]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/basic-block.h
This patch sanitizes the partitioning to address issues such as edge weight insanitie...
[thirdparty/gcc.git] / gcc / basic-block.h
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22
23 #include "predict.h"
24 #include "vec.h"
25 #include "function.h"
26
27 /* Type we use to hold basic block counters. Should be at least
28 64bit. Although a counter cannot be negative, we use a signed
29 type, because erroneous negative counts can be generated when the
30 flow graph is manipulated by various optimizations. A signed type
31 makes those easy to detect. */
32 typedef HOST_WIDEST_INT gcov_type;
33 typedef unsigned HOST_WIDEST_INT gcov_type_unsigned;
34
35 /* Control flow edge information. */
36 struct GTY((user)) edge_def {
37 /* The two blocks at the ends of the edge. */
38 basic_block src;
39 basic_block dest;
40
41 /* Instructions queued on the edge. */
42 union edge_def_insns {
43 gimple_seq g;
44 rtx r;
45 } insns;
46
47 /* Auxiliary info specific to a pass. */
48 PTR aux;
49
50 /* Location of any goto implicit in the edge. */
51 location_t goto_locus;
52
53 /* The index number corresponding to this edge in the edge vector
54 dest->preds. */
55 unsigned int dest_idx;
56
57 int flags; /* see cfg-flags.def */
58 int probability; /* biased by REG_BR_PROB_BASE */
59 gcov_type count; /* Expected number of executions calculated
60 in profile.c */
61 };
62
63
64 /* Garbage collection and PCH support for edge_def. */
65 extern void gt_ggc_mx (edge_def *e);
66 extern void gt_pch_nx (edge_def *e);
67 extern void gt_pch_nx (edge_def *e, gt_pointer_operator, void *);
68
69 /* Masks for edge.flags. */
70 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
71 enum cfg_edge_flags {
72 #include "cfg-flags.def"
73 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
74 };
75 #undef DEF_EDGE_FLAG
76
77 /* Bit mask for all edge flags. */
78 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
79
80 /* The following four flags all indicate something special about an edge.
81 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
82 control flow transfers. */
83 #define EDGE_COMPLEX \
84 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
85
86 /* Counter summary from the last set of coverage counts read by
87 profile.c. */
88 extern const struct gcov_ctr_summary *profile_info;
89
90 /* Structure to gather statistic about profile consistency, per pass.
91 An array of this structure, indexed by pass static number, is allocated
92 in passes.c. The structure is defined here so that different CFG modes
93 can do their book-keeping via CFG hooks.
94
95 For every field[2], field[0] is the count before the pass runs, and
96 field[1] is the post-pass count. This allows us to monitor the effect
97 of each individual pass on the profile consistency.
98
99 This structure is not supposed to be used by anything other than passes.c
100 and one CFG hook per CFG mode. */
101 struct profile_record
102 {
103 /* The number of basic blocks where sum(freq) of the block's predecessors
104 doesn't match reasonably well with the incoming frequency. */
105 int num_mismatched_freq_in[2];
106 /* Likewise for a basic block's successors. */
107 int num_mismatched_freq_out[2];
108 /* The number of basic blocks where sum(count) of the block's predecessors
109 doesn't match reasonably well with the incoming frequency. */
110 int num_mismatched_count_in[2];
111 /* Likewise for a basic block's successors. */
112 int num_mismatched_count_out[2];
113 /* A weighted cost of the run-time of the function body. */
114 gcov_type time[2];
115 /* A weighted cost of the size of the function body. */
116 int size[2];
117 /* True iff this pass actually was run. */
118 bool run;
119 };
120
121 /* Declared in cfgloop.h. */
122 struct loop;
123
124 struct GTY(()) rtl_bb_info {
125 /* The first insn of the block is embedded into bb->il.x. */
126 /* The last insn of the block. */
127 rtx end_;
128
129 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
130 and after the block. */
131 rtx header_;
132 rtx footer_;
133 };
134
135 struct GTY(()) gimple_bb_info {
136 /* Sequence of statements in this block. */
137 gimple_seq seq;
138
139 /* PHI nodes for this block. */
140 gimple_seq phi_nodes;
141 };
142
143 /* A basic block is a sequence of instructions with only one entry and
144 only one exit. If any one of the instructions are executed, they
145 will all be executed, and in sequence from first to last.
