]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "expr.h"
30 #include "optabs.h"
31 #include "libfuncs.h"
32 #include "function.h"
33 #include "regs.h"
34 #include "toplev.h"
35 #include "output.h"
36 #include "tm_p.h"
37 #include "timevar.h"
38 #include "sbitmap.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "except.h"
43
44 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
45 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
46
47 /* Data structure and subroutines used within expand_call. */
48
49 struct arg_data
50 {
51 /* Tree node for this argument. */
52 tree tree_value;
53 /* Mode for value; TYPE_MODE unless promoted. */
54 enum machine_mode mode;
55 /* Current RTL value for argument, or 0 if it isn't precomputed. */
56 rtx value;
57 /* Initially-compute RTL value for argument; only for const functions. */
58 rtx initial_value;
59 /* Register to pass this argument in, 0 if passed on stack, or an
60 PARALLEL if the arg is to be copied into multiple non-contiguous
61 registers. */
62 rtx reg;
63 /* Register to pass this argument in when generating tail call sequence.
64 This is not the same register as for normal calls on machines with
65 register windows. */
66 rtx tail_call_reg;
67 /* If REG was promoted from the actual mode of the argument expression,
68 indicates whether the promotion is sign- or zero-extended. */
69 int unsignedp;
70 /* Number of registers to use. 0 means put the whole arg in registers.
71 Also 0 if not passed in registers. */
72 int partial;
73 /* Nonzero if argument must be passed on stack.
74 Note that some arguments may be passed on the stack
75 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
76 pass_on_stack identifies arguments that *cannot* go in registers. */
77 int pass_on_stack;
78 /* Some fields packaged up for locate_and_pad_parm. */
79 struct locate_and_pad_arg_data locate;
80 /* Location on the stack at which parameter should be stored. The store
81 has already been done if STACK == VALUE. */
82 rtx stack;
83 /* Location on the stack of the start of this argument slot. This can
84 differ from STACK if this arg pads downward. This location is known
85 to be aligned to FUNCTION_ARG_BOUNDARY. */
86 rtx stack_slot;
87 /* Place that this stack area has been saved, if needed. */
88 rtx save_area;
89 /* If an argument's alignment does not permit direct copying into registers,
90 copy in smaller-sized pieces into pseudos. These are stored in a
91 block pointed to by this field. The next field says how many
92 word-sized pseudos we made. */
93 rtx *aligned_regs;
94 int n_aligned_regs;
95 };
96
97 /* A vector of one char per byte of stack space. A byte if nonzero if
98 the corresponding stack location has been used.
99 This vector is used to prevent a function call within an argument from
100 clobbering any stack already set up. */
101 static char *stack_usage_map;
102
103 /* Size of STACK_USAGE_MAP. */
104 static int highest_outgoing_arg_in_use;
105
106 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
107 stack location's tail call argument has been already stored into the stack.
108 This bitmap is used to prevent sibling call optimization if function tries
109 to use parent's incoming argument slots when they have been already
110 overwritten with tail call arguments. */
111 static sbitmap stored_args_map;
112
113 /* stack_arg_under_construction is nonzero when an argument may be
114 initialized with a constructor call (including a C function that
115 returns a BLKmode struct) and expand_call must take special action
116 to make sure the object being constructed does not overlap the
117 argument list for the constructor call. */
118 int stack_arg_under_construction;
119
120 static int calls_function (tree, int);
121 static int calls_function_1 (tree, int);
122
123 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
124 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
125 CUMULATIVE_ARGS *);
126 static void precompute_register_parameters (int, struct arg_data *, int *);
127 static int store_one_arg (struct arg_data *, rtx, int, int, int);
128 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
129 static int finalize_must_preallocate (int, int, struct arg_data *,
130 struct args_size *);
131 static void precompute_arguments (int, int, struct arg_data *);
132 static int compute_argument_block_size (int, struct args_size *, int);
133 static void initialize_argument_information (int, struct arg_data *,
134 struct args_size *, int, tree,
135 tree, CUMULATIVE_ARGS *, int,
136 rtx *, int *, int *, int *,
137 bool *, bool);
138 static void compute_argument_addresses (struct arg_data *, rtx, int);
139 static rtx rtx_for_function_call (tree, tree);
140 static void load_register_parameters (struct arg_data *, int, rtx *, int,
141 int, int *);
142 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
143 enum machine_mode, int, va_list);
144 static int special_function_p (tree, int);
145 static int check_sibcall_argument_overlap_1 (rtx);
146 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
147
148 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
149 int);
150 static tree fix_unsafe_tree (tree);
151 static bool shift_returned_value (tree, rtx *);
152
153 #ifdef REG_PARM_STACK_SPACE
154 static rtx save_fixed_argument_area (int, rtx, int *, int *);
155 static void restore_fixed_argument_area (rtx, rtx, int, int);
156 #endif
157 \f
158 /* If WHICH is 1, return 1 if EXP contains a call to the built-in function
159 `alloca'.
160
161 If WHICH is 0, return 1 if EXP contains a call to any function.
162 Actually, we only need return 1 if evaluating EXP would require pushing
163 arguments on the stack, but that is too difficult to compute, so we just
164 assume any function call might require the stack. */
165
166 static tree calls_function_save_exprs;
167
168 static int
169 calls_function (tree exp, int which)
170 {
171 int val;
172
173 calls_function_save_exprs = 0;
174 val = calls_function_1 (exp, which);
175 calls_function_save_exprs = 0;
176 return val;
177 }
178
179 /* Recursive function to do the work of above function. */
180
181 static int
182 calls_function_1 (tree exp, int which)
183 {
184 int i;
185 enum tree_code code = TREE_CODE (exp);
186 int class = TREE_CODE_CLASS (code);
187 int length = first_rtl_op (code);
188
189 /* If this code is language-specific, we don't know what it will do. */
190 if ((int) code >= NUM_TREE_CODES)
191 return 1;
192
193 switch (code)
194 {
195 case CALL_EXPR:
196 if (which == 0)
197 return 1;
198 else if ((TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
199 == FUNCTION_TYPE)
200 && (TYPE_RETURNS_STACK_DEPRESSED
201 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
202 return 1;
203 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
204 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
205 == FUNCTION_DECL)
206 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
207 0)
208 & ECF_MAY_BE_ALLOCA))
209 return 1;
210
211 break;
212
213 case CONSTRUCTOR:
214 {
215 tree tem;
216
217 for (tem = CONSTRUCTOR_ELTS (exp); tem != 0; tem = TREE_CHAIN (tem))
218 if (calls_function_1 (TREE_VALUE (tem), which))
219 return 1;
220 }
221
222 return 0;
223
224 case SAVE_EXPR:
225 if (SAVE_EXPR_RTL (exp) != 0)
226 return 0;
227 if (value_member (exp, calls_function_save_exprs))
228 return 0;
229 calls_function_save_exprs = tree_cons (NULL_TREE, exp,
230 calls_function_save_exprs);
231 return (TREE_OPERAND (exp, 0) != 0
232 && calls_function_1 (TREE_OPERAND (exp, 0), which));
233
234 case BLOCK:
235 {
236 tree local;
237 tree subblock;
238
239 for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
240 if (DECL_INITIAL (local) != 0
241 && calls_function_1 (DECL_INITIAL (local), which))
242 return 1;
243
244 for (subblock = BLOCK_SUBBLOCKS (exp);
245 subblock;
246 subblock = TREE_CHAIN (subblock))
247 if (calls_function_1 (subblock, which))
248 return 1;
249 }
250 return 0;
251
252 case TREE_LIST:
253 for (; exp != 0; exp = TREE_CHAIN (exp))
254 if (calls_function_1 (TREE_VALUE (exp), which))
255 return 1;
256 return 0;
257
258 default:
259 break;
260 }
261
262 /* Only expressions and blocks can contain calls. */
263 if (! IS_EXPR_CODE_CLASS (class) && class != 'b')
264 return 0;
265
266 for (i = 0; i < length; i++)
267 if (TREE_OPERAND (exp, i) != 0
268 && calls_function_1 (TREE_OPERAND (exp, i), which))
269 return 1;
270
271 return 0;
272 }
273 \f
274 /* Force FUNEXP into a form suitable for the address of a CALL,
275 and return that as an rtx. Also load the static chain register
276 if FNDECL is a nested function.
277
278 CALL_FUSAGE points to a variable holding the prospective
279 CALL_INSN_FUNCTION_USAGE information. */
280
281 rtx
282 prepare_call_address (rtx funexp, rtx static_chain_value,
283 rtx *call_fusage, int reg_parm_seen, int sibcallp)
284 {
285 funexp = protect_from_queue (funexp, 0);
286
287 /* Make a valid memory address and copy constants through pseudo-regs,
288 but not for a constant address if -fno-function-cse. */
289 if (GET_CODE (funexp) != SYMBOL_REF)
290 /* If we are using registers for parameters, force the
291 function address into a register now. */
292 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
293 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
294 : memory_address (FUNCTION_MODE, funexp));
295 else if (! sibcallp)
296 {
297 #ifndef NO_FUNCTION_CSE
298 if (optimize && ! flag_no_function_cse)
299 #ifdef NO_RECURSIVE_FUNCTION_CSE
300 if (fndecl != current_function_decl)
301 #endif
302 funexp = force_reg (Pmode, funexp);
303 #endif
304 }
305
306 if (static_chain_value != 0)
307 {
308 emit_move_insn (static_chain_rtx, static_chain_value);
309
310 if (GET_CODE (static_chain_rtx) == REG)
311 use_reg (call_fusage, static_chain_rtx);
312 }
313
314 return funexp;
315 }
316
317 /* Generate instructions to call function FUNEXP,
318 and optionally pop the results.
319 The CALL_INSN is the first insn generated.
320
321 FNDECL is the declaration node of the function. This is given to the
322 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
323
324 FUNTYPE is the data type of the function. This is given to the macro
325 RETURN_POPS_ARGS to determine whether this function pops its own args.
326 We used to allow an identifier for library functions, but that doesn't
327 work when the return type is an aggregate type and the calling convention
328 says that the pointer to this aggregate is to be popped by the callee.
329
330 STACK_SIZE is the number of bytes of arguments on the stack,
331 ROUNDED_STACK_SIZE is that number rounded up to
332 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
333 both to put into the call insn and to generate explicit popping
334 code if necessary.
335
336 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
337 It is zero if this call doesn't want a structure value.
338
339 NEXT_ARG_REG is the rtx that results from executing
340 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
341 just after all the args have had their registers assigned.
342 This could be whatever you like, but normally it is the first
343 arg-register beyond those used for args in this call,
344 or 0 if all the arg-registers are used in this call.
345 It is passed on to `gen_call' so you can put this info in the call insn.
346
347 VALREG is a hard register in which a value is returned,
348 or 0 if the call does not return a value.
349
350 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
351 the args to this call were processed.
352 We restore `inhibit_defer_pop' to that value.
353
354 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
355 denote registers used by the called function. */
356
357 static void
358 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
359 tree funtype ATTRIBUTE_UNUSED,
360 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
361 HOST_WIDE_INT rounded_stack_size,
362 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
363 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
364 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
365 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
366 {
367 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
368 rtx call_insn;
369 int already_popped = 0;
370 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
371 #if defined (HAVE_call) && defined (HAVE_call_value)
372 rtx struct_value_size_rtx;
373 struct_value_size_rtx = GEN_INT (struct_value_size);
374 #endif
375
376 #ifdef CALL_POPS_ARGS
377 n_popped += CALL_POPS_ARGS (* args_so_far);
378 #endif
379
380 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
381 and we don't want to load it into a register as an optimization,
382 because prepare_call_address already did it if it should be done. */
383 if (GET_CODE (funexp) != SYMBOL_REF)
384 funexp = memory_address (FUNCTION_MODE, funexp);
385
386 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
387 if ((ecf_flags & ECF_SIBCALL)
388 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
389 && (n_popped > 0 || stack_size == 0))
390 {
391 rtx n_pop = GEN_INT (n_popped);
392 rtx pat;
393
394 /* If this subroutine pops its own args, record that in the call insn
395 if possible, for the sake of frame pointer elimination. */
396
397 if (valreg)
398 pat = GEN_SIBCALL_VALUE_POP (valreg,
399 gen_rtx_MEM (FUNCTION_MODE, funexp),
400 rounded_stack_size_rtx, next_arg_reg,
401 n_pop);
402 else
403 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
404 rounded_stack_size_rtx, next_arg_reg, n_pop);
405
406 emit_call_insn (pat);
407 already_popped = 1;
408 }
409 else
410 #endif
411
412 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
413 /* If the target has "call" or "call_value" insns, then prefer them
414 if no arguments are actually popped. If the target does not have
415 "call" or "call_value" insns, then we must use the popping versions
416 even if the call has no arguments to pop. */
417 #if defined (HAVE_call) && defined (HAVE_call_value)
418 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
419 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
420 #else
421 if (HAVE_call_pop && HAVE_call_value_pop)
422 #endif
423 {
424 rtx n_pop = GEN_INT (n_popped);
425 rtx pat;
426
427 /* If this subroutine pops its own args, record that in the call insn
428 if possible, for the sake of frame pointer elimination. */
429
430 if (valreg)
431 pat = GEN_CALL_VALUE_POP (valreg,
432 gen_rtx_MEM (FUNCTION_MODE, funexp),
433 rounded_stack_size_rtx, next_arg_reg, n_pop);
434 else
435 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
436 rounded_stack_size_rtx, next_arg_reg, n_pop);
437
438 emit_call_insn (pat);
439 already_popped = 1;
440 }
441 else
442 #endif
443
444 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
445 if ((ecf_flags & ECF_SIBCALL)
446 && HAVE_sibcall && HAVE_sibcall_value)
447 {
448 if (valreg)
449 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
450 gen_rtx_MEM (FUNCTION_MODE, funexp),
451 rounded_stack_size_rtx,
452 next_arg_reg, NULL_RTX));
453 else
454 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
455 rounded_stack_size_rtx, next_arg_reg,
456 struct_value_size_rtx));
457 }
458 else
459 #endif
460
461 #if defined (HAVE_call) && defined (HAVE_call_value)
462 if (HAVE_call && HAVE_call_value)
463 {
464 if (valreg)
465 emit_call_insn (GEN_CALL_VALUE (valreg,
466 gen_rtx_MEM (FUNCTION_MODE, funexp),
467 rounded_stack_size_rtx, next_arg_reg,
468 NULL_RTX));
469 else
470 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
471 rounded_stack_size_rtx, next_arg_reg,
472 struct_value_size_rtx));
473 }
474 else
475 #endif
476 abort ();
477
478 /* Find the call we just emitted. */
479 call_insn = last_call_insn ();
480
481 /* Mark memory as used for "pure" function call. */
482 if (ecf_flags & ECF_PURE)
483 call_fusage
484 = gen_rtx_EXPR_LIST
485 (VOIDmode,
486 gen_rtx_USE (VOIDmode,
487 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
488 call_fusage);
489
490 /* Put the register usage information there. */
491 add_function_usage_to (call_insn, call_fusage);
492
493 /* If this is a const call, then set the insn's unchanging bit. */
494 if (ecf_flags & (ECF_CONST | ECF_PURE))
495 CONST_OR_PURE_CALL_P (call_insn) = 1;
496
497 /* If this call can't throw, attach a REG_EH_REGION reg note to that
498 effect. */
499 if (ecf_flags & ECF_NOTHROW)
500 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
501 REG_NOTES (call_insn));
502 else
503 {
504 int rn = lookup_stmt_eh_region (fntree);
505
506 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
507 throw, which we already took care of. */
508 if (rn > 0)
509 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
510 REG_NOTES (call_insn));
511 note_current_region_may_contain_throw ();
512 }
513
514 if (ecf_flags & ECF_NORETURN)
515 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
516 REG_NOTES (call_insn));
517 if (ecf_flags & ECF_ALWAYS_RETURN)
518 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
519 REG_NOTES (call_insn));
520
521 if (ecf_flags & ECF_RETURNS_TWICE)
522 {
523 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
524 REG_NOTES (call_insn));
525 current_function_calls_setjmp = 1;
526 }
527
528 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
529
530 /* Restore this now, so that we do defer pops for this call's args
531 if the context of the call as a whole permits. */
532 inhibit_defer_pop = old_inhibit_defer_pop;
533
534 if (n_popped > 0)
535 {
536 if (!already_popped)
537 CALL_INSN_FUNCTION_USAGE (call_insn)
538 = gen_rtx_EXPR_LIST (VOIDmode,
539 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
540 CALL_INSN_FUNCTION_USAGE (call_insn));
541 rounded_stack_size -= n_popped;
542 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
543 stack_pointer_delta -= n_popped;
544 }
545
546 if (!ACCUMULATE_OUTGOING_ARGS)
547 {
548 /* If returning from the subroutine does not automatically pop the args,
549 we need an instruction to pop them sooner or later.
550 Perhaps do it now; perhaps just record how much space to pop later.
551
552 If returning from the subroutine does pop the args, indicate that the
553 stack pointer will be changed. */
554
555 if (rounded_stack_size != 0)
556 {
557 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN | ECF_LONGJMP))
558 /* Just pretend we did the pop. */
559 stack_pointer_delta -= rounded_stack_size;
560 else if (flag_defer_pop && inhibit_defer_pop == 0
561 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
562 pending_stack_adjust += rounded_stack_size;
563 else
564 adjust_stack (rounded_stack_size_rtx);
565 }
566 }
567 /* When we accumulate outgoing args, we must avoid any stack manipulations.
568 Restore the stack pointer to its original value now. Usually
569 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
570 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
571 popping variants of functions exist as well.
572
573 ??? We may optimize similar to defer_pop above, but it is
574 probably not worthwhile.
575
576 ??? It will be worthwhile to enable combine_stack_adjustments even for
577 such machines. */
578 else if (n_popped)
579 anti_adjust_stack (GEN_INT (n_popped));
580 }
581
582 /* Determine if the function identified by NAME and FNDECL is one with
583 special properties we wish to know about.
584
585 For example, if the function might return more than one time (setjmp), then
586 set RETURNS_TWICE to a nonzero value.
587
588 Similarly set LONGJMP for if the function is in the longjmp family.
589
590 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
591 space from the stack such as alloca. */
592
593 static int
594 special_function_p (tree fndecl, int flags)
595 {
596 if (fndecl && DECL_NAME (fndecl)
597 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
598 /* Exclude functions not at the file scope, or not `extern',
599 since they are not the magic functions we would otherwise
600 think they are.
