]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
PR translation/79183
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "params.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx_insn *i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 };
254
255
256 static vec<reg_stat_type> reg_stat;
257
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
265
266 static unsigned int reg_n_sets_max;
267
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
270
271 static int mem_last_set;
272
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
275
276 static int last_call_luid;
277
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
283
284 static rtx_insn *subst_insn;
285
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
292
293 static int subst_low_luid;
294
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
297
298 static HARD_REG_SET newpat_used_regs;
299
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
303
304 static rtx_insn *added_links_insn;
305
306 /* And similarly, for notes. */
307
308 static rtx_insn *added_notes_insn;
309
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
313
314 \f
315 /* Length of the currently allocated uid_insn_cost array. */
316
317 static int max_uid_known;
318
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
326
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
331 };
332
333 static struct insn_link **uid_log_links;
334
335 static inline int
336 insn_uid_check (const_rtx insn)
337 {
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
341 }
342
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348
349 /* Links for LOG_LINKS are allocated from this obstack. */
350
351 static struct obstack insn_link_obstack;
352
353 /* Allocate a link. */
354
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 {
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
365 }
366
367 /* Incremented for each basic block. */
368
369 static int label_tick;
370
371 /* Reset to label_tick for each extended basic block in scanning order. */
372
373 static int label_tick_ebb_start;
374
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377
378 static scalar_int_mode nonzero_bits_mode;
379
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
385
386 static int nonzero_sign_valid;
387
388 \f
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
391
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393
394 struct undo
395 {
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
400 };
401
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
404
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
407
408 struct undobuf
409 {
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
413 };
414
415 static struct undobuf undobuf;
416
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
419
420 static int n_occurrences;
421
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
498 \f
499
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
519
520 \f
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
526 {
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
530 }
531
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
537
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
540 {
541 rtx_insn *ret;
542 unsigned int nregs;
543
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
549 }
550
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
556
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
566
567 switch (code)
568 {
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 case CLOBBER_HIGH:
575 return 0;
576
577 case SET:
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x)) != CC0
583 && GET_CODE (SET_DEST (x)) != PC
584 && !REG_P (SET_DEST (x))
585 && ! (GET_CODE (SET_DEST (x)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x)))
587 && !read_modify_subreg_p (SET_DEST (x))))
588 break;
589
590 return find_single_use_1 (dest, &SET_SRC (x));
591
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
595
596 default:
597 break;
598 }
599
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
602
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e')
607 {
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
614
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
620 }
621 else if (fmt[i] == 'E')
622 {
623 int j;
624
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 {
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
639 }
640 }
641 }
642
643 return result;
644 }
645
646
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
650
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
655
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
660
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 {
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
668
669 if (dest == cc0_rtx)
670 {
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
675
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
680 }
681
682 if (!REG_P (dest))
683 return 0;
684
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 {
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
694
695 if (link)
696 {
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
701 }
702 }
703
704 return 0;
705 }
706 \f
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
712
713 static void
714 do_SUBST (rtx *into, rtx newval)
715 {
716 struct undo *buf;
717 rtx oldval = *into;
718
719 if (oldval == newval)
720 return;
721
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
729 {
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
745 }
746
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
751
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
756
757 buf->next = undobuf.undos, undobuf.undos = buf;
758 }
759
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
765
766 static void
767 do_SUBST_INT (int *into, int newval)
768 {
769 struct undo *buf;
770 int oldval = *into;
771
772 if (oldval == newval)
773 return;
774
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
779
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
784
785 buf->next = undobuf.undos, undobuf.undos = buf;
786 }
787
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
794
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
797 {
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
800
801 if (oldval == newval)
802 return;
803
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
808
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
813
814 buf->next = undobuf.undos, undobuf.undos = buf;
815 }
816
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 {
824 struct undo *buf;
825 struct insn_link * oldval = *into;
826
827 if (oldval == newval)
828 return;
829
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
834
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
839
840 buf->next = undobuf.undos, undobuf.undos = buf;
841 }
842
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 \f
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
852
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
856 {
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
860
861 /* Lookup the original insn_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
864
865 if (i1)
866 {
867 i1_cost = INSN_COST (i1);
868 if (i0)
869 {
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 }
874 else
875 {
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
879 }
880 }
881 else
882 {
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
885 }
886
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
891
892
893 /* Calculate the replacement insn_costs. */
894 rtx tmp = PATTERN (i3);
895 PATTERN (i3) = newpat;
896 int tmpi = INSN_CODE (i3);
897 INSN_CODE (i3) = -1;
898 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
899 PATTERN (i3) = tmp;
900 INSN_CODE (i3) = tmpi;
901 if (newi2pat)
902 {
903 tmp = PATTERN (i2);
904 PATTERN (i2) = newi2pat;
905 tmpi = INSN_CODE (i2);
906 INSN_CODE (i2) = -1;
907 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
908 PATTERN (i2) = tmp;
909 INSN_CODE (i2) = tmpi;
910 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
911 ? new_i2_cost + new_i3_cost : 0;
912 }
913 else
914 {
915 new_cost = new_i3_cost;
916 new_i2_cost = 0;
917 }
918
919 if (undobuf.other_insn)
920 {
921 int old_other_cost, new_other_cost;
922
923 old_other_cost = INSN_COST (undobuf.other_insn);
924 tmp = PATTERN (undobuf.other_insn);
925 PATTERN (undobuf.other_insn) = newotherpat;
926 tmpi = INSN_CODE (undobuf.other_insn);
927 INSN_CODE (undobuf.other_insn) = -1;
928 new_other_cost = insn_cost (undobuf.other_insn,
929 optimize_this_for_speed_p);
930 PATTERN (undobuf.other_insn) = tmp;
931 INSN_CODE (undobuf.other_insn) = tmpi;
932 if (old_other_cost > 0 && new_other_cost > 0)
933 {
934 old_cost += old_other_cost;
935 new_cost += new_other_cost;
936 }
937 else
938 old_cost = 0;
939 }
940
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject = old_cost > 0 && new_cost > old_cost;
944
945 if (dump_file)
946 {
947 fprintf (dump_file, "%s combination of insns ",
948 reject ? "rejecting" : "allowing");
949 if (i0)
950 fprintf (dump_file, "%d, ", INSN_UID (i0));
951 if (i1 && INSN_UID (i1) != INSN_UID (i2))
952 fprintf (dump_file, "%d, ", INSN_UID (i1));
953 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954
955 fprintf (dump_file, "original costs ");
956 if (i0)
957 fprintf (dump_file, "%d + ", i0_cost);
958 if (i1 && INSN_UID (i1) != INSN_UID (i2))
959 fprintf (dump_file, "%d + ", i1_cost);
960 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961
962 if (newi2pat)
963 fprintf (dump_file, "replacement costs %d + %d = %d\n",
964 new_i2_cost, new_i3_cost, new_cost);
965 else
966 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 }
968
969 if (reject)
970 return false;
971
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2) = new_i2_cost;
974 INSN_COST (i3) = new_i3_cost;
975 if (i1)
976 {
977 INSN_COST (i1) = 0;
978 if (i0)
979 INSN_COST (i0) = 0;
980 }
981
982 return true;
983 }
984
985
986 /* Delete any insns that copy a register to itself.
987 Return true if the CFG was changed. */
988
989 static bool
990 delete_noop_moves (void)
991 {
992 rtx_insn *insn, *next;
993 basic_block bb;
994
995 bool edges_deleted = false;
996
997 FOR_EACH_BB_FN (bb, cfun)
998 {
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1000 {
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1003 {
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1006
1007 edges_deleted |= delete_insn_and_edges (insn);
1008 }
1009 }
1010 }
1011
1012 return edges_deleted;
1013 }
1014
1015 \f
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1017 static bool
1018 can_combine_def_p (df_ref def)
1019 {
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 return false;
1023
1024 unsigned int regno = DF_REF_REGNO (def);
1025
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno == FRAME_POINTER_REGNUM
1028 && (!reload_completed || frame_pointer_needed))
1029 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 && regno == HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed || frame_pointer_needed))
1032 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1033 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1034 return false;
1035
1036 return true;
1037 }
1038
1039 /* Return false if we do not want to (or cannot) combine USE. */
1040 static bool
1041 can_combine_use_p (df_ref use)
1042 {
1043 /* Do not consider the usage of the stack pointer by function call. */
1044 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1045 return false;
1046
1047 return true;
1048 }
1049
1050 /* Fill in log links field for all insns. */
1051
1052 static void
1053 create_log_links (void)
1054 {
1055 basic_block bb;
1056 rtx_insn **next_use;
1057 rtx_insn *insn;
1058 df_ref def, use;
1059
1060 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061
1062 /* Pass through each block from the end, recording the uses of each
1063 register and establishing log links when def is encountered.
1064 Note that we do not clear next_use array in order to save time,
1065 so we have to test whether the use is in the same basic block as def.
1066
1067 There are a few cases below when we do not consider the definition or
1068 usage -- these are taken from original flow.c did. Don't ask me why it is
1069 done this way; I don't know and if it works, I don't want to know. */
1070
1071 FOR_EACH_BB_FN (bb, cfun)
1072 {
1073 FOR_BB_INSNS_REVERSE (bb, insn)
1074 {
1075 if (!NONDEBUG_INSN_P (insn))
1076 continue;
1077
1078 /* Log links are created only once. */
1079 gcc_assert (!LOG_LINKS (insn));
1080
1081 FOR_EACH_INSN_DEF (def, insn)
1082 {
1083 unsigned int regno = DF_REF_REGNO (def);
1084 rtx_insn *use_insn;
1085
1086 if (!next_use[regno])
1087 continue;
1088
1089 if (!can_combine_def_p (def))
1090 continue;
1091
1092 use_insn = next_use[regno];
1093 next_use[regno] = NULL;
1094
1095 if (BLOCK_FOR_INSN (use_insn) != bb)
1096 continue;
1097
1098 /* flow.c claimed:
1099
1100 We don't build a LOG_LINK for hard registers contained
1101 in ASM_OPERANDs. If these registers get replaced,
1102 we might wind up changing the semantics of the insn,
1103 even if reload can make what appear to be valid
1104 assignments later. */
1105 if (regno < FIRST_PSEUDO_REGISTER
1106 && asm_noperands (PATTERN (use_insn)) >= 0)
1107 continue;
1108
1109 /* Don't add duplicate links between instructions. */
1110 struct insn_link *links;
1111 FOR_EACH_LOG_LINK (links, use_insn)
1112 if (insn == links->insn && regno == links->regno)
1113 break;
1114
1115 if (!links)
1116 LOG_LINKS (use_insn)
1117 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1118 }
1119
1120 FOR_EACH_INSN_USE (use, insn)
1121 if (can_combine_use_p (use))
1122 next_use[DF_REF_REGNO (use)] = insn;
1123 }
1124 }
1125
1126 free (next_use);
1127 }
1128
1129 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1130 true if we found a LOG_LINK that proves that A feeds B. This only works
1131 if there are no instructions between A and B which could have a link
1132 depending on A, since in that case we would not record a link for B.
1133 We also check the implicit dependency created by a cc0 setter/user
1134 pair. */
1135
1136 static bool
1137 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 {
1139 struct insn_link *links;
1140 FOR_EACH_LOG_LINK (links, b)
1141 if (links->insn == a)
1142 return true;
1143 if (HAVE_cc0 && sets_cc0_p (a))
1144 return true;
1145 return false;
1146 }
1147 \f
1148 /* Main entry point for combiner. F is the first insn of the function.
1149 NREGS is the first unused pseudo-reg number.
1150
1151 Return nonzero if the CFG was changed (e.g. if the combiner has
1152 turned an indirect jump instruction into a direct jump). */
1153 static int
1154 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 {
1156 rtx_insn *insn, *next;
1157 rtx_insn *prev;
1158 struct insn_link *links, *nextlinks;
1159 rtx_insn *first;
1160 basic_block last_bb;
1161
1162 int new_direct_jump_p = 0;
1163
1164 for (first = f; first && !NONDEBUG_INSN_P (first); )
1165 first = NEXT_INSN (first);
1166 if (!first)
1167 return 0;
1168
1169 combine_attempts = 0;
1170 combine_merges = 0;
1171 combine_extras = 0;
1172 combine_successes = 0;
1173
1174 rtl_hooks = combine_rtl_hooks;
1175
1176 reg_stat.safe_grow_cleared (nregs);
1177
1178 init_recog_no_volatile ();
1179
1180 /* Allocate array for insn info. */
1181 max_uid_known = get_max_uid ();
1182 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1183 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1184 gcc_obstack_init (&insn_link_obstack);
1185
1186 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1187
1188 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1189 problems when, for example, we have j <<= 1 in a loop. */
1190
1191 nonzero_sign_valid = 0;
1192 label_tick = label_tick_ebb_start = 1;
1193
1194 /* Scan all SETs and see if we can deduce anything about what
1195 bits are known to be zero for some registers and how many copies
1196 of the sign bit are known to exist for those registers.
1197
1198 Also set any known values so that we can use it while searching
1199 for what bits are known to be set. */
1200
1201 setup_incoming_promotions (first);
1202 /* Allow the entry block and the first block to fall into the same EBB.
1203 Conceptually the incoming promotions are assigned to the entry block. */
1204 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1205
1206 create_log_links ();
1207 FOR_EACH_BB_FN (this_basic_block, cfun)
1208 {
1209 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1210 last_call_luid = 0;
1211 mem_last_set = -1;
1212
1213 label_tick++;
1214 if (!single_pred_p (this_basic_block)
1215 || single_pred (this_basic_block) != last_bb)
1216 label_tick_ebb_start = label_tick;
1217 last_bb = this_basic_block;
1218
1219 FOR_BB_INSNS (this_basic_block, insn)
1220 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1221 {
1222 rtx links;
1223
1224 subst_low_luid = DF_INSN_LUID (insn);
1225 subst_insn = insn;
1226
1227 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1228 insn);
1229 record_dead_and_set_regs (insn);
1230
1231 if (AUTO_INC_DEC)
1232 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1233 if (REG_NOTE_KIND (links) == REG_INC)
1234 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1235 insn);
1236
1237 /* Record the current insn_cost of this instruction. */
1238 if (NONJUMP_INSN_P (insn))
1239 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1240 if (dump_file)
1241 {
1242 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1243 dump_insn_slim (dump_file, insn);
1244 }
1245 }
1246 }
1247
1248 nonzero_sign_valid = 1;
1249
1250 /* Now scan all the insns in forward order. */
1251 label_tick = label_tick_ebb_start = 1;
1252 init_reg_last ();
1253 setup_incoming_promotions (first);
1254 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1255 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1256
1257 FOR_EACH_BB_FN (this_basic_block, cfun)
1258 {
1259 rtx_insn *last_combined_insn = NULL;
1260
1261 /* Ignore instruction combination in basic blocks that are going to
1262 be removed as unreachable anyway. See PR82386. */
1263 if (EDGE_COUNT (this_basic_block->preds) == 0)
1264 continue;
1265
1266 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1267 last_call_luid = 0;
1268 mem_last_set = -1;
1269
1270 label_tick++;
1271 if (!single_pred_p (this_basic_block)
1272 || single_pred (this_basic_block) != last_bb)
1273 label_tick_ebb_start = label_tick;
1274 last_bb = this_basic_block;
1275
1276 rtl_profile_for_bb (this_basic_block);
1277 for (insn = BB_HEAD (this_basic_block);
1278 insn != NEXT_INSN (BB_END (this_basic_block));
1279 insn = next ? next : NEXT_INSN (insn))
1280 {
1281 next = 0;
1282 if (!NONDEBUG_INSN_P (insn))
1283 continue;
1284
1285 while (last_combined_insn
1286 && (!NONDEBUG_INSN_P (last_combined_insn)
1287 || last_combined_insn->deleted ()))
1288 last_combined_insn = PREV_INSN (last_combined_insn);
1289 if (last_combined_insn == NULL_RTX
1290 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1291 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1292 last_combined_insn = insn;
1293
1294 /* See if we know about function return values before this
1295 insn based upon SUBREG flags. */
1296 check_promoted_subreg (insn, PATTERN (insn));
1297
1298 /* See if we can find hardregs and subreg of pseudos in
1299 narrower modes. This could help turning TRUNCATEs
1300 into SUBREGs. */
1301 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1302
1303 /* Try this insn with each insn it links back to. */
1304
1305 FOR_EACH_LOG_LINK (links, insn)
1306 if ((next = try_combine (insn, links->insn, NULL,
1307 NULL, &new_direct_jump_p,
1308 last_combined_insn)) != 0)
1309 {
1310 statistics_counter_event (cfun, "two-insn combine", 1);
1311 goto retry;
1312 }
1313
1314 /* Try each sequence of three linked insns ending with this one. */
1315
1316 if (max_combine >= 3)
1317 FOR_EACH_LOG_LINK (links, insn)
1318 {
1319 rtx_insn *link = links->insn;
1320
1321 /* If the linked insn has been replaced by a note, then there
1322 is no point in pursuing this chain any further. */
1323 if (NOTE_P (link))
1324 continue;
1325
1326 FOR_EACH_LOG_LINK (nextlinks, link)
1327 if ((next = try_combine (insn, link, nextlinks->insn,
1328 NULL, &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1330 {
1331 statistics_counter_event (cfun, "three-insn combine", 1);
1332 goto retry;
1333 }
1334 }
1335
1336 /* Try to combine a jump insn that uses CC0
1337 with a preceding insn that sets CC0, and maybe with its
1338 logical predecessor as well.
1339 This is how we make decrement-and-branch insns.
1340 We need this special code because data flow connections
1341 via CC0 do not get entered in LOG_LINKS. */
1342
1343 if (HAVE_cc0
1344 && JUMP_P (insn)
1345 && (prev = prev_nonnote_insn (insn)) != 0
1346 && NONJUMP_INSN_P (prev)
1347 && sets_cc0_p (PATTERN (prev)))
1348 {
1349 if ((next = try_combine (insn, prev, NULL, NULL,
1350 &new_direct_jump_p,
1351 last_combined_insn)) != 0)
1352 goto retry;
1353
1354 FOR_EACH_LOG_LINK (nextlinks, prev)
1355 if ((next = try_combine (insn, prev, nextlinks->insn,
1356 NULL, &new_direct_jump_p,
1357 last_combined_insn)) != 0)
1358 goto retry;
1359 }
1360
1361 /* Do the same for an insn that explicitly references CC0. */
1362 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1363 && (prev = prev_nonnote_insn (insn)) != 0
1364 && NONJUMP_INSN_P (prev)
1365 && sets_cc0_p (PATTERN (prev))
1366 && GET_CODE (PATTERN (insn)) == SET
1367 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1368 {
1369 if ((next = try_combine (insn, prev, NULL, NULL,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373
1374 FOR_EACH_LOG_LINK (nextlinks, prev)
1375 if ((next = try_combine (insn, prev, nextlinks->insn,
1376 NULL, &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1378 goto retry;
1379 }
1380
1381 /* Finally, see if any of the insns that this insn links to
1382 explicitly references CC0. If so, try this insn, that insn,
1383 and its predecessor if it sets CC0. */
1384 if (HAVE_cc0)
1385 {
1386 FOR_EACH_LOG_LINK (links, insn)
1387 if (NONJUMP_INSN_P (links->insn)
1388 && GET_CODE (PATTERN (links->insn)) == SET
1389 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1390 && (prev = prev_nonnote_insn (links->insn)) != 0
1391 && NONJUMP_INSN_P (prev)
1392 && sets_cc0_p (PATTERN (prev))
1393 && (next = try_combine (insn, links->insn,
1394 prev, NULL, &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1396 goto retry;
1397 }
1398
1399 /* Try combining an insn with two different insns whose results it
1400 uses. */
1401 if (max_combine >= 3)
1402 FOR_EACH_LOG_LINK (links, insn)
1403 for (nextlinks = links->next; nextlinks;
1404 nextlinks = nextlinks->next)
1405 if ((next = try_combine (insn, links->insn,
1406 nextlinks->insn, NULL,
1407 &new_direct_jump_p,
1408 last_combined_insn)) != 0)
1409
1410 {
1411 statistics_counter_event (cfun, "three-insn combine", 1);
1412 goto retry;
1413 }
1414
1415 /* Try four-instruction combinations. */
1416 if (max_combine >= 4)
1417 FOR_EACH_LOG_LINK (links, insn)
1418 {
1419 struct insn_link *next1;
1420 rtx_insn *link = links->insn;
1421
1422 /* If the linked insn has been replaced by a note, then there
1423 is no point in pursuing this chain any further. */
1424 if (NOTE_P (link))
1425 continue;
1426
1427 FOR_EACH_LOG_LINK (next1, link)
1428 {
1429 rtx_insn *link1 = next1->insn;
1430 if (NOTE_P (link1))
1431 continue;
1432 /* I0 -> I1 -> I2 -> I3. */
1433 FOR_EACH_LOG_LINK (nextlinks, link1)
1434 if ((next = try_combine (insn, link, link1,
1435 nextlinks->insn,
1436 &new_direct_jump_p,
1437 last_combined_insn)) != 0)
1438 {
1439 statistics_counter_event (cfun, "four-insn combine", 1);
1440 goto retry;
1441 }
1442 /* I0, I1 -> I2, I2 -> I3. */
1443 for (nextlinks = next1->next; nextlinks;
1444 nextlinks = nextlinks->next)
1445 if ((next = try_combine (insn, link, link1,
1446 nextlinks->insn,
1447 &new_direct_jump_p,
1448 last_combined_insn)) != 0)
1449 {
1450 statistics_counter_event (cfun, "four-insn combine", 1);
1451 goto retry;
1452 }
1453 }
1454
1455 for (next1 = links->next; next1; next1 = next1->next)
1456 {
1457 rtx_insn *link1 = next1->insn;
1458 if (NOTE_P (link1))
1459 continue;
1460 /* I0 -> I2; I1, I2 -> I3. */
1461 FOR_EACH_LOG_LINK (nextlinks, link)
1462 if ((next = try_combine (insn, link, link1,
1463 nextlinks->insn,
1464 &new_direct_jump_p,
1465 last_combined_insn)) != 0)
1466 {
1467 statistics_counter_event (cfun, "four-insn combine", 1);
1468 goto retry;
1469 }
1470 /* I0 -> I1; I1, I2 -> I3. */
1471 FOR_EACH_LOG_LINK (nextlinks, link1)
1472 if ((next = try_combine (insn, link, link1,
1473 nextlinks->insn,
1474 &new_direct_jump_p,
1475 last_combined_insn)) != 0)
1476 {
1477 statistics_counter_event (cfun, "four-insn combine", 1);
1478 goto retry;
1479 }
1480 }
1481 }
1482
1483 /* Try this insn with each REG_EQUAL note it links back to. */
1484 FOR_EACH_LOG_LINK (links, insn)
1485 {
1486 rtx set, note;
1487 rtx_insn *temp = links->insn;
1488 if ((set = single_set (temp)) != 0
1489 && (note = find_reg_equal_equiv_note (temp)) != 0
1490 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1491 /* Avoid using a register that may already been marked
1492 dead by an earlier instruction. */
1493 && ! unmentioned_reg_p (note, SET_SRC (set))
1494 && (GET_MODE (note) == VOIDmode
1495 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1496 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1497 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1498 || (GET_MODE (XEXP (SET_DEST (set), 0))
1499 == GET_MODE (note))))))
1500 {
1501 /* Temporarily replace the set's source with the
1502 contents of the REG_EQUAL note. The insn will
1503 be deleted or recognized by try_combine. */
1504 rtx orig_src = SET_SRC (set);
1505 rtx orig_dest = SET_DEST (set);
1506 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1507 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1508 SET_SRC (set) = note;
1509 i2mod = temp;
1510 i2mod_old_rhs = copy_rtx (orig_src);
1511 i2mod_new_rhs = copy_rtx (note);
1512 next = try_combine (insn, i2mod, NULL, NULL,
1513 &new_direct_jump_p,
1514 last_combined_insn);
1515 i2mod = NULL;
1516 if (next)
1517 {
1518 statistics_counter_event (cfun, "insn-with-note combine", 1);
1519 goto retry;
1520 }
1521 SET_SRC (set) = orig_src;
1522 SET_DEST (set) = orig_dest;
1523 }
1524 }
1525
1526 if (!NOTE_P (insn))
1527 record_dead_and_set_regs (insn);
1528
1529 retry:
1530 ;
1531 }
1532 }
1533
1534 default_rtl_profile ();
1535 clear_bb_flags ();
1536 new_direct_jump_p |= purge_all_dead_edges ();
1537 new_direct_jump_p |= delete_noop_moves ();
1538
1539 /* Clean up. */
1540 obstack_free (&insn_link_obstack, NULL);
1541 free (uid_log_links);
1542 free (uid_insn_cost);
1543 reg_stat.release ();
1544
1545 {
1546 struct undo *undo, *next;
1547 for (undo = undobuf.frees; undo; undo = next)
1548 {
1549 next = undo->next;
1550 free (undo);
1551 }
1552 undobuf.frees = 0;
1553 }
1554
1555 total_attempts += combine_attempts;
1556 total_merges += combine_merges;
1557 total_extras += combine_extras;
1558 total_successes += combine_successes;
1559
1560 nonzero_sign_valid = 0;
1561 rtl_hooks = general_rtl_hooks;
1562
1563 /* Make recognizer allow volatile MEMs again. */
1564 init_recog ();
1565
1566 return new_direct_jump_p;
1567 }
1568
1569 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1570
1571 static void
1572 init_reg_last (void)
1573 {
1574 unsigned int i;
1575 reg_stat_type *p;
1576
1577 FOR_EACH_VEC_ELT (reg_stat, i, p)
1578 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1579 }
1580 \f
1581 /* Set up any promoted values for incoming argument registers. */
1582
1583 static void
1584 setup_incoming_promotions (rtx_insn *first)
1585 {
1586 tree arg;
1587 bool strictly_local = false;
1588
1589 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1590 arg = DECL_CHAIN (arg))
1591 {
1592 rtx x, reg = DECL_INCOMING_RTL (arg);
1593 int uns1, uns3;
1594 machine_mode mode1, mode2, mode3, mode4;
1595
1596 /* Only continue if the incoming argument is in a register. */
1597 if (!REG_P (reg))
1598 continue;
1599
1600 /* Determine, if possible, whether all call sites of the current
1601 function lie within the current compilation unit. (This does
1602 take into account the exporting of a function via taking its
1603 address, and so forth.) */
1604 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1605
1606 /* The mode and signedness of the argument before any promotions happen
1607 (equal to the mode of the pseudo holding it at that stage). */
1608 mode1 = TYPE_MODE (TREE_TYPE (arg));
1609 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1610
1611 /* The mode and signedness of the argument after any source language and
1612 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1613 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1614 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1615
1616 /* The mode and signedness of the argument as it is actually passed,
1617 see assign_parm_setup_reg in function.c. */
1618 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1619 TREE_TYPE (cfun->decl), 0);
1620
1621 /* The mode of the register in which the argument is being passed. */
1622 mode4 = GET_MODE (reg);
1623
1624 /* Eliminate sign extensions in the callee when:
1625 (a) A mode promotion has occurred; */
1626 if (mode1 == mode3)
1627 continue;
1628 /* (b) The mode of the register is the same as the mode of
1629 the argument as it is passed; */
1630 if (mode3 != mode4)
1631 continue;
1632 /* (c) There's no language level extension; */
1633 if (mode1 == mode2)
1634 ;
1635 /* (c.1) All callers are from the current compilation unit. If that's
1636 the case we don't have to rely on an ABI, we only have to know
1637 what we're generating right now, and we know that we will do the
1638 mode1 to mode2 promotion with the given sign. */
1639 else if (!strictly_local)
1640 continue;
1641 /* (c.2) The combination of the two promotions is useful. This is
1642 true when the signs match, or if the first promotion is unsigned.
