]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
New modref/ipa_modref optimization passes
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
43
44 /* The aliasing API provided here solves related but different problems:
45
46 Say there exists (in c)
47
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
52
53 struct Y y2, *py;
54 struct Z z2, *pz;
55
56
57 py = &x1.y1;
58 px2 = &x1;
59
60 Consider the four questions:
61
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
66
67 The answer to these questions can be yes, yes, yes, and maybe.
68
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
73
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
81
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
84
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
92 */
93
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
98
99 struct S { int i; double d; };
100
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
106 / \
107 / \
108 |/_ _\|
109 int double
110
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
114
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
119
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
123
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
129
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
140
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
143
144 struct T { struct S s; float f; }
145
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
149 };
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
163
164 static void memory_modified_1 (rtx, const_rtx, void *);
165
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
168
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
178
179
180 /* Set up all info needed to perform alias analysis on memory references. */
181
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
191
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
197
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
200
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
204
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
209
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
214
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
218
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
224
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
227
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
231
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
234
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
246
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
249
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
253
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
263
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
272
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
276
277
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 \f
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
284
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 {
288 tree expr = MEM_EXPR (mem);
289 tree base;
290
291 if (!expr)
292 return false;
293
294 ao_ref_init (ref, expr);
295
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
301
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
310
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
312
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
318
319 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320 drop ref->ref. */
321 if (maybe_lt (MEM_OFFSET (mem), 0)
322 || (ref->max_size_known_p ()
323 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324 ref->max_size)))
325 ref->ref = NULL_TREE;
326
327 /* Refine size and offset we got from analyzing MEM_EXPR by using
328 MEM_SIZE and MEM_OFFSET. */
329
330 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332
333 /* The MEM may extend into adjacent fields, so adjust max_size if
334 necessary. */
335 if (ref->max_size_known_p ())
336 ref->max_size = upper_bound (ref->max_size, ref->size);
337
338 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (maybe_lt (ref->offset, 0)
342 || (DECL_P (ref->base)
343 && (DECL_SIZE (ref->base) == NULL_TREE
344 || !poly_int_tree_p (DECL_SIZE (ref->base))
345 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346 ref->offset + ref->size)))))
347 return false;
348
349 return true;
350 }
351
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
355
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358 {
359 ao_ref ref1, ref2;
360
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
364
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
369 }
370
371 /* Return true if the ref EARLIER behaves the same as LATER with respect
372 to TBAA for every memory reference that might follow LATER. */
373
374 bool
375 refs_same_for_tbaa_p (tree earlier, tree later)
376 {
377 ao_ref earlier_ref, later_ref;
378 ao_ref_init (&earlier_ref, earlier);
379 ao_ref_init (&later_ref, later);
380 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
381 alias_set_type later_set = ao_ref_alias_set (&later_ref);
382 if (!(earlier_set == later_set
383 || alias_set_subset_of (later_set, earlier_set)))
384 return false;
385 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
386 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
387 return (earlier_base_set == later_base_set
388 || alias_set_subset_of (later_base_set, earlier_base_set));
389 }
390
391 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
392 such an entry, or NULL otherwise. */
393
394 static inline alias_set_entry *
395 get_alias_set_entry (alias_set_type alias_set)
396 {
397 return (*alias_sets)[alias_set];
398 }
399
400 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
401 the two MEMs cannot alias each other. */
402
403 static inline int
404 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
405 {
406 return (flag_strict_aliasing
407 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
408 MEM_ALIAS_SET (mem2)));
409 }
410
411 /* Return true if the first alias set is a subset of the second. */
412
413 bool
414 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
415 {
416 alias_set_entry *ase2;
417
418 /* Disable TBAA oracle with !flag_strict_aliasing. */
419 if (!flag_strict_aliasing)
420 return true;
421
422 /* Everything is a subset of the "aliases everything" set. */
423 if (set2 == 0)
424 return true;
425
426 /* Check if set1 is a subset of set2. */
427 ase2 = get_alias_set_entry (set2);
428 if (ase2 != 0
429 && (ase2->has_zero_child
430 || (ase2->children && ase2->children->get (set1))))
431 return true;
432
433 /* As a special case we consider alias set of "void *" to be both subset
434 and superset of every alias set of a pointer. This extra symmetry does
435 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
436 to return true on the following testcase:
437
438 void *ptr;
439 char **ptr2=(char **)&ptr;
440 *ptr2 = ...
441
442 Additionally if a set contains universal pointer, we consider every pointer
443 to be a subset of it, but we do not represent this explicitely - doing so
444 would require us to update transitive closure each time we introduce new
445 pointer type. This makes aliasing_component_refs_p to return true
446 on the following testcase:
447
448 struct a {void *ptr;}
449 char **ptr = (char **)&a.ptr;
450 ptr = ...
451
452 This makes void * truly universal pointer type. See pointer handling in
453 get_alias_set for more details. */
454 if (ase2 && ase2->has_pointer)
455 {
456 alias_set_entry *ase1 = get_alias_set_entry (set1);
457
458 if (ase1 && ase1->is_pointer)
459 {
460 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
461 /* If one is ptr_type_node and other is pointer, then we consider
462 them subset of each other. */
463 if (set1 == voidptr_set || set2 == voidptr_set)
464 return true;
465 /* If SET2 contains universal pointer's alias set, then we consdier
466 every (non-universal) pointer. */
467 if (ase2->children && set1 != voidptr_set
468 && ase2->children->get (voidptr_set))
469 return true;
470 }
471 }
472 return false;
473 }
474
475 /* Return 1 if the two specified alias sets may conflict. */
476
477 int
478 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
479 {
480 alias_set_entry *ase1;
481 alias_set_entry *ase2;
482
483 /* The easy case. */
484 if (alias_sets_must_conflict_p (set1, set2))
485 return 1;
486
487 /* See if the first alias set is a subset of the second. */
488 ase1 = get_alias_set_entry (set1);
489 if (ase1 != 0
490 && ase1->children && ase1->children->get (set2))
491 {
492 ++alias_stats.num_dag;
493 return 1;
494 }
495
496 /* Now do the same, but with the alias sets reversed. */
497 ase2 = get_alias_set_entry (set2);
498 if (ase2 != 0
499 && ase2->children && ase2->children->get (set1))
500 {
501 ++alias_stats.num_dag;
502 return 1;
503 }
504
505 /* We want void * to be compatible with any other pointer without
506 really dropping it to alias set 0. Doing so would make it
507 compatible with all non-pointer types too.
508
509 This is not strictly necessary by the C/C++ language
510 standards, but avoids common type punning mistakes. In
511 addition to that, we need the existence of such universal
512 pointer to implement Fortran's C_PTR type (which is defined as
513 type compatible with all C pointers). */
514 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
515 {
516 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
517
518 /* If one of the sets corresponds to universal pointer,
519 we consider it to conflict with anything that is
520 or contains pointer. */
521 if (set1 == voidptr_set || set2 == voidptr_set)
522 {
523 ++alias_stats.num_universal;
524 return true;
525 }
526 /* If one of sets is (non-universal) pointer and the other
527 contains universal pointer, we also get conflict. */
528 if (ase1->is_pointer && set2 != voidptr_set
529 && ase2->children && ase2->children->get (voidptr_set))
530 {
531 ++alias_stats.num_universal;
532 return true;
533 }
534 if (ase2->is_pointer && set1 != voidptr_set
535 && ase1->children && ase1->children->get (voidptr_set))
536 {
537 ++alias_stats.num_universal;
538 return true;
539 }
540 }
541
542 ++alias_stats.num_disambiguated;
543
544 /* The two alias sets are distinct and neither one is the
545 child of the other. Therefore, they cannot conflict. */
546 return 0;
547 }
548
549 /* Return 1 if the two specified alias sets will always conflict. */
550
551 int
552 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
553 {
554 /* Disable TBAA oracle with !flag_strict_aliasing. */
555 if (!flag_strict_aliasing)
556 return 1;
557 if (set1 == 0 || set2 == 0)
558 {
559 ++alias_stats.num_alias_zero;
560 return 1;
561 }
562 if (set1 == set2)
563 {
564 ++alias_stats.num_same_alias_set;
565 return 1;
566 }
567
568 return 0;
569 }
570
571 /* Return 1 if any MEM object of type T1 will always conflict (using the
572 dependency routines in this file) with any MEM object of type T2.
573 This is used when allocating temporary storage. If T1 and/or T2 are
574 NULL_TREE, it means we know nothing about the storage. */
575
576 int
577 objects_must_conflict_p (tree t1, tree t2)
578 {
579 alias_set_type set1, set2;
580
581 /* If neither has a type specified, we don't know if they'll conflict
582 because we may be using them to store objects of various types, for
583 example the argument and local variables areas of inlined functions. */
584 if (t1 == 0 && t2 == 0)
585 return 0;
586
587 /* If they are the same type, they must conflict. */
588 if (t1 == t2)
589 {
590 ++alias_stats.num_same_objects;
591 return 1;
592 }
593 /* Likewise if both are volatile. */
594 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
595 {
596 ++alias_stats.num_volatile;
597 return 1;
598 }
599
600 set1 = t1 ? get_alias_set (t1) : 0;
601 set2 = t2 ? get_alias_set (t2) : 0;
602
603 /* We can't use alias_sets_conflict_p because we must make sure
604 that every subtype of t1 will conflict with every subtype of
605 t2 for which a pair of subobjects of these respective subtypes
606 overlaps on the stack. */
607 return alias_sets_must_conflict_p (set1, set2);
608 }
609 \f
610 /* Return true if T is an end of the access path which can be used
611 by type based alias oracle. */
612
613 bool
614 ends_tbaa_access_path_p (const_tree t)
615 {
616 switch (TREE_CODE (t))
617 {
618 case COMPONENT_REF:
619 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
620 return true;
621 /* Permit type-punning when accessing a union, provided the access
622 is directly through the union. For example, this code does not
623 permit taking the address of a union member and then storing
624 through it. Even the type-punning allowed here is a GCC
625 extension, albeit a common and useful one; the C standard says
626 that such accesses have implementation-defined behavior. */
627 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
628 return true;
629 break;
630
631 case ARRAY_REF:
632 case ARRAY_RANGE_REF:
633 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
634 return true;
635 break;
636
637 case REALPART_EXPR:
638 case IMAGPART_EXPR:
639 break;
640
641 case BIT_FIELD_REF:
642 case VIEW_CONVERT_EXPR:
643 /* Bitfields and casts are never addressable. */
644 return true;
645 break;
646
647 default:
648 gcc_unreachable ();
649 }
650 return false;
651 }
652
653 /* Return the outermost parent of component present in the chain of
654 component references handled by get_inner_reference in T with the
655 following property:
656 - the component is non-addressable
657 or NULL_TREE if no such parent exists. In the former cases, the alias
658 set of this parent is the alias set that must be used for T itself. */
659
660 tree
661 component_uses_parent_alias_set_from (const_tree t)
662 {
663 const_tree found = NULL_TREE;
664
665 while (handled_component_p (t))
666 {
667 if (ends_tbaa_access_path_p (t))
668 found = t;
669
670 t = TREE_OPERAND (t, 0);
671 }
672
673 if (found)
674 return TREE_OPERAND (found, 0);
675
676 return NULL_TREE;
677 }
678
679
680 /* Return whether the pointer-type T effective for aliasing may
681 access everything and thus the reference has to be assigned
682 alias-set zero. */
683
684 static bool
685 ref_all_alias_ptr_type_p (const_tree t)
686 {
687 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
688 || TYPE_REF_CAN_ALIAS_ALL (t));
689 }
690
691 /* Return the alias set for the memory pointed to by T, which may be
692 either a type or an expression. Return -1 if there is nothing
693 special about dereferencing T. */
694
695 static alias_set_type
696 get_deref_alias_set_1 (tree t)
697 {
698 /* All we care about is the type. */
699 if (! TYPE_P (t))
700 t = TREE_TYPE (t);
701
702 /* If we have an INDIRECT_REF via a void pointer, we don't
703 know anything about what that might alias. Likewise if the
704 pointer is marked that way. */
705 if (ref_all_alias_ptr_type_p (t))
706 return 0;
707
708 return -1;
709 }
710
711 /* Return the alias set for the memory pointed to by T, which may be
712 either a type or an expression. */
713
714 alias_set_type
715 get_deref_alias_set (tree t)
716 {
717 /* If we're not doing any alias analysis, just assume everything
718 aliases everything else. */
719 if (!flag_strict_aliasing)
720 return 0;
721
722 alias_set_type set = get_deref_alias_set_1 (t);
723
724 /* Fall back to the alias-set of the pointed-to type. */
725 if (set == -1)
726 {
727 if (! TYPE_P (t))
728 t = TREE_TYPE (t);
729 set = get_alias_set (TREE_TYPE (t));
730 }
731
732 return set;
733 }
734
735 /* Return the pointer-type relevant for TBAA purposes from the
736 memory reference tree *T or NULL_TREE in which case *T is
737 adjusted to point to the outermost component reference that
738 can be used for assigning an alias set. */
739
740 tree
741 reference_alias_ptr_type_1 (tree *t)
742 {
743 tree inner;
744
745 /* Get the base object of the reference. */
746 inner = *t;
747 while (handled_component_p (inner))
748 {
749 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
750 the type of any component references that wrap it to
751 determine the alias-set. */
752 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
753 *t = TREE_OPERAND (inner, 0);
754 inner = TREE_OPERAND (inner, 0);
755 }
756
757 /* Handle pointer dereferences here, they can override the
758 alias-set. */
759 if (INDIRECT_REF_P (inner)
760 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
761 return TREE_TYPE (TREE_OPERAND (inner, 0));
762 else if (TREE_CODE (inner) == TARGET_MEM_REF)
763 return TREE_TYPE (TMR_OFFSET (inner));
764 else if (TREE_CODE (inner) == MEM_REF
765 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
766 return TREE_TYPE (TREE_OPERAND (inner, 1));
767
768 /* If the innermost reference is a MEM_REF that has a
769 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
770 using the memory access type for determining the alias-set. */
771 if (TREE_CODE (inner) == MEM_REF
772 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
773 != TYPE_MAIN_VARIANT
774 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
775 return TREE_TYPE (TREE_OPERAND (inner, 1));
776
777 /* Otherwise, pick up the outermost object that we could have
778 a pointer to. */
779 tree tem = component_uses_parent_alias_set_from (*t);
780 if (tem)
781 *t = tem;
782
783 return NULL_TREE;
784 }
785
786 /* Return the pointer-type relevant for TBAA purposes from the
787 gimple memory reference tree T. This is the type to be used for
788 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
789 and guarantees that get_alias_set will return the same alias
790 set for T and the replacement. */
791
792 tree
793 reference_alias_ptr_type (tree t)
794 {
795 /* If the frontend assigns this alias-set zero, preserve that. */
796 if (lang_hooks.get_alias_set (t) == 0)
797 return ptr_type_node;
798
799 tree ptype = reference_alias_ptr_type_1 (&t);
800 /* If there is a given pointer type for aliasing purposes, return it. */
801 if (ptype != NULL_TREE)
802 return ptype;
803
804 /* Otherwise build one from the outermost component reference we
805 may use. */
806 if (TREE_CODE (t) == MEM_REF
807 || TREE_CODE (t) == TARGET_MEM_REF)
808 return TREE_TYPE (TREE_OPERAND (t, 1));
809 else
810 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
811 }
812
813 /* Return whether the pointer-types T1 and T2 used to determine
814 two alias sets of two references will yield the same answer
815 from get_deref_alias_set. */
816
817 bool
818 alias_ptr_types_compatible_p (tree t1, tree t2)
819 {
820 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
821 return true;
822
823 if (ref_all_alias_ptr_type_p (t1)
824 || ref_all_alias_ptr_type_p (t2))
825 return false;
826
827 /* This function originally abstracts from simply comparing
828 get_deref_alias_set so that we are sure this still computes
829 the same result after LTO type merging is applied.
