]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_util.ads
[Ada] Remove more cases of empty loops
[thirdparty/gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Atree; use Atree;
29 with Einfo; use Einfo;
30 with Exp_Tss; use Exp_Tss;
31 with Namet; use Namet;
32 with Opt; use Opt;
33 with Snames; use Snames;
34 with Types; use Types;
35 with Uintp; use Uintp;
36 with Urealp; use Urealp;
37
38 package Sem_Util is
39
40 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
41 -- The list of interfaces implemented by Typ. Empty if there are none,
42 -- including the cases where there can't be any because e.g. the type is
43 -- not tagged.
44
45 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
46 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
47 -- the given string argument, adding leading and trailing asterisks if they
48 -- are not already present. Str_Lit is the static value of the pragma
49 -- argument.
50
51 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
52 -- Add A to the list of access types to process when expanding the
53 -- freeze node of E.
54
55 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
56 -- Given a block statement N, generate an internal E_Block label and make
57 -- it the identifier of the block. Id denotes the generated entity. If the
58 -- block already has an identifier, Id returns the entity of its label.
59
60 procedure Add_Global_Declaration (N : Node_Id);
61 -- These procedures adds a declaration N at the library level, to be
62 -- elaborated before any other code in the unit. It is used for example
63 -- for the entity that marks whether a unit has been elaborated. The
64 -- declaration is added to the Declarations list of the Aux_Decls_Node
65 -- for the current unit. The declarations are added in the current scope,
66 -- so the caller should push a new scope as required before the call.
67
68 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
69 -- Returns the name of E adding Suffix
70
71 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
72 -- Given two types, returns True if we are in Allow_Integer_Address mode
73 -- and one of the types is (a descendant of) System.Address (and this type
74 -- is private), and the other type is any integer type.
75
76 function Address_Value (N : Node_Id) return Node_Id;
77 -- Return the underlying value of the expression N of an address clause
78
79 function Addressable (V : Uint) return Boolean;
80 function Addressable (V : Int) return Boolean;
81 pragma Inline (Addressable);
82 -- Returns True if the value of V is the word size or an addressable factor
83 -- of the word size (typically 8, 16, 32 or 64).
84
85 procedure Aggregate_Constraint_Checks
86 (Exp : Node_Id;
87 Check_Typ : Entity_Id);
88 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
89 -- and Check_Typ a constrained record type with discriminants, we generate
90 -- the appropriate discriminant checks. If Exp is an array aggregate then
91 -- emit the appropriate length checks. If Exp is a scalar type, or a string
92 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
93 -- are performed at run time. Also used for expressions in the argument of
94 -- 'Update, which shares some of the features of an aggregate.
95
96 function Alignment_In_Bits (E : Entity_Id) return Uint;
97 -- If the alignment of the type or object E is currently known to the
98 -- compiler, then this function returns the alignment value in bits.
99 -- Otherwise Uint_0 is returned, indicating that the alignment of the
100 -- entity is not yet known to the compiler.
101
102 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
103 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
104 -- Given a constraint or subtree of a constraint on a composite
105 -- subtype/object, returns True if there are no nonstatic constraints,
106 -- which might cause objects to be created with dynamic size.
107 -- Called for subtype declarations (including implicit ones created for
108 -- subtype indications in object declarations, as well as discriminated
109 -- record aggregate cases). For record aggregates, only records containing
110 -- discriminant-dependent arrays matter, because the discriminants must be
111 -- static when governing a variant part. Access discriminants are
112 -- irrelevant. Also called for array aggregates, but only named notation,
113 -- because those are the only dynamic cases.
114
115 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
116 -- Recursive procedure to construct string for qualified name of enclosing
117 -- program unit. The qualification stops at an enclosing scope has no
118 -- source name (block or loop). If entity is a subprogram instance, skip
119 -- enclosing wrapper package. The name is appended to Buf.
120
121 procedure Append_Inherited_Subprogram (S : Entity_Id);
122 -- If the parent of the operation is declared in the visible part of
123 -- the current scope, the inherited operation is visible even though the
124 -- derived type that inherits the operation may be completed in the private
125 -- part of the current package.
126
127 procedure Apply_Compile_Time_Constraint_Error
128 (N : Node_Id;
129 Msg : String;
130 Reason : RT_Exception_Code;
131 Ent : Entity_Id := Empty;
132 Typ : Entity_Id := Empty;
133 Loc : Source_Ptr := No_Location;
134 Rep : Boolean := True;
135 Warn : Boolean := False);
136 -- N is a subexpression that will raise Constraint_Error when evaluated
137 -- at run time. Msg is a message that explains the reason for raising the
138 -- exception. The last character is ? if the message is always a warning,
139 -- even in Ada 95, and is not a ? if the message represents an illegality
140 -- (because of violation of static expression rules) in Ada 95 (but not
141 -- in Ada 83). Typically this routine posts all messages at the Sloc of
142 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
143 -- the message. After posting the appropriate message, and if the flag
144 -- Rep is set, this routine replaces the expression with an appropriate
145 -- N_Raise_Constraint_Error node using the given Reason code. This node
146 -- is then marked as being static if the original node is static, but
147 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
148 -- The error message may contain a } or & insertion character. This
149 -- normally references Etype (N), unless the Ent argument is given
150 -- explicitly, in which case it is used instead. The type of the raise
151 -- node that is built is normally Etype (N), but if the Typ parameter
152 -- is present, this is used instead. Warn is normally False. If it is
153 -- True then the message is treated as a warning even though it does
154 -- not end with a ? (this is used when the caller wants to parameterize
155 -- whether an error or warning is given), or when the message should be
156 -- treated as a warning even when SPARK_Mode is On (which otherwise would
157 -- force an error).
158
159 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
160 -- Given the entity of an abstract state or a variable, determine whether
161 -- Id is subject to external property Async_Readers and if it is, the
162 -- related expression evaluates to True.
163
164 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
165 -- Given the entity of an abstract state or a variable, determine whether
166 -- Id is subject to external property Async_Writers and if it is, the
167 -- related expression evaluates to True.
168
169 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
170 -- If at the point of declaration an array type has a private or limited
171 -- component, several array operations are not available on the type, and
172 -- the array type is flagged accordingly. If in the immediate scope of
173 -- the array type the component becomes non-private or non-limited, these
174 -- operations become available. This can happen if the scopes of both types
175 -- are open, and the scope of the array is not outside the scope of the
176 -- component.
177
178 procedure Bad_Attribute
179 (N : Node_Id;
180 Nam : Name_Id;
181 Warn : Boolean := False);
182 -- Called when node N is expected to contain a valid attribute name, and
183 -- Nam is found instead. If Warn is set True this is a warning, else this
184 -- is an error.
185
186 procedure Bad_Predicated_Subtype_Use
187 (Msg : String;
188 N : Node_Id;
189 Typ : Entity_Id;
190 Suggest_Static : Boolean := False);
191 -- This is called when Typ, a predicated subtype, is used in a context
192 -- which does not allow the use of a predicated subtype. Msg is passed to
193 -- Error_Msg_FE to output an appropriate message using N as the location,
194 -- and Typ as the entity. The caller must set up any insertions other than
195 -- the & for the type itself. Note that if Typ is a generic actual type,
196 -- then the message will be output as a warning, and a raise Program_Error
197 -- is inserted using Insert_Action with node N as the insertion point. Node
198 -- N also supplies the source location for construction of the raise node.
199 -- If Typ does not have any predicates, the call has no effect. Set flag
200 -- Suggest_Static when the context warrants an advice on how to avoid the
201 -- use error.
202
203 function Bad_Unordered_Enumeration_Reference
204 (N : Node_Id;
205 T : Entity_Id) return Boolean;
206 -- Node N contains a potentially dubious reference to type T, either an
207 -- explicit comparison, or an explicit range. This function returns True
208 -- if the type T is an enumeration type for which No pragma Order has been
209 -- given, and the reference N is not in the same extended source unit as
210 -- the declaration of T.
211
212 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
213 -- Given block statement, entry body, package body, subprogram body, or
214 -- task body N, return the closest source location to the "begin" keyword.
215
216 function Build_Actual_Subtype
217 (T : Entity_Id;
218 N : Node_Or_Entity_Id) return Node_Id;
219 -- Build an anonymous subtype for an entity or expression, using the
220 -- bounds of the entity or the discriminants of the enclosing record.
221 -- T is the type for which the actual subtype is required, and N is either
222 -- a defining identifier, or any subexpression.
223
224 function Build_Actual_Subtype_Of_Component
225 (T : Entity_Id;
226 N : Node_Id) return Node_Id;
227 -- Determine whether a selected component has a type that depends on
228 -- discriminants, and build actual subtype for it if so.
229
230 -- Handling of inherited primitives whose ancestors have class-wide
231 -- pre/postconditions.
232
233 -- If a primitive operation of a parent type has a class-wide pre/post-
234 -- condition that includes calls to other primitives, and that operation
235 -- is inherited by a descendant type that also overrides some of these
236 -- other primitives, the condition that applies to the inherited
237 -- operation has a modified condition in which the overridden primitives
238 -- have been replaced by the primitives of the descendent type. A call
239 -- to the inherited operation cannot be simply a call to the parent
240 -- operation (with an appropriate conversion) as is the case for other
241 -- inherited operations, but must appear with a wrapper subprogram to which
242 -- the modified conditions apply. Furthermore the call to the parent
243 -- operation must not be subject to the original class-wide condition,
244 -- given that modified conditions apply. To implement these semantics
245 -- economically we create a subprogram body (a "class-wide clone") to
246 -- which no pre/postconditions apply, and we create bodies for the
247 -- original and the inherited operation that have their respective
248 -- pre/postconditions and simply call the clone. The following operations
249 -- take care of constructing declaration and body of the clone, and
250 -- building the calls to it within the appropriate wrappers.
251
252 procedure Build_Class_Wide_Clone_Body
253 (Spec_Id : Entity_Id;
254 Bod : Node_Id);
255 -- Build body of subprogram that has a class-wide condition that contains
256 -- calls to other primitives. Spec_Id is the Id of the subprogram, and B
257 -- is its source body, which becomes the body of the clone.
258
259 function Build_Class_Wide_Clone_Call
260 (Loc : Source_Ptr;
261 Decls : List_Id;
262 Spec_Id : Entity_Id;
263 Spec : Node_Id) return Node_Id;
264 -- Build a call to the common class-wide clone of a subprogram with
265 -- class-wide conditions. The body of the subprogram becomes a wrapper
266 -- for a call to the clone. The inherited operation becomes a similar
267 -- wrapper to which modified conditions apply, and the call to the
268 -- clone includes the proper conversion in a call the parent operation.
269
270 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
271 -- For a subprogram that has a class-wide condition that contains calls
272 -- to other primitives, build an internal subprogram that is invoked
273 -- through a type-specific wrapper for all inherited subprograms that
274 -- may have a modified condition.
275
276 function Build_Default_Subtype
277 (T : Entity_Id;
278 N : Node_Id) return Entity_Id;
279 -- If T is an unconstrained type with defaulted discriminants, build a
280 -- subtype constrained by the default values, insert the subtype
281 -- declaration in the tree before N, and return the entity of that
282 -- subtype. Otherwise, simply return T.
283
284 function Build_Discriminal_Subtype_Of_Component
285 (T : Entity_Id) return Node_Id;
286 -- Determine whether a record component has a type that depends on
287 -- discriminants, and build actual subtype for it if so.
288
289 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
290 -- Given a compilation unit node N, allocate an elaboration counter for
291 -- the compilation unit, and install it in the Elaboration_Entity field
292 -- of Spec_Id, the entity for the compilation unit.
293
294 function Build_Overriding_Spec
295 (Op : Node_Id;
296 Typ : Entity_Id) return Node_Id;
297 -- Build a subprogram specification for the wrapper of an inherited
298 -- operation with a modified pre- or postcondition (See AI12-0113).
299 -- Op is the parent operation, and Typ is the descendant type that
300 -- inherits the operation.
301
302 procedure Build_Explicit_Dereference
303 (Expr : Node_Id;
304 Disc : Entity_Id);
305 -- AI05-139: Names with implicit dereference. If the expression N is a
306 -- reference type and the context imposes the corresponding designated
307 -- type, convert N into N.Disc.all. Such expressions are always over-
308 -- loaded with both interpretations, and the dereference interpretation
309 -- carries the name of the reference discriminant.
310
311 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
312 -- Returns True if the expression cannot possibly raise Constraint_Error.
313 -- The response is conservative in the sense that a result of False does
314 -- not necessarily mean that CE could be raised, but a response of True
315 -- means that for sure CE cannot be raised.
316
317 procedure Check_Dynamically_Tagged_Expression
318 (Expr : Node_Id;
319 Typ : Entity_Id;
320 Related_Nod : Node_Id);
321 -- Check wrong use of dynamically tagged expression
322
323 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
324 -- Verify that the full declaration of type T has been seen. If not, place
325 -- error message on node N. Used in object declarations, type conversions
326 -- and qualified expressions.
327
328 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
329 -- A subprogram that has an Address parameter and is declared in a Pure
330 -- package is not considered Pure, because the parameter may be used as a
331 -- pointer and the referenced data may change even if the address value
332 -- itself does not.
333 -- If the programmer gave an explicit Pure_Function pragma, then we respect
334 -- the pragma and leave the subprogram Pure.
335
336 procedure Check_Function_Writable_Actuals (N : Node_Id);
337 -- (Ada 2012): If the construct N has two or more direct constituents that
338 -- are names or expressions whose evaluation may occur in an arbitrary
339 -- order, at least one of which contains a function call with an in out or
340 -- out parameter, then the construct is legal only if: for each name that
341 -- is passed as a parameter of mode in out or out to some inner function
342 -- call C2 (not including the construct N itself), there is no other name
343 -- anywhere within a direct constituent of the construct C other than
344 -- the one containing C2, that is known to refer to the same object (RM
345 -- 6.4.1(6.17/3)).
346
347 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
348 -- AI05-139-2: Accessors and iterators for containers. This procedure
349 -- checks whether T is a reference type, and if so it adds an interprettion
350 -- to N whose type is the designated type of the reference_discriminant.
351 -- If N is a generalized indexing operation, the interpretation is added
352 -- both to the corresponding function call, and to the indexing node.
353
354 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
355 -- Within a protected function, the current object is a constant, and
356 -- internal calls to a procedure or entry are illegal. Similarly, other
357 -- uses of a protected procedure in a renaming or a generic instantiation
358 -- in the context of a protected function are illegal (AI05-0225).
359
360 procedure Check_Later_Vs_Basic_Declarations
361 (Decls : List_Id;
362 During_Parsing : Boolean);
363 -- If During_Parsing is True, check for misplacement of later vs basic
364 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
365 -- restriction is set, do the same: although SPARK 95 removes the
366 -- distinction between initial and later declarative items, the distinction
367 -- remains in the Examiner (JB01-005). Note that the Examiner does not
368 -- count package declarations in later declarative items.