1643 In the later case, (sign_extend (zero_extend x)) is the same as
1644 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1645 else if (uns1)
1646 uns3 = true;
1647 else if (uns3)
1648 continue;
1649
1650 /* Record that the value was promoted from mode1 to mode3,
1651 so that any sign extension at the head of the current
1652 function may be eliminated. */
1653 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1654 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1655 record_value_for_reg (reg, first, x);
1656 }
1657 }
1658
1659 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1660 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1661 because some machines (maybe most) will actually do the sign-extension and
1662 this is the conservative approach.
1663
1664 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1665 kludge. */
1666
1667 static rtx
1668 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1669 {
1670 scalar_int_mode int_mode;
1671 if (CONST_INT_P (src)
1672 && is_a <scalar_int_mode> (mode, &int_mode)
1673 && GET_MODE_PRECISION (int_mode) < prec
1674 && INTVAL (src) > 0
1675 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1676 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1677
1678 return src;
1679 }
1680
1681 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1682 and SET. */
1683
1684 static void
1685 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1686 rtx x)
1687 {
1688 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1689 unsigned HOST_WIDE_INT bits = 0;
1690 rtx reg_equal = NULL, src = SET_SRC (set);
1691 unsigned int num = 0;
1692
1693 if (reg_equal_note)
1694 reg_equal = XEXP (reg_equal_note, 0);
1695
1696 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1697 {
1698 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1699 if (reg_equal)
1700 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1701 }
1702
1703 /* Don't call nonzero_bits if it cannot change anything. */
1704 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1705 {
1706 machine_mode mode = GET_MODE (x);
1707 if (GET_MODE_CLASS (mode) == MODE_INT
1708 && HWI_COMPUTABLE_MODE_P (mode))
1709 mode = nonzero_bits_mode;
1710 bits = nonzero_bits (src, mode);
1711 if (reg_equal && bits)
1712 bits &= nonzero_bits (reg_equal, mode);
1713 rsp->nonzero_bits |= bits;
1714 }
1715
1716 /* Don't call num_sign_bit_copies if it cannot change anything. */
1717 if (rsp->sign_bit_copies != 1)
1718 {
1719 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1720 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1721 {
1722 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1723 if (num == 0 || numeq > num)
1724 num = numeq;
1725 }
1726 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1727 rsp->sign_bit_copies = num;
1728 }
1729 }
1730
1731 /* Called via note_stores. If X is a pseudo that is narrower than
1732 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1733
1734 If we are setting only a portion of X and we can't figure out what
1735 portion, assume all bits will be used since we don't know what will
1736 be happening.
1737
1738 Similarly, set how many bits of X are known to be copies of the sign bit
1739 at all locations in the function. This is the smallest number implied
1740 by any set of X. */
1741
1742 static void
1743 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1744 {
1745 rtx_insn *insn = (rtx_insn *) data;
1746 scalar_int_mode mode;
1747
1748 if (REG_P (x)
1749 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1750 /* If this register is undefined at the start of the file, we can't
1751 say what its contents were. */
1752 && ! REGNO_REG_SET_P
1753 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1754 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1755 && HWI_COMPUTABLE_MODE_P (mode))
1756 {
1757 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1758
1759 if (set == 0 || GET_CODE (set) == CLOBBER)
1760 {
1761 rsp->nonzero_bits = GET_MODE_MASK (mode);
1762 rsp->sign_bit_copies = 1;
1763 return;
1764 }
1765
1766 /* Should not happen as we only using pseduo registers. */
1767 gcc_assert (GET_CODE (set) != CLOBBER_HIGH);
1768
1769 /* If this register is being initialized using itself, and the
1770 register is uninitialized in this basic block, and there are
1771 no LOG_LINKS which set the register, then part of the
1772 register is uninitialized. In that case we can't assume
1773 anything about the number of nonzero bits.
1774
1775 ??? We could do better if we checked this in
1776 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1777 could avoid making assumptions about the insn which initially
1778 sets the register, while still using the information in other
1779 insns. We would have to be careful to check every insn
1780 involved in the combination. */
1781
1782 if (insn
1783 && reg_referenced_p (x, PATTERN (insn))
1784 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1785 REGNO (x)))
1786 {
1787 struct insn_link *link;
1788
1789 FOR_EACH_LOG_LINK (link, insn)
1790 if (dead_or_set_p (link->insn, x))
1791 break;
1792 if (!link)
1793 {
1794 rsp->nonzero_bits = GET_MODE_MASK (mode);
1795 rsp->sign_bit_copies = 1;
1796 return;
1797 }
1798 }
1799
1800 /* If this is a complex assignment, see if we can convert it into a
1801 simple assignment. */
1802 set = expand_field_assignment (set);
1803
1804 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1805 set what we know about X. */
1806
1807 if (SET_DEST (set) == x
1808 || (paradoxical_subreg_p (SET_DEST (set))
1809 && SUBREG_REG (SET_DEST (set)) == x))
1810 update_rsp_from_reg_equal (rsp, insn, set, x);
1811 else
1812 {
1813 rsp->nonzero_bits = GET_MODE_MASK (mode);
1814 rsp->sign_bit_copies = 1;
1815 }
1816 }
1817 }
1818 \f
1819 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1820 optionally insns that were previously combined into I3 or that will be
1821 combined into the merger of INSN and I3. The order is PRED, PRED2,
1822 INSN, SUCC, SUCC2, I3.
1823
1824 Return 0 if the combination is not allowed for any reason.
1825
1826 If the combination is allowed, *PDEST will be set to the single
1827 destination of INSN and *PSRC to the single source, and this function
1828 will return 1. */
1829
1830 static int
1831 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1832 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1833 rtx *pdest, rtx *psrc)
1834 {
1835 int i;
1836 const_rtx set = 0;
1837 rtx src, dest;
1838 rtx_insn *p;
1839 rtx link;
1840 bool all_adjacent = true;
1841 int (*is_volatile_p) (const_rtx);
1842
1843 if (succ)
1844 {
1845 if (succ2)
1846 {
1847 if (next_active_insn (succ2) != i3)
1848 all_adjacent = false;
1849 if (next_active_insn (succ) != succ2)
1850 all_adjacent = false;
1851 }
1852 else if (next_active_insn (succ) != i3)
1853 all_adjacent = false;
1854 if (next_active_insn (insn) != succ)
1855 all_adjacent = false;
1856 }
1857 else if (next_active_insn (insn) != i3)
1858 all_adjacent = false;
1859
1860 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1861 or a PARALLEL consisting of such a SET and CLOBBERs.
1862
1863 If INSN has CLOBBER parallel parts, ignore them for our processing.
1864 By definition, these happen during the execution of the insn. When it
1865 is merged with another insn, all bets are off. If they are, in fact,
1866 needed and aren't also supplied in I3, they may be added by
1867 recog_for_combine. Otherwise, it won't match.
1868
1869 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1870 note.
1871
1872 Get the source and destination of INSN. If more than one, can't
1873 combine. */
1874
1875 if (GET_CODE (PATTERN (insn)) == SET)
1876 set = PATTERN (insn);
1877 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1878 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1879 {
1880 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1881 {
1882 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1883
1884 switch (GET_CODE (elt))
1885 {
1886 /* This is important to combine floating point insns
1887 for the SH4 port. */
1888 case USE:
1889 /* Combining an isolated USE doesn't make sense.
1890 We depend here on combinable_i3pat to reject them. */
1891 /* The code below this loop only verifies that the inputs of
1892 the SET in INSN do not change. We call reg_set_between_p
1893 to verify that the REG in the USE does not change between
1894 I3 and INSN.
1895 If the USE in INSN was for a pseudo register, the matching
1896 insn pattern will likely match any register; combining this
1897 with any other USE would only be safe if we knew that the
1898 used registers have identical values, or if there was
1899 something to tell them apart, e.g. different modes. For
1900 now, we forgo such complicated tests and simply disallow
1901 combining of USES of pseudo registers with any other USE. */
1902 if (REG_P (XEXP (elt, 0))
1903 && GET_CODE (PATTERN (i3)) == PARALLEL)
1904 {
1905 rtx i3pat = PATTERN (i3);
1906 int i = XVECLEN (i3pat, 0) - 1;
1907 unsigned int regno = REGNO (XEXP (elt, 0));
1908
1909 do
1910 {
1911 rtx i3elt = XVECEXP (i3pat, 0, i);
1912
1913 if (GET_CODE (i3elt) == USE
1914 && REG_P (XEXP (i3elt, 0))
1915 && (REGNO (XEXP (i3elt, 0)) == regno
1916 ? reg_set_between_p (XEXP (elt, 0),
1917 PREV_INSN (insn), i3)
1918 : regno >= FIRST_PSEUDO_REGISTER))
1919 return 0;
1920 }
1921 while (--i >= 0);
1922 }
1923 break;
1924
1925 /* We can ignore CLOBBERs. */
1926 case CLOBBER:
1927 case CLOBBER_HIGH:
1928 break;
1929
1930 case SET:
1931 /* Ignore SETs whose result isn't used but not those that
1932 have side-effects. */
1933 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1934 && insn_nothrow_p (insn)
1935 && !side_effects_p (elt))
1936 break;
1937
1938 /* If we have already found a SET, this is a second one and
1939 so we cannot combine with this insn. */
1940 if (set)
1941 return 0;
1942
1943 set = elt;
1944 break;
1945
1946 default:
1947 /* Anything else means we can't combine. */
1948 return 0;
1949 }
1950 }
1951
1952 if (set == 0
1953 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1954 so don't do anything with it. */
1955 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1956 return 0;
1957 }
1958 else
1959 return 0;
1960
1961 if (set == 0)
1962 return 0;
1963
1964 /* The simplification in expand_field_assignment may call back to
1965 get_last_value, so set safe guard here. */
1966 subst_low_luid = DF_INSN_LUID (insn);
1967
1968 set = expand_field_assignment (set);
1969 src = SET_SRC (set), dest = SET_DEST (set);
1970
1971 /* Do not eliminate user-specified register if it is in an
1972 asm input because we may break the register asm usage defined
1973 in GCC manual if allow to do so.
1974 Be aware that this may cover more cases than we expect but this
1975 should be harmless. */
1976 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1977 && extract_asm_operands (PATTERN (i3)))
1978 return 0;
1979
1980 /* Don't eliminate a store in the stack pointer. */
1981 if (dest == stack_pointer_rtx
1982 /* Don't combine with an insn that sets a register to itself if it has
1983 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1984 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1985 /* Can't merge an ASM_OPERANDS. */
1986 || GET_CODE (src) == ASM_OPERANDS
1987 /* Can't merge a function call. */
1988 || GET_CODE (src) == CALL
1989 /* Don't eliminate a function call argument. */
1990 || (CALL_P (i3)
1991 && (find_reg_fusage (i3, USE, dest)
1992 || (REG_P (dest)
1993 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1994 && global_regs[REGNO (dest)])))
1995 /* Don't substitute into an incremented register. */
1996 || FIND_REG_INC_NOTE (i3, dest)
1997 || (succ && FIND_REG_INC_NOTE (succ, dest))
1998 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1999 /* Don't substitute into a non-local goto, this confuses CFG. */
2000 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
2001 /* Make sure that DEST is not used after INSN but before SUCC, or
2002 after SUCC and before SUCC2, or after SUCC2 but before I3. */
2003 || (!all_adjacent
2004 && ((succ2
2005 && (reg_used_between_p (dest, succ2, i3)
2006 || reg_used_between_p (dest, succ, succ2)))
2007 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2008 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2009 || (succ
2010 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2011 that case SUCC is not in the insn stream, so use SUCC2
2012 instead for this test. */
2013 && reg_used_between_p (dest, insn,
2014 succ2
2015 && INSN_UID (succ) == INSN_UID (succ2)
2016 ? succ2 : succ))))
2017 /* Make sure that the value that is to be substituted for the register
2018 does not use any registers whose values alter in between. However,
2019 If the insns are adjacent, a use can't cross a set even though we
2020 think it might (this can happen for a sequence of insns each setting
2021 the same destination; last_set of that register might point to
2022 a NOTE). If INSN has a REG_EQUIV note, the register is always
2023 equivalent to the memory so the substitution is valid even if there
2024 are intervening stores. Also, don't move a volatile asm or
2025 UNSPEC_VOLATILE across any other insns. */
2026 || (! all_adjacent
2027 && (((!MEM_P (src)
2028 || ! find_reg_note (insn, REG_EQUIV, src))
2029 && modified_between_p (src, insn, i3))
2030 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2031 || GET_CODE (src) == UNSPEC_VOLATILE))
2032 /* Don't combine across a CALL_INSN, because that would possibly
2033 change whether the life span of some REGs crosses calls or not,
2034 and it is a pain to update that information.
2035 Exception: if source is a constant, moving it later can't hurt.
2036 Accept that as a special case. */
2037 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2038 return 0;
2039
2040 /* DEST must either be a REG or CC0. */
2041 if (REG_P (dest))
2042 {
2043 /* If register alignment is being enforced for multi-word items in all
2044 cases except for parameters, it is possible to have a register copy
2045 insn referencing a hard register that is not allowed to contain the
2046 mode being copied and which would not be valid as an operand of most
2047 insns. Eliminate this problem by not combining with such an insn.
2048
2049 Also, on some machines we don't want to extend the life of a hard
2050 register. */
2051
2052 if (REG_P (src)
2053 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2054 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2055 /* Don't extend the life of a hard register unless it is
2056 user variable (if we have few registers) or it can't
2057 fit into the desired register (meaning something special
2058 is going on).
2059 Also avoid substituting a return register into I3, because
2060 reload can't handle a conflict with constraints of other
2061 inputs. */
2062 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2063 && !targetm.hard_regno_mode_ok (REGNO (src),
2064 GET_MODE (src)))))
2065 return 0;
2066 }
2067 else if (GET_CODE (dest) != CC0)
2068 return 0;
2069
2070
2071 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2072 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2073 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2074 {
2075 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2076
2077 /* If the clobber represents an earlyclobber operand, we must not
2078 substitute an expression containing the clobbered register.
2079 As we do not analyze the constraint strings here, we have to
2080 make the conservative assumption. However, if the register is
2081 a fixed hard reg, the clobber cannot represent any operand;
2082 we leave it up to the machine description to either accept or
2083 reject use-and-clobber patterns. */
2084 if (!REG_P (reg)
2085 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2086 || !fixed_regs[REGNO (reg)])
2087 if (reg_overlap_mentioned_p (reg, src))
2088 return 0;
2089 }
2090
2091 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2092 or not), reject, unless nothing volatile comes between it and I3 */
2093
2094 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2095 {
2096 /* Make sure neither succ nor succ2 contains a volatile reference. */
2097 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2098 return 0;
2099 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2100 return 0;
2101 /* We'll check insns between INSN and I3 below. */
2102 }
2103
2104 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2105 to be an explicit register variable, and was chosen for a reason. */
2106
2107 if (GET_CODE (src) == ASM_OPERANDS
2108 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2109 return 0;
2110
2111 /* If INSN contains volatile references (specifically volatile MEMs),
2112 we cannot combine across any other volatile references.
2113 Even if INSN doesn't contain volatile references, any intervening
2114 volatile insn might affect machine state. */
2115
2116 is_volatile_p = volatile_refs_p (PATTERN (insn))
2117 ? volatile_refs_p
2118 : volatile_insn_p;
2119
2120 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2121 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2122 return 0;
2123
2124 /* If INSN contains an autoincrement or autodecrement, make sure that
2125 register is not used between there and I3, and not already used in
2126 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2127 Also insist that I3 not be a jump; if it were one
2128 and the incremented register were spilled, we would lose. */
2129
2130 if (AUTO_INC_DEC)
2131 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2132 if (REG_NOTE_KIND (link) == REG_INC
2133 && (JUMP_P (i3)
2134 || reg_used_between_p (XEXP (link, 0), insn, i3)
2135 || (pred != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2137 || (pred2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2139 || (succ != NULL_RTX
2140 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2141 || (succ2 != NULL_RTX
2142 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2143 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2144 return 0;
2145
2146 /* Don't combine an insn that follows a CC0-setting insn.
2147 An insn that uses CC0 must not be separated from the one that sets it.
2148 We do, however, allow I2 to follow a CC0-setting insn if that insn
2149 is passed as I1; in that case it will be deleted also.
2150 We also allow combining in this case if all the insns are adjacent
2151 because that would leave the two CC0 insns adjacent as well.
2152 It would be more logical to test whether CC0 occurs inside I1 or I2,
2153 but that would be much slower, and this ought to be equivalent. */
2154
2155 if (HAVE_cc0)
2156 {
2157 p = prev_nonnote_insn (insn);
2158 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2159 && ! all_adjacent)
2160 return 0;
2161 }
2162
2163 /* If we get here, we have passed all the tests and the combination is
2164 to be allowed. */
2165
2166 *pdest = dest;
2167 *psrc = src;
2168
2169 return 1;
2170 }
2171 \f
2172 /* LOC is the location within I3 that contains its pattern or the component
2173 of a PARALLEL of the pattern. We validate that it is valid for combining.
2174
2175 One problem is if I3 modifies its output, as opposed to replacing it
2176 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2177 doing so would produce an insn that is not equivalent to the original insns.
2178
2179 Consider:
2180
2181 (set (reg:DI 101) (reg:DI 100))
2182 (set (subreg:SI (reg:DI 101) 0) <foo>)
2183
2184 This is NOT equivalent to:
2185
2186 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2187 (set (reg:DI 101) (reg:DI 100))])
2188
2189 Not only does this modify 100 (in which case it might still be valid
2190 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2191
2192 We can also run into a problem if I2 sets a register that I1
2193 uses and I1 gets directly substituted into I3 (not via I2). In that
2194 case, we would be getting the wrong value of I2DEST into I3, so we
2195 must reject the combination. This case occurs when I2 and I1 both
2196 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2197 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2198 of a SET must prevent combination from occurring. The same situation
2199 can occur for I0, in which case I0_NOT_IN_SRC is set.
2200
2201 Before doing the above check, we first try to expand a field assignment
2202 into a set of logical operations.
2203
2204 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2205 we place a register that is both set and used within I3. If more than one
2206 such register is detected, we fail.
2207
2208 Return 1 if the combination is valid, zero otherwise. */
2209
2210 static int
2211 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2212 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2213 {
2214 rtx x = *loc;
2215
2216 if (GET_CODE (x) == SET)
2217 {
2218 rtx set = x ;
2219 rtx dest = SET_DEST (set);
2220 rtx src = SET_SRC (set);
2221 rtx inner_dest = dest;
2222 rtx subdest;
2223
2224 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2225 || GET_CODE (inner_dest) == SUBREG
2226 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2227 inner_dest = XEXP (inner_dest, 0);
2228
2229 /* Check for the case where I3 modifies its output, as discussed
2230 above. We don't want to prevent pseudos from being combined
2231 into the address of a MEM, so only prevent the combination if
2232 i1 or i2 set the same MEM. */
2233 if ((inner_dest != dest &&
2234 (!MEM_P (inner_dest)
2235 || rtx_equal_p (i2dest, inner_dest)
2236 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2237 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2238 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2239 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2240 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2241
2242 /* This is the same test done in can_combine_p except we can't test
2243 all_adjacent; we don't have to, since this instruction will stay
2244 in place, thus we are not considering increasing the lifetime of
2245 INNER_DEST.
2246
2247 Also, if this insn sets a function argument, combining it with
2248 something that might need a spill could clobber a previous
2249 function argument; the all_adjacent test in can_combine_p also
2250 checks this; here, we do a more specific test for this case. */
2251
2252 || (REG_P (inner_dest)
2253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2254 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2255 GET_MODE (inner_dest)))
2256 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2257 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2258 return 0;
2259
2260 /* If DEST is used in I3, it is being killed in this insn, so
2261 record that for later. We have to consider paradoxical
2262 subregs here, since they kill the whole register, but we
2263 ignore partial subregs, STRICT_LOW_PART, etc.
2264 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2265 STACK_POINTER_REGNUM, since these are always considered to be
2266 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2267 subdest = dest;
2268 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2269 subdest = SUBREG_REG (subdest);
2270 if (pi3dest_killed
2271 && REG_P (subdest)
2272 && reg_referenced_p (subdest, PATTERN (i3))
2273 && REGNO (subdest) != FRAME_POINTER_REGNUM
2274 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2275 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2276 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2277 || (REGNO (subdest) != ARG_POINTER_REGNUM
2278 || ! fixed_regs [REGNO (subdest)]))
2279 && REGNO (subdest) != STACK_POINTER_REGNUM)
2280 {
2281 if (*pi3dest_killed)
2282 return 0;
2283
2284 *pi3dest_killed = subdest;
2285 }
2286 }
2287
2288 else if (GET_CODE (x) == PARALLEL)
2289 {
2290 int i;
2291
2292 for (i = 0; i < XVECLEN (x, 0); i++)
2293 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2294 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2295 return 0;
2296 }
2297
2298 return 1;
2299 }
2300 \f
2301 /* Return 1 if X is an arithmetic expression that contains a multiplication
2302 and division. We don't count multiplications by powers of two here. */
2303
2304 static int
2305 contains_muldiv (rtx x)
2306 {
2307 switch (GET_CODE (x))
2308 {
2309 case MOD: case DIV: case UMOD: case UDIV:
2310 return 1;
2311
2312 case MULT:
2313 return ! (CONST_INT_P (XEXP (x, 1))
2314 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2315 default:
2316 if (BINARY_P (x))
2317 return contains_muldiv (XEXP (x, 0))
2318 || contains_muldiv (XEXP (x, 1));
2319
2320 if (UNARY_P (x))
2321 return contains_muldiv (XEXP (x, 0));
2322
2323 return 0;
2324 }
2325 }
2326 \f
2327 /* Determine whether INSN can be used in a combination. Return nonzero if
2328 not. This is used in try_combine to detect early some cases where we
2329 can't perform combinations. */
2330
2331 static int
2332 cant_combine_insn_p (rtx_insn *insn)
2333 {
2334 rtx set;
2335 rtx src, dest;
2336
2337 /* If this isn't really an insn, we can't do anything.
