expression is not predicate-static (RM 3.2.4(16-22))",
9096 EN);
9097 else
9098 Error_Msg_F
9099 ("static predicate requires scalar or string type", EN);
9100 end if;
9101 end if;
9102 end if;
9103 end;
9104 end if;
9105
9106 Restore_Ghost_Region (Saved_GM, Saved_IGR);
9107 end Build_Predicate_Functions;
9108
9109 ------------------------------------------
9110 -- Build_Predicate_Function_Declaration --
9111 ------------------------------------------
9112
9113 -- WARNING: This routine manages Ghost regions. Return statements must be
9114 -- replaced by gotos which jump to the end of the routine and restore the
9115 -- Ghost mode.
9116
9117 function Build_Predicate_Function_Declaration
9118 (Typ : Entity_Id) return Node_Id
9119 is
9120 Loc : constant Source_Ptr := Sloc (Typ);
9121
9122 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9123 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
9124 -- Save the Ghost-related attributes to restore on exit
9125
9126 Func_Decl : Node_Id;
9127 Func_Id : Entity_Id;
9128 Spec : Node_Id;
9129
9130 begin
9131 -- The related type may be subject to pragma Ghost. Set the mode now to
9132 -- ensure that the predicate functions are properly marked as Ghost.
9133
9134 Set_Ghost_Mode (Typ);
9135
9136 Func_Id :=
9137 Make_Defining_Identifier (Loc,
9138 Chars => New_External_Name (Chars (Typ), "Predicate"));
9139
9140 -- The predicate function requires debug info when the predicates are
9141 -- subject to Source Coverage Obligations.
9142
9143 if Opt.Generate_SCO then
9144 Set_Debug_Info_Needed (Func_Id);
9145 end if;
9146
9147 Spec :=
9148 Make_Function_Specification (Loc,
9149 Defining_Unit_Name => Func_Id,
9150 Parameter_Specifications => New_List (
9151 Make_Parameter_Specification (Loc,
9152 Defining_Identifier => Make_Temporary (Loc, 'I'),
9153 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9154 Result_Definition =>
9155 New_Occurrence_Of (Standard_Boolean, Loc));
9156
9157 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9158
9159 Set_Ekind (Func_Id, E_Function);
9160 Set_Etype (Func_Id, Standard_Boolean);
9161 Set_Is_Internal (Func_Id);
9162 Set_Is_Predicate_Function (Func_Id);
9163 Set_Predicate_Function (Typ, Func_Id);
9164
9165 Insert_After (Parent (Typ), Func_Decl);
9166 Analyze (Func_Decl);
9167
9168 Restore_Ghost_Region (Saved_GM, Saved_IGR);
9169
9170 return Func_Decl;
9171 end Build_Predicate_Function_Declaration;
9172
9173 -----------------------------------------
9174 -- Check_Aspect_At_End_Of_Declarations --
9175 -----------------------------------------
9176
9177 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9178 Ent : constant Entity_Id := Entity (ASN);
9179 Ident : constant Node_Id := Identifier (ASN);
9180 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9181
9182 End_Decl_Expr : constant Node_Id := Entity (Ident);
9183 -- Expression to be analyzed at end of declarations
9184
9185 Freeze_Expr : constant Node_Id := Expression (ASN);
9186 -- Expression from call to Check_Aspect_At_Freeze_Point.
9187
9188 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9189 -- Type required for preanalyze call. We use the original expression to
9190 -- get the proper type, to prevent cascaded errors when the expression
9191 -- is constant-folded.
9192
9193 Err : Boolean;
9194 -- Set False if error
9195
9196 -- On entry to this procedure, Entity (Ident) contains a copy of the
9197 -- original expression from the aspect, saved for this purpose, and
9198 -- but Expression (Ident) is a preanalyzed copy of the expression,
9199 -- preanalyzed just after the freeze point.
9200
9201 procedure Check_Overloaded_Name;
9202 -- For aspects whose expression is simply a name, this routine checks if
9203 -- the name is overloaded or not. If so, it verifies there is an
9204 -- interpretation that matches the entity obtained at the freeze point,
9205 -- otherwise the compiler complains.
9206
9207 ---------------------------
9208 -- Check_Overloaded_Name --
9209 ---------------------------
9210
9211 procedure Check_Overloaded_Name is
9212 begin
9213 if not Is_Overloaded (End_Decl_Expr) then
9214 Err := not Is_Entity_Name (End_Decl_Expr)
9215 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9216
9217 else
9218 Err := True;
9219
9220 declare
9221 Index : Interp_Index;
9222 It : Interp;
9223
9224 begin
9225 Get_First_Interp (End_Decl_Expr, Index, It);
9226 while Present (It.Typ) loop
9227 if It.Nam = Entity (Freeze_Expr) then
9228 Err := False;
9229 exit;
9230 end if;
9231
9232 Get_Next_Interp (Index, It);
9233 end loop;
9234 end;
9235 end if;
9236 end Check_Overloaded_Name;
9237
9238 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9239
9240 begin
9241 -- In an instance we do not perform the consistency check between freeze
9242 -- point and end of declarations, because it was done already in the
9243 -- analysis of the generic. Furthermore, the delayed analysis of an
9244 -- aspect of the instance may produce spurious errors when the generic
9245 -- is a child unit that references entities in the parent (which might
9246 -- not be in scope at the freeze point of the instance).
9247
9248 if In_Instance then
9249 return;
9250
9251 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9252 -- task body is rewritten as a procedure) after this conformance check
9253 -- has been performed, so do not perform it again (it may not easily be
9254 -- done if full visibility of local entities is not available).
9255
9256 elsif not Comes_From_Source (Current_Scope) then
9257 return;
9258
9259 -- Case of aspects Dimension, Dimension_System and Synchronization
9260
9261 elsif A_Id = Aspect_Synchronization then
9262 return;
9263
9264 -- Case of stream attributes, just have to compare entities. However,
9265 -- the expression is just a name (possibly overloaded), and there may
9266 -- be stream operations declared for unrelated types, so we just need
9267 -- to verify that one of these interpretations is the one available at
9268 -- at the freeze point.
9269
9270 elsif A_Id = Aspect_Input or else
9271 A_Id = Aspect_Output or else
9272 A_Id = Aspect_Read or else
9273 A_Id = Aspect_Write
9274 then
9275 Analyze (End_Decl_Expr);
9276 Check_Overloaded_Name;
9277
9278 elsif A_Id = Aspect_Variable_Indexing or else
9279 A_Id = Aspect_Constant_Indexing or else
9280 A_Id = Aspect_Default_Iterator or else
9281 A_Id = Aspect_Iterator_Element
9282 then
9283 -- Make type unfrozen before analysis, to prevent spurious errors
9284 -- about late attributes.
9285
9286 Set_Is_Frozen (Ent, False);
9287 Analyze (End_Decl_Expr);
9288 Set_Is_Frozen (Ent, True);
9289
9290 -- If the end of declarations comes before any other freeze
9291 -- point, the Freeze_Expr is not analyzed: no check needed.
9292
9293 if Analyzed (Freeze_Expr) and then not In_Instance then
9294 Check_Overloaded_Name;
9295 else
9296 Err := False;
9297 end if;
9298
9299 -- All other cases
9300
9301 else
9302 -- Indicate that the expression comes from an aspect specification,
9303 -- which is used in subsequent analysis even if expansion is off.
9304
9305 Set_Parent (End_Decl_Expr, ASN);
9306
9307 -- In a generic context the aspect expressions have not been
9308 -- preanalyzed, so do it now. There are no conformance checks
9309 -- to perform in this case.
9310
9311 if No (T) then
9312 Check_Aspect_At_Freeze_Point (ASN);
9313 return;
9314
9315 -- The default values attributes may be defined in the private part,
9316 -- and the analysis of the expression may take place when only the
9317 -- partial view is visible. The expression must be scalar, so use
9318 -- the full view to resolve.
9319
9320 elsif (A_Id = Aspect_Default_Value
9321 or else
9322 A_Id = Aspect_Default_Component_Value)
9323 and then Is_Private_Type (T)
9324 then
9325 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9326
9327 else
9328 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9329 end if;
9330
9331 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9332 end if;
9333
9334 -- Output error message if error. Force error on aspect specification
9335 -- even if there is an error on the expression itself.
9336
9337 if Err then
9338 Error_Msg_NE
9339 ("!visibility of aspect for& changes after freeze point",
9340 ASN, Ent);
9341 Error_Msg_NE
9342 ("info: & is frozen here, aspects evaluated at this point??",
9343 Freeze_Node (Ent), Ent);
9344 end if;
9345 end Check_Aspect_At_End_Of_Declarations;
9346
9347 ----------------------------------
9348 -- Check_Aspect_At_Freeze_Point --
9349 ----------------------------------
9350
9351 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9352 Ident : constant Node_Id := Identifier (ASN);
9353 -- Identifier (use Entity field to save expression)
9354
9355 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9356
9357 T : Entity_Id := Empty;
9358 -- Type required for preanalyze call
9359
9360 begin
9361 -- On entry to this procedure, Entity (Ident) contains a copy of the
9362 -- original expression from the aspect, saved for this purpose.
9363
9364 -- On exit from this procedure Entity (Ident) is unchanged, still
9365 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9366 -- of the expression, preanalyzed just after the freeze point.
9367
9368 -- Make a copy of the expression to be preanalyzed
9369
9370 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9371
9372 -- Find type for preanalyze call
9373
9374 case A_Id is
9375
9376 -- No_Aspect should be impossible
9377
9378 when No_Aspect =>
9379 raise Program_Error;
9380
9381 -- Aspects taking an optional boolean argument
9382
9383 when Boolean_Aspects
9384 | Library_Unit_Aspects
9385 =>
9386 T := Standard_Boolean;
9387
9388 -- Aspects corresponding to attribute definition clauses
9389
9390 when Aspect_Address =>
9391 T := RTE (RE_Address);
9392
9393 when Aspect_Attach_Handler =>
9394 T := RTE (RE_Interrupt_ID);
9395
9396 when Aspect_Bit_Order
9397 | Aspect_Scalar_Storage_Order
9398 =>
9399 T := RTE (RE_Bit_Order);
9400
9401 when Aspect_Convention =>
9402 return;
9403
9404 when Aspect_CPU =>
9405 T := RTE (RE_CPU_Range);
9406
9407 -- Default_Component_Value is resolved with the component type
9408
9409 when Aspect_Default_Component_Value =>
9410 T := Component_Type (Entity (ASN));
9411
9412 when Aspect_Default_Storage_Pool =>
9413 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9414
9415 -- Default_Value is resolved with the type entity in question
9416
9417 when Aspect_Default_Value =>
9418 T := Entity (ASN);
9419
9420 when Aspect_Dispatching_Domain =>
9421 T := RTE (RE_Dispatching_Domain);
9422
9423 when Aspect_External_Tag =>
9424 T := Standard_String;
9425
9426 when Aspect_External_Name =>
9427 T := Standard_String;
9428
9429 when Aspect_Link_Name =>
9430 T := Standard_String;
9431
9432 when Aspect_Interrupt_Priority
9433 | Aspect_Priority
9434 =>
9435 T := Standard_Integer;
9436
9437 when Aspect_Relative_Deadline =>
9438 T := RTE (RE_Time_Span);
9439
9440 when Aspect_Secondary_Stack_Size =>
9441 T := Standard_Integer;
9442
9443 when Aspect_Small =>
9444
9445 -- Note that the expression can be of any real type (not just a
9446 -- real universal literal) as long as it is a static constant.
9447
9448 T := Any_Real;
9449
9450 -- For a simple storage pool, we have to retrieve the type of the
9451 -- pool object associated with the aspect's corresponding attribute
9452 -- definition clause.
9453
9454 when Aspect_Simple_Storage_Pool =>
9455 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9456
9457 when Aspect_Storage_Pool =>
9458 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9459
9460 when Aspect_Alignment
9461 | Aspect_Component_Size
9462 | Aspect_Machine_Radix
9463 | Aspect_Object_Size
9464 | Aspect_Size
9465 | Aspect_Storage_Size
9466 | Aspect_Stream_Size
9467 | Aspect_Value_Size
9468 =>
9469 T := Any_Integer;
9470
9471 when Aspect_Linker_Section =>
9472 T := Standard_String;
9473
9474 when Aspect_Synchronization =>
9475 return;
9476
9477 -- Special case, the expression of these aspects is just an entity
9478 -- that does not need any resolution, so just analyze.
9479
9480 when Aspect_Input
9481 | Aspect_Output
9482 | Aspect_Read
9483 | Aspect_Suppress
9484 | Aspect_Unsuppress
9485 | Aspect_Warnings
9486 | Aspect_Write
9487 =>
9488 Analyze (Expression (ASN));
9489 return;
9490
9491 -- Same for Iterator aspects, where the expression is a function
9492 -- name. Legality rules are checked separately.
9493
9494 when Aspect_Constant_Indexing
9495 | Aspect_Default_Iterator
9496 | Aspect_Iterator_Element
9497 | Aspect_Variable_Indexing
9498 =>
9499 Analyze (Expression (ASN));
9500 return;
9501
9502 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9503
9504 when Aspect_Iterable =>
9505 T := Entity (ASN);
9506
9507 declare
9508 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9509 Assoc : Node_Id;
9510 Expr : Node_Id;
9511
9512 begin
9513 if Cursor = Any_Type then
9514 return;
9515 end if;
9516
9517 Assoc := First (Component_Associations (Expression (ASN)));
9518 while Present (Assoc) loop
9519 Expr := Expression (Assoc);
9520 Analyze (Expr);
9521
9522 if not Error_Posted (Expr) then
9523 Resolve_Iterable_Operation
9524 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9525 end if;
9526
9527 Next (Assoc);
9528 end loop;
9529 end;
9530
9531 return;
9532
9533 -- Invariant/Predicate take boolean expressions
9534
9535 when Aspect_Dynamic_Predicate
9536 | Aspect_Invariant
9537 | Aspect_Predicate
9538 | Aspect_Static_Predicate
9539 | Aspect_Type_Invariant
9540 =>
9541 T := Standard_Boolean;
9542
9543 when Aspect_Predicate_Failure =>
9544 T := Standard_String;
9545
9546 -- Here is the list of aspects that don't require delay analysis
9547
9548 when Aspect_Abstract_State
9549 | Aspect_Annotate
9550 | Aspect_Async_Readers
9551 | Aspect_Async_Writers
9552 | Aspect_Constant_After_Elaboration
9553 | Aspect_Contract_Cases
9554 | Aspect_Default_Initial_Condition
9555 | Aspect_Depends
9556 | Aspect_Dimension
9557 | Aspect_Dimension_System
9558 | Aspect_Effective_Reads
9559 | Aspect_Effective_Writes
9560 | Aspect_Extensions_Visible
9561 | Aspect_Ghost
9562 | Aspect_Global
9563 | Aspect_Implicit_Dereference
9564 | Aspect_Initial_Condition
9565 | Aspect_Initializes
9566 | Aspect_Max_Entry_Queue_Depth
9567 | Aspect_Max_Queue_Length
9568 | Aspect_Obsolescent
9569 | Aspect_Part_Of
9570 | Aspect_Post
9571 | Aspect_Postcondition
9572 | Aspect_Pre
9573 | Aspect_Precondition
9574 | Aspect_Refined_Depends
9575 | Aspect_Refined_Global
9576 | Aspect_Refined_Post
9577 | Aspect_Refined_State
9578 | Aspect_SPARK_Mode
9579 | Aspect_Test_Case
9580 | Aspect_Unimplemented
9581 | Aspect_Volatile_Function
9582 =>
9583 raise Program_Error;
9584
9585 end case;
9586
9587 -- Do the preanalyze call
9588
9589 Preanalyze_Spec_Expression (Expression (ASN), T);
9590 end Check_Aspect_At_Freeze_Point;
9591
9592 -----------------------------------
9593 -- Check_Constant_Address_Clause --
9594 -----------------------------------
9595
9596 procedure Check_Constant_Address_Clause
9597 (Expr : Node_Id;
9598 U_Ent : Entity_Id)
9599 is
9600 procedure Check_At_Constant_Address (Nod : Node_Id);
9601 -- Checks that the given node N represents a name whose 'Address is
9602 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9603 -- address value is the same at the point of declaration of U_Ent and at
9604 -- the time of elaboration of the address clause.
9605
9606 procedure Check_Expr_Constants (Nod : Node_Id);
9607 -- Checks that Nod meets the requirements for a constant address clause
9608 -- in the sense of the enclosing procedure.
9609
9610 procedure Check_List_Constants (Lst : List_Id);
9611 -- Check that all elements of list Lst meet the requirements for a
9612 -- constant address clause in the sense of the enclosing procedure.
9613
9614 -------------------------------
9615 -- Check_At_Constant_Address --
9616 -------------------------------
9617
9618 procedure Check_At_Constant_Address (Nod : Node_Id) is
9619 begin
9620 if Is_Entity_Name (Nod) then
9621 if Present (Address_Clause (Entity ((Nod)))) then
9622 Error_Msg_NE
9623 ("invalid address clause for initialized object &!",
9624 Nod, U_Ent);
9625 Error_Msg_NE
9626 ("address for& cannot depend on another address clause! "
9627 & "(RM 13.1(22))!", Nod, U_Ent);
9628
9629 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9630 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9631 then
9632 Error_Msg_NE
9633 ("invalid address clause for initialized object &!",
9634 Nod, U_Ent);
9635 Error_Msg_Node_2 := U_Ent;
9636 Error_Msg_NE
9637 ("\& must be defined before & (RM 13.1(22))!",
9638 Nod, Entity (Nod));
9639 end if;
9640
9641 elsif Nkind (Nod) = N_Selected_Component then
9642 declare
9643 T : constant Entity_Id := Etype (Prefix (Nod));
9644
9645 begin
9646 if (Is_Record_Type (T)
9647 and then Has_Discriminants (T))
9648 or else
9649 (Is_Access_Type (T)
9650 and then Is_Record_Type (Designated_Type (T))
9651 and then Has_Discriminants (Designated_Type (T)))
9652 then
9653 Error_Msg_NE
9654 ("invalid address clause for initialized object &!",
9655 Nod, U_Ent);
9656 Error_Msg_N
9657 ("\address cannot depend on component of discriminated "
9658 & "record (RM 13.1(22))!", Nod);
9659 else
9660 Check_At_Constant_Address (Prefix (Nod));
9661 end if;
9662 end;
9663
9664 elsif Nkind (Nod) = N_Indexed_Component then
9665 Check_At_Constant_Address (Prefix (Nod));
9666 Check_List_Constants (Expressions (Nod));
9667
9668 else
9669 Check_Expr_Constants (Nod);
9670 end if;
9671 end Check_At_Constant_Address;
9672
9673 --------------------------
9674 -- Check_Expr_Constants --
9675 --------------------------
9676
9677 procedure Check_Expr_Constants (Nod : Node_Id) is
9678 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9679 Ent : Entity_Id := Empty;
9680
9681 begin
9682 if Nkind (Nod) in N_Has_Etype
9683 and then Etype (Nod) = Any_Type
9684 then
9685 return;
9686 end if;
9687
9688 case Nkind (Nod) is
9689 when N_Empty
9690 | N_Error
9691 =>
9692 return;
9693
9694 when N_Expanded_Name
9695 | N_Identifier
9696 =>
9697 Ent := Entity (Nod);
9698
9699 -- We need to look at the original node if it is different
9700 -- from the node, since we may have rewritten things and
9701 -- substituted an identifier representing the rewrite.
9702
9703 if Is_Rewrite_Substitution (Nod) then
9704 Check_Expr_Constants (Original_Node (Nod));
9705
9706 -- If the node is an object declaration without initial
9707 -- value, some code has been expanded, and the expression
9708 -- is not constant, even if the constituents might be
9709 -- acceptable, as in A'Address + offset.
9710
9711 if Ekind (Ent) = E_Variable
9712 and then
9713 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9714 and then
9715 No (Expression (Declaration_Node (Ent)))
9716 then
9717 Error_Msg_NE
9718 ("invalid address clause for initialized object &!",
9719 Nod, U_Ent);
9720
9721 -- If entity is constant, it may be the result of expanding
9722 -- a check. We must verify that its declaration appears
9723 -- before the object in question, else we also reject the
9724 -- address clause.
9725
9726 elsif Ekind (Ent) = E_Constant
9727 and then In_Same_Source_Unit (Ent, U_Ent)
9728 and then Sloc (Ent) > Loc_U_Ent
9729 then
9730 Error_Msg_NE
9731 ("invalid address clause for initialized object &!",
9732 Nod, U_Ent);
9733 end if;
9734
9735 return;
9736 end if;
9737
9738 -- Otherwise look at the identifier and see if it is OK
9739
9740 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9741 or else Is_Type (Ent)
9742 then
9743 return;
9744
9745 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9746
9747 -- This is the case where we must have Ent defined before
9748 -- U_Ent. Clearly if they are in different units this
9749 -- requirement is met since the unit containing Ent is
9750 -- already processed.
9751
9752 if not In_Same_Source_Unit (Ent, U_Ent) then
9753 return;
9754
9755 -- Otherwise location of Ent must be before the location
9756 -- of U_Ent, that's what prior defined means.