369
370 procedure Check_No_Hidden_State (Id : Entity_Id);
371 -- Determine whether object or state Id introduces a hidden state. If this
372 -- is the case, emit an error.
373
374 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
375 -- Verify that the profile of nonvolatile function Func_Id does not contain
376 -- effectively volatile parameters or return type.
377
378 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
379 -- Verify the legality of reference Ref to variable Var_Id when the
380 -- variable is a constituent of a single protected/task type.
381
382 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
383 -- N is one of the statement forms that is a potentially blocking
384 -- operation. If it appears within a protected action, emit warning.
385
386 procedure Check_Previous_Null_Procedure
387 (Decl : Node_Id;
388 Prev : Entity_Id);
389 -- A null procedure or a subprogram renaming can complete a previous
390 -- declaration, unless that previous declaration is itself a null
391 -- procedure. This must be treated specially because the analysis of
392 -- the null procedure leaves the corresponding entity as having no
393 -- completion, because its completion is provided by a generated body
394 -- inserted after all other declarations.
395
396 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
397 -- Determine whether the contract of subprogram Subp_Id mentions attribute
398 -- 'Result and it contains an expression that evaluates differently in pre-
399 -- and post-state.
400
401 procedure Check_State_Refinements
402 (Context : Node_Id;
403 Is_Main_Unit : Boolean := False);
404 -- Verify that all abstract states declared in a block statement, entry
405 -- body, package body, protected body, subprogram body, task body, or a
406 -- package declaration denoted by Context have proper refinement. Emit an
407 -- error if this is not the case. Flag Is_Main_Unit should be set when
408 -- Context denotes the main compilation unit.
409
410 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
411 -- Verify that all abstract states and objects declared in the state space
412 -- of package body Body_Id are used as constituents. Emit an error if this
413 -- is not the case.
414
415 procedure Check_Unprotected_Access
416 (Context : Node_Id;
417 Expr : Node_Id);
418 -- Check whether the expression is a pointer to a protected component,
419 -- and the context is external to the protected operation, to warn against
420 -- a possible unlocked access to data.
421
422 function Choice_List (N : Node_Id) return List_Id;
423 -- Utility to retrieve the choices of a Component_Association or the
424 -- Discrete_Choices of an Iterated_Component_Association. For various
425 -- reasons these nodes have a different structure even though they play
426 -- similar roles in array aggregates.
427
428 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
429 -- Gather the entities of all abstract states and objects declared in the
430 -- body state space of package body Body_Id.
431
432 procedure Collect_Interfaces
433 (T : Entity_Id;
434 Ifaces_List : out Elist_Id;
435 Exclude_Parents : Boolean := False;
436 Use_Full_View : Boolean := True);
437 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
438 -- directly or indirectly implemented by T. Exclude_Parents is used to
439 -- avoid the addition of inherited interfaces to the generated list.
440 -- Use_Full_View is used to collect the interfaces using the full-view
441 -- (if available).
442
443 procedure Collect_Interface_Components
444 (Tagged_Type : Entity_Id;
445 Components_List : out Elist_Id);
446 -- Ada 2005 (AI-251): Collect all the tag components associated with the
447 -- secondary dispatch tables of a tagged type.
448
449 procedure Collect_Interfaces_Info
450 (T : Entity_Id;
451 Ifaces_List : out Elist_Id;
452 Components_List : out Elist_Id;
453 Tags_List : out Elist_Id);
454 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
455 -- the record component and tag associated with each of these interfaces.
456 -- On exit Ifaces_List, Components_List and Tags_List have the same number
457 -- of elements, and elements at the same position on these tables provide
458 -- information on the same interface type.
459
460 procedure Collect_Parents
461 (T : Entity_Id;
462 List : out Elist_Id;
463 Use_Full_View : Boolean := True);
464 -- Collect all the parents of Typ. Use_Full_View is used to collect them
465 -- using the full-view of private parents (if available).
466
467 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
468 -- Called upon type derivation and extension. We scan the declarative part
469 -- in which the type appears, and collect subprograms that have one
470 -- subsidiary subtype of the type. These subprograms can only appear after
471 -- the type itself.
472
473 function Compile_Time_Constraint_Error
474 (N : Node_Id;
475 Msg : String;
476 Ent : Entity_Id := Empty;
477 Loc : Source_Ptr := No_Location;
478 Warn : Boolean := False;
479 Extra_Msg : String := "") return Node_Id;
480 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
481 -- generates a warning (or error) message in the same manner, but it does
482 -- not replace any nodes. For convenience, the function always returns its
483 -- first argument. The message is a warning if the message ends with ?, or
484 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
485 -- If Extra_Msg is not a null string, then it's associated with N and
486 -- emitted immediately after the main message (and before output of any
487 -- message indicating that Constraint_Error will be raised).
488
489 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
490 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
491 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
492 -- False).
493
494 function Copy_Component_List
495 (R_Typ : Entity_Id;
496 Loc : Source_Ptr) return List_Id;
497 -- Copy components from record type R_Typ that come from source. Used to
498 -- create a new compatible record type. Loc is the source location assigned
499 -- to the created nodes.
500
501 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
502 -- Utility to create a parameter profile for a new subprogram spec, when
503 -- the subprogram has a body that acts as spec. This is done for some cases
504 -- of inlining, and for private protected ops. Also used to create bodies
505 -- for stubbed subprograms.
506
507 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
508 -- Copy the SPARK_Mode aspect if present in the aspect specifications
509 -- of node From to node To. On entry it is assumed that To does not have
510 -- aspect specifications. If From has no aspects, the routine has no
511 -- effect.
512
513 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
514 -- Replicate a function or a procedure specification denoted by Spec. The
515 -- resulting tree is an exact duplicate of the original tree. New entities
516 -- are created for the unit name and the formal parameters.
517
518 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
519 -- If a type is a generic actual type, return the corresponding formal in
520 -- the generic parent unit. There is no direct link in the tree for this
521 -- attribute, except in the case of formal private and derived types.
522 -- Possible optimization???
523
524 function Current_Entity (N : Node_Id) return Entity_Id;
525 pragma Inline (Current_Entity);
526 -- Find the currently visible definition for a given identifier, that is to
527 -- say the first entry in the visibility chain for the Chars of N.
528
529 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
530 -- Find whether there is a previous definition for identifier N in the
531 -- current scope. Because declarations for a scope are not necessarily
532 -- contiguous (e.g. for packages) the first entry on the visibility chain
533 -- for N is not necessarily in the current scope.
534
535 function Current_Scope return Entity_Id;
536 -- Get entity representing current scope
537
538 function Current_Scope_No_Loops return Entity_Id;
539 -- Return the current scope ignoring internally generated loops
540
541 function Current_Subprogram return Entity_Id;
542 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
543 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
544 -- Current_Scope is returned. The returned value is Empty if this is called
545 -- from a library package which is not within any subprogram.
546
547 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
548 -- Same as Type_Access_Level, except that if the type is the type of an Ada
549 -- 2012 stand-alone object of an anonymous access type, then return the
550 -- static accessibility level of the object. In that case, the dynamic
551 -- accessibility level of the object may take on values in a range. The low
552 -- bound of that range is returned by Type_Access_Level; this function
553 -- yields the high bound of that range. Also differs from Type_Access_Level
554 -- in the case of a descendant of a generic formal type (returns Int'Last
555 -- instead of 0).
556
557 function Defining_Entity (N : Node_Id) return Entity_Id;
558 -- Given a declaration N, returns the associated defining entity. If the
559 -- declaration has a specification, the entity is obtained from the
560 -- specification. If the declaration has a defining unit name, then the
561 -- defining entity is obtained from the defining unit name ignoring any
562 -- child unit prefixes.
563 --
564 -- Iterator loops also have a defining entity, which holds the list of
565 -- local entities declared during loop expansion. These entities need
566 -- debugging information, generated through Qualify_Entity_Names, and
567 -- the loop declaration must be placed in the table Name_Qualify_Units.
568
569 -- WARNING: There is a matching C declaration of this subprogram in fe.h
570
571 function Denotes_Discriminant
572 (N : Node_Id;
573 Check_Concurrent : Boolean := False) return Boolean;
574 -- Returns True if node N is an Entity_Name node for a discriminant. If the
575 -- flag Check_Concurrent is true, function also returns true when N denotes
576 -- the discriminal of the discriminant of a concurrent type. This is needed
577 -- to disable some optimizations on private components of protected types,
578 -- and constraint checks on entry families constrained by discriminants.
579
580 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
581 -- Detect suspicious overlapping between actuals in a call, when both are
582 -- writable (RM 2012 6.4.1(6.4/3)).
583
584 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
585 -- Functions to detect suspicious overlapping between actuals in a call,
586 -- when one of them is writable. The predicates are those proposed in
587 -- AI05-0144, to detect dangerous order dependence in complex calls.
588 -- I would add a parameter Warn which enables more extensive testing of
589 -- cases as we find appropriate when we are only warning ??? Or perhaps
590 -- return an indication of (Error, Warn, OK) ???
591
592 function Denotes_Variable (N : Node_Id) return Boolean;
593 -- Returns True if node N denotes a single variable without parentheses
594
595 function Depends_On_Discriminant (N : Node_Id) return Boolean;
596 -- Returns True if N denotes a discriminant or if N is a range, a subtype
597 -- indication or a scalar subtype where one of the bounds is a
598 -- discriminant.
599
600 function Designate_Same_Unit
601 (Name1 : Node_Id;
602 Name2 : Node_Id) return Boolean;
603 -- Returns True if Name1 and Name2 designate the same unit name; each of
604 -- these names is supposed to be a selected component name, an expanded
605 -- name, a defining program unit name or an identifier.
606
607 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
608 -- Emit an error if iterated component association N is actually an illegal
609 -- quantified expression lacking a quantifier.
610
611 function Discriminated_Size (Comp : Entity_Id) return Boolean;
612 -- If a component size is not static then a warning will be emitted
613 -- in Ravenscar or other restricted contexts. When a component is non-
614 -- static because of a discriminant constraint we can specialize the
615 -- warning by mentioning discriminants explicitly. This was created for
616 -- private components of protected objects, but is generally useful when
617 -- restriction No_Implicit_Heap_Allocation is active.
618
619 function Dynamic_Accessibility_Level (N : Node_Id) return Node_Id;
620 -- N should be an expression of an access type. Builds an integer literal
621 -- except in cases involving anonymous access types, where accessibility
622 -- levels are tracked at run time (access parameters and Ada 2012 stand-
623 -- alone objects).
624
625 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
626 -- Same as Einfo.Extra_Accessibility except thtat object renames
627 -- are looked through.
628
629 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
630 -- Given the entity of an abstract state or a variable, determine whether
631 -- Id is subject to external property Effective_Reads and if it is, the
632 -- related expression evaluates to True.
633
634 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
635 -- Given the entity of an abstract state or a variable, determine whether
636 -- Id is subject to external property Effective_Writes and if it is, the
637 -- related expression evaluates to True.
638
639 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
640 -- Returns the enclosing N_Compilation_Unit node that is the root of a
641 -- subtree containing N.
642
643 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
644 -- Returns the closest ancestor of Typ that is a CPP type.
645
646 function Enclosing_Declaration (N : Node_Id) return Node_Id;
647 -- Returns the declaration node enclosing N (including possibly N itself),
648 -- if any, or Empty otherwise.
649
650 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
651 -- Returns the Node_Id associated with the innermost enclosing generic
652 -- body, if any. If none, then returns Empty.
653
654 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
655 -- Returns the Node_Id associated with the innermost enclosing generic
656 -- unit, if any. If none, then returns Empty.
657
658 function Enclosing_Lib_Unit_Entity
659 (E : Entity_Id := Current_Scope) return Entity_Id;
660 -- Returns the entity of enclosing library unit node which is the root of
661 -- the current scope (which must not be Standard_Standard, and the caller
662 -- is responsible for ensuring this condition) or other specified entity.
663
664 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
665 -- Returns the N_Compilation_Unit node of the library unit that is directly
666 -- or indirectly (through a subunit) at the root of a subtree containing
667 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
668 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
669 -- library unit. If no such item is found, returns Empty.
670
671 function Enclosing_Package (E : Entity_Id) return Entity_Id;
672 -- Utility function to return the Ada entity of the package enclosing
673 -- the entity E, if any. Returns Empty if no enclosing package.
674
675 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
676 -- Returns the entity of the package or subprogram enclosing E, if any.
677 -- Returns Empty if no enclosing package or subprogram.
678
679 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
680 -- Utility function to return the Ada entity of the subprogram enclosing
681 -- the entity E, if any. Returns Empty if no enclosing subprogram.
682
683 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
684 -- Given block statement, entry body, package body, package declaration,
685 -- protected body, [single] protected type declaration, subprogram body,
686 -- task body, or [single] task type declaration N, return the closest
687 -- source location of the "end" keyword.
688
689 procedure Ensure_Freeze_Node (E : Entity_Id);
690 -- Make sure a freeze node is allocated for entity E. If necessary, build
691 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
692
693 procedure Enter_Name (Def_Id : Entity_Id);
694 -- Insert new name in symbol table of current scope with check for
695 -- duplications (error message is issued if a conflict is found).
696 -- Note: Enter_Name is not used for overloadable entities, instead these
697 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
698
699 function Entity_Of (N : Node_Id) return Entity_Id;
700 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
701 -- entity of the earliest renamed source abstract state or whole object.
702 -- If no suitable entity is available, return Empty. This routine carries
703 -- out actions that are tied to SPARK semantics.
704
705 function Exceptions_OK return Boolean;
706 -- Determine whether exceptions are allowed to be caught, propagated, or
707 -- raised.
708
709 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
710 -- This procedure is called after issuing a message complaining about an
711 -- inappropriate use of limited type T. If useful, it adds additional
712 -- continuation lines to the message explaining why type T is limited.
713 -- Messages are placed at node N.
714
715 function Expression_Of_Expression_Function
716 (Subp : Entity_Id) return Node_Id;
717 -- Return the expression of expression function Subp
718
719 type Extensions_Visible_Mode is
720 (Extensions_Visible_None,
721 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
722 -- value acts as a default in a non-SPARK compilation.
723
724 Extensions_Visible_False,
725 -- A value of "False" signifies that Extensions_Visible is either
726 -- missing or the pragma is present and the value of its Boolean
727 -- expression is False.
728
729 Extensions_Visible_True);
730 -- A value of "True" signifies that Extensions_Visible is present and
731 -- the value of its Boolean expression is True.
732
733 function Extensions_Visible_Status
734 (Id : Entity_Id) return Extensions_Visible_Mode;
735 -- Given the entity of a subprogram or formal parameter subject to pragma
736 -- Extensions_Visible, return the Boolean value denoted by the expression
737 -- of the pragma.