830 When in LTO type merging is done we can actually do this compare.
831 */
832 if (in_lto_p)
833 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
834 else
835 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
836 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
837 }
838
839 /* Create emptry alias set entry. */
840
841 alias_set_entry *
842 init_alias_set_entry (alias_set_type set)
843 {
844 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
845 ase->alias_set = set;
846 ase->children = NULL;
847 ase->has_zero_child = false;
848 ase->is_pointer = false;
849 ase->has_pointer = false;
850 gcc_checking_assert (!get_alias_set_entry (set));
851 (*alias_sets)[set] = ase;
852 return ase;
853 }
854
855 /* Return the alias set for T, which may be either a type or an
856 expression. Call language-specific routine for help, if needed. */
857
858 alias_set_type
859 get_alias_set (tree t)
860 {
861 alias_set_type set;
862
863 /* We cannot give up with -fno-strict-aliasing because we need to build
864 proper type representations for possible functions which are built with
865 -fstrict-aliasing. */
866
867 /* return 0 if this or its type is an error. */
868 if (t == error_mark_node
869 || (! TYPE_P (t)
870 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
871 return 0;
872
873 /* We can be passed either an expression or a type. This and the
874 language-specific routine may make mutually-recursive calls to each other
875 to figure out what to do. At each juncture, we see if this is a tree
876 that the language may need to handle specially. First handle things that
877 aren't types. */
878 if (! TYPE_P (t))
879 {
880 /* Give the language a chance to do something with this tree
881 before we look at it. */
882 STRIP_NOPS (t);
883 set = lang_hooks.get_alias_set (t);
884 if (set != -1)
885 return set;
886
887 /* Get the alias pointer-type to use or the outermost object
888 that we could have a pointer to. */
889 tree ptype = reference_alias_ptr_type_1 (&t);
890 if (ptype != NULL)
891 return get_deref_alias_set (ptype);
892
893 /* If we've already determined the alias set for a decl, just return
894 it. This is necessary for C++ anonymous unions, whose component
895 variables don't look like union members (boo!). */
896 if (VAR_P (t)
897 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
898 return MEM_ALIAS_SET (DECL_RTL (t));
899
900 /* Now all we care about is the type. */
901 t = TREE_TYPE (t);
902 }
903
904 /* Variant qualifiers don't affect the alias set, so get the main
905 variant. */
906 t = TYPE_MAIN_VARIANT (t);
907
908 if (AGGREGATE_TYPE_P (t)
909 && TYPE_TYPELESS_STORAGE (t))
910 return 0;
911
912 /* Always use the canonical type as well. If this is a type that
913 requires structural comparisons to identify compatible types
914 use alias set zero. */
915 if (TYPE_STRUCTURAL_EQUALITY_P (t))
916 {
917 /* Allow the language to specify another alias set for this
918 type. */
919 set = lang_hooks.get_alias_set (t);
920 if (set != -1)
921 return set;
922 /* Handle structure type equality for pointer types, arrays and vectors.
923 This is easy to do, because the code below ignores canonical types on
924 these anyway. This is important for LTO, where TYPE_CANONICAL for
925 pointers cannot be meaningfully computed by the frontend. */
926 if (canonical_type_used_p (t))
927 {
928 /* In LTO we set canonical types for all types where it makes
929 sense to do so. Double check we did not miss some type. */
930 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
931 return 0;
932 }
933 }
934 else
935 {
936 t = TYPE_CANONICAL (t);
937 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
938 }
939
940 /* If this is a type with a known alias set, return it. */
941 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
942 if (TYPE_ALIAS_SET_KNOWN_P (t))
943 return TYPE_ALIAS_SET (t);
944
945 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
946 if (!COMPLETE_TYPE_P (t))
947 {
948 /* For arrays with unknown size the conservative answer is the
949 alias set of the element type. */
950 if (TREE_CODE (t) == ARRAY_TYPE)
951 return get_alias_set (TREE_TYPE (t));
952
953 /* But return zero as a conservative answer for incomplete types. */
954 return 0;
955 }
956
957 /* See if the language has special handling for this type. */
958 set = lang_hooks.get_alias_set (t);
959 if (set != -1)
960 return set;
961
962 /* There are no objects of FUNCTION_TYPE, so there's no point in
963 using up an alias set for them. (There are, of course, pointers
964 and references to functions, but that's different.) */
965 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
966 set = 0;
967
968 /* Unless the language specifies otherwise, let vector types alias
969 their components. This avoids some nasty type punning issues in
970 normal usage. And indeed lets vectors be treated more like an
971 array slice. */
972 else if (TREE_CODE (t) == VECTOR_TYPE)
973 set = get_alias_set (TREE_TYPE (t));
974
975 /* Unless the language specifies otherwise, treat array types the
976 same as their components. This avoids the asymmetry we get
977 through recording the components. Consider accessing a
978 character(kind=1) through a reference to a character(kind=1)[1:1].
979 Or consider if we want to assign integer(kind=4)[0:D.1387] and
980 integer(kind=4)[4] the same alias set or not.
981 Just be pragmatic here and make sure the array and its element
982 type get the same alias set assigned. */
983 else if (TREE_CODE (t) == ARRAY_TYPE
984 && (!TYPE_NONALIASED_COMPONENT (t)
985 || TYPE_STRUCTURAL_EQUALITY_P (t)))
986 set = get_alias_set (TREE_TYPE (t));
987
988 /* From the former common C and C++ langhook implementation:
989
990 Unfortunately, there is no canonical form of a pointer type.
991 In particular, if we have `typedef int I', then `int *', and
992 `I *' are different types. So, we have to pick a canonical
993 representative. We do this below.
994
995 Technically, this approach is actually more conservative that
996 it needs to be. In particular, `const int *' and `int *'
997 should be in different alias sets, according to the C and C++
998 standard, since their types are not the same, and so,
999 technically, an `int **' and `const int **' cannot point at
1000 the same thing.
1001
1002 But, the standard is wrong. In particular, this code is
1003 legal C++:
1004
1005 int *ip;
1006 int **ipp = &ip;
1007 const int* const* cipp = ipp;
1008 And, it doesn't make sense for that to be legal unless you
1009 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1010 the pointed-to types. This issue has been reported to the
1011 C++ committee.
1012
1013 For this reason go to canonical type of the unqalified pointer type.
1014 Until GCC 6 this code set all pointers sets to have alias set of
1015 ptr_type_node but that is a bad idea, because it prevents disabiguations
1016 in between pointers. For Firefox this accounts about 20% of all
1017 disambiguations in the program. */
1018 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1019 {
1020 tree p;
1021 auto_vec <bool, 8> reference;
1022
1023 /* Unnest all pointers and references.
1024 We also want to make pointer to array/vector equivalent to pointer to
1025 its element (see the reasoning above). Skip all those types, too. */
1026 for (p = t; POINTER_TYPE_P (p)
1027 || (TREE_CODE (p) == ARRAY_TYPE
1028 && (!TYPE_NONALIASED_COMPONENT (p)
1029 || !COMPLETE_TYPE_P (p)
1030 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1031 || TREE_CODE (p) == VECTOR_TYPE;
1032 p = TREE_TYPE (p))
1033 {
1034 /* Ada supports recursive pointers. Instead of doing recursion
1035 check, just give up once the preallocated space of 8 elements
1036 is up. In this case just punt to void * alias set. */
1037 if (reference.length () == 8)
1038 {
1039 p = ptr_type_node;
1040 break;
1041 }
1042 if (TREE_CODE (p) == REFERENCE_TYPE)
1043 /* In LTO we want languages that use references to be compatible
1044 with languages that use pointers. */
1045 reference.safe_push (true && !in_lto_p);
1046 if (TREE_CODE (p) == POINTER_TYPE)
1047 reference.safe_push (false);
1048 }
1049 p = TYPE_MAIN_VARIANT (p);
1050
1051 /* In LTO for C++ programs we can turn incomplete types to complete
1052 using ODR name lookup. */
1053 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1054 {
1055 p = prevailing_odr_type (p);
1056 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1057 }
1058
1059 /* Make void * compatible with char * and also void **.
1060 Programs are commonly violating TBAA by this.
1061
1062 We also make void * to conflict with every pointer
1063 (see record_component_aliases) and thus it is safe it to use it for
1064 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1065 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1066 set = get_alias_set (ptr_type_node);
1067 else
1068 {
1069 /* Rebuild pointer type starting from canonical types using
1070 unqualified pointers and references only. This way all such
1071 pointers will have the same alias set and will conflict with
1072 each other.
1073
1074 Most of time we already have pointers or references of a given type.
1075 If not we build new one just to be sure that if someone later
1076 (probably only middle-end can, as we should assign all alias
1077 classes only after finishing translation unit) builds the pointer
1078 type, the canonical type will match. */
1079 p = TYPE_CANONICAL (p);
1080 while (!reference.is_empty ())
1081 {
1082 if (reference.pop ())
1083 p = build_reference_type (p);
1084 else
1085 p = build_pointer_type (p);
1086 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1087 /* build_pointer_type should always return the canonical type.
1088 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1089 them. Be sure that frontends do not glob canonical types of
1090 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1091 in all other cases. */
1092 gcc_checking_assert (!TYPE_CANONICAL (p)
1093 || p == TYPE_CANONICAL (p));
1094 }
1095
1096 /* Assign the alias set to both p and t.