146
147 There may be COND_EXEC instructions in the basic block. The
148 COND_EXEC *instructions* will be executed -- but if the condition
149 is false the conditionally executed *expressions* will of course
150 not be executed. We don't consider the conditionally executed
151 expression (which might have side-effects) to be in a separate
152 basic block because the program counter will always be at the same
153 location after the COND_EXEC instruction, regardless of whether the
154 condition is true or not.
155
156 Basic blocks need not start with a label nor end with a jump insn.
157 For example, a previous basic block may just "conditionally fall"
158 into the succeeding basic block, and the last basic block need not
159 end with a jump insn. Block 0 is a descendant of the entry block.
160
161 A basic block beginning with two labels cannot have notes between
162 the labels.
163
164 Data for jump tables are stored in jump_insns that occur in no
165 basic block even though these insns can follow or precede insns in
166 basic blocks. */
167
168 /* Basic block information indexed by block number. */
169 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
170 /* The edges into and out of the block. */
171 vec<edge, va_gc> *preds;
172 vec<edge, va_gc> *succs;
173
174 /* Auxiliary info specific to a pass. */
175 PTR GTY ((skip (""))) aux;
176
177 /* Innermost loop containing the block. */
178 struct loop *loop_father;
179
180 /* The dominance and postdominance information node. */
181 struct et_node * GTY ((skip (""))) dom[2];
182
183 /* Previous and next blocks in the chain. */
184 basic_block prev_bb;
185 basic_block next_bb;
186
187 union basic_block_il_dependent {
188 struct gimple_bb_info GTY ((tag ("0"))) gimple;
189 struct {
190 rtx head_;
191 struct rtl_bb_info * rtl;
192 } GTY ((tag ("1"))) x;
193 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
194
195 /* Various flags. See cfg-flags.def. */
196 int flags;
197
198 /* The index of this block. */
199 int index;
200
201 /* Expected number of executions: calculated in profile.c. */
202 gcov_type count;
203
204 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
205 int frequency;
206
207 /* The discriminator for this block. The discriminator distinguishes
208 among several basic blocks that share a common locus, allowing for
209 more accurate sample-based profiling. */
210 int discriminator;
211 };
212
213 /* This ensures that struct gimple_bb_info is smaller than
214 struct rtl_bb_info, so that inlining the former into basic_block_def
215 is the better choice. */
216 typedef int __assert_gimple_bb_smaller_rtl_bb
217 [(int)sizeof(struct rtl_bb_info)
218 - (int)sizeof (struct gimple_bb_info)];
219
220
221 #define BB_FREQ_MAX 10000
222
223 /* Masks for basic_block.flags. */
224 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
225 enum cfg_bb_flags
226 {
227 #include "cfg-flags.def"
228 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
229 };
230 #undef DEF_BASIC_BLOCK_FLAG
231
232 /* Bit mask for all basic block flags. */
233 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
234
235 /* Bit mask for all basic block flags that must be preserved. These are
236 the bit masks that are *not* cleared by clear_bb_flags. */
237 #define BB_FLAGS_TO_PRESERVE \
238 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
239 | BB_HOT_PARTITION | BB_COLD_PARTITION)
240
241 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
242 #define BB_UNPARTITIONED 0
243
244 /* Partitions, to be used when partitioning hot and cold basic blocks into
245 separate sections. */
246 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
247 #define BB_SET_PARTITION(bb, part) do { \
248 basic_block bb_ = (bb); \
249 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
250 | (part)); \
251 } while (0)
252
253 #define BB_COPY_PARTITION(dstbb, srcbb) \
254 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
255
256 /* State of dominance information. */
257
258 enum dom_state
259 {
260 DOM_NONE, /* Not computed at all. */
261 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
262 DOM_OK /* Everything is ok. */
263 };
264
265 /* What sort of profiling information we have. */
266 enum profile_status_d
267 {
268 PROFILE_ABSENT,
269 PROFILE_GUESSED,
270 PROFILE_READ,
271 PROFILE_LAST /* Last value, used by profile streaming. */
272 };
273
274 /* A structure to group all the per-function control flow graph data.