601 FIXME: this should be handled with attributes, not with this
602 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
603 because you can declare fork() inside a function if you
604 wish. */
605 && (DECL_CONTEXT (fndecl) == NULL_TREE
606 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
607 && TREE_PUBLIC (fndecl))
608 {
609 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
610 const char *tname = name;
611
612 /* We assume that alloca will always be called by name. It
613 makes no sense to pass it as a pointer-to-function to
614 anything that does not understand its behavior. */
615 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
616 && name[0] == 'a'
617 && ! strcmp (name, "alloca"))
618 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
619 && name[0] == '_'
620 && ! strcmp (name, "__builtin_alloca"))))
621 flags |= ECF_MAY_BE_ALLOCA;
622
623 /* Disregard prefix _, __ or __x. */
624 if (name[0] == '_')
625 {
626 if (name[1] == '_' && name[2] == 'x')
627 tname += 3;
628 else if (name[1] == '_')
629 tname += 2;
630 else
631 tname += 1;
632 }
633
634 if (tname[0] == 's')
635 {
636 if ((tname[1] == 'e'
637 && (! strcmp (tname, "setjmp")
638 || ! strcmp (tname, "setjmp_syscall")))
639 || (tname[1] == 'i'
640 && ! strcmp (tname, "sigsetjmp"))
641 || (tname[1] == 'a'
642 && ! strcmp (tname, "savectx")))
643 flags |= ECF_RETURNS_TWICE;
644
645 if (tname[1] == 'i'
646 && ! strcmp (tname, "siglongjmp"))
647 flags |= ECF_LONGJMP;
648 }
649 else if ((tname[0] == 'q' && tname[1] == 's'
650 && ! strcmp (tname, "qsetjmp"))
651 || (tname[0] == 'v' && tname[1] == 'f'
652 && ! strcmp (tname, "vfork")))
653 flags |= ECF_RETURNS_TWICE;
654
655 else if (tname[0] == 'l' && tname[1] == 'o'
656 && ! strcmp (tname, "longjmp"))
657 flags |= ECF_LONGJMP;
658 }
659
660 return flags;
661 }
662
663 /* Return nonzero when tree represent call to longjmp. */
664
665 int
666 setjmp_call_p (tree fndecl)
667 {
668 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
669 }
670
671 /* Return true when exp contains alloca call. */
672 bool
673 alloca_call_p (tree exp)
674 {
675 if (TREE_CODE (exp) == CALL_EXPR
676 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
677 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
678 == FUNCTION_DECL)
679 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
680 0) & ECF_MAY_BE_ALLOCA))
681 return true;
682 return false;
683 }
684
685 /* Detect flags (function attributes) from the function decl or type node. */
686
687 int
688 flags_from_decl_or_type (tree exp)
689 {
690 int flags = 0;
691 tree type = exp;
692
693 if (DECL_P (exp))
694 {
695 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
696 type = TREE_TYPE (exp);
697
698 if (i)
699 {
700 if (i->pure_function)
701 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
702 if (i->const_function)
703 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
704 }
705
706 /* The function exp may have the `malloc' attribute. */
707 if (DECL_IS_MALLOC (exp))
708 flags |= ECF_MALLOC;
709
710 /* The function exp may have the `pure' attribute. */
711 if (DECL_IS_PURE (exp))
712 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
713
714 if (TREE_NOTHROW (exp))
715 flags |= ECF_NOTHROW;
716
717 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
718 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
719
720 flags = special_function_p (exp, flags);
721 }
722 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
723 flags |= ECF_CONST;
724
725 if (TREE_THIS_VOLATILE (exp))
726 flags |= ECF_NORETURN;
727
728 /* Mark if the function returns with the stack pointer depressed. We
729 cannot consider it pure or constant in that case. */
730 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
731 {
732 flags |= ECF_SP_DEPRESSED;
733 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
734 }
735
736 return flags;
737 }
738
739 /* Detect flags from a CALL_EXPR. */
740
741 int
742 call_expr_flags (tree t)
743 {
744 int flags;
745 tree decl = get_callee_fndecl (t);
746
747 if (decl)
748 flags = flags_from_decl_or_type (decl);
749 else
750 {
751 t = TREE_TYPE (TREE_OPERAND (t, 0));
752 if (t && TREE_CODE (t) == POINTER_TYPE)
753 flags = flags_from_decl_or_type (TREE_TYPE (t));
754 else
755 flags = 0;
756 }
757
758 return flags;
759 }
760
761 /* Precompute all register parameters as described by ARGS, storing values
762 into fields within the ARGS array.
763
764 NUM_ACTUALS indicates the total number elements in the ARGS array.
765
766 Set REG_PARM_SEEN if we encounter a register parameter. */
767
768 static void
769 precompute_register_parameters (int num_actuals, struct arg_data *args, int *reg_parm_seen)
770 {
771 int i;
772
773 *reg_parm_seen = 0;
774
775 for (i = 0; i < num_actuals; i++)
776 if (args[i].reg != 0 && ! args[i].pass_on_stack)
777 {
778 *reg_parm_seen = 1;
779
780 if (args[i].value == 0)
781 {
782 push_temp_slots ();
783 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
784 VOIDmode, 0);
785 preserve_temp_slots (args[i].value);
786 pop_temp_slots ();
787
788 /* ANSI doesn't require a sequence point here,
789 but PCC has one, so this will avoid some problems. */
790 emit_queue ();
791 }
792
793 /* If the value is a non-legitimate constant, force it into a
794 pseudo now. TLS symbols sometimes need a call to resolve. */
795 if (CONSTANT_P (args[i].value)
796 && !LEGITIMATE_CONSTANT_P (args[i].value))
797 args[i].value = force_reg (args[i].mode, args[i].value);
798
799 /* If we are to promote the function arg to a wider mode,
800 do it now. */
801
802 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
803 args[i].value
804 = convert_modes (args[i].mode,
805 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
806 args[i].value, args[i].unsignedp);
807
808 /* If the value is expensive, and we are inside an appropriately
809 short loop, put the value into a pseudo and then put the pseudo
810 into the hard reg.
811
812 For small register classes, also do this if this call uses
813 register parameters. This is to avoid reload conflicts while
814 loading the parameters registers. */
815
816 if ((! (GET_CODE (args[i].value) == REG
817 || (GET_CODE (args[i].value) == SUBREG
818 && GET_CODE (SUBREG_REG (args[i].value)) == REG)))
819 && args[i].mode != BLKmode
820 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
821 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
822 || preserve_subexpressions_p ()))
823 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
824 }
825 }
826
827 #ifdef REG_PARM_STACK_SPACE
828
829 /* The argument list is the property of the called routine and it
830 may clobber it. If the fixed area has been used for previous
831 parameters, we must save and restore it. */
832
833 static rtx
834 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
835 {
836 int low;
837 int high;
838
839 /* Compute the boundary of the area that needs to be saved, if any. */
840 high = reg_parm_stack_space;
841 #ifdef ARGS_GROW_DOWNWARD
842 high += 1;
843 #endif
844 if (high > highest_outgoing_arg_in_use)
845 high = highest_outgoing_arg_in_use;
846
847 for (low = 0; low < high; low++)
848 if (stack_usage_map[low] != 0)
849 {
850 int num_to_save;
851 enum machine_mode save_mode;
852 int delta;
853 rtx stack_area;
854 rtx save_area;
855
856 while (stack_usage_map[--high] == 0)
857 ;
858
859 *low_to_save = low;
860 *high_to_save = high;
861
862 num_to_save = high - low + 1;
863 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
864
865 /* If we don't have the required alignment, must do this
866 in BLKmode. */
867 if ((low & (MIN (GET_MODE_SIZE (save_mode),
868 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
869 save_mode = BLKmode;
870
871 #ifdef ARGS_GROW_DOWNWARD
872 delta = -high;
873 #else
874 delta = low;
875 #endif
876 stack_area = gen_rtx_MEM (save_mode,
877 memory_address (save_mode,
878 plus_constant (argblock,
879 delta)));
880
881 set_mem_align (stack_area, PARM_BOUNDARY);
882 if (save_mode == BLKmode)
883 {
884 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
885 emit_block_move (validize_mem (save_area), stack_area,
886 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
887 }
888 else
889 {
890 save_area = gen_reg_rtx (save_mode);
891 emit_move_insn (save_area, stack_area);
892 }
893
894 return save_area;
895 }
896
897 return NULL_RTX;
898 }
899
900 static void
901 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
902 {
903 enum machine_mode save_mode = GET_MODE (save_area);
904 int delta;
905 rtx stack_area;
906
907 #ifdef ARGS_GROW_DOWNWARD
908 delta = -high_to_save;
909 #else
910 delta = low_to_save;
911 #endif
912 stack_area = gen_rtx_MEM (save_mode,
913 memory_address (save_mode,
914 plus_constant (argblock, delta)));
915 set_mem_align (stack_area, PARM_BOUNDARY);
916
917 if (save_mode != BLKmode)
918 emit_move_insn (stack_area, save_area);
919 else
920 emit_block_move (stack_area, validize_mem (save_area),
921 GEN_INT (high_to_save - low_to_save + 1),
922 BLOCK_OP_CALL_PARM);
923 }
924 #endif /* REG_PARM_STACK_SPACE */
925
926 /* If any elements in ARGS refer to parameters that are to be passed in
927 registers, but not in memory, and whose alignment does not permit a
928 direct copy into registers. Copy the values into a group of pseudos
929 which we will later copy into the appropriate hard registers.
930
931 Pseudos for each unaligned argument will be stored into the array
932 args[argnum].aligned_regs. The caller is responsible for deallocating
933 the aligned_regs array if it is nonzero. */
934
935 static void
936 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
937 {
938 int i, j;
939
940 for (i = 0; i < num_actuals; i++)
941 if (args[i].reg != 0 && ! args[i].pass_on_stack
942 && args[i].mode == BLKmode
943 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
944 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
945 {
946 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
947 int nregs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
948 int endian_correction = 0;
949
950 args[i].n_aligned_regs = args[i].partial ? args[i].partial : nregs;
951 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
952
953 /* Structures smaller than a word are normally aligned to the
954 least significant byte. On a BYTES_BIG_ENDIAN machine,
955 this means we must skip the empty high order bytes when
956 calculating the bit offset. */
957 if (bytes < UNITS_PER_WORD
958 #ifdef BLOCK_REG_PADDING
959 && (BLOCK_REG_PADDING (args[i].mode,
960 TREE_TYPE (args[i].tree_value), 1)
961 == downward)
962 #else
963 && BYTES_BIG_ENDIAN
964 #endif
965 )
966 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
967
968 for (j = 0; j < args[i].n_aligned_regs; j++)
969 {
970 rtx reg = gen_reg_rtx (word_mode);
971 rtx word = operand_subword_force (args[i].value, j, BLKmode);
972 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
973
974 args[i].aligned_regs[j] = reg;
975 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
976 word_mode, word_mode, BITS_PER_WORD);
977
978 /* There is no need to restrict this code to loading items
979 in TYPE_ALIGN sized hunks. The bitfield instructions can
980 load up entire word sized registers efficiently.
981
982 ??? This may not be needed anymore.
983 We use to emit a clobber here but that doesn't let later
984 passes optimize the instructions we emit. By storing 0 into
985 the register later passes know the first AND to zero out the
986 bitfield being set in the register is unnecessary. The store
987 of 0 will be deleted as will at least the first AND. */
988
989 emit_move_insn (reg, const0_rtx);
990
991 bytes -= bitsize / BITS_PER_UNIT;
992 store_bit_field (reg, bitsize, endian_correction, word_mode,
993 word, BITS_PER_WORD);
994 }
995 }
996 }
997
998 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
999 ACTPARMS.
1000
1001 NUM_ACTUALS is the total number of parameters.
1002
1003 N_NAMED_ARGS is the total number of named arguments.
1004
1005 FNDECL is the tree code for the target of this call (if known)
1006
1007 ARGS_SO_FAR holds state needed by the target to know where to place
1008 the next argument.
1009
1010 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1011 for arguments which are passed in registers.
1012
1013 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1014 and may be modified by this routine.
1015
1016 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1017 flags which may may be modified by this routine.
1018
1019 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1020 that requires allocation of stack space.
1021
1022 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1023 the thunked-to function. */
1024
1025 static void
1026 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1027 struct arg_data *args,
1028 struct args_size *args_size,
1029 int n_named_args ATTRIBUTE_UNUSED,
1030 tree actparms, tree fndecl,
1031 CUMULATIVE_ARGS *args_so_far,
1032 int reg_parm_stack_space,
1033 rtx *old_stack_level, int *old_pending_adj,
1034 int *must_preallocate, int *ecf_flags,
1035 bool *may_tailcall, bool call_from_thunk_p)
1036 {
1037 /* 1 if scanning parms front to back, -1 if scanning back to front. */
1038 int inc;
1039
1040 /* Count arg position in order args appear. */
1041 int argpos;
1042
1043 int i;
1044 tree p;
1045
1046 args_size->constant = 0;
1047 args_size->var = 0;
1048
1049 /* In this loop, we consider args in the order they are written.
1050 We fill up ARGS from the front or from the back if necessary
1051 so that in any case the first arg to be pushed ends up at the front. */
1052
1053 if (PUSH_ARGS_REVERSED)
1054 {
1055 i = num_actuals - 1, inc = -1;
1056 /* In this case, must reverse order of args
1057 so that we compute and push the last arg first. */
1058 }
1059 else
1060 {
1061 i = 0, inc = 1;
1062 }
1063
1064 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1065 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
1066 {
1067 tree type = TREE_TYPE (TREE_VALUE (p));
1068 int unsignedp;
1069 enum machine_mode mode;
1070
1071 args[i].tree_value = TREE_VALUE (p);
1072
1073 /* Replace erroneous argument with constant zero. */
1074 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1075 args[i].tree_value = integer_zero_node, type = integer_type_node;
1076
1077 /* If TYPE is a transparent union, pass things the way we would
1078 pass the first field of the union. We have already verified that
1079 the modes are the same. */
1080 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
1081 type = TREE_TYPE (TYPE_FIELDS (type));
1082
1083 /* Decide where to pass this arg.
1084
1085 args[i].reg is nonzero if all or part is passed in registers.
1086
1087 args[i].partial is nonzero if part but not all is passed in registers,
1088 and the exact value says how many words are passed in registers.
1089
1090 args[i].pass_on_stack is nonzero if the argument must at least be
1091 computed on the stack. It may then be loaded back into registers
1092 if args[i].reg is nonzero.
1093
1094 These decisions are driven by the FUNCTION_... macros and must agree
1095 with those made by function.c. */
1096
1097 /* See if this argument should be passed by invisible reference. */
1098 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1099 || TREE_ADDRESSABLE (type)
1100 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
1101 || FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type),
1102 type, argpos < n_named_args)
1103 #endif
1104 )
1105 {
1106 /* If we're compiling a thunk, pass through invisible
1107 references instead of making a copy. */
1108 if (call_from_thunk_p
1109 #ifdef FUNCTION_ARG_CALLEE_COPIES
1110 || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
1111 type, argpos < n_named_args)
1112 /* If it's in a register, we must make a copy of it too. */
1113 /* ??? Is this a sufficient test? Is there a better one? */
1114 && !(TREE_CODE (args[i].tree_value) == VAR_DECL
1115 && REG_P (DECL_RTL (args[i].tree_value)))
1116 && ! TREE_ADDRESSABLE (type))
1117 #endif
1118 )
1119 {
1120 /* C++ uses a TARGET_EXPR to indicate that we want to make a
1121 new object from the argument. If we are passing by
1122 invisible reference, the callee will do that for us, so we
1123 can strip off the TARGET_EXPR. This is not always safe,
1124 but it is safe in the only case where this is a useful
1125 optimization; namely, when the argument is a plain object.
1126 In that case, the frontend is just asking the backend to
1127 make a bitwise copy of the argument. */
1128
1129 if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
1130 && (DECL_P (TREE_OPERAND (args[i].tree_value, 1)))
1131 && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
1132 args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);
1133
1134 args[i].tree_value = build1 (ADDR_EXPR,
1135 build_pointer_type (type),
1136 args[i].tree_value);
1137 type = build_pointer_type (type);
1138 }
1139 else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR)
1140 {
1141 /* In the V3 C++ ABI, parameters are destroyed in the caller.
1142 We implement this by passing the address of the temporary
1143 rather than expanding it into another allocated slot. */
1144 args[i].tree_value = build1 (ADDR_EXPR,
1145 build_pointer_type (type),
1146 args[i].tree_value);
1147 type = build_pointer_type (type);
1148 *may_tailcall = false;
1149 }
1150 else
1151 {
1152 /* We make a copy of the object and pass the address to the
1153 function being called. */
1154 rtx copy;
1155
1156 if (!COMPLETE_TYPE_P (type)
1157 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1158 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1159 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1160 STACK_CHECK_MAX_VAR_SIZE))))
1161 {
1162 /* This is a variable-sized object. Make space on the stack
1163 for it. */
1164 rtx size_rtx = expr_size (TREE_VALUE (p));
1165
1166 if (*old_stack_level == 0)
1167 {
1168 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1169 *old_pending_adj = pending_stack_adjust;
1170 pending_stack_adjust = 0;
1171 }
1172
1173 copy = gen_rtx_MEM (BLKmode,
1174 allocate_dynamic_stack_space
1175 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1176 set_mem_attributes (copy, type, 1);
1177 }
1178 else
1179 copy = assign_temp (type, 0, 1, 0);
1180
1181 store_expr (args[i].tree_value, copy, 0);
1182 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1183
1184 args[i].tree_value = build1 (ADDR_EXPR,
1185 build_pointer_type (type),
1186 make_tree (type, copy));
1187 type = build_pointer_type (type);
1188 *may_tailcall = false;
1189 }
1190 }
1191
1192 mode = TYPE_MODE (type);
1193 unsignedp = TYPE_UNSIGNED (type);
1194
1195 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1196 mode = promote_mode (type, mode, &unsignedp, 1);
1197
1198 args[i].unsignedp = unsignedp;
1199 args[i].mode = mode;
1200
1201 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1202 argpos < n_named_args);
1203 #ifdef FUNCTION_INCOMING_ARG
1204 /* If this is a sibling call and the machine has register windows, the
1205 register window has to be unwinded before calling the routine, so
1206 arguments have to go into the incoming registers. */
1207 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1208 argpos < n_named_args);
1209 #else
1210 args[i].tail_call_reg = args[i].reg;
1211 #endif
1212
1213 #ifdef FUNCTION_ARG_PARTIAL_NREGS
1214 if (args[i].reg)
1215 args[i].partial
1216 = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
1217 argpos < n_named_args);
1218 #endif
1219
1220 args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);
1221
1222 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1223 it means that we are to pass this arg in the register(s) designated
1224 by the PARALLEL, but also to pass it in the stack. */
1225 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1226 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1227 args[i].pass_on_stack = 1;
1228
1229 /* If this is an addressable type, we must preallocate the stack
1230 since we must evaluate the object into its final location.