2338 This can occur when flow deletes an insn that it has merged into an
2339 auto-increment address. */
2340 if (!NONDEBUG_INSN_P (insn))
2341 return 1;
2342
2343 /* Never combine loads and stores involving hard regs that are likely
2344 to be spilled. The register allocator can usually handle such
2345 reg-reg moves by tying. If we allow the combiner to make
2346 substitutions of likely-spilled regs, reload might die.
2347 As an exception, we allow combinations involving fixed regs; these are
2348 not available to the register allocator so there's no risk involved. */
2349
2350 set = single_set (insn);
2351 if (! set)
2352 return 0;
2353 src = SET_SRC (set);
2354 dest = SET_DEST (set);
2355 if (GET_CODE (src) == SUBREG)
2356 src = SUBREG_REG (src);
2357 if (GET_CODE (dest) == SUBREG)
2358 dest = SUBREG_REG (dest);
2359 if (REG_P (src) && REG_P (dest)
2360 && ((HARD_REGISTER_P (src)
2361 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2362 #ifdef LEAF_REGISTERS
2363 && ! LEAF_REGISTERS [REGNO (src)])
2364 #else
2365 )
2366 #endif
2367 || (HARD_REGISTER_P (dest)
2368 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2369 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2370 return 1;
2371
2372 return 0;
2373 }
2374
2375 struct likely_spilled_retval_info
2376 {
2377 unsigned regno, nregs;
2378 unsigned mask;
2379 };
2380
2381 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2382 hard registers that are known to be written to / clobbered in full. */
2383 static void
2384 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2385 {
2386 struct likely_spilled_retval_info *const info =
2387 (struct likely_spilled_retval_info *) data;
2388 unsigned regno, nregs;
2389 unsigned new_mask;
2390
2391 if (!REG_P (XEXP (set, 0)))
2392 return;
2393 regno = REGNO (x);
2394 if (regno >= info->regno + info->nregs)
2395 return;
2396 nregs = REG_NREGS (x);
2397 if (regno + nregs <= info->regno)
2398 return;
2399 new_mask = (2U << (nregs - 1)) - 1;
2400 if (regno < info->regno)
2401 new_mask >>= info->regno - regno;
2402 else
2403 new_mask <<= regno - info->regno;
2404 info->mask &= ~new_mask;
2405 }
2406
2407 /* Return nonzero iff part of the return value is live during INSN, and
2408 it is likely spilled. This can happen when more than one insn is needed
2409 to copy the return value, e.g. when we consider to combine into the
2410 second copy insn for a complex value. */
2411
2412 static int
2413 likely_spilled_retval_p (rtx_insn *insn)
2414 {
2415 rtx_insn *use = BB_END (this_basic_block);
2416 rtx reg;
2417 rtx_insn *p;
2418 unsigned regno, nregs;
2419 /* We assume here that no machine mode needs more than
2420 32 hard registers when the value overlaps with a register
2421 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2422 unsigned mask;
2423 struct likely_spilled_retval_info info;
2424
2425 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2426 return 0;
2427 reg = XEXP (PATTERN (use), 0);
2428 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2429 return 0;
2430 regno = REGNO (reg);
2431 nregs = REG_NREGS (reg);
2432 if (nregs == 1)
2433 return 0;
2434 mask = (2U << (nregs - 1)) - 1;
2435
2436 /* Disregard parts of the return value that are set later. */
2437 info.regno = regno;
2438 info.nregs = nregs;
2439 info.mask = mask;
2440 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2441 if (INSN_P (p))
2442 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2443 mask = info.mask;
2444
2445 /* Check if any of the (probably) live return value registers is
2446 likely spilled. */
2447 nregs --;
2448 do
2449 {
2450 if ((mask & 1 << nregs)
2451 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2452 return 1;
2453 } while (nregs--);
2454 return 0;
2455 }
2456
2457 /* Adjust INSN after we made a change to its destination.
2458
2459 Changing the destination can invalidate notes that say something about
2460 the results of the insn and a LOG_LINK pointing to the insn. */
2461
2462 static void
2463 adjust_for_new_dest (rtx_insn *insn)
2464 {
2465 /* For notes, be conservative and simply remove them. */
2466 remove_reg_equal_equiv_notes (insn);
2467
2468 /* The new insn will have a destination that was previously the destination
2469 of an insn just above it. Call distribute_links to make a LOG_LINK from
2470 the next use of that destination. */
2471
2472 rtx set = single_set (insn);
2473 gcc_assert (set);
2474
2475 rtx reg = SET_DEST (set);
2476
2477 while (GET_CODE (reg) == ZERO_EXTRACT
2478 || GET_CODE (reg) == STRICT_LOW_PART
2479 || GET_CODE (reg) == SUBREG)
2480 reg = XEXP (reg, 0);
2481 gcc_assert (REG_P (reg));
2482
2483 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2484
2485 df_insn_rescan (insn);
2486 }
2487
2488 /* Return TRUE if combine can reuse reg X in mode MODE.
2489 ADDED_SETS is nonzero if the original set is still required. */
2490 static bool
2491 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2492 {
2493 unsigned int regno;
2494
2495 if (!REG_P (x))
2496 return false;
2497
2498 /* Don't change between modes with different underlying register sizes,
2499 since this could lead to invalid subregs. */
2500 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2501 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2502 return false;
2503
2504 regno = REGNO (x);
2505 /* Allow hard registers if the new mode is legal, and occupies no more
2506 registers than the old mode. */
2507 if (regno < FIRST_PSEUDO_REGISTER)
2508 return (targetm.hard_regno_mode_ok (regno, mode)
2509 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2510
2511 /* Or a pseudo that is only used once. */
2512 return (regno < reg_n_sets_max
2513 && REG_N_SETS (regno) == 1
2514 && !added_sets
2515 && !REG_USERVAR_P (x));
2516 }
2517
2518
2519 /* Check whether X, the destination of a set, refers to part of
2520 the register specified by REG. */
2521
2522 static bool
2523 reg_subword_p (rtx x, rtx reg)
2524 {
2525 /* Check that reg is an integer mode register. */
2526 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2527 return false;
2528
2529 if (GET_CODE (x) == STRICT_LOW_PART
2530 || GET_CODE (x) == ZERO_EXTRACT)
2531 x = XEXP (x, 0);
2532
2533 return GET_CODE (x) == SUBREG
2534 && SUBREG_REG (x) == reg
2535 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2536 }
2537
2538 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2539 Note that the INSN should be deleted *after* removing dead edges, so
2540 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2541 but not for a (set (pc) (label_ref FOO)). */
2542
2543 static void
2544 update_cfg_for_uncondjump (rtx_insn *insn)
2545 {
2546 basic_block bb = BLOCK_FOR_INSN (insn);
2547 gcc_assert (BB_END (bb) == insn);
2548
2549 purge_dead_edges (bb);
2550
2551 delete_insn (insn);
2552 if (EDGE_COUNT (bb->succs) == 1)
2553 {
2554 rtx_insn *insn;
2555
2556 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2557
2558 /* Remove barriers from the footer if there are any. */
2559 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2560 if (BARRIER_P (insn))
2561 {
2562 if (PREV_INSN (insn))
2563 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2564 else
2565 BB_FOOTER (bb) = NEXT_INSN (insn);
2566 if (NEXT_INSN (insn))
2567 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2568 }
2569 else if (LABEL_P (insn))
2570 break;
2571 }
2572 }
2573
2574 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2575 by an arbitrary number of CLOBBERs. */
2576 static bool
2577 is_parallel_of_n_reg_sets (rtx pat, int n)
2578 {
2579 if (GET_CODE (pat) != PARALLEL)
2580 return false;
2581
2582 int len = XVECLEN (pat, 0);
2583 if (len < n)
2584 return false;
2585
2586 int i;
2587 for (i = 0; i < n; i++)
2588 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2589 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2590 return false;
2591 for ( ; i < len; i++)
2592 switch (GET_CODE (XVECEXP (pat, 0, i)))
2593 {
2594 case CLOBBER:
2595 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2596 return false;
2597 break;
2598 case CLOBBER_HIGH:
2599 break;
2600 default:
2601 return false;
2602 }
2603 return true;
2604 }
2605
2606 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2607 CLOBBERs), can be split into individual SETs in that order, without
2608 changing semantics. */
2609 static bool
2610 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2611 {
2612 if (!insn_nothrow_p (insn))
2613 return false;
2614
2615 rtx pat = PATTERN (insn);
2616
2617 int i, j;
2618 for (i = 0; i < n; i++)
2619 {
2620 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2621 return false;
2622
2623 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2624
2625 for (j = i + 1; j < n; j++)
2626 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2627 return false;
2628 }
2629
2630 return true;
2631 }
2632
2633 /* Return whether X is just a single set, with the source
2634 a general_operand. */
2635 static bool
2636 is_just_move (rtx x)
2637 {
2638 if (INSN_P (x))
2639 x = PATTERN (x);
2640
2641 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2642 }
2643
2644 /* Callback function to count autoincs. */
2645
2646 static int
2647 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2648 {
2649 (*((int *) arg))++;
2650
2651 return 0;
2652 }
2653
2654 /* Try to combine the insns I0, I1 and I2 into I3.
2655 Here I0, I1 and I2 appear earlier than I3.
2656 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2657 I3.
2658
2659 If we are combining more than two insns and the resulting insn is not
2660 recognized, try splitting it into two insns. If that happens, I2 and I3
2661 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2662 Otherwise, I0, I1 and I2 are pseudo-deleted.
2663
2664 Return 0 if the combination does not work. Then nothing is changed.
2665 If we did the combination, return the insn at which combine should
2666 resume scanning.
2667
2668 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2669 new direct jump instruction.
2670
2671 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2672 been I3 passed to an earlier try_combine within the same basic
2673 block. */
2674
2675 static rtx_insn *
2676 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2677 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2678 {
2679 /* New patterns for I3 and I2, respectively. */
2680 rtx newpat, newi2pat = 0;
2681 rtvec newpat_vec_with_clobbers = 0;
2682 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2683 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2684 dead. */
2685 int added_sets_0, added_sets_1, added_sets_2;
2686 /* Total number of SETs to put into I3. */
2687 int total_sets;
2688 /* Nonzero if I2's or I1's body now appears in I3. */
2689 int i2_is_used = 0, i1_is_used = 0;
2690 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2691 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2692 /* Contains I3 if the destination of I3 is used in its source, which means
2693 that the old life of I3 is being killed. If that usage is placed into
2694 I2 and not in I3, a REG_DEAD note must be made. */
2695 rtx i3dest_killed = 0;
2696 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2697 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2698 /* Copy of SET_SRC of I1 and I0, if needed. */
2699 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2700 /* Set if I2DEST was reused as a scratch register. */
2701 bool i2scratch = false;
2702 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2703 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2704 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2705 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2706 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2707 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2708 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2709 /* Notes that must be added to REG_NOTES in I3 and I2. */
2710 rtx new_i3_notes, new_i2_notes;
2711 /* Notes that we substituted I3 into I2 instead of the normal case. */
2712 int i3_subst_into_i2 = 0;
2713 /* Notes that I1, I2 or I3 is a MULT operation. */
2714 int have_mult = 0;
2715 int swap_i2i3 = 0;
2716 int split_i2i3 = 0;
2717 int changed_i3_dest = 0;
2718 bool i2_was_move = false, i3_was_move = false;
2719 int n_auto_inc = 0;
2720
2721 int maxreg;
2722 rtx_insn *temp_insn;
2723 rtx temp_expr;
2724 struct insn_link *link;
2725 rtx other_pat = 0;
2726 rtx new_other_notes;
2727 int i;
2728 scalar_int_mode dest_mode, temp_mode;
2729
2730 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2731 never be). */
2732 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2733 return 0;
2734
2735 /* Only try four-insn combinations when there's high likelihood of
2736 success. Look for simple insns, such as loads of constants or
2737 binary operations involving a constant. */
2738 if (i0)
2739 {
2740 int i;
2741 int ngood = 0;
2742 int nshift = 0;
2743 rtx set0, set3;
2744
2745 if (!flag_expensive_optimizations)
2746 return 0;
2747
2748 for (i = 0; i < 4; i++)
2749 {
2750 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2751 rtx set = single_set (insn);
2752 rtx src;
2753 if (!set)
2754 continue;
2755 src = SET_SRC (set);
2756 if (CONSTANT_P (src))
2757 {
2758 ngood += 2;
2759 break;
2760 }
2761 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2762 ngood++;
2763 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2764 || GET_CODE (src) == LSHIFTRT)
2765 nshift++;
2766 }
2767
2768 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2769 are likely manipulating its value. Ideally we'll be able to combine
2770 all four insns into a bitfield insertion of some kind.
2771
2772 Note the source in I0 might be inside a sign/zero extension and the
2773 memory modes in I0 and I3 might be different. So extract the address
2774 from the destination of I3 and search for it in the source of I0.
2775
2776 In the event that there's a match but the source/dest do not actually
2777 refer to the same memory, the worst that happens is we try some
2778 combinations that we wouldn't have otherwise. */
2779 if ((set0 = single_set (i0))
2780 /* Ensure the source of SET0 is a MEM, possibly buried inside
2781 an extension. */
2782 && (GET_CODE (SET_SRC (set0)) == MEM
2783 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2784 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2785 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2786 && (set3 = single_set (i3))
2787 /* Ensure the destination of SET3 is a MEM. */
2788 && GET_CODE (SET_DEST (set3)) == MEM
2789 /* Would it be better to extract the base address for the MEM
2790 in SET3 and look for that? I don't have cases where it matters
2791 but I could envision such cases. */
2792 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2793 ngood += 2;
2794
2795 if (ngood < 2 && nshift < 2)
2796 return 0;
2797 }
2798
2799 /* Exit early if one of the insns involved can't be used for
2800 combinations. */
2801 if (CALL_P (i2)
2802 || (i1 && CALL_P (i1))
2803 || (i0 && CALL_P (i0))
2804 || cant_combine_insn_p (i3)
2805 || cant_combine_insn_p (i2)
2806 || (i1 && cant_combine_insn_p (i1))
2807 || (i0 && cant_combine_insn_p (i0))
2808 || likely_spilled_retval_p (i3))
2809 return 0;
2810
2811 combine_attempts++;
2812 undobuf.other_insn = 0;
2813
2814 /* Reset the hard register usage information. */
2815 CLEAR_HARD_REG_SET (newpat_used_regs);
2816
2817 if (dump_file && (dump_flags & TDF_DETAILS))
2818 {
2819 if (i0)
2820 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2821 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2822 else if (i1)
2823 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2824 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2825 else
2826 fprintf (dump_file, "\nTrying %d -> %d:\n",
2827 INSN_UID (i2), INSN_UID (i3));
2828
2829 if (i0)
2830 dump_insn_slim (dump_file, i0);
2831 if (i1)
2832 dump_insn_slim (dump_file, i1);
2833 dump_insn_slim (dump_file, i2);
2834 dump_insn_slim (dump_file, i3);
2835 }
2836
2837 /* If multiple insns feed into one of I2 or I3, they can be in any
2838 order. To simplify the code below, reorder them in sequence. */
2839 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2840 std::swap (i0, i2);
2841 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2842 std::swap (i0, i1);
2843 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2844 std::swap (i1, i2);
2845
2846 added_links_insn = 0;
2847 added_notes_insn = 0;
2848
2849 /* First check for one important special case that the code below will
2850 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2851 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2852 we may be able to replace that destination with the destination of I3.
2853 This occurs in the common code where we compute both a quotient and
2854 remainder into a structure, in which case we want to do the computation
2855 directly into the structure to avoid register-register copies.
2856
2857 Note that this case handles both multiple sets in I2 and also cases
2858 where I2 has a number of CLOBBERs inside the PARALLEL.
2859
2860 We make very conservative checks below and only try to handle the
2861 most common cases of this. For example, we only handle the case
2862 where I2 and I3 are adjacent to avoid making difficult register
2863 usage tests. */
2864
2865 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2866 && REG_P (SET_SRC (PATTERN (i3)))
2867 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2868 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2869 && GET_CODE (PATTERN (i2)) == PARALLEL
2870 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2871 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2872 below would need to check what is inside (and reg_overlap_mentioned_p
2873 doesn't support those codes anyway). Don't allow those destinations;
2874 the resulting insn isn't likely to be recognized anyway. */
2875 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2876 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2877 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2878 SET_DEST (PATTERN (i3)))
2879 && next_active_insn (i2) == i3)
2880 {
2881 rtx p2 = PATTERN (i2);
2882
2883 /* Make sure that the destination of I3,
2884 which we are going to substitute into one output of I2,
2885 is not used within another output of I2. We must avoid making this:
2886 (parallel [(set (mem (reg 69)) ...)
2887 (set (reg 69) ...)])
2888 which is not well-defined as to order of actions.
2889 (Besides, reload can't handle output reloads for this.)
2890
2891 The problem can also happen if the dest of I3 is a memory ref,
2892 if another dest in I2 is an indirect memory ref.
2893
2894 Neither can this PARALLEL be an asm. We do not allow combining
2895 that usually (see can_combine_p), so do not here either. */
2896 bool ok = true;
2897 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2898 {
2899 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2900 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER
2901 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER_HIGH)
2902 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2903 SET_DEST (XVECEXP (p2, 0, i))))
2904 ok = false;
2905 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2906 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2907 ok = false;
2908 }
2909
2910 if (ok)
2911 for (i = 0; i < XVECLEN (p2, 0); i++)
2912 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2913 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2914 {
2915 combine_merges++;
2916
2917 subst_insn = i3;
2918 subst_low_luid = DF_INSN_LUID (i2);
2919
2920 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2921 i2src = SET_SRC (XVECEXP (p2, 0, i));
2922 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2923 i2dest_killed = dead_or_set_p (i2, i2dest);
2924
2925 /* Replace the dest in I2 with our dest and make the resulting
2926 insn the new pattern for I3. Then skip to where we validate
2927 the pattern. Everything was set up above. */
2928 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2929 newpat = p2;
2930 i3_subst_into_i2 = 1;
2931 goto validate_replacement;
2932 }
2933 }
2934
2935 /* If I2 is setting a pseudo to a constant and I3 is setting some
2936 sub-part of it to another constant, merge them by making a new
2937 constant. */
2938 if (i1 == 0
2939 && (temp_expr = single_set (i2)) != 0
2940 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2941 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2942 && GET_CODE (PATTERN (i3)) == SET
2943 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2944 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2945 {
2946 rtx dest = SET_DEST (PATTERN (i3));
2947 rtx temp_dest = SET_DEST (temp_expr);
2948 int offset = -1;
2949 int width = 0;
2950
2951 if (GET_CODE (dest) == ZERO_EXTRACT)
2952 {
2953 if (CONST_INT_P (XEXP (dest, 1))
2954 && CONST_INT_P (XEXP (dest, 2))
2955 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2956 &dest_mode))
2957 {
2958 width = INTVAL (XEXP (dest, 1));
2959 offset = INTVAL (XEXP (dest, 2));
2960 dest = XEXP (dest, 0);
2961 if (BITS_BIG_ENDIAN)
2962 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2963 }
2964 }
2965 else
2966 {
2967 if (GET_CODE (dest) == STRICT_LOW_PART)
2968 dest = XEXP (dest, 0);
2969 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2970 {
2971 width = GET_MODE_PRECISION (dest_mode);
2972 offset = 0;
2973 }
2974 }
2975
2976 if (offset >= 0)
2977 {
2978 /* If this is the low part, we're done. */
2979 if (subreg_lowpart_p (dest))
2980 ;
2981 /* Handle the case where inner is twice the size of outer. */
2982 else if (GET_MODE_PRECISION (temp_mode)
2983 == 2 * GET_MODE_PRECISION (dest_mode))
2984 offset += GET_MODE_PRECISION (dest_mode);
2985 /* Otherwise give up for now. */
2986 else
2987 offset = -1;
2988 }
2989
2990 if (offset >= 0)
2991 {
2992 rtx inner = SET_SRC (PATTERN (i3));
2993 rtx outer = SET_SRC (temp_expr);
2994
2995 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2996 rtx_mode_t (inner, dest_mode),
2997 offset, width);
2998
2999 combine_merges++;
3000 subst_insn = i3;
3001 subst_low_luid = DF_INSN_LUID (i2);
3002 added_sets_2 = added_sets_1 = added_sets_0 = 0;
3003 i2dest = temp_dest;
3004 i2dest_killed = dead_or_set_p (i2, i2dest);
3005
3006 /* Replace the source in I2 with the new constant and make the
3007 resulting insn the new pattern for I3. Then skip to where we
3008 validate the pattern. Everything was set up above. */
3009 SUBST (SET_SRC (temp_expr),
3010 immed_wide_int_const (o, temp_mode));
3011
3012 newpat = PATTERN (i2);
3013
3014 /* The dest of I3 has been replaced with the dest of I2. */
3015 changed_i3_dest = 1;
3016 goto validate_replacement;
3017 }
3018 }
3019
3020 /* If we have no I1 and I2 looks like:
3021 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3022 (set Y OP)])
3023 make up a dummy I1 that is
3024 (set Y OP)
3025 and change I2 to be
3026 (set (reg:CC X) (compare:CC Y (const_int 0)))
3027
3028 (We can ignore any trailing CLOBBERs.)