275 The x_* prefixing is necessary because otherwise references to the
276 fields of this struct are interpreted as the defines for backward
277 source compatibility following the definition of this struct. */
278 struct GTY(()) control_flow_graph {
279 /* Block pointers for the exit and entry of a function.
280 These are always the head and tail of the basic block list. */
281 basic_block x_entry_block_ptr;
282 basic_block x_exit_block_ptr;
283
284 /* Index by basic block number, get basic block struct info. */
285 vec<basic_block, va_gc> *x_basic_block_info;
286
287 /* Number of basic blocks in this flow graph. */
288 int x_n_basic_blocks;
289
290 /* Number of edges in this flow graph. */
291 int x_n_edges;
292
293 /* The first free basic block number. */
294 int x_last_basic_block;
295
296 /* UIDs for LABEL_DECLs. */
297 int last_label_uid;
298
299 /* Mapping of labels to their associated blocks. At present
300 only used for the gimple CFG. */
301 vec<basic_block, va_gc> *x_label_to_block_map;
302
303 enum profile_status_d x_profile_status;
304
305 /* Whether the dominators and the postdominators are available. */
306 enum dom_state x_dom_computed[2];
307
308 /* Number of basic blocks in the dominance tree. */
309 unsigned x_n_bbs_in_dom_tree[2];
310
311 /* Maximal number of entities in the single jumptable. Used to estimate
312 final flowgraph size. */
313 int max_jumptable_ents;
314 };
315
316 /* Defines for accessing the fields of the CFG structure for function FN. */
317 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
318 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
319 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
320 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
321 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
322 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
323 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
324 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
325
326 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
327 ((*basic_block_info_for_function(FN))[(N)])
328 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
329 ((*basic_block_info_for_function(FN))[(N)] = (BB))
330
331 /* Defines for textual backward source compatibility. */
332 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
333 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
334 #define basic_block_info (cfun->cfg->x_basic_block_info)
335 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
336 #define n_edges (cfun->cfg->x_n_edges)
337 #define last_basic_block (cfun->cfg->x_last_basic_block)
338 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
339 #define profile_status (cfun->cfg->x_profile_status)
340
341 #define BASIC_BLOCK(N) ((*basic_block_info)[(N)])
342 #define SET_BASIC_BLOCK(N,BB) ((*basic_block_info)[(N)] = (BB))
343
344 /* For iterating over basic blocks. */
345 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
346 for (BB = FROM; BB != TO; BB = BB->DIR)
347
348 #define FOR_EACH_BB_FN(BB, FN) \
349 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
350
351 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
352
353 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
354 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
355
356 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
357
358 /* For iterating over insns in basic block. */
359 #define FOR_BB_INSNS(BB, INSN) \
360 for ((INSN) = BB_HEAD (BB); \
361 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
362 (INSN) = NEXT_INSN (INSN))
363
364 /* For iterating over insns in basic block when we might remove the
365 current insn. */
366 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
367 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
368 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
369 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
370
371 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
372 for ((INSN) = BB_END (BB); \
373 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
374 (INSN) = PREV_INSN (INSN))
375
376 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
377 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
378 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
379 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
380
381 /* Cycles through _all_ basic blocks, even the fake ones (entry and
382 exit block). */
383
384 #define FOR_ALL_BB(BB) \
385 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
386
387 #define FOR_ALL_BB_FN(BB, FN) \
388 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
389
390 \f
391 /* Stuff for recording basic block info. */
392
393 #define BB_HEAD(B) (B)->il.x.head_
394 #define BB_END(B) (B)->il.x.rtl->end_
395 #define BB_HEADER(B) (B)->il.x.rtl->header_
396 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
397
398 /* Special block numbers [markers] for entry and exit.