1231
1232 If this is to be passed in both registers and the stack, it is simpler
1233 to preallocate. */
1234 if (TREE_ADDRESSABLE (type)
1235 || (args[i].pass_on_stack && args[i].reg != 0))
1236 *must_preallocate = 1;
1237
1238 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1239 we cannot consider this function call constant. */
1240 if (TREE_ADDRESSABLE (type))
1241 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1242
1243 /* Compute the stack-size of this argument. */
1244 if (args[i].reg == 0 || args[i].partial != 0
1245 || reg_parm_stack_space > 0
1246 || args[i].pass_on_stack)
1247 locate_and_pad_parm (mode, type,
1248 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1249 1,
1250 #else
1251 args[i].reg != 0,
1252 #endif
1253 args[i].pass_on_stack ? 0 : args[i].partial,
1254 fndecl, args_size, &args[i].locate);
1255 #ifdef BLOCK_REG_PADDING
1256 else
1257 /* The argument is passed entirely in registers. See at which
1258 end it should be padded. */
1259 args[i].locate.where_pad =
1260 BLOCK_REG_PADDING (mode, type,
1261 int_size_in_bytes (type) <= UNITS_PER_WORD);
1262 #endif
1263
1264 /* Update ARGS_SIZE, the total stack space for args so far. */
1265
1266 args_size->constant += args[i].locate.size.constant;
1267 if (args[i].locate.size.var)
1268 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1269
1270 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1271 have been used, etc. */
1272
1273 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1274 argpos < n_named_args);
1275 }
1276 }
1277
1278 /* Update ARGS_SIZE to contain the total size for the argument block.
1279 Return the original constant component of the argument block's size.
1280
1281 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1282 for arguments passed in registers. */
1283
1284 static int
1285 compute_argument_block_size (int reg_parm_stack_space,
1286 struct args_size *args_size,
1287 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1288 {
1289 int unadjusted_args_size = args_size->constant;
1290
1291 /* For accumulate outgoing args mode we don't need to align, since the frame
1292 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1293 backends from generating misaligned frame sizes. */
1294 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1295 preferred_stack_boundary = STACK_BOUNDARY;
1296
1297 /* Compute the actual size of the argument block required. The variable
1298 and constant sizes must be combined, the size may have to be rounded,
1299 and there may be a minimum required size. */
1300
1301 if (args_size->var)
1302 {
1303 args_size->var = ARGS_SIZE_TREE (*args_size);
1304 args_size->constant = 0;
1305
1306 preferred_stack_boundary /= BITS_PER_UNIT;
1307 if (preferred_stack_boundary > 1)
1308 {
1309 /* We don't handle this case yet. To handle it correctly we have
1310 to add the delta, round and subtract the delta.
1311 Currently no machine description requires this support. */
1312 if (stack_pointer_delta & (preferred_stack_boundary - 1))
1313 abort ();
1314 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1315 }
1316
1317 if (reg_parm_stack_space > 0)
1318 {
1319 args_size->var
1320 = size_binop (MAX_EXPR, args_size->var,
1321 ssize_int (reg_parm_stack_space));
1322
1323 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1324 /* The area corresponding to register parameters is not to count in
1325 the size of the block we need. So make the adjustment. */
1326 args_size->var
1327 = size_binop (MINUS_EXPR, args_size->var,
1328 ssize_int (reg_parm_stack_space));
1329 #endif
1330 }
1331 }
1332 else
1333 {
1334 preferred_stack_boundary /= BITS_PER_UNIT;
1335 if (preferred_stack_boundary < 1)
1336 preferred_stack_boundary = 1;
1337 args_size->constant = (((args_size->constant
1338 + stack_pointer_delta
1339 + preferred_stack_boundary - 1)
1340 / preferred_stack_boundary
1341 * preferred_stack_boundary)
1342 - stack_pointer_delta);
1343
1344 args_size->constant = MAX (args_size->constant,
1345 reg_parm_stack_space);
1346
1347 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1348 args_size->constant -= reg_parm_stack_space;
1349 #endif
1350 }
1351 return unadjusted_args_size;
1352 }
1353
1354 /* Precompute parameters as needed for a function call.
1355
1356 FLAGS is mask of ECF_* constants.
1357
1358 NUM_ACTUALS is the number of arguments.
1359
1360 ARGS is an array containing information for each argument; this
1361 routine fills in the INITIAL_VALUE and VALUE fields for each
1362 precomputed argument. */
1363
1364 static void
1365 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1366 {
1367 int i;
1368
1369 /* If this is a libcall, then precompute all arguments so that we do not
1370 get extraneous instructions emitted as part of the libcall sequence.
1371
1372 If this target defines ACCUMULATE_OUTGOING_ARGS to true, then we must
1373 precompute all arguments that contain function calls. Otherwise,
1374 computing arguments for a subcall may clobber arguments for this call.
1375
1376 If this target defines ACCUMULATE_OUTGOING_ARGS to false, then we only
1377 need to precompute arguments that change the stack pointer, such as calls
1378 to alloca, and calls that do not pop all of their arguments. */
1379
1380 for (i = 0; i < num_actuals; i++)
1381 if ((flags & ECF_LIBCALL_BLOCK)
1382 || calls_function (args[i].tree_value, !ACCUMULATE_OUTGOING_ARGS))
1383 {
1384 enum machine_mode mode;
1385
1386 /* If this is an addressable type, we cannot pre-evaluate it. */
1387 if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
1388 abort ();
1389
1390 args[i].value
1391 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1392
1393 /* ANSI doesn't require a sequence point here,
1394 but PCC has one, so this will avoid some problems. */
1395 emit_queue ();
1396
1397 args[i].initial_value = args[i].value
1398 = protect_from_queue (args[i].value, 0);
1399
1400 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1401 if (mode != args[i].mode)
1402 {
1403 args[i].value
1404 = convert_modes (args[i].mode, mode,
1405 args[i].value, args[i].unsignedp);
1406 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1407 /* CSE will replace this only if it contains args[i].value
1408 pseudo, so convert it down to the declared mode using
1409 a SUBREG. */
1410 if (GET_CODE (args[i].value) == REG
1411 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1412 {
1413 args[i].initial_value
1414 = gen_lowpart_SUBREG (mode, args[i].value);
1415 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1416 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1417 args[i].unsignedp);
1418 }
1419 #endif
1420 }
1421 }
1422 }
1423
1424 /* Given the current state of MUST_PREALLOCATE and information about
1425 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1426 compute and return the final value for MUST_PREALLOCATE. */
1427
1428 static int
1429 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1430 {
1431 /* See if we have or want to preallocate stack space.
1432
1433 If we would have to push a partially-in-regs parm
1434 before other stack parms, preallocate stack space instead.
1435
1436 If the size of some parm is not a multiple of the required stack
1437 alignment, we must preallocate.
1438
1439 If the total size of arguments that would otherwise create a copy in
1440 a temporary (such as a CALL) is more than half the total argument list
1441 size, preallocation is faster.
1442
1443 Another reason to preallocate is if we have a machine (like the m88k)
1444 where stack alignment is required to be maintained between every
1445 pair of insns, not just when the call is made. However, we assume here
1446 that such machines either do not have push insns (and hence preallocation
1447 would occur anyway) or the problem is taken care of with
1448 PUSH_ROUNDING. */
1449
1450 if (! must_preallocate)
1451 {
1452 int partial_seen = 0;
1453 int copy_to_evaluate_size = 0;
1454 int i;
1455
1456 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1457 {
1458 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1459 partial_seen = 1;
1460 else if (partial_seen && args[i].reg == 0)
1461 must_preallocate = 1;
1462
1463 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1464 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1465 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1466 || TREE_CODE (args[i].tree_value) == COND_EXPR
1467 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1468 copy_to_evaluate_size
1469 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1470 }
1471
1472 if (copy_to_evaluate_size * 2 >= args_size->constant
1473 && args_size->constant > 0)
1474 must_preallocate = 1;
1475 }
1476 return must_preallocate;
1477 }
1478
1479 /* If we preallocated stack space, compute the address of each argument
1480 and store it into the ARGS array.
1481
1482 We need not ensure it is a valid memory address here; it will be
1483 validized when it is used.
1484
1485 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1486
1487 static void
1488 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1489 {
1490 if (argblock)
1491 {
1492 rtx arg_reg = argblock;
1493 int i, arg_offset = 0;
1494
1495 if (GET_CODE (argblock) == PLUS)
1496 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1497
1498 for (i = 0; i < num_actuals; i++)
1499 {
1500 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1501 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1502 rtx addr;
1503
1504 /* Skip this parm if it will not be passed on the stack. */
1505 if (! args[i].pass_on_stack && args[i].reg != 0)
1506 continue;
1507
1508 if (GET_CODE (offset) == CONST_INT)
1509 addr = plus_constant (arg_reg, INTVAL (offset));
1510 else
1511 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1512
1513 addr = plus_constant (addr, arg_offset);
1514 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1515 set_mem_align (args[i].stack, PARM_BOUNDARY);
1516 set_mem_attributes (args[i].stack,
1517 TREE_TYPE (args[i].tree_value), 1);
1518
1519 if (GET_CODE (slot_offset) == CONST_INT)
1520 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1521 else
1522 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1523
1524 addr = plus_constant (addr, arg_offset);
1525 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1526 set_mem_align (args[i].stack_slot, PARM_BOUNDARY);
1527 set_mem_attributes (args[i].stack_slot,
1528 TREE_TYPE (args[i].tree_value), 1);
1529
1530 /* Function incoming arguments may overlap with sibling call
1531 outgoing arguments and we cannot allow reordering of reads
1532 from function arguments with stores to outgoing arguments
1533 of sibling calls. */
1534 set_mem_alias_set (args[i].stack, 0);
1535 set_mem_alias_set (args[i].stack_slot, 0);
1536 }
1537 }
1538 }
1539
1540 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1541 in a call instruction.
1542
1543 FNDECL is the tree node for the target function. For an indirect call
1544 FNDECL will be NULL_TREE.
1545
1546 ADDR is the operand 0 of CALL_EXPR for this call. */
1547
1548 static rtx
1549 rtx_for_function_call (tree fndecl, tree addr)
1550 {
1551 rtx funexp;
1552
1553 /* Get the function to call, in the form of RTL. */
1554 if (fndecl)
1555 {
1556 /* If this is the first use of the function, see if we need to
1557 make an external definition for it. */
1558 if (! TREE_USED (fndecl))
1559 {
1560 assemble_external (fndecl);
1561 TREE_USED (fndecl) = 1;
1562 }
1563
1564 /* Get a SYMBOL_REF rtx for the function address. */
1565 funexp = XEXP (DECL_RTL (fndecl), 0);
1566 }
1567 else
1568 /* Generate an rtx (probably a pseudo-register) for the address. */
1569 {
1570 push_temp_slots ();
1571 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1572 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1573 emit_queue ();
1574 }
1575 return funexp;
1576 }
1577
1578 /* Do the register loads required for any wholly-register parms or any
1579 parms which are passed both on the stack and in a register. Their
1580 expressions were already evaluated.
1581
1582 Mark all register-parms as living through the call, putting these USE
1583 insns in the CALL_INSN_FUNCTION_USAGE field.
1584
1585 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1586 checking, setting *SIBCALL_FAILURE if appropriate. */
1587
1588 static void
1589 load_register_parameters (struct arg_data *args, int num_actuals,
1590 rtx *call_fusage, int flags, int is_sibcall,
1591 int *sibcall_failure)
1592 {
1593 int i, j;
1594
1595 for (i = 0; i < num_actuals; i++)
1596 {
1597 rtx reg = ((flags & ECF_SIBCALL)
1598 ? args[i].tail_call_reg : args[i].reg);
1599 if (reg)
1600 {
1601 int partial = args[i].partial;
1602 int nregs;
1603 int size = 0;
1604 rtx before_arg = get_last_insn ();
1605 /* Set to non-negative if must move a word at a time, even if just
1606 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1607 we just use a normal move insn. This value can be zero if the
1608 argument is a zero size structure with no fields. */
1609 nregs = -1;
1610 if (partial)
1611 nregs = partial;
1612 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1613 {
1614 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1615 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1616 }
1617 else
1618 size = GET_MODE_SIZE (args[i].mode);
1619
1620 /* Handle calls that pass values in multiple non-contiguous
1621 locations. The Irix 6 ABI has examples of this. */
1622
1623 if (GET_CODE (reg) == PARALLEL)
1624 {
1625 tree type = TREE_TYPE (args[i].tree_value);
1626 emit_group_load (reg, args[i].value, type,
1627 int_size_in_bytes (type));
1628 }
1629
1630 /* If simple case, just do move. If normal partial, store_one_arg
1631 has already loaded the register for us. In all other cases,
1632 load the register(s) from memory. */
1633
1634 else if (nregs == -1)
1635 {
1636 emit_move_insn (reg, args[i].value);
1637 #ifdef BLOCK_REG_PADDING
1638 /* Handle case where we have a value that needs shifting
1639 up to the msb. eg. a QImode value and we're padding
1640 upward on a BYTES_BIG_ENDIAN machine. */
1641 if (size < UNITS_PER_WORD
1642 && (args[i].locate.where_pad
1643 == (BYTES_BIG_ENDIAN ? upward : downward)))
1644 {
1645 rtx x;
1646 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1647
1648 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1649 report the whole reg as used. Strictly speaking, the
1650 call only uses SIZE bytes at the msb end, but it doesn't
1651 seem worth generating rtl to say that. */
1652 reg = gen_rtx_REG (word_mode, REGNO (reg));
1653 x = expand_binop (word_mode, ashl_optab, reg,
1654 GEN_INT (shift), reg, 1, OPTAB_WIDEN);
1655 if (x != reg)
1656 emit_move_insn (reg, x);
1657 }
1658 #endif
1659 }
1660
1661 /* If we have pre-computed the values to put in the registers in
1662 the case of non-aligned structures, copy them in now. */
1663
1664 else if (args[i].n_aligned_regs != 0)
1665 for (j = 0; j < args[i].n_aligned_regs; j++)
1666 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1667 args[i].aligned_regs[j]);
1668
1669 else if (partial == 0 || args[i].pass_on_stack)
1670 {
1671 rtx mem = validize_mem (args[i].value);
1672
1673 /* Handle a BLKmode that needs shifting. */
1674 if (nregs == 1 && size < UNITS_PER_WORD
1675 #ifdef BLOCK_REG_PADDING
1676 && args[i].locate.where_pad == downward
1677 #else
1678 && BYTES_BIG_ENDIAN
1679 #endif
1680 )
1681 {
1682 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1683 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1684 rtx x = gen_reg_rtx (word_mode);
1685 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1686 optab dir = BYTES_BIG_ENDIAN ? lshr_optab : ashl_optab;
1687
1688 emit_move_insn (x, tem);
1689 x = expand_binop (word_mode, dir, x, GEN_INT (shift),
1690 ri, 1, OPTAB_WIDEN);
1691 if (x != ri)
1692 emit_move_insn (ri, x);
1693 }
1694 else
1695 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1696 }
1697
1698 /* When a parameter is a block, and perhaps in other cases, it is
1699 possible that it did a load from an argument slot that was
1700 already clobbered. */
1701 if (is_sibcall
1702 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1703 *sibcall_failure = 1;
1704
1705 /* Handle calls that pass values in multiple non-contiguous
1706 locations. The Irix 6 ABI has examples of this. */
1707 if (GET_CODE (reg) == PARALLEL)
1708 use_group_regs (call_fusage, reg);
1709 else if (nregs == -1)
1710 use_reg (call_fusage, reg);
1711 else
1712 use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
1713 }
1714 }
1715 }
1716
1717 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1718 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1719 bytes, then we would need to push some additional bytes to pad the
1720 arguments. So, we compute an adjust to the stack pointer for an
1721 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1722 bytes. Then, when the arguments are pushed the stack will be perfectly
1723 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1724 be popped after the call. Returns the adjustment. */
1725
1726 static int
1727 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1728 struct args_size *args_size,
1729 int preferred_unit_stack_boundary)
1730 {
1731 /* The number of bytes to pop so that the stack will be
1732 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1733 HOST_WIDE_INT adjustment;
1734 /* The alignment of the stack after the arguments are pushed, if we
1735 just pushed the arguments without adjust the stack here. */
1736 HOST_WIDE_INT unadjusted_alignment;
1737
1738 unadjusted_alignment
1739 = ((stack_pointer_delta + unadjusted_args_size)
1740 % preferred_unit_stack_boundary);
1741
1742 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1743 as possible -- leaving just enough left to cancel out the
1744 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1745 PENDING_STACK_ADJUST is non-negative, and congruent to
1746 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1747
1748 /* Begin by trying to pop all the bytes. */
1749 unadjusted_alignment
1750 = (unadjusted_alignment
1751 - (pending_stack_adjust % preferred_unit_stack_boundary));
1752 adjustment = pending_stack_adjust;
1753 /* Push enough additional bytes that the stack will be aligned
1754 after the arguments are pushed. */
1755 if (preferred_unit_stack_boundary > 1)
1756 {
1757 if (unadjusted_alignment > 0)
1758 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1759 else
1760 adjustment += unadjusted_alignment;
1761 }
1762
1763 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1764 bytes after the call. The right number is the entire
1765 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1766 by the arguments in the first place. */
1767 args_size->constant
1768 = pending_stack_adjust - adjustment + unadjusted_args_size;
1769
1770 return adjustment;
1771 }
1772
1773 /* Scan X expression if it does not dereference any argument slots
1774 we already clobbered by tail call arguments (as noted in stored_args_map
1775 bitmap).
