]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.c
[Ada] Improved support for aspect alignment in CCG
[thirdparty/gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34
35 static void copy_loops_to (class loop **, int,
36 class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57 int i;
58
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
61 }
62
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
71 {
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
78 }
79
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
89 {
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops->tree_root, *act;
93
94 FOR_EACH_EDGE (e, ei, bb->succs)
95 {
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114 }
115
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
123
124 static bool
125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
126 {
127 unsigned i;
128 edge e;
129 vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (exits, i, e)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
156
157 ret = true;
158 }
159
160 exits.release ();
161 return ret;
162 }
163
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
172
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
175
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
178
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
183 {
184 basic_block *queue, *qtop, *qbeg, *qend;
185 class loop *base_loop, *target_loop;
186 edge e;
187
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
194
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
202
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
208
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
214
215 while (qbeg != qend)
216 {
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
223
224 if (from->loop_father->header == from)
225 {
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
231 {
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
236 }
237 }
238 else
239 {
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
246 }
247
248 FOR_EACH_EDGE (e, ei, from->succs)
249 {
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
252 }
253
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
256 {
257 basic_block pred = e->src;
258 class loop *nca;
259
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
262
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
265
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 {
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
281 }
282
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
285
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
292 }
293 }
294 free (queue);
295 }
296
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
303 {
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 class loop *l, *f;
311
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
314
315 if (!can_remove_branch_p (e))
316 return false;
317
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
325
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
332
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
338 {
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
342 }
343
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
346
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
351
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 {
361 *irred_invalidated = true;
362 break;
363 }
364
365 for (i = 0; i < nrem; i++)
366 {
367 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
368 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && !bitmap_bit_p (seen, ae->dest->index))
370 {
371 bitmap_set_bit (seen, ae->dest->index);
372 bord_bbs[n_bord_bbs++] = ae->dest;
373
374 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
375 *irred_invalidated = true;
376 }
377 }
378
379 /* Remove the path. */
380 from = e->src;
381 remove_branch (e);
382 dom_bbs.create (0);
383
384 /* Cancel loops contained in the path. */
385 for (i = 0; i < nrem; i++)
386 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
387 cancel_loop_tree (rem_bbs[i]->loop_father);
388
389 remove_bbs (rem_bbs, nrem);
390 free (rem_bbs);
391
392 /* Find blocks whose dominators may be affected. */
393 bitmap_clear (seen);
394 for (i = 0; i < n_bord_bbs; i++)
395 {
396 basic_block ldom;
397
398 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
399 if (bitmap_bit_p (seen, bb->index))
400 continue;
401 bitmap_set_bit (seen, bb->index);
402
403 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 ldom;
405 ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
407 dom_bbs.safe_push (ldom);
408 }
409
410 /* Recount dominators. */
411 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
412 dom_bbs.release ();
413 free (bord_bbs);
414
415 /* Fix placements of basic blocks inside loops and the placement of
416 loops in the loop tree. */
417 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
418 fix_loop_placements (from->loop_father, irred_invalidated);
419
420 if (local_irred_invalidated
421 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
422 mark_irreducible_loops ();
423
424 return true;
425 }
426
427 /* Creates place for a new LOOP in loops structure of FN. */
428
429 void
430 place_new_loop (struct function *fn, class loop *loop)
431 {
432 loop->num = number_of_loops (fn);
433 vec_safe_push (loops_for_fn (fn)->larray, loop);
434 }
435
436 /* Given LOOP structure with filled header and latch, find the body of the
437 corresponding loop and add it to loops tree. Insert the LOOP as a son of
438 outer. */
439
440 void
441 add_loop (class loop *loop, class loop *outer)
442 {
443 basic_block *bbs;
444 int i, n;
445 class loop *subloop;
446 edge e;
447 edge_iterator ei;
448
449 /* Add it to loop structure. */
450 place_new_loop (cfun, loop);
451 flow_loop_tree_node_add (outer, loop);
452
453 /* Find its nodes. */
454 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
455 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
456
457 for (i = 0; i < n; i++)
458 {
459 if (bbs[i]->loop_father == outer)
460 {
461 remove_bb_from_loops (bbs[i]);
462 add_bb_to_loop (bbs[i], loop);
463 continue;
464 }
465
466 loop->num_nodes++;
467
468 /* If we find a direct subloop of OUTER, move it to LOOP. */
469 subloop = bbs[i]->loop_father;
470 if (loop_outer (subloop) == outer
471 && subloop->header == bbs[i])
472 {
473 flow_loop_tree_node_remove (subloop);
474 flow_loop_tree_node_add (loop, subloop);
475 }
476 }
477
478 /* Update the information about loop exit edges. */
479 for (i = 0; i < n; i++)
480 {
481 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 {
483 rescan_loop_exit (e, false, false);
484 }
485 }
486
487 free (bbs);
488 }
489
490 /* Scale profile of loop by P. */
491
492 void
493 scale_loop_frequencies (class loop *loop, profile_probability p)
494 {
495 basic_block *bbs;
496
497 bbs = get_loop_body (loop);
498 scale_bbs_frequencies (bbs, loop->num_nodes, p);
499 free (bbs);
500 }
501
502 /* Scale profile in LOOP by P.
503 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
504 to iterate too many times.