399 Neither of them is supposed to hold actual statements. */
400 #define ENTRY_BLOCK (0)
401 #define EXIT_BLOCK (1)
402
403 /* The two blocks that are always in the cfg. */
404 #define NUM_FIXED_BLOCKS (2)
405
406 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
407
408 extern void compute_bb_for_insn (void);
409 extern unsigned int free_bb_for_insn (void);
410 extern void update_bb_for_insn (basic_block);
411
412 extern void insert_insn_on_edge (rtx, edge);
413 basic_block split_edge_and_insert (edge, rtx);
414
415 extern void commit_one_edge_insertion (edge e);
416 extern void commit_edge_insertions (void);
417
418 extern edge unchecked_make_edge (basic_block, basic_block, int);
419 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
420 extern edge make_edge (basic_block, basic_block, int);
421 extern edge make_single_succ_edge (basic_block, basic_block, int);
422 extern void remove_edge_raw (edge);
423 extern void redirect_edge_succ (edge, basic_block);
424 extern edge redirect_edge_succ_nodup (edge, basic_block);
425 extern void redirect_edge_pred (edge, basic_block);
426 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
427 extern void clear_bb_flags (void);
428 extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
429 extern void dump_edge_info (FILE *, edge, int, int);
430 extern void debug (edge_def &ref);
431 extern void debug (edge_def *ptr);
432 extern void brief_dump_cfg (FILE *, int);
433 extern void clear_edges (void);
434 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
435 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
436 gcov_type);
437
438 /* Structure to group all of the information to process IF-THEN and
439 IF-THEN-ELSE blocks for the conditional execution support. This
440 needs to be in a public file in case the IFCVT macros call
441 functions passing the ce_if_block data structure. */
442
443 typedef struct ce_if_block
444 {
445 basic_block test_bb; /* First test block. */
446 basic_block then_bb; /* THEN block. */
447 basic_block else_bb; /* ELSE block or NULL. */
448 basic_block join_bb; /* Join THEN/ELSE blocks. */
449 basic_block last_test_bb; /* Last bb to hold && or || tests. */
450 int num_multiple_test_blocks; /* # of && and || basic blocks. */
451 int num_and_and_blocks; /* # of && blocks. */
452 int num_or_or_blocks; /* # of || blocks. */
453 int num_multiple_test_insns; /* # of insns in && and || blocks. */
454 int and_and_p; /* Complex test is &&. */
455 int num_then_insns; /* # of insns in THEN block. */
456 int num_else_insns; /* # of insns in ELSE block. */
457 int pass; /* Pass number. */
458 } ce_if_block_t;
459
460 /* This structure maintains an edge list vector. */
461 /* FIXME: Make this a vec<edge>. */
462 struct edge_list
463 {
464 int num_edges;
465 edge *index_to_edge;
466 };
467
468 /* The base value for branch probability notes and edge probabilities. */
469 #define REG_BR_PROB_BASE 10000
470
471 /* This is the value which indicates no edge is present. */
472 #define EDGE_INDEX_NO_EDGE -1
473
474 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
475 if there is no edge between the 2 basic blocks. */
476 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
477
478 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
479 block which is either the pred or succ end of the indexed edge. */
480 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
481 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
482
483 /* INDEX_EDGE returns a pointer to the edge. */
484 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
485
486 /* Number of edges in the compressed edge list. */
487 #define NUM_EDGES(el) ((el)->num_edges)
488
489 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
490 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
491 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
492
493 /* BB is assumed to contain conditional jump. Return the branch edge. */
494 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
495 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
496
497 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
498 /* Return expected execution frequency of the edge E. */
499 #define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
500 REG_BR_PROB_BASE)
