]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
Rewrite fix for PR 17356, fix for enable checking ada build failure.
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63
64 static int can_delete_note_p (rtx);
65 static int can_delete_label_p (rtx);
66 static void commit_one_edge_insertion (edge, int);
67 static rtx last_loop_beg_note (rtx);
68 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
69 static basic_block rtl_split_edge (edge);
70 static bool rtl_move_block_after (basic_block, basic_block);
71 static int rtl_verify_flow_info (void);
72 static basic_block cfg_layout_split_block (basic_block, void *);
73 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
74 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
75 static void cfg_layout_delete_block (basic_block);
76 static void rtl_delete_block (basic_block);
77 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
78 static edge rtl_redirect_edge_and_branch (edge, basic_block);
79 static basic_block rtl_split_block (basic_block, void *);
80 static void rtl_dump_bb (basic_block, FILE *, int);
81 static int rtl_verify_flow_info_1 (void);
82 static void mark_killed_regs (rtx, rtx, void *);
83 static void rtl_make_forwarder_block (edge);
84 \f
85 /* Return true if NOTE is not one of the ones that must be kept paired,
86 so that we may simply delete it. */
87
88 static int
89 can_delete_note_p (rtx note)
90 {
91 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
92 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
93 }
94
95 /* True if a given label can be deleted. */
96
97 static int
98 can_delete_label_p (rtx label)
99 {
100 return (!LABEL_PRESERVE_P (label)
101 /* User declared labels must be preserved. */
102 && LABEL_NAME (label) == 0
103 && !in_expr_list_p (forced_labels, label));
104 }
105
106 /* Delete INSN by patching it out. Return the next insn. */
107
108 rtx
109 delete_insn (rtx insn)
110 {
111 rtx next = NEXT_INSN (insn);
112 rtx note;
113 bool really_delete = true;
114
115 if (LABEL_P (insn))
116 {
117 /* Some labels can't be directly removed from the INSN chain, as they
118 might be references via variables, constant pool etc.
119 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
120 if (! can_delete_label_p (insn))
121 {
122 const char *name = LABEL_NAME (insn);
123
124 really_delete = false;
125 PUT_CODE (insn, NOTE);
126 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
127 NOTE_DELETED_LABEL_NAME (insn) = name;
128 }
129
130 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
131 }
132
133 if (really_delete)
134 {
135 /* If this insn has already been deleted, something is very wrong. */
136 gcc_assert (!INSN_DELETED_P (insn));
137 remove_insn (insn);
138 INSN_DELETED_P (insn) = 1;
139 }
140
141 /* If deleting a jump, decrement the use count of the label. Deleting
142 the label itself should happen in the normal course of block merging. */
143 if (JUMP_P (insn)
144 && JUMP_LABEL (insn)
145 && LABEL_P (JUMP_LABEL (insn)))
146 LABEL_NUSES (JUMP_LABEL (insn))--;
147
148 /* Also if deleting an insn that references a label. */
149 else
150 {
151 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
152 && LABEL_P (XEXP (note, 0)))
153 {
154 LABEL_NUSES (XEXP (note, 0))--;
155 remove_note (insn, note);
156 }
157 }
158
159 if (JUMP_P (insn)
160 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
161 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
162 {
163 rtx pat = PATTERN (insn);
164 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
165 int len = XVECLEN (pat, diff_vec_p);
166 int i;
167
168 for (i = 0; i < len; i++)
169 {
170 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
171
172 /* When deleting code in bulk (e.g. removing many unreachable
173 blocks) we can delete a label that's a target of the vector
174 before deleting the vector itself. */
175 if (!NOTE_P (label))
176 LABEL_NUSES (label)--;
177 }
178 }
179
180 return next;
181 }
182
183 /* Like delete_insn but also purge dead edges from BB. */
184 rtx
185 delete_insn_and_edges (rtx insn)
186 {
187 rtx x;
188 bool purge = false;
189
190 if (INSN_P (insn)
191 && BLOCK_FOR_INSN (insn)
192 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
193 purge = true;
194 x = delete_insn (insn);
195 if (purge)
196 purge_dead_edges (BLOCK_FOR_INSN (insn));
197 return x;
198 }
199
200 /* Unlink a chain of insns between START and FINISH, leaving notes
201 that must be paired. */
202
203 void
204 delete_insn_chain (rtx start, rtx finish)
205 {
206 rtx next;
207
208 /* Unchain the insns one by one. It would be quicker to delete all of these
209 with a single unchaining, rather than one at a time, but we need to keep
210 the NOTE's. */
211 while (1)
212 {
213 next = NEXT_INSN (start);
214 if (NOTE_P (start) && !can_delete_note_p (start))
215 ;
216 else
217 next = delete_insn (start);
218
219 if (start == finish)
220 break;
221 start = next;
222 }
223 }
224
225 /* Like delete_insn but also purge dead edges from BB. */
226 void
227 delete_insn_chain_and_edges (rtx first, rtx last)
228 {
229 bool purge = false;
230
231 if (INSN_P (last)
232 && BLOCK_FOR_INSN (last)
233 && BB_END (BLOCK_FOR_INSN (last)) == last)
234 purge = true;
235 delete_insn_chain (first, last);
236 if (purge)
237 purge_dead_edges (BLOCK_FOR_INSN (last));
238 }
239 \f
240 /* Create a new basic block consisting of the instructions between HEAD and END
241 inclusive. This function is designed to allow fast BB construction - reuses
242 the note and basic block struct in BB_NOTE, if any and do not grow
243 BASIC_BLOCK chain and should be used directly only by CFG construction code.
244 END can be NULL in to create new empty basic block before HEAD. Both END
245 and HEAD can be NULL to create basic block at the end of INSN chain.
246 AFTER is the basic block we should be put after. */
247
248 basic_block
249 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
250 {
251 basic_block bb;
252
253 if (bb_note
254 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
255 && bb->aux == NULL)
256 {
257 /* If we found an existing note, thread it back onto the chain. */
258
259 rtx after;
260
261 if (LABEL_P (head))
262 after = head;
263 else
264 {
265 after = PREV_INSN (head);
266 head = bb_note;
267 }
268
269 if (after != bb_note && NEXT_INSN (after) != bb_note)
270 reorder_insns_nobb (bb_note, bb_note, after);
271 }
272 else
273 {
274 /* Otherwise we must create a note and a basic block structure. */
275
276 bb = alloc_block ();
277
278 init_rtl_bb_info (bb);
279 if (!head && !end)
280 head = end = bb_note
281 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
282 else if (LABEL_P (head) && end)
283 {
284 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
285 if (head == end)
286 end = bb_note;
287 }
288 else
289 {
290 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
291 head = bb_note;
292 if (!end)
293 end = head;
294 }
295
296 NOTE_BASIC_BLOCK (bb_note) = bb;
297 }
298
299 /* Always include the bb note in the block. */
300 if (NEXT_INSN (end) == bb_note)
301 end = bb_note;
302
303 BB_HEAD (bb) = head;
304 BB_END (bb) = end;
305 bb->index = last_basic_block++;
306 bb->flags = BB_NEW | BB_RTL;
307 link_block (bb, after);
308 BASIC_BLOCK (bb->index) = bb;
309 update_bb_for_insn (bb);
310 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
311
312 /* Tag the block so that we know it has been used when considering
313 other basic block notes. */
314 bb->aux = bb;
315
316 return bb;
317 }
318
319 /* Create new basic block consisting of instructions in between HEAD and END
320 and place it to the BB chain after block AFTER. END can be NULL in to
321 create new empty basic block before HEAD. Both END and HEAD can be NULL to
322 create basic block at the end of INSN chain. */
323
324 static basic_block
325 rtl_create_basic_block (void *headp, void *endp, basic_block after)
326 {
327 rtx head = headp, end = endp;
328 basic_block bb;
329
330 /* Grow the basic block array if needed. */
331 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
332 {
333 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
334 VARRAY_GROW (basic_block_info, new_size);
335 }
336
337 n_basic_blocks++;
338
339 bb = create_basic_block_structure (head, end, NULL, after);
340 bb->aux = NULL;
341 return bb;
342 }
343
344 static basic_block
345 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
346 {
347 basic_block newbb = rtl_create_basic_block (head, end, after);
348
349 return newbb;
350 }
351 \f
352 /* Delete the insns in a (non-live) block. We physically delete every
353 non-deleted-note insn, and update the flow graph appropriately.