9757
9758 elsif Sloc (Ent) < Loc_U_Ent then
9759 return;
9760
9761 else
9762 Error_Msg_NE
9763 ("invalid address clause for initialized object &!",
9764 Nod, U_Ent);
9765 Error_Msg_Node_2 := U_Ent;
9766 Error_Msg_NE
9767 ("\& must be defined before & (RM 13.1(22))!",
9768 Nod, Ent);
9769 end if;
9770
9771 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9772 Check_Expr_Constants (Original_Node (Nod));
9773
9774 else
9775 Error_Msg_NE
9776 ("invalid address clause for initialized object &!",
9777 Nod, U_Ent);
9778
9779 if Comes_From_Source (Ent) then
9780 Error_Msg_NE
9781 ("\reference to variable& not allowed"
9782 & " (RM 13.1(22))!", Nod, Ent);
9783 else
9784 Error_Msg_N
9785 ("non-static expression not allowed"
9786 & " (RM 13.1(22))!", Nod);
9787 end if;
9788 end if;
9789
9790 when N_Integer_Literal =>
9791
9792 -- If this is a rewritten unchecked conversion, in a system
9793 -- where Address is an integer type, always use the base type
9794 -- for a literal value. This is user-friendly and prevents
9795 -- order-of-elaboration issues with instances of unchecked
9796 -- conversion.
9797
9798 if Nkind (Original_Node (Nod)) = N_Function_Call then
9799 Set_Etype (Nod, Base_Type (Etype (Nod)));
9800 end if;
9801
9802 when N_Character_Literal
9803 | N_Real_Literal
9804 | N_String_Literal
9805 =>
9806 return;
9807
9808 when N_Range =>
9809 Check_Expr_Constants (Low_Bound (Nod));
9810 Check_Expr_Constants (High_Bound (Nod));
9811
9812 when N_Explicit_Dereference =>
9813 Check_Expr_Constants (Prefix (Nod));
9814
9815 when N_Indexed_Component =>
9816 Check_Expr_Constants (Prefix (Nod));
9817 Check_List_Constants (Expressions (Nod));
9818
9819 when N_Slice =>
9820 Check_Expr_Constants (Prefix (Nod));
9821 Check_Expr_Constants (Discrete_Range (Nod));
9822
9823 when N_Selected_Component =>
9824 Check_Expr_Constants (Prefix (Nod));
9825
9826 when N_Attribute_Reference =>
9827 if Nam_In (Attribute_Name (Nod), Name_Address,
9828 Name_Access,
9829 Name_Unchecked_Access,
9830 Name_Unrestricted_Access)
9831 then
9832 Check_At_Constant_Address (Prefix (Nod));
9833
9834 -- Normally, System'To_Address will have been transformed into
9835 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9836 -- and we don't want to give an error, because the whole point
9837 -- of 'To_Address is that it is static.
9838
9839 elsif Attribute_Name (Nod) = Name_To_Address then
9840 pragma Assert (Operating_Mode = Check_Semantics);
9841 null;
9842
9843 else
9844 Check_Expr_Constants (Prefix (Nod));
9845 Check_List_Constants (Expressions (Nod));
9846 end if;
9847
9848 when N_Aggregate =>
9849 Check_List_Constants (Component_Associations (Nod));
9850 Check_List_Constants (Expressions (Nod));
9851
9852 when N_Component_Association =>
9853 Check_Expr_Constants (Expression (Nod));
9854
9855 when N_Extension_Aggregate =>
9856 Check_Expr_Constants (Ancestor_Part (Nod));
9857 Check_List_Constants (Component_Associations (Nod));
9858 Check_List_Constants (Expressions (Nod));
9859
9860 when N_Null =>
9861 return;
9862
9863 when N_Binary_Op
9864 | N_Membership_Test
9865 | N_Short_Circuit
9866 =>
9867 Check_Expr_Constants (Left_Opnd (Nod));
9868 Check_Expr_Constants (Right_Opnd (Nod));
9869
9870 when N_Unary_Op =>
9871 Check_Expr_Constants (Right_Opnd (Nod));
9872
9873 when N_Allocator
9874 | N_Qualified_Expression
9875 | N_Type_Conversion
9876 | N_Unchecked_Type_Conversion
9877 =>
9878 Check_Expr_Constants (Expression (Nod));
9879
9880 when N_Function_Call =>
9881 if not Is_Pure (Entity (Name (Nod))) then
9882 Error_Msg_NE
9883 ("invalid address clause for initialized object &!",
9884 Nod, U_Ent);
9885
9886 Error_Msg_NE
9887 ("\function & is not pure (RM 13.1(22))!",
9888 Nod, Entity (Name (Nod)));
9889
9890 else
9891 Check_List_Constants (Parameter_Associations (Nod));
9892 end if;
9893
9894 when N_Parameter_Association =>
9895 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9896
9897 when others =>
9898 Error_Msg_NE
9899 ("invalid address clause for initialized object &!",
9900 Nod, U_Ent);
9901 Error_Msg_NE
9902 ("\must be constant defined before& (RM 13.1(22))!",
9903 Nod, U_Ent);
9904 end case;
9905 end Check_Expr_Constants;
9906
9907 --------------------------
9908 -- Check_List_Constants --
9909 --------------------------
9910
9911 procedure Check_List_Constants (Lst : List_Id) is
9912 Nod1 : Node_Id;
9913
9914 begin
9915 if Present (Lst) then
9916 Nod1 := First (Lst);
9917 while Present (Nod1) loop
9918 Check_Expr_Constants (Nod1);
9919 Next (Nod1);
9920 end loop;
9921 end if;
9922 end Check_List_Constants;
9923
9924 -- Start of processing for Check_Constant_Address_Clause
9925
9926 begin
9927 -- If rep_clauses are to be ignored, no need for legality checks. In
9928 -- particular, no need to pester user about rep clauses that violate the
9929 -- rule on constant addresses, given that these clauses will be removed
9930 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9931 -- we want to relax these checks.
9932
9933 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9934 Check_Expr_Constants (Expr);
9935 end if;
9936 end Check_Constant_Address_Clause;
9937
9938 ---------------------------
9939 -- Check_Pool_Size_Clash --
9940 ---------------------------
9941
9942 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9943 Post : Node_Id;
9944
9945 begin
9946 -- We need to find out which one came first. Note that in the case of
9947 -- aspects mixed with pragmas there are cases where the processing order
9948 -- is reversed, which is why we do the check here.
9949
9950 if Sloc (SP) < Sloc (SS) then
9951 Error_Msg_Sloc := Sloc (SP);
9952 Post := SS;
9953 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9954
9955 else
9956 Error_Msg_Sloc := Sloc (SS);
9957 Post := SP;
9958 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9959 end if;
9960
9961 Error_Msg_N
9962 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9963 end Check_Pool_Size_Clash;
9964
9965 ----------------------------------------
9966 -- Check_Record_Representation_Clause --
9967 ----------------------------------------
9968
9969 procedure Check_Record_Representation_Clause (N : Node_Id) is
9970 Loc : constant Source_Ptr := Sloc (N);
9971 Ident : constant Node_Id := Identifier (N);
9972 Rectype : Entity_Id;
9973 Fent : Entity_Id;
9974 CC : Node_Id;
9975 Fbit : Uint;
9976 Lbit : Uint;
9977 Hbit : Uint := Uint_0;
9978 Comp : Entity_Id;
9979 Pcomp : Entity_Id;
9980
9981 Max_Bit_So_Far : Uint;
9982 -- Records the maximum bit position so far. If all field positions
9983 -- are monotonically increasing, then we can skip the circuit for
9984 -- checking for overlap, since no overlap is possible.
9985
9986 Tagged_Parent : Entity_Id := Empty;
9987 -- This is set in the case of an extension for which we have either a
9988 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9989 -- components are positioned by record representation clauses) on the
9990 -- parent type. In this case we check for overlap between components of
9991 -- this tagged type and the parent component. Tagged_Parent will point
9992 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9993
9994 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
9995 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9996 -- last bit position for any field in the parent type. We only need to
9997 -- check overlap for fields starting below this point.
9998
9999 Overlap_Check_Required : Boolean;
10000 -- Used to keep track of whether or not an overlap check is required
10001
10002 Overlap_Detected : Boolean := False;
10003 -- Set True if an overlap is detected
10004
10005 Ccount : Natural := 0;
10006 -- Number of component clauses in record rep clause
10007
10008 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
10009 -- Given two entities for record components or discriminants, checks
10010 -- if they have overlapping component clauses and issues errors if so.
10011
10012 procedure Find_Component;
10013 -- Finds component entity corresponding to current component clause (in
10014 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
10015 -- start/stop bits for the field. If there is no matching component or
10016 -- if the matching component does not have a component clause, then
10017 -- that's an error and Comp is set to Empty, but no error message is
10018 -- issued, since the message was already given. Comp is also set to
10019 -- Empty if the current "component clause" is in fact a pragma.
10020
10021 -----------------------------
10022 -- Check_Component_Overlap --
10023 -----------------------------
10024
10025 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
10026 CC1 : constant Node_Id := Component_Clause (C1_Ent);
10027 CC2 : constant Node_Id := Component_Clause (C2_Ent);
10028
10029 begin
10030 if Present (CC1) and then Present (CC2) then
10031
10032 -- Exclude odd case where we have two tag components in the same
10033 -- record, both at location zero. This seems a bit strange, but
10034 -- it seems to happen in some circumstances, perhaps on an error.
10035
10036 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
10037 return;
10038 end if;
10039
10040 -- Here we check if the two fields overlap
10041
10042 declare
10043 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
10044 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
10045 E1 : constant Uint := S1 + Esize (C1_Ent);
10046 E2 : constant Uint := S2 + Esize (C2_Ent);
10047
10048 begin
10049 if E2 <= S1 or else E1 <= S2 then
10050 null;
10051 else
10052 Error_Msg_Node_2 := Component_Name (CC2);
10053 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
10054 Error_Msg_Node_1 := Component_Name (CC1);
10055 Error_Msg_N
10056 ("component& overlaps & #", Component_Name (CC1));
10057 Overlap_Detected := True;
10058 end if;
10059 end;
10060 end if;
10061 end Check_Component_Overlap;
10062
10063 --------------------
10064 -- Find_Component --
10065 --------------------
10066
10067 procedure Find_Component is
10068
10069 procedure Search_Component (R : Entity_Id);
10070 -- Search components of R for a match. If found, Comp is set
10071
10072 ----------------------
10073 -- Search_Component --
10074 ----------------------
10075
10076 procedure Search_Component (R : Entity_Id) is
10077 begin
10078 Comp := First_Component_Or_Discriminant (R);
10079 while Present (Comp) loop
10080
10081 -- Ignore error of attribute name for component name (we
10082 -- already gave an error message for this, so no need to
10083 -- complain here)
10084
10085 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10086 null;
10087 else
10088 exit when Chars (Comp) = Chars (Component_Name (CC));
10089 end if;
10090
10091 Next_Component_Or_Discriminant (Comp);
10092 end loop;
10093 end Search_Component;
10094
10095 -- Start of processing for Find_Component
10096
10097 begin
10098 -- Return with Comp set to Empty if we have a pragma
10099
10100 if Nkind (CC) = N_Pragma then
10101 Comp := Empty;
10102 return;
10103 end if;
10104
10105 -- Search current record for matching component
10106
10107 Search_Component (Rectype);
10108
10109 -- If not found, maybe component of base type discriminant that is
10110 -- absent from statically constrained first subtype.
10111
10112 if No (Comp) then
10113 Search_Component (Base_Type (Rectype));
10114 end if;
10115
10116 -- If no component, or the component does not reference the component
10117 -- clause in question, then there was some previous error for which
10118 -- we already gave a message, so just return with Comp Empty.
10119
10120 if No (Comp) or else Component_Clause (Comp) /= CC then
10121 Check_Error_Detected;
10122 Comp := Empty;
10123
10124 -- Normal case where we have a component clause
10125
10126 else
10127 Fbit := Component_Bit_Offset (Comp);
10128 Lbit := Fbit + Esize (Comp) - 1;
10129 end if;
10130 end Find_Component;
10131
10132 -- Start of processing for Check_Record_Representation_Clause
10133
10134 begin
10135 Find_Type (Ident);
10136 Rectype := Entity (Ident);
10137
10138 if Rectype = Any_Type then
10139 return;
10140 end if;
10141
10142 Rectype := Underlying_Type (Rectype);
10143
10144 -- See if we have a fully repped derived tagged type
10145
10146 declare
10147 PS : constant Entity_Id := Parent_Subtype (Rectype);
10148
10149 begin
10150 if Present (PS) and then Known_Static_RM_Size (PS) then
10151 Tagged_Parent := PS;
10152 Parent_Last_Bit := RM_Size (PS) - 1;
10153
10154 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10155 Tagged_Parent := PS;
10156
10157 -- Find maximum bit of any component of the parent type
10158
10159 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10160 Pcomp := First_Entity (Tagged_Parent);
10161 while Present (Pcomp) loop
10162 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10163 if Component_Bit_Offset (Pcomp) /= No_Uint
10164 and then Known_Static_Esize (Pcomp)
10165 then
10166 Parent_Last_Bit :=
10167 UI_Max
10168 (Parent_Last_Bit,
10169 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10170 end if;
10171 else
10172
10173 -- Skip anonymous types generated for constrained array
10174 -- or record components.
10175
10176 null;
10177 end if;
10178
10179 Next_Entity (Pcomp);
10180 end loop;
10181 end if;
10182 end;
10183
10184 -- All done if no component clauses
10185
10186 CC := First (Component_Clauses (N));
10187
10188 if No (CC) then
10189 return;
10190 end if;
10191
10192 -- If a tag is present, then create a component clause that places it
10193 -- at the start of the record (otherwise gigi may place it after other
10194 -- fields that have rep clauses).
10195
10196 Fent := First_Entity (Rectype);
10197
10198 if Nkind (Fent) = N_Defining_Identifier
10199 and then Chars (Fent) = Name_uTag
10200 then
10201 Set_Component_Bit_Offset (Fent, Uint_0);
10202 Set_Normalized_Position (Fent, Uint_0);
10203 Set_Normalized_First_Bit (Fent, Uint_0);
10204 Set_Normalized_Position_Max (Fent, Uint_0);
10205 Init_Esize (Fent, System_Address_Size);
10206
10207 Set_Component_Clause (Fent,
10208 Make_Component_Clause (Loc,
10209 Component_Name => Make_Identifier (Loc, Name_uTag),
10210
10211 Position => Make_Integer_Literal (Loc, Uint_0),
10212 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10213 Last_Bit =>
10214 Make_Integer_Literal (Loc,
10215 UI_From_Int (System_Address_Size))));
10216
10217 Ccount := Ccount + 1;
10218 end if;
10219
10220 Max_Bit_So_Far := Uint_Minus_1;
10221 Overlap_Check_Required := False;
10222
10223 -- Process the component clauses
10224
10225 while Present (CC) loop
10226 Find_Component;
10227
10228 if Present (Comp) then
10229 Ccount := Ccount + 1;
10230
10231 -- We need a full overlap check if record positions non-monotonic
10232
10233 if Fbit <= Max_Bit_So_Far then
10234 Overlap_Check_Required := True;
10235 end if;
10236
10237 Max_Bit_So_Far := Lbit;
10238
10239 -- Check bit position out of range of specified size
10240
10241 if Has_Size_Clause (Rectype)
10242 and then RM_Size (Rectype) <= Lbit
10243 then
10244 Error_Msg_N
10245 ("bit number out of range of specified size",
10246 Last_Bit (CC));
10247
10248 -- Check for overlap with tag or parent component
10249
10250 else
10251 if Is_Tagged_Type (Rectype)
10252 and then Fbit < System_Address_Size
10253 then
10254 Error_Msg_NE
10255 ("component overlaps tag field of&",
10256 Component_Name (CC), Rectype);
10257 Overlap_Detected := True;
10258
10259 elsif Present (Tagged_Parent)
10260 and then Fbit <= Parent_Last_Bit
10261 then
10262 Error_Msg_NE
10263 ("component overlaps parent field of&",
10264 Component_Name (CC), Rectype);
10265 Overlap_Detected := True;
10266 end if;
10267
10268 if Hbit < Lbit then
10269 Hbit := Lbit;
10270 end if;
10271 end if;
10272 end if;
10273
10274 Next (CC);
10275 end loop;
10276
10277 -- Now that we have processed all the component clauses, check for
10278 -- overlap. We have to leave this till last, since the components can
10279 -- appear in any arbitrary order in the representation clause.
10280
10281 -- We do not need this check if all specified ranges were monotonic,
10282 -- as recorded by Overlap_Check_Required being False at this stage.
10283
10284 -- This first section checks if there are any overlapping entries at
10285 -- all. It does this by sorting all entries and then seeing if there are
10286 -- any overlaps. If there are none, then that is decisive, but if there
10287 -- are overlaps, they may still be OK (they may result from fields in
10288 -- different variants).
10289
10290 if Overlap_Check_Required then
10291 Overlap_Check1 : declare
10292
10293 OC_Fbit : array (0 .. Ccount) of Uint;
10294 -- First-bit values for component clauses, the value is the offset
10295 -- of the first bit of the field from start of record. The zero
10296 -- entry is for use in sorting.
10297
10298 OC_Lbit : array (0 .. Ccount) of Uint;
10299 -- Last-bit values for component clauses, the value is the offset
10300 -- of the last bit of the field from start of record. The zero
10301 -- entry is for use in sorting.
10302
10303 OC_Count : Natural := 0;
10304 -- Count of entries in OC_Fbit and OC_Lbit
10305
10306 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10307 -- Compare routine for Sort
10308
10309 procedure OC_Move (From : Natural; To : Natural);
10310 -- Move routine for Sort
10311
10312 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10313
10314 -----------
10315 -- OC_Lt --
10316 -----------
10317
10318 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10319 begin
10320 return OC_Fbit (Op1) < OC_Fbit (Op2);
10321 end OC_Lt;
10322
10323 -------------
10324 -- OC_Move --
10325 -------------
10326
10327 procedure OC_Move (From : Natural; To : Natural) is
10328 begin
10329 OC_Fbit (To) := OC_Fbit (From);
10330 OC_Lbit (To) := OC_Lbit (From);
10331 end OC_Move;
10332
10333 -- Start of processing for Overlap_Check
10334
10335 begin
10336 CC := First (Component_Clauses (N));
10337 while Present (CC) loop
10338
10339 -- Exclude component clause already marked in error
10340
10341 if not Error_Posted (CC) then
10342 Find_Component;
10343
10344 if Present (Comp) then
10345 OC_Count := OC_Count + 1;
10346 OC_Fbit (OC_Count) := Fbit;
10347 OC_Lbit (OC_Count) := Lbit;
10348 end if;
10349 end if;
10350
10351 Next (CC);
10352 end loop;
10353
10354 Sorting.Sort (OC_Count);
10355
10356 Overlap_Check_Required := False;
10357 for J in 1 .. OC_Count - 1 loop
10358 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10359 Overlap_Check_Required := True;
10360 exit;
10361 end if;
10362 end loop;
10363 end Overlap_Check1;
10364 end if;
10365
10366 -- If Overlap_Check_Required is still True, then we have to do the full
10367 -- scale overlap check, since we have at least two fields that do
10368 -- overlap, and we need to know if that is OK since they are in
10369 -- different variant, or whether we have a definite problem.
10370
10371 if Overlap_Check_Required then
10372 Overlap_Check2 : declare
10373 C1_Ent, C2_Ent : Entity_Id;
10374 -- Entities of components being checked for overlap
10375
10376 Clist : Node_Id;
10377 -- Component_List node whose Component_Items are being checked
10378
10379 Citem : Node_Id;
10380 -- Component declaration for component being checked
10381
10382 begin
10383 C1_Ent := First_Entity (Base_Type (Rectype));
10384
10385 -- Loop through all components in record. For each component check
10386 -- for overlap with any of the preceding elements on the component
10387 -- list containing the component and also, if the component is in
10388 -- a variant, check against components outside the case structure.
10389 -- This latter test is repeated recursively up the variant tree.
10390
10391 Main_Component_Loop : while Present (C1_Ent) loop
10392 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10393 goto Continue_Main_Component_Loop;
10394 end if;
10395
10396 -- Skip overlap check if entity has no declaration node. This
10397 -- happens with discriminants in constrained derived types.
10398 -- Possibly we are missing some checks as a result, but that
10399 -- does not seem terribly serious.
10400
10401 if No (Declaration_Node (C1_Ent)) then
10402 goto Continue_Main_Component_Loop;
10403 end if;
10404
10405 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10406
10407 -- Loop through component lists that need checking. Check the
10408 -- current component list and all lists in variants above us.
10409
10410 Component_List_Loop : loop
10411
10412 -- If derived type definition, go to full declaration
10413 -- If at outer level, check discriminants if there are any.