501
502 /* Compute a scale factor (or probability) suitable for scaling of
503 gcov_type values via apply_probability() and apply_scale(). */
504 #define GCOV_COMPUTE_SCALE(num,den) \
505 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
506
507 /* Return nonzero if edge is critical. */
508 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
509 && EDGE_COUNT ((e)->dest->preds) >= 2)
510
511 #define EDGE_COUNT(ev) vec_safe_length (ev)
512 #define EDGE_I(ev,i) (*ev)[(i)]
513 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
514 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
515
516 /* Returns true if BB has precisely one successor. */
517
518 static inline bool
519 single_succ_p (const_basic_block bb)
520 {
521 return EDGE_COUNT (bb->succs) == 1;
522 }
523
524 /* Returns true if BB has precisely one predecessor. */
525
526 static inline bool
527 single_pred_p (const_basic_block bb)
528 {
529 return EDGE_COUNT (bb->preds) == 1;
530 }
531
532 /* Returns the single successor edge of basic block BB. Aborts if
533 BB does not have exactly one successor. */
534
535 static inline edge
536 single_succ_edge (const_basic_block bb)
537 {
538 gcc_checking_assert (single_succ_p (bb));
539 return EDGE_SUCC (bb, 0);
540 }
541
542 /* Returns the single predecessor edge of basic block BB. Aborts
543 if BB does not have exactly one predecessor. */
544
545 static inline edge
546 single_pred_edge (const_basic_block bb)
547 {
548 gcc_checking_assert (single_pred_p (bb));
549 return EDGE_PRED (bb, 0);
550 }
551
552 /* Returns the single successor block of basic block BB. Aborts
553 if BB does not have exactly one successor. */
554
555 static inline basic_block
556 single_succ (const_basic_block bb)
557 {
558 return single_succ_edge (bb)->dest;
559 }
560
561 /* Returns the single predecessor block of basic block BB. Aborts
562 if BB does not have exactly one predecessor.*/
563
564 static inline basic_block
565 single_pred (const_basic_block bb)
566 {
567 return single_pred_edge (bb)->src;
568 }
569
570 /* Iterator object for edges. */
571
572 typedef struct {
573 unsigned index;
574 vec<edge, va_gc> **container;
575 } edge_iterator;
576
577 static inline vec<edge, va_gc> *
578 ei_container (edge_iterator i)
579 {
580 gcc_checking_assert (i.container);
581 return *i.container;
582 }
583
584 #define ei_start(iter) ei_start_1 (&(iter))
585 #define ei_last(iter) ei_last_1 (&(iter))
586
587 /* Return an iterator pointing to the start of an edge vector. */
588 static inline edge_iterator
589 ei_start_1 (vec<edge, va_gc> **ev)
590 {
591 edge_iterator i;
592
593 i.index = 0;
594 i.container = ev;
595
596 return i;
597 }
598
599 /* Return an iterator pointing to the last element of an edge
600 vector. */
601 static inline edge_iterator
602 ei_last_1 (vec<edge, va_gc> **ev)
603 {
604 edge_iterator i;
605
606 i.index = EDGE_COUNT (*ev) - 1;
607 i.container = ev;
608
609 return i;
610 }
611
612 /* Is the iterator `i' at the end of the sequence? */
613 static inline bool
614 ei_end_p (edge_iterator i)
615 {
616 return (i.index == EDGE_COUNT (ei_container (i)));
617 }
618
619 /* Is the iterator `i' at one position before the end of the
620 sequence? */
621 static inline bool
622 ei_one_before_end_p (edge_iterator i)
623 {
624 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
625 }
626
627 /* Advance the iterator to the next element. */
628 static inline void
629 ei_next (edge_iterator *i)
630 {
631 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
632 i->index++;
633 }
634
635 /* Move the iterator to the previous element. */
636 static inline void
637 ei_prev (edge_iterator *i)
638 {
639 gcc_checking_assert (i->index > 0);
640 i->index--;
641 }
642
643 /* Return the edge pointed to by the iterator `i'. */
644 static inline edge
645 ei_edge (edge_iterator i)
646 {
647 return EDGE_I (ei_container (i), i.index);
648 }
649
650 /* Return an edge pointed to by the iterator. Do it safely so that
651 NULL is returned when the iterator is pointing at the end of the
652 sequence. */
653 static inline edge
654 ei_safe_edge (edge_iterator i)
655 {
656 return !ei_end_p (i) ? ei_edge (i) : NULL;
657 }
658
659 /* Return 1 if we should continue to iterate. Return 0 otherwise.