738
739 procedure Find_Actual
740 (N : Node_Id;
741 Formal : out Entity_Id;
742 Call : out Node_Id);
743 -- Determines if the node N is an actual parameter of a function or a
744 -- procedure call. If so, then Formal points to the entity for the formal
745 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
746 -- Call is set to the node for the corresponding call. If the node N is not
747 -- an actual parameter then Formal and Call are set to Empty.
748
749 function Find_Body_Discriminal
750 (Spec_Discriminant : Entity_Id) return Entity_Id;
751 -- Given a discriminant of the record type that implements a task or
752 -- protected type, return the discriminal of the corresponding discriminant
753 -- of the actual concurrent type.
754
755 function Find_Corresponding_Discriminant
756 (Id : Node_Id;
757 Typ : Entity_Id) return Entity_Id;
758 -- Because discriminants may have different names in a generic unit and in
759 -- an instance, they are resolved positionally when possible. A reference
760 -- to a discriminant carries the discriminant that it denotes when it is
761 -- analyzed. Subsequent uses of this id on a different type denotes the
762 -- discriminant at the same position in this new type.
763
764 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
765 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
766 -- defines the Default_Initial_Condition pragma of type Typ. This is either
767 -- Typ itself or a parent type when the pragma is inherited.
768
769 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
770 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
771 -- such a loop exists, return the entity of its identifier (E_Loop scope),
772 -- otherwise return Empty.
773
774 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
775 -- Find the nearest scope which encloses arbitrary node N
776
777 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
778 -- Find the nested loop statement in a conditional block. Loops subject to
779 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
780 -- loop are nested within the block.
781
782 procedure Find_Overlaid_Entity
783 (N : Node_Id;
784 Ent : out Entity_Id;
785 Off : out Boolean);
786 -- The node N should be an address representation clause. Determines if
787 -- the target expression is the address of an entity with an optional
788 -- offset. If so, set Ent to the entity and, if there is an offset, set
789 -- Off to True, otherwise to False. If N is not an address representation
790 -- clause, or if it is not possible to determine that the address is of
791 -- this form, then set Ent to Empty.
792
793 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
794 -- Return the type of formal parameter Param as determined by its
795 -- specification.
796
797 -- The following type describes the placement of an arbitrary entity with
798 -- respect to SPARK visible / hidden state space.
799
800 type State_Space_Kind is
801 (Not_In_Package,
802 -- An entity is not in the visible, private or body state space when
803 -- the immediate enclosing construct is not a package.
804
805 Visible_State_Space,
806 -- An entity is in the visible state space when it appears immediately
807 -- within the visible declarations of a package or when it appears in
808 -- the visible state space of a nested package which in turn is declared
809 -- in the visible declarations of an enclosing package:
810
811 -- package Pack is
812 -- Visible_Variable : ...
813 -- package Nested
814 -- with Abstract_State => Visible_State
815 -- is
816 -- Visible_Nested_Variable : ...
817 -- end Nested;
818 -- end Pack;
819
820 -- Entities associated with a package instantiation inherit the state
821 -- space from the instance placement:
822
823 -- generic
824 -- package Gen is
825 -- Generic_Variable : ...
826 -- end Gen;
827
828 -- with Gen;
829 -- package Pack is
830 -- package Inst is new Gen;
831 -- -- Generic_Variable is in the visible state space of Pack
832 -- end Pack;
833
834 Private_State_Space,
835 -- An entity is in the private state space when it appears immediately
836 -- within the private declarations of a package or when it appears in
837 -- the visible state space of a nested package which in turn is declared
838 -- in the private declarations of an enclosing package:
839
840 -- package Pack is
841 -- private
842 -- Private_Variable : ...
843 -- package Nested
844 -- with Abstract_State => Private_State
845 -- is
846 -- Private_Nested_Variable : ...
847 -- end Nested;
848 -- end Pack;
849
850 -- The same placement principle applies to package instantiations
851
852 Body_State_Space);
853 -- An entity is in the body state space when it appears immediately
854 -- within the declarations of a package body or when it appears in the
855 -- visible state space of a nested package which in turn is declared in
856 -- the declarations of an enclosing package body:
857
858 -- package body Pack is
859 -- Body_Variable : ...
860 -- package Nested
861 -- with Abstract_State => Body_State
862 -- is
863 -- Body_Nested_Variable : ...
864 -- end Nested;
865 -- end Pack;
866
867 -- The same placement principle applies to package instantiations
868
869 procedure Find_Placement_In_State_Space
870 (Item_Id : Entity_Id;
871 Placement : out State_Space_Kind;
872 Pack_Id : out Entity_Id);
873 -- Determine the state space placement of an item. Item_Id denotes the
874 -- entity of an abstract state, object, or package instantiation. Placement
875 -- captures the precise placement of the item in the enclosing state space.
876 -- If the state space is that of a package, Pack_Id denotes its entity,
877 -- otherwise Pack_Id is Empty.
878
879 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
880 -- Locate primitive equality for type if it exists. Return Empty if it is
881 -- not available.
882
883 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
884 -- Find specific type of a class-wide type, and handle the case of an
885 -- incomplete type coming either from a limited_with clause or from an
886 -- incomplete type declaration. If resulting type is private return its
887 -- full view.
888
889 function Find_Static_Alternative (N : Node_Id) return Node_Id;
890 -- N is a case statement whose expression is a compile-time value.
891 -- Determine the alternative chosen, so that the code of non-selected
892 -- alternatives, and the warnings that may apply to them, are removed.
893
894 function First_Actual (Node : Node_Id) return Node_Id;
895 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
896 -- N_Entry_Call_Statement node. The result returned is the first actual
897 -- parameter in declaration order (not the order of parameters as they
898 -- appeared in the source, which can be quite different as a result of the
899 -- use of named parameters). Empty is returned for a call with no
900 -- parameters. The procedure for iterating through the actuals in
901 -- declaration order is to use this function to find the first actual, and
902 -- then use Next_Actual to obtain the next actual in declaration order.
903 -- Note that the value returned is always the expression (not the
904 -- N_Parameter_Association nodes, even if named association is used).
905
906 -- WARNING: There is a matching C declaration of this subprogram in fe.h
907
908 function First_Global
909 (Subp : Entity_Id;
910 Global_Mode : Name_Id;
911 Refined : Boolean := False) return Node_Id;
912 -- Returns the first global item of mode Global_Mode (which can be
913 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
914 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
915 -- is retrieved from the Refined_Global aspect/pragma associated to the
916 -- body of Subp if present. Next_Global can be used to get the next global
917 -- item with the same mode.
918
919 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
920 -- Replace all occurrences of a particular word in string Msg depending on
921 -- the Ekind of Id as follows:
922 -- * Replace "subprogram" with
923 -- - "entry" when Id is an entry [family]
924 -- - "task type" when Id is a single task object, task type or task
925 -- body.
926 -- * Replace "protected" with
927 -- - "task" when Id is a single task object, task type or task body
928 -- All other non-matching words remain as is
929
930 function From_Nested_Package (T : Entity_Id) return Boolean;
931 -- A type declared in a nested package may be frozen by a declaration
932 -- appearing after the package but before the package is frozen. If the
933 -- type has aspects that generate subprograms, these may contain references
934 -- to entities local to the nested package. In that case the package must
935 -- be installed on the scope stack to prevent spurious visibility errors.
936
937 procedure Gather_Components
938 (Typ : Entity_Id;
939 Comp_List : Node_Id;
940 Governed_By : List_Id;
941 Into : Elist_Id;
942 Report_Errors : out Boolean);
943 -- The purpose of this procedure is to gather the valid components in a
944 -- record type according to the values of its discriminants, in order to
945 -- validate the components of a record aggregate.
946 --
947 -- Typ is the type of the aggregate when its constrained discriminants
948 -- need to be collected, otherwise it is Empty.
949 --
950 -- Comp_List is an N_Component_List node.
951 --
952 -- Governed_By is a list of N_Component_Association nodes, where each
953 -- choice list contains the name of a discriminant and the expression
954 -- field gives its value. The values of the discriminants governing
955 -- the (possibly nested) variant parts in Comp_List are found in this
956 -- Component_Association List.
957 --
958 -- Into is the list where the valid components are appended. Note that
959 -- Into need not be an Empty list. If it's not, components are attached
960 -- to its tail.
961 --
962 -- Report_Errors is set to True if the values of the discriminants are
963 -- non-static.
964 --
965 -- This procedure is also used when building a record subtype. If the
966 -- discriminant constraint of the subtype is static, the components of the
967 -- subtype are only those of the variants selected by the values of the
968 -- discriminants. Otherwise all components of the parent must be included
969 -- in the subtype for semantic analysis.
970
971 function Get_Accessibility (E : Entity_Id) return Node_Id;
972 -- Obtain the accessibility level for a given entity formal taking into
973 -- account both extra and minimum accessibility.
974
975 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
976 -- Given a node for an expression, obtain the actual subtype of the
977 -- expression. In the case of a parameter where the formal is an
978 -- unconstrained array or discriminated type, this will be the previously
979 -- constructed subtype of the actual. Note that this is not quite the
980 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
981 -- it is the subtype of the value of the actual. The actual subtype is also
982 -- returned in other cases where it has already been constructed for an
983 -- object. Otherwise the expression type is returned unchanged, except for
984 -- the case of an unconstrained array type, where an actual subtype is
985 -- created, using Insert_Actions if necessary to insert any associated
986 -- actions.
987
988 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
989 -- This is like Get_Actual_Subtype, except that it never constructs an
990 -- actual subtype. If an actual subtype is already available, i.e. the
991 -- Actual_Subtype field of the corresponding entity is set, then it is
992 -- returned. Otherwise the Etype of the node is returned.
993
994 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
995 -- Return the body node for a stub
996
997 function Get_Cursor_Type
998 (Aspect : Node_Id;
999 Typ : Entity_Id) return Entity_Id;
1000 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1001 -- primitive operation First. For use in resolving the other primitive
1002 -- operations of an Iterable type and expanding loops and quantified
1003 -- expressions over formal containers.
1004
1005 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1006 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1007 -- primitive operation First. For use after resolving the primitive
1008 -- operations of an Iterable type.
1009
1010 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1011 -- This is used to construct the string literal node representing a
1012 -- default external name, i.e. one that is constructed from the name of an
1013 -- entity, or (in the case of extended DEC import/export pragmas) an
1014 -- identifier provided as the external name. Letters in the name are
1015 -- according to the setting of Opt.External_Name_Default_Casing.
1016
1017 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1018 -- If expression N references a part of an object, return this object.
1019 -- Otherwise return Empty. Expression N should have been resolved already.
1020
1021 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1022 -- Returns the true generic entity in an instantiation. If the name in the
1023 -- instantiation is a renaming, the function returns the renamed generic.
1024
1025 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1026 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1027 -- in a child unit a derived type is within the derivation class of an
1028 -- ancestor declared in a parent unit, even if there is an intermediate
1029 -- derivation that does not see the full view of that ancestor.
1030
1031 procedure Get_Index_Bounds
1032 (N : Node_Id;
1033 L : out Node_Id;
1034 H : out Node_Id;
1035 Use_Full_View : Boolean := False);
1036 -- This procedure assigns to L and H respectively the values of the low and
1037 -- high bounds of node N, which must be a range, subtype indication, or the
1038 -- name of a scalar subtype. The result in L, H may be set to Error if
1039 -- there was an earlier error in the range.
1040 -- Use_Full_View is intended for use by clients other than the compiler
1041 -- (specifically, gnat2scil) to indicate that we want the full view if
1042 -- the index type turns out to be a partial view; this case should not
1043 -- arise during normal compilation of semantically correct programs.
1044
1045 procedure Get_Interfacing_Aspects
1046 (Iface_Asp : Node_Id;
1047 Conv_Asp : out Node_Id;
1048 EN_Asp : out Node_Id;
1049 Expo_Asp : out Node_Id;
1050 Imp_Asp : out Node_Id;
1051 LN_Asp : out Node_Id;
1052 Do_Checks : Boolean := False);
1053 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1054 -- aspects that apply to the same related entity. The aspects considered by
1055 -- this routine are as follows:
1056 --
1057 -- Conv_Asp - aspect Convention
1058 -- EN_Asp - aspect External_Name
1059 -- Expo_Asp - aspect Export
1060 -- Imp_Asp - aspect Import
1061 -- LN_Asp - aspect Link_Name
1062 --
1063 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1064 -- aspects.
1065
1066 function Get_Enum_Lit_From_Pos
1067 (T : Entity_Id;
1068 Pos : Uint;
1069 Loc : Source_Ptr) return Node_Id;
1070 -- This function returns an identifier denoting the E_Enumeration_Literal
1071 -- entity for the specified value from the enumeration type or subtype T.
1072 -- The second argument is the Pos value. Constraint_Error is raised if
1073 -- argument Pos is not in range. The third argument supplies a source
1074 -- location for constructed nodes returned by this function. If No_Location
1075 -- is supplied as source location, the location of the returned node is
1076 -- copied from the original source location for the enumeration literal,
1077 -- when available.
1078
1079 function Get_Iterable_Type_Primitive
1080 (Typ : Entity_Id;
1081 Nam : Name_Id) return Entity_Id;
1082 -- Retrieve one of the primitives First, Next, Has_Element, Element from
1083 -- the value of the Iterable aspect of a type.
1084
1085 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1086 -- Retrieve the fully expanded name of the library unit declared by
1087 -- Decl_Node into the name buffer.
1088
1089 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1090 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1091 -- is not present. It is assumed that Id denotes an entry.
1092
1093 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1094 pragma Inline (Get_Name_Entity_Id);
1095 -- An entity value is associated with each name in the name table. The
1096 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1097 -- is the innermost visible entity with the given name. See the body of
1098 -- Sem_Ch8 for further details on handling of entity visibility.
1099
1100 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1101 -- Return the Name component of Test_Case pragma N
1102 -- Bad name now that this no longer applies to Contract_Case ???
1103
1104 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1105 -- Get defining entity of parent unit of a child unit. In most cases this
1106 -- is the defining entity of the unit, but for a child instance whose
1107 -- parent needs a body for inlining, the instantiation node of the parent
1108 -- has not yet been rewritten as a package declaration, and the entity has
1109 -- to be retrieved from the Instance_Spec of the unit.
1110
1111 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1112 pragma Inline (Get_Pragma_Id);
1113 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1114
1115 function Get_Qualified_Name
1116 (Id : Entity_Id;
1117 Suffix : Entity_Id := Empty) return Name_Id;
1118 -- Obtain the fully qualified form of entity Id. The format is:
1119 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1120
1121 function Get_Qualified_Name
1122 (Nam : Name_Id;
1123 Suffix : Name_Id := No_Name;
1124 Scop : Entity_Id := Current_Scope) return Name_Id;
1125 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1126 -- Scop. The format is:
1127 -- scop-1__scop__nam__suffix
1128
1129 procedure Get_Reason_String (N : Node_Id);
1130 -- Recursive routine to analyze reason argument for pragma Warnings. The
1131 -- value of the reason argument is appended to the current string using
1132 -- Store_String_Chars. The reason argument is expected to be a string
1133 -- literal or concatenation of string literals. An error is given for
1134 -- any other form.