1097 We cannot call get_alias_set (p) here as that would trigger
1098 infinite recursion when p == t. In other cases it would just
1099 trigger unnecesary legwork of rebuilding the pointer again. */
1100 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1101 if (TYPE_ALIAS_SET_KNOWN_P (p))
1102 set = TYPE_ALIAS_SET (p);
1103 else
1104 {
1105 set = new_alias_set ();
1106 TYPE_ALIAS_SET (p) = set;
1107 }
1108 }
1109 }
1110 /* Alias set of ptr_type_node is special and serve as universal pointer which
1111 is TBAA compatible with every other pointer type. Be sure we have the
1112 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1113 of pointer types NULL. */
1114 else if (t == ptr_type_node)
1115 set = new_alias_set ();
1116
1117 /* Otherwise make a new alias set for this type. */
1118 else
1119 {
1120 /* Each canonical type gets its own alias set, so canonical types
1121 shouldn't form a tree. It doesn't really matter for types
1122 we handle specially above, so only check it where it possibly
1123 would result in a bogus alias set. */
1124 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1125
1126 set = new_alias_set ();
1127 }
1128
1129 TYPE_ALIAS_SET (t) = set;
1130
1131 /* If this is an aggregate type or a complex type, we must record any
1132 component aliasing information. */
1133 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1134 record_component_aliases (t);
1135
1136 /* We treat pointer types specially in alias_set_subset_of. */
1137 if (POINTER_TYPE_P (t) && set)
1138 {
1139 alias_set_entry *ase = get_alias_set_entry (set);
1140 if (!ase)
1141 ase = init_alias_set_entry (set);
1142 ase->is_pointer = true;
1143 ase->has_pointer = true;
1144 }
1145
1146 return set;
1147 }
1148
1149 /* Return a brand-new alias set. */
1150
1151 alias_set_type
1152 new_alias_set (void)
1153 {
1154 if (alias_sets == 0)
1155 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1156 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1157 return alias_sets->length () - 1;
1158 }
1159
1160 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1161 not everything that aliases SUPERSET also aliases SUBSET. For example,
1162 in C, a store to an `int' can alias a load of a structure containing an
1163 `int', and vice versa. But it can't alias a load of a 'double' member
1164 of the same structure. Here, the structure would be the SUPERSET and
1165 `int' the SUBSET. This relationship is also described in the comment at
1166 the beginning of this file.
1167
1168 This function should be called only once per SUPERSET/SUBSET pair.
1169
1170 It is illegal for SUPERSET to be zero; everything is implicitly a
1171 subset of alias set zero. */
1172
1173 void
1174 record_alias_subset (alias_set_type superset, alias_set_type subset)
1175 {
1176 alias_set_entry *superset_entry;
1177 alias_set_entry *subset_entry;
1178
1179 /* It is possible in complex type situations for both sets to be the same,
1180 in which case we can ignore this operation. */
1181 if (superset == subset)
1182 return;
1183
1184 gcc_assert (superset);
1185
1186 superset_entry = get_alias_set_entry (superset);
1187 if (superset_entry == 0)
1188 {
1189 /* Create an entry for the SUPERSET, so that we have a place to
1190 attach the SUBSET. */
1191 superset_entry = init_alias_set_entry (superset);
1192 }
1193
1194 if (subset == 0)
1195 superset_entry->has_zero_child = 1;
1196 else
1197 {
1198 if (!superset_entry->children)
1199 superset_entry->children
1200 = hash_map<alias_set_hash, int>::create_ggc (64);
1201
1202 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1203 already there we're done. */
1204 if (superset_entry->children->put (subset, 0))
1205 return;
1206
1207 subset_entry = get_alias_set_entry (subset);
1208 /* If there is an entry for the subset, enter all of its children
1209 (if they are not already present) as children of the SUPERSET. */
1210 if (subset_entry)
1211 {
1212 if (subset_entry->has_zero_child)
1213 superset_entry->has_zero_child = true;
1214 if (subset_entry->has_pointer)
1215 superset_entry->has_pointer = true;
1216
1217 if (subset_entry->children)
1218 {
1219 hash_map<alias_set_hash, int>::iterator iter
1220 = subset_entry->children->begin ();
1221 for (; iter != subset_entry->children->end (); ++iter)
1222 superset_entry->children->put ((*iter).first, (*iter).second);
1223 }
1224 }
1225 }
1226 }
1227
1228 /* Record that component types of TYPE, if any, are part of SUPERSET for
1229 aliasing purposes. For record types, we only record component types
1230 for fields that are not marked non-addressable. For array types, we
1231 only record the component type if it is not marked non-aliased. */
1232
1233 void
1234 record_component_aliases (tree type, alias_set_type superset)
1235 {
1236 tree field;
1237
1238 if (superset == 0)
1239 return;
1240
1241 switch (TREE_CODE (type))
1242 {
1243 case RECORD_TYPE:
1244 case UNION_TYPE:
1245 case QUAL_UNION_TYPE:
1246 {
1247 /* LTO non-ODR type merging does not make any difference between
1248 component pointer types. We may have
1249
1250 struct foo {int *a;};
1251
1252 as TYPE_CANONICAL of
1253
1254 struct bar {float *a;};
1255
1256 Because accesses to int * and float * do not alias, we would get
1257 false negative when accessing the same memory location by
1258 float ** and bar *. We thus record the canonical type as:
1259
1260 struct {void *a;};
1261
1262 void * is special cased and works as a universal pointer type.
1263 Accesses to it conflicts with accesses to any other pointer
1264 type. */
1265 bool void_pointers = in_lto_p
1266 && (!odr_type_p (type)
1267 || !odr_based_tbaa_p (type));
1268 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1269 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1270 {
1271 tree t = TREE_TYPE (field);
1272 if (void_pointers)
1273 {
1274 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1275 element type and that type has to be normalized to void *,
1276 too, in the case it is a pointer. */
1277 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1278 {
1279 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1280 t = TREE_TYPE (t);
1281 }
1282 if (POINTER_TYPE_P (t))
1283 t = ptr_type_node;
1284 else if (flag_checking)
1285 gcc_checking_assert (get_alias_set (t)
1286 == get_alias_set (TREE_TYPE (field)));
1287 }
1288
1289 alias_set_type set = get_alias_set (t);
1290 record_alias_subset (superset, set);
1291 /* If the field has alias-set zero make sure to still record
1292 any componets of it. This makes sure that for
1293 struct A {
1294 struct B {
1295 int i;
1296 char c[4];
1297 } b;
1298 };
1299 in C++ even though 'B' has alias-set zero because
1300 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1301 'int' as subset. */
1302 if (set == 0)
1303 record_component_aliases (t, superset);
1304 }
1305 }
1306 break;
1307
1308 case COMPLEX_TYPE:
1309 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1310 break;
1311
1312 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1313 element type. */
1314
1315 default:
1316 break;
1317 }
1318 }
1319
1320 /* Record that component types of TYPE, if any, are part of that type for
1321 aliasing purposes. For record types, we only record component types
1322 for fields that are not marked non-addressable. For array types, we
1323 only record the component type if it is not marked non-aliased. */
1324
1325 void
1326 record_component_aliases (tree type)
1327 {
1328 alias_set_type superset = get_alias_set (type);
1329 record_component_aliases (type, superset);
1330 }
1331
1332
1333 /* Allocate an alias set for use in storing and reading from the varargs
1334 spill area. */
1335
1336 static GTY(()) alias_set_type varargs_set = -1;
1337
1338 alias_set_type
1339 get_varargs_alias_set (void)
1340 {
1341 #if 1
1342 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1343 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1344 consistently use the varargs alias set for loads from the varargs
1345 area. So don't use it anywhere. */
1346 return 0;
1347 #else
1348 if (varargs_set == -1)
1349 varargs_set = new_alias_set ();
1350
1351 return varargs_set;
1352 #endif
1353 }
1354
1355 /* Likewise, but used for the fixed portions of the frame, e.g., register
1356 save areas. */
1357
1358 static GTY(()) alias_set_type frame_set = -1;
1359
1360 alias_set_type
1361 get_frame_alias_set (void)
1362 {
1363 if (frame_set == -1)
1364 frame_set = new_alias_set ();
1365
1366 return frame_set;
1367 }
1368
1369 /* Create a new, unique base with id ID. */
1370
1371 static rtx
1372 unique_base_value (HOST_WIDE_INT id)
1373 {
1374 return gen_rtx_ADDRESS (Pmode, id);
1375 }
1376
1377 /* Return true if accesses based on any other base value cannot alias
1378 those based on X. */
1379
1380 static bool
1381 unique_base_value_p (rtx x)
1382 {
1383 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1384 }
1385
1386 /* Return true if X is known to be a base value. */
1387
1388 static bool
1389 known_base_value_p (rtx x)
1390 {
1391 switch (GET_CODE (x))
1392 {
1393 case LABEL_REF:
1394 case SYMBOL_REF:
1395 return true;
1396
1397 case ADDRESS:
1398 /* Arguments may or may not be bases; we don't know for sure. */
1399 return GET_MODE (x) != VOIDmode;
1400
1401 default:
1402 return false;
1403 }
1404 }
1405
1406 /* Inside SRC, the source of a SET, find a base address. */
1407
1408 static rtx
1409 find_base_value (rtx src)
1410 {
1411 unsigned int regno;
1412 scalar_int_mode int_mode;
1413
1414 #if defined (FIND_BASE_TERM)
1415 /* Try machine-dependent ways to find the base term. */
1416 src = FIND_BASE_TERM (src);
1417 #endif
1418
1419 switch (GET_CODE (src))
1420 {
1421 case SYMBOL_REF:
1422 case LABEL_REF:
1423 return src;
1424
1425 case REG:
1426 regno = REGNO (src);
1427 /* At the start of a function, argument registers have known base
1428 values which may be lost later. Returning an ADDRESS
1429 expression here allows optimization based on argument values
1430 even when the argument registers are used for other purposes. */
1431 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1432 return new_reg_base_value[regno];
1433
1434 /* If a pseudo has a known base value, return it. Do not do this
1435 for non-fixed hard regs since it can result in a circular
1436 dependency chain for registers which have values at function entry.
1437
1438 The test above is not sufficient because the scheduler may move
1439 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1440 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1441 && regno < vec_safe_length (reg_base_value))
1442 {
1443 /* If we're inside init_alias_analysis, use new_reg_base_value
1444 to reduce the number of relaxation iterations. */
1445 if (new_reg_base_value && new_reg_base_value[regno]
1446 && DF_REG_DEF_COUNT (regno) == 1)
1447 return new_reg_base_value[regno];
1448
1449 if ((*reg_base_value)[regno])
1450 return (*reg_base_value)[regno];
1451 }
1452
1453 return 0;
1454
1455 case MEM:
1456 /* Check for an argument passed in memory. Only record in the
1457 copying-arguments block; it is too hard to track changes
1458 otherwise. */
1459 if (copying_arguments
1460 && (XEXP (src, 0) == arg_pointer_rtx
1461 || (GET_CODE (XEXP (src, 0)) == PLUS
1462 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1463 return arg_base_value;
1464 return 0;
1465
1466 case CONST:
1467 src = XEXP (src, 0);
1468 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1469 break;
1470
1471 /* fall through */
1472
1473 case PLUS:
1474 case MINUS:
1475 {
1476 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1477
1478 /* If either operand is a REG that is a known pointer, then it
1479 is the base. */
1480 if (REG_P (src_0) && REG_POINTER (src_0))
1481 return find_base_value (src_0);
1482 if (REG_P (src_1) && REG_POINTER (src_1))
1483 return find_base_value (src_1);
1484
1485 /* If either operand is a REG, then see if we already have
1486 a known value for it. */
1487 if (REG_P (src_0))
1488 {
1489 temp = find_base_value (src_0);
1490 if (temp != 0)
1491 src_0 = temp;
1492 }
1493
1494 if (REG_P (src_1))
1495 {
1496 temp = find_base_value (src_1);
1497 if (temp!= 0)
1498 src_1 = temp;
1499 }
1500
1501 /* If either base is named object or a special address
1502 (like an argument or stack reference), then use it for the
1503 base term. */
1504 if (src_0 != 0 && known_base_value_p (src_0))
1505 return src_0;
1506
1507 if (src_1 != 0 && known_base_value_p (src_1))
1508 return src_1;
1509
1510 /* Guess which operand is the base address:
1511 If either operand is a symbol, then it is the base. If
1512 either operand is a CONST_INT, then the other is the base. */
1513 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1514 return find_base_value (src_0);
1515 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1516 return find_base_value (src_1);
1517
1518 return 0;
1519 }
1520
1521 case LO_SUM:
1522 /* The standard form is (lo_sum reg sym) so look only at the
1523 second operand. */
1524 return find_base_value (XEXP (src, 1));
1525
1526 case AND:
1527 /* Look through aligning ANDs. And AND with zero or one with
1528 the LSB set isn't one (see for example PR92462). */
1529 if (CONST_INT_P (XEXP (src, 1))
1530 && INTVAL (XEXP (src, 1)) != 0
1531 && (INTVAL (XEXP (src, 1)) & 1) == 0)
1532 return find_base_value (XEXP (src, 0));
1533 return 0;
1534
1535 case TRUNCATE:
1536 /* As we do not know which address space the pointer is referring to, we can
1537 handle this only if the target does not support different pointer or
1538 address modes depending on the address space. */
1539 if (!target_default_pointer_address_modes_p ())
1540 break;
1541 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1542 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1543 break;
1544 /* Fall through. */
1545 case HIGH:
1546 case PRE_INC:
1547 case PRE_DEC:
1548 case POST_INC:
1549 case POST_DEC:
1550 case PRE_MODIFY:
1551 case POST_MODIFY:
1552 return find_base_value (XEXP (src, 0));
1553
1554 case ZERO_EXTEND:
1555 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1556 /* As we do not know which address space the pointer is referring to, we can
1557 handle this only if the target does not support different pointer or
1558 address modes depending on the address space. */
1559 if (!target_default_pointer_address_modes_p ())
1560 break;
1561
1562 {
1563 rtx temp = find_base_value (XEXP (src, 0));
1564
1565 if (temp != 0 && CONSTANT_P (temp))
1566 temp = convert_memory_address (Pmode, temp);
1567
1568 return temp;
1569 }
1570
1571 default:
1572 break;
1573 }
1574
1575 return 0;
1576 }
1577
1578 /* Called from init_alias_analysis indirectly through note_stores,
1579 or directly if DEST is a register with a REG_NOALIAS note attached.