660 *Edge P is set to the next edge if we are to continue to iterate
661 and NULL otherwise. */
662
663 static inline bool
664 ei_cond (edge_iterator ei, edge *p)
665 {
666 if (!ei_end_p (ei))
667 {
668 *p = ei_edge (ei);
669 return 1;
670 }
671 else
672 {
673 *p = NULL;
674 return 0;
675 }
676 }
677
678 /* This macro serves as a convenient way to iterate each edge in a
679 vector of predecessor or successor edges. It must not be used when
680 an element might be removed during the traversal, otherwise
681 elements will be missed. Instead, use a for-loop like that shown
682 in the following pseudo-code:
683
684 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
685 {
686 IF (e != taken_edge)
687 remove_edge (e);
688 ELSE
689 ei_next (&ei);
690 }
691 */
692
693 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
694 for ((ITER) = ei_start ((EDGE_VEC)); \
695 ei_cond ((ITER), &(EDGE)); \
696 ei_next (&(ITER)))
697
698 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
699 except for edge forwarding */
700 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
701 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
702 to care REG_DEAD notes. */
703 #define CLEANUP_THREADING 8 /* Do jump threading. */
704 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
705 insns. */
706 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
707 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
708
709 /* In cfganal.c */
710 extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
711 extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
712 extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
713 extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
714
715 /* In lcm.c */
716 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
717 sbitmap *, sbitmap *, sbitmap **,
718 sbitmap **);
719 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
720 sbitmap *, sbitmap *,
721 sbitmap *, sbitmap **,
722 sbitmap **);
723 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
724
725 /* In predict.c */
726 extern bool maybe_hot_bb_p (struct function *, const_basic_block);
727 extern bool maybe_hot_edge_p (edge);
728 extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
729 extern bool probably_never_executed_edge_p (struct function *, edge);
730 extern bool optimize_bb_for_size_p (const_basic_block);
731 extern bool optimize_bb_for_speed_p (const_basic_block);
732 extern bool optimize_edge_for_size_p (edge);
733 extern bool optimize_edge_for_speed_p (edge);
734 extern bool optimize_loop_for_size_p (struct loop *);
735 extern bool optimize_loop_for_speed_p (struct loop *);
736 extern bool optimize_loop_nest_for_size_p (struct loop *);
737 extern bool optimize_loop_nest_for_speed_p (struct loop *);
738 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
739 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
740 extern void gimple_predict_edge (edge, enum br_predictor, int);
741 extern void rtl_predict_edge (edge, enum br_predictor, int);
742 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
743 extern void guess_outgoing_edge_probabilities (basic_block);
744 extern void remove_predictions_associated_with_edge (edge);
745 extern bool edge_probability_reliable_p (const_edge);
746 extern bool br_prob_note_reliable_p (const_rtx);
747 extern bool predictable_edge_p (edge);
748
749 /* In cfg.c */
750 extern void init_flow (struct function *);
751 extern void debug_bb (basic_block);
752 extern basic_block debug_bb_n (int);
753 extern void dump_flow_info (FILE *, int);
754 extern void expunge_block (basic_block);
755 extern void link_block (basic_block, basic_block);
756 extern void unlink_block (basic_block);
757 extern void compact_blocks (void);
758 extern basic_block alloc_block (void);
759 extern void alloc_aux_for_blocks (int);
760 extern void clear_aux_for_blocks (void);