505 Before caling this function, preheader block profile should be already
506 scaled to final count. This is necessary because loop iterations are
507 determined by comparing header edge count to latch ege count and thus
508 they need to be scaled synchronously. */
509
510 void
511 scale_loop_profile (class loop *loop, profile_probability p,
512 gcov_type iteration_bound)
513 {
514 edge e, preheader_e;
515 edge_iterator ei;
516
517 if (dump_file && (dump_flags & TDF_DETAILS))
518 {
519 fprintf (dump_file, ";; Scaling loop %i with scale ",
520 loop->num);
521 p.dump (dump_file);
522 fprintf (dump_file, " bounding iterations to %i\n",
523 (int)iteration_bound);
524 }
525
526 /* Scale the probabilities. */
527 scale_loop_frequencies (loop, p);
528
529 if (iteration_bound == 0)
530 return;
531
532 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
533
534 if (dump_file && (dump_flags & TDF_DETAILS))
535 {
536 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
537 (int)iterations);
538 }
539
540 /* See if loop is predicted to iterate too many times. */
541 if (iterations <= iteration_bound)
542 return;
543
544 preheader_e = loop_preheader_edge (loop);
545
546 /* We could handle also loops without preheaders, but bounding is
547 currently used only by optimizers that have preheaders constructed. */
548 gcc_checking_assert (preheader_e);
549 profile_count count_in = preheader_e->count ();
550
551 if (count_in > profile_count::zero ()
552 && loop->header->count.initialized_p ())
553 {
554 profile_count count_delta = profile_count::zero ();
555
556 e = single_exit (loop);
557 if (e)
558 {
559 edge other_e;
560 FOR_EACH_EDGE (other_e, ei, e->src->succs)
561 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
562 && e != other_e)
563 break;
564
565 /* Probability of exit must be 1/iterations. */
566 count_delta = e->count ();
567 e->probability = profile_probability::always ()
568 .apply_scale (1, iteration_bound);
569 other_e->probability = e->probability.invert ();
570
571 /* In code below we only handle the following two updates. */
572 if (other_e->dest != loop->header
573 && other_e->dest != loop->latch
574 && (dump_file && (dump_flags & TDF_DETAILS)))
575 {
576 fprintf (dump_file, ";; giving up on update of paths from "
577 "exit condition to latch\n");
578 }
579 }
580 else
581 if (dump_file && (dump_flags & TDF_DETAILS))
582 fprintf (dump_file, ";; Loop has multiple exit edges; "
583 "giving up on exit condition update\n");
584
585 /* Roughly speaking we want to reduce the loop body profile by the
586 difference of loop iterations. We however can do better if
587 we look at the actual profile, if it is available. */
588 p = profile_probability::always ();
589
590 count_in = count_in.apply_scale (iteration_bound, 1);
591 p = count_in.probability_in (loop->header->count);
592 if (!(p > profile_probability::never ()))
593 p = profile_probability::very_unlikely ();
594
595 if (p == profile_probability::always ()
596 || !p.initialized_p ())
597 return;
598
599 /* If latch exists, change its count, since we changed
600 probability of exit. Theoretically we should update everything from
601 source of exit edge to latch, but for vectorizer this is enough. */
602 if (loop->latch && loop->latch != e->src)
603 loop->latch->count += count_delta;
604
605 /* Scale the probabilities. */
606 scale_loop_frequencies (loop, p);
607
608 /* Change latch's count back. */
609 if (loop->latch && loop->latch != e->src)
610 loop->latch->count -= count_delta;
611
612 if (dump_file && (dump_flags & TDF_DETAILS))
613 fprintf (dump_file, ";; guessed iterations are now %i\n",
614 (int)expected_loop_iterations_unbounded (loop, NULL, true));
615 }
616 }
617
618 /* Recompute dominance information for basic blocks outside LOOP. */
619
620 static void
621 update_dominators_in_loop (class loop *loop)
622 {
623 vec<basic_block> dom_bbs = vNULL;
624 basic_block *body;
625 unsigned i;
626
627 auto_sbitmap seen (last_basic_block_for_fn (cfun));
628 bitmap_clear (seen);
629 body = get_loop_body (loop);
630
631 for (i = 0; i < loop->num_nodes; i++)
632 bitmap_set_bit (seen, body[i]->index);
633
634 for (i = 0; i < loop->num_nodes; i++)
635 {
636 basic_block ldom;
637
638 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
639 ldom;
640 ldom = next_dom_son (CDI_DOMINATORS, ldom))
641 if (!bitmap_bit_p (seen, ldom->index))
642 {
643 bitmap_set_bit (seen, ldom->index);
644 dom_bbs.safe_push (ldom);
645 }
646 }
647
648 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
649 free (body);
650 dom_bbs.release ();
651 }
652
653 /* Creates an if region as shown above. CONDITION is used to create
654 the test for the if.