1135
1136 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1137 -- If Typ has Implicit_Dereference, return discriminant specified in the
1138 -- corresponding aspect.
1139
1140 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1141 -- Given an arbitrary node, return the renamed object if the node
1142 -- represents a renamed object; otherwise return the node unchanged.
1143 -- The node can represent an arbitrary expression or any other kind of
1144 -- node (such as the name of a type).
1145
1146 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1147 -- Given an entity for an exception, package, subprogram or generic unit,
1148 -- returns the ultimately renamed entity if this is a renaming. If this is
1149 -- not a renamed entity, returns its argument. It is an error to call this
1150 -- with any other kind of entity.
1151
1152 function Get_Return_Object (N : Node_Id) return Entity_Id;
1153 -- Given an extended return statement, return the corresponding return
1154 -- object, identified as the one for which Is_Return_Object = True.
1155
1156 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1157 -- Nod is either a procedure call statement, or a function call, or an
1158 -- accept statement node. This procedure finds the Entity_Id of the related
1159 -- subprogram or entry and returns it, or if no subprogram can be found,
1160 -- returns Empty.
1161
1162 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1163 -- Given an entity for a task type or subtype, retrieves the
1164 -- Task_Body_Procedure field from the corresponding task type declaration.
1165
1166 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1167 -- For a type entity, return the entity of the primitive equality function
1168 -- for the type if it exists, otherwise return Empty.
1169
1170 procedure Get_Views
1171 (Typ : Entity_Id;
1172 Priv_Typ : out Entity_Id;
1173 Full_Typ : out Entity_Id;
1174 Full_Base : out Entity_Id;
1175 CRec_Typ : out Entity_Id);
1176 -- Obtain the partial and full view of type Typ and in addition any extra
1177 -- types the full view may have. The return entities are as follows:
1178 --
1179 -- Priv_Typ - the partial view (a private type)
1180 -- Full_Typ - the full view
1181 -- Full_Base - the base type of the full view
1182 -- CRec_Typ - the corresponding record type of the full view
1183
1184 function Has_Access_Values (T : Entity_Id) return Boolean;
1185 -- Returns true if type or subtype T is an access type, or has a component
1186 -- (at any recursive level) that is an access type. This is a conservative
1187 -- predicate, if it is not known whether or not T contains access values
1188 -- (happens for generic formals in some cases), then False is returned.
1189 -- Note that tagged types return False. Even though the tag is implemented
1190 -- as an access type internally, this function tests only for access types
1191 -- known to the programmer. See also Has_Tagged_Component.
1192
1193 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1194 -- Result of Has_Compatible_Alignment test, description found below. Note
1195 -- that the values are arranged in increasing order of problematicness.
1196
1197 function Has_Compatible_Alignment
1198 (Obj : Entity_Id;
1199 Expr : Node_Id;
1200 Layout_Done : Boolean) return Alignment_Result;
1201 -- Obj is an object entity, and expr is a node for an object reference. If
1202 -- the alignment of the object referenced by Expr is known to be compatible
1203 -- with the alignment of Obj (i.e. is larger or the same), then the result
1204 -- is Known_Compatible. If the alignment of the object referenced by Expr
1205 -- is known to be less than the alignment of Obj, then Known_Incompatible
1206 -- is returned. If neither condition can be reliably established at compile
1207 -- time, then Unknown is returned. If Layout_Done is True, the function can
1208 -- assume that the information on size and alignment of types and objects
1209 -- is present in the tree. This is used to determine if alignment checks
1210 -- are required for address clauses (Layout_Done is False in this case) as
1211 -- well as to issue appropriate warnings for them in the post compilation
1212 -- phase (Layout_Done is True in this case).
1213 --
1214 -- Note: Known_Incompatible does not mean that at run time the alignment
1215 -- of Expr is known to be wrong for Obj, just that it can be determined
1216 -- that alignments have been explicitly or implicitly specified which are
1217 -- incompatible (whereas Unknown means that even this is not known). The
1218 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1219 -- Unknown, but issue a warning that there may be an alignment error.
1220
1221 function Has_Declarations (N : Node_Id) return Boolean;
1222 -- Determines if the node can have declarations
1223
1224 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1225 -- Simple predicate to test for defaulted discriminants
1226
1227 function Has_Denormals (E : Entity_Id) return Boolean;
1228 -- Determines if the floating-point type E supports denormal numbers.
1229 -- Returns False if E is not a floating-point type.
1230
1231 function Has_Discriminant_Dependent_Constraint
1232 (Comp : Entity_Id) return Boolean;
1233 -- Returns True if and only if Comp has a constrained subtype that depends
1234 -- on a discriminant.
1235
1236 function Has_Effectively_Volatile_Profile
1237 (Subp_Id : Entity_Id) return Boolean;
1238 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1239 -- parameter or returns an effectively volatile value.
1240
1241 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1242 -- Determine whether type Typ defines "full default initialization" as
1243 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1244 -- * A scalar type with specified Default_Value
1245 -- * An array-of-scalar type with specified Default_Component_Value
1246 -- * An array type whose element type defines full default initialization
1247 -- * A protected type, record type or type extension whose components
1248 -- either include a default expression or have a type which defines
1249 -- full default initialization. In the case of type extensions, the
1250 -- parent type defines full default initialization.
1251 -- * A task type
1252 -- * A private type with pragma Default_Initial_Condition that provides
1253 -- full default initialization.
1254
1255 function Has_Fully_Default_Initializing_DIC_Pragma
1256 (Typ : Entity_Id) return Boolean;
1257 -- Determine whether type Typ has a suitable Default_Initial_Condition
1258 -- pragma which provides the full default initialization of the type.
1259
1260 function Has_Infinities (E : Entity_Id) return Boolean;
1261 -- Determines if the range of the floating-point type E includes
1262 -- infinities. Returns False if E is not a floating-point type.
1263
1264 function Has_Interfaces
1265 (T : Entity_Id;
1266 Use_Full_View : Boolean := True) return Boolean;
1267 -- Where T is a concurrent type or a record type, returns true if T covers
1268 -- any abstract interface types. In case of private types the argument
1269 -- Use_Full_View controls if the check is done using its full view (if
1270 -- available).
1271
1272 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1273 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1274 -- assumed that Id denotes an entry.
1275
1276 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1277 -- This is a simple minded function for determining whether an expression
1278 -- has no obvious side effects. It is used only for determining whether
1279 -- warnings are needed in certain situations, and is not guaranteed to
1280 -- be accurate in either direction. Exceptions may mean an expression
1281 -- does in fact have side effects, but this may be ignored and True is
1282 -- returned, or a complex expression may in fact be side effect free
1283 -- but we don't recognize it here and return False. The Side_Effect_Free
1284 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1285 -- be shared, so that this routine would be more accurate.
1286
1287 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1288 -- Determine whether abstract state Id has at least one nonnull constituent
1289 -- as expressed in pragma Refined_State. This function does not take into
1290 -- account the visible refinement region of abstract state Id.
1291
1292 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1293 -- Determine whether subprogram Subp has a class-wide precondition that is
1294 -- not statically True.
1295
1296 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1297 -- Determine whether the body of procedure Proc_Id contains a sole null
1298 -- statement, possibly followed by an optional return. Used to optimize
1299 -- useless calls to assertion checks.
1300
1301 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1302 -- Determine whether node N has a null exclusion
1303
1304 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1305 -- Determine whether abstract state Id has a null refinement as expressed
1306 -- in pragma Refined_State. This function does not take into account the
1307 -- visible refinement region of abstract state Id.
1308
1309 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1310 -- Return True if L has non-null statements
1311
1312 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1313 -- Return True if L has no statements with side effects
1314
1315 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1316 -- Return True if the loop has no side effect and can therefore be
1317 -- marked for removal. Return False if N is not a N_Loop_Statement.
1318
1319 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1320 -- Predicate to determine whether a controlled type has a user-defined
1321 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1322 -- non-null), which causes the type to not have preelaborable
1323 -- initialization.
1324
1325 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1326 -- Return True iff type E has preelaborable initialization as defined in
1327 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1328
1329 function Has_Prefix (N : Node_Id) return Boolean;
1330 -- Return True if N has attribute Prefix
1331
1332 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1333 -- Check if a type has a (sub)component of a private type that has not
1334 -- yet received a full declaration.
1335
1336 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1337 -- Determines if the floating-point type E supports signed zeros.
1338 -- Returns False if E is not a floating-point type.
1339
1340 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1341 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1342 -- All subprograms have a N_Contract node, but this does not mean that the
1343 -- contract is useful.
1344
1345 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1346 -- Return whether an array type has static bounds
1347
1348 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1349 -- Determine whether array type Typ has static non-empty bounds
1350
1351 function Has_Stream (T : Entity_Id) return Boolean;
1352 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1353 -- case of a composite type, has a component for which this predicate is
1354 -- True, and if so returns True. Otherwise a result of False means that
1355 -- there is no Stream type in sight. For a private type, the test is
1356 -- applied to the underlying type (or returns False if there is no
1357 -- underlying type).
1358
1359 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1360 -- Returns true if the last character of E is Suffix. Used in Assertions.
1361
1362 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1363 -- Returns True if Typ is a composite type (array or record) that is either
1364 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1365 -- noncomposite type, or if no tagged subcomponents are present. This
1366 -- function is used to check if "=" has to be expanded into a bunch
1367 -- component comparisons.
1368
1369 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1370 -- Given arbitrary expression Expr, determine whether it contains at
1371 -- least one name whose entity is Any_Id.
1372
1373 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1374 -- Given arbitrary type Typ, determine whether it contains at least one
1375 -- volatile component.
1376
1377 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1378 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1379 -- implementation requirement which the pragma imposes. The return value is
1380 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1381
1382 function Implements_Interface
1383 (Typ_Ent : Entity_Id;
1384 Iface_Ent : Entity_Id;
1385 Exclude_Parents : Boolean := False) return Boolean;
1386 -- Returns true if the Typ_Ent implements interface Iface_Ent
1387
1388 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1389 -- Returns True if node N appears within a pragma that acts as an assertion
1390 -- expression. See Sem_Prag for the list of qualifying pragmas.
1391
1392 function In_Generic_Scope (E : Entity_Id) return Boolean;
1393 -- Returns True if entity E is inside a generic scope
1394
1395 function In_Instance return Boolean;
1396 -- Returns True if the current scope is within a generic instance
1397
1398 function In_Instance_Body return Boolean;
1399 -- Returns True if current scope is within the body of an instance, where
1400 -- several semantic checks (e.g. accessibility checks) are relaxed.
1401
1402 function In_Instance_Not_Visible return Boolean;
1403 -- Returns True if current scope is with the private part or the body of
1404 -- an instance. Other semantic checks are suppressed in this context.
1405
1406 function In_Instance_Visible_Part
1407 (Id : Entity_Id := Current_Scope) return Boolean;
1408 -- Returns True if arbitrary entity Id is within the visible part of a
1409 -- package instance, where several additional semantic checks apply.
1410
1411 function In_Package_Body return Boolean;
1412 -- Returns True if current scope is within a package body
1413
1414 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1415 -- Returns true if the expression N occurs within a pragma with name Nam
1416
1417 function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1418 -- Returns True if node N appears within a pre/postcondition pragma. Note
1419 -- the pragma Check equivalents are NOT considered.
1420
1421 function In_Quantified_Expression (N : Node_Id) return Boolean;
1422 -- Returns true if the expression N occurs within a quantified expression
1423
1424 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1425 -- Returns True if N denotes a component or subcomponent in a record or
1426 -- array that has Reverse_Storage_Order.
1427
1428 function In_Same_Declarative_Part
1429 (Context : Node_Id;
1430 N : Node_Id) return Boolean;
1431 -- True if the node N appears within the same declarative part denoted by
1432 -- the node Context.
1433
1434 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1435 -- Determines if the current scope is within a subprogram compilation unit
1436 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1437 -- declaration) or within a task or protected body. The test is for
1438 -- appearing anywhere within such a construct (that is it does not need
1439 -- to be directly within).
1440
1441 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1442 -- Determine whether node N is within the subtree rooted at Root
1443
1444 function In_Subtree
1445 (N : Node_Id;
1446 Root1 : Node_Id;
1447 Root2 : Node_Id) return Boolean;
1448 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1449 -- This version is more efficient than calling the single root version of
1450 -- Is_Subtree twice.
1451
1452 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1453 -- Determine whether a declaration occurs within the visible part of a
1454 -- package specification. The package must be on the scope stack, and the
1455 -- corresponding private part must not.
1456
1457 function In_While_Loop_Condition (N : Node_Id) return Boolean;
1458 -- Returns true if the expression N occurs within the condition of a while
1459
1460 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1461 -- Given the entity of a constant or a type, retrieve the incomplete or
1462 -- partial view of the same entity. Note that Id may not have a partial
1463 -- view in which case the function returns Empty.
1464
1465 function Incomplete_View_From_Limited_With
1466 (Typ : Entity_Id) return Entity_Id;
1467 -- Typ is a type entity. This normally returns Typ. However, if there is
1468 -- an incomplete view of this entity that comes from a limited-with'ed
1469 -- package, then this returns that incomplete view.
1470
1471 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1472 -- Given an N_Indexed_Component node, return the first bit position of the
1473 -- component if it is known at compile time. A value of No_Uint means that
1474 -- either the value is not yet known before back-end processing or it is
1475 -- not known at compile time after back-end processing.
1476
1477 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1478 -- Inherit the rep item chain of type From_Typ without clobbering any
1479 -- existing rep items on Typ's chain. Typ is the destination type.
1480
1481 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1482 pragma Inline (Inherits_From_Tagged_Full_View);
1483 -- Return True if Typ is an untagged private type completed with a
1484 -- derivation of an untagged private type declaration whose full view
1485 -- is a tagged type.
1486
1487 procedure Insert_Explicit_Dereference (N : Node_Id);
1488 -- In a context that requires a composite or subprogram type and where a
1489 -- prefix is an access type, rewrite the access type node N (which is the
1490 -- prefix, e.g. of an indexed component) as an explicit dereference.
1491
1492 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1493 -- Examine all deferred constants in the declaration list Decls and check
1494 -- whether they have been completed by a full constant declaration or an
1495 -- Import pragma. Emit the error message if that is not the case.
1496
1497 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1498 -- Install the elaboration model specified by pragma Elaboration_Checks
1499 -- associated with compilation unit Unit_Id. No action is taken when the
1500 -- unit lacks such pragma.
1501
1502 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1503 -- Install both the generic formal parameters and the formal parameters of
1504 -- generic subprogram Subp_Id into visibility.
1505
1506 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1507 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1508
1509 function Invalid_Scalar_Value
1510 (Loc : Source_Ptr;
1511 Scal_Typ : Scalar_Id) return Node_Id;
1512 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1513 -- pragma Initialize_Scalars or by the binder. Return an expression created
1514 -- at source location Loc, which denotes the invalid value.