354
355 Return nonzero if we deleted an exception handler. */
356
357 /* ??? Preserving all such notes strikes me as wrong. It would be nice
358 to post-process the stream to remove empty blocks, loops, ranges, etc. */
359
360 static void
361 rtl_delete_block (basic_block b)
362 {
363 rtx insn, end, tmp;
364
365 /* If the head of this block is a CODE_LABEL, then it might be the
366 label for an exception handler which can't be reached. We need
367 to remove the label from the exception_handler_label list. */
368 insn = BB_HEAD (b);
369 if (LABEL_P (insn))
370 maybe_remove_eh_handler (insn);
371
372 /* Include any jump table following the basic block. */
373 end = BB_END (b);
374 if (tablejump_p (end, NULL, &tmp))
375 end = tmp;
376
377 /* Include any barriers that may follow the basic block. */
378 tmp = next_nonnote_insn (end);
379 while (tmp && BARRIER_P (tmp))
380 {
381 end = tmp;
382 tmp = next_nonnote_insn (end);
383 }
384
385 /* Selectively delete the entire chain. */
386 BB_HEAD (b) = NULL;
387 delete_insn_chain (insn, end);
388 }
389 \f
390 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
391
392 void
393 compute_bb_for_insn (void)
394 {
395 basic_block bb;
396
397 FOR_EACH_BB (bb)
398 {
399 rtx end = BB_END (bb);
400 rtx insn;
401
402 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
403 {
404 BLOCK_FOR_INSN (insn) = bb;
405 if (insn == end)
406 break;
407 }
408 }
409 }
410
411 /* Release the basic_block_for_insn array. */
412
413 void
414 free_bb_for_insn (void)
415 {
416 rtx insn;
417 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
418 if (!BARRIER_P (insn))
419 BLOCK_FOR_INSN (insn) = NULL;
420 }
421
422 struct tree_opt_pass pass_free_cfg =
423 {
424 NULL, /* name */
425 NULL, /* gate */
426 free_bb_for_insn, /* execute */
427 NULL, /* sub */
428 NULL, /* next */
429 0, /* static_pass_number */
430 0, /* tv_id */
431 0, /* properties_required */
432 0, /* properties_provided */
433 PROP_cfg, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
436 0 /* letter */
437 };
438
439 /* Return RTX to emit after when we want to emit code on the entry of function. */
440 rtx
441 entry_of_function (void)
442 {
443 return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
444 }
445
446 /* Update insns block within BB. */
447
448 void
449 update_bb_for_insn (basic_block bb)
450 {
451 rtx insn;
452
453 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
454 {
455 if (!BARRIER_P (insn))
456 set_block_for_insn (insn, bb);
457 if (insn == BB_END (bb))
458 break;
459 }
460 }
461 \f
462 /* Creates a new basic block just after basic block B by splitting
463 everything after specified instruction I. */
464
465 static basic_block
466 rtl_split_block (basic_block bb, void *insnp)
467 {
468 basic_block new_bb;
469 rtx insn = insnp;
470 edge e;
471 edge_iterator ei;
472
473 if (!insn)
474 {
475 insn = first_insn_after_basic_block_note (bb);
476
477 if (insn)
478 insn = PREV_INSN (insn);
479 else
480 insn = get_last_insn ();
481 }
482
483 /* We probably should check type of the insn so that we do not create
484 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
485 bother. */
486 if (insn == BB_END (bb))
487 emit_note_after (NOTE_INSN_DELETED, insn);
488
489 /* Create the new basic block. */
490 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
491 BB_COPY_PARTITION (new_bb, bb);
492 BB_END (bb) = insn;
493
494 /* Redirect the outgoing edges. */
495 new_bb->succs = bb->succs;
496 bb->succs = NULL;
497 FOR_EACH_EDGE (e, ei, new_bb->succs)
498 e->src = new_bb;
499
500 if (bb->il.rtl->global_live_at_start)
501 {
502 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
503 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
504 COPY_REG_SET (new_bb->il.rtl->global_live_at_end, bb->il.rtl->global_live_at_end);
505
506 /* We now have to calculate which registers are live at the end
507 of the split basic block and at the start of the new basic
508 block. Start with those registers that are known to be live
509 at the end of the original basic block and get
510 propagate_block to determine which registers are live. */
511 COPY_REG_SET (new_bb->il.rtl->global_live_at_start, bb->il.rtl->global_live_at_end);
512 propagate_block (new_bb, new_bb->il.rtl->global_live_at_start, NULL, NULL, 0);
513 COPY_REG_SET (bb->il.rtl->global_live_at_end,
514 new_bb->il.rtl->global_live_at_start);
515 #ifdef HAVE_conditional_execution
516 /* In the presence of conditional execution we are not able to update
517 liveness precisely. */
518 if (reload_completed)
519 {
520 bb->flags |= BB_DIRTY;
521 new_bb->flags |= BB_DIRTY;
522 }
523 #endif
524 }
525
526 return new_bb;
527 }
528
529 /* Blocks A and B are to be merged into a single block A. The insns
530 are already contiguous. */
531
532 static void
533 rtl_merge_blocks (basic_block a, basic_block b)
534 {
535 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
536 rtx del_first = NULL_RTX, del_last = NULL_RTX;
537 int b_empty = 0;
538
539 /* If there was a CODE_LABEL beginning B, delete it. */
540 if (LABEL_P (b_head))
541 {
542 /* This might have been an EH label that no longer has incoming
543 EH edges. Update data structures to match. */
544 maybe_remove_eh_handler (b_head);
545
546 /* Detect basic blocks with nothing but a label. This can happen
547 in particular at the end of a function. */
548 if (b_head == b_end)
549 b_empty = 1;
550
551 del_first = del_last = b_head;
552 b_head = NEXT_INSN (b_head);
553 }
554
555 /* Delete the basic block note and handle blocks containing just that
556 note. */
557 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
558 {
559 if (b_head == b_end)
560 b_empty = 1;
561 if (! del_last)
562 del_first = b_head;
563
564 del_last = b_head;
565 b_head = NEXT_INSN (b_head);
566 }
567
568 /* If there was a jump out of A, delete it. */
569 if (JUMP_P (a_end))
570 {
571 rtx prev;
572
573 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
574 if (!NOTE_P (prev)
575 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
576 || prev == BB_HEAD (a))
577 break;
578
579 del_first = a_end;
580
581 #ifdef HAVE_cc0
582 /* If this was a conditional jump, we need to also delete
583 the insn that set cc0. */
584 if (only_sets_cc0_p (prev))
585 {
586 rtx tmp = prev;
587
588 prev = prev_nonnote_insn (prev);
589 if (!prev)
590 prev = BB_HEAD (a);
591 del_first = tmp;
592 }
593 #endif
594
595 a_end = PREV_INSN (del_first);
596 }
597 else if (BARRIER_P (NEXT_INSN (a_end)))
598 del_first = NEXT_INSN (a_end);
599
600 /* Delete everything marked above as well as crap that might be
601 hanging out between the two blocks. */
602 BB_HEAD (b) = NULL;
603 delete_insn_chain (del_first, del_last);
604
605 /* Reassociate the insns of B with A. */
606 if (!b_empty)
607 {
608 rtx x;
609
610 for (x = a_end; x != b_end; x = NEXT_INSN (x))
611 set_block_for_insn (x, a);
612
613 set_block_for_insn (b_end, a);
614
615 a_end = b_end;
616 }
617
618 BB_END (a) = a_end;
619 a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
620 }
621
622 /* Return true when block A and B can be merged. */
623 static bool
624 rtl_can_merge_blocks (basic_block a,basic_block b)
625 {
626 /* If we are partitioning hot/cold basic blocks, we don't want to
627 mess up unconditional or indirect jumps that cross between hot
628 and cold sections.
629
630 Basic block partitioning may result in some jumps that appear to
631 be optimizable (or blocks that appear to be mergeable), but which really
632 must be left untouched (they are required to make it safely across
633 partition boundaries). See the comments at the top of
634 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
635
636 if (BB_PARTITION (a) != BB_PARTITION (b))
637 return false;
638
639 /* There must be exactly one edge in between the blocks. */
640 return (single_succ_p (a)
641 && single_succ (a) == b
642 && single_pred_p (b)
643 && a != b
644 /* Must be simple edge. */
645 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
646 && a->next_bb == b
647 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
648 /* If the jump insn has side effects,
649 we can't kill the edge. */
650 && (!JUMP_P (BB_END (a))
651 || (reload_completed
652 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
653 }
654 \f
655 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
656 exist. */
657
658 rtx
659 block_label (basic_block block)
660 {
661 if (block == EXIT_BLOCK_PTR)
662 return NULL_RTX;
663
664 if (!LABEL_P (BB_HEAD (block)))
665 {
666 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
667 }
668
669 return BB_HEAD (block);
670 }
671
672 /* Attempt to perform edge redirection by replacing possibly complex jump
673 instruction by unconditional jump or removing jump completely. This can
674 apply only if all edges now point to the same block. The parameters and
675 return values are equivalent to redirect_edge_and_branch. */
676
677 edge
678 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
679 {
680 basic_block src = e->src;
681 rtx insn = BB_END (src), kill_from;
682 rtx set;
683 int fallthru = 0;
684
685 /* If we are partitioning hot/cold basic blocks, we don't want to
686 mess up unconditional or indirect jumps that cross between hot
687 and cold sections.
688
689 Basic block partitioning may result in some jumps that appear to
690 be optimizable (or blocks that appear to be mergeable), but which really
691 must be left untouched (they are required to make it safely across
692 partition boundaries). See the comments at the top of
693 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
694
695 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
696 || BB_PARTITION (src) != BB_PARTITION (target))
697 return NULL;
698
699 /* We can replace or remove a complex jump only when we have exactly
700 two edges. Also, if we have exactly one outgoing edge, we can
701 redirect that. */
702 if (EDGE_COUNT (src->succs) >= 3
703 /* Verify that all targets will be TARGET. Specifically, the
704 edge that is not E must also go to TARGET. */
705 || (EDGE_COUNT (src->succs) == 2
706 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
707 return NULL;
708
709 if (!onlyjump_p (insn))
710 return NULL;
711 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
712 return NULL;
713
714 /* Avoid removing branch with side effects. */
715 set = single_set (insn);
716 if (!set || side_effects_p (set))
717 return NULL;
718
719 /* In case we zap a conditional jump, we'll need to kill
720 the cc0 setter too. */
721 kill_from = insn;
722 #ifdef HAVE_cc0
723 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
724 kill_from = PREV_INSN (insn);
725 #endif
726
727 /* See if we can create the fallthru edge. */
728 if (in_cfglayout || can_fallthru (src, target))
729 {
730 if (dump_file)
731 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
732 fallthru = 1;
733
734 /* Selectively unlink whole insn chain. */
735 if (in_cfglayout)
736 {
737 rtx insn = src->il.rtl->footer;
738
739 delete_insn_chain (kill_from, BB_END (src));
740
741 /* Remove barriers but keep jumptables. */
742 while (insn)
743 {
744 if (BARRIER_P (insn))
745 {
746 if (PREV_INSN (insn))
747 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
748 else
749 src->il.rtl->footer = NEXT_INSN (insn);
750 if (NEXT_INSN (insn))
751 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
752 }
753 if (LABEL_P (insn))
754 break;
755 insn = NEXT_INSN (insn);
756 }
757 }
758 else
759 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
760 }
761
762 /* If this already is simplejump, redirect it. */
763 else if (simplejump_p (insn))
764 {
765 if (e->dest == target)
766 return NULL;
767 if (dump_file)
768 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
769 INSN_UID (insn), e->dest->index, target->index);
770 if (!redirect_jump (insn, block_label (target), 0))
771 {
772 gcc_assert (target == EXIT_BLOCK_PTR);
773 return NULL;
774 }
775 }
776
777 /* Cannot do anything for target exit block. */
778 else if (target == EXIT_BLOCK_PTR)
779 return NULL;
780
781 /* Or replace possibly complicated jump insn by simple jump insn. */
782 else
783 {
784 rtx target_label = block_label (target);
785 rtx barrier, label, table;
786
787 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
788 JUMP_LABEL (BB_END (src)) = target_label;
789 LABEL_NUSES (target_label)++;
790 if (dump_file)
791 fprintf (dump_file, "Replacing insn %i by jump %i\n",
792 INSN_UID (insn), INSN_UID (BB_END (src)));
793
794
795 delete_insn_chain (kill_from, insn);
796
797 /* Recognize a tablejump that we are converting to a
798 simple jump and remove its associated CODE_LABEL
799 and ADDR_VEC or ADDR_DIFF_VEC. */
800 if (tablejump_p (insn, &label, &table))
801 delete_insn_chain (label, table);
802
803 barrier = next_nonnote_insn (BB_END (src));
804 if (!barrier || !BARRIER_P (barrier))
805 emit_barrier_after (BB_END (src));
806 else
807 {
808 if (barrier != NEXT_INSN (BB_END (src)))
809 {
810 /* Move the jump before barrier so that the notes
811 which originally were or were created before jump table are
812 inside the basic block. */
813 rtx new_insn = BB_END (src);
814 rtx tmp;
815
816 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
817 tmp = NEXT_INSN (tmp))
818 set_block_for_insn (tmp, src);
819
820 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
821 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
822
823 NEXT_INSN (new_insn) = barrier;
824 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
825
826 PREV_INSN (new_insn) = PREV_INSN (barrier);
827 PREV_INSN (barrier) = new_insn;
828 }
829 }
830 }
831
832 /* Keep only one edge out and set proper flags. */
833 if (!single_succ_p (src))
834 remove_edge (e);
835 gcc_assert (single_succ_p (src));
836
837 e = single_succ_edge (src);
838 if (fallthru)
839 e->flags = EDGE_FALLTHRU;
840 else
841 e->flags = 0;
842
843 e->probability = REG_BR_PROB_BASE;
844 e->count = src->count;
845
846 /* We don't want a block to end on a line-number note since that has
847 the potential of changing the code between -g and not -g. */
848 while (NOTE_P (BB_END (e->src))
849 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
850 delete_insn (BB_END (e->src));
851
852 if (e->dest != target)
853 redirect_edge_succ (e, target);
854
855 return e;
856 }
857
858 /* Return last loop_beg note appearing after INSN, before start of next
859 basic block. Return INSN if there are no such notes.