1580 SET is null in the latter case. */
1581
1582 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1583 register N has been set in this function. */
1584 static sbitmap reg_seen;
1585
1586 static void
1587 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1588 {
1589 unsigned regno;
1590 rtx src;
1591 int n;
1592
1593 if (!REG_P (dest))
1594 return;
1595
1596 regno = REGNO (dest);
1597
1598 gcc_checking_assert (regno < reg_base_value->length ());
1599
1600 n = REG_NREGS (dest);
1601 if (n != 1)
1602 {
1603 while (--n >= 0)
1604 {
1605 bitmap_set_bit (reg_seen, regno + n);
1606 new_reg_base_value[regno + n] = 0;
1607 }
1608 return;
1609 }
1610
1611 if (set)
1612 {
1613 /* A CLOBBER wipes out any old value but does not prevent a previously
1614 unset register from acquiring a base address (i.e. reg_seen is not
1615 set). */
1616 if (GET_CODE (set) == CLOBBER)
1617 {
1618 new_reg_base_value[regno] = 0;
1619 return;
1620 }
1621
1622 src = SET_SRC (set);
1623 }
1624 else
1625 {
1626 /* There's a REG_NOALIAS note against DEST. */
1627 if (bitmap_bit_p (reg_seen, regno))
1628 {
1629 new_reg_base_value[regno] = 0;
1630 return;
1631 }
1632 bitmap_set_bit (reg_seen, regno);
1633 new_reg_base_value[regno] = unique_base_value (unique_id++);
1634 return;
1635 }
1636
1637 /* If this is not the first set of REGNO, see whether the new value
1638 is related to the old one. There are two cases of interest:
1639
1640 (1) The register might be assigned an entirely new value
1641 that has the same base term as the original set.
1642
1643 (2) The set might be a simple self-modification that
1644 cannot change REGNO's base value.
1645
1646 If neither case holds, reject the original base value as invalid.
1647 Note that the following situation is not detected:
1648
1649 extern int x, y; int *p = &x; p += (&y-&x);
1650
1651 ANSI C does not allow computing the difference of addresses
1652 of distinct top level objects. */
1653 if (new_reg_base_value[regno] != 0
1654 && find_base_value (src) != new_reg_base_value[regno])
1655 switch (GET_CODE (src))
1656 {
1657 case LO_SUM:
1658 case MINUS:
1659 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1660 new_reg_base_value[regno] = 0;
1661 break;
1662 case PLUS:
1663 /* If the value we add in the PLUS is also a valid base value,
1664 this might be the actual base value, and the original value
1665 an index. */
1666 {
1667 rtx other = NULL_RTX;
1668
1669 if (XEXP (src, 0) == dest)
1670 other = XEXP (src, 1);
1671 else if (XEXP (src, 1) == dest)
1672 other = XEXP (src, 0);
1673
1674 if (! other || find_base_value (other))
1675 new_reg_base_value[regno] = 0;
1676 break;
1677 }
1678 case AND:
1679 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1680 new_reg_base_value[regno] = 0;
1681 break;
1682 default:
1683 new_reg_base_value[regno] = 0;
1684 break;
1685 }
1686 /* If this is the first set of a register, record the value. */
1687 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1688 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1689 new_reg_base_value[regno] = find_base_value (src);
1690
1691 bitmap_set_bit (reg_seen, regno);
1692 }
1693
1694 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1695 using hard registers with non-null REG_BASE_VALUE for renaming. */
1696 rtx
1697 get_reg_base_value (unsigned int regno)
1698 {
1699 return (*reg_base_value)[regno];
1700 }
1701
1702 /* If a value is known for REGNO, return it. */
1703
1704 rtx
1705 get_reg_known_value (unsigned int regno)
1706 {
1707 if (regno >= FIRST_PSEUDO_REGISTER)
1708 {
1709 regno -= FIRST_PSEUDO_REGISTER;
1710 if (regno < vec_safe_length (reg_known_value))
1711 return (*reg_known_value)[regno];
1712 }
1713 return NULL;
1714 }
1715
1716 /* Set it. */
1717
1718 static void
1719 set_reg_known_value (unsigned int regno, rtx val)
1720 {
1721 if (regno >= FIRST_PSEUDO_REGISTER)
1722 {
1723 regno -= FIRST_PSEUDO_REGISTER;
1724 if (regno < vec_safe_length (reg_known_value))
1725 (*reg_known_value)[regno] = val;
1726 }
1727 }
1728
1729 /* Similarly for reg_known_equiv_p. */
1730
1731 bool
1732 get_reg_known_equiv_p (unsigned int regno)
1733 {
1734 if (regno >= FIRST_PSEUDO_REGISTER)
1735 {
1736 regno -= FIRST_PSEUDO_REGISTER;
1737 if (regno < vec_safe_length (reg_known_value))
1738 return bitmap_bit_p (reg_known_equiv_p, regno);
1739 }
1740 return false;
1741 }
1742
1743 static void
1744 set_reg_known_equiv_p (unsigned int regno, bool val)
1745 {
1746 if (regno >= FIRST_PSEUDO_REGISTER)
1747 {
1748 regno -= FIRST_PSEUDO_REGISTER;
1749 if (regno < vec_safe_length (reg_known_value))
1750 {
1751 if (val)
1752 bitmap_set_bit (reg_known_equiv_p, regno);
1753 else
1754 bitmap_clear_bit (reg_known_equiv_p, regno);
1755 }
1756 }
1757 }
1758
1759
1760 /* Returns a canonical version of X, from the point of view alias
1761 analysis. (For example, if X is a MEM whose address is a register,
1762 and the register has a known value (say a SYMBOL_REF), then a MEM
1763 whose address is the SYMBOL_REF is returned.) */
1764
1765 rtx
1766 canon_rtx (rtx x)
1767 {
1768 /* Recursively look for equivalences. */
1769 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1770 {
1771 rtx t = get_reg_known_value (REGNO (x));
1772 if (t == x)
1773 return x;
1774 if (t)
1775 return canon_rtx (t);
1776 }
1777
1778 if (GET_CODE (x) == PLUS)
1779 {
1780 rtx x0 = canon_rtx (XEXP (x, 0));
1781 rtx x1 = canon_rtx (XEXP (x, 1));
1782
1783 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1784 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1785 }
1786
1787 /* This gives us much better alias analysis when called from
1788 the loop optimizer. Note we want to leave the original
1789 MEM alone, but need to return the canonicalized MEM with
1790 all the flags with their original values. */
1791 else if (MEM_P (x))
1792 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1793
1794 return x;
1795 }
1796
1797 /* Return 1 if X and Y are identical-looking rtx's.
1798 Expect that X and Y has been already canonicalized.
1799
1800 We use the data in reg_known_value above to see if two registers with
1801 different numbers are, in fact, equivalent. */
1802
1803 static int
1804 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1805 {
1806 int i;
1807 int j;
1808 enum rtx_code code;
1809 const char *fmt;
1810
1811 if (x == 0 && y == 0)
1812 return 1;
1813 if (x == 0 || y == 0)
1814 return 0;
1815
1816 if (x == y)
1817 return 1;
1818
1819 code = GET_CODE (x);
1820 /* Rtx's of different codes cannot be equal. */
1821 if (code != GET_CODE (y))
1822 return 0;
1823
1824 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1825 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1826
1827 if (GET_MODE (x) != GET_MODE (y))
1828 return 0;
1829
1830 /* Some RTL can be compared without a recursive examination. */
1831 switch (code)
1832 {
1833 case REG:
1834 return REGNO (x) == REGNO (y);
1835
1836 case LABEL_REF:
1837 return label_ref_label (x) == label_ref_label (y);
1838
1839 case SYMBOL_REF:
1840 return compare_base_symbol_refs (x, y) == 1;
1841
1842 case ENTRY_VALUE:
1843 /* This is magic, don't go through canonicalization et al. */
1844 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1845
1846 case VALUE:
1847 CASE_CONST_UNIQUE:
1848 /* Pointer equality guarantees equality for these nodes. */
1849 return 0;
1850
1851 default:
1852 break;
1853 }
1854
1855 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1856 if (code == PLUS)
1857 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1858 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1859 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1860 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1861 /* For commutative operations, the RTX match if the operand match in any
1862 order. Also handle the simple binary and unary cases without a loop. */
1863 if (COMMUTATIVE_P (x))
1864 {
1865 rtx xop0 = canon_rtx (XEXP (x, 0));
1866 rtx yop0 = canon_rtx (XEXP (y, 0));
1867 rtx yop1 = canon_rtx (XEXP (y, 1));
1868
1869 return ((rtx_equal_for_memref_p (xop0, yop0)
1870 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1871 || (rtx_equal_for_memref_p (xop0, yop1)
1872 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1873 }
1874 else if (NON_COMMUTATIVE_P (x))
1875 {
1876 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1877 canon_rtx (XEXP (y, 0)))
1878 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1879 canon_rtx (XEXP (y, 1))));
1880 }
1881 else if (UNARY_P (x))
1882 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1883 canon_rtx (XEXP (y, 0)));
1884
1885 /* Compare the elements. If any pair of corresponding elements
1886 fail to match, return 0 for the whole things.