10414
10415 if Nkind (Clist) = N_Derived_Type_Definition then
10416 Clist := Parent (Clist);
10417 end if;
10418
10419 -- Outer level of record definition, check discriminants
10420
10421 if Nkind_In (Clist, N_Full_Type_Declaration,
10422 N_Private_Type_Declaration)
10423 then
10424 if Has_Discriminants (Defining_Identifier (Clist)) then
10425 C2_Ent :=
10426 First_Discriminant (Defining_Identifier (Clist));
10427 while Present (C2_Ent) loop
10428 exit when C1_Ent = C2_Ent;
10429 Check_Component_Overlap (C1_Ent, C2_Ent);
10430 Next_Discriminant (C2_Ent);
10431 end loop;
10432 end if;
10433
10434 -- Record extension case
10435
10436 elsif Nkind (Clist) = N_Derived_Type_Definition then
10437 Clist := Empty;
10438
10439 -- Otherwise check one component list
10440
10441 else
10442 Citem := First (Component_Items (Clist));
10443 while Present (Citem) loop
10444 if Nkind (Citem) = N_Component_Declaration then
10445 C2_Ent := Defining_Identifier (Citem);
10446 exit when C1_Ent = C2_Ent;
10447 Check_Component_Overlap (C1_Ent, C2_Ent);
10448 end if;
10449
10450 Next (Citem);
10451 end loop;
10452 end if;
10453
10454 -- Check for variants above us (the parent of the Clist can
10455 -- be a variant, in which case its parent is a variant part,
10456 -- and the parent of the variant part is a component list
10457 -- whose components must all be checked against the current
10458 -- component for overlap).
10459
10460 if Nkind (Parent (Clist)) = N_Variant then
10461 Clist := Parent (Parent (Parent (Clist)));
10462
10463 -- Check for possible discriminant part in record, this
10464 -- is treated essentially as another level in the
10465 -- recursion. For this case the parent of the component
10466 -- list is the record definition, and its parent is the
10467 -- full type declaration containing the discriminant
10468 -- specifications.
10469
10470 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10471 Clist := Parent (Parent ((Clist)));
10472
10473 -- If neither of these two cases, we are at the top of
10474 -- the tree.
10475
10476 else
10477 exit Component_List_Loop;
10478 end if;
10479 end loop Component_List_Loop;
10480
10481 <<Continue_Main_Component_Loop>>
10482 Next_Entity (C1_Ent);
10483
10484 end loop Main_Component_Loop;
10485 end Overlap_Check2;
10486 end if;
10487
10488 -- The following circuit deals with warning on record holes (gaps). We
10489 -- skip this check if overlap was detected, since it makes sense for the
10490 -- programmer to fix this illegality before worrying about warnings.
10491
10492 if not Overlap_Detected and Warn_On_Record_Holes then
10493 Record_Hole_Check : declare
10494 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10495 -- Full declaration of record type
10496
10497 procedure Check_Component_List
10498 (CL : Node_Id;
10499 Sbit : Uint;
10500 DS : List_Id);
10501 -- Check component list CL for holes. The starting bit should be
10502 -- Sbit. which is zero for the main record component list and set
10503 -- appropriately for recursive calls for variants. DS is set to
10504 -- a list of discriminant specifications to be included in the
10505 -- consideration of components. It is No_List if none to consider.
10506
10507 --------------------------
10508 -- Check_Component_List --
10509 --------------------------
10510
10511 procedure Check_Component_List
10512 (CL : Node_Id;
10513 Sbit : Uint;
10514 DS : List_Id)
10515 is
10516 Compl : Integer;
10517
10518 begin
10519 Compl := Integer (List_Length (Component_Items (CL)));
10520
10521 if DS /= No_List then
10522 Compl := Compl + Integer (List_Length (DS));
10523 end if;
10524
10525 declare
10526 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10527 -- Gather components (zero entry is for sort routine)
10528
10529 Ncomps : Natural := 0;
10530 -- Number of entries stored in Comps (starting at Comps (1))
10531
10532 Citem : Node_Id;
10533 -- One component item or discriminant specification
10534
10535 Nbit : Uint;
10536 -- Starting bit for next component
10537
10538 CEnt : Entity_Id;
10539 -- Component entity
10540
10541 Variant : Node_Id;
10542 -- One variant
10543
10544 function Lt (Op1, Op2 : Natural) return Boolean;
10545 -- Compare routine for Sort
10546
10547 procedure Move (From : Natural; To : Natural);
10548 -- Move routine for Sort
10549
10550 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10551
10552 --------
10553 -- Lt --
10554 --------
10555
10556 function Lt (Op1, Op2 : Natural) return Boolean is
10557 begin
10558 return Component_Bit_Offset (Comps (Op1))
10559 <
10560 Component_Bit_Offset (Comps (Op2));
10561 end Lt;
10562
10563 ----------
10564 -- Move --
10565 ----------
10566
10567 procedure Move (From : Natural; To : Natural) is
10568 begin
10569 Comps (To) := Comps (From);
10570 end Move;
10571
10572 begin
10573 -- Gather discriminants into Comp
10574
10575 if DS /= No_List then
10576 Citem := First (DS);
10577 while Present (Citem) loop
10578 if Nkind (Citem) = N_Discriminant_Specification then
10579 declare
10580 Ent : constant Entity_Id :=
10581 Defining_Identifier (Citem);
10582 begin
10583 if Ekind (Ent) = E_Discriminant then
10584 Ncomps := Ncomps + 1;
10585 Comps (Ncomps) := Ent;
10586 end if;
10587 end;
10588 end if;
10589
10590 Next (Citem);
10591 end loop;
10592 end if;
10593
10594 -- Gather component entities into Comp
10595
10596 Citem := First (Component_Items (CL));
10597 while Present (Citem) loop
10598 if Nkind (Citem) = N_Component_Declaration then
10599 Ncomps := Ncomps + 1;
10600 Comps (Ncomps) := Defining_Identifier (Citem);
10601 end if;
10602
10603 Next (Citem);
10604 end loop;
10605
10606 -- Now sort the component entities based on the first bit.
10607 -- Note we already know there are no overlapping components.
10608
10609 Sorting.Sort (Ncomps);
10610
10611 -- Loop through entries checking for holes
10612
10613 Nbit := Sbit;
10614 for J in 1 .. Ncomps loop
10615 CEnt := Comps (J);
10616
10617 declare
10618 CBO : constant Uint := Component_Bit_Offset (CEnt);
10619
10620 begin
10621 -- Skip components with unknown offsets
10622
10623 if CBO /= No_Uint and then CBO >= 0 then
10624 Error_Msg_Uint_1 := CBO - Nbit;
10625
10626 if Error_Msg_Uint_1 > 0 then
10627 Error_Msg_NE
10628 ("?H?^-bit gap before component&",
10629 Component_Name (Component_Clause (CEnt)),
10630 CEnt);
10631 end if;
10632
10633 Nbit := CBO + Esize (CEnt);
10634 end if;
10635 end;
10636 end loop;
10637
10638 -- Process variant parts recursively if present
10639
10640 if Present (Variant_Part (CL)) then
10641 Variant := First (Variants (Variant_Part (CL)));
10642 while Present (Variant) loop
10643 Check_Component_List
10644 (Component_List (Variant), Nbit, No_List);
10645 Next (Variant);
10646 end loop;
10647 end if;
10648 end;
10649 end Check_Component_List;
10650
10651 -- Start of processing for Record_Hole_Check
10652
10653 begin
10654 declare
10655 Sbit : Uint;
10656
10657 begin
10658 if Is_Tagged_Type (Rectype) then
10659 Sbit := UI_From_Int (System_Address_Size);
10660 else
10661 Sbit := Uint_0;
10662 end if;
10663
10664 if Nkind (Decl) = N_Full_Type_Declaration
10665 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10666 then
10667 Check_Component_List
10668 (Component_List (Type_Definition (Decl)),
10669 Sbit,
10670 Discriminant_Specifications (Decl));
10671 end if;
10672 end;
10673 end Record_Hole_Check;
10674 end if;
10675
10676 -- For records that have component clauses for all components, and whose
10677 -- size is less than or equal to 32, we need to know the size in the
10678 -- front end to activate possible packed array processing where the
10679 -- component type is a record.
10680
10681 -- At this stage Hbit + 1 represents the first unused bit from all the
10682 -- component clauses processed, so if the component clauses are
10683 -- complete, then this is the length of the record.
10684
10685 -- For records longer than System.Storage_Unit, and for those where not
10686 -- all components have component clauses, the back end determines the
10687 -- length (it may for example be appropriate to round up the size
10688 -- to some convenient boundary, based on alignment considerations, etc).
10689
10690 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10691
10692 -- Nothing to do if at least one component has no component clause
10693
10694 Comp := First_Component_Or_Discriminant (Rectype);
10695 while Present (Comp) loop
10696 exit when No (Component_Clause (Comp));
10697 Next_Component_Or_Discriminant (Comp);
10698 end loop;
10699
10700 -- If we fall out of loop, all components have component clauses
10701 -- and so we can set the size to the maximum value.
10702
10703 if No (Comp) then
10704 Set_RM_Size (Rectype, Hbit + 1);
10705 end if;
10706 end if;
10707 end Check_Record_Representation_Clause;
10708
10709 ----------------
10710 -- Check_Size --
10711 ----------------
10712
10713 procedure Check_Size
10714 (N : Node_Id;
10715 T : Entity_Id;
10716 Siz : Uint;
10717 Biased : out Boolean)
10718 is
10719 procedure Size_Too_Small_Error (Min_Siz : Uint);
10720 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10721 -- minimum size.
10722
10723 --------------------------
10724 -- Size_Too_Small_Error --
10725 --------------------------
10726
10727 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10728 begin
10729 -- This error is suppressed in ASIS mode to allow for different ASIS
10730 -- back ends or ASIS-based tools to query the illegal clause.
10731
10732 if not ASIS_Mode then
10733 Error_Msg_Uint_1 := Min_Siz;
10734 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10735 end if;
10736 end Size_Too_Small_Error;
10737
10738 -- Local variables
10739
10740 UT : constant Entity_Id := Underlying_Type (T);
10741 M : Uint;
10742
10743 -- Start of processing for Check_Size
10744
10745 begin
10746 Biased := False;
10747
10748 -- Reject patently improper size values
10749
10750 if Is_Elementary_Type (T)
10751 and then Siz > UI_From_Int (Int'Last)
10752 then
10753 Error_Msg_N ("Size value too large for elementary type", N);
10754
10755 if Nkind (Original_Node (N)) = N_Op_Expon then
10756 Error_Msg_N
10757 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10758 end if;
10759 end if;
10760
10761 -- Dismiss generic types
10762
10763 if Is_Generic_Type (T)
10764 or else
10765 Is_Generic_Type (UT)
10766 or else
10767 Is_Generic_Type (Root_Type (UT))
10768 then
10769 return;
10770
10771 -- Guard against previous errors
10772
10773 elsif No (UT) or else UT = Any_Type then
10774 Check_Error_Detected;
10775 return;
10776
10777 -- Check case of bit packed array
10778
10779 elsif Is_Array_Type (UT)
10780 and then Known_Static_Component_Size (UT)
10781 and then Is_Bit_Packed_Array (UT)
10782 then
10783 declare
10784 Asiz : Uint;
10785 Indx : Node_Id;
10786 Ityp : Entity_Id;
10787
10788 begin
10789 Asiz := Component_Size (UT);
10790 Indx := First_Index (UT);
10791 loop
10792 Ityp := Etype (Indx);
10793
10794 -- If non-static bound, then we are not in the business of
10795 -- trying to check the length, and indeed an error will be
10796 -- issued elsewhere, since sizes of non-static array types
10797 -- cannot be set implicitly or explicitly.
10798
10799 if not Is_OK_Static_Subtype (Ityp) then
10800 return;
10801 end if;
10802
10803 -- Otherwise accumulate next dimension
10804
10805 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10806 Expr_Value (Type_Low_Bound (Ityp)) +
10807 Uint_1);
10808
10809 Next_Index (Indx);
10810 exit when No (Indx);
10811 end loop;
10812
10813 if Asiz <= Siz then
10814 return;
10815
10816 else
10817 Size_Too_Small_Error (Asiz);
10818 Set_Esize (T, Asiz);
10819 Set_RM_Size (T, Asiz);
10820 end if;
10821 end;
10822
10823 -- All other composite types are ignored
10824
10825 elsif Is_Composite_Type (UT) then
10826 return;
10827
10828 -- For fixed-point types, don't check minimum if type is not frozen,
10829 -- since we don't know all the characteristics of the type that can
10830 -- affect the size (e.g. a specified small) till freeze time.
10831
10832 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10833 null;
10834
10835 -- Cases for which a minimum check is required
10836
10837 else
10838 -- Ignore if specified size is correct for the type
10839
10840 if Known_Esize (UT) and then Siz = Esize (UT) then
10841 return;
10842 end if;
10843
10844 -- Otherwise get minimum size
10845
10846 M := UI_From_Int (Minimum_Size (UT));
10847
10848 if Siz < M then
10849
10850 -- Size is less than minimum size, but one possibility remains
10851 -- that we can manage with the new size if we bias the type.
10852
10853 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10854
10855 if Siz < M then
10856 Size_Too_Small_Error (M);
10857 Set_Esize (T, M);
10858 Set_RM_Size (T, M);
10859 else
10860 Biased := True;
10861 end if;
10862 end if;
10863 end if;
10864 end Check_Size;
10865
10866 --------------------------
10867 -- Freeze_Entity_Checks --
10868 --------------------------
10869
10870 procedure Freeze_Entity_Checks (N : Node_Id) is
10871 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10872 -- Inspect the primitive operations of type Typ and hide all pairs of
10873 -- implicitly declared non-overridden non-fully conformant homographs
10874 -- (Ada RM 8.3 12.3/2).
10875
10876 -------------------------------------
10877 -- Hide_Non_Overridden_Subprograms --
10878 -------------------------------------
10879
10880 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10881 procedure Hide_Matching_Homographs
10882 (Subp_Id : Entity_Id;
10883 Start_Elmt : Elmt_Id);
10884 -- Inspect a list of primitive operations starting with Start_Elmt
10885 -- and find matching implicitly declared non-overridden non-fully
10886 -- conformant homographs of Subp_Id. If found, all matches along
10887 -- with Subp_Id are hidden from all visibility.
10888
10889 function Is_Non_Overridden_Or_Null_Procedure
10890 (Subp_Id : Entity_Id) return Boolean;
10891 -- Determine whether subprogram Subp_Id is implicitly declared non-
10892 -- overridden subprogram or an implicitly declared null procedure.
10893
10894 ------------------------------
10895 -- Hide_Matching_Homographs --
10896 ------------------------------
10897
10898 procedure Hide_Matching_Homographs
10899 (Subp_Id : Entity_Id;
10900 Start_Elmt : Elmt_Id)
10901 is
10902 Prim : Entity_Id;
10903 Prim_Elmt : Elmt_Id;
10904
10905 begin
10906 Prim_Elmt := Start_Elmt;
10907 while Present (Prim_Elmt) loop
10908 Prim := Node (Prim_Elmt);
10909
10910 -- The current primitive is implicitly declared non-overridden
10911 -- non-fully conformant homograph of Subp_Id. Both subprograms
10912 -- must be hidden from visibility.
10913
10914 if Chars (Prim) = Chars (Subp_Id)
10915 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10916 and then not Fully_Conformant (Prim, Subp_Id)
10917 then
10918 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10919 Set_Is_Immediately_Visible (Prim, False);
10920 Set_Is_Potentially_Use_Visible (Prim, False);
10921
10922 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10923 Set_Is_Immediately_Visible (Subp_Id, False);
10924 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10925 end if;
10926
10927 Next_Elmt (Prim_Elmt);
10928 end loop;
10929 end Hide_Matching_Homographs;
10930
10931 -----------------------------------------
10932 -- Is_Non_Overridden_Or_Null_Procedure --
10933 -----------------------------------------
10934
10935 function Is_Non_Overridden_Or_Null_Procedure
10936 (Subp_Id : Entity_Id) return Boolean
10937 is
10938 Alias_Id : Entity_Id;
10939
10940 begin
10941 -- The subprogram is inherited (implicitly declared), it does not
10942 -- override and does not cover a primitive of an interface.
10943
10944 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10945 and then Present (Alias (Subp_Id))
10946 and then No (Interface_Alias (Subp_Id))
10947 and then No (Overridden_Operation (Subp_Id))
10948 then
10949 Alias_Id := Alias (Subp_Id);
10950
10951 if Requires_Overriding (Alias_Id) then
10952 return True;
10953
10954 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10955 and then Null_Present (Parent (Alias_Id))
10956 then
10957 return True;
10958 end if;
10959 end if;
10960
10961 return False;
10962 end Is_Non_Overridden_Or_Null_Procedure;
10963
10964 -- Local variables
10965
10966 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10967 Prim : Entity_Id;
10968 Prim_Elmt : Elmt_Id;
10969
10970 -- Start of processing for Hide_Non_Overridden_Subprograms
10971
10972 begin
10973 -- Inspect the list of primitives looking for non-overridden
10974 -- subprograms.
10975
10976 if Present (Prim_Ops) then
10977 Prim_Elmt := First_Elmt (Prim_Ops);
10978 while Present (Prim_Elmt) loop
10979 Prim := Node (Prim_Elmt);
10980 Next_Elmt (Prim_Elmt);
10981
10982 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10983 Hide_Matching_Homographs
10984 (Subp_Id => Prim,
10985 Start_Elmt => Prim_Elmt);
10986 end if;
10987 end loop;
10988 end if;
10989 end Hide_Non_Overridden_Subprograms;
10990
10991 -- Local variables
10992
10993 E : constant Entity_Id := Entity (N);
10994
10995 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10996 -- True in nongeneric case. Some of the processing here is skipped
10997 -- for the generic case since it is not needed. Basically in the
10998 -- generic case, we only need to do stuff that might generate error
10999 -- messages or warnings.
11000
11001 -- Start of processing for Freeze_Entity_Checks
11002
11003 begin
11004 -- Remember that we are processing a freezing entity. Required to
11005 -- ensure correct decoration of internal entities associated with
11006 -- interfaces (see New_Overloaded_Entity).
11007
11008 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
11009
11010 -- For tagged types covering interfaces add internal entities that link
11011 -- the primitives of the interfaces with the primitives that cover them.
11012 -- Note: These entities were originally generated only when generating
11013 -- code because their main purpose was to provide support to initialize
11014 -- the secondary dispatch tables. They are now generated also when
11015 -- compiling with no code generation to provide ASIS the relationship
11016 -- between interface primitives and tagged type primitives. They are
11017 -- also used to locate primitives covering interfaces when processing
11018 -- generics (see Derive_Subprograms).
11019
11020 -- This is not needed in the generic case
11021
11022 if Ada_Version >= Ada_2005
11023 and then Nongeneric_Case
11024 and then Ekind (E) = E_Record_Type
11025 and then Is_Tagged_Type (E)
11026 and then not Is_Interface (E)
11027 and then Has_Interfaces (E)
11028 then
11029 -- This would be a good common place to call the routine that checks
11030 -- overriding of interface primitives (and thus factorize calls to
11031 -- Check_Abstract_Overriding located at different contexts in the
11032 -- compiler). However, this is not possible because it causes
11033 -- spurious errors in case of late overriding.
11034
11035 Add_Internal_Interface_Entities (E);
11036 end if;
11037
11038 -- After all forms of overriding have been resolved, a tagged type may
11039 -- be left with a set of implicitly declared and possibly erroneous
11040 -- abstract subprograms, null procedures and subprograms that require
11041 -- overriding. If this set contains fully conformant homographs, then
11042 -- one is chosen arbitrarily (already done during resolution), otherwise
11043 -- all remaining non-fully conformant homographs are hidden from
11044 -- visibility (Ada RM 8.3 12.3/2).
11045
11046 if Is_Tagged_Type (E) then
11047 Hide_Non_Overridden_Subprograms (E);
11048 end if;
11049
11050 -- Check CPP types
11051
11052 if Ekind (E) = E_Record_Type
11053 and then Is_CPP_Class (E)
11054 and then Is_Tagged_Type (E)
11055 and then Tagged_Type_Expansion
11056 then
11057 if CPP_Num_Prims (E) = 0 then
11058
11059 -- If the CPP type has user defined components then it must import
11060 -- primitives from C++. This is required because if the C++ class
11061 -- has no primitives then the C++ compiler does not added the _tag
11062 -- component to the type.
11063
11064 if First_Entity (E) /= Last_Entity (E) then
11065 Error_Msg_N
11066 ("'C'P'P type must import at least one primitive from C++??",
11067 E);
11068 end if;
11069 end if;
11070
11071 -- Check that all its primitives are abstract or imported from C++.
11072 -- Check also availability of the C++ constructor.
11073
11074 declare
11075 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11076 Elmt : Elmt_Id;
11077 Error_Reported : Boolean := False;
11078 Prim : Node_Id;
11079
11080 begin
11081 Elmt := First_Elmt (Primitive_Operations (E));
11082 while Present (Elmt) loop
11083 Prim := Node (Elmt);
11084
11085 if Comes_From_Source (Prim) then
11086 if Is_Abstract_Subprogram (Prim) then
11087 null;
11088
11089 elsif not Is_Imported (Prim)
11090 or else Convention (Prim) /= Convention_CPP
11091 then
11092 Error_Msg_N
11093 ("primitives of 'C'P'P types must be imported from C++ "
11094 & "or abstract??", Prim);
11095
11096 elsif not Has_Constructors
11097 and then not Error_Reported
11098 then
11099 Error_Msg_Name_1 := Chars (E);
11100 Error_Msg_N
11101 ("??'C'P'P constructor required for type %", Prim);
11102 Error_Reported := True;
11103 end if;
11104 end if;
11105
11106 Next_Elmt (Elmt);
11107 end loop;
11108 end;
11109 end if;
11110
11111 -- Check Ada derivation of CPP type
11112
11113 if Expander_Active -- why? losing errors in -gnatc mode???