655
656 |
657 | ------------- -------------
658 | | pred_bb | | pred_bb |
659 | ------------- -------------
660 | | |
661 | | | ENTRY_EDGE
662 | | ENTRY_EDGE V
663 | | ====> -------------
664 | | | cond_bb |
665 | | | CONDITION |
666 | | -------------
667 | V / \
668 | ------------- e_false / \ e_true
669 | | succ_bb | V V
670 | ------------- ----------- -----------
671 | | false_bb | | true_bb |
672 | ----------- -----------
673 | \ /
674 | \ /
675 | V V
676 | -------------
677 | | join_bb |
678 | -------------
679 | | exit_edge (result)
680 | V
681 | -----------
682 | | succ_bb |
683 | -----------
684 |
685 */
686
687 edge
688 create_empty_if_region_on_edge (edge entry_edge, tree condition)
689 {
690
691 basic_block cond_bb, true_bb, false_bb, join_bb;
692 edge e_true, e_false, exit_edge;
693 gcond *cond_stmt;
694 tree simple_cond;
695 gimple_stmt_iterator gsi;
696
697 cond_bb = split_edge (entry_edge);
698
699 /* Insert condition in cond_bb. */
700 gsi = gsi_last_bb (cond_bb);
701 simple_cond =
702 force_gimple_operand_gsi (&gsi, condition, true, NULL,
703 false, GSI_NEW_STMT);
704 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
705 gsi = gsi_last_bb (cond_bb);
706 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
707
708 join_bb = split_edge (single_succ_edge (cond_bb));
709
710 e_true = single_succ_edge (cond_bb);
711 true_bb = split_edge (e_true);
712
713 e_false = make_edge (cond_bb, join_bb, 0);
714 false_bb = split_edge (e_false);
715
716 e_true->flags &= ~EDGE_FALLTHRU;
717 e_true->flags |= EDGE_TRUE_VALUE;
718 e_false->flags &= ~EDGE_FALLTHRU;
719 e_false->flags |= EDGE_FALSE_VALUE;
720
721 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
722 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
724 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
725
726 exit_edge = single_succ_edge (join_bb);
727
728 if (single_pred_p (exit_edge->dest))
729 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
730
731 return exit_edge;
732 }
733
734 /* create_empty_loop_on_edge
735 |
736 | - pred_bb - ------ pred_bb ------
737 | | | | iv0 = initial_value |
738 | -----|----- ---------|-----------
739 | | ______ | entry_edge
740 | | entry_edge / | |
741 | | ====> | -V---V- loop_header -------------
742 | V | | iv_before = phi (iv0, iv_after) |
743 | - succ_bb - | ---|-----------------------------
744 | | | | |
745 | ----------- | ---V--- loop_body ---------------
746 | | | iv_after = iv_before + stride |
747 | | | if (iv_before < upper_bound) |
748 | | ---|--------------\--------------
749 | | | \ exit_e
750 | | V \
751 | | - loop_latch - V- succ_bb -
752 | | | | | |
753 | | /------------- -----------
754 | \ ___ /
755
756 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
757 that is used before the increment of IV. IV_BEFORE should be used for
758 adding code to the body that uses the IV. OUTER is the outer loop in
759 which the new loop should be inserted.
760
761 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
762 inserted on the loop entry edge. This implies that this function
763 should be used only when the UPPER_BOUND expression is a loop
764 invariant. */
765
766 class loop *
767 create_empty_loop_on_edge (edge entry_edge,
768 tree initial_value,
769 tree stride, tree upper_bound,
770 tree iv,
771 tree *iv_before,
772 tree *iv_after,
773 class loop *outer)
774 {
775 basic_block loop_header, loop_latch, succ_bb, pred_bb;
776 class loop *loop;
777 gimple_stmt_iterator gsi;
778 gimple_seq stmts;
779 gcond *cond_expr;
780 tree exit_test;
781 edge exit_e;
782
783 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
784
785 /* Create header, latch and wire up the loop. */
786 pred_bb = entry_edge->src;
787 loop_header = split_edge (entry_edge);
788 loop_latch = split_edge (single_succ_edge (loop_header));
789 succ_bb = single_succ (loop_latch);
790 make_edge (loop_header, succ_bb, 0);
791 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
792
793 /* Set immediate dominator information. */
794 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
795 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
796 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
797
798 /* Initialize a loop structure and put it in a loop hierarchy. */
799 loop = alloc_loop ();
800 loop->header = loop_header;
801 loop->latch = loop_latch;
802 add_loop (loop, outer);
803
804 /* TODO: Fix counts. */
805 scale_loop_frequencies (loop, profile_probability::even ());
806
807 /* Update dominators. */
808 update_dominators_in_loop (loop);
809
810 /* Modify edge flags. */
811 exit_e = single_exit (loop);
812 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
813 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
814
815 /* Construct IV code in loop. */
816 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
817 if (stmts)
818 {
819 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
820 gsi_commit_edge_inserts ();
821 }
822
823 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
824 if (stmts)
825 {
826 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
827 gsi_commit_edge_inserts ();
828 }
829
830 gsi = gsi_last_bb (loop_header);
831 create_iv (initial_value, stride, iv, loop, &gsi, false,
832 iv_before, iv_after);
833
834 /* Insert loop exit condition. */
835 cond_expr = gimple_build_cond
836 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
837
838 exit_test = gimple_cond_lhs (cond_expr);
839 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
840 false, GSI_NEW_STMT);
841 gimple_cond_set_lhs (cond_expr, exit_test);
842 gsi = gsi_last_bb (exit_e->src);
843 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
844
845 split_block_after_labels (loop_header);
846
847 return loop;
848 }
849
850 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
851 latch to header and update loop tree and dominators
852 accordingly. Everything between them plus LATCH_EDGE destination must
853 be dominated by HEADER_EDGE destination, and back-reachable from
854 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
855 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
856 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
857 Returns the newly created loop. Frequencies and counts in the new loop
858 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
859
860 class loop *
861 loopify (edge latch_edge, edge header_edge,
862 basic_block switch_bb, edge true_edge, edge false_edge,
863 bool redirect_all_edges, profile_probability true_scale,
864 profile_probability false_scale)
865 {
866 basic_block succ_bb = latch_edge->dest;
867 basic_block pred_bb = header_edge->src;
868 class loop *loop = alloc_loop ();
869 class loop *outer = loop_outer (succ_bb->loop_father);
870 profile_count cnt;
871
872 loop->header = header_edge->dest;
873 loop->latch = latch_edge->src;
874
875 cnt = header_edge->count ();
876
877 /* Redirect edges. */
878 loop_redirect_edge (latch_edge, loop->header);
879 loop_redirect_edge (true_edge, succ_bb);
880
881 /* During loop versioning, one of the switch_bb edge is already properly
882 set. Do not redirect it again unless redirect_all_edges is true. */
883 if (redirect_all_edges)
884 {
885 loop_redirect_edge (header_edge, switch_bb);
886 loop_redirect_edge (false_edge, loop->header);
887
888 /* Update dominators. */
889 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
890 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
891 }
892
893 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
894
895 /* Compute new loop. */
896 add_loop (loop, outer);
897
898 /* Add switch_bb to appropriate loop. */
899 if (switch_bb->loop_father)
900 remove_bb_from_loops (switch_bb);
901 add_bb_to_loop (switch_bb, outer);
902
903 /* Fix counts. */
904 if (redirect_all_edges)
905 {
906 switch_bb->count = cnt;
907 }
908 scale_loop_frequencies (loop, false_scale);
909 scale_loop_frequencies (succ_bb->loop_father, true_scale);
910 update_dominators_in_loop (loop);
911
912 return loop;
913 }
914
915 /* Remove the latch edge of a LOOP and update loops to indicate that
916 the LOOP was removed. After this function, original loop latch will
917 have no successor, which caller is expected to fix somehow.