1515
1516 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1517 -- Determines if N is an actual parameter of out mode in a subprogram call
1518
1519 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1520 -- Determines if N is an actual parameter in a subprogram call
1521
1522 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1523 -- Determines if N is an actual parameter of a formal of tagged type in a
1524 -- subprogram call.
1525
1526 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1527 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1528 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1529 -- rules of the language, it does not take into account the restriction
1530 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1531 -- and Obj violates the restriction. The caller is responsible for calling
1532 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1533 -- requirement for obeying the restriction in the call context.
1534
1535 function Is_Ancestor_Package
1536 (E1 : Entity_Id;
1537 E2 : Entity_Id) return Boolean;
1538 -- Determine whether package E1 is an ancestor of E2
1539
1540 function Is_Atomic_Object (N : Node_Id) return Boolean;
1541 -- Determine whether arbitrary node N denotes a reference to an atomic
1542 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1543
1544 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1545 -- Determine whether arbitrary node N denotes a reference to an object
1546 -- which is either atomic or Volatile_Full_Access.
1547
1548 function Is_Attribute_Old (N : Node_Id) return Boolean;
1549 -- Determine whether node N denotes attribute 'Old
1550
1551 function Is_Attribute_Result (N : Node_Id) return Boolean;
1552 -- Determine whether node N denotes attribute 'Result
1553
1554 function Is_Attribute_Update (N : Node_Id) return Boolean;
1555 -- Determine whether node N denotes attribute 'Update
1556
1557 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1558 -- Determine whether node N denotes a body or a package declaration
1559
1560 function Is_Bounded_String (T : Entity_Id) return Boolean;
1561 -- True if T is a bounded string type. Used to make sure "=" composes
1562 -- properly for bounded string types.
1563
1564 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1565 -- Exp is the expression for an array bound. Determines whether the
1566 -- bound is a compile-time known value, or a constant entity, or an
1567 -- enumeration literal, or an expression composed of constant-bound
1568 -- subexpressions which are evaluated by means of standard operators.
1569
1570 function Is_Container_Element (Exp : Node_Id) return Boolean;
1571 -- This routine recognizes expressions that denote an element of one of
1572 -- the predefined containers, when the source only contains an indexing
1573 -- operation and an implicit dereference is inserted by the compiler.
1574 -- In the absence of this optimization, the indexing creates a temporary
1575 -- controlled cursor that sets the tampering bit of the container, and
1576 -- restricts the use of the convenient notation C (X) to contexts that
1577 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1578 -- explicit dereference. The transformation applies when it has the form
1579 -- F (X).Discr.all.
1580
1581 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1582 -- Determine whether aspect specification or pragma Item is a contract
1583 -- annotation.
1584
1585 function Is_Controlling_Limited_Procedure
1586 (Proc_Nam : Entity_Id) return Boolean;
1587 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1588 -- of a limited interface with a controlling first parameter.
1589
1590 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1591 -- Returns True if N is a call to a CPP constructor
1592
1593 function Is_CCT_Instance
1594 (Ref_Id : Entity_Id;
1595 Context_Id : Entity_Id) return Boolean;
1596 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1597 -- Global; also used when analyzing default expressions of protected and
1598 -- record components. Determine whether entity Ref_Id (which must represent
1599 -- either a protected type or a task type) denotes the current instance of
1600 -- a concurrent type. Context_Id denotes the associated context where the
1601 -- pragma appears.
1602
1603 function Is_Child_Or_Sibling
1604 (Pack_1 : Entity_Id;
1605 Pack_2 : Entity_Id) return Boolean;
1606 -- Determine the following relations between two arbitrary packages:
1607 -- 1) One package is the parent of a child package
1608 -- 2) Both packages are siblings and share a common parent
1609
1610 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1611 -- First determine whether type T is an interface and then check whether
1612 -- it is of protected, synchronized or task kind.
1613
1614 function Is_Current_Instance (N : Node_Id) return Boolean;
1615 -- Predicate is true if N legally denotes a type name within its own
1616 -- declaration. Prior to Ada 2012 this covered only synchronized type
1617 -- declarations. In Ada 2012 it also covers type and subtype declarations
1618 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1619
1620 function Is_Declaration
1621 (N : Node_Id;
1622 Body_OK : Boolean := True;
1623 Concurrent_OK : Boolean := True;
1624 Formal_OK : Boolean := True;
1625 Generic_OK : Boolean := True;
1626 Instantiation_OK : Boolean := True;
1627 Renaming_OK : Boolean := True;
1628 Stub_OK : Boolean := True;
1629 Subprogram_OK : Boolean := True;
1630 Type_OK : Boolean := True) return Boolean;
1631 -- Determine whether arbitrary node N denotes a declaration depending
1632 -- on the allowed subsets of declarations. Set the following flags to
1633 -- consider specific subsets of declarations:
1634 --
1635 -- * Body_OK - body declarations
1636 --
1637 -- * Concurrent_OK - concurrent type declarations
1638 --
1639 -- * Formal_OK - formal declarations
1640 --
1641 -- * Generic_OK - generic declarations, including generic renamings
1642 --
1643 -- * Instantiation_OK - generic instantiations
1644 --
1645 -- * Renaming_OK - renaming declarations, including generic renamings
1646 --
1647 -- * Stub_OK - stub declarations
1648 --
1649 -- * Subprogram_OK - entry, expression function, and subprogram
1650 -- declarations.
1651 --
1652 -- * Type_OK - type declarations, including concurrent types
1653
1654 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1655 -- Returns True iff component Comp is declared within a variant part
1656
1657 function Is_Dependent_Component_Of_Mutable_Object
1658 (Object : Node_Id) return Boolean;
1659 -- Returns True if Object is the name of a subcomponent that depends on
1660 -- discriminants of a variable whose nominal subtype is unconstrained and
1661 -- not indefinite, and the variable is not aliased. Otherwise returns
1662 -- False. The nodes passed to this function are assumed to denote objects.
1663
1664 function Is_Dereferenced (N : Node_Id) return Boolean;
1665 -- N is a subexpression node of an access type. This function returns true
1666 -- if N appears as the prefix of a node that does a dereference of the
1667 -- access value (selected/indexed component, explicit dereference or a
1668 -- slice), and false otherwise.
1669
1670 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1671 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1672 -- This is the RM definition, a type is a descendant of another type if it
1673 -- is the same type or is derived from a descendant of the other type.
1674
1675 function Is_Descendant_Of_Suspension_Object
1676 (Typ : Entity_Id) return Boolean;
1677 -- Determine whether type Typ is a descendant of type Suspension_Object
1678 -- defined in Ada.Synchronous_Task_Control. This version is different from
1679 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1680 -- an entity and by extension a call to RTSfind.
1681
1682 function Is_Double_Precision_Floating_Point_Type
1683 (E : Entity_Id) return Boolean;
1684 -- Return whether E is a double precision floating point type,
1685 -- characterized by:
1686 -- . machine_radix = 2
1687 -- . machine_mantissa = 53
1688 -- . machine_emax = 2**10
1689 -- . machine_emin = 3 - machine_emax
1690
1691 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1692 -- Determine whether a type or object denoted by entity Id is effectively
1693 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1694 -- * Volatile without No_Caching
1695 -- * An array type subject to aspect Volatile_Components
1696 -- * An array type whose component type is effectively volatile
1697 -- * A protected type
1698 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1699
1700 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1701 -- Determine whether an arbitrary node denotes an effectively volatile
1702 -- object (SPARK RM 7.1.2).
1703
1704 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1705 -- Determine whether entity Id is the body entity of an entry [family]
1706
1707 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1708 -- Determine whether entity Id is the spec entity of an entry [family]
1709
1710 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1711 -- Check whether a function in a call is an expanded priority attribute,
1712 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1713 -- does not take place in a configurable runtime.
1714
1715 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1716 -- Determine whether subprogram [body] Subp denotes an expression function
1717
1718 function Is_Expression_Function_Or_Completion
1719 (Subp : Entity_Id) return Boolean;
1720 -- Determine whether subprogram [body] Subp denotes an expression function
1721 -- or is completed by an expression function body.
1722
1723 function Is_EVF_Expression (N : Node_Id) return Boolean;
1724 -- Determine whether node N denotes a reference to a formal parameter of
1725 -- a specific tagged type whose related subprogram is subject to pragma
1726 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1727 -- constructs fall under this category:
1728 -- 1) A qualified expression whose operand is EVF
1729 -- 2) A type conversion whose operand is EVF
1730 -- 3) An if expression with at least one EVF dependent_expression
1731 -- 4) A case expression with at least one EVF dependent_expression
1732
1733 function Is_False (U : Uint) return Boolean;
1734 pragma Inline (Is_False);
1735 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1736 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1737 -- if it is False (i.e. zero).
1738
1739 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1740 -- Returns True iff the number U is a model number of the fixed-point type
1741 -- T, i.e. if it is an exact multiple of Small.
1742
1743 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1744 -- Typ is a type entity. This function returns true if this type is fully
1745 -- initialized, meaning that an object of the type is fully initialized.
1746 -- Note that initialization resulting from use of pragma Normalize_Scalars
1747 -- does not count. Note that this is only used for the purpose of issuing
1748 -- warnings for objects that are potentially referenced uninitialized. This
1749 -- means that the result returned is not crucial, but should err on the
1750 -- side of thinking things are fully initialized if it does not know.
1751
1752 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1753 -- Determine whether arbitrary declaration Decl denotes a generic package,
1754 -- a generic subprogram or a generic body.
1755
1756 function Is_Independent_Object (N : Node_Id) return Boolean;
1757 -- Determine whether arbitrary node N denotes a reference to an independent
1758 -- object as per RM C.6(8).
1759
1760 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1761 -- E is a subprogram. Return True is E is an implicit operation inherited
1762 -- by a derived type declaration.
1763
1764 function Is_Inherited_Operation_For_Type
1765 (E : Entity_Id;
1766 Typ : Entity_Id) return Boolean;
1767 -- E is a subprogram. Return True is E is an implicit operation inherited
1768 -- by the derived type declaration for type Typ.
1769
1770 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
1771 -- Return True if Subp is an expression function that fulfills all the
1772 -- following requirements for inlining:
1773 -- 1. pragma/aspect Inline_Always
1774 -- 2. No formals
1775 -- 3. No contracts
1776 -- 4. No dispatching primitive
1777 -- 5. Result subtype controlled (or with controlled components)
1778 -- 6. Result subtype not subject to type-invariant checks
1779 -- 7. Result subtype not a class-wide type
1780 -- 8. Return expression naming an object global to the function
1781 -- 9. Nominal subtype of the returned object statically compatible
1782 -- with the result subtype of the expression function.
1783
1784 function Is_Iterator (Typ : Entity_Id) return Boolean;
1785 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1786 -- Ada.Iterator_Interfaces, or it is derived from one.
1787
1788 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1789 -- N is an iterator specification. Returns True iff N is an iterator over
1790 -- an array, either inside a loop of the form 'for X of A' or a quantified
1791 -- expression of the form 'for all/some X of A' where A is of array type.
1792
1793 type Is_LHS_Result is (Yes, No, Unknown);
1794 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1795 -- Returns Yes if N is definitely used as Name in an assignment statement.
1796 -- Returns No if N is definitely NOT used as a Name in an assignment
1797 -- statement. Returns Unknown if we can't tell at this stage (happens in
1798 -- the case where we don't know the type of N yet, and we have something
1799 -- like N.A := 3, where this counts as N being used on the left side of
1800 -- an assignment only if N is not an access type. If it is an access type
1801 -- then it is N.all.A that is assigned, not N.
1802
1803 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1804 -- A library-level declaration is one that is accessible from Standard,
1805 -- i.e. a library unit or an entity declared in a library package.
1806
1807 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1808 -- Determine whether a given type is a limited class-wide type, in which
1809 -- case it needs a Master_Id, because extensions of its designated type
1810 -- may include task components. A class-wide type that comes from a
1811 -- limited view must be treated in the same way.
1812
1813 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1814 -- Determines whether Expr is a reference to a variable or IN OUT mode
1815 -- parameter of the current enclosing subprogram.
1816 -- Why are OUT parameters not considered here ???
1817
1818 function Is_Name_Reference (N : Node_Id) return Boolean;
1819 -- Determine whether arbitrary node N is a reference to a name. This is
1820 -- similar to Is_Object_Reference but returns True only if N can be renamed
1821 -- without the need for a temporary, the typical example of an object not
1822 -- in this category being a function call.
1823
1824 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
1825 -- Determine whether arbitrary construct N violates preelaborability as
1826 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
1827 -- syntactic and semantic properties of the construct.
1828
1829 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1830 -- Determine whether entity Id denotes the procedure that verifies the
1831 -- assertion expression of pragma Default_Initial_Condition and if it does,
1832 -- the encapsulated expression is nontrivial.
1833
1834 function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1835 -- Determine whether T is declared with a null record definition or a
1836 -- null component list.
1837
1838 function Is_Object_Image (Prefix : Node_Id) return Boolean;
1839 -- Returns True if an 'Image, 'Wide_Image, or 'Wide_Wide_Image attribute
1840 -- is applied to a given object or named value prefix (see below).
1841
1842 -- AI12-00124: The ARG has adopted the GNAT semantics of 'Img for scalar
1843 -- types, so that the prefix of any 'Image attribute can be an object, a
1844 -- named value, or a type, and there is no need for an argument in the
1845 -- case it is an object reference.
1846
1847 function Is_Object_Reference (N : Node_Id) return Boolean;
1848 -- Determines if the tree referenced by N represents an object. Both
1849 -- variable and constant objects return True (compare Is_Variable).
1850
1851 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1852 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1853 -- Note that the Is_Variable function is not quite the right test because
1854 -- this is a case in which conversions whose expression is a variable (in
1855 -- the Is_Variable sense) with an untagged type target are considered view
1856 -- conversions and hence variables.
1857
1858 function Is_OK_Volatile_Context
1859 (Context : Node_Id;
1860 Obj_Ref : Node_Id) return Boolean;
1861 -- Determine whether node Context denotes a "non-interfering context" (as
1862 -- defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1863 -- safely reside.
1864
1865 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1866 -- Determine whether aspect specification or pragma Item is one of the
1867 -- following package contract annotations:
1868 -- Abstract_State
1869 -- Initial_Condition
1870 -- Initializes
1871 -- Refined_State
1872
1873 function Is_Partially_Initialized_Type
1874 (Typ : Entity_Id;
1875 Include_Implicit : Boolean := True) return Boolean;
1876 -- Typ is a type entity. This function returns true if this type is partly
1877 -- initialized, meaning that an object of the type is at least partly
1878 -- initialized (in particular in the record case, that at least one
1879 -- component has an initialization expression). Note that initialization
1880 -- resulting from the use of pragma Normalize_Scalars does not count.