11114 and then Present (Etype (E)) -- defend against errors
11115 and then Tagged_Type_Expansion
11116 and then Ekind (E) = E_Record_Type
11117 and then Etype (E) /= E
11118 and then Is_CPP_Class (Etype (E))
11119 and then CPP_Num_Prims (Etype (E)) > 0
11120 and then not Is_CPP_Class (E)
11121 and then not Has_CPP_Constructors (Etype (E))
11122 then
11123 -- If the parent has C++ primitives but it has no constructor then
11124 -- check that all the primitives are overridden in this derivation;
11125 -- otherwise the constructor of the parent is needed to build the
11126 -- dispatch table.
11127
11128 declare
11129 Elmt : Elmt_Id;
11130 Prim : Node_Id;
11131
11132 begin
11133 Elmt := First_Elmt (Primitive_Operations (E));
11134 while Present (Elmt) loop
11135 Prim := Node (Elmt);
11136
11137 if not Is_Abstract_Subprogram (Prim)
11138 and then No (Interface_Alias (Prim))
11139 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11140 then
11141 Error_Msg_Name_1 := Chars (Etype (E));
11142 Error_Msg_N
11143 ("'C'P'P constructor required for parent type %", E);
11144 exit;
11145 end if;
11146
11147 Next_Elmt (Elmt);
11148 end loop;
11149 end;
11150 end if;
11151
11152 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11153
11154 -- If we have a type with predicates, build predicate function. This is
11155 -- not needed in the generic case, nor within TSS subprograms and other
11156 -- predefined primitives. For a derived type, ensure that the parent
11157 -- type is already frozen so that its predicate function has been
11158 -- constructed already. This is necessary if the parent is declared
11159 -- in a nested package and its own freeze point has not been reached.
11160
11161 if Is_Type (E)
11162 and then Nongeneric_Case
11163 and then not Within_Internal_Subprogram
11164 and then Has_Predicates (E)
11165 then
11166 declare
11167 Atyp : constant Entity_Id := Nearest_Ancestor (E);
11168 begin
11169 if Present (Atyp)
11170 and then Has_Predicates (Atyp)
11171 and then not Is_Frozen (Atyp)
11172 then
11173 Freeze_Before (N, Atyp);
11174 end if;
11175 end;
11176
11177 Build_Predicate_Functions (E, N);
11178 end if;
11179
11180 -- If type has delayed aspects, this is where we do the preanalysis at
11181 -- the freeze point, as part of the consistent visibility check. Note
11182 -- that this must be done after calling Build_Predicate_Functions or
11183 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11184 -- the subtype name in the saved expression so that they will not cause
11185 -- trouble in the preanalysis.
11186
11187 -- This is also not needed in the generic case
11188
11189 if Nongeneric_Case
11190 and then Has_Delayed_Aspects (E)
11191 and then Scope (E) = Current_Scope
11192 then
11193 -- Retrieve the visibility to the discriminants in order to properly
11194 -- analyze the aspects.
11195
11196 Push_Scope_And_Install_Discriminants (E);
11197
11198 declare
11199 Ritem : Node_Id;
11200
11201 begin
11202 -- Look for aspect specification entries for this entity
11203
11204 Ritem := First_Rep_Item (E);
11205 while Present (Ritem) loop
11206 if Nkind (Ritem) = N_Aspect_Specification
11207 and then Entity (Ritem) = E
11208 and then Is_Delayed_Aspect (Ritem)
11209 then
11210 Check_Aspect_At_Freeze_Point (Ritem);
11211 end if;
11212
11213 Next_Rep_Item (Ritem);
11214 end loop;
11215 end;
11216
11217 Uninstall_Discriminants_And_Pop_Scope (E);
11218 end if;
11219
11220 -- For a record type, deal with variant parts. This has to be delayed
11221 -- to this point, because of the issue of statically predicated
11222 -- subtypes, which we have to ensure are frozen before checking
11223 -- choices, since we need to have the static choice list set.
11224
11225 if Is_Record_Type (E) then
11226 Check_Variant_Part : declare
11227 D : constant Node_Id := Declaration_Node (E);
11228 T : Node_Id;
11229 C : Node_Id;
11230 VP : Node_Id;
11231
11232 Others_Present : Boolean;
11233 pragma Warnings (Off, Others_Present);
11234 -- Indicates others present, not used in this case
11235
11236 procedure Non_Static_Choice_Error (Choice : Node_Id);
11237 -- Error routine invoked by the generic instantiation below when
11238 -- the variant part has a non static choice.
11239
11240 procedure Process_Declarations (Variant : Node_Id);
11241 -- Processes declarations associated with a variant. We analyzed
11242 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11243 -- but we still need the recursive call to Check_Choices for any
11244 -- nested variant to get its choices properly processed. This is
11245 -- also where we expand out the choices if expansion is active.
11246
11247 package Variant_Choices_Processing is new
11248 Generic_Check_Choices
11249 (Process_Empty_Choice => No_OP,
11250 Process_Non_Static_Choice => Non_Static_Choice_Error,
11251 Process_Associated_Node => Process_Declarations);
11252 use Variant_Choices_Processing;
11253
11254 -----------------------------
11255 -- Non_Static_Choice_Error --
11256 -----------------------------
11257
11258 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11259 begin
11260 Flag_Non_Static_Expr
11261 ("choice given in variant part is not static!", Choice);
11262 end Non_Static_Choice_Error;
11263
11264 --------------------------
11265 -- Process_Declarations --
11266 --------------------------
11267
11268 procedure Process_Declarations (Variant : Node_Id) is
11269 CL : constant Node_Id := Component_List (Variant);
11270 VP : Node_Id;
11271
11272 begin
11273 -- Check for static predicate present in this variant
11274
11275 if Has_SP_Choice (Variant) then
11276
11277 -- Here we expand. You might expect to find this call in
11278 -- Expand_N_Variant_Part, but that is called when we first
11279 -- see the variant part, and we cannot do this expansion
11280 -- earlier than the freeze point, since for statically
11281 -- predicated subtypes, the predicate is not known till
11282 -- the freeze point.
11283
11284 -- Furthermore, we do this expansion even if the expander
11285 -- is not active, because other semantic processing, e.g.
11286 -- for aggregates, requires the expanded list of choices.
11287
11288 -- If the expander is not active, then we can't just clobber
11289 -- the list since it would invalidate the ASIS -gnatct tree.
11290 -- So we have to rewrite the variant part with a Rewrite
11291 -- call that replaces it with a copy and clobber the copy.
11292
11293 if not Expander_Active then
11294 declare
11295 NewV : constant Node_Id := New_Copy (Variant);
11296 begin
11297 Set_Discrete_Choices
11298 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11299 Rewrite (Variant, NewV);
11300 end;
11301 end if;
11302
11303 Expand_Static_Predicates_In_Choices (Variant);
11304 end if;
11305
11306 -- We don't need to worry about the declarations in the variant
11307 -- (since they were analyzed by Analyze_Choices when we first
11308 -- encountered the variant), but we do need to take care of
11309 -- expansion of any nested variants.
11310
11311 if not Null_Present (CL) then
11312 VP := Variant_Part (CL);
11313
11314 if Present (VP) then
11315 Check_Choices
11316 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11317 end if;
11318 end if;
11319 end Process_Declarations;
11320
11321 -- Start of processing for Check_Variant_Part
11322
11323 begin
11324 -- Find component list
11325
11326 C := Empty;
11327
11328 if Nkind (D) = N_Full_Type_Declaration then
11329 T := Type_Definition (D);
11330
11331 if Nkind (T) = N_Record_Definition then
11332 C := Component_List (T);
11333
11334 elsif Nkind (T) = N_Derived_Type_Definition
11335 and then Present (Record_Extension_Part (T))
11336 then
11337 C := Component_List (Record_Extension_Part (T));
11338 end if;
11339 end if;
11340
11341 -- Case of variant part present
11342
11343 if Present (C) and then Present (Variant_Part (C)) then
11344 VP := Variant_Part (C);
11345
11346 -- Check choices
11347
11348 Check_Choices
11349 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11350
11351 -- If the last variant does not contain the Others choice,
11352 -- replace it with an N_Others_Choice node since Gigi always
11353 -- wants an Others. Note that we do not bother to call Analyze
11354 -- on the modified variant part, since its only effect would be
11355 -- to compute the Others_Discrete_Choices node laboriously, and
11356 -- of course we already know the list of choices corresponding
11357 -- to the others choice (it's the list we're replacing).
11358
11359 -- We only want to do this if the expander is active, since
11360 -- we do not want to clobber the ASIS tree.
11361
11362 if Expander_Active then
11363 declare
11364 Last_Var : constant Node_Id :=
11365 Last_Non_Pragma (Variants (VP));
11366
11367 Others_Node : Node_Id;
11368
11369 begin
11370 if Nkind (First (Discrete_Choices (Last_Var))) /=
11371 N_Others_Choice
11372 then
11373 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11374 Set_Others_Discrete_Choices
11375 (Others_Node, Discrete_Choices (Last_Var));
11376 Set_Discrete_Choices
11377 (Last_Var, New_List (Others_Node));
11378 end if;
11379 end;
11380 end if;
11381 end if;
11382 end Check_Variant_Part;
11383 end if;
11384 end Freeze_Entity_Checks;
11385
11386 -------------------------
11387 -- Get_Alignment_Value --
11388 -------------------------
11389
11390 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11391 Align : constant Uint := Static_Integer (Expr);
11392
11393 begin
11394 if Align = No_Uint then
11395 return No_Uint;
11396
11397 elsif Align <= 0 then
11398
11399 -- This error is suppressed in ASIS mode to allow for different ASIS
11400 -- back ends or ASIS-based tools to query the illegal clause.
11401
11402 if not ASIS_Mode then
11403 Error_Msg_N ("alignment value must be positive", Expr);
11404 end if;
11405
11406 return No_Uint;
11407
11408 else
11409 for J in Int range 0 .. 64 loop
11410 declare
11411 M : constant Uint := Uint_2 ** J;
11412
11413 begin
11414 exit when M = Align;
11415
11416 if M > Align then
11417
11418 -- This error is suppressed in ASIS mode to allow for
11419 -- different ASIS back ends or ASIS-based tools to query the
11420 -- illegal clause.
11421
11422 if not ASIS_Mode then
11423 Error_Msg_N ("alignment value must be power of 2", Expr);
11424 end if;
11425
11426 return No_Uint;
11427 end if;
11428 end;
11429 end loop;
11430
11431 return Align;
11432 end if;
11433 end Get_Alignment_Value;
11434
11435 -------------------------------------
11436 -- Inherit_Aspects_At_Freeze_Point --
11437 -------------------------------------
11438
11439 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11440 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11441 (Rep_Item : Node_Id) return Boolean;
11442 -- This routine checks if Rep_Item is either a pragma or an aspect
11443 -- specification node whose correponding pragma (if any) is present in
11444 -- the Rep Item chain of the entity it has been specified to.
11445
11446 --------------------------------------------------
11447 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11448 --------------------------------------------------
11449
11450 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11451 (Rep_Item : Node_Id) return Boolean
11452 is
11453 begin
11454 return
11455 Nkind (Rep_Item) = N_Pragma
11456 or else Present_In_Rep_Item
11457 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11458 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11459
11460 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11461
11462 begin
11463 -- A representation item is either subtype-specific (Size and Alignment
11464 -- clauses) or type-related (all others). Subtype-specific aspects may
11465 -- differ for different subtypes of the same type (RM 13.1.8).
11466
11467 -- A derived type inherits each type-related representation aspect of
11468 -- its parent type that was directly specified before the declaration of
11469 -- the derived type (RM 13.1.15).
11470
11471 -- A derived subtype inherits each subtype-specific representation
11472 -- aspect of its parent subtype that was directly specified before the
11473 -- declaration of the derived type (RM 13.1.15).
11474
11475 -- The general processing involves inheriting a representation aspect
11476 -- from a parent type whenever the first rep item (aspect specification,
11477 -- attribute definition clause, pragma) corresponding to the given
11478 -- representation aspect in the rep item chain of Typ, if any, isn't
11479 -- directly specified to Typ but to one of its parents.
11480
11481 -- ??? Note that, for now, just a limited number of representation
11482 -- aspects have been inherited here so far. Many of them are
11483 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11484 -- a non- exhaustive list of aspects that likely also need to
11485 -- be moved to this routine: Alignment, Component_Alignment,
11486 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11487 -- Preelaborable_Initialization, RM_Size and Small.
11488
11489 -- In addition, Convention must be propagated from base type to subtype,
11490 -- because the subtype may have been declared on an incomplete view.
11491
11492 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11493 return;
11494 end if;
11495
11496 -- Ada_05/Ada_2005
11497
11498 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11499 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11500 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11501 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11502 then
11503 Set_Is_Ada_2005_Only (Typ);
11504 end if;
11505
11506 -- Ada_12/Ada_2012
11507
11508 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11509 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11510 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11511 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11512 then
11513 Set_Is_Ada_2012_Only (Typ);
11514 end if;
11515
11516 -- Atomic/Shared
11517
11518 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11519 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11520 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11521 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11522 then
11523 Set_Is_Atomic (Typ);
11524 Set_Is_Volatile (Typ);
11525 Set_Treat_As_Volatile (Typ);
11526 end if;
11527
11528 -- Convention
11529
11530 if Is_Record_Type (Typ)
11531 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11532 then
11533 Set_Convention (Typ, Convention (Base_Type (Typ)));
11534 end if;
11535
11536 -- Default_Component_Value
11537
11538 -- Verify that there is no rep_item declared for the type, and there
11539 -- is one coming from an ancestor.
11540
11541 if Is_Array_Type (Typ)
11542 and then Is_Base_Type (Typ)
11543 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11544 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11545 then
11546 Set_Default_Aspect_Component_Value (Typ,
11547 Default_Aspect_Component_Value
11548 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11549 end if;
11550
11551 -- Default_Value
11552
11553 if Is_Scalar_Type (Typ)
11554 and then Is_Base_Type (Typ)
11555 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11556 and then Has_Rep_Item (Typ, Name_Default_Value)
11557 then
11558 Set_Has_Default_Aspect (Typ);
11559 Set_Default_Aspect_Value (Typ,
11560 Default_Aspect_Value
11561 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11562 end if;
11563
11564 -- Discard_Names
11565
11566 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11567 and then Has_Rep_Item (Typ, Name_Discard_Names)
11568 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11569 (Get_Rep_Item (Typ, Name_Discard_Names))
11570 then
11571 Set_Discard_Names (Typ);
11572 end if;
11573
11574 -- Volatile
11575
11576 if not Has_Rep_Item (Typ, Name_Volatile, False)
11577 and then Has_Rep_Item (Typ, Name_Volatile)
11578 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11579 (Get_Rep_Item (Typ, Name_Volatile))
11580 then
11581 Set_Is_Volatile (Typ);
11582 Set_Treat_As_Volatile (Typ);
11583 end if;
11584
11585 -- Volatile_Full_Access
11586
11587 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11588 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11589 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11590 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11591 then
11592 Set_Is_Volatile_Full_Access (Typ);
11593 Set_Is_Volatile (Typ);
11594 Set_Treat_As_Volatile (Typ);
11595 end if;
11596
11597 -- Inheritance for derived types only
11598
11599 if Is_Derived_Type (Typ) then
11600 declare
11601 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11602 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11603
11604 begin
11605 -- Atomic_Components
11606
11607 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11608 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11609 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11610 (Get_Rep_Item (Typ, Name_Atomic_Components))
11611 then
11612 Set_Has_Atomic_Components (Imp_Bas_Typ);
11613 end if;
11614
11615 -- Volatile_Components
11616
11617 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11618 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11619 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11620 (Get_Rep_Item (Typ, Name_Volatile_Components))
11621 then
11622 Set_Has_Volatile_Components (Imp_Bas_Typ);
11623 end if;
11624
11625 -- Finalize_Storage_Only
11626
11627 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11628 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11629 then
11630 Set_Finalize_Storage_Only (Bas_Typ);
11631 end if;
11632
11633 -- Universal_Aliasing
11634
11635 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11636 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11637 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11638 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11639 then
11640 Set_Universal_Aliasing (Imp_Bas_Typ);
11641 end if;
11642
11643 -- Bit_Order
11644
11645 if Is_Record_Type (Typ) then
11646 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11647 and then Has_Rep_Item (Typ, Name_Bit_Order)
11648 then
11649 Set_Reverse_Bit_Order (Bas_Typ,
11650 Reverse_Bit_Order (Entity (Name
11651 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11652 end if;
11653 end if;
11654
11655 -- Scalar_Storage_Order
11656
11657 -- Note: the aspect is specified on a first subtype, but recorded
11658 -- in a flag of the base type!
11659
11660 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11661 and then Typ = Bas_Typ
11662 then
11663 -- For a type extension, always inherit from parent; otherwise
11664 -- inherit if no default applies. Note: we do not check for
11665 -- an explicit rep item on the parent type when inheriting,
11666 -- because the parent SSO may itself have been set by default.
11667
11668 if not Has_Rep_Item (First_Subtype (Typ),
11669 Name_Scalar_Storage_Order, False)
11670 and then (Is_Tagged_Type (Bas_Typ)
11671 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11672 or else
11673 SSO_Set_High_By_Default (Bas_Typ)))
11674 then
11675 Set_Reverse_Storage_Order (Bas_Typ,
11676 Reverse_Storage_Order
11677 (Implementation_Base_Type (Etype (Bas_Typ))));
11678
11679 -- Clear default SSO indications, since the inherited aspect
11680 -- which was set explicitly overrides the default.
11681
11682 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11683 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11684 end if;
11685 end if;
11686 end;
11687 end if;
11688 end Inherit_Aspects_At_Freeze_Point;
11689
11690 ----------------
11691 -- Initialize --
11692 ----------------
11693
11694 procedure Initialize is
11695 begin
11696 Address_Clause_Checks.Init;
11697 Compile_Time_Warnings_Errors.Init;
11698 Unchecked_Conversions.Init;
11699
11700 -- ??? Might be needed in the future for some non GCC back-ends
11701 -- if AAMP_On_Target then
11702 -- Independence_Checks.Init;
11703 -- end if;
11704 end Initialize;
11705
11706 ---------------------------
11707 -- Install_Discriminants --
11708 ---------------------------
11709
11710 procedure Install_Discriminants (E : Entity_Id) is
11711 Disc : Entity_Id;
11712 Prev : Entity_Id;
11713 begin
11714 Disc := First_Discriminant (E);
11715 while Present (Disc) loop
11716 Prev := Current_Entity (Disc);
11717 Set_Current_Entity (Disc);
11718 Set_Is_Immediately_Visible (Disc);
11719 Set_Homonym (Disc, Prev);
11720 Next_Discriminant (Disc);
11721 end loop;
11722 end Install_Discriminants;
11723
11724 -------------------------
11725 -- Is_Operational_Item --
11726 -------------------------
11727
11728 function Is_Operational_Item (N : Node_Id) return Boolean is
11729 begin
11730 if Nkind (N) /= N_Attribute_Definition_Clause then
11731 return False;
11732
11733 else
11734 declare
11735 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11736 begin
11737
11738 -- List of operational items is given in AARM 13.1(8.mm/1).
11739 -- It is clearly incomplete, as it does not include iterator
11740 -- aspects, among others.
11741
11742 return Id = Attribute_Constant_Indexing
11743 or else Id = Attribute_Default_Iterator
11744 or else Id = Attribute_Implicit_Dereference
11745 or else Id = Attribute_Input
11746 or else Id = Attribute_Iterator_Element
11747 or else Id = Attribute_Iterable
11748 or else Id = Attribute_Output
11749 or else Id = Attribute_Read
11750 or else Id = Attribute_Variable_Indexing
11751 or else Id = Attribute_Write
11752 or else Id = Attribute_External_Tag;
11753 end;
11754 end if;
11755 end Is_Operational_Item;
11756
11757 -------------------------
11758 -- Is_Predicate_Static --
11759 -------------------------
11760
11761 -- Note: the basic legality of the expression has already been checked, so
11762 -- we don't need to worry about cases or ranges on strings for example.
11763
11764 function Is_Predicate_Static
11765 (Expr : Node_Id;
11766 Nam : Name_Id) return Boolean
11767 is
11768 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11769 -- Given a list of case expression alternatives, returns True if all
11770 -- the alternatives are static (have all static choices, and a static
11771 -- expression).
11772
11773 function All_Static_Choices (L : List_Id) return Boolean;
11774 -- Returns true if all elements of the list are OK static choices
11775 -- as defined below for Is_Static_Choice. Used for case expression
11776 -- alternatives and for the right operand of a membership test. An
11777 -- others_choice is static if the corresponding expression is static.
11778 -- The staticness of the bounds is checked separately.
11779
11780 function Is_Static_Choice (N : Node_Id) return Boolean;
11781 -- Returns True if N represents a static choice (static subtype, or
11782 -- static subtype indication, or static expression, or static range).
11783 --
11784 -- Note that this is a bit more inclusive than we actually need
11785 -- (in particular membership tests do not allow the use of subtype
11786 -- indications). But that doesn't matter, we have already checked
11787 -- that the construct is legal to get this far.