860
861 When emitting jump to redirect a fallthru edge, it should always appear
862 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
863 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
864 test. */
865
866 static rtx
867 last_loop_beg_note (rtx insn)
868 {
869 rtx last = insn;
870
871 for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
872 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
873 insn = NEXT_INSN (insn))
874 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
875 last = insn;
876
877 return last;
878 }
879
880 /* Redirect edge representing branch of (un)conditional jump or tablejump,
881 NULL on failure */
882 static edge
883 redirect_branch_edge (edge e, basic_block target)
884 {
885 rtx tmp;
886 rtx old_label = BB_HEAD (e->dest);
887 basic_block src = e->src;
888 rtx insn = BB_END (src);
889
890 /* We can only redirect non-fallthru edges of jump insn. */
891 if (e->flags & EDGE_FALLTHRU)
892 return NULL;
893 else if (!JUMP_P (insn))
894 return NULL;
895
896 /* Recognize a tablejump and adjust all matching cases. */
897 if (tablejump_p (insn, NULL, &tmp))
898 {
899 rtvec vec;
900 int j;
901 rtx new_label = block_label (target);
902
903 if (target == EXIT_BLOCK_PTR)
904 return NULL;
905 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
906 vec = XVEC (PATTERN (tmp), 0);
907 else
908 vec = XVEC (PATTERN (tmp), 1);
909
910 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
911 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
912 {
913 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
914 --LABEL_NUSES (old_label);
915 ++LABEL_NUSES (new_label);
916 }
917
918 /* Handle casesi dispatch insns. */
919 if ((tmp = single_set (insn)) != NULL
920 && SET_DEST (tmp) == pc_rtx
921 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
922 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
923 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
924 {
925 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
926 new_label);
927 --LABEL_NUSES (old_label);
928 ++LABEL_NUSES (new_label);
929 }
930 }
931 else
932 {
933 /* ?? We may play the games with moving the named labels from
934 one basic block to the other in case only one computed_jump is
935 available. */
936 if (computed_jump_p (insn)
937 /* A return instruction can't be redirected. */
938 || returnjump_p (insn))
939 return NULL;
940
941 /* If the insn doesn't go where we think, we're confused. */
942 gcc_assert (JUMP_LABEL (insn) == old_label);
943
944 /* If the substitution doesn't succeed, die. This can happen
945 if the back end emitted unrecognizable instructions or if
946 target is exit block on some arches. */
947 if (!redirect_jump (insn, block_label (target), 0))
948 {
949 gcc_assert (target == EXIT_BLOCK_PTR);
950 return NULL;
951 }
952 }
953
954 if (dump_file)
955 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
956 e->src->index, e->dest->index, target->index);
957
958 if (e->dest != target)
959 e = redirect_edge_succ_nodup (e, target);
960 return e;
961 }
962
963 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
964 expense of adding new instructions or reordering basic blocks.
965
966 Function can be also called with edge destination equivalent to the TARGET.
967 Then it should try the simplifications and do nothing if none is possible.
968
969 Return edge representing the branch if transformation succeeded. Return NULL
970 on failure.
971 We still return NULL in case E already destinated TARGET and we didn't
972 managed to simplify instruction stream. */
973
974 static edge
975 rtl_redirect_edge_and_branch (edge e, basic_block target)
976 {
977 edge ret;
978 basic_block src = e->src;
979
980 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
981 return NULL;
982
983 if (e->dest == target)
984 return e;
985
986 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
987 {
988 src->flags |= BB_DIRTY;
989 return ret;
990 }
991
992 ret = redirect_branch_edge (e, target);
993 if (!ret)
994 return NULL;
995
996 src->flags |= BB_DIRTY;
997 return ret;
998 }
999
1000 /* Like force_nonfallthru below, but additionally performs redirection
1001 Used by redirect_edge_and_branch_force. */
1002
1003 static basic_block
1004 force_nonfallthru_and_redirect (edge e, basic_block target)
1005 {
1006 basic_block jump_block, new_bb = NULL, src = e->src;
1007 rtx note;
1008 edge new_edge;
1009 int abnormal_edge_flags = 0;
1010
1011 /* In the case the last instruction is conditional jump to the next
1012 instruction, first redirect the jump itself and then continue
1013 by creating a basic block afterwards to redirect fallthru edge. */
1014 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
1015 && any_condjump_p (BB_END (e->src))
1016 /* When called from cfglayout, fallthru edges do not
1017 necessarily go to the next block. */
1018 && e->src->next_bb == e->dest
1019 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1020 {
1021 rtx note;
1022 edge b = unchecked_make_edge (e->src, target, 0);
1023 bool redirected;
1024
1025 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1026 gcc_assert (redirected);
1027
1028 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1029 if (note)
1030 {
1031 int prob = INTVAL (XEXP (note, 0));
1032
1033 b->probability = prob;
1034 b->count = e->count * prob / REG_BR_PROB_BASE;
1035 e->probability -= e->probability;
1036 e->count -= b->count;
1037 if (e->probability < 0)
1038 e->probability = 0;
1039 if (e->count < 0)
1040 e->count = 0;
1041 }
1042 }
1043
1044 if (e->flags & EDGE_ABNORMAL)
1045 {
1046 /* Irritating special case - fallthru edge to the same block as abnormal
1047 edge.
1048 We can't redirect abnormal edge, but we still can split the fallthru
1049 one and create separate abnormal edge to original destination.
1050 This allows bb-reorder to make such edge non-fallthru. */
1051 gcc_assert (e->dest == target);
1052 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1053 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1054 }
1055 else
1056 {
1057 gcc_assert (e->flags & EDGE_FALLTHRU);
1058 if (e->src == ENTRY_BLOCK_PTR)
1059 {
1060 /* We can't redirect the entry block. Create an empty block
1061 at the start of the function which we use to add the new
1062 jump. */
1063 edge tmp;
1064 edge_iterator ei;
1065 bool found = false;
1066
1067 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1068
1069 /* Change the existing edge's source to be the new block, and add
1070 a new edge from the entry block to the new block. */
1071 e->src = bb;
1072 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1073 {
1074 if (tmp == e)
1075 {
1076 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1077 found = true;
1078 break;
1079 }
1080 else
1081 ei_next (&ei);
1082 }
1083
1084 gcc_assert (found);
1085
1086 VEC_safe_push (edge, gc, bb->succs, e);
1087 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1088 }
1089 }
1090
1091 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1092 {
1093 /* Create the new structures. */
1094
1095 /* If the old block ended with a tablejump, skip its table
1096 by searching forward from there. Otherwise start searching
1097 forward from the last instruction of the old block. */
1098 if (!tablejump_p (BB_END (e->src), NULL, &note))
1099 note = BB_END (e->src);
1100
1101 /* Position the new block correctly relative to loop notes. */
1102 note = last_loop_beg_note (note);
1103 note = NEXT_INSN (note);
1104
1105 jump_block = create_basic_block (note, NULL, e->src);
1106 jump_block->count = e->count;
1107 jump_block->frequency = EDGE_FREQUENCY (e);
1108 jump_block->loop_depth = target->loop_depth;
1109
1110 if (target->il.rtl->global_live_at_start)
1111 {
1112 jump_block->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1113 jump_block->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1114 COPY_REG_SET (jump_block->il.rtl->global_live_at_start,
1115 target->il.rtl->global_live_at_start);
1116 COPY_REG_SET (jump_block->il.rtl->global_live_at_end,
1117 target->il.rtl->global_live_at_start);
1118 }
1119
1120 /* Make sure new block ends up in correct hot/cold section. */
1121
1122 BB_COPY_PARTITION (jump_block, e->src);
1123 if (flag_reorder_blocks_and_partition
1124 && targetm.have_named_sections
1125 && JUMP_P (BB_END (jump_block))
1126 && !any_condjump_p (BB_END (jump_block))
1127 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1128 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1129 NULL_RTX,
1130 REG_NOTES
1131 (BB_END
1132 (jump_block)));
1133
1134 /* Wire edge in. */
1135 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1136 new_edge->probability = e->probability;
1137 new_edge->count = e->count;
1138
1139 /* Redirect old edge. */
1140 redirect_edge_pred (e, jump_block);
1141 e->probability = REG_BR_PROB_BASE;
1142
1143 new_bb = jump_block;
1144 }
1145 else
1146 jump_block = e->src;
1147
1148 e->flags &= ~EDGE_FALLTHRU;
1149 if (target == EXIT_BLOCK_PTR)
1150 {
1151 #ifdef HAVE_return
1152 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1153 #else
1154 gcc_unreachable ();
1155 #endif
1156 }
1157 else
1158 {
1159 rtx label = block_label (target);
1160 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1161 JUMP_LABEL (BB_END (jump_block)) = label;
1162 LABEL_NUSES (label)++;
1163 }
1164
1165 emit_barrier_after (BB_END (jump_block));
1166 redirect_edge_succ_nodup (e, target);
1167
1168 if (abnormal_edge_flags)
1169 make_edge (src, target, abnormal_edge_flags);
1170
1171 return new_bb;
1172 }
1173
1174 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1175 (and possibly create new basic block) to make edge non-fallthru.
1176 Return newly created BB or NULL if none. */
1177
1178 basic_block
1179 force_nonfallthru (edge e)
1180 {
1181 return force_nonfallthru_and_redirect (e, e->dest);
1182 }
1183
1184 /* Redirect edge even at the expense of creating new jump insn or
1185 basic block. Return new basic block if created, NULL otherwise.
1186 Conversion must be possible. */
1187
1188 static basic_block
1189 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1190 {
1191 if (redirect_edge_and_branch (e, target)
1192 || e->dest == target)
1193 return NULL;
1194
1195 /* In case the edge redirection failed, try to force it to be non-fallthru
1196 and redirect newly created simplejump. */
1197 return force_nonfallthru_and_redirect (e, target);
1198 }
1199
1200 /* The given edge should potentially be a fallthru edge. If that is in
1201 fact true, delete the jump and barriers that are in the way. */
1202
1203 static void
1204 rtl_tidy_fallthru_edge (edge e)
1205 {
1206 rtx q;
1207 basic_block b = e->src, c = b->next_bb;
1208
1209 /* ??? In a late-running flow pass, other folks may have deleted basic
1210 blocks by nopping out blocks, leaving multiple BARRIERs between here
1211 and the target label. They ought to be chastised and fixed.
1212
1213 We can also wind up with a sequence of undeletable labels between
1214 one block and the next.
1215
1216 So search through a sequence of barriers, labels, and notes for
1217 the head of block C and assert that we really do fall through. */
1218
1219 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1220 if (INSN_P (q))
1221 return;
1222
1223 /* Remove what will soon cease being the jump insn from the source block.
1224 If block B consisted only of this single jump, turn it into a deleted
1225 note. */
1226 q = BB_END (b);
1227 if (JUMP_P (q)
1228 && onlyjump_p (q)
1229 && (any_uncondjump_p (q)
1230 || single_succ_p (b)))
1231 {
1232 #ifdef HAVE_cc0
1233 /* If this was a conditional jump, we need to also delete
1234 the insn that set cc0. */
1235 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1236 q = PREV_INSN (q);
1237 #endif
1238
1239 q = PREV_INSN (q);
1240
1241 /* We don't want a block to end on a line-number note since that has
1242 the potential of changing the code between -g and not -g. */
1243 while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1244 q = PREV_INSN (q);
1245 }
1246
1247 /* Selectively unlink the sequence. */
1248 if (q != PREV_INSN (BB_HEAD (c)))
1249 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1250
1251 e->flags |= EDGE_FALLTHRU;
1252 }
1253 \f
1254 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1255 is back edge of syntactic loop. */
1256
1257 static bool
1258 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1259 {
1260 rtx insn;
1261 int count = 0;
1262 basic_block bb;
1263
1264 if (bb1 == bb2)
1265 return true;
1266
1267 /* ??? Could we guarantee that bb indices are monotone, so that we could
1268 just compare them? */
1269 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1270 continue;
1271
1272 if (!bb)
1273 return false;
1274
1275 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1276 insn = NEXT_INSN (insn))
1277 if (NOTE_P (insn))
1278 {
1279 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1280 count++;
1281 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1282 count--;
1283 }
1284
1285 return count >= 0;
1286 }
1287
1288 /* Should move basic block BB after basic block AFTER. NIY. */
1289
1290 static bool
1291 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1292 basic_block after ATTRIBUTE_UNUSED)
1293 {
1294 return false;
1295 }
1296
1297 /* Split a (typically critical) edge. Return the new block.