1776 Return nonzero if X expression dereferences such argument slots,
1777 zero otherwise. */
1778
1779 static int
1780 check_sibcall_argument_overlap_1 (rtx x)
1781 {
1782 RTX_CODE code;
1783 int i, j;
1784 unsigned int k;
1785 const char *fmt;
1786
1787 if (x == NULL_RTX)
1788 return 0;
1789
1790 code = GET_CODE (x);
1791
1792 if (code == MEM)
1793 {
1794 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1795 i = 0;
1796 else if (GET_CODE (XEXP (x, 0)) == PLUS
1797 && XEXP (XEXP (x, 0), 0) ==
1798 current_function_internal_arg_pointer
1799 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1800 i = INTVAL (XEXP (XEXP (x, 0), 1));
1801 else
1802 return 0;
1803
1804 #ifdef ARGS_GROW_DOWNWARD
1805 i = -i - GET_MODE_SIZE (GET_MODE (x));
1806 #endif
1807
1808 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1809 if (i + k < stored_args_map->n_bits
1810 && TEST_BIT (stored_args_map, i + k))
1811 return 1;
1812
1813 return 0;
1814 }
1815
1816 /* Scan all subexpressions. */
1817 fmt = GET_RTX_FORMAT (code);
1818 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1819 {
1820 if (*fmt == 'e')
1821 {
1822 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1823 return 1;
1824 }
1825 else if (*fmt == 'E')
1826 {
1827 for (j = 0; j < XVECLEN (x, i); j++)
1828 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1829 return 1;
1830 }
1831 }
1832 return 0;
1833 }
1834
1835 /* Scan sequence after INSN if it does not dereference any argument slots
1836 we already clobbered by tail call arguments (as noted in stored_args_map
1837 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1838 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1839 should be 0). Return nonzero if sequence after INSN dereferences such argument
1840 slots, zero otherwise. */
1841
1842 static int
1843 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1844 {
1845 int low, high;
1846
1847 if (insn == NULL_RTX)
1848 insn = get_insns ();
1849 else
1850 insn = NEXT_INSN (insn);
1851
1852 for (; insn; insn = NEXT_INSN (insn))
1853 if (INSN_P (insn)
1854 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1855 break;
1856
1857 if (mark_stored_args_map)
1858 {
1859 #ifdef ARGS_GROW_DOWNWARD
1860 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1861 #else
1862 low = arg->locate.slot_offset.constant;
1863 #endif
1864
1865 for (high = low + arg->locate.size.constant; low < high; low++)
1866 SET_BIT (stored_args_map, low);
1867 }
1868 return insn != NULL_RTX;
1869 }
1870
1871 static tree
1872 fix_unsafe_tree (tree t)
1873 {
1874 switch (unsafe_for_reeval (t))
1875 {
1876 case 0: /* Safe. */
1877 break;
1878
1879 case 1: /* Mildly unsafe. */
1880 t = unsave_expr (t);
1881 break;
1882
1883 case 2: /* Wildly unsafe. */
1884 {
1885 tree var = build_decl (VAR_DECL, NULL_TREE,
1886 TREE_TYPE (t));
1887 SET_DECL_RTL (var,
1888 expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL));
1889 t = var;
1890 }
1891 break;
1892
1893 default:
1894 abort ();
1895 }
1896 return t;
1897 }
1898
1899
1900 /* If function value *VALUE was returned at the most significant end of a
1901 register, shift it towards the least significant end and convert it to
1902 TYPE's mode. Return true and update *VALUE if some action was needed.
1903
1904 TYPE is the type of the function's return value, which is known not
1905 to have mode BLKmode. */
1906
1907 static bool
1908 shift_returned_value (tree type, rtx *value)
1909 {
1910 if (targetm.calls.return_in_msb (type))
1911 {
1912 HOST_WIDE_INT shift;
1913
1914 shift = (GET_MODE_BITSIZE (GET_MODE (*value))
1915 - BITS_PER_UNIT * int_size_in_bytes (type));
1916 if (shift > 0)
1917 {
1918 *value = expand_binop (GET_MODE (*value), lshr_optab, *value,
1919 GEN_INT (shift), 0, 1, OPTAB_WIDEN);
1920 *value = convert_to_mode (TYPE_MODE (type), *value, 0);
1921 return true;
1922 }
1923 }
1924 return false;
1925 }
1926
1927 /* Remove all REG_EQUIV notes found in the insn chain. */
1928
1929 static void
1930 purge_reg_equiv_notes (void)
1931 {
1932 rtx insn;
1933
1934 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1935 {
1936 while (1)
1937 {
1938 rtx note = find_reg_note (insn, REG_EQUIV, 0);
1939 if (note)
1940 {
1941 /* Remove the note and keep looking at the notes for
1942 this insn. */
1943 remove_note (insn, note);
1944 continue;
1945 }
1946 break;
1947 }
1948 }
1949 }
1950
1951 /* Clear RTX_UNCHANGING_P flag of incoming argument MEMs. */
1952
1953 static void
1954 purge_mem_unchanging_flag (rtx x)
1955 {
1956 RTX_CODE code;
1957 int i, j;
1958 const char *fmt;
1959
1960 if (x == NULL_RTX)
1961 return;
1962
1963 code = GET_CODE (x);
1964
1965 if (code == MEM)
1966 {
1967 if (RTX_UNCHANGING_P (x)
1968 && (XEXP (x, 0) == current_function_internal_arg_pointer
1969 || (GET_CODE (XEXP (x, 0)) == PLUS
1970 && XEXP (XEXP (x, 0), 0) ==
1971 current_function_internal_arg_pointer
1972 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
1973 RTX_UNCHANGING_P (x) = 0;
1974 return;
1975 }
1976
1977 /* Scan all subexpressions. */
1978 fmt = GET_RTX_FORMAT (code);
1979 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1980 {
1981 if (*fmt == 'e')
1982 purge_mem_unchanging_flag (XEXP (x, i));
1983 else if (*fmt == 'E')
1984 for (j = 0; j < XVECLEN (x, i); j++)
1985 purge_mem_unchanging_flag (XVECEXP (x, i, j));
1986 }
1987 }
1988
1989
1990 /* Generate all the code for a function call
1991 and return an rtx for its value.
1992 Store the value in TARGET (specified as an rtx) if convenient.
1993 If the value is stored in TARGET then TARGET is returned.
1994 If IGNORE is nonzero, then we ignore the value of the function call. */
1995
1996 rtx
1997 expand_call (tree exp, rtx target, int ignore)
1998 {
1999 /* Nonzero if we are currently expanding a call. */
2000 static int currently_expanding_call = 0;
2001
2002 /* List of actual parameters. */
2003 tree actparms = TREE_OPERAND (exp, 1);
2004 /* RTX for the function to be called. */
2005 rtx funexp;
2006 /* Sequence of insns to perform a normal "call". */
2007 rtx normal_call_insns = NULL_RTX;
2008 /* Sequence of insns to perform a tail "call". */
2009 rtx tail_call_insns = NULL_RTX;
2010 /* Data type of the function. */
2011 tree funtype;
2012 tree type_arg_types;
2013 /* Declaration of the function being called,
2014 or 0 if the function is computed (not known by name). */
2015 tree fndecl = 0;
2016 /* The type of the function being called. */
2017 tree fntype;
2018 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2019 int pass;
2020
2021 /* Register in which non-BLKmode value will be returned,
2022 or 0 if no value or if value is BLKmode. */
2023 rtx valreg;
2024 /* Address where we should return a BLKmode value;
2025 0 if value not BLKmode. */
2026 rtx structure_value_addr = 0;
2027 /* Nonzero if that address is being passed by treating it as
2028 an extra, implicit first parameter. Otherwise,
2029 it is passed by being copied directly into struct_value_rtx. */
2030 int structure_value_addr_parm = 0;
2031 /* Size of aggregate value wanted, or zero if none wanted
2032 or if we are using the non-reentrant PCC calling convention
2033 or expecting the value in registers. */
2034 HOST_WIDE_INT struct_value_size = 0;
2035 /* Nonzero if called function returns an aggregate in memory PCC style,
2036 by returning the address of where to find it. */
2037 int pcc_struct_value = 0;
2038 rtx struct_value = 0;
2039
2040 /* Number of actual parameters in this call, including struct value addr. */
2041 int num_actuals;
2042 /* Number of named args. Args after this are anonymous ones
2043 and they must all go on the stack. */
2044 int n_named_args;
2045
2046 /* Vector of information about each argument.
2047 Arguments are numbered in the order they will be pushed,
2048 not the order they are written. */
2049 struct arg_data *args;
2050
2051 /* Total size in bytes of all the stack-parms scanned so far. */
2052 struct args_size args_size;
2053 struct args_size adjusted_args_size;
2054 /* Size of arguments before any adjustments (such as rounding). */
2055 int unadjusted_args_size;
2056 /* Data on reg parms scanned so far. */
2057 CUMULATIVE_ARGS args_so_far;
2058 /* Nonzero if a reg parm has been scanned. */
2059 int reg_parm_seen;
2060 /* Nonzero if this is an indirect function call. */
2061
2062 /* Nonzero if we must avoid push-insns in the args for this call.
2063 If stack space is allocated for register parameters, but not by the
2064 caller, then it is preallocated in the fixed part of the stack frame.
2065 So the entire argument block must then be preallocated (i.e., we
2066 ignore PUSH_ROUNDING in that case). */
2067
2068 int must_preallocate = !PUSH_ARGS;
2069
2070 /* Size of the stack reserved for parameter registers. */
2071 int reg_parm_stack_space = 0;
2072
2073 /* Address of space preallocated for stack parms
2074 (on machines that lack push insns), or 0 if space not preallocated. */
2075 rtx argblock = 0;
2076
2077 /* Mask of ECF_ flags. */
2078 int flags = 0;
2079 #ifdef REG_PARM_STACK_SPACE
2080 /* Define the boundary of the register parm stack space that needs to be
2081 saved, if any. */
2082 int low_to_save, high_to_save;
2083 rtx save_area = 0; /* Place that it is saved */
2084 #endif
2085
2086 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2087 char *initial_stack_usage_map = stack_usage_map;
2088
2089 int old_stack_allocated;
2090
2091 /* State variables to track stack modifications. */
2092 rtx old_stack_level = 0;
2093 int old_stack_arg_under_construction = 0;
2094 int old_pending_adj = 0;
2095 int old_inhibit_defer_pop = inhibit_defer_pop;
2096
2097 /* Some stack pointer alterations we make are performed via
2098 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2099 which we then also need to save/restore along the way. */
2100 int old_stack_pointer_delta = 0;
2101
2102 rtx call_fusage;
2103 tree p = TREE_OPERAND (exp, 0);
2104 tree addr = TREE_OPERAND (exp, 0);
2105 int i;
2106 /* The alignment of the stack, in bits. */
2107 HOST_WIDE_INT preferred_stack_boundary;
2108 /* The alignment of the stack, in bytes. */
2109 HOST_WIDE_INT preferred_unit_stack_boundary;
2110 /* The static chain value to use for this call. */
2111 rtx static_chain_value;
2112 /* See if this is "nothrow" function call. */
2113 if (TREE_NOTHROW (exp))
2114 flags |= ECF_NOTHROW;
2115
2116 /* See if we can find a DECL-node for the actual function, and get the
2117 function attributes (flags) from the function decl or type node. */
2118 fndecl = get_callee_fndecl (exp);
2119 if (fndecl)
2120 {
2121 fntype = TREE_TYPE (fndecl);
2122 flags |= flags_from_decl_or_type (fndecl);
2123 }
2124 else
2125 {
2126 fntype = TREE_TYPE (TREE_TYPE (p));
2127 flags |= flags_from_decl_or_type (fntype);
2128 }
2129
2130 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2131
2132 /* Warn if this value is an aggregate type,
2133 regardless of which calling convention we are using for it. */
2134 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
2135 warning ("function call has aggregate value");
2136
2137 /* If the result of a pure or const function call is ignored (or void),
2138 and none of its arguments are volatile, we can avoid expanding the
2139 call and just evaluate the arguments for side-effects. */
2140 if ((flags & (ECF_CONST | ECF_PURE))
2141 && (ignore || target == const0_rtx
2142 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
2143 {
2144 bool volatilep = false;
2145 tree arg;
2146
2147 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
2148 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
2149 {
2150 volatilep = true;
2151 break;
2152 }
2153
2154 if (! volatilep)
2155 {
2156 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
2157 expand_expr (TREE_VALUE (arg), const0_rtx,
2158 VOIDmode, EXPAND_NORMAL);
2159 return const0_rtx;
2160 }
2161 }
2162
2163 #ifdef REG_PARM_STACK_SPACE
2164 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
2165 #endif
2166
2167 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2168 if (reg_parm_stack_space > 0 && PUSH_ARGS)
2169 must_preallocate = 1;
2170 #endif
2171
2172 /* Set up a place to return a structure. */
2173
2174 /* Cater to broken compilers. */
2175 if (aggregate_value_p (exp, fndecl))
2176 {
2177 /* This call returns a big structure. */
2178 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
2179
2180 #ifdef PCC_STATIC_STRUCT_RETURN
2181 {
2182 pcc_struct_value = 1;
2183 }
2184 #else /* not PCC_STATIC_STRUCT_RETURN */
2185 {
2186 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
2187
2188 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
2189 {
2190 /* The structure value address arg is already in actparms.
2191 Pull it out. It might be nice to just leave it there, but
2192 we need to set structure_value_addr. */
2193 tree return_arg = TREE_VALUE (actparms);
2194 actparms = TREE_CHAIN (actparms);
2195 structure_value_addr = expand_expr (return_arg, NULL_RTX,
2196 VOIDmode, EXPAND_NORMAL);
2197 }
2198 else if (target && GET_CODE (target) == MEM)
2199 structure_value_addr = XEXP (target, 0);
2200 else
2201 {
2202 /* For variable-sized objects, we must be called with a target
2203 specified. If we were to allocate space on the stack here,
2204 we would have no way of knowing when to free it. */
2205 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
2206
2207 mark_temp_addr_taken (d);
2208 structure_value_addr = XEXP (d, 0);
2209 target = 0;
2210 }
2211 }
2212 #endif /* not PCC_STATIC_STRUCT_RETURN */
2213 }
2214
2215 /* Figure out the amount to which the stack should be aligned. */
2216 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2217 if (fndecl)
2218 {
2219 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2220 if (i && i->preferred_incoming_stack_boundary)
2221 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2222 }
2223
2224 /* Operand 0 is a pointer-to-function; get the type of the function. */
2225 funtype = TREE_TYPE (addr);
2226 if (! POINTER_TYPE_P (funtype))
2227 abort ();
2228 funtype = TREE_TYPE (funtype);
2229
2230 /* Munge the tree to split complex arguments into their imaginary
2231 and real parts. */
2232 if (targetm.calls.split_complex_arg)
2233 {
2234 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2235 actparms = split_complex_values (actparms);
2236 }
2237 else
2238 type_arg_types = TYPE_ARG_TYPES (funtype);
2239
2240 if (flags & ECF_MAY_BE_ALLOCA)
2241 current_function_calls_alloca = 1;
2242
2243 /* If struct_value_rtx is 0, it means pass the address
2244 as if it were an extra parameter. */
2245 if (structure_value_addr && struct_value == 0)
2246 {
2247 /* If structure_value_addr is a REG other than
2248 virtual_outgoing_args_rtx, we can use always use it. If it
2249 is not a REG, we must always copy it into a register.
2250 If it is virtual_outgoing_args_rtx, we must copy it to another
2251 register in some cases. */
2252 rtx temp = (GET_CODE (structure_value_addr) != REG
2253 || (ACCUMULATE_OUTGOING_ARGS
2254 && stack_arg_under_construction
2255 && structure_value_addr == virtual_outgoing_args_rtx)
2256 ? copy_addr_to_reg (convert_memory_address
2257 (Pmode, structure_value_addr))
2258 : structure_value_addr);
2259
2260 actparms
2261 = tree_cons (error_mark_node,
2262 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2263 temp),
2264 actparms);
2265 structure_value_addr_parm = 1;
2266 }
2267
2268 /* Count the arguments and set NUM_ACTUALS. */
2269 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2270 num_actuals++;
2271
2272 /* Compute number of named args.
2273 Normally, don't include the last named arg if anonymous args follow.
2274 We do include the last named arg if
2275 targetm.calls.strict_argument_naming() returns nonzero.
2276 (If no anonymous args follow, the result of list_length is actually
2277 one too large. This is harmless.)
2278
2279 If targetm.calls.pretend_outgoing_varargs_named() returns
2280 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2281 this machine will be able to place unnamed args that were passed
2282 in registers into the stack. So treat all args as named. This
2283 allows the insns emitting for a specific argument list to be
2284 independent of the function declaration.
2285
2286 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2287 we do not have any reliable way to pass unnamed args in
2288 registers, so we must force them into memory. */
2289
2290 if ((targetm.calls.strict_argument_naming (&args_so_far)
2291 || ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2292 && type_arg_types != 0)
2293 n_named_args
2294 = (list_length (type_arg_types)
2295 /* Don't include the last named arg. */
2296 - (targetm.calls.strict_argument_naming (&args_so_far) ? 0 : 1)
2297 /* Count the struct value address, if it is passed as a parm. */
2298 + structure_value_addr_parm);
2299 else
2300 /* If we know nothing, treat all args as named. */
2301 n_named_args = num_actuals;
2302
2303 /* Start updating where the next arg would go.
2304
2305 On some machines (such as the PA) indirect calls have a different
2306 calling convention than normal calls. The fourth argument in
2307 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2308 or not. */
2309 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2310
2311 /* Make a vector to hold all the information about each arg. */
2312 args = alloca (num_actuals * sizeof (struct arg_data));
2313 memset (args, 0, num_actuals * sizeof (struct arg_data));
2314
2315 /* Build up entries in the ARGS array, compute the size of the
2316 arguments into ARGS_SIZE, etc. */
2317 initialize_argument_information (num_actuals, args, &args_size,
2318 n_named_args, actparms, fndecl,
2319 &args_so_far, reg_parm_stack_space,
2320 &old_stack_level, &old_pending_adj,
2321 &must_preallocate, &flags,
2322 &try_tail_call, CALL_FROM_THUNK_P (exp));
2323
2324 if (args_size.var)
2325 {
2326 /* If this function requires a variable-sized argument list, don't
2327 try to make a cse'able block for this call. We may be able to
2328 do this eventually, but it is too complicated to keep track of
2329 what insns go in the cse'able block and which don't. */
2330
2331 flags &= ~ECF_LIBCALL_BLOCK;
2332 must_preallocate = 1;
2333 }
2334
2335 /* Now make final decision about preallocating stack space. */
2336 must_preallocate = finalize_must_preallocate (must_preallocate,
2337 num_actuals, args,
2338 &args_size);
2339
2340 /* If the structure value address will reference the stack pointer, we
2341 must stabilize it. We don't need to do this if we know that we are
2342 not going to adjust the stack pointer in processing this call. */
2343
2344 if (structure_value_addr
2345 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2346 || reg_mentioned_p (virtual_outgoing_args_rtx,
2347 structure_value_addr))
2348 && (args_size.var
2349 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2350 structure_value_addr = copy_to_reg (structure_value_addr);
2351
2352 /* Tail calls can make things harder to debug, and we're traditionally
2353 pushed these optimizations into -O2. Don't try if we're already
2354 expanding a call, as that means we're an argument. Don't try if
2355 there's cleanups, as we know there's code to follow the call.