11788
11789 function Is_Type_Ref (N : Node_Id) return Boolean;
11790 pragma Inline (Is_Type_Ref);
11791 -- Returns True if N is a reference to the type for the predicate in the
11792 -- expression (i.e. if it is an identifier whose Chars field matches the
11793 -- Nam given in the call). N must not be parenthesized, if the type name
11794 -- appears in parens, this routine will return False.
11795 --
11796 -- The routine also returns True for function calls generated during the
11797 -- expansion of comparison operators on strings, which are intended to
11798 -- be legal in static predicates, and are converted into calls to array
11799 -- comparison routines in the body of the corresponding predicate
11800 -- function.
11801
11802 ----------------------------------
11803 -- All_Static_Case_Alternatives --
11804 ----------------------------------
11805
11806 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11807 N : Node_Id;
11808
11809 begin
11810 N := First (L);
11811 while Present (N) loop
11812 if not (All_Static_Choices (Discrete_Choices (N))
11813 and then Is_OK_Static_Expression (Expression (N)))
11814 then
11815 return False;
11816 end if;
11817
11818 Next (N);
11819 end loop;
11820
11821 return True;
11822 end All_Static_Case_Alternatives;
11823
11824 ------------------------
11825 -- All_Static_Choices --
11826 ------------------------
11827
11828 function All_Static_Choices (L : List_Id) return Boolean is
11829 N : Node_Id;
11830
11831 begin
11832 N := First (L);
11833 while Present (N) loop
11834 if not Is_Static_Choice (N) then
11835 return False;
11836 end if;
11837
11838 Next (N);
11839 end loop;
11840
11841 return True;
11842 end All_Static_Choices;
11843
11844 ----------------------
11845 -- Is_Static_Choice --
11846 ----------------------
11847
11848 function Is_Static_Choice (N : Node_Id) return Boolean is
11849 begin
11850 return Nkind (N) = N_Others_Choice
11851 or else Is_OK_Static_Expression (N)
11852 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11853 and then Is_OK_Static_Subtype (Entity (N)))
11854 or else (Nkind (N) = N_Subtype_Indication
11855 and then Is_OK_Static_Subtype (Entity (N)))
11856 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11857 end Is_Static_Choice;
11858
11859 -----------------
11860 -- Is_Type_Ref --
11861 -----------------
11862
11863 function Is_Type_Ref (N : Node_Id) return Boolean is
11864 begin
11865 return (Nkind (N) = N_Identifier
11866 and then Chars (N) = Nam
11867 and then Paren_Count (N) = 0)
11868 or else Nkind (N) = N_Function_Call;
11869 end Is_Type_Ref;
11870
11871 -- Start of processing for Is_Predicate_Static
11872
11873 begin
11874 -- Predicate_Static means one of the following holds. Numbers are the
11875 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11876
11877 -- 16: A static expression
11878
11879 if Is_OK_Static_Expression (Expr) then
11880 return True;
11881
11882 -- 17: A membership test whose simple_expression is the current
11883 -- instance, and whose membership_choice_list meets the requirements
11884 -- for a static membership test.
11885
11886 elsif Nkind (Expr) in N_Membership_Test
11887 and then ((Present (Right_Opnd (Expr))
11888 and then Is_Static_Choice (Right_Opnd (Expr)))
11889 or else
11890 (Present (Alternatives (Expr))
11891 and then All_Static_Choices (Alternatives (Expr))))
11892 then
11893 return True;
11894
11895 -- 18. A case_expression whose selecting_expression is the current
11896 -- instance, and whose dependent expressions are static expressions.
11897
11898 elsif Nkind (Expr) = N_Case_Expression
11899 and then Is_Type_Ref (Expression (Expr))
11900 and then All_Static_Case_Alternatives (Alternatives (Expr))
11901 then
11902 return True;
11903
11904 -- 19. A call to a predefined equality or ordering operator, where one
11905 -- operand is the current instance, and the other is a static
11906 -- expression.
11907
11908 -- Note: the RM is clearly wrong here in not excluding string types.
11909 -- Without this exclusion, we would allow expressions like X > "ABC"
11910 -- to be considered as predicate-static, which is clearly not intended,
11911 -- since the idea is for predicate-static to be a subset of normal
11912 -- static expressions (and "DEF" > "ABC" is not a static expression).
11913
11914 -- However, we do allow internally generated (not from source) equality
11915 -- and inequality operations to be valid on strings (this helps deal
11916 -- with cases where we transform A in "ABC" to A = "ABC).
11917
11918 -- In fact, it appears that the intent of the ARG is to extend static
11919 -- predicates to strings, and that the extension should probably apply
11920 -- to static expressions themselves. The code below accepts comparison
11921 -- operators that apply to static strings.
11922
11923 elsif Nkind (Expr) in N_Op_Compare
11924 and then ((Is_Type_Ref (Left_Opnd (Expr))
11925 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11926 or else
11927 (Is_Type_Ref (Right_Opnd (Expr))
11928 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11929 then
11930 return True;
11931
11932 -- 20. A call to a predefined boolean logical operator, where each
11933 -- operand is predicate-static.
11934
11935 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11936 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11937 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11938 or else
11939 (Nkind (Expr) = N_Op_Not
11940 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11941 then
11942 return True;
11943
11944 -- 21. A short-circuit control form where both operands are
11945 -- predicate-static.
11946
11947 elsif Nkind (Expr) in N_Short_Circuit
11948 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11949 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11950 then
11951 return True;
11952
11953 -- 22. A parenthesized predicate-static expression. This does not
11954 -- require any special test, since we just ignore paren levels in
11955 -- all the cases above.
11956
11957 -- One more test that is an implementation artifact caused by the fact
11958 -- that we are analyzing not the original expression, but the generated
11959 -- expression in the body of the predicate function. This can include
11960 -- references to inherited predicates, so that the expression we are
11961 -- processing looks like:
11962
11963 -- xxPredicate (typ (Inns)) and then expression
11964
11965 -- Where the call is to a Predicate function for an inherited predicate.
11966 -- We simply ignore such a call, which could be to either a dynamic or
11967 -- a static predicate. Note that if the parent predicate is dynamic then
11968 -- eventually this type will be marked as dynamic, but you are allowed
11969 -- to specify a static predicate for a subtype which is inheriting a
11970 -- dynamic predicate, so the static predicate validation here ignores
11971 -- the inherited predicate even if it is dynamic.
11972 -- In all cases, a static predicate can only apply to a scalar type.
11973
11974 elsif Nkind (Expr) = N_Function_Call
11975 and then Is_Predicate_Function (Entity (Name (Expr)))
11976 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11977 then
11978 return True;
11979
11980 elsif Is_Entity_Name (Expr)
11981 and then Entity (Expr) = Standard_True
11982 then
11983 Error_Msg_N ("predicate is redundant (always True)?", Expr);
11984 return True;
11985
11986 -- That's an exhaustive list of tests, all other cases are not
11987 -- predicate-static, so we return False.
11988
11989 else
11990 return False;
11991 end if;
11992 end Is_Predicate_Static;
11993
11994 ---------------------
11995 -- Kill_Rep_Clause --
11996 ---------------------
11997
11998 procedure Kill_Rep_Clause (N : Node_Id) is
11999 begin
12000 pragma Assert (Ignore_Rep_Clauses);
12001
12002 -- Note: we use Replace rather than Rewrite, because we don't want
12003 -- ASIS to be able to use Original_Node to dig out the (undecorated)
12004 -- rep clause that is being replaced.
12005
12006 Replace (N, Make_Null_Statement (Sloc (N)));
12007
12008 -- The null statement must be marked as not coming from source. This is
12009 -- so that ASIS ignores it, and also the back end does not expect bogus
12010 -- "from source" null statements in weird places (e.g. in declarative
12011 -- regions where such null statements are not allowed).
12012
12013 Set_Comes_From_Source (N, False);
12014 end Kill_Rep_Clause;
12015
12016 ------------------
12017 -- Minimum_Size --
12018 ------------------
12019
12020 function Minimum_Size
12021 (T : Entity_Id;
12022 Biased : Boolean := False) return Nat
12023 is
12024 Lo : Uint := No_Uint;
12025 Hi : Uint := No_Uint;
12026 LoR : Ureal := No_Ureal;
12027 HiR : Ureal := No_Ureal;
12028 LoSet : Boolean := False;
12029 HiSet : Boolean := False;
12030 B : Uint;
12031 S : Nat;
12032 Ancest : Entity_Id;
12033 R_Typ : constant Entity_Id := Root_Type (T);
12034
12035 begin
12036 -- If bad type, return 0
12037
12038 if T = Any_Type then
12039 return 0;
12040
12041 -- For generic types, just return zero. There cannot be any legitimate
12042 -- need to know such a size, but this routine may be called with a
12043 -- generic type as part of normal processing.
12044
12045 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
12046 return 0;
12047
12048 -- Access types (cannot have size smaller than System.Address)
12049
12050 elsif Is_Access_Type (T) then
12051 return System_Address_Size;
12052
12053 -- Floating-point types
12054
12055 elsif Is_Floating_Point_Type (T) then
12056 return UI_To_Int (Esize (R_Typ));
12057
12058 -- Discrete types
12059
12060 elsif Is_Discrete_Type (T) then
12061
12062 -- The following loop is looking for the nearest compile time known
12063 -- bounds following the ancestor subtype chain. The idea is to find
12064 -- the most restrictive known bounds information.
12065
12066 Ancest := T;
12067 loop
12068 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12069 return 0;
12070 end if;
12071
12072 if not LoSet then
12073 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
12074 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
12075 LoSet := True;
12076 exit when HiSet;
12077 end if;
12078 end if;
12079
12080 if not HiSet then
12081 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12082 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12083 HiSet := True;
12084 exit when LoSet;
12085 end if;
12086 end if;
12087
12088 Ancest := Ancestor_Subtype (Ancest);
12089
12090 if No (Ancest) then
12091 Ancest := Base_Type (T);
12092
12093 if Is_Generic_Type (Ancest) then
12094 return 0;
12095 end if;
12096 end if;
12097 end loop;
12098
12099 -- Fixed-point types. We can't simply use Expr_Value to get the
12100 -- Corresponding_Integer_Value values of the bounds, since these do not
12101 -- get set till the type is frozen, and this routine can be called
12102 -- before the type is frozen. Similarly the test for bounds being static
12103 -- needs to include the case where we have unanalyzed real literals for
12104 -- the same reason.
12105
12106 elsif Is_Fixed_Point_Type (T) then
12107
12108 -- The following loop is looking for the nearest compile time known
12109 -- bounds following the ancestor subtype chain. The idea is to find
12110 -- the most restrictive known bounds information.
12111
12112 Ancest := T;
12113 loop
12114 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12115 return 0;
12116 end if;
12117
12118 -- Note: In the following two tests for LoSet and HiSet, it may
12119 -- seem redundant to test for N_Real_Literal here since normally
12120 -- one would assume that the test for the value being known at
12121 -- compile time includes this case. However, there is a glitch.
12122 -- If the real literal comes from folding a non-static expression,
12123 -- then we don't consider any non- static expression to be known
12124 -- at compile time if we are in configurable run time mode (needed
12125 -- in some cases to give a clearer definition of what is and what
12126 -- is not accepted). So the test is indeed needed. Without it, we
12127 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12128
12129 if not LoSet then
12130 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12131 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12132 then
12133 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12134 LoSet := True;
12135 exit when HiSet;
12136 end if;
12137 end if;
12138
12139 if not HiSet then
12140 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12141 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12142 then
12143 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12144 HiSet := True;
12145 exit when LoSet;
12146 end if;
12147 end if;
12148
12149 Ancest := Ancestor_Subtype (Ancest);
12150
12151 if No (Ancest) then
12152 Ancest := Base_Type (T);
12153
12154 if Is_Generic_Type (Ancest) then
12155 return 0;
12156 end if;
12157 end if;
12158 end loop;
12159
12160 Lo := UR_To_Uint (LoR / Small_Value (T));
12161 Hi := UR_To_Uint (HiR / Small_Value (T));
12162
12163 -- No other types allowed
12164
12165 else
12166 raise Program_Error;
12167 end if;
12168
12169 -- Fall through with Hi and Lo set. Deal with biased case
12170
12171 if (Biased
12172 and then not Is_Fixed_Point_Type (T)
12173 and then not (Is_Enumeration_Type (T)
12174 and then Has_Non_Standard_Rep (T)))
12175 or else Has_Biased_Representation (T)
12176 then
12177 Hi := Hi - Lo;
12178 Lo := Uint_0;
12179 end if;
12180
12181 -- Null range case, size is always zero. We only do this in the discrete
12182 -- type case, since that's the odd case that came up. Probably we should
12183 -- also do this in the fixed-point case, but doing so causes peculiar
12184 -- gigi failures, and it is not worth worrying about this incredibly
12185 -- marginal case (explicit null-range fixed-point type declarations)???
12186
12187 if Lo > Hi and then Is_Discrete_Type (T) then
12188 S := 0;
12189
12190 -- Signed case. Note that we consider types like range 1 .. -1 to be
12191 -- signed for the purpose of computing the size, since the bounds have
12192 -- to be accommodated in the base type.
12193
12194 elsif Lo < 0 or else Hi < 0 then
12195 S := 1;
12196 B := Uint_1;
12197
12198 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12199 -- Note that we accommodate the case where the bounds cross. This
12200 -- can happen either because of the way the bounds are declared
12201 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12202
12203 while Lo < -B
12204 or else Hi < -B
12205 or else Lo >= B
12206 or else Hi >= B
12207 loop
12208 B := Uint_2 ** S;
12209 S := S + 1;
12210 end loop;
12211
12212 -- Unsigned case
12213
12214 else
12215 -- If both bounds are positive, make sure that both are represen-
12216 -- table in the case where the bounds are crossed. This can happen
12217 -- either because of the way the bounds are declared, or because of
12218 -- the algorithm in Freeze_Fixed_Point_Type.
12219
12220 if Lo > Hi then
12221 Hi := Lo;
12222 end if;
12223
12224 -- S = size, (can accommodate 0 .. (2**size - 1))
12225
12226 S := 0;
12227 while Hi >= Uint_2 ** S loop
12228 S := S + 1;
12229 end loop;
12230 end if;
12231
12232 return S;
12233 end Minimum_Size;
12234
12235 ---------------------------
12236 -- New_Stream_Subprogram --
12237 ---------------------------
12238
12239 procedure New_Stream_Subprogram
12240 (N : Node_Id;
12241 Ent : Entity_Id;
12242 Subp : Entity_Id;
12243 Nam : TSS_Name_Type)
12244 is
12245 Loc : constant Source_Ptr := Sloc (N);
12246 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12247 Subp_Id : Entity_Id;
12248 Subp_Decl : Node_Id;
12249 F : Entity_Id;
12250 Etyp : Entity_Id;
12251
12252 Defer_Declaration : constant Boolean :=
12253 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12254 -- For a tagged type, there is a declaration for each stream attribute
12255 -- at the freeze point, and we must generate only a completion of this
12256 -- declaration. We do the same for private types, because the full view
12257 -- might be tagged. Otherwise we generate a declaration at the point of
12258 -- the attribute definition clause. If the attribute definition comes
12259 -- from an aspect specification the declaration is part of the freeze
12260 -- actions of the type.
12261
12262 function Build_Spec return Node_Id;
12263 -- Used for declaration and renaming declaration, so that this is
12264 -- treated as a renaming_as_body.
12265
12266 ----------------
12267 -- Build_Spec --
12268 ----------------
12269
12270 function Build_Spec return Node_Id is
12271 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12272 Formals : List_Id;
12273 Spec : Node_Id;
12274 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12275
12276 begin
12277 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12278
12279 -- S : access Root_Stream_Type'Class
12280
12281 Formals := New_List (
12282 Make_Parameter_Specification (Loc,
12283 Defining_Identifier =>
12284 Make_Defining_Identifier (Loc, Name_S),
12285 Parameter_Type =>
12286 Make_Access_Definition (Loc,
12287 Subtype_Mark =>
12288 New_Occurrence_Of (
12289 Designated_Type (Etype (F)), Loc))));
12290
12291 if Nam = TSS_Stream_Input then
12292 Spec :=
12293 Make_Function_Specification (Loc,
12294 Defining_Unit_Name => Subp_Id,
12295 Parameter_Specifications => Formals,
12296 Result_Definition => T_Ref);
12297 else
12298 -- V : [out] T
12299
12300 Append_To (Formals,
12301 Make_Parameter_Specification (Loc,
12302 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12303 Out_Present => Out_P,
12304 Parameter_Type => T_Ref));
12305
12306 Spec :=
12307 Make_Procedure_Specification (Loc,
12308 Defining_Unit_Name => Subp_Id,
12309 Parameter_Specifications => Formals);
12310 end if;
12311
12312 return Spec;
12313 end Build_Spec;
12314
12315 -- Start of processing for New_Stream_Subprogram
12316
12317 begin
12318 F := First_Formal (Subp);
12319
12320 if Ekind (Subp) = E_Procedure then
12321 Etyp := Etype (Next_Formal (F));
12322 else
12323 Etyp := Etype (Subp);
12324 end if;
12325
12326 -- Prepare subprogram declaration and insert it as an action on the
12327 -- clause node. The visibility for this entity is used to test for
12328 -- visibility of the attribute definition clause (in the sense of
12329 -- 8.3(23) as amended by AI-195).
12330
12331 if not Defer_Declaration then
12332 Subp_Decl :=
12333 Make_Subprogram_Declaration (Loc,
12334 Specification => Build_Spec);
12335
12336 -- For a tagged type, there is always a visible declaration for each
12337 -- stream TSS (it is a predefined primitive operation), and the
12338 -- completion of this declaration occurs at the freeze point, which is
12339 -- not always visible at places where the attribute definition clause is
12340 -- visible. So, we create a dummy entity here for the purpose of
12341 -- tracking the visibility of the attribute definition clause itself.
12342
12343 else
12344 Subp_Id :=
12345 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12346 Subp_Decl :=
12347 Make_Object_Declaration (Loc,
12348 Defining_Identifier => Subp_Id,
12349 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12350 end if;
12351
12352 if not Defer_Declaration
12353 and then From_Aspect_Specification (N)
12354 and then Has_Delayed_Freeze (Ent)
12355 then
12356 Append_Freeze_Action (Ent, Subp_Decl);
12357
12358 else
12359 Insert_Action (N, Subp_Decl);
12360 Set_Entity (N, Subp_Id);
12361 end if;
12362
12363 Subp_Decl :=
12364 Make_Subprogram_Renaming_Declaration (Loc,
12365 Specification => Build_Spec,
12366 Name => New_Occurrence_Of (Subp, Loc));
12367
12368 if Defer_Declaration then
12369 Set_TSS (Base_Type (Ent), Subp_Id);
12370
12371 else
12372 if From_Aspect_Specification (N) then
12373 Append_Freeze_Action (Ent, Subp_Decl);
12374 else
12375 Insert_Action (N, Subp_Decl);
12376 end if;
12377
12378 Copy_TSS (Subp_Id, Base_Type (Ent));
12379 end if;
12380 end New_Stream_Subprogram;
12381
12382 ------------------------------------------
12383 -- Push_Scope_And_Install_Discriminants --
12384 ------------------------------------------
12385
12386 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12387 begin
12388 if Is_Type (E) and then Has_Discriminants (E) then
12389 Push_Scope (E);
12390
12391 -- Make the discriminants visible for type declarations and protected
12392 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12393
12394 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12395 Install_Discriminants (E);
12396 end if;
12397 end if;
12398 end Push_Scope_And_Install_Discriminants;
12399
12400 -----------------------------------
12401 -- Register_Address_Clause_Check --
12402 -----------------------------------
12403
12404 procedure Register_Address_Clause_Check
12405 (N : Node_Id;
12406 X : Entity_Id;
12407 A : Uint;
12408 Y : Entity_Id;
12409 Off : Boolean)
12410 is
12411 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12412 begin
12413 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12414 end Register_Address_Clause_Check;
12415
12416 ------------------------
12417 -- Rep_Item_Too_Early --
12418 ------------------------
12419
12420 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12421 begin
12422 -- Cannot apply non-operational rep items to generic types
12423
12424 if Is_Operational_Item (N) then
12425 return False;
12426
12427 elsif Is_Type (T)
12428 and then Is_Generic_Type (Root_Type (T))
12429 and then (Nkind (N) /= N_Pragma
12430 or else Get_Pragma_Id (N) /= Pragma_Convention)
12431 then
12432 Error_Msg_N ("representation item not allowed for generic type", N);
12433 return True;
12434 end if;
12435
12436 -- Otherwise check for incomplete type
12437
12438 if Is_Incomplete_Or_Private_Type (T)
12439 and then No (Underlying_Type (T))
12440 and then
12441 (Nkind (N) /= N_Pragma
12442 or else Get_Pragma_Id (N) /= Pragma_Import)
12443 then
12444 Error_Msg_N
12445 ("representation item must be after full type declaration", N);
12446 return True;
12447
12448 -- If the type has incomplete components, a representation clause is
12449 -- illegal but stream attributes and Convention pragmas are correct.