1887
1888 Limit cases to types which actually appear in addresses. */
1889
1890 fmt = GET_RTX_FORMAT (code);
1891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1892 {
1893 switch (fmt[i])
1894 {
1895 case 'i':
1896 if (XINT (x, i) != XINT (y, i))
1897 return 0;
1898 break;
1899
1900 case 'p':
1901 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1902 return 0;
1903 break;
1904
1905 case 'E':
1906 /* Two vectors must have the same length. */
1907 if (XVECLEN (x, i) != XVECLEN (y, i))
1908 return 0;
1909
1910 /* And the corresponding elements must match. */
1911 for (j = 0; j < XVECLEN (x, i); j++)
1912 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1913 canon_rtx (XVECEXP (y, i, j))) == 0)
1914 return 0;
1915 break;
1916
1917 case 'e':
1918 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1919 canon_rtx (XEXP (y, i))) == 0)
1920 return 0;
1921 break;
1922
1923 /* This can happen for asm operands. */
1924 case 's':
1925 if (strcmp (XSTR (x, i), XSTR (y, i)))
1926 return 0;
1927 break;
1928
1929 /* This can happen for an asm which clobbers memory. */
1930 case '0':
1931 break;
1932
1933 /* It is believed that rtx's at this level will never
1934 contain anything but integers and other rtx's,
1935 except for within LABEL_REFs and SYMBOL_REFs. */
1936 default:
1937 gcc_unreachable ();
1938 }
1939 }
1940 return 1;
1941 }
1942
1943 static rtx
1944 find_base_term (rtx x, vec<std::pair<cselib_val *,
1945 struct elt_loc_list *> > &visited_vals)
1946 {
1947 cselib_val *val;
1948 struct elt_loc_list *l, *f;
1949 rtx ret;
1950 scalar_int_mode int_mode;
1951
1952 #if defined (FIND_BASE_TERM)
1953 /* Try machine-dependent ways to find the base term. */
1954 x = FIND_BASE_TERM (x);
1955 #endif
1956
1957 switch (GET_CODE (x))
1958 {
1959 case REG:
1960 return REG_BASE_VALUE (x);
1961
1962 case TRUNCATE:
1963 /* As we do not know which address space the pointer is referring to, we can
1964 handle this only if the target does not support different pointer or
1965 address modes depending on the address space. */
1966 if (!target_default_pointer_address_modes_p ())
1967 return 0;
1968 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1969 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1970 return 0;
1971 /* Fall through. */
1972 case HIGH:
1973 case PRE_INC:
1974 case PRE_DEC:
1975 case POST_INC:
1976 case POST_DEC:
1977 case PRE_MODIFY:
1978 case POST_MODIFY:
1979 return find_base_term (XEXP (x, 0), visited_vals);
1980
1981 case ZERO_EXTEND:
1982 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1983 /* As we do not know which address space the pointer is referring to, we can
1984 handle this only if the target does not support different pointer or
1985 address modes depending on the address space. */
1986 if (!target_default_pointer_address_modes_p ())
1987 return 0;
1988
1989 {
1990 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1991
1992 if (temp != 0 && CONSTANT_P (temp))
1993 temp = convert_memory_address (Pmode, temp);
1994
1995 return temp;
1996 }
1997
1998 case VALUE:
1999 val = CSELIB_VAL_PTR (x);
2000 ret = NULL_RTX;
2001
2002 if (!val)
2003 return ret;
2004
2005 if (cselib_sp_based_value_p (val))
2006 return static_reg_base_value[STACK_POINTER_REGNUM];
2007
2008 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2009 return ret;
2010
2011 f = val->locs;
2012 /* Reset val->locs to avoid infinite recursion. */
2013 if (f)
2014 visited_vals.safe_push (std::make_pair (val, f));
2015 val->locs = NULL;
2016
2017 for (l = f; l; l = l->next)
2018 if (GET_CODE (l->loc) == VALUE
2019 && CSELIB_VAL_PTR (l->loc)->locs
2020 && !CSELIB_VAL_PTR (l->loc)->locs->next
2021 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2022 continue;
2023 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2024 break;
2025
2026 return ret;
2027
2028 case LO_SUM:
2029 /* The standard form is (lo_sum reg sym) so look only at the
2030 second operand. */
2031 return find_base_term (XEXP (x, 1), visited_vals);
2032
2033 case CONST:
2034 x = XEXP (x, 0);
2035 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2036 return 0;
2037 /* Fall through. */
2038 case PLUS:
2039 case MINUS:
2040 {
2041 rtx tmp1 = XEXP (x, 0);
2042 rtx tmp2 = XEXP (x, 1);
2043
2044 /* This is a little bit tricky since we have to determine which of
2045 the two operands represents the real base address. Otherwise this
2046 routine may return the index register instead of the base register.
2047
2048 That may cause us to believe no aliasing was possible, when in
2049 fact aliasing is possible.
2050
2051 We use a few simple tests to guess the base register. Additional
2052 tests can certainly be added. For example, if one of the operands
2053 is a shift or multiply, then it must be the index register and the
2054 other operand is the base register. */
2055
2056 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2057 return find_base_term (tmp2, visited_vals);
2058
2059 /* If either operand is known to be a pointer, then prefer it
2060 to determine the base term. */
2061 if (REG_P (tmp1) && REG_POINTER (tmp1))
2062 ;
2063 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2064 std::swap (tmp1, tmp2);
2065 /* If second argument is constant which has base term, prefer it
2066 over variable tmp1. See PR64025. */
2067 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2068 std::swap (tmp1, tmp2);
2069
2070 /* Go ahead and find the base term for both operands. If either base
2071 term is from a pointer or is a named object or a special address
2072 (like an argument or stack reference), then use it for the
2073 base term. */
2074 rtx base = find_base_term (tmp1, visited_vals);
2075 if (base != NULL_RTX
2076 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2077 || known_base_value_p (base)))
2078 return base;
2079 base = find_base_term (tmp2, visited_vals);
2080 if (base != NULL_RTX
2081 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2082 || known_base_value_p (base)))
2083 return base;
2084
2085 /* We could not determine which of the two operands was the
2086 base register and which was the index. So we can determine
2087 nothing from the base alias check. */
2088 return 0;
2089 }
2090
2091 case AND:
2092 /* Look through aligning ANDs. And AND with zero or one with
2093 the LSB set isn't one (see for example PR92462). */
2094 if (CONST_INT_P (XEXP (x, 1))
2095 && INTVAL (XEXP (x, 1)) != 0
2096 && (INTVAL (XEXP (x, 1)) & 1) == 0)
2097 return find_base_term (XEXP (x, 0), visited_vals);
2098 return 0;
2099
2100 case SYMBOL_REF:
2101 case LABEL_REF:
2102 return x;
2103
2104 default:
2105 return 0;
2106 }
2107 }
2108
2109 /* Wrapper around the worker above which removes locs from visited VALUEs
2110 to avoid visiting them multiple times. We unwind that changes here. */
2111
2112 static rtx
2113 find_base_term (rtx x)
2114 {
2115 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2116 rtx res = find_base_term (x, visited_vals);
2117 for (unsigned i = 0; i < visited_vals.length (); ++i)
2118 visited_vals[i].first->locs = visited_vals[i].second;
2119 return res;
2120 }
2121
2122 /* Return true if accesses to address X may alias accesses based
2123 on the stack pointer. */
2124
2125 bool
2126 may_be_sp_based_p (rtx x)
2127 {
2128 rtx base = find_base_term (x);
2129 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2130 }
2131
2132 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2133 if they refer to different objects and -1 if we cannot decide. */
2134
2135 int
2136 compare_base_decls (tree base1, tree base2)
2137 {
2138 int ret;
2139 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2140 if (base1 == base2)
2141 return 1;
2142
2143 /* If we have two register decls with register specification we
2144 cannot decide unless their assembler names are the same. */
2145 if (DECL_REGISTER (base1)
2146 && DECL_REGISTER (base2)
2147 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2148 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2149 && DECL_ASSEMBLER_NAME_SET_P (base1)
2150 && DECL_ASSEMBLER_NAME_SET_P (base2))
2151 {
2152 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2153 return 1;
2154 return -1;
2155 }
2156
2157 /* Declarations of non-automatic variables may have aliases. All other
2158 decls are unique. */
2159 if (!decl_in_symtab_p (base1)
2160 || !decl_in_symtab_p (base2))
2161 return 0;
2162
2163 /* Don't cause symbols to be inserted by the act of checking. */
2164 symtab_node *node1 = symtab_node::get (base1);
2165 if (!node1)
2166 return 0;
2167 symtab_node *node2 = symtab_node::get (base2);
2168 if (!node2)
2169 return 0;
2170
2171 ret = node1->equal_address_to (node2, true);
2172 return ret;
2173 }
2174
2175 /* Same as compare_base_decls but for SYMBOL_REF. */
2176
2177 static int
2178 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2179 {
2180 tree x_decl = SYMBOL_REF_DECL (x_base);
2181 tree y_decl = SYMBOL_REF_DECL (y_base);
2182 bool binds_def = true;
2183
2184 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2185 return 1;
2186 if (x_decl && y_decl)
2187 return compare_base_decls (x_decl, y_decl);
2188 if (x_decl || y_decl)
2189 {
2190 if (!x_decl)
2191 {
2192 std::swap (x_decl, y_decl);
2193 std::swap (x_base, y_base);
2194 }
2195 /* We handle specially only section anchors and assume that other
2196 labels may overlap with user variables in an arbitrary way. */
2197 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2198 return -1;
2199 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2200 to ignore CONST_DECLs because they are readonly. */
2201 if (!VAR_P (x_decl)
2202 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2203 return 0;
2204
2205 symtab_node *x_node = symtab_node::get_create (x_decl)
2206 ->ultimate_alias_target ();
2207 /* External variable cannot be in section anchor. */
2208 if (!x_node->definition)
2209 return 0;
2210 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2211 /* If not in anchor, we can disambiguate. */
2212 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2213 return 0;
2214
2215 /* We have an alias of anchored variable. If it can be interposed;
2216 we must assume it may or may not alias its anchor. */
2217 binds_def = decl_binds_to_current_def_p (x_decl);
2218 }
2219 /* If we have variable in section anchor, we can compare by offset. */
2220 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2221 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2222 {
2223 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2224 return 0;
2225 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2226 return binds_def ? 1 : -1;
2227 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2228 return -1;
2229 return 0;
2230 }
2231 /* In general we assume that memory locations pointed to by different labels
2232 may overlap in undefined ways. */
2233 return -1;
2234 }
2235
2236 /* Return 0 if the addresses X and Y are known to point to different
2237 objects, 1 if they might be pointers to the same object. */
2238
2239 static int
2240 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2241 machine_mode x_mode, machine_mode y_mode)
2242 {
2243 /* If the address itself has no known base see if a known equivalent
2244 value has one. If either address still has no known base, nothing
2245 is known about aliasing. */
2246 if (x_base == 0)
2247 {
2248 rtx x_c;
2249
2250 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2251 return 1;
2252
2253 x_base = find_base_term (x_c);
2254 if (x_base == 0)
2255 return 1;
2256 }
2257
2258 if (y_base == 0)
2259 {
2260 rtx y_c;
2261 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2262 return 1;
2263
2264 y_base = find_base_term (y_c);
2265 if (y_base == 0)
2266 return 1;
2267 }
2268
2269 /* If the base addresses are equal nothing is known about aliasing. */
2270 if (rtx_equal_p (x_base, y_base))
2271 return 1;
2272
2273 /* The base addresses are different expressions. If they are not accessed
2274 via AND, there is no conflict. We can bring knowledge of object
2275 alignment into play here. For example, on alpha, "char a, b;" can
2276 alias one another, though "char a; long b;" cannot. AND addresses may
2277 implicitly alias surrounding objects; i.e. unaligned access in DImode
2278 via AND address can alias all surrounding object types except those
2279 with aligment 8 or higher. */
2280 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2281 return 1;
2282 if (GET_CODE (x) == AND
2283 && (!CONST_INT_P (XEXP (x, 1))
2284 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2285 return 1;
2286 if (GET_CODE (y) == AND
2287 && (!CONST_INT_P (XEXP (y, 1))
2288 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2289 return 1;
2290
2291 /* Differing symbols not accessed via AND never alias. */
2292 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2293 return compare_base_symbol_refs (x_base, y_base) != 0;
2294
2295 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2296 return 0;
2297
2298 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2299 return 0;
2300
2301 return 1;
2302 }
2303
2304 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2305 (or equal to) that of V. */
2306
2307 static bool
2308 refs_newer_value_p (const_rtx expr, rtx v)
2309 {
2310 int minuid = CSELIB_VAL_PTR (v)->uid;
2311 subrtx_iterator::array_type array;
2312 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2313 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2314 return true;
2315 return false;
2316 }
2317
2318 /* Convert the address X into something we can use. This is done by returning
2319 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2320 we call cselib to get a more useful rtx. */
2321
2322 rtx
2323 get_addr (rtx x)
2324 {
2325 cselib_val *v;
2326 struct elt_loc_list *l;
2327
2328 if (GET_CODE (x) != VALUE)
2329 {
2330 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2331 && GET_CODE (XEXP (x, 0)) == VALUE
2332 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2333 {
2334 rtx op0 = get_addr (XEXP (x, 0));
2335 if (op0 != XEXP (x, 0))
2336 {
2337 poly_int64 c;
2338 if (GET_CODE (x) == PLUS
2339 && poly_int_rtx_p (XEXP (x, 1), &c))
2340 return plus_constant (GET_MODE (x), op0, c);
2341 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2342 op0, XEXP (x, 1));
2343 }
2344 }
2345 return x;
2346 }
2347 v = CSELIB_VAL_PTR (x);
2348 if (v)
2349 {
2350 bool have_equivs = cselib_have_permanent_equivalences ();
2351 if (have_equivs)
2352 v = canonical_cselib_val (v);
2353 for (l = v->locs; l; l = l->next)
2354 if (CONSTANT_P (l->loc))
2355 return l->loc;
2356 for (l = v->locs; l; l = l->next)
2357 if (!REG_P (l->loc) && !MEM_P (l->loc)
2358 /* Avoid infinite recursion when potentially dealing with
2359 var-tracking artificial equivalences, by skipping the
2360 equivalences themselves, and not choosing expressions
2361 that refer to newer VALUEs. */
2362 && (!have_equivs
2363 || (GET_CODE (l->loc) != VALUE
2364 && !refs_newer_value_p (l->loc, x))))
2365 return l->loc;
2366 if (have_equivs)
2367 {
2368 for (l = v->locs; l; l = l->next)
2369 if (REG_P (l->loc)
2370 || (GET_CODE (l->loc) != VALUE
2371 && !refs_newer_value_p (l->loc, x)))
2372 return l->loc;
2373 /* Return the canonical value. */
2374 return v->val_rtx;
2375 }
2376 if (v->locs)
2377 return v->locs->loc;
2378 }
2379 return x;
2380 }
2381
2382 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2383 where SIZE is the size in bytes of the memory reference. If ADDR
2384 is not modified by the memory reference then ADDR is returned. */
2385
2386 static rtx
2387 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2388 {
2389 poly_int64 offset = 0;
2390
2391 switch (GET_CODE (addr))
2392 {
2393 case PRE_INC:
2394 offset = (n_refs + 1) * size;
2395 break;
2396 case PRE_DEC:
2397 offset = -(n_refs + 1) * size;
2398 break;
2399 case POST_INC:
2400 offset = n_refs * size;
2401 break;
2402 case POST_DEC:
2403 offset = -n_refs * size;
2404 break;
2405
2406 default:
2407 return addr;
2408 }
2409
2410 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2411 addr = canon_rtx (addr);
2412
2413 return addr;
2414 }
2415
2416 /* Return TRUE if an object X sized at XSIZE bytes and another object
2417 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2418 any of the sizes is zero, assume an overlap, otherwise use the
2419 absolute value of the sizes as the actual sizes. */
2420
2421 static inline bool
2422 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2423 {
2424 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2425 return true;
2426
2427 if (maybe_ge (c, 0))
2428 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2429 else
2430 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2431 }
2432
2433 /* Return one if X and Y (memory addresses) reference the
2434 same location in memory or if the references overlap.