3029
3030 This undoes a previous combination and allows us to match a branch-and-
3031 decrement insn. */
3032
3033 if (!HAVE_cc0 && i1 == 0
3034 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3035 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3036 == MODE_CC)
3037 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3038 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3039 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3040 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3041 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3042 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3043 {
3044 /* We make I1 with the same INSN_UID as I2. This gives it
3045 the same DF_INSN_LUID for value tracking. Our fake I1 will
3046 never appear in the insn stream so giving it the same INSN_UID
3047 as I2 will not cause a problem. */
3048
3049 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3050 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3051 -1, NULL_RTX);
3052 INSN_UID (i1) = INSN_UID (i2);
3053
3054 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3055 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3056 SET_DEST (PATTERN (i1)));
3057 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3058 SUBST_LINK (LOG_LINKS (i2),
3059 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3060 }
3061
3062 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3063 make those two SETs separate I1 and I2 insns, and make an I0 that is
3064 the original I1. */
3065 if (!HAVE_cc0 && i0 == 0
3066 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3067 && can_split_parallel_of_n_reg_sets (i2, 2)
3068 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3069 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3070 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3071 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3072 {
3073 /* If there is no I1, there is no I0 either. */
3074 i0 = i1;
3075
3076 /* We make I1 with the same INSN_UID as I2. This gives it
3077 the same DF_INSN_LUID for value tracking. Our fake I1 will
3078 never appear in the insn stream so giving it the same INSN_UID
3079 as I2 will not cause a problem. */
3080
3081 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3082 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3083 -1, NULL_RTX);
3084 INSN_UID (i1) = INSN_UID (i2);
3085
3086 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3087 }
3088
3089 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3090 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3091 {
3092 if (dump_file && (dump_flags & TDF_DETAILS))
3093 fprintf (dump_file, "Can't combine i2 into i3\n");
3094 undo_all ();
3095 return 0;
3096 }
3097 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3098 {
3099 if (dump_file && (dump_flags & TDF_DETAILS))
3100 fprintf (dump_file, "Can't combine i1 into i3\n");
3101 undo_all ();
3102 return 0;
3103 }
3104 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3105 {
3106 if (dump_file && (dump_flags & TDF_DETAILS))
3107 fprintf (dump_file, "Can't combine i0 into i3\n");
3108 undo_all ();
3109 return 0;
3110 }
3111
3112 /* Record whether i2 and i3 are trivial moves. */
3113 i2_was_move = is_just_move (i2);
3114 i3_was_move = is_just_move (i3);
3115
3116 /* Record whether I2DEST is used in I2SRC and similarly for the other
3117 cases. Knowing this will help in register status updating below. */
3118 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3119 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3120 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3121 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3122 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3123 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3124 i2dest_killed = dead_or_set_p (i2, i2dest);
3125 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3126 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3127
3128 /* For the earlier insns, determine which of the subsequent ones they
3129 feed. */
3130 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3131 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3132 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3133 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3134 && reg_overlap_mentioned_p (i0dest, i2src))));
3135
3136 /* Ensure that I3's pattern can be the destination of combines. */
3137 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3138 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3139 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3140 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3141 &i3dest_killed))
3142 {
3143 undo_all ();
3144 return 0;
3145 }
3146
3147 /* See if any of the insns is a MULT operation. Unless one is, we will
3148 reject a combination that is, since it must be slower. Be conservative
3149 here. */
3150 if (GET_CODE (i2src) == MULT
3151 || (i1 != 0 && GET_CODE (i1src) == MULT)
3152 || (i0 != 0 && GET_CODE (i0src) == MULT)
3153 || (GET_CODE (PATTERN (i3)) == SET
3154 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3155 have_mult = 1;
3156
3157 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3158 We used to do this EXCEPT in one case: I3 has a post-inc in an
3159 output operand. However, that exception can give rise to insns like
3160 mov r3,(r3)+
3161 which is a famous insn on the PDP-11 where the value of r3 used as the
3162 source was model-dependent. Avoid this sort of thing. */
3163
3164 #if 0
3165 if (!(GET_CODE (PATTERN (i3)) == SET
3166 && REG_P (SET_SRC (PATTERN (i3)))
3167 && MEM_P (SET_DEST (PATTERN (i3)))
3168 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3169 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3170 /* It's not the exception. */
3171 #endif
3172 if (AUTO_INC_DEC)
3173 {
3174 rtx link;
3175 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3176 if (REG_NOTE_KIND (link) == REG_INC
3177 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3178 || (i1 != 0
3179 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3180 {
3181 undo_all ();
3182 return 0;
3183 }
3184 }
3185
3186 /* See if the SETs in I1 or I2 need to be kept around in the merged
3187 instruction: whenever the value set there is still needed past I3.
3188 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3189
3190 For the SET in I1, we have two cases: if I1 and I2 independently feed
3191 into I3, the set in I1 needs to be kept around unless I1DEST dies
3192 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3193 in I1 needs to be kept around unless I1DEST dies or is set in either
3194 I2 or I3. The same considerations apply to I0. */
3195
3196 added_sets_2 = !dead_or_set_p (i3, i2dest);
3197
3198 if (i1)
3199 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3200 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3201 else
3202 added_sets_1 = 0;
3203
3204 if (i0)
3205 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3206 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3207 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3208 && dead_or_set_p (i2, i0dest)));
3209 else
3210 added_sets_0 = 0;
3211
3212 /* We are about to copy insns for the case where they need to be kept
3213 around. Check that they can be copied in the merged instruction. */
3214
3215 if (targetm.cannot_copy_insn_p
3216 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3217 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3218 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3219 {
3220 undo_all ();
3221 return 0;
3222 }
3223
3224 /* Count how many auto_inc expressions there were in the original insns;
3225 we need to have the same number in the resulting patterns. */
3226
3227 if (i0)
3228 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3229 if (i1)
3230 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3231 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3232 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3233
3234 /* If the set in I2 needs to be kept around, we must make a copy of
3235 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3236 PATTERN (I2), we are only substituting for the original I1DEST, not into
3237 an already-substituted copy. This also prevents making self-referential
3238 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3239 I2DEST. */
3240
3241 if (added_sets_2)
3242 {
3243 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3244 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3245 else
3246 i2pat = copy_rtx (PATTERN (i2));
3247 }
3248
3249 if (added_sets_1)
3250 {
3251 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3252 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3253 else
3254 i1pat = copy_rtx (PATTERN (i1));
3255 }
3256
3257 if (added_sets_0)
3258 {
3259 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3260 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3261 else
3262 i0pat = copy_rtx (PATTERN (i0));
3263 }
3264
3265 combine_merges++;
3266
3267 /* Substitute in the latest insn for the regs set by the earlier ones. */
3268
3269 maxreg = max_reg_num ();
3270
3271 subst_insn = i3;
3272
3273 /* Many machines that don't use CC0 have insns that can both perform an
3274 arithmetic operation and set the condition code. These operations will
3275 be represented as a PARALLEL with the first element of the vector
3276 being a COMPARE of an arithmetic operation with the constant zero.
3277 The second element of the vector will set some pseudo to the result
3278 of the same arithmetic operation. If we simplify the COMPARE, we won't
3279 match such a pattern and so will generate an extra insn. Here we test
3280 for this case, where both the comparison and the operation result are
3281 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3282 I2SRC. Later we will make the PARALLEL that contains I2. */
3283
3284 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3285 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3286 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3287 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3288 {
3289 rtx newpat_dest;
3290 rtx *cc_use_loc = NULL;
3291 rtx_insn *cc_use_insn = NULL;
3292 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3293 machine_mode compare_mode, orig_compare_mode;
3294 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3295 scalar_int_mode mode;
3296
3297 newpat = PATTERN (i3);
3298 newpat_dest = SET_DEST (newpat);
3299 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3300
3301 if (undobuf.other_insn == 0
3302 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3303 &cc_use_insn)))
3304 {
3305 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3306 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3307 compare_code = simplify_compare_const (compare_code, mode,
3308 op0, &op1);
3309 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3310 }
3311
3312 /* Do the rest only if op1 is const0_rtx, which may be the
3313 result of simplification. */
3314 if (op1 == const0_rtx)
3315 {
3316 /* If a single use of the CC is found, prepare to modify it
3317 when SELECT_CC_MODE returns a new CC-class mode, or when
3318 the above simplify_compare_const() returned a new comparison
3319 operator. undobuf.other_insn is assigned the CC use insn
3320 when modifying it. */
3321 if (cc_use_loc)
3322 {
3323 #ifdef SELECT_CC_MODE
3324 machine_mode new_mode
3325 = SELECT_CC_MODE (compare_code, op0, op1);
3326 if (new_mode != orig_compare_mode
3327 && can_change_dest_mode (SET_DEST (newpat),
3328 added_sets_2, new_mode))
3329 {
3330 unsigned int regno = REGNO (newpat_dest);
3331 compare_mode = new_mode;
3332 if (regno < FIRST_PSEUDO_REGISTER)
3333 newpat_dest = gen_rtx_REG (compare_mode, regno);
3334 else
3335 {
3336 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3337 newpat_dest = regno_reg_rtx[regno];
3338 }
3339 }
3340 #endif
3341 /* Cases for modifying the CC-using comparison. */
3342 if (compare_code != orig_compare_code
3343 /* ??? Do we need to verify the zero rtx? */
3344 && XEXP (*cc_use_loc, 1) == const0_rtx)
3345 {
3346 /* Replace cc_use_loc with entire new RTX. */
3347 SUBST (*cc_use_loc,
3348 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3349 newpat_dest, const0_rtx));
3350 undobuf.other_insn = cc_use_insn;
3351 }
3352 else if (compare_mode != orig_compare_mode)
3353 {
3354 /* Just replace the CC reg with a new mode. */
3355 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3356 undobuf.other_insn = cc_use_insn;
3357 }
3358 }
3359
3360 /* Now we modify the current newpat:
3361 First, SET_DEST(newpat) is updated if the CC mode has been
3362 altered. For targets without SELECT_CC_MODE, this should be
3363 optimized away. */
3364 if (compare_mode != orig_compare_mode)
3365 SUBST (SET_DEST (newpat), newpat_dest);
3366 /* This is always done to propagate i2src into newpat. */
3367 SUBST (SET_SRC (newpat),
3368 gen_rtx_COMPARE (compare_mode, op0, op1));
3369 /* Create new version of i2pat if needed; the below PARALLEL
3370 creation needs this to work correctly. */
3371 if (! rtx_equal_p (i2src, op0))
3372 i2pat = gen_rtx_SET (i2dest, op0);
3373 i2_is_used = 1;
3374 }
3375 }
3376
3377 if (i2_is_used == 0)
3378 {
3379 /* It is possible that the source of I2 or I1 may be performing
3380 an unneeded operation, such as a ZERO_EXTEND of something
3381 that is known to have the high part zero. Handle that case
3382 by letting subst look at the inner insns.
3383
3384 Another way to do this would be to have a function that tries
3385 to simplify a single insn instead of merging two or more
3386 insns. We don't do this because of the potential of infinite
3387 loops and because of the potential extra memory required.
3388 However, doing it the way we are is a bit of a kludge and
3389 doesn't catch all cases.
3390
3391 But only do this if -fexpensive-optimizations since it slows
3392 things down and doesn't usually win.
3393
3394 This is not done in the COMPARE case above because the
3395 unmodified I2PAT is used in the PARALLEL and so a pattern
3396 with a modified I2SRC would not match. */
3397
3398 if (flag_expensive_optimizations)
3399 {
3400 /* Pass pc_rtx so no substitutions are done, just
3401 simplifications. */
3402 if (i1)
3403 {
3404 subst_low_luid = DF_INSN_LUID (i1);
3405 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3406 }
3407
3408 subst_low_luid = DF_INSN_LUID (i2);
3409 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3410 }
3411
3412 n_occurrences = 0; /* `subst' counts here */
3413 subst_low_luid = DF_INSN_LUID (i2);
3414
3415 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3416 copy of I2SRC each time we substitute it, in order to avoid creating
3417 self-referential RTL when we will be substituting I1SRC for I1DEST
3418 later. Likewise if I0 feeds into I2, either directly or indirectly
3419 through I1, and I0DEST is in I0SRC. */
3420 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3421 (i1_feeds_i2_n && i1dest_in_i1src)
3422 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3423 && i0dest_in_i0src));
3424 substed_i2 = 1;
3425
3426 /* Record whether I2's body now appears within I3's body. */
3427 i2_is_used = n_occurrences;
3428 }
3429
3430 /* If we already got a failure, don't try to do more. Otherwise, try to
3431 substitute I1 if we have it. */
3432
3433 if (i1 && GET_CODE (newpat) != CLOBBER)
3434 {
3435 /* Before we can do this substitution, we must redo the test done
3436 above (see detailed comments there) that ensures I1DEST isn't
3437 mentioned in any SETs in NEWPAT that are field assignments. */
3438 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3439 0, 0, 0))
3440 {
3441 undo_all ();
3442 return 0;
3443 }
3444
3445 n_occurrences = 0;
3446 subst_low_luid = DF_INSN_LUID (i1);
3447
3448 /* If the following substitution will modify I1SRC, make a copy of it
3449 for the case where it is substituted for I1DEST in I2PAT later. */
3450 if (added_sets_2 && i1_feeds_i2_n)
3451 i1src_copy = copy_rtx (i1src);
3452
3453 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3454 copy of I1SRC each time we substitute it, in order to avoid creating
3455 self-referential RTL when we will be substituting I0SRC for I0DEST
3456 later. */
3457 newpat = subst (newpat, i1dest, i1src, 0, 0,
3458 i0_feeds_i1_n && i0dest_in_i0src);
3459 substed_i1 = 1;
3460
3461 /* Record whether I1's body now appears within I3's body. */
3462 i1_is_used = n_occurrences;
3463 }
3464
3465 /* Likewise for I0 if we have it. */
3466
3467 if (i0 && GET_CODE (newpat) != CLOBBER)
3468 {
3469 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3470 0, 0, 0))
3471 {
3472 undo_all ();
3473 return 0;
3474 }
3475
3476 /* If the following substitution will modify I0SRC, make a copy of it
3477 for the case where it is substituted for I0DEST in I1PAT later. */
3478 if (added_sets_1 && i0_feeds_i1_n)
3479 i0src_copy = copy_rtx (i0src);
3480 /* And a copy for I0DEST in I2PAT substitution. */
3481 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3482 || (i0_feeds_i2_n)))
3483 i0src_copy2 = copy_rtx (i0src);
3484
3485 n_occurrences = 0;
3486 subst_low_luid = DF_INSN_LUID (i0);
3487 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3488 substed_i0 = 1;
3489 }
3490
3491 if (n_auto_inc)
3492 {
3493 int new_n_auto_inc = 0;
3494 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3495
3496 if (n_auto_inc != new_n_auto_inc)
3497 {
3498 if (dump_file && (dump_flags & TDF_DETAILS))
3499 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3500 undo_all ();
3501 return 0;
3502 }
3503 }
3504
3505 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3506 to count all the ways that I2SRC and I1SRC can be used. */
3507 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3508 && i2_is_used + added_sets_2 > 1)
3509 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3510 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3511 > 1))
3512 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3513 && (n_occurrences + added_sets_0
3514 + (added_sets_1 && i0_feeds_i1_n)
3515 + (added_sets_2 && i0_feeds_i2_n)
3516 > 1))
3517 /* Fail if we tried to make a new register. */
3518 || max_reg_num () != maxreg
3519 /* Fail if we couldn't do something and have a CLOBBER. */
3520 || GET_CODE (newpat) == CLOBBER
3521 /* Fail if this new pattern is a MULT and we didn't have one before
3522 at the outer level. */
3523 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3524 && ! have_mult))
3525 {
3526 undo_all ();
3527 return 0;
3528 }
3529
3530 /* If the actions of the earlier insns must be kept
3531 in addition to substituting them into the latest one,
3532 we must make a new PARALLEL for the latest insn
3533 to hold additional the SETs. */
3534
3535 if (added_sets_0 || added_sets_1 || added_sets_2)
3536 {
3537 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3538 combine_extras++;
3539
3540 if (GET_CODE (newpat) == PARALLEL)
3541 {
3542 rtvec old = XVEC (newpat, 0);
3543 total_sets = XVECLEN (newpat, 0) + extra_sets;
3544 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3545 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3546 sizeof (old->elem[0]) * old->num_elem);
3547 }
3548 else
3549 {
3550 rtx old = newpat;
3551 total_sets = 1 + extra_sets;
3552 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3553 XVECEXP (newpat, 0, 0) = old;
3554 }
3555
3556 if (added_sets_0)
3557 XVECEXP (newpat, 0, --total_sets) = i0pat;
3558
3559 if (added_sets_1)
3560 {
3561 rtx t = i1pat;
3562 if (i0_feeds_i1_n)
3563 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3564
3565 XVECEXP (newpat, 0, --total_sets) = t;
3566 }
3567 if (added_sets_2)
3568 {
3569 rtx t = i2pat;
3570 if (i1_feeds_i2_n)
3571 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3572 i0_feeds_i1_n && i0dest_in_i0src);
3573 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3574 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3575
3576 XVECEXP (newpat, 0, --total_sets) = t;
3577 }
3578 }
3579
3580 validate_replacement:
3581
3582 /* Note which hard regs this insn has as inputs. */
3583 mark_used_regs_combine (newpat);
3584
3585 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3586 consider splitting this pattern, we might need these clobbers. */
3587 if (i1 && GET_CODE (newpat) == PARALLEL
3588 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3589 {
3590 int len = XVECLEN (newpat, 0);
3591
3592 newpat_vec_with_clobbers = rtvec_alloc (len);
3593 for (i = 0; i < len; i++)
3594 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3595 }
3596
3597 /* We have recognized nothing yet. */
3598 insn_code_number = -1;
3599
3600 /* See if this is a PARALLEL of two SETs where one SET's destination is
3601 a register that is unused and this isn't marked as an instruction that
3602 might trap in an EH region. In that case, we just need the other SET.
3603 We prefer this over the PARALLEL.
3604
3605 This can occur when simplifying a divmod insn. We *must* test for this
3606 case here because the code below that splits two independent SETs doesn't
3607 handle this case correctly when it updates the register status.
3608
3609 It's pointless doing this if we originally had two sets, one from
3610 i3, and one from i2. Combining then splitting the parallel results
3611 in the original i2 again plus an invalid insn (which we delete).
3612 The net effect is only to move instructions around, which makes
3613 debug info less accurate.
3614
3615 If the remaining SET came from I2 its destination should not be used
3616 between I2 and I3. See PR82024. */
3617
3618 if (!(added_sets_2 && i1 == 0)
3619 && is_parallel_of_n_reg_sets (newpat, 2)
3620 && asm_noperands (newpat) < 0)
3621 {
3622 rtx set0 = XVECEXP (newpat, 0, 0);
3623 rtx set1 = XVECEXP (newpat, 0, 1);
3624 rtx oldpat = newpat;
3625
3626 if (((REG_P (SET_DEST (set1))
3627 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3628 || (GET_CODE (SET_DEST (set1)) == SUBREG
3629 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3630 && insn_nothrow_p (i3)
3631 && !side_effects_p (SET_SRC (set1)))
3632 {
3633 newpat = set0;
3634 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3635 }
3636
3637 else if (((REG_P (SET_DEST (set0))
3638 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3639 || (GET_CODE (SET_DEST (set0)) == SUBREG
3640 && find_reg_note (i3, REG_UNUSED,
3641 SUBREG_REG (SET_DEST (set0)))))
3642 && insn_nothrow_p (i3)
3643 && !side_effects_p (SET_SRC (set0)))
3644 {
3645 rtx dest = SET_DEST (set1);
3646 if (GET_CODE (dest) == SUBREG)
3647 dest = SUBREG_REG (dest);
3648 if (!reg_used_between_p (dest, i2, i3))
3649 {
3650 newpat = set1;
3651 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3652
3653 if (insn_code_number >= 0)
3654 changed_i3_dest = 1;
3655 }
3656 }
3657
3658 if (insn_code_number < 0)
3659 newpat = oldpat;
3660 }
3661
3662 /* Is the result of combination a valid instruction? */
3663 if (insn_code_number < 0)
3664 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3665
3666 /* If we were combining three insns and the result is a simple SET
3667 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3668 insns. There are two ways to do this. It can be split using a
3669 machine-specific method (like when you have an addition of a large
3670 constant) or by combine in the function find_split_point. */
3671
3672 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3673 && asm_noperands (newpat) < 0)
3674 {
3675 rtx parallel, *split;
3676 rtx_insn *m_split_insn;
3677
3678 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3679 use I2DEST as a scratch register will help. In the latter case,
3680 convert I2DEST to the mode of the source of NEWPAT if we can. */
3681
3682 m_split_insn = combine_split_insns (newpat, i3);
3683
3684 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3685 inputs of NEWPAT. */
3686
3687 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3688 possible to try that as a scratch reg. This would require adding
3689 more code to make it work though. */
3690
3691 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3692 {
3693 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3694
3695 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3696 (temporarily, until we are committed to this instruction
3697 combination) does not work: for example, any call to nonzero_bits
3698 on the register (from a splitter in the MD file, for example)
3699 will get the old information, which is invalid.
3700
3701 Since nowadays we can create registers during combine just fine,
3702 we should just create a new one here, not reuse i2dest. */
3703
3704 /* First try to split using the original register as a
3705 scratch register. */
3706 parallel = gen_rtx_PARALLEL (VOIDmode,
3707 gen_rtvec (2, newpat,
3708 gen_rtx_CLOBBER (VOIDmode,
3709 i2dest)));
3710 m_split_insn = combine_split_insns (parallel, i3);
3711
3712 /* If that didn't work, try changing the mode of I2DEST if
3713 we can. */
3714 if (m_split_insn == 0
3715 && new_mode != GET_MODE (i2dest)
3716 && new_mode != VOIDmode
3717 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3718 {
3719 machine_mode old_mode = GET_MODE (i2dest);
3720 rtx ni2dest;
3721
3722 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3723 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3724 else
3725 {
3726 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3727 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3728 }
3729
3730 parallel = (gen_rtx_PARALLEL
3731 (VOIDmode,
3732 gen_rtvec (2, newpat,
3733 gen_rtx_CLOBBER (VOIDmode,
3734 ni2dest))));
3735 m_split_insn = combine_split_insns (parallel, i3);
3736
3737 if (m_split_insn == 0
3738 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3739 {
3740 struct undo *buf;
3741
3742 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3743 buf = undobuf.undos;
3744 undobuf.undos = buf->next;
3745 buf->next = undobuf.frees;
3746 undobuf.frees = buf;
3747 }
3748 }
3749
3750 i2scratch = m_split_insn != 0;
3751 }
3752
3753 /* If recog_for_combine has discarded clobbers, try to use them
3754 again for the split. */
3755 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3756 {
3757 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3758 m_split_insn = combine_split_insns (parallel, i3);
3759 }
3760
3761 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3762 {
3763 rtx m_split_pat = PATTERN (m_split_insn);
3764 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3765 if (insn_code_number >= 0)
3766 newpat = m_split_pat;
3767 }
3768 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3769 && (next_nonnote_nondebug_insn (i2) == i3
3770 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3771 {
3772 rtx i2set, i3set;
3773 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3774 newi2pat = PATTERN (m_split_insn);
3775
3776 i3set = single_set (NEXT_INSN (m_split_insn));
3777 i2set = single_set (m_split_insn);
3778
3779 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3780
3781 /* If I2 or I3 has multiple SETs, we won't know how to track
3782 register status, so don't use these insns. If I2's destination
3783 is used between I2 and I3, we also can't use these insns. */
3784
3785 if (i2_code_number >= 0 && i2set && i3set
3786 && (next_nonnote_nondebug_insn (i2) == i3
3787 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3788 insn_code_number = recog_for_combine (&newi3pat, i3,
3789 &new_i3_notes);
3790 if (insn_code_number >= 0)
3791 newpat = newi3pat;
3792
3793 /* It is possible that both insns now set the destination of I3.
3794 If so, we must show an extra use of it. */
3795
3796 if (insn_code_number >= 0)
3797 {
3798 rtx new_i3_dest = SET_DEST (i3set);
3799 rtx new_i2_dest = SET_DEST (i2set);
3800
3801 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3802 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3803 || GET_CODE (new_i3_dest) == SUBREG)
3804 new_i3_dest = XEXP (new_i3_dest, 0);
3805
3806 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3807 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3808 || GET_CODE (new_i2_dest) == SUBREG)
3809 new_i2_dest = XEXP (new_i2_dest, 0);
3810
3811 if (REG_P (new_i3_dest)
3812 && REG_P (new_i2_dest)
3813 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3814 && REGNO (new_i2_dest) < reg_n_sets_max)
3815 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3816 }
3817 }
3818
3819 /* If we can split it and use I2DEST, go ahead and see if that
3820 helps things be recognized. Verify that none of the registers
3821 are set between I2 and I3. */
3822 if (insn_code_number < 0
3823 && (split = find_split_point (&newpat, i3, false)) != 0
3824 && (!HAVE_cc0 || REG_P (i2dest))
3825 /* We need I2DEST in the proper mode. If it is a hard register
3826 or the only use of a pseudo, we can change its mode.
3827 Make sure we don't change a hard register to have a mode that
3828 isn't valid for it, or change the number of registers. */
3829 && (GET_MODE (*split) == GET_MODE (i2dest)
3830 || GET_MODE (*split) == VOIDmode
3831 || can_change_dest_mode (i2dest, added_sets_2,
3832 GET_MODE (*split)))
3833 && (next_nonnote_nondebug_insn (i2) == i3
3834 || !modified_between_p (*split, i2, i3))
3835 /* We can't overwrite I2DEST if its value is still used by
3836 NEWPAT. */
3837 && ! reg_referenced_p (i2dest, newpat))
3838 {
3839 rtx newdest = i2dest;
3840 enum rtx_code split_code = GET_CODE (*split);
3841 machine_mode split_mode = GET_MODE (*split);
3842 bool subst_done = false;
3843 newi2pat = NULL_RTX;
3844
3845 i2scratch = true;
3846
3847 /* *SPLIT may be part of I2SRC, so make sure we have the
3848 original expression around for later debug processing.