1298 The edge must not be abnormal.
1299
1300 ??? The code generally expects to be called on critical edges.
1301 The case of a block ending in an unconditional jump to a
1302 block with multiple predecessors is not handled optimally. */
1303
1304 static basic_block
1305 rtl_split_edge (edge edge_in)
1306 {
1307 basic_block bb;
1308 rtx before;
1309
1310 /* Abnormal edges cannot be split. */
1311 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1312
1313 /* We are going to place the new block in front of edge destination.
1314 Avoid existence of fallthru predecessors. */
1315 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1316 {
1317 edge e;
1318 edge_iterator ei;
1319
1320 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1321 if (e->flags & EDGE_FALLTHRU)
1322 break;
1323
1324 if (e)
1325 force_nonfallthru (e);
1326 }
1327
1328 /* Create the basic block note.
1329
1330 Where we place the note can have a noticeable impact on the generated
1331 code. Consider this cfg:
1332
1333 E
1334 |
1335 0
1336 / \
1337 +->1-->2--->E
1338 | |
1339 +--+
1340
1341 If we need to insert an insn on the edge from block 0 to block 1,
1342 we want to ensure the instructions we insert are outside of any
1343 loop notes that physically sit between block 0 and block 1. Otherwise
1344 we confuse the loop optimizer into thinking the loop is a phony. */
1345
1346 if (edge_in->dest != EXIT_BLOCK_PTR
1347 && PREV_INSN (BB_HEAD (edge_in->dest))
1348 && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1349 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1350 == NOTE_INSN_LOOP_BEG)
1351 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1352 before = PREV_INSN (BB_HEAD (edge_in->dest));
1353 else if (edge_in->dest != EXIT_BLOCK_PTR)
1354 before = BB_HEAD (edge_in->dest);
1355 else
1356 before = NULL_RTX;
1357
1358 /* If this is a fall through edge to the exit block, the blocks might be
1359 not adjacent, and the right place is the after the source. */
1360 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1361 {
1362 before = NEXT_INSN (BB_END (edge_in->src));
1363 if (before
1364 && NOTE_P (before)
1365 && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1366 before = NEXT_INSN (before);
1367 bb = create_basic_block (before, NULL, edge_in->src);
1368 BB_COPY_PARTITION (bb, edge_in->src);
1369 }
1370 else
1371 {
1372 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1373 /* ??? Why not edge_in->dest->prev_bb here? */
1374 BB_COPY_PARTITION (bb, edge_in->dest);
1375 }
1376
1377 /* ??? This info is likely going to be out of date very soon. */
1378 if (edge_in->dest->il.rtl->global_live_at_start)
1379 {
1380 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1381 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1382 COPY_REG_SET (bb->il.rtl->global_live_at_start,
1383 edge_in->dest->il.rtl->global_live_at_start);
1384 COPY_REG_SET (bb->il.rtl->global_live_at_end,
1385 edge_in->dest->il.rtl->global_live_at_start);
1386 }
1387
1388 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1389
1390 /* For non-fallthru edges, we must adjust the predecessor's
1391 jump instruction to target our new block. */
1392 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1393 {
1394 edge redirected = redirect_edge_and_branch (edge_in, bb);
1395 gcc_assert (redirected);
1396 }
1397 else
1398 redirect_edge_succ (edge_in, bb);
1399
1400 return bb;
1401 }
1402
1403 /* Queue instructions for insertion on an edge between two basic blocks.
1404 The new instructions and basic blocks (if any) will not appear in the
1405 CFG until commit_edge_insertions is called. */
1406
1407 void
1408 insert_insn_on_edge (rtx pattern, edge e)
1409 {
1410 /* We cannot insert instructions on an abnormal critical edge.
1411 It will be easier to find the culprit if we die now. */
1412 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1413
1414 if (e->insns.r == NULL_RTX)
1415 start_sequence ();
1416 else
1417 push_to_sequence (e->insns.r);
1418
1419 emit_insn (pattern);
1420
1421 e->insns.r = get_insns ();
1422 end_sequence ();
1423 }
1424
1425 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1426 registers that are killed by the store. */
1427 static void
1428 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1429 {
1430 regset killed = data;
1431 int regno, i;
1432
1433 if (GET_CODE (reg) == SUBREG)
1434 reg = SUBREG_REG (reg);
1435 if (!REG_P (reg))
1436 return;
1437 regno = REGNO (reg);
1438 if (regno >= FIRST_PSEUDO_REGISTER)
1439 SET_REGNO_REG_SET (killed, regno);
1440 else
1441 {
1442 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1443 SET_REGNO_REG_SET (killed, regno + i);
1444 }
1445 }
1446
1447 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1448 it checks whether this will not clobber the registers that are live on the
1449 edge (i.e. it requires liveness information to be up-to-date) and if there
1450 are some, then it tries to save and restore them. Returns true if
1451 successful. */
1452 bool
1453 safe_insert_insn_on_edge (rtx insn, edge e)
1454 {
1455 rtx x;
1456 regset killed;
1457 rtx save_regs = NULL_RTX;
1458 unsigned regno;
1459 enum machine_mode mode;
1460 reg_set_iterator rsi;
1461
1462 killed = ALLOC_REG_SET (&reg_obstack);
1463
1464 for (x = insn; x; x = NEXT_INSN (x))
1465 if (INSN_P (x))
1466 note_stores (PATTERN (x), mark_killed_regs, killed);
1467
1468 /* Mark all hard registers as killed. Register allocator/reload cannot
1469 cope with the situation when life range of hard register spans operation
1470 for that the appropriate register is needed, i.e. it would be unsafe to
1471 extend the life ranges of hard registers. */
1472 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1473 if (!fixed_regs[regno]
1474 && !REGNO_PTR_FRAME_P (regno))
1475 SET_REGNO_REG_SET (killed, regno);
1476
1477 bitmap_and_into (killed, e->dest->il.rtl->global_live_at_start);
1478
1479 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1480 {
1481 mode = regno < FIRST_PSEUDO_REGISTER
1482 ? reg_raw_mode[regno]
1483 : GET_MODE (regno_reg_rtx[regno]);
1484 if (mode == VOIDmode)
1485 return false;
1486
1487 /* Avoid copying in CCmode if we can't. */
1488 if (!can_copy_p (mode))
1489 return false;
1490
1491 save_regs = alloc_EXPR_LIST (0,
1492 alloc_EXPR_LIST (0,
1493 gen_reg_rtx (mode),
1494 gen_raw_REG (mode, regno)),
1495 save_regs);
1496 }
1497
1498 if (save_regs)
1499 {
1500 rtx from, to;
1501
1502 start_sequence ();
1503 for (x = save_regs; x; x = XEXP (x, 1))
1504 {
1505 from = XEXP (XEXP (x, 0), 1);
1506 to = XEXP (XEXP (x, 0), 0);
1507 emit_move_insn (to, from);
1508 }
1509 emit_insn (insn);
1510 for (x = save_regs; x; x = XEXP (x, 1))
1511 {
1512 from = XEXP (XEXP (x, 0), 0);
1513 to = XEXP (XEXP (x, 0), 1);
1514 emit_move_insn (to, from);
1515 }
1516 insn = get_insns ();
1517 end_sequence ();
1518 free_EXPR_LIST_list (&save_regs);
1519 }
1520 insert_insn_on_edge (insn, e);
1521
1522 FREE_REG_SET (killed);
1523
1524 return true;
1525 }
1526
1527 /* Update the CFG for the instructions queued on edge E. */
1528
1529 static void
1530 commit_one_edge_insertion (edge e, int watch_calls)
1531 {
1532 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1533 basic_block bb = NULL;
1534
1535 /* Pull the insns off the edge now since the edge might go away. */
1536 insns = e->insns.r;
1537 e->insns.r = NULL_RTX;
1538
1539 /* Special case -- avoid inserting code between call and storing
1540 its return value. */
1541 if (watch_calls && (e->flags & EDGE_FALLTHRU)
1542 && single_pred_p (e->dest)
1543 && e->src != ENTRY_BLOCK_PTR
1544 && CALL_P (BB_END (e->src)))
1545 {
1546 rtx next = next_nonnote_insn (BB_END (e->src));
1547
1548 after = BB_HEAD (e->dest);
1549 /* The first insn after the call may be a stack pop, skip it. */
1550 while (next
1551 && keep_with_call_p (next))
1552 {
1553 after = next;
1554 next = next_nonnote_insn (next);
1555 }
1556 bb = e->dest;
1557 }
1558 if (!before && !after)
1559 {
1560 /* Figure out where to put these things. If the destination has
1561 one predecessor, insert there. Except for the exit block. */
1562 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1563 {
1564 bb = e->dest;
1565
1566 /* Get the location correct wrt a code label, and "nice" wrt
1567 a basic block note, and before everything else. */
1568 tmp = BB_HEAD (bb);
1569 if (LABEL_P (tmp))
1570 tmp = NEXT_INSN (tmp);
1571 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1572 tmp = NEXT_INSN (tmp);
1573 if (tmp == BB_HEAD (bb))
1574 before = tmp;
1575 else if (tmp)
1576 after = PREV_INSN (tmp);
1577 else
1578 after = get_last_insn ();
1579 }
1580
1581 /* If the source has one successor and the edge is not abnormal,
1582 insert there. Except for the entry block. */
1583 else if ((e->flags & EDGE_ABNORMAL) == 0
1584 && single_succ_p (e->src)
1585 && e->src != ENTRY_BLOCK_PTR)
1586 {
1587 bb = e->src;
1588
1589 /* It is possible to have a non-simple jump here. Consider a target
1590 where some forms of unconditional jumps clobber a register. This
1591 happens on the fr30 for example.