918
919 If this may cause the information about irreducible regions to become
920 invalid, IRRED_INVALIDATED is set to true.
921
922 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
923 basic blocks that had non-trivial update on their loop_father.*/
924
925 void
926 unloop (class loop *loop, bool *irred_invalidated,
927 bitmap loop_closed_ssa_invalidated)
928 {
929 basic_block *body;
930 class loop *ploop;
931 unsigned i, n;
932 basic_block latch = loop->latch;
933 bool dummy = false;
934
935 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
936 *irred_invalidated = true;
937
938 /* This is relatively straightforward. The dominators are unchanged, as
939 loop header dominates loop latch, so the only thing we have to care of
940 is the placement of loops and basic blocks inside the loop tree. We
941 move them all to the loop->outer, and then let fix_bb_placements do
942 its work. */
943
944 body = get_loop_body (loop);
945 n = loop->num_nodes;
946 for (i = 0; i < n; i++)
947 if (body[i]->loop_father == loop)
948 {
949 remove_bb_from_loops (body[i]);
950 add_bb_to_loop (body[i], loop_outer (loop));
951 }
952 free (body);
953
954 while (loop->inner)
955 {
956 ploop = loop->inner;
957 flow_loop_tree_node_remove (ploop);
958 flow_loop_tree_node_add (loop_outer (loop), ploop);
959 }
960
961 /* Remove the loop and free its data. */
962 delete_loop (loop);
963
964 remove_edge (single_succ_edge (latch));
965
966 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
967 there is an irreducible region inside the cancelled loop, the flags will
968 be still correct. */
969 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
970 }
971
972 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
973 condition stated in description of fix_loop_placement holds for them.
974 It is used in case when we removed some edges coming out of LOOP, which
975 may cause the right placement of LOOP inside loop tree to change.
976
977 IRRED_INVALIDATED is set to true if a change in the loop structures might
978 invalidate the information about irreducible regions. */
979
980 static void
981 fix_loop_placements (class loop *loop, bool *irred_invalidated)
982 {
983 class loop *outer;
984
985 while (loop_outer (loop))
986 {
987 outer = loop_outer (loop);
988 if (!fix_loop_placement (loop, irred_invalidated))
989 break;
990
991 /* Changing the placement of a loop in the loop tree may alter the
992 validity of condition 2) of the description of fix_bb_placement
993 for its preheader, because the successor is the header and belongs
994 to the loop. So call fix_bb_placements to fix up the placement
995 of the preheader and (possibly) of its predecessors. */
996 fix_bb_placements (loop_preheader_edge (loop)->src,
997 irred_invalidated, NULL);
998 loop = outer;
999 }
1000 }
1001
1002 /* Duplicate loop bounds and other information we store about
1003 the loop into its duplicate. */
1004
1005 void
1006 copy_loop_info (class loop *loop, class loop *target)
1007 {
1008 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1009 target->any_upper_bound = loop->any_upper_bound;
1010 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1011 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1012 target->nb_iterations_likely_upper_bound
1013 = loop->nb_iterations_likely_upper_bound;
1014 target->any_estimate = loop->any_estimate;
1015 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1016 target->estimate_state = loop->estimate_state;
1017 target->safelen = loop->safelen;
1018 target->simdlen = loop->simdlen;
1019 target->constraints = loop->constraints;
1020 target->can_be_parallel = loop->can_be_parallel;
1021 target->warned_aggressive_loop_optimizations
1022 |= loop->warned_aggressive_loop_optimizations;
1023 target->dont_vectorize = loop->dont_vectorize;
1024 target->force_vectorize = loop->force_vectorize;
1025 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1026 target->finite_p = loop->finite_p;
1027 target->unroll = loop->unroll;
1028 target->owned_clique = loop->owned_clique;
1029 }
1030
1031 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1032 created loop into loops structure. If AFTER is non-null
1033 the new loop is added at AFTER->next, otherwise in front of TARGETs
1034 sibling list. */
1035 class loop *
1036 duplicate_loop (class loop *loop, class loop *target, class loop *after)
1037 {
1038 class loop *cloop;
1039 cloop = alloc_loop ();
1040 place_new_loop (cfun, cloop);
1041
1042 copy_loop_info (loop, cloop);
1043
1044 /* Mark the new loop as copy of LOOP. */
1045 set_loop_copy (loop, cloop);
1046
1047 /* Add it to target. */
1048 flow_loop_tree_node_add (target, cloop, after);
1049
1050 return cloop;
1051 }
1052
1053 /* Copies structure of subloops of LOOP into TARGET loop, placing
1054 newly created loops into loop tree at the end of TARGETs sibling
1055 list in the original order. */
1056 void
1057 duplicate_subloops (class loop *loop, class loop *target)
1058 {
1059 class loop *aloop, *cloop, *tail;
1060
1061 for (tail = target->inner; tail && tail->next; tail = tail->next)
1062 ;
1063 for (aloop = loop->inner; aloop; aloop = aloop->next)
1064 {
1065 cloop = duplicate_loop (aloop, target, tail);
1066 tail = cloop;
1067 gcc_assert(!tail->next);
1068 duplicate_subloops (aloop, cloop);
1069 }
1070 }
1071
1072 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1073 into TARGET loop, placing newly created loops into loop tree adding
1074 them to TARGETs sibling list at the end in order. */
1075 static void
1076 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1077 {
1078 class loop *aloop, *tail;
1079 int i;
1080
1081 for (tail = target->inner; tail && tail->next; tail = tail->next)
1082 ;
1083 for (i = 0; i < n; i++)
1084 {