3849 We should not need I2SRC any more in other cases. */
3850 if (MAY_HAVE_DEBUG_BIND_INSNS)
3851 i2src = copy_rtx (i2src);
3852 else
3853 i2src = NULL;
3854
3855 /* Get NEWDEST as a register in the proper mode. We have already
3856 validated that we can do this. */
3857 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3858 {
3859 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3860 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3861 else
3862 {
3863 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3864 newdest = regno_reg_rtx[REGNO (i2dest)];
3865 }
3866 }
3867
3868 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3869 an ASHIFT. This can occur if it was inside a PLUS and hence
3870 appeared to be a memory address. This is a kludge. */
3871 if (split_code == MULT
3872 && CONST_INT_P (XEXP (*split, 1))
3873 && INTVAL (XEXP (*split, 1)) > 0
3874 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3875 {
3876 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3877 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3878 XEXP (*split, 0), i_rtx));
3879 /* Update split_code because we may not have a multiply
3880 anymore. */
3881 split_code = GET_CODE (*split);
3882 }
3883
3884 /* Similarly for (plus (mult FOO (const_int pow2))). */
3885 if (split_code == PLUS
3886 && GET_CODE (XEXP (*split, 0)) == MULT
3887 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3888 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3889 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3890 {
3891 rtx nsplit = XEXP (*split, 0);
3892 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3893 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3894 XEXP (nsplit, 0),
3895 i_rtx));
3896 /* Update split_code because we may not have a multiply
3897 anymore. */
3898 split_code = GET_CODE (*split);
3899 }
3900
3901 #ifdef INSN_SCHEDULING
3902 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3903 be written as a ZERO_EXTEND. */
3904 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3905 {
3906 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3907 what it really is. */
3908 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3909 == SIGN_EXTEND)
3910 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3911 SUBREG_REG (*split)));
3912 else
3913 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3914 SUBREG_REG (*split)));
3915 }
3916 #endif
3917
3918 /* Attempt to split binary operators using arithmetic identities. */
3919 if (BINARY_P (SET_SRC (newpat))
3920 && split_mode == GET_MODE (SET_SRC (newpat))
3921 && ! side_effects_p (SET_SRC (newpat)))
3922 {
3923 rtx setsrc = SET_SRC (newpat);
3924 machine_mode mode = GET_MODE (setsrc);
3925 enum rtx_code code = GET_CODE (setsrc);
3926 rtx src_op0 = XEXP (setsrc, 0);
3927 rtx src_op1 = XEXP (setsrc, 1);
3928
3929 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3930 if (rtx_equal_p (src_op0, src_op1))
3931 {
3932 newi2pat = gen_rtx_SET (newdest, src_op0);
3933 SUBST (XEXP (setsrc, 0), newdest);
3934 SUBST (XEXP (setsrc, 1), newdest);
3935 subst_done = true;
3936 }
3937 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3938 else if ((code == PLUS || code == MULT)
3939 && GET_CODE (src_op0) == code
3940 && GET_CODE (XEXP (src_op0, 0)) == code
3941 && (INTEGRAL_MODE_P (mode)
3942 || (FLOAT_MODE_P (mode)
3943 && flag_unsafe_math_optimizations)))
3944 {
3945 rtx p = XEXP (XEXP (src_op0, 0), 0);
3946 rtx q = XEXP (XEXP (src_op0, 0), 1);
3947 rtx r = XEXP (src_op0, 1);
3948 rtx s = src_op1;
3949
3950 /* Split both "((X op Y) op X) op Y" and
3951 "((X op Y) op Y) op X" as "T op T" where T is
3952 "X op Y". */
3953 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3954 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3955 {
3956 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3957 SUBST (XEXP (setsrc, 0), newdest);
3958 SUBST (XEXP (setsrc, 1), newdest);
3959 subst_done = true;
3960 }
3961 /* Split "((X op X) op Y) op Y)" as "T op T" where
3962 T is "X op Y". */
3963 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3964 {
3965 rtx tmp = simplify_gen_binary (code, mode, p, r);
3966 newi2pat = gen_rtx_SET (newdest, tmp);
3967 SUBST (XEXP (setsrc, 0), newdest);
3968 SUBST (XEXP (setsrc, 1), newdest);
3969 subst_done = true;
3970 }
3971 }
3972 }
3973
3974 if (!subst_done)
3975 {
3976 newi2pat = gen_rtx_SET (newdest, *split);
3977 SUBST (*split, newdest);
3978 }
3979
3980 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3981
3982 /* recog_for_combine might have added CLOBBERs to newi2pat.
3983 Make sure NEWPAT does not depend on the clobbered regs. */
3984 if (GET_CODE (newi2pat) == PARALLEL)
3985 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3986 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3987 {
3988 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3989 if (reg_overlap_mentioned_p (reg, newpat))
3990 {
3991 undo_all ();
3992 return 0;
3993 }
3994 }
3995
3996 /* If the split point was a MULT and we didn't have one before,
3997 don't use one now. */
3998 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3999 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4000 }
4001 }
4002
4003 /* Check for a case where we loaded from memory in a narrow mode and
4004 then sign extended it, but we need both registers. In that case,
4005 we have a PARALLEL with both loads from the same memory location.
4006 We can split this into a load from memory followed by a register-register
4007 copy. This saves at least one insn, more if register allocation can
4008 eliminate the copy.
4009
4010 We cannot do this if the destination of the first assignment is a
4011 condition code register or cc0. We eliminate this case by making sure
4012 the SET_DEST and SET_SRC have the same mode.
4013
4014 We cannot do this if the destination of the second assignment is
4015 a register that we have already assumed is zero-extended. Similarly
4016 for a SUBREG of such a register. */
4017
4018 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4019 && GET_CODE (newpat) == PARALLEL
4020 && XVECLEN (newpat, 0) == 2
4021 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4022 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4023 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4024 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4025 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4026 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4027 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4028 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4029 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4030 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4031 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4032 (REG_P (temp_expr)
4033 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4034 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4035 BITS_PER_WORD)
4036 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4037 HOST_BITS_PER_INT)
4038 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4039 != GET_MODE_MASK (word_mode))))
4040 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4041 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4042 (REG_P (temp_expr)
4043 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4044 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4045 BITS_PER_WORD)
4046 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4047 HOST_BITS_PER_INT)
4048 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4049 != GET_MODE_MASK (word_mode)))))
4050 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4051 SET_SRC (XVECEXP (newpat, 0, 1)))
4052 && ! find_reg_note (i3, REG_UNUSED,
4053 SET_DEST (XVECEXP (newpat, 0, 0))))
4054 {
4055 rtx ni2dest;
4056
4057 newi2pat = XVECEXP (newpat, 0, 0);
4058 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4059 newpat = XVECEXP (newpat, 0, 1);
4060 SUBST (SET_SRC (newpat),
4061 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4062 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4063
4064 if (i2_code_number >= 0)
4065 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4066
4067 if (insn_code_number >= 0)
4068 swap_i2i3 = 1;
4069 }
4070
4071 /* Similarly, check for a case where we have a PARALLEL of two independent
4072 SETs but we started with three insns. In this case, we can do the sets
4073 as two separate insns. This case occurs when some SET allows two
4074 other insns to combine, but the destination of that SET is still live.
4075
4076 Also do this if we started with two insns and (at least) one of the
4077 resulting sets is a noop; this noop will be deleted later.
4078
4079 Also do this if we started with two insns neither of which was a simple
4080 move. */
4081
4082 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4083 && GET_CODE (newpat) == PARALLEL
4084 && XVECLEN (newpat, 0) == 2
4085 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4086 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4087 && (i1
4088 || set_noop_p (XVECEXP (newpat, 0, 0))
4089 || set_noop_p (XVECEXP (newpat, 0, 1))
4090 || (!i2_was_move && !i3_was_move))
4091 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4092 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4093 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4094 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4095 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4096 XVECEXP (newpat, 0, 0))
4097 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4098 XVECEXP (newpat, 0, 1))
4099 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4100 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4101 {
4102 rtx set0 = XVECEXP (newpat, 0, 0);
4103 rtx set1 = XVECEXP (newpat, 0, 1);
4104
4105 /* Normally, it doesn't matter which of the two is done first,
4106 but the one that references cc0 can't be the second, and
4107 one which uses any regs/memory set in between i2 and i3 can't
4108 be first. The PARALLEL might also have been pre-existing in i3,
4109 so we need to make sure that we won't wrongly hoist a SET to i2
4110 that would conflict with a death note present in there, or would
4111 have its dest modified between i2 and i3. */
4112 if (!modified_between_p (SET_SRC (set1), i2, i3)
4113 && !(REG_P (SET_DEST (set1))
4114 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4115 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4116 && find_reg_note (i2, REG_DEAD,
4117 SUBREG_REG (SET_DEST (set1))))
4118 && !modified_between_p (SET_DEST (set1), i2, i3)
4119 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4120 /* If I3 is a jump, ensure that set0 is a jump so that
4121 we do not create invalid RTL. */
4122 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4123 )
4124 {
4125 newi2pat = set1;
4126 newpat = set0;
4127 }
4128 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4129 && !(REG_P (SET_DEST (set0))
4130 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4131 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4132 && find_reg_note (i2, REG_DEAD,
4133 SUBREG_REG (SET_DEST (set0))))
4134 && !modified_between_p (SET_DEST (set0), i2, i3)
4135 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4136 /* If I3 is a jump, ensure that set1 is a jump so that
4137 we do not create invalid RTL. */
4138 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4139 )
4140 {
4141 newi2pat = set0;
4142 newpat = set1;
4143 }
4144 else
4145 {
4146 undo_all ();
4147 return 0;
4148 }
4149
4150 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4151
4152 if (i2_code_number >= 0)
4153 {
4154 /* recog_for_combine might have added CLOBBERs to newi2pat.
4155 Make sure NEWPAT does not depend on the clobbered regs. */
4156 if (GET_CODE (newi2pat) == PARALLEL)
4157 {
4158 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4159 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4160 {
4161 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4162 if (reg_overlap_mentioned_p (reg, newpat))
4163 {
4164 undo_all ();
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4171
4172 if (insn_code_number >= 0)
4173 split_i2i3 = 1;
4174 }
4175 }
4176
4177 /* If it still isn't recognized, fail and change things back the way they
4178 were. */
4179 if ((insn_code_number < 0
4180 /* Is the result a reasonable ASM_OPERANDS? */
4181 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4182 {
4183 undo_all ();
4184 return 0;
4185 }
4186
4187 /* If we had to change another insn, make sure it is valid also. */
4188 if (undobuf.other_insn)
4189 {
4190 CLEAR_HARD_REG_SET (newpat_used_regs);
4191
4192 other_pat = PATTERN (undobuf.other_insn);
4193 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4194 &new_other_notes);
4195
4196 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4197 {
4198 undo_all ();
4199 return 0;
4200 }
4201 }
4202
4203 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4204 they are adjacent to each other or not. */
4205 if (HAVE_cc0)
4206 {
4207 rtx_insn *p = prev_nonnote_insn (i3);
4208 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4209 && sets_cc0_p (newi2pat))
4210 {
4211 undo_all ();
4212 return 0;
4213 }
4214 }
4215
4216 /* Only allow this combination if insn_cost reports that the
4217 replacement instructions are cheaper than the originals. */
4218 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4219 {
4220 undo_all ();
4221 return 0;
4222 }
4223
4224 if (MAY_HAVE_DEBUG_BIND_INSNS)
4225 {
4226 struct undo *undo;
4227
4228 for (undo = undobuf.undos; undo; undo = undo->next)
4229 if (undo->kind == UNDO_MODE)
4230 {
4231 rtx reg = *undo->where.r;
4232 machine_mode new_mode = GET_MODE (reg);
4233 machine_mode old_mode = undo->old_contents.m;
4234
4235 /* Temporarily revert mode back. */
4236 adjust_reg_mode (reg, old_mode);
4237
4238 if (reg == i2dest && i2scratch)
4239 {
4240 /* If we used i2dest as a scratch register with a
4241 different mode, substitute it for the original
4242 i2src while its original mode is temporarily
4243 restored, and then clear i2scratch so that we don't
4244 do it again later. */
4245 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4246 this_basic_block);
4247 i2scratch = false;
4248 /* Put back the new mode. */
4249 adjust_reg_mode (reg, new_mode);
4250 }
4251 else
4252 {
4253 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4254 rtx_insn *first, *last;
4255
4256 if (reg == i2dest)
4257 {
4258 first = i2;
4259 last = last_combined_insn;
4260 }
4261 else
4262 {
4263 first = i3;
4264 last = undobuf.other_insn;
4265 gcc_assert (last);
4266 if (DF_INSN_LUID (last)
4267 < DF_INSN_LUID (last_combined_insn))
4268 last = last_combined_insn;
4269 }
4270
4271 /* We're dealing with a reg that changed mode but not
4272 meaning, so we want to turn it into a subreg for
4273 the new mode. However, because of REG sharing and
4274 because its mode had already changed, we have to do
4275 it in two steps. First, replace any debug uses of
4276 reg, with its original mode temporarily restored,
4277 with this copy we have created; then, replace the
4278 copy with the SUBREG of the original shared reg,
4279 once again changed to the new mode. */
4280 propagate_for_debug (first, last, reg, tempreg,
4281 this_basic_block);
4282 adjust_reg_mode (reg, new_mode);
4283 propagate_for_debug (first, last, tempreg,
4284 lowpart_subreg (old_mode, reg, new_mode),
4285 this_basic_block);
4286 }
4287 }
4288 }
4289
4290 /* If we will be able to accept this, we have made a
4291 change to the destination of I3. This requires us to
4292 do a few adjustments. */
4293
4294 if (changed_i3_dest)
4295 {
4296 PATTERN (i3) = newpat;
4297 adjust_for_new_dest (i3);
4298 }
4299
4300 /* We now know that we can do this combination. Merge the insns and
4301 update the status of registers and LOG_LINKS. */
4302
4303 if (undobuf.other_insn)
4304 {
4305 rtx note, next;
4306
4307 PATTERN (undobuf.other_insn) = other_pat;
4308
4309 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4310 ensure that they are still valid. Then add any non-duplicate
4311 notes added by recog_for_combine. */
4312 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4313 {
4314 next = XEXP (note, 1);
4315
4316 if ((REG_NOTE_KIND (note) == REG_DEAD
4317 && !reg_referenced_p (XEXP (note, 0),
4318 PATTERN (undobuf.other_insn)))
4319 ||(REG_NOTE_KIND (note) == REG_UNUSED
4320 && !reg_set_p (XEXP (note, 0),
4321 PATTERN (undobuf.other_insn)))
4322 /* Simply drop equal note since it may be no longer valid
4323 for other_insn. It may be possible to record that CC
4324 register is changed and only discard those notes, but
4325 in practice it's unnecessary complication and doesn't
4326 give any meaningful improvement.
4327
4328 See PR78559. */
4329 || REG_NOTE_KIND (note) == REG_EQUAL
4330 || REG_NOTE_KIND (note) == REG_EQUIV)
4331 remove_note (undobuf.other_insn, note);
4332 }
4333
4334 distribute_notes (new_other_notes, undobuf.other_insn,
4335 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4336 NULL_RTX);
4337 }
4338
4339 if (swap_i2i3)
4340 {
4341 /* I3 now uses what used to be its destination and which is now
4342 I2's destination. This requires us to do a few adjustments. */
4343 PATTERN (i3) = newpat;
4344 adjust_for_new_dest (i3);
4345 }
4346
4347 if (swap_i2i3 || split_i2i3)
4348 {
4349 /* We might need a LOG_LINK from I3 to I2. But then we used to
4350 have one, so we still will.
4351
4352 However, some later insn might be using I2's dest and have
4353 a LOG_LINK pointing at I3. We should change it to point at
4354 I2 instead. */
4355
4356 /* newi2pat is usually a SET here; however, recog_for_combine might
4357 have added some clobbers. */
4358 rtx x = newi2pat;
4359 if (GET_CODE (x) == PARALLEL)
4360 x = XVECEXP (newi2pat, 0, 0);
4361
4362 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4363 unsigned int regno = reg_or_subregno (SET_DEST (x));
4364
4365 bool done = false;
4366 for (rtx_insn *insn = NEXT_INSN (i3);
4367 !done
4368 && insn
4369 && NONDEBUG_INSN_P (insn)
4370 && BLOCK_FOR_INSN (insn) == this_basic_block;
4371 insn = NEXT_INSN (insn))
4372 {
4373 struct insn_link *link;
4374 FOR_EACH_LOG_LINK (link, insn)
4375 if (link->insn == i3 && link->regno == regno)
4376 {
4377 link->insn = i2;
4378 done = true;
4379 break;
4380 }
4381 }
4382 }
4383
4384 {
4385 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4386 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4387 rtx midnotes = 0;
4388 int from_luid;
4389 /* Compute which registers we expect to eliminate. newi2pat may be setting
4390 either i3dest or i2dest, so we must check it. */
4391 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4392 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4393 || !i2dest_killed
4394 ? 0 : i2dest);
4395 /* For i1, we need to compute both local elimination and global
4396 elimination information with respect to newi2pat because i1dest
4397 may be the same as i3dest, in which case newi2pat may be setting
4398 i1dest. Global information is used when distributing REG_DEAD
4399 note for i2 and i3, in which case it does matter if newi2pat sets
4400 i1dest or not.
4401
4402 Local information is used when distributing REG_DEAD note for i1,
4403 in which case it doesn't matter if newi2pat sets i1dest or not.
4404 See PR62151, if we have four insns combination:
4405 i0: r0 <- i0src
4406 i1: r1 <- i1src (using r0)
4407 REG_DEAD (r0)
4408 i2: r0 <- i2src (using r1)
4409 i3: r3 <- i3src (using r0)
4410 ix: using r0
4411 From i1's point of view, r0 is eliminated, no matter if it is set
4412 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4413 should be discarded.
4414
4415 Note local information only affects cases in forms like "I1->I2->I3",
4416 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4417 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4418 i0dest anyway. */
4419 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4420 || !i1dest_killed
4421 ? 0 : i1dest);
4422 rtx elim_i1 = (local_elim_i1 == 0
4423 || (newi2pat && reg_set_p (i1dest, newi2pat))
4424 ? 0 : i1dest);
4425 /* Same case as i1. */
4426 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4427 ? 0 : i0dest);
4428 rtx elim_i0 = (local_elim_i0 == 0
4429 || (newi2pat && reg_set_p (i0dest, newi2pat))
4430 ? 0 : i0dest);
4431
4432 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4433 clear them. */
4434 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4435 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4436 if (i1)
4437 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4438 if (i0)
4439 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4440
4441 /* Ensure that we do not have something that should not be shared but
4442 occurs multiple times in the new insns. Check this by first
4443 resetting all the `used' flags and then copying anything is shared. */
4444
4445 reset_used_flags (i3notes);
4446 reset_used_flags (i2notes);
4447 reset_used_flags (i1notes);
4448 reset_used_flags (i0notes);
4449 reset_used_flags (newpat);
4450 reset_used_flags (newi2pat);
4451 if (undobuf.other_insn)
4452 reset_used_flags (PATTERN (undobuf.other_insn));
4453
4454 i3notes = copy_rtx_if_shared (i3notes);
4455 i2notes = copy_rtx_if_shared (i2notes);
4456 i1notes = copy_rtx_if_shared (i1notes);
4457 i0notes = copy_rtx_if_shared (i0notes);
4458 newpat = copy_rtx_if_shared (newpat);
4459 newi2pat = copy_rtx_if_shared (newi2pat);
4460 if (undobuf.other_insn)
4461 reset_used_flags (PATTERN (undobuf.other_insn));
4462
4463 INSN_CODE (i3) = insn_code_number;
4464 PATTERN (i3) = newpat;
4465
4466 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4467 {
4468 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4469 link = XEXP (link, 1))
4470 {
4471 if (substed_i2)
4472 {
4473 /* I2SRC must still be meaningful at this point. Some
4474 splitting operations can invalidate I2SRC, but those
4475 operations do not apply to calls. */
4476 gcc_assert (i2src);
4477 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4478 i2dest, i2src);
4479 }
4480 if (substed_i1)
4481 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4482 i1dest, i1src);
4483 if (substed_i0)
4484 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4485 i0dest, i0src);
4486 }
4487 }
4488
4489 if (undobuf.other_insn)
4490 INSN_CODE (undobuf.other_insn) = other_code_number;
4491
4492 /* We had one special case above where I2 had more than one set and
4493 we replaced a destination of one of those sets with the destination
4494 of I3. In that case, we have to update LOG_LINKS of insns later
4495 in this basic block. Note that this (expensive) case is rare.
4496
4497 Also, in this case, we must pretend that all REG_NOTEs for I2
4498 actually came from I3, so that REG_UNUSED notes from I2 will be
4499 properly handled. */
4500
4501 if (i3_subst_into_i2)
4502 {
4503 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4504 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4505 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4506 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4507 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4508 && ! find_reg_note (i2, REG_UNUSED,
4509 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4510 for (temp_insn = NEXT_INSN (i2);
4511 temp_insn
4512 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4513 || BB_HEAD (this_basic_block) != temp_insn);
4514 temp_insn = NEXT_INSN (temp_insn))
4515 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4516 FOR_EACH_LOG_LINK (link, temp_insn)
4517 if (link->insn == i2)
4518 link->insn = i3;
4519
4520 if (i3notes)
4521 {
4522 rtx link = i3notes;
4523 while (XEXP (link, 1))
4524 link = XEXP (link, 1);
4525 XEXP (link, 1) = i2notes;
4526 }
4527 else
4528 i3notes = i2notes;
4529 i2notes = 0;
4530 }
4531
4532 LOG_LINKS (i3) = NULL;
4533 REG_NOTES (i3) = 0;
4534 LOG_LINKS (i2) = NULL;
4535 REG_NOTES (i2) = 0;
4536
4537 if (newi2pat)
4538 {
4539 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4540 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4541 this_basic_block);
4542 INSN_CODE (i2) = i2_code_number;
4543 PATTERN (i2) = newi2pat;
4544 }
4545 else
4546 {
4547 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4548 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4549 this_basic_block);
4550 SET_INSN_DELETED (i2);
4551 }
4552
4553 if (i1)
4554 {
4555 LOG_LINKS (i1) = NULL;
4556 REG_NOTES (i1) = 0;
4557 if (MAY_HAVE_DEBUG_BIND_INSNS)
4558 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4559 this_basic_block);
4560 SET_INSN_DELETED (i1);
4561 }
4562
4563 if (i0)
4564 {
4565 LOG_LINKS (i0) = NULL;
4566 REG_NOTES (i0) = 0;
4567 if (MAY_HAVE_DEBUG_BIND_INSNS)
4568 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4569 this_basic_block);
4570 SET_INSN_DELETED (i0);
4571 }
4572
4573 /* Get death notes for everything that is now used in either I3 or
4574 I2 and used to die in a previous insn. If we built two new
4575 patterns, move from I1 to I2 then I2 to I3 so that we get the
4576 proper movement on registers that I2 modifies. */
4577
4578 if (i0)
4579 from_luid = DF_INSN_LUID (i0);
4580 else if (i1)
4581 from_luid = DF_INSN_LUID (i1);
4582 else
4583 from_luid = DF_INSN_LUID (i2);
4584 if (newi2pat)
4585 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4586 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4587
4588 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4589 if (i3notes)
4590 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4591 elim_i2, elim_i1, elim_i0);
4592 if (i2notes)
4593 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4594 elim_i2, elim_i1, elim_i0);
4595 if (i1notes)
4596 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4597 elim_i2, local_elim_i1, local_elim_i0);
4598 if (i0notes)
4599 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4600 elim_i2, elim_i1, local_elim_i0);
4601 if (midnotes)
4602 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4603 elim_i2, elim_i1, elim_i0);
4604
4605 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4606 know these are REG_UNUSED and want them to go to the desired insn,
4607 so we always pass it as i3. */
4608
4609 if (newi2pat && new_i2_notes)
4610 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4611 NULL_RTX);
4612
4613 if (new_i3_notes)
4614 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4615 NULL_RTX);
4616
4617 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4618 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4619 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4620 in that case, it might delete I2. Similarly for I2 and I1.