2435 Return zero if they do not overlap, else return
2436 minus one in which case they still might reference the same location.
2437
2438 C is an offset accumulator. When
2439 C is nonzero, we are testing aliases between X and Y + C.
2440 XSIZE is the size in bytes of the X reference,
2441 similarly YSIZE is the size in bytes for Y.
2442 Expect that canon_rtx has been already called for X and Y.
2443
2444 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2445 referenced (the reference was BLKmode), so make the most pessimistic
2446 assumptions.
2447
2448 If XSIZE or YSIZE is negative, we may access memory outside the object
2449 being referenced as a side effect. This can happen when using AND to
2450 align memory references, as is done on the Alpha.
2451
2452 Nice to notice that varying addresses cannot conflict with fp if no
2453 local variables had their addresses taken, but that's too hard now.
2454
2455 ??? Contrary to the tree alias oracle this does not return
2456 one for X + non-constant and Y + non-constant when X and Y are equal.
2457 If that is fixed the TBAA hack for union type-punning can be removed. */
2458
2459 static int
2460 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2461 poly_int64 c)
2462 {
2463 if (GET_CODE (x) == VALUE)
2464 {
2465 if (REG_P (y))
2466 {
2467 struct elt_loc_list *l = NULL;
2468 if (CSELIB_VAL_PTR (x))
2469 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2470 l; l = l->next)
2471 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2472 break;
2473 if (l)
2474 x = y;
2475 else
2476 x = get_addr (x);
2477 }
2478 /* Don't call get_addr if y is the same VALUE. */
2479 else if (x != y)
2480 x = get_addr (x);
2481 }
2482 if (GET_CODE (y) == VALUE)
2483 {
2484 if (REG_P (x))
2485 {
2486 struct elt_loc_list *l = NULL;
2487 if (CSELIB_VAL_PTR (y))
2488 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2489 l; l = l->next)
2490 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2491 break;
2492 if (l)
2493 y = x;
2494 else
2495 y = get_addr (y);
2496 }
2497 /* Don't call get_addr if x is the same VALUE. */
2498 else if (y != x)
2499 y = get_addr (y);
2500 }
2501 if (GET_CODE (x) == HIGH)
2502 x = XEXP (x, 0);
2503 else if (GET_CODE (x) == LO_SUM)
2504 x = XEXP (x, 1);
2505 else
2506 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2507 if (GET_CODE (y) == HIGH)
2508 y = XEXP (y, 0);
2509 else if (GET_CODE (y) == LO_SUM)
2510 y = XEXP (y, 1);
2511 else
2512 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2513
2514 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2515 {
2516 int cmp = compare_base_symbol_refs (x,y);
2517
2518 /* If both decls are the same, decide by offsets. */
2519 if (cmp == 1)
2520 return offset_overlap_p (c, xsize, ysize);
2521 /* Assume a potential overlap for symbolic addresses that went
2522 through alignment adjustments (i.e., that have negative
2523 sizes), because we can't know how far they are from each
2524 other. */
2525 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2526 return -1;
2527 /* If decls are different or we know by offsets that there is no overlap,
2528 we win. */
2529 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2530 return 0;
2531 /* Decls may or may not be different and offsets overlap....*/
2532 return -1;
2533 }
2534 else if (rtx_equal_for_memref_p (x, y))
2535 {
2536 return offset_overlap_p (c, xsize, ysize);
2537 }
2538
2539 /* This code used to check for conflicts involving stack references and
2540 globals but the base address alias code now handles these cases. */
2541
2542 if (GET_CODE (x) == PLUS)
2543 {
2544 /* The fact that X is canonicalized means that this
2545 PLUS rtx is canonicalized. */
2546 rtx x0 = XEXP (x, 0);
2547 rtx x1 = XEXP (x, 1);
2548
2549 /* However, VALUEs might end up in different positions even in
2550 canonical PLUSes. Comparing their addresses is enough. */
2551 if (x0 == y)
2552 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2553 else if (x1 == y)
2554 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2555
2556 poly_int64 cx1, cy1;
2557 if (GET_CODE (y) == PLUS)
2558 {
2559 /* The fact that Y is canonicalized means that this
2560 PLUS rtx is canonicalized. */
2561 rtx y0 = XEXP (y, 0);
2562 rtx y1 = XEXP (y, 1);
2563
2564 if (x0 == y1)
2565 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2566 if (x1 == y0)
2567 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2568
2569 if (rtx_equal_for_memref_p (x1, y1))
2570 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2571 if (rtx_equal_for_memref_p (x0, y0))
2572 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2573 if (poly_int_rtx_p (x1, &cx1))
2574 {
2575 if (poly_int_rtx_p (y1, &cy1))
2576 return memrefs_conflict_p (xsize, x0, ysize, y0,
2577 c - cx1 + cy1);
2578 else
2579 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2580 }
2581 else if (poly_int_rtx_p (y1, &cy1))
2582 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2583
2584 return -1;
2585 }
2586 else if (poly_int_rtx_p (x1, &cx1))
2587 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2588 }
2589 else if (GET_CODE (y) == PLUS)
2590 {
2591 /* The fact that Y is canonicalized means that this
2592 PLUS rtx is canonicalized. */
2593 rtx y0 = XEXP (y, 0);
2594 rtx y1 = XEXP (y, 1);
2595
2596 if (x == y0)
2597 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2598 if (x == y1)
2599 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2600
2601 poly_int64 cy1;
2602 if (poly_int_rtx_p (y1, &cy1))
2603 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2604 else
2605 return -1;
2606 }
2607
2608 if (GET_CODE (x) == GET_CODE (y))
2609 switch (GET_CODE (x))
2610 {
2611 case MULT:
2612 {
2613 /* Handle cases where we expect the second operands to be the
2614 same, and check only whether the first operand would conflict
2615 or not. */
2616 rtx x0, y0;
2617 rtx x1 = canon_rtx (XEXP (x, 1));
2618 rtx y1 = canon_rtx (XEXP (y, 1));
2619 if (! rtx_equal_for_memref_p (x1, y1))
2620 return -1;
2621 x0 = canon_rtx (XEXP (x, 0));
2622 y0 = canon_rtx (XEXP (y, 0));
2623 if (rtx_equal_for_memref_p (x0, y0))
2624 return offset_overlap_p (c, xsize, ysize);
2625
2626 /* Can't properly adjust our sizes. */
2627 poly_int64 c1;
2628 if (!poly_int_rtx_p (x1, &c1)
2629 || !can_div_trunc_p (xsize, c1, &xsize)
2630 || !can_div_trunc_p (ysize, c1, &ysize)
2631 || !can_div_trunc_p (c, c1, &c))
2632 return -1;
2633 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2634 }
2635
2636 default:
2637 break;
2638 }
2639
2640 /* Deal with alignment ANDs by adjusting offset and size so as to
2641 cover the maximum range, without taking any previously known
2642 alignment into account. Make a size negative after such an
2643 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2644 assume a potential overlap, because they may end up in contiguous
2645 memory locations and the stricter-alignment access may span over
2646 part of both. */
2647 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2648 {
2649 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2650 unsigned HOST_WIDE_INT uc = sc;
2651 if (sc < 0 && pow2_or_zerop (-uc))
2652 {
2653 if (maybe_gt (xsize, 0))
2654 xsize = -xsize;
2655 if (maybe_ne (xsize, 0))
2656 xsize += sc + 1;
2657 c -= sc + 1;
2658 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2659 ysize, y, c);
2660 }
2661 }
2662 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2663 {
2664 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2665 unsigned HOST_WIDE_INT uc = sc;
2666 if (sc < 0 && pow2_or_zerop (-uc))
2667 {
2668 if (maybe_gt (ysize, 0))
2669 ysize = -ysize;
2670 if (maybe_ne (ysize, 0))
2671 ysize += sc + 1;
2672 c += sc + 1;
2673 return memrefs_conflict_p (xsize, x,
2674 ysize, canon_rtx (XEXP (y, 0)), c);
2675 }
2676 }
2677
2678 if (CONSTANT_P (x))
2679 {
2680 poly_int64 cx, cy;
2681 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2682 {
2683 c += cy - cx;
2684 return offset_overlap_p (c, xsize, ysize);
2685 }
2686
2687 if (GET_CODE (x) == CONST)
2688 {
2689 if (GET_CODE (y) == CONST)
2690 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2691 ysize, canon_rtx (XEXP (y, 0)), c);
2692 else
2693 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2694 ysize, y, c);
2695 }
2696 if (GET_CODE (y) == CONST)
2697 return memrefs_conflict_p (xsize, x, ysize,
2698 canon_rtx (XEXP (y, 0)), c);
2699
2700 /* Assume a potential overlap for symbolic addresses that went
2701 through alignment adjustments (i.e., that have negative
2702 sizes), because we can't know how far they are from each
2703 other. */
2704 if (CONSTANT_P (y))
2705 return (maybe_lt (xsize, 0)
2706 || maybe_lt (ysize, 0)
2707 || offset_overlap_p (c, xsize, ysize));
2708
2709 return -1;
2710 }
2711
2712 return -1;
2713 }
2714
2715 /* Functions to compute memory dependencies.
2716
2717 Since we process the insns in execution order, we can build tables
2718 to keep track of what registers are fixed (and not aliased), what registers
2719 are varying in known ways, and what registers are varying in unknown
2720 ways.
2721
2722 If both memory references are volatile, then there must always be a
2723 dependence between the two references, since their order cannot be
2724 changed. A volatile and non-volatile reference can be interchanged
2725 though.