1881 -- Include_Implicit controls whether implicit initialization of access
1882 -- values to null, and of discriminant values, is counted as making the
1883 -- type be partially initialized. For the default setting of True, these
1884 -- implicit cases do count, and discriminated types or types containing
1885 -- access values not explicitly initialized will return True. Otherwise
1886 -- if Include_Implicit is False, these cases do not count as making the
1887 -- type be partially initialized.
1888
1889 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1890 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1891
1892 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1893 -- Determines if type T is a potentially persistent type. A potentially
1894 -- persistent type is defined (recursively) as a scalar type, an untagged
1895 -- record whose components are all of a potentially persistent type, or an
1896 -- array with all static constraints whose component type is potentially
1897 -- persistent. A private type is potentially persistent if the full type
1898 -- is potentially persistent.
1899
1900 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
1901 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
1902
1903 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
1904 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
1905 -- required to implement interfaces.
1906
1907 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
1908 -- Similar to the previous one, but excludes stream operations, because
1909 -- these may be overridden, and need extra formals, like user-defined
1910 -- operations.
1911
1912 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
1913 -- Determine whether aggregate Aggr violates the restrictions of
1914 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
1915
1916 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
1917 -- Determine whether arbitrary node N violates the restrictions of
1918 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
1919 -- Is_Non_Preelaborable_Construct takes into account the syntactic
1920 -- and semantic properties of N for a more accurate diagnostic.
1921
1922 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1923 -- Return True if node N denotes a protected type name which represents
1924 -- the current instance of a protected object according to RM 9.4(21/2).
1925
1926 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1927 -- Return True if a compilation unit is the specification or the
1928 -- body of a remote call interface package.
1929
1930 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1931 -- Return True if E is a remote access-to-class-wide type
1932
1933 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1934 -- Return True if E is a remote access to subprogram type
1935
1936 function Is_Remote_Call (N : Node_Id) return Boolean;
1937 -- Return True if N denotes a potentially remote call
1938
1939 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1940 -- Return True if Proc_Nam is a procedure renaming of an entry
1941
1942 function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1943 -- Determine whether arbitrary node N denotes a renaming declaration
1944
1945 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1946 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1947 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1948
1949 function Is_Selector_Name (N : Node_Id) return Boolean;
1950 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1951 -- As described in Sinfo, Selector_Names are special because they
1952 -- represent use of the N_Identifier node for a true identifier, when
1953 -- normally such nodes represent a direct name.
1954
1955 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1956 -- Determine whether arbitrary entity Id denotes the anonymous object
1957 -- created for a single protected or single task type.
1958
1959 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1960 -- Determine whether arbitrary entity Id denotes a single protected or
1961 -- single task type.
1962
1963 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1964 -- Determine whether arbitrary node N denotes the declaration of a single
1965 -- protected type or single task type.
1966
1967 function Is_Single_Precision_Floating_Point_Type
1968 (E : Entity_Id) return Boolean;
1969 -- Return whether E is a single precision floating point type,
1970 -- characterized by:
1971 -- . machine_radix = 2
1972 -- . machine_mantissa = 24
1973 -- . machine_emax = 2**7
1974 -- . machine_emin = 3 - machine_emax
1975
1976 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1977 -- Determine whether arbitrary entity Id denotes the anonymous object
1978 -- created for a single protected type.
1979
1980 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1981 -- Determine whether arbitrary entity Id denotes the anonymous object
1982 -- created for a single task type.
1983
1984 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1985 -- Determines if the tree referenced by N represents an initialization
1986 -- expression in SPARK 2005, suitable for initializing an object in an
1987 -- object declaration.
1988
1989 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1990 -- Determines if the tree referenced by N represents an object in SPARK
1991 -- 2005. This differs from Is_Object_Reference in that only variables,
1992 -- constants, formal parameters, and selected_components of those are
1993 -- valid objects in SPARK 2005.
1994
1995 function Is_Special_Aliased_Formal_Access
1996 (Exp : Node_Id;
1997 Scop : Entity_Id) return Boolean;
1998 -- Determines whether a dynamic check must be generated for explicitly
1999 -- aliased formals within a function Scop for the expression Exp.
2000
2001 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2002 -- 'Access attribute reference within a return statement where the ultimate
2003 -- prefix is an aliased formal of Scop and that Scop returns an anonymous
2004 -- access type. See RM 3.10.2 for more details.
2005
2006 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2007 -- Determine whether an arbitrary [private] type is specifically tagged
2008
2009 function Is_Statement (N : Node_Id) return Boolean;
2010 pragma Inline (Is_Statement);
2011 -- Check if the node N is a statement node. Note that this includes
2012 -- the case of procedure call statements (unlike the direct use of
2013 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2014 -- Note that a label is *not* a statement, and will return False.
2015
2016 function Is_Subcomponent_Of_Atomic_Object (N : Node_Id) return Boolean;
2017 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2018 -- of an atomic object as per RM C.6(7).
2019
2020 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2021 -- Determine whether aspect specification or pragma Item is one of the
2022 -- following subprogram contract annotations:
2023 -- Contract_Cases
2024 -- Depends
2025 -- Extensions_Visible
2026 -- Global
2027 -- Post
2028 -- Post_Class
2029 -- Postcondition
2030 -- Pre
2031 -- Pre_Class
2032 -- Precondition
2033 -- Refined_Depends
2034 -- Refined_Global
2035 -- Refined_Post
2036 -- Test_Case
2037
2038 function Is_Subprogram_Stub_Without_Prior_Declaration
2039 (N : Node_Id) return Boolean;
2040 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2041 -- stub with no prior subprogram declaration.
2042
2043 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2044 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2045 -- an arbitrary tagged type.
2046
2047 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
2048 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
2049 -- in Ada.Synchronous_Task_Control.
2050
2051 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2052 -- Determine whether entity Id denotes an object and if it does, whether
2053 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2054 -- such, the object must be
2055 -- * Of a type that yields a synchronized object
2056 -- * An atomic object with enabled Async_Writers
2057 -- * A constant
2058 -- * A variable subject to pragma Constant_After_Elaboration
2059
2060 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2061 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2062
2063 function Is_Transfer (N : Node_Id) return Boolean;
2064 -- Returns True if the node N is a statement which is known to cause an
2065 -- unconditional transfer of control at run time, i.e. the following
2066 -- statement definitely will not be executed.
2067
2068 function Is_True (U : Uint) return Boolean;
2069 pragma Inline (Is_True);
2070 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
2071 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
2072 -- if it is True (i.e. non-zero).
2073
2074 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2075 -- Determine whether an arbitrary entity denotes an instance of function
2076 -- Ada.Unchecked_Conversion.
2077
2078 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2079 pragma Inline (Is_Universal_Numeric_Type);
2080 -- True if T is Universal_Integer or Universal_Real
2081
2082 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2083 -- Determine whether an entity denotes a user-defined equality
2084
2085 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2086 -- Determine whether N denotes a reference to a variable which captures the
2087 -- value of an object for validation purposes.
2088
2089 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2090 -- Returns true if E has variable size components
2091
2092 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2093 -- Returns true if E has variable size components
2094
2095 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2096
2097 function Is_Variable
2098 (N : Node_Id;
2099 Use_Original_Node : Boolean := True) return Boolean;
2100 -- Determines if the tree referenced by N represents a variable, i.e. can
2101 -- appear on the left side of an assignment. There is one situation (formal
2102 -- parameters) in which untagged type conversions are also considered
2103 -- variables, but Is_Variable returns False for such cases, since it has
2104 -- no knowledge of the context. Note that this is the point at which
2105 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2106 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2107 -- default is True since this routine is commonly invoked as part of the
2108 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2109
2110 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2111 -- Check whether T is derived from a visibly controlled type. This is true
2112 -- if the root type is declared in Ada.Finalization. If T is derived
2113 -- instead from a private type whose full view is controlled, an explicit
2114 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2115 -- one.
2116
2117 function Is_Volatile_Full_Access_Object (N : Node_Id) return Boolean;
2118 -- Determine whether arbitrary node N denotes a reference to an object
2119 -- which is Volatile_Full_Access.
2120
2121 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2122 -- Determine whether [generic] function Func_Id is subject to enabled
2123 -- pragma Volatile_Function. Protected functions are treated as volatile
2124 -- (SPARK RM 7.1.2).
2125
2126 function Is_Volatile_Object (N : Node_Id) return Boolean;
2127 -- Determine whether arbitrary node N denotes a reference to a volatile
2128 -- object as per RM C.6(8). Note that the test here is for something that
2129 -- is actually declared as volatile, not for an object that gets treated
2130 -- as volatile (see Einfo.Treat_As_Volatile).
2131
2132 generic
2133 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2134 procedure Iterate_Call_Parameters (Call : Node_Id);
2135 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2136 -- a function, procedure, or entry call.
2137
2138 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2139 -- Applies to Itypes. True if the Itype is attached to a declaration for
2140 -- the type through its Parent field, which may or not be present in the
2141 -- tree.
2142
2143 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2144 -- This procedure is called to clear all constant indications from all
2145 -- entities in the current scope and in any parent scopes if the current
2146 -- scope is a block or a package (and that recursion continues to the top
2147 -- scope that is not a block or a package). This is used when the
2148 -- sequential flow-of-control assumption is violated (occurrence of a
2149 -- label, head of a loop, or start of an exception handler). The effect of
2150 -- the call is to clear the Current_Value field (but we do not need to
2151 -- clear the Is_True_Constant flag, since that only gets reset if there
2152 -- really is an assignment somewhere in the entity scope). This procedure
2153 -- also calls Kill_All_Checks, since this is a special case of needing to
2154 -- forget saved values. This procedure also clears the Is_Known_Null and
2155 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2156 -- parameters since these are also not known to be trustable any more.
2157 --
2158 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2159 -- fields and leave other fields unchanged. This is used when we encounter
2160 -- an unconditional flow of control change (return, goto, raise). In such
2161 -- cases we don't need to clear the current values, since it may be that
2162 -- the flow of control change occurs in a conditional context, and if it
2163 -- is not taken, then it is just fine to keep the current values. But the
2164 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2165 -- conditional-return, assign-to-v, we do not want to complain that the
2166 -- second assignment clobbers the first.
2167
2168 procedure Kill_Current_Values
2169 (Ent : Entity_Id;
2170 Last_Assignment_Only : Boolean := False);
2171 -- This performs the same processing as described above for the form with
2172 -- no argument, but for the specific entity given. The call has no effect
2173 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2174 -- same meaning as for the call with no Ent.
2175
2176 procedure Kill_Size_Check_Code (E : Entity_Id);
2177 -- Called when an address clause or pragma Import is applied to an entity.
2178 -- If the entity is a variable or a constant, and size check code is
2179 -- present, this size check code is killed, since the object will not be
2180 -- allocated by the program.
2181
2182 function Known_Non_Null (N : Node_Id) return Boolean;
2183 -- Given a node N for a subexpression of an access type, determines if
2184 -- this subexpression yields a value that is known at compile time to
2185 -- be non-null and returns True if so. Returns False otherwise. It is
2186 -- an error to call this function if N is not of an access type.
2187
2188 function Known_Null (N : Node_Id) return Boolean;
2189 -- Given a node N for a subexpression of an access type, determines if this
2190 -- subexpression yields a value that is known at compile time to be null
2191 -- and returns True if so. Returns False otherwise. It is an error to call
2192 -- this function if N is not of an access type.
2193
2194 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2195 -- The node N is an entity reference. This function determines whether the
2196 -- reference is for sure an assignment of the entity, returning True if
2197 -- so. This differs from May_Be_Lvalue in that it defaults in the other
2198 -- direction. Cases which may possibly be assignments but are not known to
2199 -- be may return True from May_Be_Lvalue, but False from this function.
2200
2201 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2202 -- HSS is a handled statement sequence. This function returns the last
2203 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2204 -- such statement exists, Empty is returned.
2205
2206 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2207 -- Given a node which designates the context of analysis and an origin in
2208 -- the tree, traverse from Root_Nod and mark all allocators as either
2209 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2210 -- cleaned up during resolution.
2211
2212 procedure Mark_Elaboration_Attributes
2213 (N_Id : Node_Or_Entity_Id;
2214 Checks : Boolean := False;
2215 Level : Boolean := False;
2216 Modes : Boolean := False;
2217 Warnings : Boolean := False);
2218 -- Preserve relevant elaboration-related properties of the context in
2219 -- arbitrary entity or node N_Id. The flags control the properties as
2220 -- follows:
2221 --
2222 -- Checks - Save the status of Elaboration_Check
2223 -- Level - Save the declaration level of N_Id (if appicable)
2224 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2225 -- Warnings - Save the status of Elab_Warnings
2226
2227 procedure Mark_Save_Invocation_Graph_Of_Body;
2228 -- Notify the body of the main unit that the invocation constructs and
2229 -- relations expressed within it must be recorded by the ABE mechanism.
2230
2231 function Matching_Static_Array_Bounds
2232 (L_Typ : Node_Id;
2233 R_Typ : Node_Id) return Boolean;
2234 -- L_Typ and R_Typ are two array types. Returns True when they have the
2235 -- same number of dimensions, and the same static bounds for each index
2236 -- position.
2237
2238 function May_Be_Lvalue (N : Node_Id) return Boolean;
2239 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
2240 -- An lvalue is defined as any expression which appears in a context where
2241 -- a name is required by the syntax, and the identity, rather than merely
2242 -- the value of the node is needed (for example, the prefix of an Access
2243 -- attribute is in this category). Note that, as implied by the name, this
2244 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
2245 -- it returns True. It tries hard to get the answer right, but it is hard
2246 -- to guarantee this in all cases. Note that it is more possible to give
2247 -- correct answer if the tree is fully analyzed.
2248
2249 function Might_Raise (N : Node_Id) return Boolean;
2250 -- True if evaluation of N might raise an exception. This is conservative;
2251 -- if we're not sure, we return True. If N is a subprogram body, this is
2252 -- about whether execution of that body can raise.
2253
2254 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2255 -- Return the entity of the nearest enclosing instance which encapsulates
2256 -- entity E. If no such instance exits, return Empty.
2257
2258 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2259 -- Determine whether type Typ is controlled and this requires finalization
2260 -- actions.
2261
2262 function Needs_One_Actual (E : Entity_Id) return Boolean;
2263 -- Returns True if a function has defaults for all but its first formal,
2264 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2265 -- syntactic ambiguity that results from an indexing of a function call
2266 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2267
2268 function Needs_Simple_Initialization
2269 (Typ : Entity_Id;
2270 Consider_IS : Boolean := True) return Boolean;
2271 -- Certain types need initialization even though there is no specific
2272 -- initialization routine:
2273 -- Access types (which need initializing to null)
2274 -- All scalar types if Normalize_Scalars mode set
2275 -- Descendants of standard string types if Normalize_Scalars mode set
2276 -- Scalar types having a Default_Value attribute
2277 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2278 -- set to False, but if Consider_IS is set to True, then the cases above
2279 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2280
2281 function Needs_Variable_Reference_Marker
2282 (N : Node_Id;
2283 Calls_OK : Boolean) return Boolean;
2284 -- Determine whether arbitrary node N denotes a reference to a variable
2285 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2286 -- be set when the reference is allowed to appear within calls.