4621 Show an additional death due to the REG_DEAD note we make here. If
4622 we discard it in distribute_notes, we will decrement it again. */
4623
4624 if (i3dest_killed)
4625 {
4626 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4627 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4628 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4629 elim_i1, elim_i0);
4630 else
4631 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4632 elim_i2, elim_i1, elim_i0);
4633 }
4634
4635 if (i2dest_in_i2src)
4636 {
4637 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4638 if (newi2pat && reg_set_p (i2dest, newi2pat))
4639 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4640 NULL_RTX, NULL_RTX);
4641 else
4642 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4643 NULL_RTX, NULL_RTX, NULL_RTX);
4644 }
4645
4646 if (i1dest_in_i1src)
4647 {
4648 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4649 if (newi2pat && reg_set_p (i1dest, newi2pat))
4650 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4651 NULL_RTX, NULL_RTX);
4652 else
4653 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4654 NULL_RTX, NULL_RTX, NULL_RTX);
4655 }
4656
4657 if (i0dest_in_i0src)
4658 {
4659 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4660 if (newi2pat && reg_set_p (i0dest, newi2pat))
4661 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4662 NULL_RTX, NULL_RTX);
4663 else
4664 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4665 NULL_RTX, NULL_RTX, NULL_RTX);
4666 }
4667
4668 distribute_links (i3links);
4669 distribute_links (i2links);
4670 distribute_links (i1links);
4671 distribute_links (i0links);
4672
4673 if (REG_P (i2dest))
4674 {
4675 struct insn_link *link;
4676 rtx_insn *i2_insn = 0;
4677 rtx i2_val = 0, set;
4678
4679 /* The insn that used to set this register doesn't exist, and
4680 this life of the register may not exist either. See if one of
4681 I3's links points to an insn that sets I2DEST. If it does,
4682 that is now the last known value for I2DEST. If we don't update
4683 this and I2 set the register to a value that depended on its old
4684 contents, we will get confused. If this insn is used, thing
4685 will be set correctly in combine_instructions. */
4686 FOR_EACH_LOG_LINK (link, i3)
4687 if ((set = single_set (link->insn)) != 0
4688 && rtx_equal_p (i2dest, SET_DEST (set)))
4689 i2_insn = link->insn, i2_val = SET_SRC (set);
4690
4691 record_value_for_reg (i2dest, i2_insn, i2_val);
4692
4693 /* If the reg formerly set in I2 died only once and that was in I3,
4694 zero its use count so it won't make `reload' do any work. */
4695 if (! added_sets_2
4696 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4697 && ! i2dest_in_i2src
4698 && REGNO (i2dest) < reg_n_sets_max)
4699 INC_REG_N_SETS (REGNO (i2dest), -1);
4700 }
4701
4702 if (i1 && REG_P (i1dest))
4703 {
4704 struct insn_link *link;
4705 rtx_insn *i1_insn = 0;
4706 rtx i1_val = 0, set;
4707
4708 FOR_EACH_LOG_LINK (link, i3)
4709 if ((set = single_set (link->insn)) != 0
4710 && rtx_equal_p (i1dest, SET_DEST (set)))
4711 i1_insn = link->insn, i1_val = SET_SRC (set);
4712
4713 record_value_for_reg (i1dest, i1_insn, i1_val);
4714
4715 if (! added_sets_1
4716 && ! i1dest_in_i1src
4717 && REGNO (i1dest) < reg_n_sets_max)
4718 INC_REG_N_SETS (REGNO (i1dest), -1);
4719 }
4720
4721 if (i0 && REG_P (i0dest))
4722 {
4723 struct insn_link *link;
4724 rtx_insn *i0_insn = 0;
4725 rtx i0_val = 0, set;
4726
4727 FOR_EACH_LOG_LINK (link, i3)
4728 if ((set = single_set (link->insn)) != 0
4729 && rtx_equal_p (i0dest, SET_DEST (set)))
4730 i0_insn = link->insn, i0_val = SET_SRC (set);
4731
4732 record_value_for_reg (i0dest, i0_insn, i0_val);
4733
4734 if (! added_sets_0
4735 && ! i0dest_in_i0src
4736 && REGNO (i0dest) < reg_n_sets_max)
4737 INC_REG_N_SETS (REGNO (i0dest), -1);
4738 }
4739
4740 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4741 been made to this insn. The order is important, because newi2pat
4742 can affect nonzero_bits of newpat. */
4743 if (newi2pat)
4744 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4745 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4746 }
4747
4748 if (undobuf.other_insn != NULL_RTX)
4749 {
4750 if (dump_file)
4751 {
4752 fprintf (dump_file, "modifying other_insn ");
4753 dump_insn_slim (dump_file, undobuf.other_insn);
4754 }
4755 df_insn_rescan (undobuf.other_insn);
4756 }
4757
4758 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4759 {
4760 if (dump_file)
4761 {
4762 fprintf (dump_file, "modifying insn i0 ");
4763 dump_insn_slim (dump_file, i0);
4764 }
4765 df_insn_rescan (i0);
4766 }
4767
4768 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4769 {
4770 if (dump_file)
4771 {
4772 fprintf (dump_file, "modifying insn i1 ");
4773 dump_insn_slim (dump_file, i1);
4774 }
4775 df_insn_rescan (i1);
4776 }
4777
4778 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4779 {
4780 if (dump_file)
4781 {
4782 fprintf (dump_file, "modifying insn i2 ");
4783 dump_insn_slim (dump_file, i2);
4784 }
4785 df_insn_rescan (i2);
4786 }
4787
4788 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4789 {
4790 if (dump_file)
4791 {
4792 fprintf (dump_file, "modifying insn i3 ");
4793 dump_insn_slim (dump_file, i3);
4794 }
4795 df_insn_rescan (i3);
4796 }
4797
4798 /* Set new_direct_jump_p if a new return or simple jump instruction
4799 has been created. Adjust the CFG accordingly. */
4800 if (returnjump_p (i3) || any_uncondjump_p (i3))
4801 {
4802 *new_direct_jump_p = 1;
4803 mark_jump_label (PATTERN (i3), i3, 0);
4804 update_cfg_for_uncondjump (i3);
4805 }
4806
4807 if (undobuf.other_insn != NULL_RTX
4808 && (returnjump_p (undobuf.other_insn)
4809 || any_uncondjump_p (undobuf.other_insn)))
4810 {
4811 *new_direct_jump_p = 1;
4812 update_cfg_for_uncondjump (undobuf.other_insn);
4813 }
4814
4815 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4816 && XEXP (PATTERN (i3), 0) == const1_rtx)
4817 {
4818 basic_block bb = BLOCK_FOR_INSN (i3);
4819 gcc_assert (bb);
4820 remove_edge (split_block (bb, i3));
4821 emit_barrier_after_bb (bb);
4822 *new_direct_jump_p = 1;
4823 }
4824
4825 if (undobuf.other_insn
4826 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4827 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4828 {
4829 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4830 gcc_assert (bb);
4831 remove_edge (split_block (bb, undobuf.other_insn));
4832 emit_barrier_after_bb (bb);
4833 *new_direct_jump_p = 1;
4834 }
4835
4836 /* A noop might also need cleaning up of CFG, if it comes from the
4837 simplification of a jump. */
4838 if (JUMP_P (i3)
4839 && GET_CODE (newpat) == SET
4840 && SET_SRC (newpat) == pc_rtx
4841 && SET_DEST (newpat) == pc_rtx)
4842 {
4843 *new_direct_jump_p = 1;
4844 update_cfg_for_uncondjump (i3);
4845 }
4846
4847 if (undobuf.other_insn != NULL_RTX
4848 && JUMP_P (undobuf.other_insn)
4849 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4850 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4851 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4852 {
4853 *new_direct_jump_p = 1;
4854 update_cfg_for_uncondjump (undobuf.other_insn);
4855 }
4856
4857 combine_successes++;
4858 undo_commit ();
4859
4860 rtx_insn *ret = newi2pat ? i2 : i3;
4861 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4862 ret = added_links_insn;
4863 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4864 ret = added_notes_insn;
4865
4866 return ret;
4867 }
4868 \f
4869 /* Get a marker for undoing to the current state. */
4870
4871 static void *
4872 get_undo_marker (void)
4873 {
4874 return undobuf.undos;
4875 }
4876
4877 /* Undo the modifications up to the marker. */
4878
4879 static void
4880 undo_to_marker (void *marker)
4881 {
4882 struct undo *undo, *next;
4883
4884 for (undo = undobuf.undos; undo != marker; undo = next)
4885 {
4886 gcc_assert (undo);
4887
4888 next = undo->next;
4889 switch (undo->kind)
4890 {
4891 case UNDO_RTX:
4892 *undo->where.r = undo->old_contents.r;
4893 break;
4894 case UNDO_INT:
4895 *undo->where.i = undo->old_contents.i;
4896 break;
4897 case UNDO_MODE:
4898 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4899 break;
4900 case UNDO_LINKS:
4901 *undo->where.l = undo->old_contents.l;
4902 break;
4903 default:
4904 gcc_unreachable ();
4905 }
4906
4907 undo->next = undobuf.frees;
4908 undobuf.frees = undo;
4909 }
4910
4911 undobuf.undos = (struct undo *) marker;
4912 }
4913
4914 /* Undo all the modifications recorded in undobuf. */
4915
4916 static void
4917 undo_all (void)
4918 {
4919 undo_to_marker (0);
4920 }
4921
4922 /* We've committed to accepting the changes we made. Move all
4923 of the undos to the free list. */
4924
4925 static void
4926 undo_commit (void)
4927 {
4928 struct undo *undo, *next;
4929
4930 for (undo = undobuf.undos; undo; undo = next)
4931 {
4932 next = undo->next;
4933 undo->next = undobuf.frees;
4934 undobuf.frees = undo;
4935 }
4936 undobuf.undos = 0;
4937 }
4938 \f
4939 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4940 where we have an arithmetic expression and return that point. LOC will
4941 be inside INSN.
4942
4943 try_combine will call this function to see if an insn can be split into
4944 two insns. */
4945
4946 static rtx *
4947 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4948 {
4949 rtx x = *loc;
4950 enum rtx_code code = GET_CODE (x);
4951 rtx *split;
4952 unsigned HOST_WIDE_INT len = 0;
4953 HOST_WIDE_INT pos = 0;
4954 int unsignedp = 0;
4955 rtx inner = NULL_RTX;
4956 scalar_int_mode mode, inner_mode;
4957
4958 /* First special-case some codes. */
4959 switch (code)
4960 {
4961 case SUBREG:
4962 #ifdef INSN_SCHEDULING
4963 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4964 point. */
4965 if (MEM_P (SUBREG_REG (x)))
4966 return loc;
4967 #endif
4968 return find_split_point (&SUBREG_REG (x), insn, false);
4969
4970 case MEM:
4971 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4972 using LO_SUM and HIGH. */
4973 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4974 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4975 {
4976 machine_mode address_mode = get_address_mode (x);
4977
4978 SUBST (XEXP (x, 0),
4979 gen_rtx_LO_SUM (address_mode,
4980 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4981 XEXP (x, 0)));
4982 return &XEXP (XEXP (x, 0), 0);
4983 }
4984
4985 /* If we have a PLUS whose second operand is a constant and the
4986 address is not valid, perhaps we can split it up using
4987 the machine-specific way to split large constants. We use
4988 the first pseudo-reg (one of the virtual regs) as a placeholder;
4989 it will not remain in the result. */
4990 if (GET_CODE (XEXP (x, 0)) == PLUS
4991 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4992 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4993 MEM_ADDR_SPACE (x)))
4994 {
4995 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4996 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4997 subst_insn);
4998
4999 /* This should have produced two insns, each of which sets our
5000 placeholder. If the source of the second is a valid address,
5001 we can put both sources together and make a split point
5002 in the middle. */
5003
5004 if (seq
5005 && NEXT_INSN (seq) != NULL_RTX
5006 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
5007 && NONJUMP_INSN_P (seq)
5008 && GET_CODE (PATTERN (seq)) == SET
5009 && SET_DEST (PATTERN (seq)) == reg
5010 && ! reg_mentioned_p (reg,
5011 SET_SRC (PATTERN (seq)))
5012 && NONJUMP_INSN_P (NEXT_INSN (seq))
5013 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5014 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5015 && memory_address_addr_space_p
5016 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5017 MEM_ADDR_SPACE (x)))
5018 {
5019 rtx src1 = SET_SRC (PATTERN (seq));
5020 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5021
5022 /* Replace the placeholder in SRC2 with SRC1. If we can
5023 find where in SRC2 it was placed, that can become our
5024 split point and we can replace this address with SRC2.
5025 Just try two obvious places. */
5026
5027 src2 = replace_rtx (src2, reg, src1);
5028 split = 0;
5029 if (XEXP (src2, 0) == src1)
5030 split = &XEXP (src2, 0);
5031 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5032 && XEXP (XEXP (src2, 0), 0) == src1)
5033 split = &XEXP (XEXP (src2, 0), 0);
5034
5035 if (split)
5036 {
5037 SUBST (XEXP (x, 0), src2);
5038 return split;
5039 }
5040 }
5041
5042 /* If that didn't work and we have a nested plus, like:
5043 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5044 is valid address, try to split (REG1 * CONST1). */
5045 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5046 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5047 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5048 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5049 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5050 0), 0)))))
5051 {
5052 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5053 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5054 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5055 MEM_ADDR_SPACE (x)))
5056 {
5057 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5058 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5059 }
5060 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5061 }
5062 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5063 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5064 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5065 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5066 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5067 0), 1)))))
5068 {
5069 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5070 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5071 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5072 MEM_ADDR_SPACE (x)))
5073 {
5074 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5075 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5076 }
5077 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5078 }
5079
5080 /* If that didn't work, perhaps the first operand is complex and
5081 needs to be computed separately, so make a split point there.
5082 This will occur on machines that just support REG + CONST
5083 and have a constant moved through some previous computation. */
5084 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5085 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5086 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5087 return &XEXP (XEXP (x, 0), 0);
5088 }
5089
5090 /* If we have a PLUS whose first operand is complex, try computing it
5091 separately by making a split there. */
5092 if (GET_CODE (XEXP (x, 0)) == PLUS
5093 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5094 MEM_ADDR_SPACE (x))
5095 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5096 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5097 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5098 return &XEXP (XEXP (x, 0), 0);
5099 break;
5100
5101 case SET:
5102 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5103 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5104 we need to put the operand into a register. So split at that
5105 point. */
5106
5107 if (SET_DEST (x) == cc0_rtx
5108 && GET_CODE (SET_SRC (x)) != COMPARE
5109 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5110 && !OBJECT_P (SET_SRC (x))
5111 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5112 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5113 return &SET_SRC (x);
5114
5115 /* See if we can split SET_SRC as it stands. */
5116 split = find_split_point (&SET_SRC (x), insn, true);
5117 if (split && split != &SET_SRC (x))
5118 return split;
5119
5120 /* See if we can split SET_DEST as it stands. */
5121 split = find_split_point (&SET_DEST (x), insn, false);
5122 if (split && split != &SET_DEST (x))
5123 return split;
5124
5125 /* See if this is a bitfield assignment with everything constant. If
5126 so, this is an IOR of an AND, so split it into that. */
5127 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5128 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5129 &inner_mode)
5130 && HWI_COMPUTABLE_MODE_P (inner_mode)
5131 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5132 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5133 && CONST_INT_P (SET_SRC (x))
5134 && ((INTVAL (XEXP (SET_DEST (x), 1))
5135 + INTVAL (XEXP (SET_DEST (x), 2)))
5136 <= GET_MODE_PRECISION (inner_mode))
5137 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5138 {
5139 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5140 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5141 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5142 rtx dest = XEXP (SET_DEST (x), 0);
5143 unsigned HOST_WIDE_INT mask
5144 = (HOST_WIDE_INT_1U << len) - 1;
5145 rtx or_mask;
5146
5147 if (BITS_BIG_ENDIAN)
5148 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5149
5150 or_mask = gen_int_mode (src << pos, inner_mode);
5151 if (src == mask)
5152 SUBST (SET_SRC (x),
5153 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5154 else
5155 {
5156 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5157 SUBST (SET_SRC (x),
5158 simplify_gen_binary (IOR, inner_mode,
5159 simplify_gen_binary (AND, inner_mode,
5160 dest, negmask),
5161 or_mask));
5162 }
5163
5164 SUBST (SET_DEST (x), dest);
5165
5166 split = find_split_point (&SET_SRC (x), insn, true);
5167 if (split && split != &SET_SRC (x))
5168 return split;
5169 }
5170
5171 /* Otherwise, see if this is an operation that we can split into two.
5172 If so, try to split that. */
5173 code = GET_CODE (SET_SRC (x));
5174
5175 switch (code)
5176 {
5177 case AND:
5178 /* If we are AND'ing with a large constant that is only a single
5179 bit and the result is only being used in a context where we
5180 need to know if it is zero or nonzero, replace it with a bit
5181 extraction. This will avoid the large constant, which might
5182 have taken more than one insn to make. If the constant were
5183 not a valid argument to the AND but took only one insn to make,
5184 this is no worse, but if it took more than one insn, it will
5185 be better. */
5186
5187 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5188 && REG_P (XEXP (SET_SRC (x), 0))
5189 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5190 && REG_P (SET_DEST (x))
5191 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5192 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5193 && XEXP (*split, 0) == SET_DEST (x)
5194 && XEXP (*split, 1) == const0_rtx)
5195 {
5196 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5197 XEXP (SET_SRC (x), 0),
5198 pos, NULL_RTX, 1, 1, 0, 0);
5199 if (extraction != 0)
5200 {
5201 SUBST (SET_SRC (x), extraction);
5202 return find_split_point (loc, insn, false);
5203 }
5204 }
5205 break;
5206
5207 case NE:
5208 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5209 is known to be on, this can be converted into a NEG of a shift. */
5210 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5211 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5212 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5213 GET_MODE (XEXP (SET_SRC (x),
5214 0))))) >= 1))
5215 {
5216 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5217 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5218 SUBST (SET_SRC (x),
5219 gen_rtx_NEG (mode,
5220 gen_rtx_LSHIFTRT (mode,
5221 XEXP (SET_SRC (x), 0),
5222 pos_rtx)));
5223
5224 split = find_split_point (&SET_SRC (x), insn, true);
5225 if (split && split != &SET_SRC (x))
5226 return split;
5227 }
5228 break;
5229
5230 case SIGN_EXTEND:
5231 inner = XEXP (SET_SRC (x), 0);
5232
5233 /* We can't optimize if either mode is a partial integer
5234 mode as we don't know how many bits are significant
5235 in those modes. */
5236 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5237 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5238 break;
5239
5240 pos = 0;
5241 len = GET_MODE_PRECISION (inner_mode);
5242 unsignedp = 0;
5243 break;
5244
5245 case SIGN_EXTRACT:
5246 case ZERO_EXTRACT:
5247 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5248 &inner_mode)
5249 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5250 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5251 {
5252 inner = XEXP (SET_SRC (x), 0);
5253 len = INTVAL (XEXP (SET_SRC (x), 1));
5254 pos = INTVAL (XEXP (SET_SRC (x), 2));
5255
5256 if (BITS_BIG_ENDIAN)
5257 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5258 unsignedp = (code == ZERO_EXTRACT);
5259 }
5260 break;
5261
5262 default:
5263 break;
5264 }
5265
5266 if (len
5267 && known_subrange_p (pos, len,
5268 0, GET_MODE_PRECISION (GET_MODE (inner)))
5269 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5270 {
5271 /* For unsigned, we have a choice of a shift followed by an
5272 AND or two shifts. Use two shifts for field sizes where the
5273 constant might be too large. We assume here that we can
5274 always at least get 8-bit constants in an AND insn, which is
5275 true for every current RISC. */
5276
5277 if (unsignedp && len <= 8)
5278 {
5279 unsigned HOST_WIDE_INT mask
5280 = (HOST_WIDE_INT_1U << len) - 1;
5281 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5282 SUBST (SET_SRC (x),
5283 gen_rtx_AND (mode,
5284 gen_rtx_LSHIFTRT
5285 (mode, gen_lowpart (mode, inner), pos_rtx),
5286 gen_int_mode (mask, mode)));
5287
5288 split = find_split_point (&SET_SRC (x), insn, true);
5289 if (split && split != &SET_SRC (x))
5290 return split;
5291 }
5292 else
5293 {
5294 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5295 int right_bits = GET_MODE_PRECISION (mode) - len;
5296 SUBST (SET_SRC (x),
5297 gen_rtx_fmt_ee
5298 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5299 gen_rtx_ASHIFT (mode,
5300 gen_lowpart (mode, inner),
5301 gen_int_shift_amount (mode, left_bits)),
5302 gen_int_shift_amount (mode, right_bits)));
5303
5304 split = find_split_point (&SET_SRC (x), insn, true);
5305 if (split && split != &SET_SRC (x))
5306 return split;
5307 }
5308 }
5309
5310 /* See if this is a simple operation with a constant as the second
5311 operand. It might be that this constant is out of range and hence
5312 could be used as a split point. */
5313 if (BINARY_P (SET_SRC (x))
5314 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5315 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5316 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5317 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5318 return &XEXP (SET_SRC (x), 1);
5319
5320 /* Finally, see if this is a simple operation with its first operand
5321 not in a register. The operation might require this operand in a
5322 register, so return it as a split point. We can always do this
5323 because if the first operand were another operation, we would have
5324 already found it as a split point. */
5325 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5326 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5327 return &XEXP (SET_SRC (x), 0);
5328
5329 return 0;
5330
5331 case AND:
5332 case IOR:
5333 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5334 it is better to write this as (not (ior A B)) so we can split it.
5335 Similarly for IOR. */
5336 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5337 {
5338 SUBST (*loc,
5339 gen_rtx_NOT (GET_MODE (x),
5340 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5341 GET_MODE (x),
5342 XEXP (XEXP (x, 0), 0),
5343 XEXP (XEXP (x, 1), 0))));
5344 return find_split_point (loc, insn, set_src);
5345 }
5346
5347 /* Many RISC machines have a large set of logical insns. If the
5348 second operand is a NOT, put it first so we will try to split the
5349 other operand first. */
5350 if (GET_CODE (XEXP (x, 1)) == NOT)
5351 {
5352 rtx tem = XEXP (x, 0);
5353 SUBST (XEXP (x, 0), XEXP (x, 1));
5354 SUBST (XEXP (x, 1), tem);
5355 }
5356 break;
5357
5358 case PLUS:
5359 case MINUS:
5360 /* Canonicalization can produce (minus A (mult B C)), where C is a
5361 constant. It may be better to try splitting (plus (mult B -C) A)
5362 instead if this isn't a multiply by a power of two. */
5363 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5364 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5365 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5366 {
5367 machine_mode mode = GET_MODE (x);
5368 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5369 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5370 SUBST (*loc, gen_rtx_PLUS (mode,
5371 gen_rtx_MULT (mode,
5372 XEXP (XEXP (x, 1), 0),
5373 gen_int_mode (other_int,
5374 mode)),
5375 XEXP (x, 0)));
5376 return find_split_point (loc, insn, set_src);
5377 }
5378
5379 /* Split at a multiply-accumulate instruction. However if this is
5380 the SET_SRC, we likely do not have such an instruction and it's
5381 worthless to try this split. */
5382 if (!set_src
5383 && (GET_CODE (XEXP (x, 0)) == MULT
5384 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5385 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5386 return loc;
5387
5388 default:
5389 break;
5390 }
5391
5392 /* Otherwise, select our actions depending on our rtx class. */
5393 switch (GET_RTX_CLASS (code))
5394 {
5395 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5396 case RTX_TERNARY:
5397 split = find_split_point (&XEXP (x, 2), insn, false);
5398 if (split)
5399 return split;
5400 /* fall through */
5401 case RTX_BIN_ARITH:
5402 case RTX_COMM_ARITH:
5403 case RTX_COMPARE:
5404 case RTX_COMM_COMPARE:
5405 split = find_split_point (&XEXP (x, 1), insn, false);
5406 if (split)
5407 return split;
5408 /* fall through */
5409 case RTX_UNARY:
5410 /* Some machines have (and (shift ...) ...) insns. If X is not
5411 an AND, but XEXP (X, 0) is, use it as our split point. */
5412 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5413 return &XEXP (x, 0);
5414
5415 split = find_split_point (&XEXP (x, 0), insn, false);
5416 if (split)
5417 return split;
5418 return loc;
5419
5420 default:
5421 /* Otherwise, we don't have a split point. */
5422 return 0;
5423 }
5424 }
5425 \f
5426 /* Throughout X, replace FROM with TO, and return the result.
5427 The result is TO if X is FROM;
5428 otherwise the result is X, but its contents may have been modified.
5429 If they were modified, a record was made in undobuf so that
5430 undo_all will (among other things) return X to its original state.
5431
5432 If the number of changes necessary is too much to record to undo,
5433 the excess changes are not made, so the result is invalid.
5434 The changes already made can still be undone.
5435 undobuf.num_undo is incremented for such changes, so by testing that
5436 the caller can tell whether the result is valid.
5437
5438 `n_occurrences' is incremented each time FROM is replaced.