1085 aloop = duplicate_loop (copied_loops[i], target, tail);
1086 tail = aloop;
1087 gcc_assert(!tail->next);
1088 duplicate_subloops (copied_loops[i], aloop);
1089 }
1090 }
1091
1092 /* Redirects edge E to basic block DEST. */
1093 static void
1094 loop_redirect_edge (edge e, basic_block dest)
1095 {
1096 if (e->dest == dest)
1097 return;
1098
1099 redirect_edge_and_branch_force (e, dest);
1100 }
1101
1102 /* Check whether LOOP's body can be duplicated. */
1103 bool
1104 can_duplicate_loop_p (const class loop *loop)
1105 {
1106 int ret;
1107 basic_block *bbs = get_loop_body (loop);
1108
1109 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1110 free (bbs);
1111
1112 return ret;
1113 }
1114
1115 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1116 loop structure and dominators (order of inner subloops is retained).
1117 E's destination must be LOOP header for this to work, i.e. it must be entry
1118 or latch edge of this loop; these are unique, as the loops must have
1119 preheaders for this function to work correctly (in case E is latch, the
1120 function unrolls the loop, if E is entry edge, it peels the loop). Store
1121 edges created by copying ORIG edge from copies corresponding to set bits in
1122 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1123 are numbered in order given by control flow through them) into TO_REMOVE
1124 array. Returns false if duplication is
1125 impossible. */
1126
1127 bool
1128 duplicate_loop_to_header_edge (class loop *loop, edge e,
1129 unsigned int ndupl, sbitmap wont_exit,
1130 edge orig, vec<edge> *to_remove,
1131 int flags)
1132 {
1133 class loop *target, *aloop;
1134 class loop **orig_loops;
1135 unsigned n_orig_loops;
1136 basic_block header = loop->header, latch = loop->latch;
1137 basic_block *new_bbs, *bbs, *first_active;
1138 basic_block new_bb, bb, first_active_latch = NULL;
1139 edge ae, latch_edge;
1140 edge spec_edges[2], new_spec_edges[2];
1141 const int SE_LATCH = 0;
1142 const int SE_ORIG = 1;
1143 unsigned i, j, n;
1144 int is_latch = (latch == e->src);
1145 profile_probability *scale_step = NULL;
1146 profile_probability scale_main = profile_probability::always ();
1147 profile_probability scale_act = profile_probability::always ();
1148 profile_count after_exit_num = profile_count::zero (),
1149 after_exit_den = profile_count::zero ();
1150 bool scale_after_exit = false;
1151 int add_irreducible_flag;
1152 basic_block place_after;
1153 bitmap bbs_to_scale = NULL;
1154 bitmap_iterator bi;
1155
1156 gcc_assert (e->dest == loop->header);
1157 gcc_assert (ndupl > 0);
1158
1159 if (orig)
1160 {
1161 /* Orig must be edge out of the loop. */
1162 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1163 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1164 }
1165
1166 n = loop->num_nodes;
1167 bbs = get_loop_body_in_dom_order (loop);
1168 gcc_assert (bbs[0] == loop->header);
1169 gcc_assert (bbs[n - 1] == loop->latch);
1170
1171 /* Check whether duplication is possible. */
1172 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1173 {
1174 free (bbs);
1175 return false;
1176 }
1177 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1178
1179 /* In case we are doing loop peeling and the loop is in the middle of
1180 irreducible region, the peeled copies will be inside it too. */
1181 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1182 gcc_assert (!is_latch || !add_irreducible_flag);
1183
1184 /* Find edge from latch. */
1185 latch_edge = loop_latch_edge (loop);
1186
1187 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1188 {
1189 /* Calculate coefficients by that we have to scale counts
1190 of duplicated loop bodies. */
1191 profile_count count_in = header->count;
1192 profile_count count_le = latch_edge->count ();
1193 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1194 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1195 profile_probability prob_pass_wont_exit =
1196 (count_le + count_out_orig).probability_in (count_in);
1197
1198 if (orig && orig->probability.initialized_p ()
1199 && !(orig->probability == profile_probability::always ()))
1200 {
1201 /* The blocks that are dominated by a removed exit edge ORIG have
1202 frequencies scaled by this. */
1203 if (orig->count ().initialized_p ())
1204 {
1205 after_exit_num = orig->src->count;
1206 after_exit_den = after_exit_num - orig->count ();
1207 scale_after_exit = true;
1208 }
1209 bbs_to_scale = BITMAP_ALLOC (NULL);
1210 for (i = 0; i < n; i++)
1211 {
1212 if (bbs[i] != orig->src
1213 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1214 bitmap_set_bit (bbs_to_scale, i);
1215 }
1216 }
1217
1218 scale_step = XNEWVEC (profile_probability, ndupl);
1219
1220 for (i = 1; i <= ndupl; i++)
1221 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1222 ? prob_pass_wont_exit
1223 : prob_pass_thru;
1224
1225 /* Complete peeling is special as the probability of exit in last
1226 copy becomes 1. */
1227 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1228 {
1229 profile_count wanted_count = e->count ();
1230
1231 gcc_assert (!is_latch);
1232 /* First copy has count of incoming edge. Each subsequent
1233 count should be reduced by prob_pass_wont_exit. Caller
1234 should've managed the flags so all except for original loop
1235 has won't exist set. */
1236 scale_act = wanted_count.probability_in (count_in);
1237 /* Now simulate the duplication adjustments and compute header
1238 frequency of the last copy. */
1239 for (i = 0; i < ndupl; i++)
1240 wanted_count = wanted_count.apply_probability (scale_step [i]);
1241 scale_main = wanted_count.probability_in (count_in);
1242 }
1243 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1244 First iteration will be original loop followed by duplicated bodies.