12450
12451 elsif Has_Private_Component (T) then
12452 if Nkind (N) = N_Pragma then
12453 return False;
12454
12455 else
12456 Error_Msg_N
12457 ("representation item must appear after type is fully defined",
12458 N);
12459 return True;
12460 end if;
12461 else
12462 return False;
12463 end if;
12464 end Rep_Item_Too_Early;
12465
12466 -----------------------
12467 -- Rep_Item_Too_Late --
12468 -----------------------
12469
12470 function Rep_Item_Too_Late
12471 (T : Entity_Id;
12472 N : Node_Id;
12473 FOnly : Boolean := False) return Boolean
12474 is
12475 S : Entity_Id;
12476 Parent_Type : Entity_Id;
12477
12478 procedure No_Type_Rep_Item;
12479 -- Output message indicating that no type-related aspects can be
12480 -- specified due to some property of the parent type.
12481
12482 procedure Too_Late;
12483 -- Output message for an aspect being specified too late
12484
12485 -- Note that neither of the above errors is considered a serious one,
12486 -- since the effect is simply that we ignore the representation clause
12487 -- in these cases.
12488 -- Is this really true? In any case if we make this change we must
12489 -- document the requirement in the spec of Rep_Item_Too_Late that
12490 -- if True is returned, then the rep item must be completely ignored???
12491
12492 ----------------------
12493 -- No_Type_Rep_Item --
12494 ----------------------
12495
12496 procedure No_Type_Rep_Item is
12497 begin
12498 Error_Msg_N ("|type-related representation item not permitted!", N);
12499 end No_Type_Rep_Item;
12500
12501 --------------
12502 -- Too_Late --
12503 --------------
12504
12505 procedure Too_Late is
12506 begin
12507 -- Other compilers seem more relaxed about rep items appearing too
12508 -- late. Since analysis tools typically don't care about rep items
12509 -- anyway, no reason to be too strict about this.
12510
12511 if not Relaxed_RM_Semantics then
12512 Error_Msg_N ("|representation item appears too late!", N);
12513 end if;
12514 end Too_Late;
12515
12516 -- Start of processing for Rep_Item_Too_Late
12517
12518 begin
12519 -- First make sure entity is not frozen (RM 13.1(9))
12520
12521 if Is_Frozen (T)
12522
12523 -- Exclude imported types, which may be frozen if they appear in a
12524 -- representation clause for a local type.
12525
12526 and then not From_Limited_With (T)
12527
12528 -- Exclude generated entities (not coming from source). The common
12529 -- case is when we generate a renaming which prematurely freezes the
12530 -- renamed internal entity, but we still want to be able to set copies
12531 -- of attribute values such as Size/Alignment.
12532
12533 and then Comes_From_Source (T)
12534 then
12535 -- A self-referential aspect is illegal if it forces freezing the
12536 -- entity before the corresponding pragma has been analyzed.
12537
12538 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12539 and then From_Aspect_Specification (N)
12540 then
12541 Error_Msg_NE
12542 ("aspect specification causes premature freezing of&", N, T);
12543 Set_Has_Delayed_Freeze (T, False);
12544 return True;
12545 end if;
12546
12547 Too_Late;
12548 S := First_Subtype (T);
12549
12550 if Present (Freeze_Node (S)) then
12551 if not Relaxed_RM_Semantics then
12552 Error_Msg_NE
12553 ("??no more representation items for }", Freeze_Node (S), S);
12554 end if;
12555 end if;
12556
12557 return True;
12558
12559 -- Check for case of untagged derived type whose parent either has
12560 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12561 -- this case we do not output a Too_Late message, since there is no
12562 -- earlier point where the rep item could be placed to make it legal.
12563
12564 elsif Is_Type (T)
12565 and then not FOnly
12566 and then Is_Derived_Type (T)
12567 and then not Is_Tagged_Type (T)
12568 then
12569 Parent_Type := Etype (Base_Type (T));
12570
12571 if Has_Primitive_Operations (Parent_Type) then
12572 No_Type_Rep_Item;
12573
12574 if not Relaxed_RM_Semantics then
12575 Error_Msg_NE
12576 ("\parent type & has primitive operations!", N, Parent_Type);
12577 end if;
12578
12579 return True;
12580
12581 elsif Is_By_Reference_Type (Parent_Type) then
12582 No_Type_Rep_Item;
12583
12584 if not Relaxed_RM_Semantics then
12585 Error_Msg_NE
12586 ("\parent type & is a by reference type!", N, Parent_Type);
12587 end if;
12588
12589 return True;
12590 end if;
12591 end if;
12592
12593 -- No error, but one more warning to consider. The RM (surprisingly)
12594 -- allows this pattern:
12595
12596 -- type S is ...
12597 -- primitive operations for S
12598 -- type R is new S;
12599 -- rep clause for S
12600
12601 -- Meaning that calls on the primitive operations of S for values of
12602 -- type R may require possibly expensive implicit conversion operations.
12603 -- This is not an error, but is worth a warning.
12604
12605 if not Relaxed_RM_Semantics and then Is_Type (T) then
12606 declare
12607 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12608
12609 begin
12610 if Present (DTL)
12611 and then Has_Primitive_Operations (Base_Type (T))
12612
12613 -- For now, do not generate this warning for the case of aspect
12614 -- specification using Ada 2012 syntax, since we get wrong
12615 -- messages we do not understand. The whole business of derived
12616 -- types and rep items seems a bit confused when aspects are
12617 -- used, since the aspects are not evaluated till freeze time.
12618
12619 and then not From_Aspect_Specification (N)
12620 then
12621 Error_Msg_Sloc := Sloc (DTL);
12622 Error_Msg_N
12623 ("representation item for& appears after derived type "
12624 & "declaration#??", N);
12625 Error_Msg_NE
12626 ("\may result in implicit conversions for primitive "
12627 & "operations of&??", N, T);
12628 Error_Msg_NE
12629 ("\to change representations when called with arguments "
12630 & "of type&??", N, DTL);
12631 end if;
12632 end;
12633 end if;
12634
12635 -- No error, link item into head of chain of rep items for the entity,
12636 -- but avoid chaining if we have an overloadable entity, and the pragma
12637 -- is one that can apply to multiple overloaded entities.
12638
12639 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12640 declare
12641 Pname : constant Name_Id := Pragma_Name (N);
12642 begin
12643 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12644 Name_External, Name_Interface)
12645 then
12646 return False;
12647 end if;
12648 end;
12649 end if;
12650
12651 Record_Rep_Item (T, N);
12652 return False;
12653 end Rep_Item_Too_Late;
12654
12655 -------------------------------------
12656 -- Replace_Type_References_Generic --
12657 -------------------------------------
12658
12659 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12660 TName : constant Name_Id := Chars (T);
12661
12662 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12663 -- Processes a single node in the traversal procedure below, checking
12664 -- if node N should be replaced, and if so, doing the replacement.
12665
12666 function Visible_Component (Comp : Name_Id) return Entity_Id;
12667 -- Given an identifier in the expression, check whether there is a
12668 -- discriminant or component of the type that is directy visible, and
12669 -- rewrite it as the corresponding selected component of the formal of
12670 -- the subprogram. The entity is located by a sequential search, which
12671 -- seems acceptable given the typical size of component lists and check
12672 -- expressions. Possible optimization ???
12673
12674 ----------------------
12675 -- Replace_Type_Ref --
12676 ----------------------
12677
12678 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12679 Loc : constant Source_Ptr := Sloc (N);
12680
12681 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12682 -- Add the proper prefix to a reference to a component of the type
12683 -- when it is not already a selected component.
12684
12685 ----------------
12686 -- Add_Prefix --
12687 ----------------
12688
12689 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12690 begin
12691 Rewrite (Ref,
12692 Make_Selected_Component (Loc,
12693 Prefix => New_Occurrence_Of (T, Loc),
12694 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12695 Replace_Type_Reference (Prefix (Ref));
12696 end Add_Prefix;
12697
12698 -- Local variables
12699
12700 Comp : Entity_Id;
12701 Pref : Node_Id;
12702 Scop : Entity_Id;
12703
12704 -- Start of processing for Replace_Type_Ref
12705
12706 begin
12707 if Nkind (N) = N_Identifier then
12708
12709 -- If not the type name, check whether it is a reference to some
12710 -- other type, which must be frozen before the predicate function
12711 -- is analyzed, i.e. before the freeze node of the type to which
12712 -- the predicate applies.
12713
12714 if Chars (N) /= TName then
12715 if Present (Current_Entity (N))
12716 and then Is_Type (Current_Entity (N))
12717 then
12718 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12719 end if;
12720
12721 -- The components of the type are directly visible and can
12722 -- be referenced without a prefix.
12723
12724 if Nkind (Parent (N)) = N_Selected_Component then
12725 null;
12726
12727 -- In expression C (I), C may be a directly visible function
12728 -- or a visible component that has an array type. Disambiguate
12729 -- by examining the component type.
12730
12731 elsif Nkind (Parent (N)) = N_Indexed_Component
12732 and then N = Prefix (Parent (N))
12733 then
12734 Comp := Visible_Component (Chars (N));
12735
12736 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12737 Add_Prefix (N, Comp);
12738 end if;
12739
12740 else
12741 Comp := Visible_Component (Chars (N));
12742
12743 if Present (Comp) then
12744 Add_Prefix (N, Comp);
12745 end if;
12746 end if;
12747
12748 return Skip;
12749
12750 -- Otherwise do the replacement if this is not a qualified
12751 -- reference to a homograph of the type itself. Note that the
12752 -- current instance could not appear in such a context, e.g.
12753 -- the prefix of a type conversion.
12754
12755 else
12756 if Nkind (Parent (N)) /= N_Selected_Component
12757 or else N /= Selector_Name (Parent (N))
12758 then
12759 Replace_Type_Reference (N);
12760 end if;
12761
12762 return Skip;
12763 end if;
12764
12765 -- Case of selected component, which may be a subcomponent of the
12766 -- current instance, or an expanded name which is still unanalyzed.
12767
12768 elsif Nkind (N) = N_Selected_Component then
12769
12770 -- If selector name is not our type, keep going (we might still
12771 -- have an occurrence of the type in the prefix). If it is a
12772 -- subcomponent of the current entity, add prefix.
12773
12774 if Nkind (Selector_Name (N)) /= N_Identifier
12775 or else Chars (Selector_Name (N)) /= TName
12776 then
12777 if Nkind (Prefix (N)) = N_Identifier then
12778 Comp := Visible_Component (Chars (Prefix (N)));
12779
12780 if Present (Comp) then
12781 Add_Prefix (Prefix (N), Comp);
12782 end if;
12783 end if;
12784
12785 return OK;
12786
12787 -- Selector name is our type, check qualification
12788
12789 else
12790 -- Loop through scopes and prefixes, doing comparison
12791
12792 Scop := Current_Scope;
12793 Pref := Prefix (N);
12794 loop
12795 -- Continue if no more scopes or scope with no name
12796
12797 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12798 return OK;
12799 end if;
12800
12801 -- Do replace if prefix is an identifier matching the scope
12802 -- that we are currently looking at.
12803
12804 if Nkind (Pref) = N_Identifier
12805 and then Chars (Pref) = Chars (Scop)
12806 then
12807 Replace_Type_Reference (N);
12808 return Skip;
12809 end if;
12810
12811 -- Go check scope above us if prefix is itself of the form
12812 -- of a selected component, whose selector matches the scope
12813 -- we are currently looking at.
12814
12815 if Nkind (Pref) = N_Selected_Component
12816 and then Nkind (Selector_Name (Pref)) = N_Identifier
12817 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12818 then
12819 Scop := Scope (Scop);
12820 Pref := Prefix (Pref);
12821
12822 -- For anything else, we don't have a match, so keep on
12823 -- going, there are still some weird cases where we may
12824 -- still have a replacement within the prefix.
12825
12826 else
12827 return OK;
12828 end if;
12829 end loop;
12830 end if;
12831
12832 -- Continue for any other node kind
12833
12834 else
12835 return OK;
12836 end if;
12837 end Replace_Type_Ref;
12838
12839 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12840
12841 -----------------------
12842 -- Visible_Component --
12843 -----------------------
12844
12845 function Visible_Component (Comp : Name_Id) return Entity_Id is
12846 E : Entity_Id;
12847
12848 begin
12849 -- Types with nameable components are records and discriminated
12850 -- private types.
12851
12852 if Ekind (T) = E_Record_Type
12853 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12854 then
12855 E := First_Entity (T);
12856 while Present (E) loop
12857 if Comes_From_Source (E) and then Chars (E) = Comp then
12858 return E;
12859 end if;
12860
12861 Next_Entity (E);
12862 end loop;
12863 end if;
12864
12865 -- Nothing by that name, or the type has no components
12866
12867 return Empty;
12868 end Visible_Component;
12869
12870 -- Start of processing for Replace_Type_References_Generic
12871
12872 begin
12873 Replace_Type_Refs (N);
12874 end Replace_Type_References_Generic;
12875
12876 --------------------------------
12877 -- Resolve_Aspect_Expressions --
12878 --------------------------------
12879
12880 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12881 function Resolve_Name (N : Node_Id) return Traverse_Result;
12882 -- Verify that all identifiers in the expression, with the exception
12883 -- of references to the current entity, denote visible entities. This
12884 -- is done only to detect visibility errors, as the expression will be
12885 -- properly analyzed/expanded during analysis of the predicate function
12886 -- body. We omit quantified expressions from this test, given that they
12887 -- introduce a local identifier that would require proper expansion to
12888 -- handle properly.
12889
12890 -- In ASIS_Mode we preserve the entity in the source because there is
12891 -- no subsequent expansion to decorate the tree.
12892
12893 ------------------
12894 -- Resolve_Name --
12895 ------------------
12896
12897 function Resolve_Name (N : Node_Id) return Traverse_Result is
12898 Dummy : Traverse_Result;
12899
12900 begin
12901 if Nkind (N) = N_Selected_Component then
12902 if Nkind (Prefix (N)) = N_Identifier
12903 and then Chars (Prefix (N)) /= Chars (E)
12904 then
12905 Find_Selected_Component (N);
12906 end if;
12907
12908 return Skip;
12909
12910 -- Resolve identifiers that are not selectors in parameter
12911 -- associations (these are never resolved by visibility).
12912
12913 elsif Nkind (N) = N_Identifier
12914 and then Chars (N) /= Chars (E)
12915 and then (Nkind (Parent (N)) /= N_Parameter_Association
12916 or else N /= Selector_Name (Parent (N)))
12917 then
12918 Find_Direct_Name (N);
12919
12920 -- In ASIS mode we must analyze overloaded identifiers to ensure
12921 -- their correct decoration because expansion is disabled (and
12922 -- the expansion of freeze nodes takes care of resolving aspect
12923 -- expressions).
12924
12925 if ASIS_Mode then
12926 if Is_Overloaded (N) then
12927 Analyze (Parent (N));
12928 end if;
12929 else
12930 Set_Entity (N, Empty);
12931 end if;
12932
12933 -- The name is component association needs no resolution.
12934
12935 elsif Nkind (N) = N_Component_Association then
12936 Dummy := Resolve_Name (Expression (N));
12937 return Skip;
12938
12939 elsif Nkind (N) = N_Quantified_Expression then
12940 return Skip;
12941 end if;
12942
12943 return OK;
12944 end Resolve_Name;
12945
12946 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12947
12948 -- Local variables
12949
12950 ASN : Node_Id := First_Rep_Item (E);
12951
12952 -- Start of processing for Resolve_Aspect_Expressions
12953
12954 begin
12955 -- Need to make sure discriminants, if any, are directly visible
12956
12957 Push_Scope_And_Install_Discriminants (E);
12958
12959 while Present (ASN) loop
12960 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12961 declare
12962 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
12963 Expr : constant Node_Id := Expression (ASN);
12964
12965 begin
12966 case A_Id is
12967
12968 -- For now we only deal with aspects that do not generate
12969 -- subprograms, or that may mention current instances of
12970 -- types. These will require special handling (???TBD).
12971
12972 when Aspect_Invariant
12973 | Aspect_Predicate
12974 | Aspect_Predicate_Failure
12975 =>
12976 null;
12977
12978 when Aspect_Dynamic_Predicate
12979 | Aspect_Static_Predicate
12980 =>
12981 -- Build predicate function specification and preanalyze
12982 -- expression after type replacement. The function
12983 -- declaration must be analyzed in the scope of the
12984 -- type, but the expression must see components.
12985
12986 if No (Predicate_Function (E)) then
12987 Uninstall_Discriminants_And_Pop_Scope (E);
12988 declare
12989 FDecl : constant Node_Id :=
12990 Build_Predicate_Function_Declaration (E);
12991 pragma Unreferenced (FDecl);
12992
12993 begin
12994 Push_Scope_And_Install_Discriminants (E);
12995 Resolve_Aspect_Expression (Expr);
12996 end;
12997 end if;
12998
12999 when Pre_Post_Aspects =>
13000 null;
13001
13002 when Aspect_Iterable =>
13003 if Nkind (Expr) = N_Aggregate then
13004 declare
13005 Assoc : Node_Id;
13006
13007 begin
13008 Assoc := First (Component_Associations (Expr));
13009 while Present (Assoc) loop
13010 Find_Direct_Name (Expression (Assoc));
13011 Next (Assoc);
13012 end loop;
13013 end;
13014 end if;
13015
13016 -- The expression for Default_Value is a static expression
13017 -- of the type, but this expression does not freeze the
13018 -- type, so it can still appear in a representation clause
13019 -- before the actual freeze point.
13020
13021 when Aspect_Default_Value =>
13022 Set_Must_Not_Freeze (Expr);
13023 Preanalyze_Spec_Expression (Expr, E);
13024
13025 -- Ditto for Storage_Size. Any other aspects that carry
13026 -- expressions that should not freeze ??? This is only
13027 -- relevant to the misuse of deferred constants.
13028
13029 when Aspect_Storage_Size =>
13030 Set_Must_Not_Freeze (Expr);
13031 Preanalyze_Spec_Expression (Expr, Any_Integer);
13032
13033 when others =>
13034 if Present (Expr) then
13035 case Aspect_Argument (A_Id) is
13036 when Expression
13037 | Optional_Expression
13038 =>
13039 Analyze_And_Resolve (Expr);
13040
13041 when Name
13042 | Optional_Name
13043 =>
13044 if Nkind (Expr) = N_Identifier then
13045 Find_Direct_Name (Expr);
13046
13047 elsif Nkind (Expr) = N_Selected_Component then
13048 Find_Selected_Component (Expr);
13049 end if;
13050 end case;
13051 end if;
13052 end case;
13053 end;
13054 end if;
13055
13056 ASN := Next_Rep_Item (ASN);
13057 end loop;
13058
13059 Uninstall_Discriminants_And_Pop_Scope (E);
13060 end Resolve_Aspect_Expressions;
13061
13062 -------------------------
13063 -- Same_Representation --
13064 -------------------------
13065
13066 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
13067 T1 : constant Entity_Id := Underlying_Type (Typ1);
13068 T2 : constant Entity_Id := Underlying_Type (Typ2);
13069
13070 begin
13071 -- A quick check, if base types are the same, then we definitely have
13072 -- the same representation, because the subtype specific representation
13073 -- attributes (Size and Alignment) do not affect representation from
13074 -- the point of view of this test.
13075
13076 if Base_Type (T1) = Base_Type (T2) then
13077 return True;
13078
13079 elsif Is_Private_Type (Base_Type (T2))
13080 and then Base_Type (T1) = Full_View (Base_Type (T2))
13081 then
13082 return True;
13083 end if;
13084
13085 -- Tagged types always have the same representation, because it is not
13086 -- possible to specify different representations for common fields.
13087
13088 if Is_Tagged_Type (T1) then
13089 return True;
13090 end if;
13091
13092 -- Representations are definitely different if conventions differ
13093
13094 if Convention (T1) /= Convention (T2) then
13095 return False;
13096 end if;
13097
13098 -- Representations are different if component alignments or scalar
13099 -- storage orders differ.
13100
13101 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
13102 and then
13103 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13104 and then
13105 (Component_Alignment (T1) /= Component_Alignment (T2)
13106 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13107 then
13108 return False;
13109 end if;
13110
13111 -- For arrays, the only real issue is component size. If we know the
13112 -- component size for both arrays, and it is the same, then that's
13113 -- good enough to know we don't have a change of representation.
13114
13115 if Is_Array_Type (T1) then
13116 if Known_Component_Size (T1)
13117 and then Known_Component_Size (T2)
13118 and then Component_Size (T1) = Component_Size (T2)
13119 then
13120 return True;
13121 end if;
13122 end if;
13123
13124 -- For records, representations are different if reorderings differ
13125
13126 if Is_Record_Type (T1)
13127 and then Is_Record_Type (T2)
13128 and then No_Reordering (T1) /= No_Reordering (T2)
13129 then
13130 return False;
13131 end if;
13132
13133 -- Types definitely have same representation if neither has non-standard
13134 -- representation since default representations are always consistent.
13135 -- If only one has non-standard representation, and the other does not,
13136 -- then we consider that they do not have the same representation. They
13137 -- might, but there is no way of telling early enough.
13138
13139 if Has_Non_Standard_Rep (T1) then
13140 if not Has_Non_Standard_Rep (T2) then
13141 return False;
13142 end if;
13143 else
13144 return not Has_Non_Standard_Rep (T2);
13145 end if;
13146
13147 -- Here the two types both have non-standard representation, and we need
13148 -- to determine if they have the same non-standard representation.
13149
13150 -- For arrays, we simply need to test if the component sizes are the
13151 -- same. Pragma Pack is reflected in modified component sizes, so this
13152 -- check also deals with pragma Pack.