2726
2727 We also must allow AND addresses, because they may generate accesses
2728 outside the object being referenced. This is used to generate aligned
2729 addresses from unaligned addresses, for instance, the alpha
2730 storeqi_unaligned pattern. */
2731
2732 /* Read dependence: X is read after read in MEM takes place. There can
2733 only be a dependence here if both reads are volatile, or if either is
2734 an explicit barrier. */
2735
2736 int
2737 read_dependence (const_rtx mem, const_rtx x)
2738 {
2739 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2740 return true;
2741 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2742 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2743 return true;
2744 return false;
2745 }
2746
2747 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2748
2749 static tree
2750 decl_for_component_ref (tree x)
2751 {
2752 do
2753 {
2754 x = TREE_OPERAND (x, 0);
2755 }
2756 while (x && TREE_CODE (x) == COMPONENT_REF);
2757
2758 return x && DECL_P (x) ? x : NULL_TREE;
2759 }
2760
2761 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2762 for the offset of the field reference. *KNOWN_P says whether the
2763 offset is known. */
2764
2765 static void
2766 adjust_offset_for_component_ref (tree x, bool *known_p,
2767 poly_int64 *offset)
2768 {
2769 if (!*known_p)
2770 return;
2771 do
2772 {
2773 tree xoffset = component_ref_field_offset (x);
2774 tree field = TREE_OPERAND (x, 1);
2775 if (!poly_int_tree_p (xoffset))
2776 {
2777 *known_p = false;
2778 return;
2779 }
2780
2781 poly_offset_int woffset
2782 = (wi::to_poly_offset (xoffset)
2783 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2784 >> LOG2_BITS_PER_UNIT)
2785 + *offset);
2786 if (!woffset.to_shwi (offset))
2787 {
2788 *known_p = false;
2789 return;
2790 }
2791
2792 x = TREE_OPERAND (x, 0);
2793 }
2794 while (x && TREE_CODE (x) == COMPONENT_REF);
2795 }
2796
2797 /* Return nonzero if we can determine the exprs corresponding to memrefs
2798 X and Y and they do not overlap.
2799 If LOOP_VARIANT is set, skip offset-based disambiguation */
2800
2801 int
2802 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2803 {
2804 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2805 rtx rtlx, rtly;
2806 rtx basex, basey;
2807 bool moffsetx_known_p, moffsety_known_p;
2808 poly_int64 moffsetx = 0, moffsety = 0;
2809 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2810
2811 /* Unless both have exprs, we can't tell anything. */
2812 if (exprx == 0 || expry == 0)
2813 return 0;
2814
2815 /* For spill-slot accesses make sure we have valid offsets. */
2816 if ((exprx == get_spill_slot_decl (false)
2817 && ! MEM_OFFSET_KNOWN_P (x))
2818 || (expry == get_spill_slot_decl (false)
2819 && ! MEM_OFFSET_KNOWN_P (y)))
2820 return 0;
2821
2822 /* If the field reference test failed, look at the DECLs involved. */
2823 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2824 if (moffsetx_known_p)
2825 moffsetx = MEM_OFFSET (x);
2826 if (TREE_CODE (exprx) == COMPONENT_REF)
2827 {
2828 tree t = decl_for_component_ref (exprx);
2829 if (! t)
2830 return 0;
2831 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2832 exprx = t;
2833 }
2834
2835 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2836 if (moffsety_known_p)
2837 moffsety = MEM_OFFSET (y);
2838 if (TREE_CODE (expry) == COMPONENT_REF)
2839 {
2840 tree t = decl_for_component_ref (expry);
2841 if (! t)
2842 return 0;
2843 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2844 expry = t;
2845 }
2846
2847 if (! DECL_P (exprx) || ! DECL_P (expry))
2848 return 0;
2849
2850 /* If we refer to different gimple registers, or one gimple register
2851 and one non-gimple-register, we know they can't overlap. First,
2852 gimple registers don't have their addresses taken. Now, there
2853 could be more than one stack slot for (different versions of) the
2854 same gimple register, but we can presumably tell they don't
2855 overlap based on offsets from stack base addresses elsewhere.
2856 It's important that we don't proceed to DECL_RTL, because gimple
2857 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2858 able to do anything about them since no SSA information will have
2859 remained to guide it. */
2860 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2861 return exprx != expry
2862 || (moffsetx_known_p && moffsety_known_p
2863 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2864 && !offset_overlap_p (moffsety - moffsetx,
2865 MEM_SIZE (x), MEM_SIZE (y)));
2866
2867 /* With invalid code we can end up storing into the constant pool.
2868 Bail out to avoid ICEing when creating RTL for this.
2869 See gfortran.dg/lto/20091028-2_0.f90. */
2870 if (TREE_CODE (exprx) == CONST_DECL
2871 || TREE_CODE (expry) == CONST_DECL)
2872 return 1;
2873
2874 /* If one decl is known to be a function or label in a function and
2875 the other is some kind of data, they can't overlap. */
2876 if ((TREE_CODE (exprx) == FUNCTION_DECL
2877 || TREE_CODE (exprx) == LABEL_DECL)
2878 != (TREE_CODE (expry) == FUNCTION_DECL
2879 || TREE_CODE (expry) == LABEL_DECL))
2880 return 1;
2881
2882 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2883 living in multiple places), we can't tell anything. Exception
2884 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2885 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2886 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2887 return 0;
2888
2889 rtlx = DECL_RTL (exprx);
2890 rtly = DECL_RTL (expry);
2891
2892 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2893 can't overlap unless they are the same because we never reuse that part
2894 of the stack frame used for locals for spilled pseudos. */
2895 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2896 && ! rtx_equal_p (rtlx, rtly))
2897 return 1;
2898
2899 /* If we have MEMs referring to different address spaces (which can
2900 potentially overlap), we cannot easily tell from the addresses
2901 whether the references overlap. */
2902 if (MEM_P (rtlx) && MEM_P (rtly)
2903 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2904 return 0;
2905
2906 /* Get the base and offsets of both decls. If either is a register, we
2907 know both are and are the same, so use that as the base. The only
2908 we can avoid overlap is if we can deduce that they are nonoverlapping
2909 pieces of that decl, which is very rare. */
2910 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2911 basex = strip_offset_and_add (basex, &offsetx);
2912
2913 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2914 basey = strip_offset_and_add (basey, &offsety);
2915
2916 /* If the bases are different, we know they do not overlap if both
2917 are constants or if one is a constant and the other a pointer into the
2918 stack frame. Otherwise a different base means we can't tell if they
2919 overlap or not. */
2920 if (compare_base_decls (exprx, expry) == 0)
2921 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2922 || (CONSTANT_P (basex) && REG_P (basey)
2923 && REGNO_PTR_FRAME_P (REGNO (basey)))
2924 || (CONSTANT_P (basey) && REG_P (basex)
2925 && REGNO_PTR_FRAME_P (REGNO (basex))));
2926
2927 /* Offset based disambiguation not appropriate for loop invariant */
2928 if (loop_invariant)
2929 return 0;
2930
2931 /* Offset based disambiguation is OK even if we do not know that the
2932 declarations are necessarily different
2933 (i.e. compare_base_decls (exprx, expry) == -1) */
2934
2935 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2936 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2937 : -1);
2938 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2939 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2940 : -1);
2941
2942 /* If we have an offset for either memref, it can update the values computed
2943 above. */
2944 if (moffsetx_known_p)
2945 offsetx += moffsetx, sizex -= moffsetx;
2946 if (moffsety_known_p)
2947 offsety += moffsety, sizey -= moffsety;
2948
2949 /* If a memref has both a size and an offset, we can use the smaller size.
2950 We can't do this if the offset isn't known because we must view this
2951 memref as being anywhere inside the DECL's MEM. */
2952 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2953 sizex = MEM_SIZE (x);
2954 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2955 sizey = MEM_SIZE (y);
2956
2957 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2958 }
2959
2960 /* Helper for true_dependence and canon_true_dependence.
2961 Checks for true dependence: X is read after store in MEM takes place.
2962
2963 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2964 NULL_RTX, and the canonical addresses of MEM and X are both computed
2965 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2966
2967 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2968
2969 Returns 1 if there is a true dependence, 0 otherwise. */
2970
2971 static int
2972 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2973 const_rtx x, rtx x_addr, bool mem_canonicalized)
2974 {
2975 rtx true_mem_addr;
2976 rtx base;
2977 int ret;
2978
2979 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2980 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2981
2982 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2983 return 1;
2984
2985 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2986 This is used in epilogue deallocation functions, and in cselib. */
2987 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2988 return 1;
2989 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2990 return 1;
2991 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2992 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2993 return 1;
2994
2995 if (! x_addr)
2996 x_addr = XEXP (x, 0);
2997 x_addr = get_addr (x_addr);
2998
2999 if (! mem_addr)
3000 {
3001 mem_addr = XEXP (mem, 0);
3002 if (mem_mode == VOIDmode)
3003 mem_mode = GET_MODE (mem);
3004 }
3005 true_mem_addr = get_addr (mem_addr);
3006
3007 /* Read-only memory is by definition never modified, and therefore can't
3008 conflict with anything. However, don't assume anything when AND
3009 addresses are involved and leave to the code below to determine
3010 dependence. We don't expect to find read-only set on MEM, but
3011 stupid user tricks can produce them, so don't die. */
3012 if (MEM_READONLY_P (x)
3013 && GET_CODE (x_addr) != AND
3014 && GET_CODE (true_mem_addr) != AND)
3015 return 0;
3016
3017 /* If we have MEMs referring to different address spaces (which can
3018 potentially overlap), we cannot easily tell from the addresses
3019 whether the references overlap. */
3020 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3021 return 1;
3022
3023 base = find_base_term (x_addr);
3024 if (base && (GET_CODE (base) == LABEL_REF
3025 || (GET_CODE (base) == SYMBOL_REF
3026 && CONSTANT_POOL_ADDRESS_P (base))))
3027 return 0;
3028
3029 rtx mem_base = find_base_term (true_mem_addr);
3030 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3031 GET_MODE (x), mem_mode))
3032 return 0;
3033
3034 x_addr = canon_rtx (x_addr);
3035 if (!mem_canonicalized)
3036 mem_addr = canon_rtx (true_mem_addr);
3037
3038 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3039 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3040 return ret;
3041
3042 if (mems_in_disjoint_alias_sets_p (x, mem))
3043 return 0;
3044
3045 if (nonoverlapping_memrefs_p (mem, x, false))
3046 return 0;
3047
3048 return rtx_refs_may_alias_p (x, mem, true);
3049 }
3050
3051 /* True dependence: X is read after store in MEM takes place. */
3052
3053 int
3054 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3055 {
3056 return true_dependence_1 (mem, mem_mode, NULL_RTX,
3057 x, NULL_RTX, /*mem_canonicalized=*/false);
3058 }
3059
3060 /* Canonical true dependence: X is read after store in MEM takes place.
3061 Variant of true_dependence which assumes MEM has already been
3062 canonicalized (hence we no longer do that here).
3063 The mem_addr argument has been added, since true_dependence_1 computed
3064 this value prior to canonicalizing. */
3065
3066 int
3067 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3068 const_rtx x, rtx x_addr)
3069 {
3070 return true_dependence_1 (mem, mem_mode, mem_addr,
3071 x, x_addr, /*mem_canonicalized=*/true);
3072 }
3073
3074 /* Returns nonzero if a write to X might alias a previous read from
3075 (or, if WRITEP is true, a write to) MEM.
3076 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3077 and X_MODE the mode for that access.
3078 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3079
3080 static int
3081 write_dependence_p (const_rtx mem,
3082 const_rtx x, machine_mode x_mode, rtx x_addr,
3083 bool mem_canonicalized, bool x_canonicalized, bool writep)
3084 {
3085 rtx mem_addr;
3086 rtx true_mem_addr, true_x_addr;
3087 rtx base;
3088 int ret;
3089
3090 gcc_checking_assert (x_canonicalized
3091 ? (x_addr != NULL_RTX
3092 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3093 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3094
3095 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3096 return 1;
3097
3098 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3099 This is used in epilogue deallocation functions. */
3100 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3101 return 1;
3102 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3103 return 1;
3104 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3105 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3106 return 1;
3107
3108 if (!x_addr)
3109 x_addr = XEXP (x, 0);
3110 true_x_addr = get_addr (x_addr);
3111
3112 mem_addr = XEXP (mem, 0);
3113 true_mem_addr = get_addr (mem_addr);
3114
3115 /* A read from read-only memory can't conflict with read-write memory.