761 extern void free_aux_for_blocks (void);
762 extern void alloc_aux_for_edge (edge, int);
763 extern void alloc_aux_for_edges (int);
764 extern void clear_aux_for_edges (void);
765 extern void free_aux_for_edges (void);
766
767 /* In cfganal.c */
768 extern void find_unreachable_blocks (void);
769 extern bool mark_dfs_back_edges (void);
770 struct edge_list * create_edge_list (void);
771 void free_edge_list (struct edge_list *);
772 void print_edge_list (FILE *, struct edge_list *);
773 void verify_edge_list (FILE *, struct edge_list *);
774 int find_edge_index (struct edge_list *, basic_block, basic_block);
775 edge find_edge (basic_block, basic_block);
776 extern void remove_fake_edges (void);
777 extern void remove_fake_exit_edges (void);
778 extern void add_noreturn_fake_exit_edges (void);
779 extern void connect_infinite_loops_to_exit (void);
780 extern int post_order_compute (int *, bool, bool);
781 extern basic_block dfs_find_deadend (basic_block);
782 extern int inverted_post_order_compute (int *);
783 extern int pre_and_rev_post_order_compute (int *, int *, bool);
784 extern int dfs_enumerate_from (basic_block, int,
785 bool (*)(const_basic_block, const void *),
786 basic_block *, int, const void *);
787 extern void compute_dominance_frontiers (struct bitmap_head_def *);
788 extern bitmap compute_idf (bitmap, struct bitmap_head_def *);
789
790 /* In cfgrtl.c */
791 extern rtx block_label (basic_block);
792 extern rtx bb_note (basic_block);
793 extern bool purge_all_dead_edges (void);
794 extern bool purge_dead_edges (basic_block);
795 extern bool fixup_abnormal_edges (void);
796 extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
797 extern bool contains_no_active_insn_p (const_basic_block);
798 extern bool forwarder_block_p (const_basic_block);
799 extern bool can_fallthru (basic_block, basic_block);
800 extern void emit_barrier_after_bb (basic_block bb);
801 extern void fixup_partitions (void);
802
803 /* In cfgbuild.c. */
804 extern void find_many_sub_basic_blocks (sbitmap);
805 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
806
807 enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
808
809 /* In cfgcleanup.c. */
810 extern bool cleanup_cfg (int);
811 extern int flow_find_cross_jump (basic_block, basic_block, rtx *, rtx *,
812 enum replace_direction*);
813 extern int flow_find_head_matching_sequence (basic_block, basic_block,
814 rtx *, rtx *, int);
815
816 extern bool delete_unreachable_blocks (void);
817
818 extern void update_br_prob_note (basic_block);
819 extern bool inside_basic_block_p (const_rtx);
820 extern bool control_flow_insn_p (const_rtx);
821 extern rtx get_last_bb_insn (basic_block);
822
823 /* In dominance.c */
824
825 enum cdi_direction
826 {
827 CDI_DOMINATORS = 1,
828 CDI_POST_DOMINATORS = 2
829 };
830
831 extern enum dom_state dom_info_state (enum cdi_direction);
832 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
833 extern bool dom_info_available_p (enum cdi_direction);
834 extern void calculate_dominance_info (enum cdi_direction);
835 extern void free_dominance_info (enum cdi_direction);
836 extern basic_block nearest_common_dominator (enum cdi_direction,
837 basic_block, basic_block);
838 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
839 bitmap);
840 extern void set_immediate_dominator (enum cdi_direction, basic_block,
841 basic_block);
842 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
843 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
844 extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
845 extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
846 basic_block *,
847 unsigned);
848 extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
849 basic_block, int);
850 extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
851 basic_block);
852 extern void add_to_dominance_info (enum cdi_direction, basic_block);