1245 It is necessary to scale down the original so we get right overall
1246 number of iterations. */
1247 else if (is_latch)
1248 {
1249 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1250 ? prob_pass_wont_exit
1251 : prob_pass_thru;
1252 profile_probability p = prob_pass_main;
1253 profile_count scale_main_den = count_in;
1254 for (i = 0; i < ndupl; i++)
1255 {
1256 scale_main_den += count_in.apply_probability (p);
1257 p = p * scale_step[i];
1258 }
1259 /* If original loop is executed COUNT_IN times, the unrolled
1260 loop will account SCALE_MAIN_DEN times. */
1261 scale_main = count_in.probability_in (scale_main_den);
1262 scale_act = scale_main * prob_pass_main;
1263 }
1264 else
1265 {
1266 profile_count preheader_count = e->count ();
1267 for (i = 0; i < ndupl; i++)
1268 scale_main = scale_main * scale_step[i];
1269 scale_act = preheader_count.probability_in (count_in);
1270 }
1271 }
1272
1273 /* Loop the new bbs will belong to. */
1274 target = e->src->loop_father;
1275
1276 /* Original loops. */
1277 n_orig_loops = 0;
1278 for (aloop = loop->inner; aloop; aloop = aloop->next)
1279 n_orig_loops++;
1280 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1281 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1282 orig_loops[i] = aloop;
1283
1284 set_loop_copy (loop, target);
1285
1286 first_active = XNEWVEC (basic_block, n);
1287 if (is_latch)
1288 {
1289 memcpy (first_active, bbs, n * sizeof (basic_block));
1290 first_active_latch = latch;
1291 }
1292
1293 spec_edges[SE_ORIG] = orig;
1294 spec_edges[SE_LATCH] = latch_edge;
1295
1296 place_after = e->src;
1297 for (j = 0; j < ndupl; j++)
1298 {
1299 /* Copy loops. */
1300 copy_loops_to (orig_loops, n_orig_loops, target);
1301
1302 /* Copy bbs. */
1303 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1304 place_after, true);
1305 place_after = new_spec_edges[SE_LATCH]->src;
1306
1307 if (flags & DLTHE_RECORD_COPY_NUMBER)
1308 for (i = 0; i < n; i++)
1309 {
1310 gcc_assert (!new_bbs[i]->aux);
1311 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1312 }
1313
1314 /* Note whether the blocks and edges belong to an irreducible loop. */
1315 if (add_irreducible_flag)
1316 {
1317 for (i = 0; i < n; i++)
1318 new_bbs[i]->flags |= BB_DUPLICATED;
1319 for (i = 0; i < n; i++)
1320 {
1321 edge_iterator ei;
1322 new_bb = new_bbs[i];
1323 if (new_bb->loop_father == target)
1324 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1325
1326 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1327 if ((ae->dest->flags & BB_DUPLICATED)
1328 && (ae->src->loop_father == target
1329 || ae->dest->loop_father == target))
1330 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1331 }
1332 for (i = 0; i < n; i++)
1333 new_bbs[i]->flags &= ~BB_DUPLICATED;
1334 }
1335
1336 /* Redirect the special edges. */
1337 if (is_latch)
1338 {
1339 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1340 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1341 loop->header);
1342 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1343 latch = loop->latch = new_bbs[n - 1];
1344 e = latch_edge = new_spec_edges[SE_LATCH];
1345 }
1346 else
1347 {
1348 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1349 loop->header);
1350 redirect_edge_and_branch_force (e, new_bbs[0]);
1351 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1352 e = new_spec_edges[SE_LATCH];
1353 }
1354
1355 /* Record exit edge in this copy. */
1356 if (orig && bitmap_bit_p (wont_exit, j + 1))
1357 {
1358 if (to_remove)
1359 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1360 force_edge_cold (new_spec_edges[SE_ORIG], true);
1361
1362 /* Scale the frequencies of the blocks dominated by the exit. */
1363 if (bbs_to_scale && scale_after_exit)
1364 {
1365 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1366 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1367 after_exit_den);
1368 }
1369 }
1370
1371 /* Record the first copy in the control flow order if it is not
1372 the original loop (i.e. in case of peeling). */
1373 if (!first_active_latch)
1374 {
1375 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1376 first_active_latch = new_bbs[n - 1];
1377 }
1378
1379 /* Set counts and frequencies. */
1380 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1381 {
1382 scale_bbs_frequencies (new_bbs, n, scale_act);
1383 scale_act = scale_act * scale_step[j];
1384 }
1385 }
1386 free (new_bbs);
1387 free (orig_loops);
1388
1389 /* Record the exit edge in the original loop body, and update the frequencies. */
1390 if (orig && bitmap_bit_p (wont_exit, 0))
1391 {
1392 if (to_remove)
1393 to_remove->safe_push (orig);
1394 force_edge_cold (orig, true);
1395
1396 /* Scale the frequencies of the blocks dominated by the exit. */
1397 if (bbs_to_scale && scale_after_exit)
1398 {
1399 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1400 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1401 after_exit_den);
1402 }
1403 }
1404
1405 /* Update the original loop. */
1406 if (!is_latch)
1407 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1408 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1409 {
1410 scale_bbs_frequencies (bbs, n, scale_main);
1411 free (scale_step);
1412 }
1413
1414 /* Update dominators of outer blocks if affected. */
1415 for (i = 0; i < n; i++)
1416 {
1417 basic_block dominated, dom_bb;
1418 vec<basic_block> dom_bbs;
1419 unsigned j;
1420
1421 bb = bbs[i];
1422 bb->aux = 0;
1423
1424 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1425 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1426 {