2287
2288 function New_Copy_List_Tree (List : List_Id) return List_Id;
2289 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2290 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2291 -- nodes (entities) either directly or indirectly using this function.
2292
2293 function New_Copy_Tree
2294 (Source : Node_Id;
2295 Map : Elist_Id := No_Elist;
2296 New_Sloc : Source_Ptr := No_Location;
2297 New_Scope : Entity_Id := Empty;
2298 Scopes_In_EWA_OK : Boolean := False) return Node_Id;
2299 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2300 -- and nodes are handled separately as follows:
2301 --
2302 -- * A node is replicated by first creating a shallow copy, then copying
2303 -- its syntactic fields, where all Parent pointers of the fields are
2304 -- updated to refer to the copy. In addition, the following semantic
2305 -- fields are recreated after the replication takes place.
2306 --
2307 -- First_Named_Actual
2308 -- First_Real_Statement
2309 -- Next_Named_Actual
2310 --
2311 -- If applicable, the Etype field (if any) is updated to refer to a
2312 -- local itype or type (see below).
2313 --
2314 -- * An entity defined within an N_Expression_With_Actions node in the
2315 -- subtree is given a new entity, and all references to the original
2316 -- entity are updated to refer to the new entity. In addition, the
2317 -- following semantic fields are replicated and/or updated to refer
2318 -- to a local entity or itype.
2319 --
2320 -- Discriminant_Constraint
2321 -- Etype
2322 -- First_Index
2323 -- Next_Entity
2324 -- Packed_Array_Impl_Type
2325 -- Scalar_Range
2326 -- Scope
2327 --
2328 -- Note that currently no other expression can define entities.
2329 --
2330 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2331 -- is given a new entity, and all references to the original itype
2332 -- are updated to refer to the new itype. In addition, the following
2333 -- semantic fields are replicated and/or updated to refer to a local
2334 -- entity or itype.
2335 --
2336 -- Discriminant_Constraint
2337 -- Etype
2338 -- First_Index
2339 -- Next_Entity
2340 -- Packed_Array_Impl_Type
2341 -- Scalar_Range
2342 -- Scope
2343 --
2344 -- The Associated_Node_For_Itype is updated to refer to a replicated
2345 -- node.
2346 --
2347 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2348 -- Empty or Error node yields the same node.
2349 --
2350 -- Parameter Map may be used to specify a set of mappings between entities.
2351 -- These mappings are then taken into account when replicating entities.
2352 -- The format of Map must be as follows:
2353 --
2354 -- old entity 1
2355 -- new entity to replace references to entity 1
2356 -- old entity 2
2357 -- new entity to replace references to entity 2
2358 -- ...
2359 --
2360 -- Map and its contents are left unchanged.
2361 --
2362 -- Parameter New_Sloc may be used to specify a new source location for all
2363 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2364 -- is defaulted if a new source location is provided.
2365 --
2366 -- Parameter New_Scope may be used to specify a new scope for all copied
2367 -- entities and itypes.
2368 --
2369 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both
2370 -- scoping entities and non-scoping entities found within expression with
2371 -- actions nodes.
2372
2373 function New_External_Entity
2374 (Kind : Entity_Kind;
2375 Scope_Id : Entity_Id;
2376 Sloc_Value : Source_Ptr;
2377 Related_Id : Entity_Id;
2378 Suffix : Character;
2379 Suffix_Index : Int := 0;
2380 Prefix : Character := ' ') return Entity_Id;
2381 -- This function creates an N_Defining_Identifier node for an internal
2382 -- created entity, such as an implicit type or subtype, or a record
2383 -- initialization procedure. The entity name is constructed with a call
2384 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2385 -- that the generated name may be referenced as a public entry, and the
2386 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2387 -- entity is for a type or subtype, the size/align fields are initialized
2388 -- to unknown (Uint_0).
2389
2390 function New_Internal_Entity
2391 (Kind : Entity_Kind;
2392 Scope_Id : Entity_Id;
2393 Sloc_Value : Source_Ptr;
2394 Id_Char : Character) return Entity_Id;
2395 -- This function is similar to New_External_Entity, except that the
2396 -- name is constructed by New_Internal_Name (Id_Char). This is used
2397 -- when the resulting entity does not have to be referenced as a
2398 -- public entity (and in this case Is_Public is not set).
2399
2400 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2401 -- Find next actual parameter in declaration order. As described for
2402 -- First_Actual, this is the next actual in the declaration order, not
2403 -- the call order, so this does not correspond to simply taking the
2404 -- next entry of the Parameter_Associations list. The argument is an
2405 -- actual previously returned by a call to First_Actual or Next_Actual.
2406 -- Note that the result produced is always an expression, not a parameter
2407 -- association node, even if named notation was used.
2408
2409 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2410
2411 procedure Next_Actual (Actual_Id : in out Node_Id);
2412 pragma Inline (Next_Actual);
2413 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2414 -- inline this procedural form, but not the functional form above.
2415
2416 function Next_Global (Node : Node_Id) return Node_Id;
2417 -- Node is a global item from a list, obtained through calling First_Global
2418 -- and possibly Next_Global a number of times. Returns the next global item
2419 -- with the same mode.
2420
2421 procedure Next_Global (Node : in out Node_Id);
2422 pragma Inline (Next_Actual);
2423 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2424 -- inline this procedural form, but not the functional form above.
2425
2426 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2427 -- Given the entity of a variable, determine whether Id is subject to
2428 -- volatility property No_Caching and if it is, the related expression
2429 -- evaluates to True.
2430
2431 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2432 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2433
2434 procedure Normalize_Actuals
2435 (N : Node_Id;
2436 S : Entity_Id;
2437 Report : Boolean;
2438 Success : out Boolean);
2439 -- Reorders lists of actuals according to names of formals, value returned
2440 -- in Success indicates success of reordering. For more details, see body.
2441 -- Errors are reported only if Report is set to True.
2442
2443 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2444 -- This routine is called if the sub-expression N maybe the target of
2445 -- an assignment (e.g. it is the left side of an assignment, used as
2446 -- an out parameters, or used as prefixes of access attributes). It
2447 -- sets May_Be_Modified in the associated entity if there is one,
2448 -- taking into account the rule that in the case of renamed objects,
2449 -- it is the flag in the renamed object that must be set.
2450 --
2451 -- The parameter Sure is set True if the modification is sure to occur
2452 -- (e.g. target of assignment, or out parameter), and to False if the
2453 -- modification is only potential (e.g. address of entity taken).
2454
2455 function Null_To_Null_Address_Convert_OK
2456 (N : Node_Id;
2457 Typ : Entity_Id := Empty) return Boolean;
2458 -- Return True if we are compiling in relaxed RM semantics mode and:
2459 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2460 -- 2) N is a comparison operator, one of the operands is null, and the
2461 -- type of the other operand is a descendant of System.Address.
2462
2463 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2464 -- Returns the number of elements in the array T if the index bounds of T
2465 -- is known at compile time. If the bounds are not known at compile time,
2466 -- the function returns the value zero.
2467
2468 function Object_Access_Level (Obj : Node_Id) return Uint;
2469 -- Return the accessibility level of the view of the object Obj. For
2470 -- convenience, qualified expressions applied to object names are also
2471 -- allowed as actuals for this function.
2472
2473 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2474 -- Retrieve the name of aspect or pragma N, taking into account a possible
2475 -- rewrite and whether the pragma is generated from an aspect as the names
2476 -- may be different. The routine also deals with 'Class in which case it
2477 -- returns the following values:
2478 --
2479 -- Invariant -> Name_uInvariant
2480 -- Post'Class -> Name_uPost
2481 -- Pre'Class -> Name_uPre
2482 -- Type_Invariant -> Name_uType_Invariant
2483 -- Type_Invariant'Class -> Name_uType_Invariant
2484
2485 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2486 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2487 -- or overrides an inherited dispatching primitive S2, the original
2488 -- corresponding operation of S is the original corresponding operation of
2489 -- S2. Otherwise, it is S itself.
2490
2491 procedure Output_Entity (Id : Entity_Id);
2492 -- Print entity Id to standard output. The name of the entity appears in
2493 -- fully qualified form.
2494 --
2495 -- WARNING: this routine should be used in debugging scenarios such as
2496 -- tracking down undefined symbols as it is fairly low level.
2497
2498 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2499 -- Print name Nam to standard output. The name appears in fully qualified
2500 -- form assuming it appears in scope Scop. Note that this may not reflect
2501 -- the final qualification as the entity which carries the name may be
2502 -- relocated to a different scope.
2503 --
2504 -- WARNING: this routine should be used in debugging scenarios such as
2505 -- tracking down undefined symbols as it is fairly low level.
2506
2507 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2508 -- Given a policy, return the policy identifier associated with it. If no
2509 -- such policy is in effect, the value returned is No_Name.
2510
2511 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2512 -- Subp is the entity for a subprogram call. This function returns True if
2513 -- predicate tests are required for the arguments in this call (this is the
2514 -- normal case). It returns False for special cases where these predicate
2515 -- tests should be skipped (see body for details).
2516
2517 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2518 -- Returns True if the names of both entities correspond with matching
2519 -- primitives. This routine includes support for the case in which one
2520 -- or both entities correspond with entities built by Derive_Subprogram
2521 -- with a special name to avoid being overridden (i.e. return true in case
2522 -- of entities with names "nameP" and "name" or vice versa).
2523
2524 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2525 -- Returns some private component (if any) of the given Type_Id.
2526 -- Used to enforce the rules on visibility of operations on composite
2527 -- types, that depend on the full view of the component type. For a
2528 -- record type there may be several such components, we just return
2529 -- the first one.
2530
2531 procedure Process_End_Label
2532 (N : Node_Id;
2533 Typ : Character;
2534 Ent : Entity_Id);
2535 -- N is a node whose End_Label is to be processed, generating all
2536 -- appropriate cross-reference entries, and performing style checks
2537 -- for any identifier references in the end label. Typ is either
2538 -- 'e' or 't indicating the type of the cross-reference entity
2539 -- (e for spec, t for body, see Lib.Xref spec for details). The
2540 -- parameter Ent gives the entity to which the End_Label refers,
2541 -- and to which cross-references are to be generated.
2542
2543 procedure Propagate_Concurrent_Flags
2544 (Typ : Entity_Id;
2545 Comp_Typ : Entity_Id);
2546 -- Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2547 -- are set on Comp_Typ. This follows the definition of these flags which
2548 -- are set (recursively) on any composite type which has a component marked
2549 -- by one of these flags. This procedure can only set flags for Typ, and
2550 -- never clear them. Comp_Typ is the type of a component or a parent.
2551
2552 procedure Propagate_DIC_Attributes
2553 (Typ : Entity_Id;
2554 From_Typ : Entity_Id);
2555 -- Inherit all Default_Initial_Condition-related attributes from type
2556 -- From_Typ. Typ is the destination type.
2557
2558 procedure Propagate_Invariant_Attributes
2559 (Typ : Entity_Id;
2560 From_Typ : Entity_Id);
2561 -- Inherit all invariant-related attributes form type From_Typ. Typ is the
2562 -- destination type.
2563
2564 procedure Record_Possible_Part_Of_Reference
2565 (Var_Id : Entity_Id;
2566 Ref : Node_Id);
2567 -- Save reference Ref to variable Var_Id when the variable is subject to
2568 -- pragma Part_Of. If the variable is known to be a constituent of a single
2569 -- protected/task type, the legality of the reference is verified and the
2570 -- save does not take place.
2571
2572 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2573 -- Determine whether entity Id is referenced within expression Expr
2574
2575 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2576 -- Returns True if the expression Expr contains any references to a generic
2577 -- type. This can only happen within a generic template.
2578
2579 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2580 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2581 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2582 -- performed by this routine does not affect the visibility of existing
2583 -- homonyms.
2584
2585 procedure Remove_Homonym (Id : Entity_Id);
2586 -- Removes entity Id from the homonym chain
2587
2588 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2589 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2590 -- the primitive operations list of the associated controlling type. Use
2591 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2592 -- by this routine does not affect the visibility of existing homonyms.
2593
2594 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2595 -- Returns the name of E without Suffix
2596
2597 procedure Replace_Null_By_Null_Address (N : Node_Id);
2598 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2599 -- RM semantics mode, and one of the operands is null. Replace null with
2600 -- System.Null_Address.
2601
2602 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2603 -- This is used to construct the second argument in a call to Rep_To_Pos
2604 -- which is Standard_True if range checks are enabled (E is an entity to
2605 -- which the Range_Checks_Suppressed test is applied), and Standard_False
2606 -- if range checks are suppressed. Loc is the location for the node that
2607 -- is returned (which is a New_Occurrence of the appropriate entity).
2608 --
2609 -- Note: one might think that it would be fine to always use True and
2610 -- to ignore the suppress in this case, but it is generally better to
2611 -- believe a request to suppress exceptions if possible, and further
2612 -- more there is at least one case in the generated code (the code for
2613 -- array assignment in a loop) that depends on this suppression.
2614
2615 procedure Require_Entity (N : Node_Id);
2616 -- N is a node which should have an entity value if it is an entity name.
2617 -- If not, then check if there were previous errors. If so, just fill
2618 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2619 -- This is used as a defense mechanism against ill-formed trees caused by
2620 -- previous errors (particularly in -gnatq mode).
2621
2622 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2623 -- Id is a type entity. The result is True when temporaries of this type
2624 -- need to be wrapped in a transient scope to be reclaimed properly when a
2625 -- secondary stack is in use. Examples of types requiring such wrapping are
2626 -- controlled types and variable-sized types including unconstrained
2627 -- arrays.
2628
2629 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2630
2631 procedure Reset_Analyzed_Flags (N : Node_Id);
2632 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2633
2634 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2635 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2636 -- routine must be used in tandem with Set_SPARK_Mode.
2637
2638 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2639 -- Return true if Subp is a function that returns an unconstrained type
2640
2641 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2642 -- Similar to attribute Root_Type, but this version always follows the
2643 -- Full_View of a private type (if available) while searching for the
2644 -- ultimate derivation ancestor.
2645
2646 function Safe_To_Capture_Value
2647 (N : Node_Id;
2648 Ent : Entity_Id;
2649 Cond : Boolean := False) return Boolean;
2650 -- The caller is interested in capturing a value (either the current value,
2651 -- or an indication that the value is non-null) for the given entity Ent.
2652 -- This value can only be captured if sequential execution semantics can be
2653 -- properly guaranteed so that a subsequent reference will indeed be sure
2654 -- that this current value indication is correct. The node N is the
2655 -- construct which resulted in the possible capture of the value (this
2656 -- is used to check if we are in a conditional).