1592
1593 We know this block has a single successor, so we can just emit
1594 the queued insns before the jump. */
1595 if (JUMP_P (BB_END (bb)))
1596 for (before = BB_END (bb);
1597 NOTE_P (PREV_INSN (before))
1598 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1599 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1600 ;
1601 else
1602 {
1603 /* We'd better be fallthru, or we've lost track of
1604 what's what. */
1605 gcc_assert (e->flags & EDGE_FALLTHRU);
1606
1607 after = BB_END (bb);
1608 }
1609 }
1610 /* Otherwise we must split the edge. */
1611 else
1612 {
1613 bb = split_edge (e);
1614 after = BB_END (bb);
1615
1616 if (flag_reorder_blocks_and_partition
1617 && targetm.have_named_sections
1618 && e->src != ENTRY_BLOCK_PTR
1619 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1620 && !(e->flags & EDGE_CROSSING))
1621 {
1622 rtx bb_note, cur_insn;
1623
1624 bb_note = NULL_RTX;
1625 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1626 cur_insn = NEXT_INSN (cur_insn))
1627 if (NOTE_P (cur_insn)
1628 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1629 {
1630 bb_note = cur_insn;
1631 break;
1632 }
1633
1634 if (JUMP_P (BB_END (bb))
1635 && !any_condjump_p (BB_END (bb))
1636 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1637 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1638 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1639 }
1640 }
1641 }
1642
1643 /* Now that we've found the spot, do the insertion. */
1644
1645 if (before)
1646 {
1647 emit_insn_before_noloc (insns, before);
1648 last = prev_nonnote_insn (before);
1649 }
1650 else
1651 last = emit_insn_after_noloc (insns, after);
1652
1653 if (returnjump_p (last))
1654 {
1655 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1656 This is not currently a problem because this only happens
1657 for the (single) epilogue, which already has a fallthru edge
1658 to EXIT. */
1659
1660 e = single_succ_edge (bb);
1661 gcc_assert (e->dest == EXIT_BLOCK_PTR
1662 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1663
1664 e->flags &= ~EDGE_FALLTHRU;
1665 emit_barrier_after (last);
1666
1667 if (before)
1668 delete_insn (before);
1669 }
1670 else
1671 gcc_assert (!JUMP_P (last));
1672
1673 /* Mark the basic block for find_many_sub_basic_blocks. */
1674 bb->aux = &bb->aux;
1675 }
1676
1677 /* Update the CFG for all queued instructions. */
1678
1679 void
1680 commit_edge_insertions (void)
1681 {
1682 basic_block bb;
1683 sbitmap blocks;
1684 bool changed = false;
1685
1686 #ifdef ENABLE_CHECKING
1687 verify_flow_info ();
1688 #endif
1689
1690 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1691 {
1692 edge e;
1693 edge_iterator ei;
1694
1695 FOR_EACH_EDGE (e, ei, bb->succs)
1696 if (e->insns.r)
1697 {
1698 changed = true;
1699 commit_one_edge_insertion (e, false);
1700 }
1701 }
1702
1703 if (!changed)
1704 return;
1705
1706 blocks = sbitmap_alloc (last_basic_block);
1707 sbitmap_zero (blocks);
1708 FOR_EACH_BB (bb)
1709 if (bb->aux)
1710 {
1711 SET_BIT (blocks, bb->index);
1712 /* Check for forgotten bb->aux values before commit_edge_insertions
1713 call. */
1714 gcc_assert (bb->aux == &bb->aux);
1715 bb->aux = NULL;
1716 }
1717 find_many_sub_basic_blocks (blocks);
1718 sbitmap_free (blocks);
1719 }
1720 \f
1721 /* Update the CFG for all queued instructions, taking special care of inserting
1722 code on edges between call and storing its return value. */
1723
1724 void
1725 commit_edge_insertions_watch_calls (void)
1726 {
1727 basic_block bb;
1728 sbitmap blocks;
1729 bool changed = false;
1730
1731 #ifdef ENABLE_CHECKING
1732 verify_flow_info ();
1733 #endif
1734
1735 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1736 {
1737 edge e;
1738 edge_iterator ei;
1739
1740 FOR_EACH_EDGE (e, ei, bb->succs)
1741 if (e->insns.r)
1742 {
1743 changed = true;
1744 commit_one_edge_insertion (e, true);
1745 }
1746 }
1747
1748 if (!changed)
1749 return;
1750
1751 blocks = sbitmap_alloc (last_basic_block);
1752 sbitmap_zero (blocks);
1753 FOR_EACH_BB (bb)
1754 if (bb->aux)
1755 {
1756 SET_BIT (blocks, bb->index);
1757 /* Check for forgotten bb->aux values before commit_edge_insertions
1758 call. */
1759 gcc_assert (bb->aux == &bb->aux);
1760 bb->aux = NULL;
1761 }
1762 find_many_sub_basic_blocks (blocks);
1763 sbitmap_free (blocks);
1764 }
1765 \f
1766 /* Print out RTL-specific basic block information (live information
1767 at start and end). */
1768
1769 static void
1770 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1771 {
1772 rtx insn;
1773 rtx last;
1774 char *s_indent;
1775
1776 s_indent = alloca ((size_t) indent + 1);
1777 memset (s_indent, ' ', (size_t) indent);
1778 s_indent[indent] = '\0';
1779
1780 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1781 dump_regset (bb->il.rtl->global_live_at_start, outf);
1782 putc ('\n', outf);
1783
1784 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1785 insn = NEXT_INSN (insn))
1786 print_rtl_single (outf, insn);
1787
1788 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1789 dump_regset (bb->il.rtl->global_live_at_end, outf);
1790 putc ('\n', outf);
1791 }
1792 \f
1793 /* Like print_rtl, but also print out live information for the start of each
1794 basic block. */
1795
1796 void
1797 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1798 {
1799 rtx tmp_rtx;
1800
1801 if (rtx_first == 0)
1802 fprintf (outf, "(nil)\n");
1803 else
1804 {
1805 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1806 int max_uid = get_max_uid ();
1807 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1808 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1809 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1810
1811 basic_block bb;
1812
1813 FOR_EACH_BB_REVERSE (bb)
1814 {
1815 rtx x;
1816
1817 start[INSN_UID (BB_HEAD (bb))] = bb;
1818 end[INSN_UID (BB_END (bb))] = bb;
1819 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1820 {
1821 enum bb_state state = IN_MULTIPLE_BB;
1822
1823 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1824 state = IN_ONE_BB;
1825 in_bb_p[INSN_UID (x)] = state;
1826
1827 if (x == BB_END (bb))
1828 break;
1829 }
1830 }
1831
1832 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1833 {
1834 int did_output;
1835
1836 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1837 {
1838 fprintf (outf, ";; Start of basic block %d, registers live:",
1839 bb->index);
1840 dump_regset (bb->il.rtl->global_live_at_start, outf);
1841 putc ('\n', outf);
1842 }
1843
1844 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1845 && !NOTE_P (tmp_rtx)
1846 && !BARRIER_P (tmp_rtx))
1847 fprintf (outf, ";; Insn is not within a basic block\n");
1848 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1849 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1850
1851 did_output = print_rtl_single (outf, tmp_rtx);
1852
1853 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1854 {
1855 fprintf (outf, ";; End of basic block %d, registers live:\n",
1856 bb->index);
1857 dump_regset (bb->il.rtl->global_live_at_end, outf);
1858 putc ('\n', outf);
1859 }
1860
1861 if (did_output)
1862 putc ('\n', outf);
1863 }
1864
1865 free (start);
1866 free (end);
1867 free (in_bb_p);
1868 }
1869
1870 if (current_function_epilogue_delay_list != 0)
1871 {
1872 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1873 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1874 tmp_rtx = XEXP (tmp_rtx, 1))
1875 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1876 }
1877 }
1878 \f
1879 void
1880 update_br_prob_note (basic_block bb)
1881 {
1882 rtx note;
1883 if (!JUMP_P (BB_END (bb)))
1884 return;
1885 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1886 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1887 return;
1888 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1889 }
1890 \f
1891 /* Verify the CFG and RTL consistency common for both underlying RTL and
1892 cfglayout RTL.
1893
1894 Currently it does following checks:
1895
1896 - test head/end pointers
1897 - overlapping of basic blocks
1898 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1899 - tails of basic blocks (ensure that boundary is necessary)
1900 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1901 and NOTE_INSN_BASIC_BLOCK
1902 - verify that no fall_thru edge crosses hot/cold partition boundaries
1903
1904 In future it can be extended check a lot of other stuff as well
1905 (reachability of basic blocks, life information, etc. etc.). */
1906
1907 static int
1908 rtl_verify_flow_info_1 (void)
1909 {
1910 const int max_uid = get_max_uid ();
1911 rtx last_head = get_last_insn ();
1912 basic_block *bb_info;
1913 rtx x;
1914 int err = 0;
1915 basic_block bb;
1916
1917 bb_info = xcalloc (max_uid, sizeof (basic_block));
1918
1919 FOR_EACH_BB_REVERSE (bb)
1920 {
1921 rtx head = BB_HEAD (bb);
1922 rtx end = BB_END (bb);
1923
1924 /* Verify the end of the basic block is in the INSN chain. */
1925 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1926 if (x == end)
1927 break;
1928
1929 if (!(bb->flags & BB_RTL))
1930 {
1931 error ("BB_RTL flag not set for block %d", bb->index);
1932 err = 1;
1933 }
1934
1935 if (!x)
1936 {
1937 error ("end insn %d for block %d not found in the insn stream",
1938 INSN_UID (end), bb->index);
1939 err = 1;
1940 }
1941
1942 /* Work backwards from the end to the head of the basic block
1943 to verify the head is in the RTL chain. */
1944 for (; x != NULL_RTX; x = PREV_INSN (x))
1945 {
1946 /* While walking over the insn chain, verify insns appear
1947 in only one basic block and initialize the BB_INFO array
1948 used by other passes. */
1949 if (bb_info[INSN_UID (x)] != NULL)
1950 {
1951 error ("insn %d is in multiple basic blocks (%d and %d)",
1952 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1953 err = 1;
1954 }
1955
1956 bb_info[INSN_UID (x)] = bb;
1957
1958 if (x == head)
1959 break;
1960 }
1961 if (!x)
1962 {
1963 error ("head insn %d for block %d not found in the insn stream",
1964 INSN_UID (head), bb->index);
1965 err = 1;
1966 }
1967
1968 last_head = x;
1969 }
1970
1971 /* Now check the basic blocks (boundaries etc.) */
1972 FOR_EACH_BB_REVERSE (bb)
1973 {
1974 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1975 edge e, fallthru = NULL;
1976 rtx note;
1977 edge_iterator ei;
1978
1979 if (JUMP_P (BB_END (bb))
1980 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1981 && EDGE_COUNT (bb->succs) >= 2
1982 && any_condjump_p (BB_END (bb)))
1983 {
1984 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1985 && profile_status != PROFILE_ABSENT)
1986 {
1987 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1988 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1989 err = 1;
1990 }
1991 }
1992 FOR_EACH_EDGE (e, ei, bb->succs)
1993 {
1994 if (e->flags & EDGE_FALLTHRU)
1995 {
1996 n_fallthru++, fallthru = e;
1997 if ((e->flags & EDGE_CROSSING)
1998 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1999 && e->src != ENTRY_BLOCK_PTR
2000 && e->dest != EXIT_BLOCK_PTR))
2001 {
2002 error ("fallthru edge crosses section boundary (bb %i)",
2003 e->src->index);
2004 err = 1;
2005 }
2006 }
2007
2008 if ((e->flags & ~(EDGE_DFS_BACK
2009 | EDGE_CAN_FALLTHRU
2010 | EDGE_IRREDUCIBLE_LOOP
2011 | EDGE_LOOP_EXIT
2012 | EDGE_CROSSING)) == 0)
2013 n_branch++;
2014
2015 if (e->flags & EDGE_ABNORMAL_CALL)
2016 n_call++;
2017
2018 if (e->flags & EDGE_EH)
2019 n_eh++;
2020 else if (e->flags & EDGE_ABNORMAL)
2021 n_abnormal++;
2022 }
2023
2024 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2025 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2026 {
2027 error ("missing REG_EH_REGION note in the end of bb %i", bb->index);
2028 err = 1;
2029 }
2030 if (n_branch
2031 && (!JUMP_P (BB_END (bb))
2032 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2033 || any_condjump_p (BB_END (bb))))))
2034 {
2035 error ("too many outgoing branch edges from bb %i", bb->index);
2036 err = 1;
2037 }
2038 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2039 {
2040 error ("fallthru edge after unconditional jump %i", bb->index);
2041 err = 1;
2042 }
2043 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2044 {
2045 error ("wrong amount of branch edges after unconditional jump %i", bb->index);
2046 err = 1;
2047 }
2048 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2049 && JUMP_LABEL (BB_END (bb)) == BB_HEAD (fallthru->dest))
2050 {
2051 error ("wrong amount of branch edges after conditional jump %i", bb->index);
2052 err = 1;
2053 }
2054 if (n_call && !CALL_P (BB_END (bb)))
2055 {
2056 error ("call edges for non-call insn in bb %i", bb->index);
2057 err = 1;
2058 }
2059 if (n_abnormal
2060 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2061 && (!JUMP_P (BB_END (bb))
2062 || any_condjump_p (BB_END (bb))
2063 || any_uncondjump_p (BB_END (bb))))
2064 {
2065 error ("abnormal edges for no purpose in bb %i", bb->index);
2066 err = 1;
2067 }
2068
2069 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2070 /* We may have a barrier inside a basic block before dead code
2071 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
2072 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2073 {
2074 debug_rtx (x);
2075 if (! BLOCK_FOR_INSN (x))
2076 error
2077 ("insn %d inside basic block %d but block_for_insn is NULL",
2078 INSN_UID (x), bb->index);
2079 else
2080 error
2081 ("insn %d inside basic block %d but block_for_insn is %i",
2082 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2083
2084 err = 1;
2085 }
2086
2087 /* OK pointers are correct. Now check the header of basic
2088 block. It ought to contain optional CODE_LABEL followed
2089 by NOTE_BASIC_BLOCK. */
2090 x = BB_HEAD (bb);
2091 if (LABEL_P (x))
2092 {
2093 if (BB_END (bb) == x)
2094 {
2095 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2096 bb->index);
2097 err = 1;
2098 }
2099
2100 x = NEXT_INSN (x);
2101 }
2102
2103 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2104 {
2105 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2106 bb->index);
2107 err = 1;
2108 }
2109
2110 if (BB_END (bb) == x)
2111 /* Do checks for empty blocks here. */
2112 ;
2113 else
2114 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2115 {
2116 if (NOTE_INSN_BASIC_BLOCK_P (x))
2117 {
2118 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2119 INSN_UID (x), bb->index);
2120 err = 1;
2121 }
2122
2123 if (x == BB_END (bb))
2124 break;
2125
2126 if (control_flow_insn_p (x))
2127 {
2128 error ("in basic block %d:", bb->index);
2129 fatal_insn ("flow control insn inside a basic block", x);
2130 }
2131 }
2132 }
2133
2134 /* Clean up. */
2135 free (bb_info);
2136 return err;
2137 }
2138
2139 /* Verify the CFG and RTL consistency common for both underlying RTL and
2140 cfglayout RTL.