2356
2357 If rtx_equal_function_value_matters is false, that means we've
2358 finished with regular parsing. Which means that some of the
2359 machinery we use to generate tail-calls is no longer in place.
2360 This is most often true of sjlj-exceptions, which we couldn't
2361 tail-call to anyway.
2362
2363 If current_nesting_level () == 0, we're being called after
2364 the function body has been expanded. This can happen when
2365 setting up trampolines in expand_function_end. */
2366 if (currently_expanding_call++ != 0
2367 || !flag_optimize_sibling_calls
2368 || !rtx_equal_function_value_matters
2369 || current_nesting_level () == 0
2370 || any_pending_cleanups ()
2371 || args_size.var
2372 || lookup_stmt_eh_region (exp) >= 0)
2373 try_tail_call = 0;
2374
2375 /* Rest of purposes for tail call optimizations to fail. */
2376 if (
2377 #ifdef HAVE_sibcall_epilogue
2378 !HAVE_sibcall_epilogue
2379 #else
2380 1
2381 #endif
2382 || !try_tail_call
2383 /* Doing sibling call optimization needs some work, since
2384 structure_value_addr can be allocated on the stack.
2385 It does not seem worth the effort since few optimizable
2386 sibling calls will return a structure. */
2387 || structure_value_addr != NULL_RTX
2388 /* Check whether the target is able to optimize the call
2389 into a sibcall. */
2390 || !targetm.function_ok_for_sibcall (fndecl, exp)
2391 /* Functions that do not return exactly once may not be sibcall
2392 optimized. */
2393 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
2394 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2395 /* If the called function is nested in the current one, it might access
2396 some of the caller's arguments, but could clobber them beforehand if
2397 the argument areas are shared. */
2398 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2399 /* If this function requires more stack slots than the current
2400 function, we cannot change it into a sibling call. */
2401 || args_size.constant > current_function_args_size
2402 /* If the callee pops its own arguments, then it must pop exactly
2403 the same number of arguments as the current function. */
2404 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2405 != RETURN_POPS_ARGS (current_function_decl,
2406 TREE_TYPE (current_function_decl),
2407 current_function_args_size))
2408 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2409 try_tail_call = 0;
2410
2411 if (try_tail_call)
2412 {
2413 int end, inc;
2414 actparms = NULL_TREE;
2415 /* Ok, we're going to give the tail call the old college try.
2416 This means we're going to evaluate the function arguments
2417 up to three times. There are two degrees of badness we can
2418 encounter, those that can be unsaved and those that can't.
2419 (See unsafe_for_reeval commentary for details.)
2420
2421 Generate a new argument list. Pass safe arguments through
2422 unchanged. For the easy badness wrap them in UNSAVE_EXPRs.
2423 For hard badness, evaluate them now and put their resulting
2424 rtx in a temporary VAR_DECL.
2425
2426 initialize_argument_information has ordered the array for the
2427 order to be pushed, and we must remember this when reconstructing
2428 the original argument order. */
2429
2430 if (PUSH_ARGS_REVERSED)
2431 {
2432 inc = 1;
2433 i = 0;
2434 end = num_actuals;
2435 }
2436 else
2437 {
2438 inc = -1;
2439 i = num_actuals - 1;
2440 end = -1;
2441 }
2442
2443 for (; i != end; i += inc)
2444 {
2445 args[i].tree_value = fix_unsafe_tree (args[i].tree_value);
2446 }
2447 /* Do the same for the function address if it is an expression. */
2448 if (!fndecl)
2449 addr = fix_unsafe_tree (addr);
2450 /* Expanding one of those dangerous arguments could have added
2451 cleanups, but otherwise give it a whirl. */
2452 if (any_pending_cleanups ())
2453 try_tail_call = 0;
2454 }
2455
2456
2457 /* Ensure current function's preferred stack boundary is at least
2458 what we need. We don't have to increase alignment for recursive
2459 functions. */
2460 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2461 && fndecl != current_function_decl)
2462 cfun->preferred_stack_boundary = preferred_stack_boundary;
2463 if (fndecl == current_function_decl)
2464 cfun->recursive_call_emit = true;
2465
2466 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2467
2468 function_call_count++;
2469
2470 /* We want to make two insn chains; one for a sibling call, the other
2471 for a normal call. We will select one of the two chains after
2472 initial RTL generation is complete. */
2473 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2474 {
2475 int sibcall_failure = 0;
2476 /* We want to emit any pending stack adjustments before the tail
2477 recursion "call". That way we know any adjustment after the tail
2478 recursion call can be ignored if we indeed use the tail
2479 call expansion. */
2480 int save_pending_stack_adjust = 0;
2481 int save_stack_pointer_delta = 0;
2482 rtx insns;
2483 rtx before_call, next_arg_reg;
2484
2485 if (pass == 0)
2486 {
2487 /* Emit any queued insns now; otherwise they would end up in
2488 only one of the alternates. */
2489 emit_queue ();
2490
2491 /* State variables we need to save and restore between
2492 iterations. */
2493 save_pending_stack_adjust = pending_stack_adjust;
2494 save_stack_pointer_delta = stack_pointer_delta;
2495 }
2496 if (pass)
2497 flags &= ~ECF_SIBCALL;
2498 else
2499 flags |= ECF_SIBCALL;
2500
2501 /* Other state variables that we must reinitialize each time
2502 through the loop (that are not initialized by the loop itself). */
2503 argblock = 0;
2504 call_fusage = 0;
2505
2506 /* Start a new sequence for the normal call case.
2507
2508 From this point on, if the sibling call fails, we want to set
2509 sibcall_failure instead of continuing the loop. */
2510 start_sequence ();
2511
2512 if (pass == 0)
2513 {
2514 /* We know at this point that there are not currently any
2515 pending cleanups. If, however, in the process of evaluating
2516 the arguments we were to create some, we'll need to be
2517 able to get rid of them. */
2518 expand_start_target_temps ();
2519 }
2520
2521 /* Don't let pending stack adjusts add up to too much.
2522 Also, do all pending adjustments now if there is any chance
2523 this might be a call to alloca or if we are expanding a sibling
2524 call sequence or if we are calling a function that is to return
2525 with stack pointer depressed. */
2526 if (pending_stack_adjust >= 32
2527 || (pending_stack_adjust > 0
2528 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2529 || pass == 0)
2530 do_pending_stack_adjust ();
2531
2532 /* When calling a const function, we must pop the stack args right away,
2533 so that the pop is deleted or moved with the call. */
2534 if (pass && (flags & ECF_LIBCALL_BLOCK))
2535 NO_DEFER_POP;
2536
2537 /* Precompute any arguments as needed. */
2538 if (pass)
2539 precompute_arguments (flags, num_actuals, args);
2540
2541 /* Now we are about to start emitting insns that can be deleted
2542 if a libcall is deleted. */
2543 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2544 start_sequence ();
2545
2546 adjusted_args_size = args_size;
2547 /* Compute the actual size of the argument block required. The variable
2548 and constant sizes must be combined, the size may have to be rounded,
2549 and there may be a minimum required size. When generating a sibcall
2550 pattern, do not round up, since we'll be re-using whatever space our
2551 caller provided. */
2552 unadjusted_args_size
2553 = compute_argument_block_size (reg_parm_stack_space,
2554 &adjusted_args_size,
2555 (pass == 0 ? 0
2556 : preferred_stack_boundary));
2557
2558 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2559
2560 /* The argument block when performing a sibling call is the
2561 incoming argument block. */
2562 if (pass == 0)
2563 {
2564 argblock = virtual_incoming_args_rtx;
2565 argblock
2566 #ifdef STACK_GROWS_DOWNWARD
2567 = plus_constant (argblock, current_function_pretend_args_size);
2568 #else
2569 = plus_constant (argblock, -current_function_pretend_args_size);
2570 #endif
2571 stored_args_map = sbitmap_alloc (args_size.constant);
2572 sbitmap_zero (stored_args_map);
2573 }
2574
2575 /* If we have no actual push instructions, or shouldn't use them,
2576 make space for all args right now. */
2577 else if (adjusted_args_size.var != 0)
2578 {
2579 if (old_stack_level == 0)
2580 {
2581 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2582 old_stack_pointer_delta = stack_pointer_delta;
2583 old_pending_adj = pending_stack_adjust;
2584 pending_stack_adjust = 0;
2585 /* stack_arg_under_construction says whether a stack arg is
2586 being constructed at the old stack level. Pushing the stack
2587 gets a clean outgoing argument block. */
2588 old_stack_arg_under_construction = stack_arg_under_construction;
2589 stack_arg_under_construction = 0;
2590 }
2591 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2592 }
2593 else
2594 {
2595 /* Note that we must go through the motions of allocating an argument
2596 block even if the size is zero because we may be storing args
2597 in the area reserved for register arguments, which may be part of
2598 the stack frame. */
2599
2600 int needed = adjusted_args_size.constant;
2601
2602 /* Store the maximum argument space used. It will be pushed by
2603 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2604 checking). */
2605
2606 if (needed > current_function_outgoing_args_size)
2607 current_function_outgoing_args_size = needed;
2608
2609 if (must_preallocate)
2610 {
2611 if (ACCUMULATE_OUTGOING_ARGS)
2612 {
2613 /* Since the stack pointer will never be pushed, it is
2614 possible for the evaluation of a parm to clobber
2615 something we have already written to the stack.
2616 Since most function calls on RISC machines do not use
2617 the stack, this is uncommon, but must work correctly.
2618
2619 Therefore, we save any area of the stack that was already
2620 written and that we are using. Here we set up to do this
2621 by making a new stack usage map from the old one. The
2622 actual save will be done by store_one_arg.
2623
2624 Another approach might be to try to reorder the argument
2625 evaluations to avoid this conflicting stack usage. */
2626
2627 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2628 /* Since we will be writing into the entire argument area,
2629 the map must be allocated for its entire size, not just
2630 the part that is the responsibility of the caller. */
2631 needed += reg_parm_stack_space;
2632 #endif
2633
2634 #ifdef ARGS_GROW_DOWNWARD
2635 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2636 needed + 1);
2637 #else
2638 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2639 needed);
2640 #endif
2641 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2642
2643 if (initial_highest_arg_in_use)
2644 memcpy (stack_usage_map, initial_stack_usage_map,
2645 initial_highest_arg_in_use);
2646
2647 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2648 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2649 (highest_outgoing_arg_in_use
2650 - initial_highest_arg_in_use));
2651 needed = 0;
2652
2653 /* The address of the outgoing argument list must not be
2654 copied to a register here, because argblock would be left
2655 pointing to the wrong place after the call to
2656 allocate_dynamic_stack_space below. */
2657
2658 argblock = virtual_outgoing_args_rtx;
2659 }
2660 else
2661 {
2662 if (inhibit_defer_pop == 0)
2663 {
2664 /* Try to reuse some or all of the pending_stack_adjust
2665 to get this space. */
2666 needed
2667 = (combine_pending_stack_adjustment_and_call
2668 (unadjusted_args_size,
2669 &adjusted_args_size,
2670 preferred_unit_stack_boundary));
2671
2672 /* combine_pending_stack_adjustment_and_call computes
2673 an adjustment before the arguments are allocated.
2674 Account for them and see whether or not the stack
2675 needs to go up or down. */
2676 needed = unadjusted_args_size - needed;
2677
2678 if (needed < 0)
2679 {
2680 /* We're releasing stack space. */
2681 /* ??? We can avoid any adjustment at all if we're
2682 already aligned. FIXME. */
2683 pending_stack_adjust = -needed;
2684 do_pending_stack_adjust ();
2685 needed = 0;
2686 }
2687 else
2688 /* We need to allocate space. We'll do that in
2689 push_block below. */
2690 pending_stack_adjust = 0;
2691 }
2692
2693 /* Special case this because overhead of `push_block' in
2694 this case is non-trivial. */
2695 if (needed == 0)
2696 argblock = virtual_outgoing_args_rtx;
2697 else
2698 {
2699 argblock = push_block (GEN_INT (needed), 0, 0);
2700 #ifdef ARGS_GROW_DOWNWARD
2701 argblock = plus_constant (argblock, needed);
2702 #endif
2703 }
2704
2705 /* We only really need to call `copy_to_reg' in the case
2706 where push insns are going to be used to pass ARGBLOCK
2707 to a function call in ARGS. In that case, the stack
2708 pointer changes value from the allocation point to the
2709 call point, and hence the value of
2710 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2711 as well always do it. */
2712 argblock = copy_to_reg (argblock);
2713 }
2714 }
2715 }
2716
2717 if (ACCUMULATE_OUTGOING_ARGS)
2718 {
2719 /* The save/restore code in store_one_arg handles all
2720 cases except one: a constructor call (including a C
2721 function returning a BLKmode struct) to initialize
2722 an argument. */
2723 if (stack_arg_under_construction)
2724 {
2725 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2726 rtx push_size = GEN_INT (reg_parm_stack_space
2727 + adjusted_args_size.constant);
2728 #else
2729 rtx push_size = GEN_INT (adjusted_args_size.constant);
2730 #endif
2731 if (old_stack_level == 0)
2732 {
2733 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2734 NULL_RTX);
2735 old_stack_pointer_delta = stack_pointer_delta;
2736 old_pending_adj = pending_stack_adjust;
2737 pending_stack_adjust = 0;
2738 /* stack_arg_under_construction says whether a stack
2739 arg is being constructed at the old stack level.
2740 Pushing the stack gets a clean outgoing argument
2741 block. */
2742 old_stack_arg_under_construction
2743 = stack_arg_under_construction;
2744 stack_arg_under_construction = 0;
2745 /* Make a new map for the new argument list. */
2746 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2747 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2748 highest_outgoing_arg_in_use = 0;
2749 }
2750 allocate_dynamic_stack_space (push_size, NULL_RTX,
2751 BITS_PER_UNIT);
2752 }
2753
2754 /* If argument evaluation might modify the stack pointer,
2755 copy the address of the argument list to a register. */
2756 for (i = 0; i < num_actuals; i++)
2757 if (args[i].pass_on_stack)
2758 {
2759 argblock = copy_addr_to_reg (argblock);
2760 break;
2761 }
2762 }
2763
2764 compute_argument_addresses (args, argblock, num_actuals);
2765
2766 /* If we push args individually in reverse order, perform stack alignment
2767 before the first push (the last arg). */
2768 if (PUSH_ARGS_REVERSED && argblock == 0
2769 && adjusted_args_size.constant != unadjusted_args_size)
2770 {
2771 /* When the stack adjustment is pending, we get better code
2772 by combining the adjustments. */
2773 if (pending_stack_adjust
2774 && ! (flags & ECF_LIBCALL_BLOCK)
2775 && ! inhibit_defer_pop)
2776 {
2777 pending_stack_adjust
2778 = (combine_pending_stack_adjustment_and_call
2779 (unadjusted_args_size,
2780 &adjusted_args_size,
2781 preferred_unit_stack_boundary));
2782 do_pending_stack_adjust ();
2783 }
2784 else if (argblock == 0)
2785 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2786 - unadjusted_args_size));
2787 }
2788 /* Now that the stack is properly aligned, pops can't safely
2789 be deferred during the evaluation of the arguments. */
2790 NO_DEFER_POP;
2791
2792 funexp = rtx_for_function_call (fndecl, addr);
2793
2794 /* Figure out the register where the value, if any, will come back. */
2795 valreg = 0;
2796 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2797 && ! structure_value_addr)
2798 {
2799 if (pcc_struct_value)
2800 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2801 fndecl, (pass == 0));
2802 else
2803 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2804 }
2805
2806 /* Precompute all register parameters. It isn't safe to compute anything
2807 once we have started filling any specific hard regs. */
2808 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2809
2810 if (TREE_OPERAND (exp, 2))
2811 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2812 NULL_RTX, VOIDmode, 0);
2813 else
2814 static_chain_value = 0;
2815
2816 #ifdef REG_PARM_STACK_SPACE
2817 /* Save the fixed argument area if it's part of the caller's frame and
2818 is clobbered by argument setup for this call. */
2819 if (ACCUMULATE_OUTGOING_ARGS && pass)
2820 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2821 &low_to_save, &high_to_save);
2822 #endif
2823
2824 /* Now store (and compute if necessary) all non-register parms.
2825 These come before register parms, since they can require block-moves,
2826 which could clobber the registers used for register parms.
2827 Parms which have partial registers are not stored here,
2828 but we do preallocate space here if they want that. */
2829
2830 for (i = 0; i < num_actuals; i++)
2831 if (args[i].reg == 0 || args[i].pass_on_stack)
2832 {
2833 rtx before_arg = get_last_insn ();
2834
2835 if (store_one_arg (&args[i], argblock, flags,
2836 adjusted_args_size.var != 0,
2837 reg_parm_stack_space)
2838 || (pass == 0
2839 && check_sibcall_argument_overlap (before_arg,
2840 &args[i], 1)))
2841 sibcall_failure = 1;
2842
2843 if (flags & ECF_CONST
2844 && args[i].stack
2845 && args[i].value == args[i].stack)
2846 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2847 gen_rtx_USE (VOIDmode,
2848 args[i].value),
2849 call_fusage);
2850 }
2851
2852 /* If we have a parm that is passed in registers but not in memory
2853 and whose alignment does not permit a direct copy into registers,
2854 make a group of pseudos that correspond to each register that we
2855 will later fill. */
2856 if (STRICT_ALIGNMENT)
2857 store_unaligned_arguments_into_pseudos (args, num_actuals);
2858
2859 /* Now store any partially-in-registers parm.