5439
5440 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5441
5442 IN_COND is nonzero if we are at the top level of a condition.
5443
5444 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5445 by copying if `n_occurrences' is nonzero. */
5446
5447 static rtx
5448 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5449 {
5450 enum rtx_code code = GET_CODE (x);
5451 machine_mode op0_mode = VOIDmode;
5452 const char *fmt;
5453 int len, i;
5454 rtx new_rtx;
5455
5456 /* Two expressions are equal if they are identical copies of a shared
5457 RTX or if they are both registers with the same register number
5458 and mode. */
5459
5460 #define COMBINE_RTX_EQUAL_P(X,Y) \
5461 ((X) == (Y) \
5462 || (REG_P (X) && REG_P (Y) \
5463 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5464
5465 /* Do not substitute into clobbers of regs -- this will never result in
5466 valid RTL. */
5467 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5468 return x;
5469
5470 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5471 {
5472 n_occurrences++;
5473 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5474 }
5475
5476 /* If X and FROM are the same register but different modes, they
5477 will not have been seen as equal above. However, the log links code
5478 will make a LOG_LINKS entry for that case. If we do nothing, we
5479 will try to rerecognize our original insn and, when it succeeds,
5480 we will delete the feeding insn, which is incorrect.
5481
5482 So force this insn not to match in this (rare) case. */
5483 if (! in_dest && code == REG && REG_P (from)
5484 && reg_overlap_mentioned_p (x, from))
5485 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5486
5487 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5488 of which may contain things that can be combined. */
5489 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5490 return x;
5491
5492 /* It is possible to have a subexpression appear twice in the insn.
5493 Suppose that FROM is a register that appears within TO.
5494 Then, after that subexpression has been scanned once by `subst',
5495 the second time it is scanned, TO may be found. If we were
5496 to scan TO here, we would find FROM within it and create a
5497 self-referent rtl structure which is completely wrong. */
5498 if (COMBINE_RTX_EQUAL_P (x, to))
5499 return to;
5500
5501 /* Parallel asm_operands need special attention because all of the
5502 inputs are shared across the arms. Furthermore, unsharing the
5503 rtl results in recognition failures. Failure to handle this case
5504 specially can result in circular rtl.
5505
5506 Solve this by doing a normal pass across the first entry of the
5507 parallel, and only processing the SET_DESTs of the subsequent
5508 entries. Ug. */
5509
5510 if (code == PARALLEL
5511 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5512 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5513 {
5514 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5515
5516 /* If this substitution failed, this whole thing fails. */
5517 if (GET_CODE (new_rtx) == CLOBBER
5518 && XEXP (new_rtx, 0) == const0_rtx)
5519 return new_rtx;
5520
5521 SUBST (XVECEXP (x, 0, 0), new_rtx);
5522
5523 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5524 {
5525 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5526
5527 if (!REG_P (dest)
5528 && GET_CODE (dest) != CC0
5529 && GET_CODE (dest) != PC)
5530 {
5531 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5532
5533 /* If this substitution failed, this whole thing fails. */
5534 if (GET_CODE (new_rtx) == CLOBBER
5535 && XEXP (new_rtx, 0) == const0_rtx)
5536 return new_rtx;
5537
5538 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5539 }
5540 }
5541 }
5542 else
5543 {
5544 len = GET_RTX_LENGTH (code);
5545 fmt = GET_RTX_FORMAT (code);
5546
5547 /* We don't need to process a SET_DEST that is a register, CC0,
5548 or PC, so set up to skip this common case. All other cases
5549 where we want to suppress replacing something inside a
5550 SET_SRC are handled via the IN_DEST operand. */
5551 if (code == SET
5552 && (REG_P (SET_DEST (x))
5553 || GET_CODE (SET_DEST (x)) == CC0
5554 || GET_CODE (SET_DEST (x)) == PC))
5555 fmt = "ie";
5556
5557 /* Trying to simplify the operands of a widening MULT is not likely
5558 to create RTL matching a machine insn. */
5559 if (code == MULT
5560 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5561 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5562 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5563 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5564 && REG_P (XEXP (XEXP (x, 0), 0))
5565 && REG_P (XEXP (XEXP (x, 1), 0))
5566 && from == to)
5567 return x;
5568
5569
5570 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5571 constant. */
5572 if (fmt[0] == 'e')
5573 op0_mode = GET_MODE (XEXP (x, 0));
5574
5575 for (i = 0; i < len; i++)
5576 {
5577 if (fmt[i] == 'E')
5578 {
5579 int j;
5580 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5581 {
5582 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5583 {
5584 new_rtx = (unique_copy && n_occurrences
5585 ? copy_rtx (to) : to);
5586 n_occurrences++;
5587 }
5588 else
5589 {
5590 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5591 unique_copy);
5592
5593 /* If this substitution failed, this whole thing
5594 fails. */
5595 if (GET_CODE (new_rtx) == CLOBBER
5596 && XEXP (new_rtx, 0) == const0_rtx)
5597 return new_rtx;
5598 }
5599
5600 SUBST (XVECEXP (x, i, j), new_rtx);
5601 }
5602 }
5603 else if (fmt[i] == 'e')
5604 {
5605 /* If this is a register being set, ignore it. */
5606 new_rtx = XEXP (x, i);
5607 if (in_dest
5608 && i == 0
5609 && (((code == SUBREG || code == ZERO_EXTRACT)
5610 && REG_P (new_rtx))
5611 || code == STRICT_LOW_PART))
5612 ;
5613
5614 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5615 {
5616 /* In general, don't install a subreg involving two
5617 modes not tieable. It can worsen register
5618 allocation, and can even make invalid reload
5619 insns, since the reg inside may need to be copied
5620 from in the outside mode, and that may be invalid
5621 if it is an fp reg copied in integer mode.
5622
5623 We allow two exceptions to this: It is valid if
5624 it is inside another SUBREG and the mode of that
5625 SUBREG and the mode of the inside of TO is
5626 tieable and it is valid if X is a SET that copies
5627 FROM to CC0. */
5628
5629 if (GET_CODE (to) == SUBREG
5630 && !targetm.modes_tieable_p (GET_MODE (to),
5631 GET_MODE (SUBREG_REG (to)))
5632 && ! (code == SUBREG
5633 && (targetm.modes_tieable_p
5634 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5635 && (!HAVE_cc0
5636 || (! (code == SET
5637 && i == 1
5638 && XEXP (x, 0) == cc0_rtx))))
5639 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5640
5641 if (code == SUBREG
5642 && REG_P (to)
5643 && REGNO (to) < FIRST_PSEUDO_REGISTER
5644 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5645 SUBREG_BYTE (x),
5646 GET_MODE (x)) < 0)
5647 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5648
5649 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5650 n_occurrences++;
5651 }
5652 else
5653 /* If we are in a SET_DEST, suppress most cases unless we
5654 have gone inside a MEM, in which case we want to
5655 simplify the address. We assume here that things that
5656 are actually part of the destination have their inner
5657 parts in the first expression. This is true for SUBREG,
5658 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5659 things aside from REG and MEM that should appear in a
5660 SET_DEST. */
5661 new_rtx = subst (XEXP (x, i), from, to,
5662 (((in_dest
5663 && (code == SUBREG || code == STRICT_LOW_PART
5664 || code == ZERO_EXTRACT))
5665 || code == SET)
5666 && i == 0),
5667 code == IF_THEN_ELSE && i == 0,
5668 unique_copy);
5669
5670 /* If we found that we will have to reject this combination,
5671 indicate that by returning the CLOBBER ourselves, rather than
5672 an expression containing it. This will speed things up as
5673 well as prevent accidents where two CLOBBERs are considered
5674 to be equal, thus producing an incorrect simplification. */
5675
5676 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5677 return new_rtx;
5678
5679 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5680 {
5681 machine_mode mode = GET_MODE (x);
5682
5683 x = simplify_subreg (GET_MODE (x), new_rtx,
5684 GET_MODE (SUBREG_REG (x)),
5685 SUBREG_BYTE (x));
5686 if (! x)
5687 x = gen_rtx_CLOBBER (mode, const0_rtx);
5688 }
5689 else if (CONST_SCALAR_INT_P (new_rtx)
5690 && (GET_CODE (x) == ZERO_EXTEND
5691 || GET_CODE (x) == FLOAT
5692 || GET_CODE (x) == UNSIGNED_FLOAT))
5693 {
5694 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5695 new_rtx,
5696 GET_MODE (XEXP (x, 0)));
5697 if (!x)
5698 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5699 }
5700 else
5701 SUBST (XEXP (x, i), new_rtx);
5702 }
5703 }
5704 }
5705
5706 /* Check if we are loading something from the constant pool via float
5707 extension; in this case we would undo compress_float_constant
5708 optimization and degenerate constant load to an immediate value. */
5709 if (GET_CODE (x) == FLOAT_EXTEND
5710 && MEM_P (XEXP (x, 0))
5711 && MEM_READONLY_P (XEXP (x, 0)))
5712 {
5713 rtx tmp = avoid_constant_pool_reference (x);
5714 if (x != tmp)
5715 return x;
5716 }
5717
5718 /* Try to simplify X. If the simplification changed the code, it is likely
5719 that further simplification will help, so loop, but limit the number
5720 of repetitions that will be performed. */
5721
5722 for (i = 0; i < 4; i++)
5723 {
5724 /* If X is sufficiently simple, don't bother trying to do anything
5725 with it. */
5726 if (code != CONST_INT && code != REG && code != CLOBBER)
5727 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5728
5729 if (GET_CODE (x) == code)
5730 break;
5731
5732 code = GET_CODE (x);
5733
5734 /* We no longer know the original mode of operand 0 since we
5735 have changed the form of X) */
5736 op0_mode = VOIDmode;
5737 }
5738
5739 return x;
5740 }
5741 \f
5742 /* If X is a commutative operation whose operands are not in the canonical
5743 order, use substitutions to swap them. */
5744
5745 static void
5746 maybe_swap_commutative_operands (rtx x)
5747 {
5748 if (COMMUTATIVE_ARITH_P (x)
5749 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5750 {
5751 rtx temp = XEXP (x, 0);
5752 SUBST (XEXP (x, 0), XEXP (x, 1));
5753 SUBST (XEXP (x, 1), temp);
5754 }
5755 }
5756
5757 /* Simplify X, a piece of RTL. We just operate on the expression at the
5758 outer level; call `subst' to simplify recursively. Return the new
5759 expression.
5760
5761 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5762 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5763 of a condition. */
5764
5765 static rtx
5766 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5767 int in_cond)
5768 {
5769 enum rtx_code code = GET_CODE (x);
5770 machine_mode mode = GET_MODE (x);
5771 scalar_int_mode int_mode;
5772 rtx temp;
5773 int i;
5774
5775 /* If this is a commutative operation, put a constant last and a complex
5776 expression first. We don't need to do this for comparisons here. */
5777 maybe_swap_commutative_operands (x);
5778
5779 /* Try to fold this expression in case we have constants that weren't
5780 present before. */
5781 temp = 0;
5782 switch (GET_RTX_CLASS (code))
5783 {
5784 case RTX_UNARY:
5785 if (op0_mode == VOIDmode)
5786 op0_mode = GET_MODE (XEXP (x, 0));
5787 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5788 break;
5789 case RTX_COMPARE:
5790 case RTX_COMM_COMPARE:
5791 {
5792 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5793 if (cmp_mode == VOIDmode)
5794 {
5795 cmp_mode = GET_MODE (XEXP (x, 1));
5796 if (cmp_mode == VOIDmode)
5797 cmp_mode = op0_mode;
5798 }
5799 temp = simplify_relational_operation (code, mode, cmp_mode,
5800 XEXP (x, 0), XEXP (x, 1));
5801 }
5802 break;
5803 case RTX_COMM_ARITH:
5804 case RTX_BIN_ARITH:
5805 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5806 break;
5807 case RTX_BITFIELD_OPS:
5808 case RTX_TERNARY:
5809 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5810 XEXP (x, 1), XEXP (x, 2));
5811 break;
5812 default:
5813 break;
5814 }
5815
5816 if (temp)
5817 {
5818 x = temp;
5819 code = GET_CODE (temp);
5820 op0_mode = VOIDmode;
5821 mode = GET_MODE (temp);
5822 }
5823
5824 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5825 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5826 things. Check for cases where both arms are testing the same
5827 condition.
5828
5829 Don't do anything if all operands are very simple. */
5830
5831 if ((BINARY_P (x)
5832 && ((!OBJECT_P (XEXP (x, 0))
5833 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5834 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5835 || (!OBJECT_P (XEXP (x, 1))
5836 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5837 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5838 || (UNARY_P (x)
5839 && (!OBJECT_P (XEXP (x, 0))
5840 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5841 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5842 {
5843 rtx cond, true_rtx, false_rtx;
5844
5845 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5846 if (cond != 0
5847 /* If everything is a comparison, what we have is highly unlikely
5848 to be simpler, so don't use it. */
5849 && ! (COMPARISON_P (x)
5850 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5851 /* Similarly, if we end up with one of the expressions the same
5852 as the original, it is certainly not simpler. */
5853 && ! rtx_equal_p (x, true_rtx)
5854 && ! rtx_equal_p (x, false_rtx))
5855 {
5856 rtx cop1 = const0_rtx;
5857 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5858
5859 if (cond_code == NE && COMPARISON_P (cond))
5860 return x;
5861
5862 /* Simplify the alternative arms; this may collapse the true and
5863 false arms to store-flag values. Be careful to use copy_rtx
5864 here since true_rtx or false_rtx might share RTL with x as a
5865 result of the if_then_else_cond call above. */
5866 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5867 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5868
5869 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5870 is unlikely to be simpler. */
5871 if (general_operand (true_rtx, VOIDmode)
5872 && general_operand (false_rtx, VOIDmode))
5873 {
5874 enum rtx_code reversed;
5875
5876 /* Restarting if we generate a store-flag expression will cause
5877 us to loop. Just drop through in this case. */
5878
5879 /* If the result values are STORE_FLAG_VALUE and zero, we can
5880 just make the comparison operation. */
5881 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5882 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5883 cond, cop1);
5884 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5885 && ((reversed = reversed_comparison_code_parts
5886 (cond_code, cond, cop1, NULL))
5887 != UNKNOWN))
5888 x = simplify_gen_relational (reversed, mode, VOIDmode,
5889 cond, cop1);
5890
5891 /* Likewise, we can make the negate of a comparison operation
5892 if the result values are - STORE_FLAG_VALUE and zero. */
5893 else if (CONST_INT_P (true_rtx)
5894 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5895 && false_rtx == const0_rtx)
5896 x = simplify_gen_unary (NEG, mode,
5897 simplify_gen_relational (cond_code,
5898 mode, VOIDmode,
5899 cond, cop1),
5900 mode);
5901 else if (CONST_INT_P (false_rtx)
5902 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5903 && true_rtx == const0_rtx
5904 && ((reversed = reversed_comparison_code_parts
5905 (cond_code, cond, cop1, NULL))
5906 != UNKNOWN))
5907 x = simplify_gen_unary (NEG, mode,
5908 simplify_gen_relational (reversed,
5909 mode, VOIDmode,
5910 cond, cop1),
5911 mode);
5912 else
5913 return gen_rtx_IF_THEN_ELSE (mode,
5914 simplify_gen_relational (cond_code,
5915 mode,
5916 VOIDmode,
5917 cond,
5918 cop1),
5919 true_rtx, false_rtx);
5920
5921 code = GET_CODE (x);
5922 op0_mode = VOIDmode;
5923 }
5924 }
5925 }
5926
5927 /* First see if we can apply the inverse distributive law. */
5928 if (code == PLUS || code == MINUS
5929 || code == AND || code == IOR || code == XOR)
5930 {
5931 x = apply_distributive_law (x);
5932 code = GET_CODE (x);
5933 op0_mode = VOIDmode;
5934 }
5935
5936 /* If CODE is an associative operation not otherwise handled, see if we
5937 can associate some operands. This can win if they are constants or
5938 if they are logically related (i.e. (a & b) & a). */
5939 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5940 || code == AND || code == IOR || code == XOR
5941 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5942 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5943 || (flag_associative_math && FLOAT_MODE_P (mode))))
5944 {
5945 if (GET_CODE (XEXP (x, 0)) == code)
5946 {
5947 rtx other = XEXP (XEXP (x, 0), 0);
5948 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5949 rtx inner_op1 = XEXP (x, 1);
5950 rtx inner;
5951
5952 /* Make sure we pass the constant operand if any as the second
5953 one if this is a commutative operation. */
5954 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5955 std::swap (inner_op0, inner_op1);
5956 inner = simplify_binary_operation (code == MINUS ? PLUS
5957 : code == DIV ? MULT
5958 : code,
5959 mode, inner_op0, inner_op1);
5960
5961 /* For commutative operations, try the other pair if that one
5962 didn't simplify. */
5963 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5964 {
5965 other = XEXP (XEXP (x, 0), 1);
5966 inner = simplify_binary_operation (code, mode,
5967 XEXP (XEXP (x, 0), 0),
5968 XEXP (x, 1));
5969 }
5970
5971 if (inner)
5972 return simplify_gen_binary (code, mode, other, inner);
5973 }
5974 }
5975
5976 /* A little bit of algebraic simplification here. */
5977 switch (code)
5978 {
5979 case MEM:
5980 /* Ensure that our address has any ASHIFTs converted to MULT in case
5981 address-recognizing predicates are called later. */
5982 temp = make_compound_operation (XEXP (x, 0), MEM);
5983 SUBST (XEXP (x, 0), temp);
5984 break;
5985
5986 case SUBREG:
5987 if (op0_mode == VOIDmode)
5988 op0_mode = GET_MODE (SUBREG_REG (x));
5989
5990 /* See if this can be moved to simplify_subreg. */
5991 if (CONSTANT_P (SUBREG_REG (x))
5992 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5993 /* Don't call gen_lowpart if the inner mode
5994 is VOIDmode and we cannot simplify it, as SUBREG without
5995 inner mode is invalid. */
5996 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5997 || gen_lowpart_common (mode, SUBREG_REG (x))))
5998 return gen_lowpart (mode, SUBREG_REG (x));
5999
6000 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
6001 break;
6002 {
6003 rtx temp;
6004 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
6005 SUBREG_BYTE (x));
6006 if (temp)
6007 return temp;
6008
6009 /* If op is known to have all lower bits zero, the result is zero. */
6010 scalar_int_mode int_mode, int_op0_mode;
6011 if (!in_dest
6012 && is_a <scalar_int_mode> (mode, &int_mode)
6013 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
6014 && (GET_MODE_PRECISION (int_mode)
6015 < GET_MODE_PRECISION (int_op0_mode))
6016 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6017 SUBREG_BYTE (x))
6018 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6019 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6020 & GET_MODE_MASK (int_mode)) == 0)
6021 && !side_effects_p (SUBREG_REG (x)))
6022 return CONST0_RTX (int_mode);
6023 }
6024
6025 /* Don't change the mode of the MEM if that would change the meaning
6026 of the address. */
6027 if (MEM_P (SUBREG_REG (x))
6028 && (MEM_VOLATILE_P (SUBREG_REG (x))
6029 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6030 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6031 return gen_rtx_CLOBBER (mode, const0_rtx);
6032
6033 /* Note that we cannot do any narrowing for non-constants since
6034 we might have been counting on using the fact that some bits were
6035 zero. We now do this in the SET. */
6036
6037 break;
6038
6039 case NEG:
6040 temp = expand_compound_operation (XEXP (x, 0));
6041
6042 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6043 replaced by (lshiftrt X C). This will convert
6044 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6045
6046 if (GET_CODE (temp) == ASHIFTRT
6047 && CONST_INT_P (XEXP (temp, 1))
6048 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6049 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6050 INTVAL (XEXP (temp, 1)));
6051
6052 /* If X has only a single bit that might be nonzero, say, bit I, convert
6053 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6054 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6055 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6056 or a SUBREG of one since we'd be making the expression more
6057 complex if it was just a register. */
6058
6059 if (!REG_P (temp)
6060 && ! (GET_CODE (temp) == SUBREG
6061 && REG_P (SUBREG_REG (temp)))
6062 && is_a <scalar_int_mode> (mode, &int_mode)
6063 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6064 {
6065 rtx temp1 = simplify_shift_const
6066 (NULL_RTX, ASHIFTRT, int_mode,
6067 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6068 GET_MODE_PRECISION (int_mode) - 1 - i),
6069 GET_MODE_PRECISION (int_mode) - 1 - i);
6070
6071 /* If all we did was surround TEMP with the two shifts, we
6072 haven't improved anything, so don't use it. Otherwise,
6073 we are better off with TEMP1. */
6074 if (GET_CODE (temp1) != ASHIFTRT
6075 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6076 || XEXP (XEXP (temp1, 0), 0) != temp)
6077 return temp1;
6078 }
6079 break;
6080
6081 case TRUNCATE:
6082 /* We can't handle truncation to a partial integer mode here
6083 because we don't know the real bitsize of the partial
6084 integer mode. */
6085 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6086 break;
6087
6088 if (HWI_COMPUTABLE_MODE_P (mode))
6089 SUBST (XEXP (x, 0),
6090 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6091 GET_MODE_MASK (mode), 0));
6092
6093 /* We can truncate a constant value and return it. */
6094 {
6095 poly_int64 c;
6096 if (poly_int_rtx_p (XEXP (x, 0), &c))
6097 return gen_int_mode (c, mode);
6098 }
6099
6100 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6101 whose value is a comparison can be replaced with a subreg if
6102 STORE_FLAG_VALUE permits. */
6103 if (HWI_COMPUTABLE_MODE_P (mode)
6104 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6105 && (temp = get_last_value (XEXP (x, 0)))
6106 && COMPARISON_P (temp))
6107 return gen_lowpart (mode, XEXP (x, 0));
6108 break;
6109
6110 case CONST:
6111 /* (const (const X)) can become (const X). Do it this way rather than
6112 returning the inner CONST since CONST can be shared with a
6113 REG_EQUAL note. */
6114 if (GET_CODE (XEXP (x, 0)) == CONST)
6115 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6116 break;
6117
6118 case LO_SUM:
6119 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6120 can add in an offset. find_split_point will split this address up
6121 again if it doesn't match. */
6122 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6123 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6124 return XEXP (x, 1);
6125 break;
6126
6127 case PLUS:
6128 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6129 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6130 bit-field and can be replaced by either a sign_extend or a
6131 sign_extract. The `and' may be a zero_extend and the two
6132 <c>, -<c> constants may be reversed. */
6133 if (GET_CODE (XEXP (x, 0)) == XOR
6134 && is_a <scalar_int_mode> (mode, &int_mode)
6135 && CONST_INT_P (XEXP (x, 1))
6136 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6137 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6138 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6139 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6140 && HWI_COMPUTABLE_MODE_P (int_mode)
6141 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6142 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6143 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6144 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6145 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6146 && known_eq ((GET_MODE_PRECISION
6147 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6148 (unsigned int) i + 1))))
6149 return simplify_shift_const
6150 (NULL_RTX, ASHIFTRT, int_mode,
6151 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6152 XEXP (XEXP (XEXP (x, 0), 0), 0),
6153 GET_MODE_PRECISION (int_mode) - (i + 1)),
6154 GET_MODE_PRECISION (int_mode) - (i + 1));
6155
6156 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6157 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6158 the bitsize of the mode - 1. This allows simplification of
6159 "a = (b & 8) == 0;" */
6160 if (XEXP (x, 1) == constm1_rtx
6161 && !REG_P (XEXP (x, 0))
6162 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6163 && REG_P (SUBREG_REG (XEXP (x, 0))))
6164 && is_a <scalar_int_mode> (mode, &int_mode)
6165 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6166 return simplify_shift_const
6167 (NULL_RTX, ASHIFTRT, int_mode,
6168 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6169 gen_rtx_XOR (int_mode, XEXP (x, 0),
6170 const1_rtx),
6171 GET_MODE_PRECISION (int_mode) - 1),
6172 GET_MODE_PRECISION (int_mode) - 1);
6173
6174 /* If we are adding two things that have no bits in common, convert
6175 the addition into an IOR. This will often be further simplified,
6176 for example in cases like ((a & 1) + (a & 2)), which can
6177 become a & 3. */
6178
6179 if (HWI_COMPUTABLE_MODE_P (mode)
6180 && (nonzero_bits (XEXP (x, 0), mode)
6181 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6182 {
6183 /* Try to simplify the expression further. */
6184 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6185 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6186
6187 /* If we could, great. If not, do not go ahead with the IOR
6188 replacement, since PLUS appears in many special purpose
6189 address arithmetic instructions. */
6190 if (GET_CODE (temp) != CLOBBER
6191 && (GET_CODE (temp) != IOR
6192 || ((XEXP (temp, 0) != XEXP (x, 0)
6193 || XEXP (temp, 1) != XEXP (x, 1))
6194 && (XEXP (temp, 0) != XEXP (x, 1)
6195 || XEXP (temp, 1) != XEXP (x, 0)))))
6196 return temp;
6197 }
6198
6199 /* Canonicalize x + x into x << 1. */
6200 if (GET_MODE_CLASS (mode) == MODE_INT
6201 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6202 && !side_effects_p (XEXP (x, 0)))
6203 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6204
6205 break;
6206
6207 case MINUS:
6208 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6209 (and <foo> (const_int pow2-1)) */
6210 if (is_a <scalar_int_mode> (mode, &int_mode)
6211 && GET_CODE (XEXP (x, 1)) == AND
6212 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6213 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6214 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6215 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6216 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6217 break;
6218
6219 case MULT:
6220 /* If we have (mult (plus A B) C), apply the distributive law and then
6221 the inverse distributive law to see if things simplify. This
6222 occurs mostly in addresses, often when unrolling loops. */
6223
6224 if (GET_CODE (XEXP (x, 0)) == PLUS)
6225 {
6226 rtx result = distribute_and_simplify_rtx (x, 0);
6227 if (result)
6228 return result;
6229 }
6230
6231 /* Try simplify a*(b/c) as (a*b)/c. */
6232 if (FLOAT_MODE_P (mode) && flag_associative_math
6233 && GET_CODE (XEXP (x, 0)) == DIV)
6234 {
6235 rtx tem = simplify_binary_operation (MULT, mode,
6236 XEXP (XEXP (x, 0), 0),
6237 XEXP (x, 1));
6238 if (tem)
6239 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6240 }
6241 break;
6242
6243 case UDIV:
6244 /* If this is a divide by a power of two, treat it as a shift if
6245 its first operand is a shift. */
6246 if (is_a <scalar_int_mode> (mode, &int_mode)
6247 && CONST_INT_P (XEXP (x, 1))
6248 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6249 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6250 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6251 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6252 || GET_CODE (XEXP (x, 0)) == ROTATE
6253 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6254 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6255 XEXP (x, 0), i);
6256 break;
6257
6258 case EQ: case NE:
6259 case GT: case GTU: case GE: case GEU:
6260 case LT: case LTU: case LE: case LEU:
6261 case UNEQ: case LTGT:
6262 case UNGT: case UNGE:
6263 case UNLT: case UNLE:
6264 case UNORDERED: case ORDERED:
6265 /* If the first operand is a condition code, we can't do anything
6266 with it. */
6267 if (GET_CODE (XEXP (x, 0)) == COMPARE
6268 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6269 && ! CC0_P (XEXP (x, 0))))
6270 {
6271 rtx op0 = XEXP (x, 0);
6272 rtx op1 = XEXP (x, 1);
6273 enum rtx_code new_code;
6274
6275 if (GET_CODE (op0) == COMPARE)
6276 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6277
6278 /* Simplify our comparison, if possible. */
6279 new_code = simplify_comparison (code, &op0, &op1);
6280
6281 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6282 if only the low-order bit is possibly nonzero in X (such as when
6283 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6284 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6285 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6286 (plus X 1).