13153
13154 if Is_Array_Type (T1) then
13155 return Component_Size (T1) = Component_Size (T2);
13156
13157 -- Case of record types
13158
13159 elsif Is_Record_Type (T1) then
13160
13161 -- Packed status must conform
13162
13163 if Is_Packed (T1) /= Is_Packed (T2) then
13164 return False;
13165
13166 -- Otherwise we must check components. Typ2 maybe a constrained
13167 -- subtype with fewer components, so we compare the components
13168 -- of the base types.
13169
13170 else
13171 Record_Case : declare
13172 CD1, CD2 : Entity_Id;
13173
13174 function Same_Rep return Boolean;
13175 -- CD1 and CD2 are either components or discriminants. This
13176 -- function tests whether they have the same representation.
13177
13178 --------------
13179 -- Same_Rep --
13180 --------------
13181
13182 function Same_Rep return Boolean is
13183 begin
13184 if No (Component_Clause (CD1)) then
13185 return No (Component_Clause (CD2));
13186 else
13187 -- Note: at this point, component clauses have been
13188 -- normalized to the default bit order, so that the
13189 -- comparison of Component_Bit_Offsets is meaningful.
13190
13191 return
13192 Present (Component_Clause (CD2))
13193 and then
13194 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13195 and then
13196 Esize (CD1) = Esize (CD2);
13197 end if;
13198 end Same_Rep;
13199
13200 -- Start of processing for Record_Case
13201
13202 begin
13203 if Has_Discriminants (T1) then
13204
13205 -- The number of discriminants may be different if the
13206 -- derived type has fewer (constrained by values). The
13207 -- invisible discriminants retain the representation of
13208 -- the original, so the discrepancy does not per se
13209 -- indicate a different representation.
13210
13211 CD1 := First_Discriminant (T1);
13212 CD2 := First_Discriminant (T2);
13213 while Present (CD1) and then Present (CD2) loop
13214 if not Same_Rep then
13215 return False;
13216 else
13217 Next_Discriminant (CD1);
13218 Next_Discriminant (CD2);
13219 end if;
13220 end loop;
13221 end if;
13222
13223 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13224 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13225 while Present (CD1) loop
13226 if not Same_Rep then
13227 return False;
13228 else
13229 Next_Component (CD1);
13230 Next_Component (CD2);
13231 end if;
13232 end loop;
13233
13234 return True;
13235 end Record_Case;
13236 end if;
13237
13238 -- For enumeration types, we must check each literal to see if the
13239 -- representation is the same. Note that we do not permit enumeration
13240 -- representation clauses for Character and Wide_Character, so these
13241 -- cases were already dealt with.
13242
13243 elsif Is_Enumeration_Type (T1) then
13244 Enumeration_Case : declare
13245 L1, L2 : Entity_Id;
13246
13247 begin
13248 L1 := First_Literal (T1);
13249 L2 := First_Literal (T2);
13250 while Present (L1) loop
13251 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13252 return False;
13253 else
13254 Next_Literal (L1);
13255 Next_Literal (L2);
13256 end if;
13257 end loop;
13258
13259 return True;
13260 end Enumeration_Case;
13261
13262 -- Any other types have the same representation for these purposes
13263
13264 else
13265 return True;
13266 end if;
13267 end Same_Representation;
13268
13269 --------------------------------
13270 -- Resolve_Iterable_Operation --
13271 --------------------------------
13272
13273 procedure Resolve_Iterable_Operation
13274 (N : Node_Id;
13275 Cursor : Entity_Id;
13276 Typ : Entity_Id;
13277 Nam : Name_Id)
13278 is
13279 Ent : Entity_Id;
13280 F1 : Entity_Id;
13281 F2 : Entity_Id;
13282
13283 begin
13284 if not Is_Overloaded (N) then
13285 if not Is_Entity_Name (N)
13286 or else Ekind (Entity (N)) /= E_Function
13287 or else Scope (Entity (N)) /= Scope (Typ)
13288 or else No (First_Formal (Entity (N)))
13289 or else Etype (First_Formal (Entity (N))) /= Typ
13290 then
13291 Error_Msg_N
13292 ("iterable primitive must be local function name whose first "
13293 & "formal is an iterable type", N);
13294 return;
13295 end if;
13296
13297 Ent := Entity (N);
13298 F1 := First_Formal (Ent);
13299
13300 if Nam = Name_First or else Nam = Name_Last then
13301
13302 -- First or Last (Container) => Cursor
13303
13304 if Etype (Ent) /= Cursor then
13305 Error_Msg_N ("primitive for First must yield a curosr", N);
13306 end if;
13307
13308 elsif Nam = Name_Next then
13309
13310 -- Next (Container, Cursor) => Cursor
13311
13312 F2 := Next_Formal (F1);
13313
13314 if Etype (F2) /= Cursor
13315 or else Etype (Ent) /= Cursor
13316 or else Present (Next_Formal (F2))
13317 then
13318 Error_Msg_N ("no match for Next iterable primitive", N);
13319 end if;
13320
13321 elsif Nam = Name_Previous then
13322
13323 -- Previous (Container, Cursor) => Cursor
13324
13325 F2 := Next_Formal (F1);
13326
13327 if Etype (F2) /= Cursor
13328 or else Etype (Ent) /= Cursor
13329 or else Present (Next_Formal (F2))
13330 then
13331 Error_Msg_N ("no match for Previous iterable primitive", N);
13332 end if;
13333
13334 elsif Nam = Name_Has_Element then
13335
13336 -- Has_Element (Container, Cursor) => Boolean
13337
13338 F2 := Next_Formal (F1);
13339
13340 if Etype (F2) /= Cursor
13341 or else Etype (Ent) /= Standard_Boolean
13342 or else Present (Next_Formal (F2))
13343 then
13344 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13345 end if;
13346
13347 elsif Nam = Name_Element then
13348 F2 := Next_Formal (F1);
13349
13350 if No (F2)
13351 or else Etype (F2) /= Cursor
13352 or else Present (Next_Formal (F2))
13353 then
13354 Error_Msg_N ("no match for Element iterable primitive", N);
13355 end if;
13356
13357 else
13358 raise Program_Error;
13359 end if;
13360
13361 else
13362 -- Overloaded case: find subprogram with proper signature. Caller
13363 -- will report error if no match is found.
13364
13365 declare
13366 I : Interp_Index;
13367 It : Interp;
13368
13369 begin
13370 Get_First_Interp (N, I, It);
13371 while Present (It.Typ) loop
13372 if Ekind (It.Nam) = E_Function
13373 and then Scope (It.Nam) = Scope (Typ)
13374 and then Etype (First_Formal (It.Nam)) = Typ
13375 then
13376 F1 := First_Formal (It.Nam);
13377
13378 if Nam = Name_First then
13379 if Etype (It.Nam) = Cursor
13380 and then No (Next_Formal (F1))
13381 then
13382 Set_Entity (N, It.Nam);
13383 exit;
13384 end if;
13385
13386 elsif Nam = Name_Next then
13387 F2 := Next_Formal (F1);
13388
13389 if Present (F2)
13390 and then No (Next_Formal (F2))
13391 and then Etype (F2) = Cursor
13392 and then Etype (It.Nam) = Cursor
13393 then
13394 Set_Entity (N, It.Nam);
13395 exit;
13396 end if;
13397
13398 elsif Nam = Name_Has_Element then
13399 F2 := Next_Formal (F1);
13400
13401 if Present (F2)
13402 and then No (Next_Formal (F2))
13403 and then Etype (F2) = Cursor
13404 and then Etype (It.Nam) = Standard_Boolean
13405 then
13406 Set_Entity (N, It.Nam);
13407 F2 := Next_Formal (F1);
13408 exit;
13409 end if;
13410
13411 elsif Nam = Name_Element then
13412 F2 := Next_Formal (F1);
13413
13414 if Present (F2)
13415 and then No (Next_Formal (F2))
13416 and then Etype (F2) = Cursor
13417 then
13418 Set_Entity (N, It.Nam);
13419 exit;
13420 end if;
13421 end if;
13422 end if;
13423
13424 Get_Next_Interp (I, It);
13425 end loop;
13426 end;
13427 end if;
13428 end Resolve_Iterable_Operation;
13429
13430 ----------------
13431 -- Set_Biased --
13432 ----------------
13433
13434 procedure Set_Biased
13435 (E : Entity_Id;
13436 N : Node_Id;
13437 Msg : String;
13438 Biased : Boolean := True)
13439 is
13440 begin
13441 if Biased then
13442 Set_Has_Biased_Representation (E);
13443
13444 if Warn_On_Biased_Representation then
13445 Error_Msg_NE
13446 ("?B?" & Msg & " forces biased representation for&", N, E);
13447 end if;
13448 end if;
13449 end Set_Biased;
13450
13451 --------------------
13452 -- Set_Enum_Esize --
13453 --------------------
13454
13455 procedure Set_Enum_Esize (T : Entity_Id) is
13456 Lo : Uint;
13457 Hi : Uint;
13458 Sz : Nat;
13459
13460 begin
13461 Init_Alignment (T);
13462
13463 -- Find the minimum standard size (8,16,32,64) that fits
13464
13465 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13466 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13467
13468 if Lo < 0 then
13469 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13470 Sz := Standard_Character_Size; -- May be > 8 on some targets
13471
13472 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13473 Sz := 16;
13474
13475 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13476 Sz := 32;
13477
13478 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13479 Sz := 64;
13480 end if;
13481
13482 else
13483 if Hi < Uint_2**08 then
13484 Sz := Standard_Character_Size; -- May be > 8 on some targets
13485
13486 elsif Hi < Uint_2**16 then
13487 Sz := 16;
13488
13489 elsif Hi < Uint_2**32 then
13490 Sz := 32;
13491
13492 else pragma Assert (Hi < Uint_2**63);
13493 Sz := 64;
13494 end if;
13495 end if;
13496
13497 -- That minimum is the proper size unless we have a foreign convention
13498 -- and the size required is 32 or less, in which case we bump the size
13499 -- up to 32. This is required for C and C++ and seems reasonable for
13500 -- all other foreign conventions.
13501
13502 if Has_Foreign_Convention (T)
13503 and then Esize (T) < Standard_Integer_Size
13504
13505 -- Don't do this if Short_Enums on target
13506
13507 and then not Target_Short_Enums
13508 then
13509 Init_Esize (T, Standard_Integer_Size);
13510 else
13511 Init_Esize (T, Sz);
13512 end if;
13513 end Set_Enum_Esize;
13514
13515 -----------------------------
13516 -- Uninstall_Discriminants --
13517 -----------------------------
13518
13519 procedure Uninstall_Discriminants (E : Entity_Id) is
13520 Disc : Entity_Id;
13521 Prev : Entity_Id;
13522 Outer : Entity_Id;
13523
13524 begin
13525 -- Discriminants have been made visible for type declarations and
13526 -- protected type declarations, not for subtype declarations.
13527
13528 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13529 Disc := First_Discriminant (E);
13530 while Present (Disc) loop
13531 if Disc /= Current_Entity (Disc) then
13532 Prev := Current_Entity (Disc);
13533 while Present (Prev)
13534 and then Present (Homonym (Prev))
13535 and then Homonym (Prev) /= Disc
13536 loop
13537 Prev := Homonym (Prev);
13538 end loop;
13539 else
13540 Prev := Empty;
13541 end if;
13542
13543 Set_Is_Immediately_Visible (Disc, False);
13544
13545 Outer := Homonym (Disc);
13546 while Present (Outer) and then Scope (Outer) = E loop
13547 Outer := Homonym (Outer);
13548 end loop;
13549
13550 -- Reset homonym link of other entities, but do not modify link
13551 -- between entities in current scope, so that the back end can
13552 -- have a proper count of local overloadings.
13553
13554 if No (Prev) then
13555 Set_Name_Entity_Id (Chars (Disc), Outer);
13556
13557 elsif Scope (Prev) /= Scope (Disc) then
13558 Set_Homonym (Prev, Outer);
13559 end if;
13560
13561 Next_Discriminant (Disc);
13562 end loop;
13563 end if;
13564 end Uninstall_Discriminants;
13565
13566 -------------------------------------------
13567 -- Uninstall_Discriminants_And_Pop_Scope --
13568 -------------------------------------------
13569
13570 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13571 begin
13572 if Is_Type (E) and then Has_Discriminants (E) then
13573 Uninstall_Discriminants (E);
13574 Pop_Scope;
13575 end if;
13576 end Uninstall_Discriminants_And_Pop_Scope;
13577
13578 ------------------------------
13579 -- Validate_Address_Clauses --
13580 ------------------------------
13581
13582 procedure Validate_Address_Clauses is
13583 function Offset_Value (Expr : Node_Id) return Uint;
13584 -- Given an Address attribute reference, return the value in bits of its
13585 -- offset from the first bit of the underlying entity, or 0 if it is not
13586 -- known at compile time.
13587
13588 ------------------
13589 -- Offset_Value --
13590 ------------------
13591
13592 function Offset_Value (Expr : Node_Id) return Uint is
13593 N : Node_Id := Prefix (Expr);
13594 Off : Uint;
13595 Val : Uint := Uint_0;
13596
13597 begin
13598 -- Climb the prefix chain and compute the cumulative offset
13599
13600 loop
13601 if Is_Entity_Name (N) then
13602 return Val;
13603
13604 elsif Nkind (N) = N_Selected_Component then
13605 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13606 if Off /= No_Uint and then Off >= Uint_0 then
13607 Val := Val + Off;
13608 N := Prefix (N);
13609 else
13610 return Uint_0;
13611 end if;
13612
13613 elsif Nkind (N) = N_Indexed_Component then
13614 Off := Indexed_Component_Bit_Offset (N);
13615 if Off /= No_Uint then
13616 Val := Val + Off;
13617 N := Prefix (N);
13618 else
13619 return Uint_0;
13620 end if;
13621
13622 else
13623 return Uint_0;
13624 end if;
13625 end loop;
13626 end Offset_Value;
13627
13628 -- Start of processing for Validate_Address_Clauses
13629
13630 begin
13631 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13632 declare
13633 ACCR : Address_Clause_Check_Record
13634 renames Address_Clause_Checks.Table (J);
13635
13636 Expr : Node_Id;
13637
13638 X_Alignment : Uint;
13639 Y_Alignment : Uint := Uint_0;
13640
13641 X_Size : Uint;
13642 Y_Size : Uint := Uint_0;
13643
13644 X_Offs : Uint;
13645
13646 begin
13647 -- Skip processing of this entry if warning already posted
13648
13649 if not Address_Warning_Posted (ACCR.N) then
13650 Expr := Original_Node (Expression (ACCR.N));
13651
13652 -- Get alignments, sizes and offset, if any
13653
13654 X_Alignment := Alignment (ACCR.X);
13655 X_Size := Esize (ACCR.X);
13656
13657 if Present (ACCR.Y) then
13658 Y_Alignment := Alignment (ACCR.Y);
13659 Y_Size := Esize (ACCR.Y);
13660 end if;
13661
13662 if ACCR.Off
13663 and then Nkind (Expr) = N_Attribute_Reference
13664 and then Attribute_Name (Expr) = Name_Address
13665 then
13666 X_Offs := Offset_Value (Expr);
13667 else
13668 X_Offs := Uint_0;
13669 end if;
13670
13671 -- Check for known value not multiple of alignment
13672
13673 if No (ACCR.Y) then
13674 if not Alignment_Checks_Suppressed (ACCR)
13675 and then X_Alignment /= 0
13676 and then ACCR.A mod X_Alignment /= 0
13677 then
13678 Error_Msg_NE
13679 ("??specified address for& is inconsistent with "
13680 & "alignment", ACCR.N, ACCR.X);
13681 Error_Msg_N
13682 ("\??program execution may be erroneous (RM 13.3(27))",
13683 ACCR.N);
13684
13685 Error_Msg_Uint_1 := X_Alignment;
13686 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13687 end if;
13688
13689 -- Check for large object overlaying smaller one
13690
13691 elsif Y_Size > Uint_0
13692 and then X_Size > Uint_0
13693 and then X_Offs + X_Size > Y_Size
13694 then
13695 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13696 Error_Msg_N
13697 ("\??program execution may be erroneous", ACCR.N);
13698
13699 Error_Msg_Uint_1 := X_Size;
13700 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13701
13702 Error_Msg_Uint_1 := Y_Size;
13703 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13704
13705 if Y_Size >= X_Size then
13706 Error_Msg_Uint_1 := X_Offs;
13707 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13708 end if;
13709
13710 -- Check for inadequate alignment, both of the base object
13711 -- and of the offset, if any. We only do this check if the
13712 -- run-time Alignment_Check is active. No point in warning
13713 -- if this check has been suppressed (or is suppressed by
13714 -- default in the non-strict alignment machine case).
13715
13716 -- Note: we do not check the alignment if we gave a size
13717 -- warning, since it would likely be redundant.
13718
13719 elsif not Alignment_Checks_Suppressed (ACCR)
13720 and then Y_Alignment /= Uint_0
13721 and then
13722 (Y_Alignment < X_Alignment
13723 or else
13724 (ACCR.Off
13725 and then Nkind (Expr) = N_Attribute_Reference
13726 and then Attribute_Name (Expr) = Name_Address
13727 and then Has_Compatible_Alignment
13728 (ACCR.X, Prefix (Expr), True) /=
13729 Known_Compatible))
13730 then
13731 Error_Msg_NE
13732 ("??specified address for& may be inconsistent with "
13733 & "alignment", ACCR.N, ACCR.X);
13734 Error_Msg_N
13735 ("\??program execution may be erroneous (RM 13.3(27))",
13736 ACCR.N);
13737
13738 Error_Msg_Uint_1 := X_Alignment;
13739 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13740
13741 Error_Msg_Uint_1 := Y_Alignment;
13742 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13743
13744 if Y_Alignment >= X_Alignment then
13745 Error_Msg_N
13746 ("\??but offset is not multiple of alignment", ACCR.N);
13747 end if;
13748 end if;
13749 end if;
13750 end;
13751 end loop;
13752 end Validate_Address_Clauses;
13753
13754 -----------------------------------------
13755 -- Validate_Compile_Time_Warning_Error --
13756 -----------------------------------------
13757
13758 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13759 begin
13760 Compile_Time_Warnings_Errors.Append
13761 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13762 Scope => Current_Scope,
13763 Prag => N));
13764 end Validate_Compile_Time_Warning_Error;
13765
13766 ------------------------------------------
13767 -- Validate_Compile_Time_Warning_Errors --
13768 ------------------------------------------
13769
13770 procedure Validate_Compile_Time_Warning_Errors is
13771 procedure Set_Scope (S : Entity_Id);
13772 -- Install all enclosing scopes of S along with S itself
13773
13774 procedure Unset_Scope (S : Entity_Id);
13775 -- Uninstall all enclosing scopes of S along with S itself
13776
13777 ---------------
13778 -- Set_Scope --
13779 ---------------
13780
13781 procedure Set_Scope (S : Entity_Id) is
13782 begin
13783 if S /= Standard_Standard then
13784 Set_Scope (Scope (S));
13785 end if;
13786
13787 Push_Scope (S);
13788 end Set_Scope;
13789
13790 -----------------
13791 -- Unset_Scope --
13792 -----------------
13793
13794 procedure Unset_Scope (S : Entity_Id) is
13795 begin
13796 if S /= Standard_Standard then
13797 Unset_Scope (Scope (S));
13798 end if;
13799
13800 Pop_Scope;
13801 end Unset_Scope;
13802
13803 -- Start of processing for Validate_Compile_Time_Warning_Errors
13804
13805 begin
13806 Expander_Mode_Save_And_Set (False);
13807 In_Compile_Time_Warning_Or_Error := True;
13808
13809 for N in Compile_Time_Warnings_Errors.First ..
13810 Compile_Time_Warnings_Errors.Last
13811 loop
13812 declare
13813 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13814
13815 begin
13816 Set_Scope (T.Scope);
13817 Reset_Analyzed_Flags (T.Prag);
13818 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13819 Unset_Scope (T.Scope);
13820 end;
13821 end loop;
13822
13823 In_Compile_Time_Warning_Or_Error := False;
13824 Expander_Mode_Restore;
13825 end Validate_Compile_Time_Warning_Errors;
13826
13827 ---------------------------
13828 -- Validate_Independence --
13829 ---------------------------
13830
13831 procedure Validate_Independence is
13832 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13833 N : Node_Id;
13834 E : Entity_Id;
13835 IC : Boolean;
13836 Comp : Entity_Id;
13837 Addr : Node_Id;
13838 P : Node_Id;
13839
13840 procedure Check_Array_Type (Atyp : Entity_Id);
13841 -- Checks if the array type Atyp has independent components, and
13842 -- if not, outputs an appropriate set of error messages.
13843
13844 procedure No_Independence;
13845 -- Output message that independence cannot be guaranteed
13846
13847 function OK_Component (C : Entity_Id) return Boolean;
13848 -- Checks one component to see if it is independently accessible, and
13849 -- if so yields True, otherwise yields False if independent access
13850 -- cannot be guaranteed. This is a conservative routine, it only
13851 -- returns True if it knows for sure, it returns False if it knows
13852 -- there is a problem, or it cannot be sure there is no problem.
13853
13854 procedure Reason_Bad_Component (C : Entity_Id);
13855 -- Outputs continuation message if a reason can be determined for
13856 -- the component C being bad.