2860 This is the last place a block-move can happen. */
2861 if (reg_parm_seen)
2862 for (i = 0; i < num_actuals; i++)
2863 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2864 {
2865 rtx before_arg = get_last_insn ();
2866
2867 if (store_one_arg (&args[i], argblock, flags,
2868 adjusted_args_size.var != 0,
2869 reg_parm_stack_space)
2870 || (pass == 0
2871 && check_sibcall_argument_overlap (before_arg,
2872 &args[i], 1)))
2873 sibcall_failure = 1;
2874 }
2875
2876 /* If we pushed args in forward order, perform stack alignment
2877 after pushing the last arg. */
2878 if (!PUSH_ARGS_REVERSED && argblock == 0)
2879 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2880 - unadjusted_args_size));
2881
2882 /* If register arguments require space on the stack and stack space
2883 was not preallocated, allocate stack space here for arguments
2884 passed in registers. */
2885 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2886 if (!ACCUMULATE_OUTGOING_ARGS
2887 && must_preallocate == 0 && reg_parm_stack_space > 0)
2888 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2889 #endif
2890
2891 /* Pass the function the address in which to return a
2892 structure value. */
2893 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2894 {
2895 structure_value_addr
2896 = convert_memory_address (Pmode, structure_value_addr);
2897 emit_move_insn (struct_value,
2898 force_reg (Pmode,
2899 force_operand (structure_value_addr,
2900 NULL_RTX)));
2901
2902 if (GET_CODE (struct_value) == REG)
2903 use_reg (&call_fusage, struct_value);
2904 }
2905
2906 funexp = prepare_call_address (funexp, static_chain_value,
2907 &call_fusage, reg_parm_seen, pass == 0);
2908
2909 load_register_parameters (args, num_actuals, &call_fusage, flags,
2910 pass == 0, &sibcall_failure);
2911
2912 /* Perform postincrements before actually calling the function. */
2913 emit_queue ();
2914
2915 /* Save a pointer to the last insn before the call, so that we can
2916 later safely search backwards to find the CALL_INSN. */
2917 before_call = get_last_insn ();
2918
2919 /* Set up next argument register. For sibling calls on machines
2920 with register windows this should be the incoming register. */
2921 #ifdef FUNCTION_INCOMING_ARG
2922 if (pass == 0)
2923 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2924 void_type_node, 1);
2925 else
2926 #endif
2927 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2928 void_type_node, 1);
2929
2930 /* All arguments and registers used for the call must be set up by
2931 now! */
2932
2933 /* Stack must be properly aligned now. */
2934 if (pass && stack_pointer_delta % preferred_unit_stack_boundary)
2935 abort ();
2936
2937 /* Generate the actual call instruction. */
2938 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2939 adjusted_args_size.constant, struct_value_size,
2940 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2941 flags, & args_so_far);
2942
2943 /* If call is cse'able, make appropriate pair of reg-notes around it.
2944 Test valreg so we don't crash; may safely ignore `const'
2945 if return type is void. Disable for PARALLEL return values, because
2946 we have no way to move such values into a pseudo register. */
2947 if (pass && (flags & ECF_LIBCALL_BLOCK))
2948 {
2949 rtx insns;
2950 rtx insn;
2951 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2952
2953 insns = get_insns ();
2954
2955 /* Expansion of block moves possibly introduced a loop that may
2956 not appear inside libcall block. */
2957 for (insn = insns; insn; insn = NEXT_INSN (insn))
2958 if (GET_CODE (insn) == JUMP_INSN)
2959 failed = true;
2960
2961 if (failed)
2962 {
2963 end_sequence ();
2964 emit_insn (insns);
2965 }
2966 else
2967 {
2968 rtx note = 0;
2969 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2970
2971 /* Mark the return value as a pointer if needed. */
2972 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2973 mark_reg_pointer (temp,
2974 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2975
2976 end_sequence ();
2977 if (flag_unsafe_math_optimizations
2978 && fndecl
2979 && DECL_BUILT_IN (fndecl)
2980 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2981 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2982 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2983 note = gen_rtx_fmt_e (SQRT,
2984 GET_MODE (temp),
2985 args[0].initial_value);
2986 else
2987 {
2988 /* Construct an "equal form" for the value which
2989 mentions all the arguments in order as well as
2990 the function name. */
2991 for (i = 0; i < num_actuals; i++)
2992 note = gen_rtx_EXPR_LIST (VOIDmode,
2993 args[i].initial_value, note);
2994 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2995
2996 if (flags & ECF_PURE)
2997 note = gen_rtx_EXPR_LIST (VOIDmode,
2998 gen_rtx_USE (VOIDmode,
2999 gen_rtx_MEM (BLKmode,
3000 gen_rtx_SCRATCH (VOIDmode))),
3001 note);
3002 }
3003 emit_libcall_block (insns, temp, valreg, note);
3004
3005 valreg = temp;
3006 }
3007 }
3008 else if (pass && (flags & ECF_MALLOC))
3009 {
3010 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3011 rtx last, insns;
3012
3013 /* The return value from a malloc-like function is a pointer. */
3014 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
3015 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
3016
3017 emit_move_insn (temp, valreg);
3018
3019 /* The return value from a malloc-like function can not alias
3020 anything else. */
3021 last = get_last_insn ();
3022 REG_NOTES (last) =
3023 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
3024
3025 /* Write out the sequence. */
3026 insns = get_insns ();
3027 end_sequence ();
3028 emit_insn (insns);
3029 valreg = temp;
3030 }
3031
3032 /* For calls to `setjmp', etc., inform flow.c it should complain
3033 if nonvolatile values are live. For functions that cannot return,
3034 inform flow that control does not fall through. */
3035
3036 if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
3037 {
3038 /* The barrier must be emitted
3039 immediately after the CALL_INSN. Some ports emit more
3040 than just a CALL_INSN above, so we must search for it here. */
3041
3042 rtx last = get_last_insn ();
3043 while (GET_CODE (last) != CALL_INSN)
3044 {
3045 last = PREV_INSN (last);
3046 /* There was no CALL_INSN? */
3047 if (last == before_call)
3048 abort ();
3049 }
3050
3051 emit_barrier_after (last);
3052
3053 /* Stack adjustments after a noreturn call are dead code.
3054 However when NO_DEFER_POP is in effect, we must preserve
3055 stack_pointer_delta. */
3056 if (inhibit_defer_pop == 0)
3057 {
3058 stack_pointer_delta = old_stack_allocated;
3059 pending_stack_adjust = 0;
3060 }
3061 }
3062
3063 if (flags & ECF_LONGJMP)
3064 current_function_calls_longjmp = 1;
3065
3066 /* If value type not void, return an rtx for the value. */
3067
3068 /* If there are cleanups to be called, don't use a hard reg as target.
3069 We need to double check this and see if it matters anymore. */
3070 if (any_pending_cleanups ())
3071 {
3072 if (target && REG_P (target)
3073 && REGNO (target) < FIRST_PSEUDO_REGISTER)
3074 target = 0;
3075 sibcall_failure = 1;
3076 }
3077
3078 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
3079 || ignore)
3080 target = const0_rtx;
3081 else if (structure_value_addr)
3082 {
3083 if (target == 0 || GET_CODE (target) != MEM)
3084 {
3085 target
3086 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
3087 memory_address (TYPE_MODE (TREE_TYPE (exp)),
3088 structure_value_addr));
3089 set_mem_attributes (target, exp, 1);
3090 }
3091 }
3092 else if (pcc_struct_value)
3093 {
3094 /* This is the special C++ case where we need to
3095 know what the true target was. We take care to
3096 never use this value more than once in one expression. */
3097 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
3098 copy_to_reg (valreg));
3099 set_mem_attributes (target, exp, 1);
3100 }
3101 /* Handle calls that return values in multiple non-contiguous locations.
3102 The Irix 6 ABI has examples of this. */
3103 else if (GET_CODE (valreg) == PARALLEL)
3104 {
3105 if (target == 0)
3106 {
3107 /* This will only be assigned once, so it can be readonly. */
3108 tree nt = build_qualified_type (TREE_TYPE (exp),
3109 (TYPE_QUALS (TREE_TYPE (exp))
3110 | TYPE_QUAL_CONST));
3111
3112 target = assign_temp (nt, 0, 1, 1);
3113 preserve_temp_slots (target);
3114 }
3115
3116 if (! rtx_equal_p (target, valreg))
3117 emit_group_store (target, valreg, TREE_TYPE (exp),
3118 int_size_in_bytes (TREE_TYPE (exp)));
3119
3120 /* We can not support sibling calls for this case. */
3121 sibcall_failure = 1;
3122 }
3123 else if (target
3124 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
3125 && GET_MODE (target) == GET_MODE (valreg))
3126 {
3127 /* TARGET and VALREG cannot be equal at this point because the
3128 latter would not have REG_FUNCTION_VALUE_P true, while the
3129 former would if it were referring to the same register.
3130
3131 If they refer to the same register, this move will be a no-op,
3132 except when function inlining is being done. */
3133 emit_move_insn (target, valreg);
3134
3135 /* If we are setting a MEM, this code must be executed. Since it is
3136 emitted after the call insn, sibcall optimization cannot be
3137 performed in that case. */
3138 if (GET_CODE (target) == MEM)
3139 sibcall_failure = 1;
3140 }
3141 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
3142 {
3143 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
3144
3145 /* We can not support sibling calls for this case. */
3146 sibcall_failure = 1;
3147 }
3148 else
3149 {
3150 if (shift_returned_value (TREE_TYPE (exp), &valreg))
3151 sibcall_failure = 1;
3152
3153 target = copy_to_reg (valreg);
3154 }
3155
3156 if (targetm.calls.promote_function_return(funtype))
3157 {
3158 /* If we promoted this return value, make the proper SUBREG. TARGET
3159 might be const0_rtx here, so be careful. */
3160 if (GET_CODE (target) == REG
3161 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
3162 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3163 {
3164 tree type = TREE_TYPE (exp);
3165 int unsignedp = TYPE_UNSIGNED (type);
3166 int offset = 0;
3167
3168 /* If we don't promote as expected, something is wrong. */
3169 if (GET_MODE (target)
3170 != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
3171 abort ();
3172
3173 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3174 && GET_MODE_SIZE (GET_MODE (target))
3175 > GET_MODE_SIZE (TYPE_MODE (type)))
3176 {
3177 offset = GET_MODE_SIZE (GET_MODE (target))
3178 - GET_MODE_SIZE (TYPE_MODE (type));
3179 if (! BYTES_BIG_ENDIAN)
3180 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3181 else if (! WORDS_BIG_ENDIAN)
3182 offset %= UNITS_PER_WORD;
3183 }
3184 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3185 SUBREG_PROMOTED_VAR_P (target) = 1;
3186 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3187 }
3188 }
3189
3190 /* If size of args is variable or this was a constructor call for a stack
3191 argument, restore saved stack-pointer value. */
3192
3193 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
3194 {
3195 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3196 stack_pointer_delta = old_stack_pointer_delta;
3197 pending_stack_adjust = old_pending_adj;
3198 stack_arg_under_construction = old_stack_arg_under_construction;
3199 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3200 stack_usage_map = initial_stack_usage_map;
3201 sibcall_failure = 1;
3202 }
3203 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3204 {
3205 #ifdef REG_PARM_STACK_SPACE
3206 if (save_area)
3207 restore_fixed_argument_area (save_area, argblock,
3208 high_to_save, low_to_save);
3209 #endif
3210
3211 /* If we saved any argument areas, restore them. */
3212 for (i = 0; i < num_actuals; i++)
3213 if (args[i].save_area)
3214 {
3215 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3216 rtx stack_area
3217 = gen_rtx_MEM (save_mode,
3218 memory_address (save_mode,
3219 XEXP (args[i].stack_slot, 0)));
3220
3221 if (save_mode != BLKmode)
3222 emit_move_insn (stack_area, args[i].save_area);
3223 else
3224 emit_block_move (stack_area, args[i].save_area,
3225 GEN_INT (args[i].locate.size.constant),
3226 BLOCK_OP_CALL_PARM);
3227 }
3228
3229 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3230 stack_usage_map = initial_stack_usage_map;
3231 }
3232
3233 /* If this was alloca, record the new stack level for nonlocal gotos.
3234 Check for the handler slots since we might not have a save area
3235 for non-local gotos. */
3236
3237 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3238 update_nonlocal_goto_save_area ();
3239
3240 /* Free up storage we no longer need. */
3241 for (i = 0; i < num_actuals; ++i)
3242 if (args[i].aligned_regs)
3243 free (args[i].aligned_regs);
3244
3245 if (pass == 0)
3246 {
3247 /* Undo the fake expand_start_target_temps we did earlier. If
3248 there had been any cleanups created, we've already set
3249 sibcall_failure. */
3250 expand_end_target_temps ();
3251 }
3252
3253 /* If this function is returning into a memory location marked as
3254 readonly, it means it is initializing that location. We normally treat
3255 functions as not clobbering such locations, so we need to specify that
3256 this one does. We do this by adding the appropriate CLOBBER to the
3257 CALL_INSN function usage list. This cannot be done by emitting a
3258 standalone CLOBBER after the call because the latter would be ignored
3259 by at least the delay slot scheduling pass. We do this now instead of
3260 adding to call_fusage before the call to emit_call_1 because TARGET
3261 may be modified in the meantime. */
3262 if (structure_value_addr != 0 && target != 0
3263 && GET_CODE (target) == MEM && RTX_UNCHANGING_P (target))
3264 add_function_usage_to
3265 (last_call_insn (),
3266 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_CLOBBER (VOIDmode, target),
3267 NULL_RTX));
3268
3269 insns = get_insns ();
3270 end_sequence ();
3271
3272 if (pass == 0)
3273 {
3274 tail_call_insns = insns;
3275
3276 /* Restore the pending stack adjustment now that we have
3277 finished generating the sibling call sequence. */
3278
3279 pending_stack_adjust = save_pending_stack_adjust;
3280 stack_pointer_delta = save_stack_pointer_delta;
3281
3282 /* Prepare arg structure for next iteration. */
3283 for (i = 0; i < num_actuals; i++)
3284 {
3285 args[i].value = 0;
3286 args[i].aligned_regs = 0;
3287 args[i].stack = 0;
3288 }
3289
3290 sbitmap_free (stored_args_map);
3291 }
3292 else
3293 {
3294 normal_call_insns = insns;
3295
3296 /* Verify that we've deallocated all the stack we used. */
3297 if (! (flags & (ECF_NORETURN | ECF_LONGJMP))
3298 && old_stack_allocated != stack_pointer_delta
3299 - pending_stack_adjust)
3300 abort ();
3301 }
3302
3303 /* If something prevents making this a sibling call,
3304 zero out the sequence. */
3305 if (sibcall_failure)
3306 tail_call_insns = NULL_RTX;
3307 else
3308 break;
3309 }
3310
3311 /* If tail call production suceeded, we need to remove REG_EQUIV notes on
3312 arguments too, as argument area is now clobbered by the call. */
3313 if (tail_call_insns)
3314 {
3315 emit_insn (tail_call_insns);
3316 cfun->tail_call_emit = true;
3317 }
3318 else
3319 emit_insn (normal_call_insns);
3320
3321 currently_expanding_call--;
3322
3323 /* If this function returns with the stack pointer depressed, ensure
3324 this block saves and restores the stack pointer, show it was
3325 changed, and adjust for any outgoing arg space. */
3326 if (flags & ECF_SP_DEPRESSED)
3327 {
3328 clear_pending_stack_adjust ();
3329 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3330 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3331 save_stack_pointer ();
3332 }
3333
3334 return target;
3335 }
3336
3337 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3338 this function's incoming arguments.
3339
3340 At the start of RTL generation we know the only REG_EQUIV notes
3341 in the rtl chain are those for incoming arguments, so we can safely
3342 flush any REG_EQUIV note.
3343
3344 This is (slight) overkill. We could keep track of the highest
3345 argument we clobber and be more selective in removing notes, but it
3346 does not seem to be worth the effort. */
3347 void
3348 fixup_tail_calls (void)
3349 {
3350 rtx insn;
3351 tree arg;
3352
3353 purge_reg_equiv_notes ();
3354
3355 /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
3356 flag of some incoming arguments MEM RTLs, because it can write into
3357 those slots. We clear all those bits now.