2141
2142 Currently it does following checks:
2143 - all checks of rtl_verify_flow_info_1
2144 - check that all insns are in the basic blocks
2145 (except the switch handling code, barriers and notes)
2146 - check that all returns are followed by barriers
2147 - check that all fallthru edge points to the adjacent blocks. */
2148 static int
2149 rtl_verify_flow_info (void)
2150 {
2151 basic_block bb;
2152 int err = rtl_verify_flow_info_1 ();
2153 rtx x;
2154 int num_bb_notes;
2155 const rtx rtx_first = get_insns ();
2156 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2157
2158 FOR_EACH_BB_REVERSE (bb)
2159 {
2160 edge e;
2161 edge_iterator ei;
2162
2163 if (bb->predictions)
2164 {
2165 error ("bb prediction set for block %i, but it is not used in RTL land", bb->index);
2166 err = 1;
2167 }
2168
2169 FOR_EACH_EDGE (e, ei, bb->succs)
2170 if (e->flags & EDGE_FALLTHRU)
2171 break;
2172 if (!e)
2173 {
2174 rtx insn;
2175
2176 /* Ensure existence of barrier in BB with no fallthru edges. */
2177 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2178 insn = NEXT_INSN (insn))
2179 if (!insn
2180 || (NOTE_P (insn)
2181 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2182 {
2183 error ("missing barrier after block %i", bb->index);
2184 err = 1;
2185 break;
2186 }
2187 }
2188 else if (e->src != ENTRY_BLOCK_PTR
2189 && e->dest != EXIT_BLOCK_PTR)
2190 {
2191 rtx insn;
2192
2193 if (e->src->next_bb != e->dest)
2194 {
2195 error
2196 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2197 e->src->index, e->dest->index);
2198 err = 1;
2199 }
2200 else
2201 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2202 insn = NEXT_INSN (insn))
2203 if (BARRIER_P (insn) || INSN_P (insn))
2204 {
2205 error ("verify_flow_info: Incorrect fallthru %i->%i",
2206 e->src->index, e->dest->index);
2207 fatal_insn ("wrong insn in the fallthru edge", insn);
2208 err = 1;
2209 }
2210 }
2211 }
2212
2213 num_bb_notes = 0;
2214 last_bb_seen = ENTRY_BLOCK_PTR;
2215
2216 for (x = rtx_first; x; x = NEXT_INSN (x))
2217 {
2218 if (NOTE_INSN_BASIC_BLOCK_P (x))
2219 {
2220 bb = NOTE_BASIC_BLOCK (x);
2221
2222 num_bb_notes++;
2223 if (bb != last_bb_seen->next_bb)
2224 internal_error ("basic blocks not laid down consecutively");
2225
2226 curr_bb = last_bb_seen = bb;
2227 }
2228
2229 if (!curr_bb)
2230 {
2231 switch (GET_CODE (x))
2232 {
2233 case BARRIER:
2234 case NOTE:
2235 break;
2236
2237 case CODE_LABEL:
2238 /* An addr_vec is placed outside any basic block. */
2239 if (NEXT_INSN (x)
2240 && JUMP_P (NEXT_INSN (x))
2241 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2242 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2243 x = NEXT_INSN (x);
2244
2245 /* But in any case, non-deletable labels can appear anywhere. */
2246 break;
2247
2248 default:
2249 fatal_insn ("insn outside basic block", x);
2250 }
2251 }
2252
2253 if (JUMP_P (x)
2254 && returnjump_p (x) && ! condjump_p (x)
2255 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2256 fatal_insn ("return not followed by barrier", x);
2257 if (curr_bb && x == BB_END (curr_bb))
2258 curr_bb = NULL;
2259 }
2260
2261 if (num_bb_notes != n_basic_blocks)
2262 internal_error
2263 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2264 num_bb_notes, n_basic_blocks);
2265
2266 return err;
2267 }
2268 \f
2269 /* Assume that the preceding pass has possibly eliminated jump instructions
2270 or converted the unconditional jumps. Eliminate the edges from CFG.
2271 Return true if any edges are eliminated. */
2272
2273 bool
2274 purge_dead_edges (basic_block bb)
2275 {
2276 edge e;
2277 rtx insn = BB_END (bb), note;
2278 bool purged = false;
2279 bool found;
2280 edge_iterator ei;
2281
2282 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2283 if (NONJUMP_INSN_P (insn)
2284 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2285 {
2286 rtx eqnote;
2287
2288 if (! may_trap_p (PATTERN (insn))
2289 || ((eqnote = find_reg_equal_equiv_note (insn))
2290 && ! may_trap_p (XEXP (eqnote, 0))))
2291 remove_note (insn, note);
2292 }
2293
2294 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2295 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2296 {
2297 /* There are three types of edges we need to handle correctly here: EH
2298 edges, abnormal call EH edges, and abnormal call non-EH edges. The
2299 latter can appear when nonlocal gotos are used. */
2300 if (e->flags & EDGE_EH)
2301 {
2302 if (can_throw_internal (BB_END (bb))
2303 /* If this is a call edge, verify that this is a call insn. */
2304 && (! (e->flags & EDGE_ABNORMAL_CALL)
2305 || CALL_P (BB_END (bb))))
2306 {
2307 ei_next (&ei);
2308 continue;
2309 }
2310 }
2311 else if (e->flags & EDGE_ABNORMAL_CALL)
2312 {
2313 if (CALL_P (BB_END (bb))
2314 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2315 || INTVAL (XEXP (note, 0)) >= 0))
2316 {
2317 ei_next (&ei);
2318 continue;
2319 }
2320 }
2321 else
2322 {
2323 ei_next (&ei);
2324 continue;
2325 }
2326
2327 remove_edge (e);
2328 bb->flags |= BB_DIRTY;
2329 purged = true;
2330 }
2331
2332 if (JUMP_P (insn))
2333 {
2334 rtx note;
2335 edge b,f;
2336 edge_iterator ei;
2337
2338 /* We do care only about conditional jumps and simplejumps. */
2339 if (!any_condjump_p (insn)
2340 && !returnjump_p (insn)
2341 && !simplejump_p (insn))
2342 return purged;
2343
2344 /* Branch probability/prediction notes are defined only for
2345 condjumps. We've possibly turned condjump into simplejump. */
2346 if (simplejump_p (insn))
2347 {
2348 note = find_reg_note (insn, REG_BR_PROB, NULL);
2349 if (note)
2350 remove_note (insn, note);
2351 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2352 remove_note (insn, note);
2353 }
2354
2355 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2356 {
2357 /* Avoid abnormal flags to leak from computed jumps turned
2358 into simplejumps. */
2359
2360 e->flags &= ~EDGE_ABNORMAL;
2361
2362 /* See if this edge is one we should keep. */
2363 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2364 /* A conditional jump can fall through into the next
2365 block, so we should keep the edge. */
2366 {
2367 ei_next (&ei);
2368 continue;
2369 }
2370 else if (e->dest != EXIT_BLOCK_PTR
2371 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2372 /* If the destination block is the target of the jump,
2373 keep the edge. */
2374 {
2375 ei_next (&ei);
2376 continue;
2377 }
2378 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2379 /* If the destination block is the exit block, and this
2380 instruction is a return, then keep the edge. */
2381 {
2382 ei_next (&ei);
2383 continue;
2384 }
2385 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2386 /* Keep the edges that correspond to exceptions thrown by
2387 this instruction and rematerialize the EDGE_ABNORMAL
2388 flag we just cleared above. */
2389 {
2390 e->flags |= EDGE_ABNORMAL;
2391 ei_next (&ei);
2392 continue;
2393 }
2394
2395 /* We do not need this edge. */
2396 bb->flags |= BB_DIRTY;
2397 purged = true;
2398 remove_edge (e);
2399 }
2400
2401 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2402 return purged;
2403
2404 if (dump_file)
2405 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2406
2407 if (!optimize)
2408 return purged;
2409
2410 /* Redistribute probabilities. */
2411 if (single_succ_p (bb))
2412 {
2413 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2414 single_succ_edge (bb)->count = bb->count;
2415 }
2416 else
2417 {
2418 note = find_reg_note (insn, REG_BR_PROB, NULL);
2419 if (!note)
2420 return purged;
2421
2422 b = BRANCH_EDGE (bb);
2423 f = FALLTHRU_EDGE (bb);
2424 b->probability = INTVAL (XEXP (note, 0));
2425 f->probability = REG_BR_PROB_BASE - b->probability;
2426 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2427 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2428 }
2429
2430 return purged;
2431 }
2432 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2433 {
2434 /* First, there should not be any EH or ABCALL edges resulting
2435 from non-local gotos and the like. If there were, we shouldn't
2436 have created the sibcall in the first place. Second, there
2437 should of course never have been a fallthru edge. */
2438 gcc_assert (single_succ_p (bb));
2439 gcc_assert (single_succ_edge (bb)->flags
2440 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2441
2442 return 0;
2443 }
2444
2445 /* If we don't see a jump insn, we don't know exactly why the block would
2446 have been broken at this point. Look for a simple, non-fallthru edge,
2447 as these are only created by conditional branches. If we find such an
2448 edge we know that there used to be a jump here and can then safely
2449 remove all non-fallthru edges. */
2450 found = false;
2451 FOR_EACH_EDGE (e, ei, bb->succs)
2452 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2453 {
2454 found = true;
2455 break;
2456 }
2457
2458 if (!found)
2459 return purged;
2460
2461 /* Remove all but the fake and fallthru edges. The fake edge may be
2462 the only successor for this block in the case of noreturn
2463 calls. */
2464 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2465 {
2466 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2467 {
2468 bb->flags |= BB_DIRTY;
2469 remove_edge (e);
2470 purged = true;
2471 }
2472 else
2473 ei_next (&ei);
2474 }
2475
2476 gcc_assert (single_succ_p (bb));
2477
2478 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2479 single_succ_edge (bb)->count = bb->count;
2480
2481 if (dump_file)
2482 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2483 bb->index);
2484 return purged;
2485 }
2486
2487 /* Search all basic blocks for potentially dead edges and purge them. Return
2488 true if some edge has been eliminated. */
2489
2490 bool
2491 purge_all_dead_edges (void)
2492 {
2493 int purged = false;
2494 basic_block bb;
2495
2496 FOR_EACH_BB (bb)
2497 {
2498 bool purged_here = purge_dead_edges (bb);
2499
2500 purged |= purged_here;
2501 }
2502
2503 return purged;
2504 }
2505
2506 /* Same as split_block but update cfg_layout structures. */
2507
2508 static basic_block
2509 cfg_layout_split_block (basic_block bb, void *insnp)
2510 {
2511 rtx insn = insnp;
2512 basic_block new_bb = rtl_split_block (bb, insn);
2513
2514 new_bb->il.rtl->footer = bb->il.rtl->footer;
2515 bb->il.rtl->footer = NULL;
2516
2517 return new_bb;
2518 }
2519
2520
2521 /* Redirect Edge to DEST. */
2522 static edge