1427 if (flow_bb_inside_loop_p (loop, dominated))
1428 continue;
1429 dom_bb = nearest_common_dominator (
1430 CDI_DOMINATORS, first_active[i], first_active_latch);
1431 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1432 }
1433 dom_bbs.release ();
1434 }
1435 free (first_active);
1436
1437 free (bbs);
1438 BITMAP_FREE (bbs_to_scale);
1439
1440 return true;
1441 }
1442
1443 /* A callback for make_forwarder block, to redirect all edges except for
1444 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1445 whether to redirect it. */
1446
1447 edge mfb_kj_edge;
1448 bool
1449 mfb_keep_just (edge e)
1450 {
1451 return e != mfb_kj_edge;
1452 }
1453
1454 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1455
1456 static bool
1457 has_preds_from_loop (basic_block block, class loop *loop)
1458 {
1459 edge e;
1460 edge_iterator ei;
1461
1462 FOR_EACH_EDGE (e, ei, block->preds)
1463 if (e->src->loop_father == loop)
1464 return true;
1465 return false;
1466 }
1467
1468 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1469 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1470 entry; otherwise we also force preheader block to have only one successor.
1471 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1472 to be a fallthru predecessor to the loop header and to have only
1473 predecessors from outside of the loop.
1474 The function also updates dominators. */
1475
1476 basic_block
1477 create_preheader (class loop *loop, int flags)
1478 {
1479 edge e;
1480 basic_block dummy;
1481 int nentry = 0;
1482 bool irred = false;
1483 bool latch_edge_was_fallthru;
1484 edge one_succ_pred = NULL, single_entry = NULL;
1485 edge_iterator ei;
1486
1487 FOR_EACH_EDGE (e, ei, loop->header->preds)
1488 {
1489 if (e->src == loop->latch)
1490 continue;
1491 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1492 nentry++;
1493 single_entry = e;
1494 if (single_succ_p (e->src))
1495 one_succ_pred = e;
1496 }
1497 gcc_assert (nentry);
1498 if (nentry == 1)
1499 {
1500 bool need_forwarder_block = false;
1501
1502 /* We do not allow entry block to be the loop preheader, since we
1503 cannot emit code there. */
1504 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1505 need_forwarder_block = true;
1506 else
1507 {
1508 /* If we want simple preheaders, also force the preheader to have
1509 just a single successor and a normal edge. */
1510 if ((flags & CP_SIMPLE_PREHEADERS)
1511 && ((single_entry->flags & EDGE_COMPLEX)
1512 || !single_succ_p (single_entry->src)))
1513 need_forwarder_block = true;
1514 /* If we want fallthru preheaders, also create forwarder block when
1515 preheader ends with a jump or has predecessors from loop. */
1516 else if ((flags & CP_FALLTHRU_PREHEADERS)
1517 && (JUMP_P (BB_END (single_entry->src))
1518 || has_preds_from_loop (single_entry->src, loop)))
1519 need_forwarder_block = true;
1520 }
1521 if (! need_forwarder_block)
1522 return NULL;
1523 }
1524
1525 mfb_kj_edge = loop_latch_edge (loop);
1526 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1527 if (nentry == 1
1528 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1529 || (single_entry->flags & EDGE_CROSSING) == 0))
1530 dummy = split_edge (single_entry);
1531 else
1532 {
1533 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1534 dummy = fallthru->src;
1535 loop->header = fallthru->dest;
1536 }
1537
1538 /* Try to be clever in placing the newly created preheader. The idea is to
1539 avoid breaking any "fallthruness" relationship between blocks.
1540
1541 The preheader was created just before the header and all incoming edges
1542 to the header were redirected to the preheader, except the latch edge.
1543 So the only problematic case is when this latch edge was a fallthru
1544 edge: it is not anymore after the preheader creation so we have broken
1545 the fallthruness. We're therefore going to look for a better place. */
1546 if (latch_edge_was_fallthru)
1547 {
1548 if (one_succ_pred)
1549 e = one_succ_pred;
1550 else
1551 e = EDGE_PRED (dummy, 0);
1552
1553 move_block_after (dummy, e->src);
1554 }
1555
1556 if (irred)
1557 {
1558 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1559 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1560 }
1561
1562 if (dump_file)
1563 fprintf (dump_file, "Created preheader block for loop %i\n",
1564 loop->num);
1565
1566 if (flags & CP_FALLTHRU_PREHEADERS)
1567 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1568 && !JUMP_P (BB_END (dummy)));
1569
1570 return dummy;
1571 }
1572
1573 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1574
1575 void
1576 create_preheaders (int flags)
1577 {
1578 class loop *loop;
1579
1580 if (!current_loops)
1581 return;
1582
1583 FOR_EACH_LOOP (loop, 0)
1584 create_preheader (loop, flags);
1585 loops_state_set (LOOPS_HAVE_PREHEADERS);
1586 }
1587
1588 /* Forces all loop latches to have only single successor. */
1589
1590 void
1591 force_single_succ_latches (void)
1592 {
1593 class loop *loop;
1594 edge e;
1595
1596 FOR_EACH_LOOP (loop, 0)
1597 {
1598 if (loop->latch != loop->header && single_succ_p (loop->latch))
1599 continue;
1600
1601 e = find_edge (loop->latch, loop->header);
1602 gcc_checking_assert (e != NULL);
1603
1604 split_edge (e);
1605 }
1606 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1607 }
1608
1609 /* This function is called from loop_version. It splits the entry edge
1610 of the loop we want to version, adds the versioning condition, and
1611 adjust the edges to the two versions of the loop appropriately.