3358
3359 This is (slight) overkill, we could keep track of which arguments
3360 we actually write into. */
3361 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3362 {
3363 if (INSN_P (insn))
3364 purge_mem_unchanging_flag (PATTERN (insn));
3365 }
3366
3367 /* Similarly, invalidate RTX_UNCHANGING_P for any incoming
3368 arguments passed in registers. */
3369 for (arg = DECL_ARGUMENTS (current_function_decl);
3370 arg;
3371 arg = TREE_CHAIN (arg))
3372 {
3373 if (REG_P (DECL_RTL (arg)))
3374 RTX_UNCHANGING_P (DECL_RTL (arg)) = false;
3375 }
3376 }
3377
3378 /* Traverse an argument list in VALUES and expand all complex
3379 arguments into their components. */
3380 tree
3381 split_complex_values (tree values)
3382 {
3383 tree p;
3384
3385 /* Before allocating memory, check for the common case of no complex. */
3386 for (p = values; p; p = TREE_CHAIN (p))
3387 {
3388 tree type = TREE_TYPE (TREE_VALUE (p));
3389 if (type && TREE_CODE (type) == COMPLEX_TYPE
3390 && targetm.calls.split_complex_arg (type))
3391 goto found;
3392 }
3393 return values;
3394
3395 found:
3396 values = copy_list (values);
3397
3398 for (p = values; p; p = TREE_CHAIN (p))
3399 {
3400 tree complex_value = TREE_VALUE (p);
3401 tree complex_type;
3402
3403 complex_type = TREE_TYPE (complex_value);
3404 if (!complex_type)
3405 continue;
3406
3407 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3408 && targetm.calls.split_complex_arg (complex_type))
3409 {
3410 tree subtype;
3411 tree real, imag, next;
3412
3413 subtype = TREE_TYPE (complex_type);
3414 complex_value = save_expr (complex_value);
3415 real = build1 (REALPART_EXPR, subtype, complex_value);
3416 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3417
3418 TREE_VALUE (p) = real;
3419 next = TREE_CHAIN (p);
3420 imag = build_tree_list (NULL_TREE, imag);
3421 TREE_CHAIN (p) = imag;
3422 TREE_CHAIN (imag) = next;
3423
3424 /* Skip the newly created node. */
3425 p = TREE_CHAIN (p);
3426 }
3427 }
3428
3429 return values;
3430 }
3431
3432 /* Traverse a list of TYPES and expand all complex types into their
3433 components. */
3434 tree
3435 split_complex_types (tree types)
3436 {
3437 tree p;
3438
3439 /* Before allocating memory, check for the common case of no complex. */
3440 for (p = types; p; p = TREE_CHAIN (p))
3441 {
3442 tree type = TREE_VALUE (p);
3443 if (TREE_CODE (type) == COMPLEX_TYPE
3444 && targetm.calls.split_complex_arg (type))
3445 goto found;
3446 }
3447 return types;
3448
3449 found:
3450 types = copy_list (types);
3451
3452 for (p = types; p; p = TREE_CHAIN (p))
3453 {
3454 tree complex_type = TREE_VALUE (p);
3455
3456 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3457 && targetm.calls.split_complex_arg (complex_type))
3458 {
3459 tree next, imag;
3460
3461 /* Rewrite complex type with component type. */
3462 TREE_VALUE (p) = TREE_TYPE (complex_type);
3463 next = TREE_CHAIN (p);
3464
3465 /* Add another component type for the imaginary part. */
3466 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3467 TREE_CHAIN (p) = imag;
3468 TREE_CHAIN (imag) = next;
3469
3470 /* Skip the newly created node. */
3471 p = TREE_CHAIN (p);
3472 }
3473 }
3474
3475 return types;
3476 }
3477 \f
3478 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3479 The RETVAL parameter specifies whether return value needs to be saved, other
3480 parameters are documented in the emit_library_call function below. */
3481
3482 static rtx
3483 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3484 enum libcall_type fn_type,
3485 enum machine_mode outmode, int nargs, va_list p)
3486 {
3487 /* Total size in bytes of all the stack-parms scanned so far. */
3488 struct args_size args_size;
3489 /* Size of arguments before any adjustments (such as rounding). */
3490 struct args_size original_args_size;
3491 int argnum;
3492 rtx fun;
3493 int inc;
3494 int count;
3495 rtx argblock = 0;
3496 CUMULATIVE_ARGS args_so_far;
3497 struct arg
3498 {
3499 rtx value;
3500 enum machine_mode mode;
3501 rtx reg;
3502 int partial;
3503 struct locate_and_pad_arg_data locate;
3504 rtx save_area;
3505 };
3506 struct arg *argvec;
3507 int old_inhibit_defer_pop = inhibit_defer_pop;
3508 rtx call_fusage = 0;
3509 rtx mem_value = 0;
3510 rtx valreg;
3511 int pcc_struct_value = 0;
3512 int struct_value_size = 0;
3513 int flags;
3514 int reg_parm_stack_space = 0;
3515 int needed;
3516 rtx before_call;
3517 tree tfom; /* type_for_mode (outmode, 0) */
3518
3519 #ifdef REG_PARM_STACK_SPACE
3520 /* Define the boundary of the register parm stack space that needs to be
3521 save, if any. */
3522 int low_to_save, high_to_save;
3523 rtx save_area = 0; /* Place that it is saved. */
3524 #endif
3525
3526 /* Size of the stack reserved for parameter registers. */
3527 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3528 char *initial_stack_usage_map = stack_usage_map;
3529
3530 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3531
3532 #ifdef REG_PARM_STACK_SPACE
3533 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3534 #endif
3535
3536 /* By default, library functions can not throw. */
3537 flags = ECF_NOTHROW;
3538
3539 switch (fn_type)
3540 {
3541 case LCT_NORMAL:
3542 break;
3543 case LCT_CONST:
3544 flags |= ECF_CONST;
3545 break;
3546 case LCT_PURE:
3547 flags |= ECF_PURE;
3548 break;
3549 case LCT_CONST_MAKE_BLOCK:
3550 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3551 break;
3552 case LCT_PURE_MAKE_BLOCK:
3553 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3554 break;
3555 case LCT_NORETURN:
3556 flags |= ECF_NORETURN;
3557 break;
3558 case LCT_THROW:
3559 flags = ECF_NORETURN;
3560 break;
3561 case LCT_ALWAYS_RETURN:
3562 flags = ECF_ALWAYS_RETURN;
3563 break;
3564 case LCT_RETURNS_TWICE:
3565 flags = ECF_RETURNS_TWICE;
3566 break;
3567 }
3568 fun = orgfun;
3569
3570 /* Ensure current function's preferred stack boundary is at least
3571 what we need. */
3572 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3573 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3574
3575 /* If this kind of value comes back in memory,
3576 decide where in memory it should come back. */
3577 if (outmode != VOIDmode)
3578 {
3579 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3580 if (aggregate_value_p (tfom, 0))
3581 {
3582 #ifdef PCC_STATIC_STRUCT_RETURN
3583 rtx pointer_reg
3584 = hard_function_value (build_pointer_type (tfom), 0, 0);
3585 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3586 pcc_struct_value = 1;
3587 if (value == 0)
3588 value = gen_reg_rtx (outmode);
3589 #else /* not PCC_STATIC_STRUCT_RETURN */
3590 struct_value_size = GET_MODE_SIZE (outmode);
3591 if (value != 0 && GET_CODE (value) == MEM)
3592 mem_value = value;
3593 else
3594 mem_value = assign_temp (tfom, 0, 1, 1);
3595 #endif
3596 /* This call returns a big structure. */
3597 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3598 }
3599 }
3600 else
3601 tfom = void_type_node;
3602
3603 /* ??? Unfinished: must pass the memory address as an argument. */
3604
3605 /* Copy all the libcall-arguments out of the varargs data
3606 and into a vector ARGVEC.
3607
3608 Compute how to pass each argument. We only support a very small subset
3609 of the full argument passing conventions to limit complexity here since
3610 library functions shouldn't have many args. */
3611
3612 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3613 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3614
3615 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3616 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3617 #else
3618 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3619 #endif
3620
3621 args_size.constant = 0;
3622 args_size.var = 0;
3623
3624 count = 0;
3625
3626 /* Now we are about to start emitting insns that can be deleted
3627 if a libcall is deleted. */
3628 if (flags & ECF_LIBCALL_BLOCK)
3629 start_sequence ();
3630
3631 push_temp_slots ();
3632
3633 /* If there's a structure value address to be passed,
3634 either pass it in the special place, or pass it as an extra argument. */
3635 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3636 {
3637 rtx addr = XEXP (mem_value, 0);
3638 nargs++;
3639
3640 /* Make sure it is a reasonable operand for a move or push insn. */
3641 if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
3642 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3643 addr = force_operand (addr, NULL_RTX);
3644
3645 argvec[count].value = addr;
3646 argvec[count].mode = Pmode;
3647 argvec[count].partial = 0;
3648
3649 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3650 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3651 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
3652 abort ();
3653 #endif
3654
3655 locate_and_pad_parm (Pmode, NULL_TREE,
3656 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3657 1,
3658 #else
3659 argvec[count].reg != 0,
3660 #endif
3661 0, NULL_TREE, &args_size, &argvec[count].locate);
3662
3663 if (argvec[count].reg == 0 || argvec[count].partial != 0
3664 || reg_parm_stack_space > 0)
3665 args_size.constant += argvec[count].locate.size.constant;
3666
3667 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3668
3669 count++;
3670 }
3671
3672 for (; count < nargs; count++)
3673 {
3674 rtx val = va_arg (p, rtx);
3675 enum machine_mode mode = va_arg (p, enum machine_mode);
3676
3677 /* We cannot convert the arg value to the mode the library wants here;
3678 must do it earlier where we know the signedness of the arg. */
3679 if (mode == BLKmode
3680 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
3681 abort ();
3682
3683 /* There's no need to call protect_from_queue, because
3684 either emit_move_insn or emit_push_insn will do that. */
3685
3686 /* Make sure it is a reasonable operand for a move or push insn. */
3687 if (GET_CODE (val) != REG && GET_CODE (val) != MEM
3688 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3689 val = force_operand (val, NULL_RTX);
3690
3691 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
3692 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
3693 {
3694 rtx slot;
3695 int must_copy = 1
3696 #ifdef FUNCTION_ARG_CALLEE_COPIES
3697 && ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode,
3698 NULL_TREE, 1)
3699 #endif
3700 ;
3701
3702 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3703 functions, so we have to pretend this isn't such a function. */
3704 if (flags & ECF_LIBCALL_BLOCK)
3705 {
3706 rtx insns = get_insns ();
3707 end_sequence ();
3708 emit_insn (insns);
3709 }
3710 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3711
3712 /* If this was a CONST function, it is now PURE since
3713 it now reads memory. */
3714 if (flags & ECF_CONST)
3715 {
3716 flags &= ~ECF_CONST;
3717 flags |= ECF_PURE;
3718 }
3719
3720 if (GET_MODE (val) == MEM && ! must_copy)
3721 slot = val;
3722 else if (must_copy)
3723 {
3724 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3725 0, 1, 1);
3726 emit_move_insn (slot, val);
3727 }
3728 else
3729 {
3730 tree type = lang_hooks.types.type_for_mode (mode, 0);
3731
3732 slot
3733 = gen_rtx_MEM (mode,
3734 expand_expr (build1 (ADDR_EXPR,
3735 build_pointer_type (type),
3736 make_tree (type, val)),
3737 NULL_RTX, VOIDmode, 0));
3738 }
3739
3740 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3741 gen_rtx_USE (VOIDmode, slot),
3742 call_fusage);
3743 if (must_copy)
3744 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3745 gen_rtx_CLOBBER (VOIDmode,
3746 slot),
3747 call_fusage);
3748
3749 mode = Pmode;
3750 val = force_operand (XEXP (slot, 0), NULL_RTX);
3751 }
3752 #endif
3753
3754 argvec[count].value = val;
3755 argvec[count].mode = mode;
3756
3757 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3758
3759 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3760 argvec[count].partial
3761 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
3762 #else
3763 argvec[count].partial = 0;
3764 #endif
3765
3766 locate_and_pad_parm (mode, NULL_TREE,
3767 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3768 1,
3769 #else
3770 argvec[count].reg != 0,
3771 #endif
3772 argvec[count].partial,
3773 NULL_TREE, &args_size, &argvec[count].locate);
3774
3775 if (argvec[count].locate.size.var)
3776 abort ();
3777
3778 if (argvec[count].reg == 0 || argvec[count].partial != 0
3779 || reg_parm_stack_space > 0)
3780 args_size.constant += argvec[count].locate.size.constant;
3781
3782 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3783 }
3784
3785 /* If this machine requires an external definition for library
3786 functions, write one out. */
3787 assemble_external_libcall (fun);
3788
3789 original_args_size = args_size;
3790 args_size.constant = (((args_size.constant
3791 + stack_pointer_delta
3792 + STACK_BYTES - 1)
3793 / STACK_BYTES
3794 * STACK_BYTES)
3795 - stack_pointer_delta);
3796
3797 args_size.constant = MAX (args_size.constant,
3798 reg_parm_stack_space);
3799
3800 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3801 args_size.constant -= reg_parm_stack_space;
3802 #endif
3803
3804 if (args_size.constant > current_function_outgoing_args_size)
3805 current_function_outgoing_args_size = args_size.constant;
3806
3807 if (ACCUMULATE_OUTGOING_ARGS)
3808 {
3809 /* Since the stack pointer will never be pushed, it is possible for
3810 the evaluation of a parm to clobber something we have already
3811 written to the stack. Since most function calls on RISC machines
3812 do not use the stack, this is uncommon, but must work correctly.
3813
3814 Therefore, we save any area of the stack that was already written
3815 and that we are using. Here we set up to do this by making a new
3816 stack usage map from the old one.
3817
3818 Another approach might be to try to reorder the argument
3819 evaluations to avoid this conflicting stack usage. */
3820
3821 needed = args_size.constant;
3822
3823 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3824 /* Since we will be writing into the entire argument area, the
3825 map must be allocated for its entire size, not just the part that
3826 is the responsibility of the caller. */
3827 needed += reg_parm_stack_space;
3828 #endif
3829
3830 #ifdef ARGS_GROW_DOWNWARD
3831 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3832 needed + 1);
3833 #else
3834 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3835 needed);
3836 #endif
3837 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3838
3839 if (initial_highest_arg_in_use)
3840 memcpy (stack_usage_map, initial_stack_usage_map,
3841 initial_highest_arg_in_use);
3842
3843 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3844 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3845 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3846 needed = 0;
3847
3848 /* We must be careful to use virtual regs before they're instantiated,
3849 and real regs afterwards. Loop optimization, for example, can create
3850 new libcalls after we've instantiated the virtual regs, and if we
3851 use virtuals anyway, they won't match the rtl patterns. */
3852
3853 if (virtuals_instantiated)
3854 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3855 else
3856 argblock = virtual_outgoing_args_rtx;
3857 }
3858 else
3859 {
3860 if (!PUSH_ARGS)
3861 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3862 }
3863
3864 /* If we push args individually in reverse order, perform stack alignment
3865 before the first push (the last arg). */
3866 if (argblock == 0 && PUSH_ARGS_REVERSED)
3867 anti_adjust_stack (GEN_INT (args_size.constant
3868 - original_args_size.constant));
3869
3870 if (PUSH_ARGS_REVERSED)
3871 {
3872 inc = -1;
3873 argnum = nargs - 1;
3874 }
3875 else
3876 {
3877 inc = 1;
3878 argnum = 0;
3879 }
3880
3881 #ifdef REG_PARM_STACK_SPACE
3882 if (ACCUMULATE_OUTGOING_ARGS)
3883 {
3884 /* The argument list is the property of the called routine and it
3885 may clobber it. If the fixed area has been used for previous
3886 parameters, we must save and restore it. */
3887 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3888 &low_to_save, &high_to_save);
3889 }
3890 #endif
3891
3892 /* Push the args that need to be pushed. */
3893
3894 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3895 are to be pushed. */
3896 for (count = 0; count < nargs; count++, argnum += inc)
3897 {
3898 enum machine_mode mode = argvec[argnum].mode;
3899 rtx val = argvec[argnum].value;
3900 rtx reg = argvec[argnum].reg;
3901 int partial = argvec[argnum].partial;
3902 int lower_bound = 0, upper_bound = 0, i;
3903
3904 if (! (reg != 0 && partial == 0))
3905 {
3906 if (ACCUMULATE_OUTGOING_ARGS)
3907 {
3908 /* If this is being stored into a pre-allocated, fixed-size,
3909 stack area, save any previous data at that location. */
3910
3911 #ifdef ARGS_GROW_DOWNWARD
3912 /* stack_slot is negative, but we want to index stack_usage_map
3913 with positive values. */
3914 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3915 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3916 #else
3917 lower_bound = argvec[argnum].locate.offset.constant;
3918 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3919 #endif
3920
3921 i = lower_bound;
3922 /* Don't worry about things in the fixed argument area;
3923 it has already been saved. */
3924 if (i < reg_parm_stack_space)
3925 i = reg_parm_stack_space;
3926 while (i < upper_bound && stack_usage_map[i] == 0)
3927 i++;
3928
3929 if (i < upper_bound)
3930 {
3931 /* We need to make a save area. */
3932 unsigned int size
3933 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3934 enum machine_mode save_mode
3935 = mode_for_size (size, MODE_INT, 1);
3936 rtx adr
3937 = plus_constant (argblock,
3938 argvec[argnum].locate.offset.constant);
3939 rtx stack_area
3940 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3941
3942 if (save_mode == BLKmode)
3943 {
3944 argvec[argnum].save_area
3945 = assign_stack_temp (BLKmode,
3946 argvec[argnum].locate.size.constant,
3947 0);
3948
3949 emit_block_move (validize_mem (argvec[argnum].save_area),
3950 stack_area,
3951 GEN_INT (argvec[argnum].locate.size.constant),
3952 BLOCK_OP_CALL_PARM);
3953 }
3954 else
3955 {
3956 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3957
3958 emit_move_insn (argvec[argnum].save_area, stack_area);
3959 }
3960 }
3961 }
3962
3963 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3964 partial, reg, 0, argblock,
3965 GEN_INT (argvec[argnum].locate.offset.constant),
3966 reg_parm_stack_space,
3967 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3968
3969 /* Now mark the segment we just used. */
3970 if (ACCUMULATE_OUTGOING_ARGS)
3971 for (i = lower_bound; i < upper_bound; i++)
3972 stack_usage_map[i] = 1;
3973
3974 NO_DEFER_POP;
3975 }
3976 }
3977
3978 /* If we pushed args in forward order, perform stack alignment
3979 after pushing the last arg. */
3980 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3981 anti_adjust_stack (GEN_INT (args_size.constant
3982 - original_args_size.constant));
3983
3984 if (PUSH_ARGS_REVERSED)
3985 argnum = nargs - 1;
3986 else
3987 argnum = 0;
3988
3989 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3990
3991 /* Now load any reg parms into their regs. */
3992
3993 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3994 are to be pushed. */
3995 for (count = 0; count < nargs; count++, argnum += inc)
3996 {
3997 rtx val = argvec[argnum].value;
3998 rtx reg = argvec[argnum].reg;
3999 int partial = argvec[argnum].partial;
4000
4001 /* Handle calls that pass values in multiple non-contiguous
4002 locations. The PA64 has examples of this for library calls. */
4003 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4004 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (GET_MODE (val)));
4005 else if (reg != 0 && partial == 0)
4006 emit_move_insn (reg, val);
4007
4008 NO_DEFER_POP;
4009 }
4010
4011 /* Any regs containing parms remain in use through the call. */
4012 for (count = 0; count < nargs; count++)
4013 {
4014 rtx reg = argvec[count].reg;
4015 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4016 use_group_regs (&call_fusage, reg);
4017 else if (reg != 0)
4018 use_reg (&call_fusage, reg);
4019 }
4020
4021 /* Pass the function the address in which to return a structure value. */
4022 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
4023 {
4024 emit_move_insn (struct_value,
4025 force_reg (Pmode,
4026 force_operand (XEXP (mem_value, 0),
4027 NULL_RTX)));
4028 if (GET_CODE (struct_value) == REG)
4029 use_reg (&call_fusage, struct_value);
4030 }
4031
4032 /* Don't allow popping to be deferred, since then
4033 cse'ing of library calls could delete a call and leave the pop. */
4034 NO_DEFER_POP;
4035 valreg = (mem_value == 0 && outmode != VOIDmode
4036 ? hard_libcall_value (outmode) : NULL_RTX);
4037
4038 /* Stack must be properly aligned now. */
4039 if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1))
4040 abort ();
4041
4042 before_call = get_last_insn ();
4043
4044 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4045 will set inhibit_defer_pop to that value. */
4046 /* The return type is needed to decide how many bytes the function pops.