2657 --
2658 -- Cond is used to skip the test for being inside a conditional. It is used
2659 -- in the case of capturing values from if/while tests, which already do a
2660 -- proper job of handling scoping issues without this help.
2661 --
2662 -- The only entities whose values can be captured are OUT and IN OUT formal
2663 -- parameters, and variables unless Cond is True, in which case we also
2664 -- allow IN formals, loop parameters and constants, where we cannot ever
2665 -- capture actual value information, but we can capture conditional tests.
2666
2667 function Same_Name (N1, N2 : Node_Id) return Boolean;
2668 -- Determine if two (possibly expanded) names are the same name. This is
2669 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2670
2671 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2672 -- Determine if Node1 and Node2 are known to designate the same object.
2673 -- This is a semantic test and both nodes must be fully analyzed. A result
2674 -- of True is decisively correct. A result of False does not necessarily
2675 -- mean that different objects are designated, just that this could not
2676 -- be reliably determined at compile time.
2677
2678 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2679 -- Determines if T1 and T2 represent exactly the same type. Two types
2680 -- are the same if they are identical, or if one is an unconstrained
2681 -- subtype of the other, or they are both common subtypes of the same
2682 -- type with identical constraints. The result returned is conservative.
2683 -- It is True if the types are known to be the same, but a result of
2684 -- False is indecisive (e.g. the compiler may not be able to tell that
2685 -- two constraints are identical).
2686
2687 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2688 -- Determines if Node1 and Node2 are known to be the same value, which is
2689 -- true if they are both compile time known values and have the same value,
2690 -- or if they are the same object (in the sense of function Same_Object).
2691 -- A result of False does not necessarily mean they have different values,
2692 -- just that it is not possible to determine they have the same value.
2693
2694 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
2695 -- Determine whether arbitrary type Typ is a scalar type, or contains at
2696 -- least one scalar subcomponent.
2697
2698 function Scope_Within
2699 (Inner : Entity_Id;
2700 Outer : Entity_Id) return Boolean;
2701 -- Determine whether scope Inner appears within scope Outer. Note that
2702 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
2703 -- (B, A) may both return False.
2704
2705 function Scope_Within_Or_Same
2706 (Inner : Entity_Id;
2707 Outer : Entity_Id) return Boolean;
2708 -- Determine whether scope Inner appears within scope Outer or both denote
2709 -- the same scope. Note that scopes are partially ordered, so Scope_Within
2710 -- (A, B) and Scope_Within (B, A) may both return False.
2711
2712 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2713 -- Same as Basic_Set_Convention, but with an extra check for access types.
2714 -- In particular, if E is an access-to-subprogram type, and Val is a
2715 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2716 -- Also, if the Etype of E is set and is an anonymous access type with
2717 -- no convention set, this anonymous type inherits the convention of E.
2718
2719 procedure Set_Current_Entity (E : Entity_Id);
2720 pragma Inline (Set_Current_Entity);
2721 -- Establish the entity E as the currently visible definition of its
2722 -- associated name (i.e. the Node_Id associated with its name).
2723
2724 procedure Set_Debug_Info_Needed (T : Entity_Id);
2725 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
2726 -- that are needed by T (for an object, the type of the object is needed,
2727 -- and for a type, various subsidiary types are needed -- see body for
2728 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
2729 -- This routine should always be used instead of Set_Needs_Debug_Info to
2730 -- ensure that subsidiary entities are properly handled.
2731
2732 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2733 -- This procedure has the same calling sequence as Set_Entity, but it
2734 -- performs additional checks as follows:
2735 --
2736 -- If Style_Check is set, then it calls a style checking routine which
2737 -- can check identifier spelling style. This procedure also takes care
2738 -- of checking the restriction No_Implementation_Identifiers.
2739 --
2740 -- If restriction No_Abort_Statements is set, then it checks that the
2741 -- entity is not Ada.Task_Identification.Abort_Task.
2742 --
2743 -- If restriction No_Dynamic_Attachment is set, then it checks that the
2744 -- entity is not one of the restricted names for this restriction.
2745 --
2746 -- If restriction No_Long_Long_Integers is set, then it checks that the
2747 -- entity is not Standard.Long_Long_Integer.
2748 --
2749 -- If restriction No_Implementation_Identifiers is set, then it checks
2750 -- that the entity is not implementation defined.
2751
2752 procedure Set_Invalid_Scalar_Value
2753 (Scal_Typ : Float_Scalar_Id;
2754 Value : Ureal);
2755 -- Associate invalid value Value with scalar type Scal_Typ as specified by
2756 -- pragma Initialize_Scalars.
2757
2758 procedure Set_Invalid_Scalar_Value
2759 (Scal_Typ : Integer_Scalar_Id;
2760 Value : Uint);
2761 -- Associate invalid value Value with scalar type Scal_Typ as specified by
2762 -- pragma Initialize_Scalars.
2763
2764 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2765 pragma Inline (Set_Name_Entity_Id);
2766 -- Sets the Entity_Id value associated with the given name, which is the
2767 -- Id of the innermost visible entity with the given name. See the body
2768 -- of package Sem_Ch8 for further details on the handling of visibility.
2769
2770 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2771 -- The arguments may be parameter associations, whose descendants
2772 -- are the optional formal name and the actual parameter. Positional
2773 -- parameters are already members of a list, and do not need to be
2774 -- chained separately. See also First_Actual and Next_Actual.
2775
2776 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2777 pragma Inline (Set_Optimize_Alignment_Flags);
2778 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2779
2780 procedure Set_Public_Status (Id : Entity_Id);
2781 -- If an entity (visible or otherwise) is defined in a library
2782 -- package, or a package that is itself public, then this subprogram
2783 -- labels the entity public as well.
2784
2785 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2786 -- N is the node for either a left hand side (Out_Param set to False),
2787 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2788 -- an assignable entity being referenced, then the appropriate flag
2789 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2790 -- if Out_Param is True) is set True, and the other flag set False.
2791
2792 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
2793 pragma Inline (Set_Rep_Info);
2794 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
2795 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
2796 -- if T1 is a base type.
2797
2798 procedure Set_Scope_Is_Transient (V : Boolean := True);
2799 -- Set the flag Is_Transient of the current scope
2800
2801 procedure Set_Size_Info (T1, T2 : Entity_Id);
2802 pragma Inline (Set_Size_Info);
2803 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2804 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2805 -- in the fixed-point and discrete cases, and also copies the alignment
2806 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2807 -- separately set if this is required to be copied also.
2808
2809 procedure Set_SPARK_Mode (Context : Entity_Id);
2810 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
2811 -- a subprogram denoted by Context. This routine must be used in tandem
2812 -- with Restore_SPARK_Mode.
2813
2814 function Scope_Is_Transient return Boolean;
2815 -- True if the current scope is transient
2816
2817 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
2818 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
2819 -- True if we should ignore pragmas with the specified name. In particular,
2820 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
2821 -- predefined unit. The _Par version should be called only from the parser;
2822 -- the _Sem version should be called only during semantic analysis.
2823
2824 function Static_Boolean (N : Node_Id) return Uint;
2825 -- This function analyzes the given expression node and then resolves it
2826 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2827 -- returned corresponding to the value, otherwise an error message is
2828 -- output and No_Uint is returned.
2829
2830 function Static_Integer (N : Node_Id) return Uint;
2831 -- This function analyzes the given expression node and then resolves it
2832 -- as any integer type. If the result is static, then the value of the
2833 -- universal expression is returned, otherwise an error message is output
2834 -- and a value of No_Uint is returned.
2835
2836 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2837 -- Return True if it can be statically determined that the Expressions
2838 -- E1 and E2 refer to different objects
2839
2840 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2841 -- Determine whether node N is a loop statement subject to at least one
2842 -- 'Loop_Entry attribute.
2843
2844 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2845 -- Return the accessibility level of the view denoted by Subp
2846
2847 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2848 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2849 -- Typ is properly sized and aligned).
2850
2851 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2852 -- Print debugging information on entry to each unit being analyzed
2853
2854 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2855 -- Move a list of entities from one scope to another, and recompute
2856 -- Is_Public based upon the new scope.
2857
2858 generic
2859 with function Process (N : Node_Id) return Traverse_Result is <>;
2860 Process_Itypes : Boolean := False;
2861 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
2862 -- This is a version of Atree.Traverse_Func that not only traverses
2863 -- syntactic children of nodes, but also semantic children which are
2864 -- logically children of the node. This concerns currently lists of
2865 -- action nodes and ranges under Itypes, both inserted by the compiler.
2866 -- Itypes are only traversed when Process_Itypes is True.
2867
2868 generic
2869 with function Process (N : Node_Id) return Traverse_Result is <>;
2870 Process_Itypes : Boolean := False;
2871 procedure Traverse_More_Proc (Node : Node_Id);
2872 pragma Inline (Traverse_More_Proc);
2873 -- This is the same as Traverse_More_Func except that no result is
2874 -- returned, i.e. Traverse_More_Func is called and the result is simply
2875 -- discarded.
2876
2877 function Type_Access_Level (Typ : Entity_Id) return Uint;
2878 -- Return the accessibility level of Typ
2879
2880 function Type_Without_Stream_Operation
2881 (T : Entity_Id;
2882 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2883 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2884 -- is active then we cannot generate stream subprograms for composite types
2885 -- with elementary subcomponents that lack user-defined stream subprograms.
2886 -- This predicate determines whether a type has such an elementary
2887 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2888 -- prevents the construction of a composite stream operation. If Op is
2889 -- specified we check only for the given stream operation.
2890
2891 function Ultimate_Prefix (N : Node_Id) return Node_Id;
2892 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
2893 -- prefix exists.
2894
2895 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2896 -- Return the entity that represents declaration N, so that different
2897 -- views of the same entity have the same unique defining entity:
2898 -- * private view and full view of a deferred constant
2899 -- --> full view
2900 -- * entry spec and entry body
2901 -- --> entry spec
2902 -- * formal parameter on spec and body
2903 -- --> formal parameter on spec
2904 -- * package spec, body, and body stub
2905 -- --> package spec
2906 -- * protected type, protected body, and protected body stub
2907 -- --> protected type (full view if private)
2908 -- * subprogram spec, body, and body stub
2909 -- --> subprogram spec
2910 -- * task type, task body, and task body stub
2911 -- --> task type (full view if private)
2912 -- * private or incomplete view and full view of a type
2913 -- --> full view
2914 -- In other cases, return the defining entity for N.
2915
2916 function Unique_Entity (E : Entity_Id) return Entity_Id;
2917 -- Return the unique entity for entity E, which would be returned by
2918 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2919
2920 function Unique_Name (E : Entity_Id) return String;
2921 -- Return a unique name for entity E, which could be used to identify E
2922 -- across compilation units.
2923
2924 Child_Prefix : constant String := "ada___";
2925 -- Prefix for child packages when building a unique name for an entity. It
2926 -- is included here to share between Unique_Name and gnatprove.
2927
2928 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2929 -- Determine whether a compilation unit is visible in the current context,
2930 -- because there is a with_clause that makes the unit available. Used to
2931 -- provide better messages on common visiblity errors on operators.
2932
2933 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2934 -- Yields Universal_Integer or Universal_Real if this is a candidate
2935
2936 function Unqualify (Expr : Node_Id) return Node_Id;
2937 pragma Inline (Unqualify);
2938 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2939 -- returns X. If Expr is not a qualified expression, returns Expr.
2940
2941 function Unqual_Conv (Expr : Node_Id) return Node_Id;
2942 pragma Inline (Unqual_Conv);
2943 -- Similar to Unqualify, but removes qualified expressions, type
2944 -- conversions, and unchecked conversions.
2945
2946 function Validated_View (Typ : Entity_Id) return Entity_Id;
2947 -- Obtain the "validated view" of arbitrary type Typ which is suitable
2948 -- for verification by attributes 'Valid and 'Valid_Scalars. This view
2949 -- is the type itself or its full view while stripping away concurrency,
2950 -- derivations, and privacy.
2951
2952 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2953 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2954 -- of a type extension or private extension declaration. If the full-view
2955 -- of private parents and progenitors is available then it is used to
2956 -- generate the list of visible ancestors; otherwise their partial
2957 -- view is added to the resulting list.
2958
2959 function Within_Init_Proc return Boolean;
2960 -- Determines if Current_Scope is within an init proc
2961
2962 function Within_Protected_Type (E : Entity_Id) return Boolean;
2963 -- Returns True if entity E is declared within a protected type
2964
2965 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2966 -- Returns True if entity E is declared within scope S
2967
2968 function Within_Subprogram_Call (N : Node_Id) return Boolean;
2969 -- Determine whether arbitrary node N appears in an entry, function, or
2970 -- procedure call.
2971
2972 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2973 -- Output error message for incorrectly typed expression. Expr is the node
2974 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2975 -- and Expected_Type is the entity for the expected type. Note that Expr
2976 -- does not have to be a subexpression, anything with an Etype field may
2977 -- be used.
2978
2979 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2980 -- Determine whether type Typ "yields synchronized object" as specified by
2981 -- SPARK RM 9.1. To qualify as such, a type must be
2982 -- * An array type whose element type yields a synchronized object
2983 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2984 -- * A protected type
2985 -- * A record type or type extension without defaulted discriminants
2986 -- whose components are of a type that yields a synchronized object.
2987 -- * A synchronized interface type
2988 -- * A task type
2989
2990 function Yields_Universal_Type (N : Node_Id) return Boolean;
2991 -- Determine whether unanalyzed node N yields a universal type
2992
2993 package Interval_Lists is
2994 type Discrete_Interval is
2995 record
2996 Low, High : Uint;
2997 end record;
2998
2999 type Discrete_Interval_List is
3000 array (Pos range <>) of Discrete_Interval;
3001 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3002 -- intervals, always with a gap of at least one value between
3003 -- successive intervals (i.e., mergeable intervals are merged).
3004 -- Low bound is one; high bound is nonnegative.
3005
3006 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3007 -- Given a static discrete type or subtype, returns the (unique)
3008 -- interval list representing the values of the type/subtype.
3009 -- If no static predicates are involved, the length of the result
3010 -- will be at most one.
3011
3012 function Choice_List_Intervals (Discrete_Choices : List_Id)
3013 return Discrete_Interval_List;
3014 -- Given a discrete choice list, returns the (unique) interval
3015 -- list representing the chosen values.
3016
3017 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3018 return Boolean;
3019 -- Returns True iff every value belonging to some interval of
3020 -- Subset also belongs to some interval of Of_Set.
3021
3022 -- TBD: When we get around to implementing "is statically compatible"
3023 -- correctly for real types with static predicates, we may need
3024 -- an analogous Real_Interval_List type. Most of the language
3025 -- rules that reference "is statically compatible" pertain to
3026 -- discriminants and therefore do require support for real types;
3027 -- the exception is 12.5.1(8).
3028 end Interval_Lists;
3029 end Sem_Util;