1612 e is an incoming edge. Returns the basic block containing the
1613 condition.
1614
1615 --- edge e ---- > [second_head]
1616
1617 Split it and insert new conditional expression and adjust edges.
1618
1619 --- edge e ---> [cond expr] ---> [first_head]
1620 |
1621 +---------> [second_head]
1622
1623 THEN_PROB is the probability of then branch of the condition.
1624 ELSE_PROB is the probability of else branch. Note that they may be both
1625 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1626 IFN_LOOP_DIST_ALIAS. */
1627
1628 static basic_block
1629 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1630 edge e, void *cond_expr,
1631 profile_probability then_prob,
1632 profile_probability else_prob)
1633 {
1634 basic_block new_head = NULL;
1635 edge e1;
1636
1637 gcc_assert (e->dest == second_head);
1638
1639 /* Split edge 'e'. This will create a new basic block, where we can
1640 insert conditional expr. */
1641 new_head = split_edge (e);
1642
1643 lv_add_condition_to_bb (first_head, second_head, new_head,
1644 cond_expr);
1645
1646 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1647 e = single_succ_edge (new_head);
1648 e1 = make_edge (new_head, first_head,
1649 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1650 e1->probability = then_prob;
1651 e->probability = else_prob;
1652
1653 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1654 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1655
1656 /* Adjust loop header phi nodes. */
1657 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1658
1659 return new_head;
1660 }
1661
1662 /* Main entry point for Loop Versioning transformation.
1663
1664 This transformation given a condition and a loop, creates
1665 -if (condition) { loop_copy1 } else { loop_copy2 },
1666 where loop_copy1 is the loop transformed in one way, and loop_copy2
1667 is the loop transformed in another way (or unchanged). COND_EXPR
1668 may be a run time test for things that were not resolved by static
1669 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1670
1671 If non-NULL, CONDITION_BB is set to the basic block containing the
1672 condition.
1673
1674 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1675 is the ratio by that the frequencies in the original loop should
1676 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1677 new loop should be scaled.
1678
1679 If PLACE_AFTER is true, we place the new loop after LOOP in the
1680 instruction stream, otherwise it is placed before LOOP. */
1681
1682 class loop *
1683 loop_version (class loop *loop,
1684 void *cond_expr, basic_block *condition_bb,
1685 profile_probability then_prob, profile_probability else_prob,
1686 profile_probability then_scale, profile_probability else_scale,
1687 bool place_after)
1688 {
1689 basic_block first_head, second_head;
1690 edge entry, latch_edge, true_edge, false_edge;
1691 int irred_flag;
1692 class loop *nloop;
1693 basic_block cond_bb;
1694
1695 /* Record entry and latch edges for the loop */
1696 entry = loop_preheader_edge (loop);
1697 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1698 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1699
1700 /* Note down head of loop as first_head. */
1701 first_head = entry->dest;
1702
1703 /* Duplicate loop. */
1704 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1705 NULL, NULL, NULL, 0))
1706 {
1707 entry->flags |= irred_flag;
1708 return NULL;
1709 }
1710
1711 /* After duplication entry edge now points to new loop head block.
1712 Note down new head as second_head. */
1713 second_head = entry->dest;
1714
1715 /* Split loop entry edge and insert new block with cond expr. */
1716 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1717 entry, cond_expr, then_prob, else_prob);
1718 if (condition_bb)
1719 *condition_bb = cond_bb;
1720
1721 if (!cond_bb)
1722 {
1723 entry->flags |= irred_flag;
1724 return NULL;
1725 }
1726
1727 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1728
1729 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1730 nloop = loopify (latch_edge,
1731 single_pred_edge (get_bb_copy (loop->header)),
1732 cond_bb, true_edge, false_edge,
1733 false /* Do not redirect all edges. */,
1734 then_scale, else_scale);
1735
1736 copy_loop_info (loop, nloop);
1737
1738 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1739 lv_flush_pending_stmts (latch_edge);
1740
1741 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1742 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1743 lv_flush_pending_stmts (false_edge);
1744 /* Adjust irreducible flag. */
1745 if (irred_flag)
1746 {
1747 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1748 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1749 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1750 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1751 }
1752
1753 if (place_after)
1754 {
1755 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1756 unsigned i;
1757
1758 after = loop->latch;
1759
1760 for (i = 0; i < nloop->num_nodes; i++)
1761 {
1762 move_block_after (bbs[i], after);
1763 after = bbs[i];
1764 }
1765 free (bbs);
1766 }
1767
1768 /* At this point condition_bb is loop preheader with two successors,
1769 first_head and second_head. Make sure that loop preheader has only
1770 one successor. */
1771 split_edge (loop_preheader_edge (loop));
1772 split_edge (loop_preheader_edge (nloop));
1773
1774 return nloop;
1775 }