2523 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2524 {
2525 basic_block src = e->src;
2526 edge ret;
2527
2528 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2529 return NULL;
2530
2531 if (e->dest == dest)
2532 return e;
2533
2534 if (e->src != ENTRY_BLOCK_PTR
2535 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2536 {
2537 src->flags |= BB_DIRTY;
2538 return ret;
2539 }
2540
2541 if (e->src == ENTRY_BLOCK_PTR
2542 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2543 {
2544 if (dump_file)
2545 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2546 e->src->index, dest->index);
2547
2548 e->src->flags |= BB_DIRTY;
2549 redirect_edge_succ (e, dest);
2550 return e;
2551 }
2552
2553 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2554 in the case the basic block appears to be in sequence. Avoid this
2555 transformation. */
2556
2557 if (e->flags & EDGE_FALLTHRU)
2558 {
2559 /* Redirect any branch edges unified with the fallthru one. */
2560 if (JUMP_P (BB_END (src))
2561 && label_is_jump_target_p (BB_HEAD (e->dest),
2562 BB_END (src)))
2563 {
2564 edge redirected;
2565
2566 if (dump_file)
2567 fprintf (dump_file, "Fallthru edge unified with branch "
2568 "%i->%i redirected to %i\n",
2569 e->src->index, e->dest->index, dest->index);
2570 e->flags &= ~EDGE_FALLTHRU;
2571 redirected = redirect_branch_edge (e, dest);
2572 gcc_assert (redirected);
2573 e->flags |= EDGE_FALLTHRU;
2574 e->src->flags |= BB_DIRTY;
2575 return e;
2576 }
2577 /* In case we are redirecting fallthru edge to the branch edge
2578 of conditional jump, remove it. */
2579 if (EDGE_COUNT (src->succs) == 2)
2580 {
2581 /* Find the edge that is different from E. */
2582 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2583
2584 if (s->dest == dest
2585 && any_condjump_p (BB_END (src))
2586 && onlyjump_p (BB_END (src)))
2587 delete_insn (BB_END (src));
2588 }
2589 ret = redirect_edge_succ_nodup (e, dest);
2590 if (dump_file)
2591 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2592 e->src->index, e->dest->index, dest->index);
2593 }
2594 else
2595 ret = redirect_branch_edge (e, dest);
2596
2597 /* We don't want simplejumps in the insn stream during cfglayout. */
2598 gcc_assert (!simplejump_p (BB_END (src)));
2599
2600 src->flags |= BB_DIRTY;
2601 return ret;
2602 }
2603
2604 /* Simple wrapper as we always can redirect fallthru edges. */
2605 static basic_block
2606 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2607 {
2608 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2609
2610 gcc_assert (redirected);
2611 return NULL;
2612 }
2613
2614 /* Same as delete_basic_block but update cfg_layout structures. */
2615
2616 static void
2617 cfg_layout_delete_block (basic_block bb)
2618 {
2619 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2620
2621 if (bb->il.rtl->header)
2622 {
2623 next = BB_HEAD (bb);
2624 if (prev)
2625 NEXT_INSN (prev) = bb->il.rtl->header;
2626 else
2627 set_first_insn (bb->il.rtl->header);
2628 PREV_INSN (bb->il.rtl->header) = prev;
2629 insn = bb->il.rtl->header;
2630 while (NEXT_INSN (insn))
2631 insn = NEXT_INSN (insn);
2632 NEXT_INSN (insn) = next;
2633 PREV_INSN (next) = insn;
2634 }
2635 next = NEXT_INSN (BB_END (bb));
2636 if (bb->il.rtl->footer)
2637 {
2638 insn = bb->il.rtl->footer;
2639 while (insn)
2640 {
2641 if (BARRIER_P (insn))
2642 {
2643 if (PREV_INSN (insn))
2644 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2645 else
2646 bb->il.rtl->footer = NEXT_INSN (insn);
2647 if (NEXT_INSN (insn))
2648 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2649 }
2650 if (LABEL_P (insn))
2651 break;
2652 insn = NEXT_INSN (insn);
2653 }
2654 if (bb->il.rtl->footer)
2655 {
2656 insn = BB_END (bb);
2657 NEXT_INSN (insn) = bb->il.rtl->footer;
2658 PREV_INSN (bb->il.rtl->footer) = insn;
2659 while (NEXT_INSN (insn))
2660 insn = NEXT_INSN (insn);
2661 NEXT_INSN (insn) = next;
2662 if (next)
2663 PREV_INSN (next) = insn;
2664 else
2665 set_last_insn (insn);
2666 }
2667 }
2668 if (bb->next_bb != EXIT_BLOCK_PTR)
2669 to = &bb->next_bb->il.rtl->header;
2670 else
2671 to = &cfg_layout_function_footer;
2672
2673 rtl_delete_block (bb);
2674
2675 if (prev)
2676 prev = NEXT_INSN (prev);
2677 else
2678 prev = get_insns ();
2679 if (next)
2680 next = PREV_INSN (next);
2681 else
2682 next = get_last_insn ();
2683
2684 if (next && NEXT_INSN (next) != prev)
2685 {
2686 remaints = unlink_insn_chain (prev, next);
2687 insn = remaints;
2688 while (NEXT_INSN (insn))
2689 insn = NEXT_INSN (insn);
2690 NEXT_INSN (insn) = *to;
2691 if (*to)
2692 PREV_INSN (*to) = insn;
2693 *to = remaints;
2694 }
2695 }
2696
2697 /* Return true when blocks A and B can be safely merged. */
2698 static bool
2699 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2700 {
2701 /* If we are partitioning hot/cold basic blocks, we don't want to
2702 mess up unconditional or indirect jumps that cross between hot
2703 and cold sections.
2704
2705 Basic block partitioning may result in some jumps that appear to
2706 be optimizable (or blocks that appear to be mergeable), but which really
2707 must be left untouched (they are required to make it safely across
2708 partition boundaries). See the comments at the top of
2709 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2710
2711 if (BB_PARTITION (a) != BB_PARTITION (b))
2712 return false;
2713
2714 /* There must be exactly one edge in between the blocks. */
2715 return (single_succ_p (a)
2716 && single_succ (a) == b
2717 && single_pred_p (b) == 1
2718 && a != b
2719 /* Must be simple edge. */
2720 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2721 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2722 /* If the jump insn has side effects,
2723 we can't kill the edge. */
2724 && (!JUMP_P (BB_END (a))
2725 || (reload_completed
2726 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2727 }
2728
2729 /* Merge block A and B. The blocks must be mergeable. */
2730
2731 static void
2732 cfg_layout_merge_blocks (basic_block a, basic_block b)
2733 {
2734 #ifdef ENABLE_CHECKING
2735 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2736 #endif
2737
2738 /* If there was a CODE_LABEL beginning B, delete it. */
2739 if (LABEL_P (BB_HEAD (b)))
2740 {
2741 /* This might have been an EH label that no longer has incoming
2742 EH edges. Update data structures to match. */
2743 maybe_remove_eh_handler (BB_HEAD (b));
2744
2745 delete_insn (BB_HEAD (b));
2746 }
2747
2748 /* We should have fallthru edge in a, or we can do dummy redirection to get
2749 it cleaned up. */
2750 if (JUMP_P (BB_END (a)))
2751 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2752 gcc_assert (!JUMP_P (BB_END (a)));
2753
2754 /* Possible line number notes should appear in between. */
2755 if (b->il.rtl->header)
2756 {
2757 rtx first = BB_END (a), last;
2758
2759 last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a));
2760 delete_insn_chain (NEXT_INSN (first), last);
2761 b->il.rtl->header = NULL;
2762 }
2763
2764 /* In the case basic blocks are not adjacent, move them around. */
2765 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2766 {
2767 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2768
2769 emit_insn_after_noloc (first, BB_END (a));
2770 /* Skip possible DELETED_LABEL insn. */
2771 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2772 first = NEXT_INSN (first);
2773 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2774 BB_HEAD (b) = NULL;
2775 delete_insn (first);
2776 }
2777 /* Otherwise just re-associate the instructions. */
2778 else
2779 {
2780 rtx insn;
2781
2782 for (insn = BB_HEAD (b);
2783 insn != NEXT_INSN (BB_END (b));
2784 insn = NEXT_INSN (insn))
2785 set_block_for_insn (insn, a);
2786 insn = BB_HEAD (b);
2787 /* Skip possible DELETED_LABEL insn. */
2788 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2789 insn = NEXT_INSN (insn);
2790 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2791 BB_HEAD (b) = NULL;
2792 BB_END (a) = BB_END (b);
2793 delete_insn (insn);
2794 }
2795
2796 /* Possible tablejumps and barriers should appear after the block. */
2797 if (b->il.rtl->footer)
2798 {
2799 if (!a->il.rtl->footer)
2800 a->il.rtl->footer = b->il.rtl->footer;
2801 else
2802 {
2803 rtx last = a->il.rtl->footer;
2804
2805 while (NEXT_INSN (last))
2806 last = NEXT_INSN (last);
2807 NEXT_INSN (last) = b->il.rtl->footer;
2808 PREV_INSN (b->il.rtl->footer) = last;
2809 }
2810 b->il.rtl->footer = NULL;
2811 }
2812 a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
2813
2814 if (dump_file)
2815 fprintf (dump_file, "Merged blocks %d and %d.\n",
2816 a->index, b->index);
2817 }
2818
2819 /* Split edge E. */
2820
2821 static basic_block
2822 cfg_layout_split_edge (edge e)
2823 {
2824 basic_block new_bb =
2825 create_basic_block (e->src != ENTRY_BLOCK_PTR
2826 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2827 NULL_RTX, e->src);
2828
2829 /* ??? This info is likely going to be out of date very soon, but we must
2830 create it to avoid getting an ICE later. */
2831 if (e->dest->il.rtl->global_live_at_start)
2832 {
2833 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2834 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2835 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
2836 e->dest->il.rtl->global_live_at_start);
2837 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
2838 e->dest->il.rtl->global_live_at_start);
2839 }
2840
2841 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2842 redirect_edge_and_branch_force (e, new_bb);
2843
2844 return new_bb;
2845 }
2846
2847 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2848
2849 static void
2850 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2851 {
2852 }
2853
2854 /* Return 1 if BB ends with a call, possibly followed by some
2855 instructions that must stay with the call, 0 otherwise. */
2856
2857 static bool
2858 rtl_block_ends_with_call_p (basic_block bb)
2859 {
2860 rtx insn = BB_END (bb);
2861
2862 while (!CALL_P (insn)
2863 && insn != BB_HEAD (bb)
2864 && keep_with_call_p (insn))
2865 insn = PREV_INSN (insn);
2866 return (CALL_P (insn));
2867 }
2868
2869 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2870
2871 static bool
2872 rtl_block_ends_with_condjump_p (basic_block bb)
2873 {
2874 return any_condjump_p (BB_END (bb));
2875 }
2876
2877 /* Return true if we need to add fake edge to exit.