4047 Signedness plays no role in that, so for simplicity, we pretend it's
4048 always signed. We also assume that the list of arguments passed has
4049 no impact, so we pretend it is unknown. */
4050
4051 emit_call_1 (fun, NULL,
4052 get_identifier (XSTR (orgfun, 0)),
4053 build_function_type (tfom, NULL_TREE),
4054 original_args_size.constant, args_size.constant,
4055 struct_value_size,
4056 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
4057 valreg,
4058 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
4059
4060 /* For calls to `setjmp', etc., inform flow.c it should complain
4061 if nonvolatile values are live. For functions that cannot return,
4062 inform flow that control does not fall through. */
4063
4064 if (flags & (ECF_NORETURN | ECF_LONGJMP))
4065 {
4066 /* The barrier note must be emitted
4067 immediately after the CALL_INSN. Some ports emit more than
4068 just a CALL_INSN above, so we must search for it here. */
4069
4070 rtx last = get_last_insn ();
4071 while (GET_CODE (last) != CALL_INSN)
4072 {
4073 last = PREV_INSN (last);
4074 /* There was no CALL_INSN? */
4075 if (last == before_call)
4076 abort ();
4077 }
4078
4079 emit_barrier_after (last);
4080 }
4081
4082 /* Now restore inhibit_defer_pop to its actual original value. */
4083 OK_DEFER_POP;
4084
4085 /* If call is cse'able, make appropriate pair of reg-notes around it.
4086 Test valreg so we don't crash; may safely ignore `const'
4087 if return type is void. Disable for PARALLEL return values, because
4088 we have no way to move such values into a pseudo register. */
4089 if (flags & ECF_LIBCALL_BLOCK)
4090 {
4091 rtx insns;
4092
4093 if (valreg == 0)
4094 {
4095 insns = get_insns ();
4096 end_sequence ();
4097 emit_insn (insns);
4098 }
4099 else
4100 {
4101 rtx note = 0;
4102 rtx temp;
4103 int i;
4104
4105 if (GET_CODE (valreg) == PARALLEL)
4106 {
4107 temp = gen_reg_rtx (outmode);
4108 emit_group_store (temp, valreg, NULL_TREE,
4109 GET_MODE_SIZE (outmode));
4110 valreg = temp;
4111 }
4112
4113 temp = gen_reg_rtx (GET_MODE (valreg));
4114
4115 /* Construct an "equal form" for the value which mentions all the
4116 arguments in order as well as the function name. */
4117 for (i = 0; i < nargs; i++)
4118 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
4119 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
4120
4121 insns = get_insns ();
4122 end_sequence ();
4123
4124 if (flags & ECF_PURE)
4125 note = gen_rtx_EXPR_LIST (VOIDmode,
4126 gen_rtx_USE (VOIDmode,
4127 gen_rtx_MEM (BLKmode,
4128 gen_rtx_SCRATCH (VOIDmode))),
4129 note);
4130
4131 emit_libcall_block (insns, temp, valreg, note);
4132
4133 valreg = temp;
4134 }
4135 }
4136 pop_temp_slots ();
4137
4138 /* Copy the value to the right place. */
4139 if (outmode != VOIDmode && retval)
4140 {
4141 if (mem_value)
4142 {
4143 if (value == 0)
4144 value = mem_value;
4145 if (value != mem_value)
4146 emit_move_insn (value, mem_value);
4147 }
4148 else if (GET_CODE (valreg) == PARALLEL)
4149 {
4150 if (value == 0)
4151 value = gen_reg_rtx (outmode);
4152 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
4153 }
4154 else if (value != 0)
4155 emit_move_insn (value, valreg);
4156 else
4157 value = valreg;
4158 }
4159
4160 if (ACCUMULATE_OUTGOING_ARGS)
4161 {
4162 #ifdef REG_PARM_STACK_SPACE
4163 if (save_area)
4164 restore_fixed_argument_area (save_area, argblock,
4165 high_to_save, low_to_save);
4166 #endif
4167
4168 /* If we saved any argument areas, restore them. */
4169 for (count = 0; count < nargs; count++)
4170 if (argvec[count].save_area)
4171 {
4172 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4173 rtx adr = plus_constant (argblock,
4174 argvec[count].locate.offset.constant);
4175 rtx stack_area = gen_rtx_MEM (save_mode,
4176 memory_address (save_mode, adr));
4177
4178 if (save_mode == BLKmode)
4179 emit_block_move (stack_area,
4180 validize_mem (argvec[count].save_area),
4181 GEN_INT (argvec[count].locate.size.constant),
4182 BLOCK_OP_CALL_PARM);
4183 else
4184 emit_move_insn (stack_area, argvec[count].save_area);
4185 }
4186
4187 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4188 stack_usage_map = initial_stack_usage_map;
4189 }
4190
4191 return value;
4192
4193 }
4194 \f
4195 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4196 (emitting the queue unless NO_QUEUE is nonzero),
4197 for a value of mode OUTMODE,
4198 with NARGS different arguments, passed as alternating rtx values
4199 and machine_modes to convert them to.
4200 The rtx values should have been passed through protect_from_queue already.
4201
4202 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
4203 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
4204 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
4205 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
4206 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
4207 or other LCT_ value for other types of library calls. */
4208
4209 void
4210 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4211 enum machine_mode outmode, int nargs, ...)
4212 {
4213 va_list p;
4214
4215 va_start (p, nargs);
4216 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4217 va_end (p);
4218 }
4219 \f
4220 /* Like emit_library_call except that an extra argument, VALUE,
4221 comes second and says where to store the result.
4222 (If VALUE is zero, this function chooses a convenient way
4223 to return the value.
4224
4225 This function returns an rtx for where the value is to be found.
4226 If VALUE is nonzero, VALUE is returned. */
4227
4228 rtx
4229 emit_library_call_value (rtx orgfun, rtx value,
4230 enum libcall_type fn_type,
4231 enum machine_mode outmode, int nargs, ...)
4232 {
4233 rtx result;
4234 va_list p;
4235
4236 va_start (p, nargs);
4237 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4238 nargs, p);
4239 va_end (p);
4240
4241 return result;
4242 }
4243 \f
4244 /* Store a single argument for a function call
4245 into the register or memory area where it must be passed.
4246 *ARG describes the argument value and where to pass it.
4247
4248 ARGBLOCK is the address of the stack-block for all the arguments,
4249 or 0 on a machine where arguments are pushed individually.
4250
4251 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4252 so must be careful about how the stack is used.
4253
4254 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4255 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4256 that we need not worry about saving and restoring the stack.
4257
4258 FNDECL is the declaration of the function we are calling.
4259
4260 Return nonzero if this arg should cause sibcall failure,
4261 zero otherwise. */
4262
4263 static int
4264 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4265 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4266 {
4267 tree pval = arg->tree_value;
4268 rtx reg = 0;
4269 int partial = 0;
4270 int used = 0;
4271 int i, lower_bound = 0, upper_bound = 0;
4272 int sibcall_failure = 0;
4273
4274 if (TREE_CODE (pval) == ERROR_MARK)
4275 return 1;
4276
4277 /* Push a new temporary level for any temporaries we make for
4278 this argument. */
4279 push_temp_slots ();
4280
4281 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4282 {
4283 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4284 save any previous data at that location. */
4285 if (argblock && ! variable_size && arg->stack)
4286 {
4287 #ifdef ARGS_GROW_DOWNWARD
4288 /* stack_slot is negative, but we want to index stack_usage_map
4289 with positive values. */
4290 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4291 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4292 else
4293 upper_bound = 0;
4294
4295 lower_bound = upper_bound - arg->locate.size.constant;
4296 #else
4297 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4298 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4299 else
4300 lower_bound = 0;
4301
4302 upper_bound = lower_bound + arg->locate.size.constant;
4303 #endif
4304
4305 i = lower_bound;
4306 /* Don't worry about things in the fixed argument area;
4307 it has already been saved. */
4308 if (i < reg_parm_stack_space)
4309 i = reg_parm_stack_space;
4310 while (i < upper_bound && stack_usage_map[i] == 0)
4311 i++;
4312
4313 if (i < upper_bound)
4314 {
4315 /* We need to make a save area. */
4316 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4317 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4318 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4319 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4320
4321 if (save_mode == BLKmode)
4322 {
4323 tree ot = TREE_TYPE (arg->tree_value);
4324 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4325 | TYPE_QUAL_CONST));
4326
4327 arg->save_area = assign_temp (nt, 0, 1, 1);
4328 preserve_temp_slots (arg->save_area);
4329 emit_block_move (validize_mem (arg->save_area), stack_area,
4330 expr_size (arg->tree_value),
4331 BLOCK_OP_CALL_PARM);
4332 }
4333 else
4334 {
4335 arg->save_area = gen_reg_rtx (save_mode);
4336 emit_move_insn (arg->save_area, stack_area);
4337 }
4338 }
4339 }
4340 }
4341
4342 /* If this isn't going to be placed on both the stack and in registers,
4343 set up the register and number of words. */
4344 if (! arg->pass_on_stack)
4345 {
4346 if (flags & ECF_SIBCALL)
4347 reg = arg->tail_call_reg;
4348 else
4349 reg = arg->reg;
4350 partial = arg->partial;
4351 }
4352
4353 if (reg != 0 && partial == 0)
4354 /* Being passed entirely in a register. We shouldn't be called in
4355 this case. */
4356 abort ();
4357
4358 /* If this arg needs special alignment, don't load the registers
4359 here. */
4360 if (arg->n_aligned_regs != 0)
4361 reg = 0;
4362
4363 /* If this is being passed partially in a register, we can't evaluate
4364 it directly into its stack slot. Otherwise, we can. */
4365 if (arg->value == 0)
4366 {
4367 /* stack_arg_under_construction is nonzero if a function argument is
4368 being evaluated directly into the outgoing argument list and
4369 expand_call must take special action to preserve the argument list
4370 if it is called recursively.
4371
4372 For scalar function arguments stack_usage_map is sufficient to
4373 determine which stack slots must be saved and restored. Scalar
4374 arguments in general have pass_on_stack == 0.
4375
4376 If this argument is initialized by a function which takes the
4377 address of the argument (a C++ constructor or a C function
4378 returning a BLKmode structure), then stack_usage_map is
4379 insufficient and expand_call must push the stack around the
4380 function call. Such arguments have pass_on_stack == 1.
4381
4382 Note that it is always safe to set stack_arg_under_construction,
4383 but this generates suboptimal code if set when not needed. */
4384
4385 if (arg->pass_on_stack)
4386 stack_arg_under_construction++;
4387
4388 arg->value = expand_expr (pval,
4389 (partial
4390 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4391 ? NULL_RTX : arg->stack,
4392 VOIDmode, EXPAND_STACK_PARM);
4393
4394 /* If we are promoting object (or for any other reason) the mode
4395 doesn't agree, convert the mode. */
4396
4397 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4398 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4399 arg->value, arg->unsignedp);
4400
4401 if (arg->pass_on_stack)
4402 stack_arg_under_construction--;
4403 }
4404
4405 /* Don't allow anything left on stack from computation
4406 of argument to alloca. */
4407 if (flags & ECF_MAY_BE_ALLOCA)
4408 do_pending_stack_adjust ();
4409
4410 if (arg->value == arg->stack)
4411 /* If the value is already in the stack slot, we are done. */
4412 ;
4413 else if (arg->mode != BLKmode)
4414 {
4415 int size;
4416
4417 /* Argument is a scalar, not entirely passed in registers.
4418 (If part is passed in registers, arg->partial says how much
4419 and emit_push_insn will take care of putting it there.)
4420
4421 Push it, and if its size is less than the
4422 amount of space allocated to it,
4423 also bump stack pointer by the additional space.
4424 Note that in C the default argument promotions
4425 will prevent such mismatches. */
4426
4427 size = GET_MODE_SIZE (arg->mode);
4428 /* Compute how much space the push instruction will push.
4429 On many machines, pushing a byte will advance the stack
4430 pointer by a halfword. */
4431 #ifdef PUSH_ROUNDING
4432 size = PUSH_ROUNDING (size);
4433 #endif
4434 used = size;
4435
4436 /* Compute how much space the argument should get:
4437 round up to a multiple of the alignment for arguments. */
4438 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4439 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4440 / (PARM_BOUNDARY / BITS_PER_UNIT))
4441 * (PARM_BOUNDARY / BITS_PER_UNIT));
4442
4443 /* This isn't already where we want it on the stack, so put it there.
4444 This can either be done with push or copy insns. */
4445 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4446 PARM_BOUNDARY, partial, reg, used - size, argblock,
4447 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4448 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4449
4450 /* Unless this is a partially-in-register argument, the argument is now
4451 in the stack. */
4452 if (partial == 0)
4453 arg->value = arg->stack;
4454 }
4455 else
4456 {
4457 /* BLKmode, at least partly to be pushed. */
4458
4459 unsigned int parm_align;
4460 int excess;
4461 rtx size_rtx;
4462
4463 /* Pushing a nonscalar.
4464 If part is passed in registers, PARTIAL says how much
4465 and emit_push_insn will take care of putting it there. */
4466
4467 /* Round its size up to a multiple
4468 of the allocation unit for arguments. */
4469
4470 if (arg->locate.size.var != 0)
4471 {
4472 excess = 0;
4473 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4474 }
4475 else
4476 {
4477 /* PUSH_ROUNDING has no effect on us, because
4478 emit_push_insn for BLKmode is careful to avoid it. */
4479 if (reg && GET_CODE (reg) == PARALLEL)
4480 {
4481 /* Use the size of the elt to compute excess. */
4482 rtx elt = XEXP (XVECEXP (reg, 0, 0), 0);
4483 excess = (arg->locate.size.constant
4484 - int_size_in_bytes (TREE_TYPE (pval))
4485 + partial * GET_MODE_SIZE (GET_MODE (elt)));
4486 }
4487 else
4488 excess = (arg->locate.size.constant
4489 - int_size_in_bytes (TREE_TYPE (pval))
4490 + partial * UNITS_PER_WORD);
4491 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4492 NULL_RTX, TYPE_MODE (sizetype), 0);
4493 }
4494
4495 /* Some types will require stricter alignment, which will be
4496 provided for elsewhere in argument layout. */
4497 parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));
4498
4499 /* When an argument is padded down, the block is aligned to
4500 PARM_BOUNDARY, but the actual argument isn't. */
4501 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4502 {
4503 if (arg->locate.size.var)
4504 parm_align = BITS_PER_UNIT;
4505 else if (excess)
4506 {
4507 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4508 parm_align = MIN (parm_align, excess_align);
4509 }
4510 }
4511
4512 if ((flags & ECF_SIBCALL) && GET_CODE (arg->value) == MEM)
4513 {
4514 /* emit_push_insn might not work properly if arg->value and
4515 argblock + arg->locate.offset areas overlap. */
4516 rtx x = arg->value;
4517 int i = 0;
4518
4519 if (XEXP (x, 0) == current_function_internal_arg_pointer
4520 || (GET_CODE (XEXP (x, 0)) == PLUS
4521 && XEXP (XEXP (x, 0), 0) ==
4522 current_function_internal_arg_pointer
4523 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4524 {
4525 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4526 i = INTVAL (XEXP (XEXP (x, 0), 1));
4527
4528 /* expand_call should ensure this. */
4529 if (arg->locate.offset.var || GET_CODE (size_rtx) != CONST_INT)
4530 abort ();
4531
4532 if (arg->locate.offset.constant > i)
4533 {
4534 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4535 sibcall_failure = 1;
4536 }
4537 else if (arg->locate.offset.constant < i)
4538 {
4539 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4540 sibcall_failure = 1;
4541 }
4542 }
4543 }
4544
4545 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4546 parm_align, partial, reg, excess, argblock,
4547 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4548 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4549
4550 /* Unless this is a partially-in-register argument, the argument is now
4551 in the stack.
4552
4553 ??? Unlike the case above, in which we want the actual
4554 address of the data, so that we can load it directly into a
4555 register, here we want the address of the stack slot, so that
4556 it's properly aligned for word-by-word copying or something
4557 like that. It's not clear that this is always correct. */
4558 if (partial == 0)
4559 arg->value = arg->stack_slot;
4560 }
4561
4562 /* Mark all slots this store used. */
4563 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4564 && argblock && ! variable_size && arg->stack)
4565 for (i = lower_bound; i < upper_bound; i++)
4566 stack_usage_map[i] = 1;
4567
4568 /* Once we have pushed something, pops can't safely
4569 be deferred during the rest of the arguments. */
4570 NO_DEFER_POP;
4571
4572 /* ANSI doesn't require a sequence point here,
4573 but PCC has one, so this will avoid some problems. */
4574 emit_queue ();
4575
4576 /* Free any temporary slots made in processing this argument. Show
4577 that we might have taken the address of something and pushed that
4578 as an operand. */
4579 preserve_temp_slots (NULL_RTX);
4580 free_temp_slots ();
4581 pop_temp_slots ();
4582
4583 return sibcall_failure;
4584 }
4585
4586 /* Nonzero if we do not know how to pass TYPE solely in registers.
4587 We cannot do so in the following cases:
4588
4589 - if the type has variable size
4590 - if the type is marked as addressable (it is required to be constructed
4591 into the stack)
4592 - if the padding and mode of the type is such that a copy into a register
4593 would put it into the wrong part of the register.
4594
4595 Which padding can't be supported depends on the byte endianness.
4596
4597 A value in a register is implicitly padded at the most significant end.
4598 On a big-endian machine, that is the lower end in memory.
4599 So a value padded in memory at the upper end can't go in a register.
4600 For a little-endian machine, the reverse is true. */
4601
4602 bool
4603 default_must_pass_in_stack (enum machine_mode mode, tree type)
4604 {
4605 if (!type)
4606 return false;
4607
4608 /* If the type has variable size... */
4609 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4610 return true;
4611
4612 /* If the type is marked as addressable (it is required
4613 to be constructed into the stack)... */
4614 if (TREE_ADDRESSABLE (type))
4615 return true;
4616
4617 /* If the padding and mode of the type is such that a copy into
4618 a register would put it into the wrong part of the register. */
4619 if (mode == BLKmode
4620 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4621 && (FUNCTION_ARG_PADDING (mode, type)
4622 == (BYTES_BIG_ENDIAN ? upward : downward)))
4623 return true;
4624
4625 return false;
4626 }