3116 Don't assume anything when AND addresses are involved and leave to
3117 the code below to determine dependence. */
3118 if (!writep
3119 && MEM_READONLY_P (mem)
3120 && GET_CODE (true_x_addr) != AND
3121 && GET_CODE (true_mem_addr) != AND)
3122 return 0;
3123
3124 /* If we have MEMs referring to different address spaces (which can
3125 potentially overlap), we cannot easily tell from the addresses
3126 whether the references overlap. */
3127 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3128 return 1;
3129
3130 base = find_base_term (true_mem_addr);
3131 if (! writep
3132 && base
3133 && (GET_CODE (base) == LABEL_REF
3134 || (GET_CODE (base) == SYMBOL_REF
3135 && CONSTANT_POOL_ADDRESS_P (base))))
3136 return 0;
3137
3138 rtx x_base = find_base_term (true_x_addr);
3139 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3140 GET_MODE (x), GET_MODE (mem)))
3141 return 0;
3142
3143 if (!x_canonicalized)
3144 {
3145 x_addr = canon_rtx (true_x_addr);
3146 x_mode = GET_MODE (x);
3147 }
3148 if (!mem_canonicalized)
3149 mem_addr = canon_rtx (true_mem_addr);
3150
3151 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3152 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3153 return ret;
3154
3155 if (nonoverlapping_memrefs_p (x, mem, false))
3156 return 0;
3157
3158 return rtx_refs_may_alias_p (x, mem, false);
3159 }
3160
3161 /* Anti dependence: X is written after read in MEM takes place. */
3162
3163 int
3164 anti_dependence (const_rtx mem, const_rtx x)
3165 {
3166 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3167 /*mem_canonicalized=*/false,
3168 /*x_canonicalized*/false, /*writep=*/false);
3169 }
3170
3171 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3172 Also, consider X in X_MODE (which might be from an enclosing
3173 STRICT_LOW_PART / ZERO_EXTRACT).
3174 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3175
3176 int
3177 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3178 const_rtx x, machine_mode x_mode, rtx x_addr)
3179 {
3180 return write_dependence_p (mem, x, x_mode, x_addr,
3181 mem_canonicalized, /*x_canonicalized=*/true,
3182 /*writep=*/false);
3183 }
3184
3185 /* Output dependence: X is written after store in MEM takes place. */
3186
3187 int
3188 output_dependence (const_rtx mem, const_rtx x)
3189 {
3190 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3191 /*mem_canonicalized=*/false,
3192 /*x_canonicalized*/false, /*writep=*/true);
3193 }
3194
3195 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3196 Also, consider X in X_MODE (which might be from an enclosing
3197 STRICT_LOW_PART / ZERO_EXTRACT).
3198 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3199
3200 int
3201 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3202 const_rtx x, machine_mode x_mode, rtx x_addr)
3203 {
3204 return write_dependence_p (mem, x, x_mode, x_addr,
3205 mem_canonicalized, /*x_canonicalized=*/true,
3206 /*writep=*/true);
3207 }
3208 \f
3209
3210
3211 /* Check whether X may be aliased with MEM. Don't do offset-based
3212 memory disambiguation & TBAA. */
3213 int
3214 may_alias_p (const_rtx mem, const_rtx x)
3215 {
3216 rtx x_addr, mem_addr;
3217
3218 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3219 return 1;
3220
3221 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3222 This is used in epilogue deallocation functions. */
3223 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3224 return 1;
3225 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3226 return 1;
3227 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3228 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3229 return 1;
3230
3231 x_addr = XEXP (x, 0);
3232 x_addr = get_addr (x_addr);
3233
3234 mem_addr = XEXP (mem, 0);
3235 mem_addr = get_addr (mem_addr);
3236
3237 /* Read-only memory is by definition never modified, and therefore can't
3238 conflict with anything. However, don't assume anything when AND
3239 addresses are involved and leave to the code below to determine
3240 dependence. We don't expect to find read-only set on MEM, but
3241 stupid user tricks can produce them, so don't die. */
3242 if (MEM_READONLY_P (x)
3243 && GET_CODE (x_addr) != AND
3244 && GET_CODE (mem_addr) != AND)
3245 return 0;
3246
3247 /* If we have MEMs referring to different address spaces (which can
3248 potentially overlap), we cannot easily tell from the addresses
3249 whether the references overlap. */
3250 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3251 return 1;
3252
3253 rtx x_base = find_base_term (x_addr);
3254 rtx mem_base = find_base_term (mem_addr);
3255 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3256 GET_MODE (x), GET_MODE (mem_addr)))
3257 return 0;
3258
3259 if (nonoverlapping_memrefs_p (mem, x, true))
3260 return 0;
3261
3262 /* TBAA not valid for loop_invarint */
3263 return rtx_refs_may_alias_p (x, mem, false);
3264 }
3265
3266 void
3267 init_alias_target (void)
3268 {
3269 int i;
3270
3271 if (!arg_base_value)
3272 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3273
3274 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3275
3276 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3277 /* Check whether this register can hold an incoming pointer
3278 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3279 numbers, so translate if necessary due to register windows. */
3280 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3281 && targetm.hard_regno_mode_ok (i, Pmode))
3282 static_reg_base_value[i] = arg_base_value;
3283
3284 /* RTL code is required to be consistent about whether it uses the
3285 stack pointer, the frame pointer or the argument pointer to
3286 access a given area of the frame. We can therefore use the
3287 base address to distinguish between the different areas. */
3288 static_reg_base_value[STACK_POINTER_REGNUM]
3289 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3290 static_reg_base_value[ARG_POINTER_REGNUM]
3291 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3292 static_reg_base_value[FRAME_POINTER_REGNUM]
3293 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3294
3295 /* The above rules extend post-reload, with eliminations applying
3296 consistently to each of the three pointers. Cope with cases in
3297 which the frame pointer is eliminated to the hard frame pointer
3298 rather than the stack pointer. */
3299 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3300 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3301 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3302 }
3303
3304 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3305 to be memory reference. */
3306 static bool memory_modified;
3307 static void
3308 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3309 {
3310 if (MEM_P (x))
3311 {
3312 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3313 memory_modified = true;
3314 }
3315 }
3316
3317
3318 /* Return true when INSN possibly modify memory contents of MEM
3319 (i.e. address can be modified). */
3320 bool
3321 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3322 {
3323 if (!INSN_P (insn))
3324 return false;
3325 /* Conservatively assume all non-readonly MEMs might be modified in
3326 calls. */
3327 if (CALL_P (insn))
3328 return true;
3329 memory_modified = false;
3330 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3331 CONST_CAST_RTX(mem));
3332 return memory_modified;
3333 }
3334
3335 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3336 array. */
3337
3338 void
3339 init_alias_analysis (void)
3340 {
3341 unsigned int maxreg = max_reg_num ();
3342 int changed, pass;
3343 int i;
3344 unsigned int ui;
3345 rtx_insn *insn;
3346 rtx val;
3347 int rpo_cnt;
3348 int *rpo;
3349
3350 timevar_push (TV_ALIAS_ANALYSIS);
3351
3352 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3353 true);
3354 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3355 bitmap_clear (reg_known_equiv_p);
3356
3357 /* If we have memory allocated from the previous run, use it. */
3358 if (old_reg_base_value)
3359 reg_base_value = old_reg_base_value;
3360
3361 if (reg_base_value)
3362 reg_base_value->truncate (0);
3363
3364 vec_safe_grow_cleared (reg_base_value, maxreg, true);
3365
3366 new_reg_base_value = XNEWVEC (rtx, maxreg);
3367 reg_seen = sbitmap_alloc (maxreg);
3368
3369 /* The basic idea is that each pass through this loop will use the
3370 "constant" information from the previous pass to propagate alias
3371 information through another level of assignments.
3372
3373 The propagation is done on the CFG in reverse post-order, to propagate
3374 things forward as far as possible in each iteration.
3375
3376 This could get expensive if the assignment chains are long. Maybe
3377 we should throttle the number of iterations, possibly based on
3378 the optimization level or flag_expensive_optimizations.
3379
3380 We could propagate more information in the first pass by making use
3381 of DF_REG_DEF_COUNT to determine immediately that the alias information
3382 for a pseudo is "constant".
3383
3384 A program with an uninitialized variable can cause an infinite loop
3385 here. Instead of doing a full dataflow analysis to detect such problems
3386 we just cap the number of iterations for the loop.
3387
3388 The state of the arrays for the set chain in question does not matter
3389 since the program has undefined behavior. */
3390
3391 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3392 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3393
3394 /* The prologue/epilogue insns are not threaded onto the
3395 insn chain until after reload has completed. Thus,
3396 there is no sense wasting time checking if INSN is in
3397 the prologue/epilogue until after reload has completed. */
3398 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3399 || targetm.have_epilogue ())
3400 && reload_completed);
3401
3402 pass = 0;
3403 do
3404 {
3405 /* Assume nothing will change this iteration of the loop. */
3406 changed = 0;
3407
3408 /* We want to assign the same IDs each iteration of this loop, so
3409 start counting from one each iteration of the loop. */
3410 unique_id = 1;
3411
3412 /* We're at the start of the function each iteration through the
3413 loop, so we're copying arguments. */
3414 copying_arguments = true;
3415
3416 /* Wipe the potential alias information clean for this pass. */
3417 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3418
3419 /* Wipe the reg_seen array clean. */
3420 bitmap_clear (reg_seen);
3421
3422 /* Initialize the alias information for this pass. */
3423 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3424 if (static_reg_base_value[i]
3425 /* Don't treat the hard frame pointer as special if we
3426 eliminated the frame pointer to the stack pointer instead. */
3427 && !(i == HARD_FRAME_POINTER_REGNUM
3428 && reload_completed
3429 && !frame_pointer_needed
3430 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3431 STACK_POINTER_REGNUM)))
3432 {
3433 new_reg_base_value[i] = static_reg_base_value[i];
3434 bitmap_set_bit (reg_seen, i);
3435 }
3436
3437 /* Walk the insns adding values to the new_reg_base_value array. */
3438 for (i = 0; i < rpo_cnt; i++)
3439 {
3440 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3441 FOR_BB_INSNS (bb, insn)
3442 {
3443 if (NONDEBUG_INSN_P (insn))
3444 {
3445 rtx note, set;
3446
3447 if (could_be_prologue_epilogue
3448 && prologue_epilogue_contains (insn))
3449 continue;
3450
3451 /* If this insn has a noalias note, process it, Otherwise,
3452 scan for sets. A simple set will have no side effects
3453 which could change the base value of any other register. */
3454
3455 if (GET_CODE (PATTERN (insn)) == SET
3456 && REG_NOTES (insn) != 0
3457 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3458 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3459 else
3460 note_stores (insn, record_set, NULL);
3461
3462 set = single_set (insn);
3463
3464 if (set != 0
3465 && REG_P (SET_DEST (set))
3466 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3467 {
3468 unsigned int regno = REGNO (SET_DEST (set));
3469 rtx src = SET_SRC (set);
3470 rtx t;
3471
3472 note = find_reg_equal_equiv_note (insn);
3473 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3474 && DF_REG_DEF_COUNT (regno) != 1)
3475 note = NULL_RTX;
3476
3477 poly_int64 offset;
3478 if (note != NULL_RTX
3479 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3480 && ! rtx_varies_p (XEXP (note, 0), 1)
3481 && ! reg_overlap_mentioned_p (SET_DEST (set),
3482 XEXP (note, 0)))
3483 {
3484 set_reg_known_value (regno, XEXP (note, 0));
3485 set_reg_known_equiv_p (regno,
3486 REG_NOTE_KIND (note) == REG_EQUIV);
3487 }
3488 else if (DF_REG_DEF_COUNT (regno) == 1
3489 && GET_CODE (src) == PLUS
3490 && REG_P (XEXP (src, 0))
3491 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3492 && poly_int_rtx_p (XEXP (src, 1), &offset))
3493 {
3494 t = plus_constant (GET_MODE (src), t, offset);
3495 set_reg_known_value (regno, t);
3496 set_reg_known_equiv_p (regno, false);
3497 }
3498 else if (DF_REG_DEF_COUNT (regno) == 1
3499 && ! rtx_varies_p (src, 1))
3500 {
3501 set_reg_known_value (regno, src);
3502 set_reg_known_equiv_p (regno, false);
3503 }
3504 }
3505 }
3506 else if (NOTE_P (insn)
3507 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3508 copying_arguments = false;
3509 }
3510 }
3511
3512 /* Now propagate values from new_reg_base_value to reg_base_value. */
3513 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3514
3515 for (ui = 0; ui < maxreg; ui++)
3516 {
3517 if (new_reg_base_value[ui]
3518 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3519 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3520 {
3521 (*reg_base_value)[ui] = new_reg_base_value[ui];
3522 changed = 1;
3523 }
3524 }
3525 }
3526 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3527 XDELETEVEC (rpo);
3528
3529 /* Fill in the remaining entries. */
3530 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3531 {
3532 int regno = i + FIRST_PSEUDO_REGISTER;
3533 if (! val)
3534 set_reg_known_value (regno, regno_reg_rtx[regno]);
3535 }
3536
3537 /* Clean up. */
3538 free (new_reg_base_value);
3539 new_reg_base_value = 0;
3540 sbitmap_free (reg_seen);
3541 reg_seen = 0;
3542 timevar_pop (TV_ALIAS_ANALYSIS);
3543 }
3544
3545 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3546 Special API for var-tracking pass purposes. */
3547
3548 void
3549 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3550 {
3551 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3552 }
3553
3554 void
3555 end_alias_analysis (void)
3556 {
3557 old_reg_base_value = reg_base_value;
3558 vec_free (reg_known_value);
3559 sbitmap_free (reg_known_equiv_p);
3560 }
3561
3562 void
3563 dump_alias_stats_in_alias_c (FILE *s)
3564 {
3565 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3566 " %llu are in alias set 0\n"
3567 " %llu queries asked about the same object\n"
3568 " %llu queries asked about the same alias set\n"
3569 " %llu access volatile\n"
3570 " %llu are dependent in the DAG\n"
3571 " %llu are aritificially in conflict with void *\n",
3572 alias_stats.num_disambiguated,
3573 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3574 + alias_stats.num_same_objects + alias_stats.num_volatile
3575 + alias_stats.num_dag + alias_stats.num_disambiguated
3576 + alias_stats.num_universal,
3577 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3578 alias_stats.num_same_objects, alias_stats.num_volatile,
3579 alias_stats.num_dag, alias_stats.num_universal);
3580 }
3581 #include "gt-alias.h"