2878 Helper function for rtl_flow_call_edges_add. */
2879
2880 static bool
2881 need_fake_edge_p (rtx insn)
2882 {
2883 if (!INSN_P (insn))
2884 return false;
2885
2886 if ((CALL_P (insn)
2887 && !SIBLING_CALL_P (insn)
2888 && !find_reg_note (insn, REG_NORETURN, NULL)
2889 && !CONST_OR_PURE_CALL_P (insn)))
2890 return true;
2891
2892 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2893 && MEM_VOLATILE_P (PATTERN (insn)))
2894 || (GET_CODE (PATTERN (insn)) == PARALLEL
2895 && asm_noperands (insn) != -1
2896 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2897 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2898 }
2899
2900 /* Add fake edges to the function exit for any non constant and non noreturn
2901 calls, volatile inline assembly in the bitmap of blocks specified by
2902 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2903 that were split.
2904
2905 The goal is to expose cases in which entering a basic block does not imply
2906 that all subsequent instructions must be executed. */
2907
2908 static int
2909 rtl_flow_call_edges_add (sbitmap blocks)
2910 {
2911 int i;
2912 int blocks_split = 0;
2913 int last_bb = last_basic_block;
2914 bool check_last_block = false;
2915
2916 if (n_basic_blocks == 0)
2917 return 0;
2918
2919 if (! blocks)
2920 check_last_block = true;
2921 else
2922 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2923
2924 /* In the last basic block, before epilogue generation, there will be
2925 a fallthru edge to EXIT. Special care is required if the last insn
2926 of the last basic block is a call because make_edge folds duplicate
2927 edges, which would result in the fallthru edge also being marked
2928 fake, which would result in the fallthru edge being removed by
2929 remove_fake_edges, which would result in an invalid CFG.
2930
2931 Moreover, we can't elide the outgoing fake edge, since the block
2932 profiler needs to take this into account in order to solve the minimal
2933 spanning tree in the case that the call doesn't return.
2934
2935 Handle this by adding a dummy instruction in a new last basic block. */
2936 if (check_last_block)
2937 {
2938 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2939 rtx insn = BB_END (bb);
2940
2941 /* Back up past insns that must be kept in the same block as a call. */
2942 while (insn != BB_HEAD (bb)
2943 && keep_with_call_p (insn))
2944 insn = PREV_INSN (insn);
2945
2946 if (need_fake_edge_p (insn))
2947 {
2948 edge e;
2949
2950 e = find_edge (bb, EXIT_BLOCK_PTR);
2951 if (e)
2952 {
2953 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2954 commit_edge_insertions ();
2955 }
2956 }
2957 }
2958
2959 /* Now add fake edges to the function exit for any non constant
2960 calls since there is no way that we can determine if they will
2961 return or not... */
2962
2963 for (i = 0; i < last_bb; i++)
2964 {
2965 basic_block bb = BASIC_BLOCK (i);
2966 rtx insn;
2967 rtx prev_insn;
2968
2969 if (!bb)
2970 continue;
2971
2972 if (blocks && !TEST_BIT (blocks, i))
2973 continue;
2974
2975 for (insn = BB_END (bb); ; insn = prev_insn)
2976 {
2977 prev_insn = PREV_INSN (insn);
2978 if (need_fake_edge_p (insn))
2979 {
2980 edge e;
2981 rtx split_at_insn = insn;
2982
2983 /* Don't split the block between a call and an insn that should
2984 remain in the same block as the call. */
2985 if (CALL_P (insn))
2986 while (split_at_insn != BB_END (bb)
2987 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2988 split_at_insn = NEXT_INSN (split_at_insn);
2989
2990 /* The handling above of the final block before the epilogue
2991 should be enough to verify that there is no edge to the exit
2992 block in CFG already. Calling make_edge in such case would
2993 cause us to mark that edge as fake and remove it later. */
2994
2995 #ifdef ENABLE_CHECKING
2996 if (split_at_insn == BB_END (bb))
2997 {
2998 e = find_edge (bb, EXIT_BLOCK_PTR);
2999 gcc_assert (e == NULL);
3000 }
3001 #endif
3002
3003 /* Note that the following may create a new basic block
3004 and renumber the existing basic blocks. */
3005 if (split_at_insn != BB_END (bb))
3006 {
3007 e = split_block (bb, split_at_insn);
3008 if (e)
3009 blocks_split++;
3010 }
3011
3012 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
3013 }
3014
3015 if (insn == BB_HEAD (bb))
3016 break;
3017 }
3018 }
3019
3020 if (blocks_split)
3021 verify_flow_info ();
3022
3023 return blocks_split;
3024 }
3025
3026 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
3027 the conditional branch target, SECOND_HEAD should be the fall-thru
3028 there is no need to handle this here the loop versioning code handles
3029 this. the reason for SECON_HEAD is that it is needed for condition
3030 in trees, and this should be of the same type since it is a hook. */
3031 static void
3032 rtl_lv_add_condition_to_bb (basic_block first_head ,
3033 basic_block second_head ATTRIBUTE_UNUSED,
3034 basic_block cond_bb, void *comp_rtx)
3035 {
3036 rtx label, seq, jump;
3037 rtx op0 = XEXP ((rtx)comp_rtx, 0);
3038 rtx op1 = XEXP ((rtx)comp_rtx, 1);
3039 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
3040 enum machine_mode mode;
3041
3042
3043 label = block_label (first_head);
3044 mode = GET_MODE (op0);
3045 if (mode == VOIDmode)
3046 mode = GET_MODE (op1);
3047
3048 start_sequence ();
3049 op0 = force_operand (op0, NULL_RTX);
3050 op1 = force_operand (op1, NULL_RTX);
3051 do_compare_rtx_and_jump (op0, op1, comp, 0,
3052 mode, NULL_RTX, NULL_RTX, label);
3053 jump = get_last_insn ();
3054 JUMP_LABEL (jump) = label;
3055 LABEL_NUSES (label)++;
3056 seq = get_insns ();
3057 end_sequence ();
3058
3059 /* Add the new cond , in the new head. */
3060 emit_insn_after(seq, BB_END(cond_bb));
3061 }
3062
3063
3064 /* Given a block B with unconditional branch at its end, get the
3065 store the return the branch edge and the fall-thru edge in
3066 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
3067 static void
3068 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
3069 edge *fallthru_edge)
3070 {
3071 edge e = EDGE_SUCC (b, 0);
3072
3073 if (e->flags & EDGE_FALLTHRU)
3074 {
3075 *fallthru_edge = e;
3076 *branch_edge = EDGE_SUCC (b, 1);
3077 }
3078 else
3079 {
3080 *branch_edge = e;
3081 *fallthru_edge = EDGE_SUCC (b, 1);
3082 }
3083 }
3084
3085 void
3086 init_rtl_bb_info (basic_block bb)
3087 {
3088 gcc_assert (!bb->il.rtl);
3089 bb->il.rtl = ggc_alloc_cleared (sizeof (struct rtl_bb_info));
3090 }
3091
3092
3093 /* Implementation of CFG manipulation for linearized RTL. */
3094 struct cfg_hooks rtl_cfg_hooks = {
3095 "rtl",
3096 rtl_verify_flow_info,
3097 rtl_dump_bb,
3098 rtl_create_basic_block,
3099 rtl_redirect_edge_and_branch,
3100 rtl_redirect_edge_and_branch_force,
3101 rtl_delete_block,
3102 rtl_split_block,
3103 rtl_move_block_after,
3104 rtl_can_merge_blocks, /* can_merge_blocks_p */
3105 rtl_merge_blocks,
3106 rtl_predict_edge,
3107 rtl_predicted_by_p,
3108 NULL, /* can_duplicate_block_p */
3109 NULL, /* duplicate_block */
3110 rtl_split_edge,
3111 rtl_make_forwarder_block,
3112 rtl_tidy_fallthru_edge,
3113 rtl_block_ends_with_call_p,
3114 rtl_block_ends_with_condjump_p,
3115 rtl_flow_call_edges_add,
3116 NULL, /* execute_on_growing_pred */
3117 NULL, /* execute_on_shrinking_pred */
3118 NULL, /* duplicate loop for trees */
3119 NULL, /* lv_add_condition_to_bb */
3120 NULL, /* lv_adjust_loop_header_phi*/
3121 NULL, /* extract_cond_bb_edges */
3122 NULL /* flush_pending_stmts */
3123 };
3124
3125 /* Implementation of CFG manipulation for cfg layout RTL, where
3126 basic block connected via fallthru edges does not have to be adjacent.
3127 This representation will hopefully become the default one in future
3128 version of the compiler. */
3129
3130 /* We do not want to declare these functions in a header file, since they
3131 should only be used through the cfghooks interface, and we do not want to
3132 move them here since it would require also moving quite a lot of related
3133 code. */
3134 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3135 extern basic_block cfg_layout_duplicate_bb (basic_block);
3136
3137 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3138 "cfglayout mode",
3139 rtl_verify_flow_info_1,
3140 rtl_dump_bb,
3141 cfg_layout_create_basic_block,
3142 cfg_layout_redirect_edge_and_branch,
3143 cfg_layout_redirect_edge_and_branch_force,
3144 cfg_layout_delete_block,
3145 cfg_layout_split_block,
3146 rtl_move_block_after,
3147 cfg_layout_can_merge_blocks_p,
3148 cfg_layout_merge_blocks,
3149 rtl_predict_edge,
3150 rtl_predicted_by_p,
3151 cfg_layout_can_duplicate_bb_p,
3152 cfg_layout_duplicate_bb,
3153 cfg_layout_split_edge,
3154 rtl_make_forwarder_block,
3155 NULL,
3156 rtl_block_ends_with_call_p,
3157 rtl_block_ends_with_condjump_p,
3158 rtl_flow_call_edges_add,
3159 NULL, /* execute_on_growing_pred */
3160 NULL, /* execute_on_shrinking_pred */
3161 duplicate_loop_to_header_edge, /* duplicate loop for trees */
3162 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3163 NULL, /* lv_adjust_loop_header_phi*/
3164 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3165 NULL /* flush_pending_stmts */
3166 };
3167