13857
13858 ----------------------
13859 -- Check_Array_Type --
13860 ----------------------
13861
13862 procedure Check_Array_Type (Atyp : Entity_Id) is
13863 Ctyp : constant Entity_Id := Component_Type (Atyp);
13864
13865 begin
13866 -- OK if no alignment clause, no pack, and no component size
13867
13868 if not Has_Component_Size_Clause (Atyp)
13869 and then not Has_Alignment_Clause (Atyp)
13870 and then not Is_Packed (Atyp)
13871 then
13872 return;
13873 end if;
13874
13875 -- Case of component size is greater than or equal to 64 and the
13876 -- alignment of the array is at least as large as the alignment
13877 -- of the component. We are definitely OK in this situation.
13878
13879 if Known_Component_Size (Atyp)
13880 and then Component_Size (Atyp) >= 64
13881 and then Known_Alignment (Atyp)
13882 and then Known_Alignment (Ctyp)
13883 and then Alignment (Atyp) >= Alignment (Ctyp)
13884 then
13885 return;
13886 end if;
13887
13888 -- Check actual component size
13889
13890 if not Known_Component_Size (Atyp)
13891 or else not (Addressable (Component_Size (Atyp))
13892 and then Component_Size (Atyp) < 64)
13893 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13894 then
13895 No_Independence;
13896
13897 -- Bad component size, check reason
13898
13899 if Has_Component_Size_Clause (Atyp) then
13900 P := Get_Attribute_Definition_Clause
13901 (Atyp, Attribute_Component_Size);
13902
13903 if Present (P) then
13904 Error_Msg_Sloc := Sloc (P);
13905 Error_Msg_N ("\because of Component_Size clause#", N);
13906 return;
13907 end if;
13908 end if;
13909
13910 if Is_Packed (Atyp) then
13911 P := Get_Rep_Pragma (Atyp, Name_Pack);
13912
13913 if Present (P) then
13914 Error_Msg_Sloc := Sloc (P);
13915 Error_Msg_N ("\because of pragma Pack#", N);
13916 return;
13917 end if;
13918 end if;
13919
13920 -- No reason found, just return
13921
13922 return;
13923 end if;
13924
13925 -- Array type is OK independence-wise
13926
13927 return;
13928 end Check_Array_Type;
13929
13930 ---------------------
13931 -- No_Independence --
13932 ---------------------
13933
13934 procedure No_Independence is
13935 begin
13936 if Pragma_Name (N) = Name_Independent then
13937 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13938 else
13939 Error_Msg_NE
13940 ("independent components cannot be guaranteed for&", N, E);
13941 end if;
13942 end No_Independence;
13943
13944 ------------------
13945 -- OK_Component --
13946 ------------------
13947
13948 function OK_Component (C : Entity_Id) return Boolean is
13949 Rec : constant Entity_Id := Scope (C);
13950 Ctyp : constant Entity_Id := Etype (C);
13951
13952 begin
13953 -- OK if no component clause, no Pack, and no alignment clause
13954
13955 if No (Component_Clause (C))
13956 and then not Is_Packed (Rec)
13957 and then not Has_Alignment_Clause (Rec)
13958 then
13959 return True;
13960 end if;
13961
13962 -- Here we look at the actual component layout. A component is
13963 -- addressable if its size is a multiple of the Esize of the
13964 -- component type, and its starting position in the record has
13965 -- appropriate alignment, and the record itself has appropriate
13966 -- alignment to guarantee the component alignment.
13967
13968 -- Make sure sizes are static, always assume the worst for any
13969 -- cases where we cannot check static values.
13970
13971 if not (Known_Static_Esize (C)
13972 and then
13973 Known_Static_Esize (Ctyp))
13974 then
13975 return False;
13976 end if;
13977
13978 -- Size of component must be addressable or greater than 64 bits
13979 -- and a multiple of bytes.
13980
13981 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13982 return False;
13983 end if;
13984
13985 -- Check size is proper multiple
13986
13987 if Esize (C) mod Esize (Ctyp) /= 0 then
13988 return False;
13989 end if;
13990
13991 -- Check alignment of component is OK
13992
13993 if not Known_Component_Bit_Offset (C)
13994 or else Component_Bit_Offset (C) < Uint_0
13995 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13996 then
13997 return False;
13998 end if;
13999
14000 -- Check alignment of record type is OK
14001
14002 if not Known_Alignment (Rec)
14003 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
14004 then
14005 return False;
14006 end if;
14007
14008 -- All tests passed, component is addressable
14009
14010 return True;
14011 end OK_Component;
14012
14013 --------------------------
14014 -- Reason_Bad_Component --
14015 --------------------------
14016
14017 procedure Reason_Bad_Component (C : Entity_Id) is
14018 Rec : constant Entity_Id := Scope (C);
14019 Ctyp : constant Entity_Id := Etype (C);
14020
14021 begin
14022 -- If component clause present assume that's the problem
14023
14024 if Present (Component_Clause (C)) then
14025 Error_Msg_Sloc := Sloc (Component_Clause (C));
14026 Error_Msg_N ("\because of Component_Clause#", N);
14027 return;
14028 end if;
14029
14030 -- If pragma Pack clause present, assume that's the problem
14031
14032 if Is_Packed (Rec) then
14033 P := Get_Rep_Pragma (Rec, Name_Pack);
14034
14035 if Present (P) then
14036 Error_Msg_Sloc := Sloc (P);
14037 Error_Msg_N ("\because of pragma Pack#", N);
14038 return;
14039 end if;
14040 end if;
14041
14042 -- See if record has bad alignment clause
14043
14044 if Has_Alignment_Clause (Rec)
14045 and then Known_Alignment (Rec)
14046 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
14047 then
14048 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
14049
14050 if Present (P) then
14051 Error_Msg_Sloc := Sloc (P);
14052 Error_Msg_N ("\because of Alignment clause#", N);
14053 end if;
14054 end if;
14055
14056 -- Couldn't find a reason, so return without a message
14057
14058 return;
14059 end Reason_Bad_Component;
14060
14061 -- Start of processing for Validate_Independence
14062
14063 begin
14064 for J in Independence_Checks.First .. Independence_Checks.Last loop
14065 N := Independence_Checks.Table (J).N;
14066 E := Independence_Checks.Table (J).E;
14067 IC := Pragma_Name (N) = Name_Independent_Components;
14068
14069 -- Deal with component case
14070
14071 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
14072 if not OK_Component (E) then
14073 No_Independence;
14074 Reason_Bad_Component (E);
14075 goto Continue;
14076 end if;
14077 end if;
14078
14079 -- Deal with record with Independent_Components
14080
14081 if IC and then Is_Record_Type (E) then
14082 Comp := First_Component_Or_Discriminant (E);
14083 while Present (Comp) loop
14084 if not OK_Component (Comp) then
14085 No_Independence;
14086 Reason_Bad_Component (Comp);
14087 goto Continue;
14088 end if;
14089
14090 Next_Component_Or_Discriminant (Comp);
14091 end loop;
14092 end if;
14093
14094 -- Deal with address clause case
14095
14096 if Is_Object (E) then
14097 Addr := Address_Clause (E);
14098
14099 if Present (Addr) then
14100 No_Independence;
14101 Error_Msg_Sloc := Sloc (Addr);
14102 Error_Msg_N ("\because of Address clause#", N);
14103 goto Continue;
14104 end if;
14105 end if;
14106
14107 -- Deal with independent components for array type
14108
14109 if IC and then Is_Array_Type (E) then
14110 Check_Array_Type (E);
14111 end if;
14112
14113 -- Deal with independent components for array object
14114
14115 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14116 Check_Array_Type (Etype (E));
14117 end if;
14118
14119 <<Continue>> null;
14120 end loop;
14121 end Validate_Independence;
14122
14123 ------------------------------
14124 -- Validate_Iterable_Aspect --
14125 ------------------------------
14126
14127 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14128 Assoc : Node_Id;
14129 Expr : Node_Id;
14130
14131 Prim : Node_Id;
14132 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14133
14134 First_Id : Entity_Id;
14135 Last_Id : Entity_Id;
14136 Next_Id : Entity_Id;
14137 Has_Element_Id : Entity_Id;
14138 Element_Id : Entity_Id;
14139
14140 begin
14141 -- If previous error aspect is unusable
14142
14143 if Cursor = Any_Type then
14144 return;
14145 end if;
14146
14147 First_Id := Empty;
14148 Last_Id := Empty;
14149 Next_Id := Empty;
14150 Has_Element_Id := Empty;
14151 Element_Id := Empty;
14152
14153 -- Each expression must resolve to a function with the proper signature
14154
14155 Assoc := First (Component_Associations (Expression (ASN)));
14156 while Present (Assoc) loop
14157 Expr := Expression (Assoc);
14158 Analyze (Expr);
14159
14160 Prim := First (Choices (Assoc));
14161
14162 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14163 Error_Msg_N ("illegal name in association", Prim);
14164
14165 elsif Chars (Prim) = Name_First then
14166 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14167 First_Id := Entity (Expr);
14168
14169 elsif Chars (Prim) = Name_Last then
14170 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14171 Last_Id := Entity (Expr);
14172
14173 elsif Chars (Prim) = Name_Previous then
14174 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14175 Last_Id := Entity (Expr);
14176
14177 elsif Chars (Prim) = Name_Next then
14178 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14179 Next_Id := Entity (Expr);
14180
14181 elsif Chars (Prim) = Name_Has_Element then
14182 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14183 Has_Element_Id := Entity (Expr);
14184
14185 elsif Chars (Prim) = Name_Element then
14186 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14187 Element_Id := Entity (Expr);
14188
14189 else
14190 Error_Msg_N ("invalid name for iterable function", Prim);
14191 end if;
14192
14193 Next (Assoc);
14194 end loop;
14195
14196 if No (First_Id) then
14197 Error_Msg_N ("match for First primitive not found", ASN);
14198
14199 elsif No (Next_Id) then
14200 Error_Msg_N ("match for Next primitive not found", ASN);
14201
14202 elsif No (Has_Element_Id) then
14203 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14204
14205 elsif No (Element_Id) or else No (Last_Id) then
14206 null; -- optional
14207 end if;
14208 end Validate_Iterable_Aspect;
14209
14210 -----------------------------------
14211 -- Validate_Unchecked_Conversion --
14212 -----------------------------------
14213
14214 procedure Validate_Unchecked_Conversion
14215 (N : Node_Id;
14216 Act_Unit : Entity_Id)
14217 is
14218 Source : Entity_Id;
14219 Target : Entity_Id;
14220 Vnode : Node_Id;
14221
14222 begin
14223 -- Obtain source and target types. Note that we call Ancestor_Subtype
14224 -- here because the processing for generic instantiation always makes
14225 -- subtypes, and we want the original frozen actual types.
14226
14227 -- If we are dealing with private types, then do the check on their
14228 -- fully declared counterparts if the full declarations have been
14229 -- encountered (they don't have to be visible, but they must exist).
14230
14231 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14232
14233 if Is_Private_Type (Source)
14234 and then Present (Underlying_Type (Source))
14235 then
14236 Source := Underlying_Type (Source);
14237 end if;
14238
14239 Target := Ancestor_Subtype (Etype (Act_Unit));
14240
14241 -- If either type is generic, the instantiation happens within a generic
14242 -- unit, and there is nothing to check. The proper check will happen
14243 -- when the enclosing generic is instantiated.
14244
14245 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14246 return;
14247 end if;
14248
14249 if Is_Private_Type (Target)
14250 and then Present (Underlying_Type (Target))
14251 then
14252 Target := Underlying_Type (Target);
14253 end if;
14254
14255 -- Source may be unconstrained array, but not target, except in relaxed
14256 -- semantics mode.
14257
14258 if Is_Array_Type (Target)
14259 and then not Is_Constrained (Target)
14260 and then not Relaxed_RM_Semantics
14261 then
14262 Error_Msg_N
14263 ("unchecked conversion to unconstrained array not allowed", N);
14264 return;
14265 end if;
14266
14267 -- Warn if conversion between two different convention pointers
14268
14269 if Is_Access_Type (Target)
14270 and then Is_Access_Type (Source)
14271 and then Convention (Target) /= Convention (Source)
14272 and then Warn_On_Unchecked_Conversion
14273 then
14274 -- Give warnings for subprogram pointers only on most targets
14275
14276 if Is_Access_Subprogram_Type (Target)
14277 or else Is_Access_Subprogram_Type (Source)
14278 then
14279 Error_Msg_N
14280 ("?z?conversion between pointers with different conventions!",
14281 N);
14282 end if;
14283 end if;
14284
14285 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14286 -- warning when compiling GNAT-related sources.
14287
14288 if Warn_On_Unchecked_Conversion
14289 and then not In_Predefined_Unit (N)
14290 and then RTU_Loaded (Ada_Calendar)
14291 and then (Chars (Source) = Name_Time
14292 or else
14293 Chars (Target) = Name_Time)
14294 then
14295 -- If Ada.Calendar is loaded and the name of one of the operands is
14296 -- Time, there is a good chance that this is Ada.Calendar.Time.
14297
14298 declare
14299 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14300 begin
14301 pragma Assert (Present (Calendar_Time));
14302
14303 if Source = Calendar_Time or else Target = Calendar_Time then
14304 Error_Msg_N
14305 ("?z?representation of 'Time values may change between "
14306 & "'G'N'A'T versions", N);
14307 end if;
14308 end;
14309 end if;
14310
14311 -- Make entry in unchecked conversion table for later processing by
14312 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14313 -- (using values set by the back end where possible). This is only done
14314 -- if the appropriate warning is active.
14315
14316 if Warn_On_Unchecked_Conversion then
14317 Unchecked_Conversions.Append
14318 (New_Val => UC_Entry'(Eloc => Sloc (N),
14319 Source => Source,
14320 Target => Target,
14321 Act_Unit => Act_Unit));
14322
14323 -- If both sizes are known statically now, then back-end annotation
14324 -- is not required to do a proper check but if either size is not
14325 -- known statically, then we need the annotation.
14326
14327 if Known_Static_RM_Size (Source)
14328 and then
14329 Known_Static_RM_Size (Target)
14330 then
14331 null;
14332 else
14333 Back_Annotate_Rep_Info := True;
14334 end if;
14335 end if;
14336
14337 -- If unchecked conversion to access type, and access type is declared
14338 -- in the same unit as the unchecked conversion, then set the flag
14339 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14340
14341 if Is_Access_Type (Target) and then
14342 In_Same_Source_Unit (Target, N)
14343 then
14344 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14345 end if;
14346
14347 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14348 -- the back end needs to perform special validation checks.
14349
14350 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14351 -- have full expansion and the back end is called ???
14352
14353 Vnode :=
14354 Make_Validate_Unchecked_Conversion (Sloc (N));
14355 Set_Source_Type (Vnode, Source);
14356 Set_Target_Type (Vnode, Target);
14357
14358 -- If the unchecked conversion node is in a list, just insert before it.
14359 -- If not we have some strange case, not worth bothering about.
14360
14361 if Is_List_Member (N) then
14362 Insert_After (N, Vnode);
14363 end if;
14364 end Validate_Unchecked_Conversion;
14365
14366 ------------------------------------
14367 -- Validate_Unchecked_Conversions --
14368 ------------------------------------
14369
14370 procedure Validate_Unchecked_Conversions is
14371 begin
14372 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14373 declare
14374 T : UC_Entry renames Unchecked_Conversions.Table (N);
14375
14376 Act_Unit : constant Entity_Id := T.Act_Unit;
14377 Eloc : constant Source_Ptr := T.Eloc;
14378 Source : constant Entity_Id := T.Source;
14379 Target : constant Entity_Id := T.Target;
14380
14381 Source_Siz : Uint;
14382 Target_Siz : Uint;
14383
14384 begin
14385 -- Skip if function marked as warnings off
14386
14387 if Warnings_Off (Act_Unit) then
14388 goto Continue;
14389 end if;
14390
14391 -- This validation check, which warns if we have unequal sizes for
14392 -- unchecked conversion, and thus potentially implementation
14393 -- dependent semantics, is one of the few occasions on which we
14394 -- use the official RM size instead of Esize. See description in
14395 -- Einfo "Handling of Type'Size Values" for details.
14396
14397 if Serious_Errors_Detected = 0
14398 and then Known_Static_RM_Size (Source)
14399 and then Known_Static_RM_Size (Target)
14400
14401 -- Don't do the check if warnings off for either type, note the
14402 -- deliberate use of OR here instead of OR ELSE to get the flag
14403 -- Warnings_Off_Used set for both types if appropriate.
14404
14405 and then not (Has_Warnings_Off (Source)
14406 or
14407 Has_Warnings_Off (Target))
14408 then
14409 Source_Siz := RM_Size (Source);
14410 Target_Siz := RM_Size (Target);
14411
14412 if Source_Siz /= Target_Siz then
14413 Error_Msg
14414 ("?z?types for unchecked conversion have different sizes!",
14415 Eloc, Act_Unit);
14416
14417 if All_Errors_Mode then
14418 Error_Msg_Name_1 := Chars (Source);
14419 Error_Msg_Uint_1 := Source_Siz;
14420 Error_Msg_Name_2 := Chars (Target);
14421 Error_Msg_Uint_2 := Target_Siz;
14422 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14423
14424 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14425
14426 if Is_Discrete_Type (Source)
14427 and then
14428 Is_Discrete_Type (Target)
14429 then
14430 if Source_Siz > Target_Siz then
14431 Error_Msg
14432 ("\?z?^ high order bits of source will "
14433 & "be ignored!", Eloc);
14434
14435 elsif Is_Unsigned_Type (Source) then
14436 Error_Msg
14437 ("\?z?source will be extended with ^ high order "
14438 & "zero bits!", Eloc);
14439
14440 else
14441 Error_Msg
14442 ("\?z?source will be extended with ^ high order "
14443 & "sign bits!", Eloc);
14444 end if;
14445
14446 elsif Source_Siz < Target_Siz then
14447 if Is_Discrete_Type (Target) then
14448 if Bytes_Big_Endian then
14449 Error_Msg
14450 ("\?z?target value will include ^ undefined "
14451 & "low order bits!", Eloc, Act_Unit);
14452 else
14453 Error_Msg
14454 ("\?z?target value will include ^ undefined "
14455 & "high order bits!", Eloc, Act_Unit);
14456 end if;
14457
14458 else
14459 Error_Msg
14460 ("\?z?^ trailing bits of target value will be "
14461 & "undefined!", Eloc, Act_Unit);
14462 end if;
14463
14464 else pragma Assert (Source_Siz > Target_Siz);
14465 if Is_Discrete_Type (Source) then
14466 if Bytes_Big_Endian then
14467 Error_Msg
14468 ("\?z?^ low order bits of source will be "
14469 & "ignored!", Eloc, Act_Unit);
14470 else
14471 Error_Msg
14472 ("\?z?^ high order bits of source will be "
14473 & "ignored!", Eloc, Act_Unit);
14474 end if;
14475
14476 else
14477 Error_Msg
14478 ("\?z?^ trailing bits of source will be "
14479 & "ignored!", Eloc, Act_Unit);
14480 end if;
14481 end if;
14482 end if;
14483 end if;
14484 end if;
14485
14486 -- If both types are access types, we need to check the alignment.
14487 -- If the alignment of both is specified, we can do it here.
14488
14489 if Serious_Errors_Detected = 0
14490 and then Is_Access_Type (Source)
14491 and then Is_Access_Type (Target)
14492 and then Target_Strict_Alignment
14493 and then Present (Designated_Type (Source))
14494 and then Present (Designated_Type (Target))
14495 then
14496 declare
14497 D_Source : constant Entity_Id := Designated_Type (Source);
14498 D_Target : constant Entity_Id := Designated_Type (Target);
14499
14500 begin
14501 if Known_Alignment (D_Source)
14502 and then
14503 Known_Alignment (D_Target)
14504 then
14505 declare
14506 Source_Align : constant Uint := Alignment (D_Source);
14507 Target_Align : constant Uint := Alignment (D_Target);
14508
14509 begin
14510 if Source_Align < Target_Align
14511 and then not Is_Tagged_Type (D_Source)
14512
14513 -- Suppress warning if warnings suppressed on either
14514 -- type or either designated type. Note the use of
14515 -- OR here instead of OR ELSE. That is intentional,
14516 -- we would like to set flag Warnings_Off_Used in
14517 -- all types for which warnings are suppressed.
14518
14519 and then not (Has_Warnings_Off (D_Source)
14520 or
14521 Has_Warnings_Off (D_Target)
14522 or
14523 Has_Warnings_Off (Source)
14524 or
14525 Has_Warnings_Off (Target))
14526 then
14527 Error_Msg_Uint_1 := Target_Align;
14528 Error_Msg_Uint_2 := Source_Align;
14529 Error_Msg_Node_1 := D_Target;
14530 Error_Msg_Node_2 := D_Source;
14531 Error_Msg
14532 ("?z?alignment of & (^) is stricter than "
14533 & "alignment of & (^)!", Eloc, Act_Unit);
14534 Error_Msg
14535 ("\?z?resulting access value may have invalid "
14536 & "alignment!", Eloc, Act_Unit);
14537 end if;
14538 end;
14539 end if;
14540 end;
14541 end if;
14542 end;
14543
14544 <<Continue>>
14545 null;
14546 end loop;
14547 end Validate_Unchecked_Conversions;
14548
14549 end Sem_Ch13;