853 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
854 basic_block recompute_dominator (enum cdi_direction, basic_block);
855 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
856 basic_block);
857 extern void iterate_fix_dominators (enum cdi_direction,
858 vec<basic_block> , bool);
859 extern void verify_dominators (enum cdi_direction);
860 extern basic_block first_dom_son (enum cdi_direction, basic_block);
861 extern basic_block next_dom_son (enum cdi_direction, basic_block);
862 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
863 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
864
865 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
866 extern void break_superblocks (void);
867 extern void relink_block_chain (bool);
868 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
869 extern void init_rtl_bb_info (basic_block);
870
871 extern void initialize_original_copy_tables (void);
872 extern void free_original_copy_tables (void);
873 extern void set_bb_original (basic_block, basic_block);
874 extern basic_block get_bb_original (basic_block);
875 extern void set_bb_copy (basic_block, basic_block);
876 extern basic_block get_bb_copy (basic_block);
877 void set_loop_copy (struct loop *, struct loop *);
878 struct loop *get_loop_copy (struct loop *);
879
880 #include "cfghooks.h"
881
882 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
883 static inline bool
884 bb_has_eh_pred (basic_block bb)
885 {
886 edge e;
887 edge_iterator ei;
888
889 FOR_EACH_EDGE (e, ei, bb->preds)
890 {
891 if (e->flags & EDGE_EH)
892 return true;
893 }
894 return false;
895 }
896
897 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
898 static inline bool
899 bb_has_abnormal_pred (basic_block bb)
900 {
901 edge e;
902 edge_iterator ei;
903
904 FOR_EACH_EDGE (e, ei, bb->preds)
905 {
906 if (e->flags & EDGE_ABNORMAL)
907 return true;
908 }
909 return false;
910 }
911
912 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
913 static inline edge
914 find_fallthru_edge (vec<edge, va_gc> *edges)
915 {
916 edge e;
917 edge_iterator ei;
918
919 FOR_EACH_EDGE (e, ei, edges)
920 if (e->flags & EDGE_FALLTHRU)
921 break;
922
923 return e;
924 }
925
926 /* In cfgloopmanip.c. */
927 extern edge mfb_kj_edge;
928 extern bool mfb_keep_just (edge);
929
930 /* In cfgexpand.c. */
931 extern void rtl_profile_for_bb (basic_block);
932 extern void rtl_profile_for_edge (edge);
933 extern void default_rtl_profile (void);
934
935 /* In profile.c. */
936 typedef struct gcov_working_set_info gcov_working_set_t;
937 extern gcov_working_set_t *find_working_set(unsigned pct_times_10);
938
939 /* Check tha probability is sane. */
940
941 static inline void
942 check_probability (int prob)
943 {
944 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
945 }
946
947 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
948 Used to combine BB probabilities. */
949
950 static inline int
951 combine_probabilities (int prob1, int prob2)
952 {
953 check_probability (prob1);
954 check_probability (prob2);
955 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
956 }
957
958 /* Apply scale factor SCALE on frequency or count FREQ. Use this
959 interface when potentially scaling up, so that SCALE is not
960 constrained to be < REG_BR_PROB_BASE. */
961
962 static inline gcov_type
963 apply_scale (gcov_type freq, int scale)
964 {
965 return RDIV (freq * scale, REG_BR_PROB_BASE);
966 }
967
968 /* Apply probability PROB on frequency or count FREQ. */
969
970 static inline gcov_type
971 apply_probability (gcov_type freq, int prob)
972 {
973 check_probability (prob);
974 return apply_scale (freq, prob);
975 }
976
977 /* Return inverse probability for PROB. */
978
979 static inline int
980 inverse_probability (int prob1)
981 {
982 check_probability (prob1);
983 return REG_BR_PROB_BASE - prob1;
984 }
985 #endif /* GCC_BASIC_BLOCK_H */