6287
6288 Remove any ZERO_EXTRACT we made when thinking this was a
6289 comparison. It may now be simpler to use, e.g., an AND. If a
6290 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6291 the call to make_compound_operation in the SET case.
6292
6293 Don't apply these optimizations if the caller would
6294 prefer a comparison rather than a value.
6295 E.g., for the condition in an IF_THEN_ELSE most targets need
6296 an explicit comparison. */
6297
6298 if (in_cond)
6299 ;
6300
6301 else if (STORE_FLAG_VALUE == 1
6302 && new_code == NE
6303 && is_int_mode (mode, &int_mode)
6304 && op1 == const0_rtx
6305 && int_mode == GET_MODE (op0)
6306 && nonzero_bits (op0, int_mode) == 1)
6307 return gen_lowpart (int_mode,
6308 expand_compound_operation (op0));
6309
6310 else if (STORE_FLAG_VALUE == 1
6311 && new_code == NE
6312 && is_int_mode (mode, &int_mode)
6313 && op1 == const0_rtx
6314 && int_mode == GET_MODE (op0)
6315 && (num_sign_bit_copies (op0, int_mode)
6316 == GET_MODE_PRECISION (int_mode)))
6317 {
6318 op0 = expand_compound_operation (op0);
6319 return simplify_gen_unary (NEG, int_mode,
6320 gen_lowpart (int_mode, op0),
6321 int_mode);
6322 }
6323
6324 else if (STORE_FLAG_VALUE == 1
6325 && new_code == EQ
6326 && is_int_mode (mode, &int_mode)
6327 && op1 == const0_rtx
6328 && int_mode == GET_MODE (op0)
6329 && nonzero_bits (op0, int_mode) == 1)
6330 {
6331 op0 = expand_compound_operation (op0);
6332 return simplify_gen_binary (XOR, int_mode,
6333 gen_lowpart (int_mode, op0),
6334 const1_rtx);
6335 }
6336
6337 else if (STORE_FLAG_VALUE == 1
6338 && new_code == EQ
6339 && is_int_mode (mode, &int_mode)
6340 && op1 == const0_rtx
6341 && int_mode == GET_MODE (op0)
6342 && (num_sign_bit_copies (op0, int_mode)
6343 == GET_MODE_PRECISION (int_mode)))
6344 {
6345 op0 = expand_compound_operation (op0);
6346 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6347 }
6348
6349 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6350 those above. */
6351 if (in_cond)
6352 ;
6353
6354 else if (STORE_FLAG_VALUE == -1
6355 && new_code == NE
6356 && is_int_mode (mode, &int_mode)
6357 && op1 == const0_rtx
6358 && int_mode == GET_MODE (op0)
6359 && (num_sign_bit_copies (op0, int_mode)
6360 == GET_MODE_PRECISION (int_mode)))
6361 return gen_lowpart (int_mode, expand_compound_operation (op0));
6362
6363 else if (STORE_FLAG_VALUE == -1
6364 && new_code == NE
6365 && is_int_mode (mode, &int_mode)
6366 && op1 == const0_rtx
6367 && int_mode == GET_MODE (op0)
6368 && nonzero_bits (op0, int_mode) == 1)
6369 {
6370 op0 = expand_compound_operation (op0);
6371 return simplify_gen_unary (NEG, int_mode,
6372 gen_lowpart (int_mode, op0),
6373 int_mode);
6374 }
6375
6376 else if (STORE_FLAG_VALUE == -1
6377 && new_code == EQ
6378 && is_int_mode (mode, &int_mode)
6379 && op1 == const0_rtx
6380 && int_mode == GET_MODE (op0)
6381 && (num_sign_bit_copies (op0, int_mode)
6382 == GET_MODE_PRECISION (int_mode)))
6383 {
6384 op0 = expand_compound_operation (op0);
6385 return simplify_gen_unary (NOT, int_mode,
6386 gen_lowpart (int_mode, op0),
6387 int_mode);
6388 }
6389
6390 /* If X is 0/1, (eq X 0) is X-1. */
6391 else if (STORE_FLAG_VALUE == -1
6392 && new_code == EQ
6393 && is_int_mode (mode, &int_mode)
6394 && op1 == const0_rtx
6395 && int_mode == GET_MODE (op0)
6396 && nonzero_bits (op0, int_mode) == 1)
6397 {
6398 op0 = expand_compound_operation (op0);
6399 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6400 }
6401
6402 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6403 one bit that might be nonzero, we can convert (ne x 0) to
6404 (ashift x c) where C puts the bit in the sign bit. Remove any
6405 AND with STORE_FLAG_VALUE when we are done, since we are only
6406 going to test the sign bit. */
6407 if (new_code == NE
6408 && is_int_mode (mode, &int_mode)
6409 && HWI_COMPUTABLE_MODE_P (int_mode)
6410 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6411 && op1 == const0_rtx
6412 && int_mode == GET_MODE (op0)
6413 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6414 {
6415 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6416 expand_compound_operation (op0),
6417 GET_MODE_PRECISION (int_mode) - 1 - i);
6418 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6419 return XEXP (x, 0);
6420 else
6421 return x;
6422 }
6423
6424 /* If the code changed, return a whole new comparison.
6425 We also need to avoid using SUBST in cases where
6426 simplify_comparison has widened a comparison with a CONST_INT,
6427 since in that case the wider CONST_INT may fail the sanity
6428 checks in do_SUBST. */
6429 if (new_code != code
6430 || (CONST_INT_P (op1)
6431 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6432 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6433 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6434
6435 /* Otherwise, keep this operation, but maybe change its operands.
6436 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6437 SUBST (XEXP (x, 0), op0);
6438 SUBST (XEXP (x, 1), op1);
6439 }
6440 break;
6441
6442 case IF_THEN_ELSE:
6443 return simplify_if_then_else (x);
6444
6445 case ZERO_EXTRACT:
6446 case SIGN_EXTRACT:
6447 case ZERO_EXTEND:
6448 case SIGN_EXTEND:
6449 /* If we are processing SET_DEST, we are done. */
6450 if (in_dest)
6451 return x;
6452
6453 return expand_compound_operation (x);
6454
6455 case SET:
6456 return simplify_set (x);
6457
6458 case AND:
6459 case IOR:
6460 return simplify_logical (x);
6461
6462 case ASHIFT:
6463 case LSHIFTRT:
6464 case ASHIFTRT:
6465 case ROTATE:
6466 case ROTATERT:
6467 /* If this is a shift by a constant amount, simplify it. */
6468 if (CONST_INT_P (XEXP (x, 1)))
6469 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6470 INTVAL (XEXP (x, 1)));
6471
6472 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6473 SUBST (XEXP (x, 1),
6474 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6475 (HOST_WIDE_INT_1U
6476 << exact_log2 (GET_MODE_UNIT_BITSIZE
6477 (GET_MODE (x))))
6478 - 1,
6479 0));
6480 break;
6481
6482 default:
6483 break;
6484 }
6485
6486 return x;
6487 }
6488 \f
6489 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6490
6491 static rtx
6492 simplify_if_then_else (rtx x)
6493 {
6494 machine_mode mode = GET_MODE (x);
6495 rtx cond = XEXP (x, 0);
6496 rtx true_rtx = XEXP (x, 1);
6497 rtx false_rtx = XEXP (x, 2);
6498 enum rtx_code true_code = GET_CODE (cond);
6499 int comparison_p = COMPARISON_P (cond);
6500 rtx temp;
6501 int i;
6502 enum rtx_code false_code;
6503 rtx reversed;
6504 scalar_int_mode int_mode, inner_mode;
6505
6506 /* Simplify storing of the truth value. */
6507 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6508 return simplify_gen_relational (true_code, mode, VOIDmode,
6509 XEXP (cond, 0), XEXP (cond, 1));
6510
6511 /* Also when the truth value has to be reversed. */
6512 if (comparison_p
6513 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6514 && (reversed = reversed_comparison (cond, mode)))
6515 return reversed;
6516
6517 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6518 in it is being compared against certain values. Get the true and false
6519 comparisons and see if that says anything about the value of each arm. */
6520
6521 if (comparison_p
6522 && ((false_code = reversed_comparison_code (cond, NULL))
6523 != UNKNOWN)
6524 && REG_P (XEXP (cond, 0)))
6525 {
6526 HOST_WIDE_INT nzb;
6527 rtx from = XEXP (cond, 0);
6528 rtx true_val = XEXP (cond, 1);
6529 rtx false_val = true_val;
6530 int swapped = 0;
6531
6532 /* If FALSE_CODE is EQ, swap the codes and arms. */
6533
6534 if (false_code == EQ)
6535 {
6536 swapped = 1, true_code = EQ, false_code = NE;
6537 std::swap (true_rtx, false_rtx);
6538 }
6539
6540 scalar_int_mode from_mode;
6541 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6542 {
6543 /* If we are comparing against zero and the expression being
6544 tested has only a single bit that might be nonzero, that is
6545 its value when it is not equal to zero. Similarly if it is
6546 known to be -1 or 0. */
6547 if (true_code == EQ
6548 && true_val == const0_rtx
6549 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6550 {
6551 false_code = EQ;
6552 false_val = gen_int_mode (nzb, from_mode);
6553 }
6554 else if (true_code == EQ
6555 && true_val == const0_rtx
6556 && (num_sign_bit_copies (from, from_mode)
6557 == GET_MODE_PRECISION (from_mode)))
6558 {
6559 false_code = EQ;
6560 false_val = constm1_rtx;
6561 }
6562 }
6563
6564 /* Now simplify an arm if we know the value of the register in the
6565 branch and it is used in the arm. Be careful due to the potential
6566 of locally-shared RTL. */
6567
6568 if (reg_mentioned_p (from, true_rtx))
6569 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6570 from, true_val),
6571 pc_rtx, pc_rtx, 0, 0, 0);
6572 if (reg_mentioned_p (from, false_rtx))
6573 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6574 from, false_val),
6575 pc_rtx, pc_rtx, 0, 0, 0);
6576
6577 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6578 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6579
6580 true_rtx = XEXP (x, 1);
6581 false_rtx = XEXP (x, 2);
6582 true_code = GET_CODE (cond);
6583 }
6584
6585 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6586 reversed, do so to avoid needing two sets of patterns for
6587 subtract-and-branch insns. Similarly if we have a constant in the true
6588 arm, the false arm is the same as the first operand of the comparison, or
6589 the false arm is more complicated than the true arm. */
6590
6591 if (comparison_p
6592 && reversed_comparison_code (cond, NULL) != UNKNOWN
6593 && (true_rtx == pc_rtx
6594 || (CONSTANT_P (true_rtx)
6595 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6596 || true_rtx == const0_rtx
6597 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6598 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6599 && !OBJECT_P (false_rtx))
6600 || reg_mentioned_p (true_rtx, false_rtx)
6601 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6602 {
6603 true_code = reversed_comparison_code (cond, NULL);
6604 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6605 SUBST (XEXP (x, 1), false_rtx);
6606 SUBST (XEXP (x, 2), true_rtx);
6607
6608 std::swap (true_rtx, false_rtx);
6609 cond = XEXP (x, 0);
6610
6611 /* It is possible that the conditional has been simplified out. */
6612 true_code = GET_CODE (cond);
6613 comparison_p = COMPARISON_P (cond);
6614 }
6615
6616 /* If the two arms are identical, we don't need the comparison. */
6617
6618 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6619 return true_rtx;
6620
6621 /* Convert a == b ? b : a to "a". */
6622 if (true_code == EQ && ! side_effects_p (cond)
6623 && !HONOR_NANS (mode)
6624 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6625 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6626 return false_rtx;
6627 else if (true_code == NE && ! side_effects_p (cond)
6628 && !HONOR_NANS (mode)
6629 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6630 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6631 return true_rtx;
6632
6633 /* Look for cases where we have (abs x) or (neg (abs X)). */
6634
6635 if (GET_MODE_CLASS (mode) == MODE_INT
6636 && comparison_p
6637 && XEXP (cond, 1) == const0_rtx
6638 && GET_CODE (false_rtx) == NEG
6639 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6640 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6641 && ! side_effects_p (true_rtx))
6642 switch (true_code)
6643 {
6644 case GT:
6645 case GE:
6646 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6647 case LT:
6648 case LE:
6649 return
6650 simplify_gen_unary (NEG, mode,
6651 simplify_gen_unary (ABS, mode, true_rtx, mode),
6652 mode);
6653 default:
6654 break;
6655 }
6656
6657 /* Look for MIN or MAX. */
6658
6659 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6660 && comparison_p
6661 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6662 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6663 && ! side_effects_p (cond))
6664 switch (true_code)
6665 {
6666 case GE:
6667 case GT:
6668 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6669 case LE:
6670 case LT:
6671 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6672 case GEU:
6673 case GTU:
6674 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6675 case LEU:
6676 case LTU:
6677 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6678 default:
6679 break;
6680 }
6681
6682 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6683 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6684 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6685 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6686 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6687 neither 1 or -1, but it isn't worth checking for. */
6688
6689 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6690 && comparison_p
6691 && is_int_mode (mode, &int_mode)
6692 && ! side_effects_p (x))
6693 {
6694 rtx t = make_compound_operation (true_rtx, SET);
6695 rtx f = make_compound_operation (false_rtx, SET);
6696 rtx cond_op0 = XEXP (cond, 0);
6697 rtx cond_op1 = XEXP (cond, 1);
6698 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6699 scalar_int_mode m = int_mode;
6700 rtx z = 0, c1 = NULL_RTX;
6701
6702 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6703 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6704 || GET_CODE (t) == ASHIFT
6705 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6706 && rtx_equal_p (XEXP (t, 0), f))
6707 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6708
6709 /* If an identity-zero op is commutative, check whether there
6710 would be a match if we swapped the operands. */
6711 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6712 || GET_CODE (t) == XOR)
6713 && rtx_equal_p (XEXP (t, 1), f))
6714 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6715 else if (GET_CODE (t) == SIGN_EXTEND
6716 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6717 && (GET_CODE (XEXP (t, 0)) == PLUS
6718 || GET_CODE (XEXP (t, 0)) == MINUS
6719 || GET_CODE (XEXP (t, 0)) == IOR
6720 || GET_CODE (XEXP (t, 0)) == XOR
6721 || GET_CODE (XEXP (t, 0)) == ASHIFT
6722 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6723 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6724 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6725 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6726 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6727 && (num_sign_bit_copies (f, GET_MODE (f))
6728 > (unsigned int)
6729 (GET_MODE_PRECISION (int_mode)
6730 - GET_MODE_PRECISION (inner_mode))))
6731 {
6732 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6733 extend_op = SIGN_EXTEND;
6734 m = inner_mode;
6735 }
6736 else if (GET_CODE (t) == SIGN_EXTEND
6737 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6738 && (GET_CODE (XEXP (t, 0)) == PLUS
6739 || GET_CODE (XEXP (t, 0)) == IOR
6740 || GET_CODE (XEXP (t, 0)) == XOR)
6741 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6742 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6743 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6744 && (num_sign_bit_copies (f, GET_MODE (f))
6745 > (unsigned int)
6746 (GET_MODE_PRECISION (int_mode)
6747 - GET_MODE_PRECISION (inner_mode))))
6748 {
6749 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6750 extend_op = SIGN_EXTEND;
6751 m = inner_mode;
6752 }
6753 else if (GET_CODE (t) == ZERO_EXTEND
6754 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6755 && (GET_CODE (XEXP (t, 0)) == PLUS
6756 || GET_CODE (XEXP (t, 0)) == MINUS
6757 || GET_CODE (XEXP (t, 0)) == IOR
6758 || GET_CODE (XEXP (t, 0)) == XOR
6759 || GET_CODE (XEXP (t, 0)) == ASHIFT
6760 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6761 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6762 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6763 && HWI_COMPUTABLE_MODE_P (int_mode)
6764 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6765 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6766 && ((nonzero_bits (f, GET_MODE (f))
6767 & ~GET_MODE_MASK (inner_mode))
6768 == 0))
6769 {
6770 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6771 extend_op = ZERO_EXTEND;
6772 m = inner_mode;
6773 }
6774 else if (GET_CODE (t) == ZERO_EXTEND
6775 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6776 && (GET_CODE (XEXP (t, 0)) == PLUS
6777 || GET_CODE (XEXP (t, 0)) == IOR
6778 || GET_CODE (XEXP (t, 0)) == XOR)
6779 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6780 && HWI_COMPUTABLE_MODE_P (int_mode)
6781 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6782 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6783 && ((nonzero_bits (f, GET_MODE (f))
6784 & ~GET_MODE_MASK (inner_mode))
6785 == 0))
6786 {
6787 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6788 extend_op = ZERO_EXTEND;
6789 m = inner_mode;
6790 }
6791
6792 if (z)
6793 {
6794 machine_mode cm = m;
6795 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6796 && GET_MODE (c1) != VOIDmode)
6797 cm = GET_MODE (c1);
6798 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6799 cond_op0, cond_op1),
6800 pc_rtx, pc_rtx, 0, 0, 0);
6801 temp = simplify_gen_binary (MULT, cm, temp,
6802 simplify_gen_binary (MULT, cm, c1,
6803 const_true_rtx));
6804 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6805 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6806
6807 if (extend_op != UNKNOWN)
6808 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6809
6810 return temp;
6811 }
6812 }
6813
6814 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6815 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6816 negation of a single bit, we can convert this operation to a shift. We
6817 can actually do this more generally, but it doesn't seem worth it. */
6818
6819 if (true_code == NE
6820 && is_a <scalar_int_mode> (mode, &int_mode)
6821 && XEXP (cond, 1) == const0_rtx
6822 && false_rtx == const0_rtx
6823 && CONST_INT_P (true_rtx)
6824 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6825 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6826 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6827 == GET_MODE_PRECISION (int_mode))
6828 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6829 return
6830 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6831 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6832
6833 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6834 non-zero bit in A is C1. */
6835 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6836 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6837 && is_a <scalar_int_mode> (mode, &int_mode)
6838 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6839 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6840 == nonzero_bits (XEXP (cond, 0), inner_mode)
6841 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6842 {
6843 rtx val = XEXP (cond, 0);
6844 if (inner_mode == int_mode)
6845 return val;
6846 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6847 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6848 }
6849
6850 return x;
6851 }
6852 \f
6853 /* Simplify X, a SET expression. Return the new expression. */
6854
6855 static rtx
6856 simplify_set (rtx x)
6857 {
6858 rtx src = SET_SRC (x);
6859 rtx dest = SET_DEST (x);
6860 machine_mode mode
6861 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6862 rtx_insn *other_insn;
6863 rtx *cc_use;
6864 scalar_int_mode int_mode;
6865
6866 /* (set (pc) (return)) gets written as (return). */
6867 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6868 return src;
6869
6870 /* Now that we know for sure which bits of SRC we are using, see if we can
6871 simplify the expression for the object knowing that we only need the
6872 low-order bits. */
6873
6874 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6875 {
6876 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6877 SUBST (SET_SRC (x), src);
6878 }
6879
6880 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6881 the comparison result and try to simplify it unless we already have used
6882 undobuf.other_insn. */
6883 if ((GET_MODE_CLASS (mode) == MODE_CC
6884 || GET_CODE (src) == COMPARE
6885 || CC0_P (dest))
6886 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6887 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6888 && COMPARISON_P (*cc_use)
6889 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6890 {
6891 enum rtx_code old_code = GET_CODE (*cc_use);
6892 enum rtx_code new_code;
6893 rtx op0, op1, tmp;
6894 int other_changed = 0;
6895 rtx inner_compare = NULL_RTX;
6896 machine_mode compare_mode = GET_MODE (dest);
6897
6898 if (GET_CODE (src) == COMPARE)
6899 {
6900 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6901 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6902 {
6903 inner_compare = op0;
6904 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6905 }
6906 }
6907 else
6908 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6909
6910 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6911 op0, op1);
6912 if (!tmp)
6913 new_code = old_code;
6914 else if (!CONSTANT_P (tmp))
6915 {
6916 new_code = GET_CODE (tmp);
6917 op0 = XEXP (tmp, 0);
6918 op1 = XEXP (tmp, 1);
6919 }
6920 else
6921 {
6922 rtx pat = PATTERN (other_insn);
6923 undobuf.other_insn = other_insn;
6924 SUBST (*cc_use, tmp);
6925
6926 /* Attempt to simplify CC user. */
6927 if (GET_CODE (pat) == SET)
6928 {
6929 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6930 if (new_rtx != NULL_RTX)
6931 SUBST (SET_SRC (pat), new_rtx);
6932 }
6933
6934 /* Convert X into a no-op move. */
6935 SUBST (SET_DEST (x), pc_rtx);
6936 SUBST (SET_SRC (x), pc_rtx);
6937 return x;
6938 }
6939
6940 /* Simplify our comparison, if possible. */
6941 new_code = simplify_comparison (new_code, &op0, &op1);
6942
6943 #ifdef SELECT_CC_MODE
6944 /* If this machine has CC modes other than CCmode, check to see if we
6945 need to use a different CC mode here. */
6946 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6947 compare_mode = GET_MODE (op0);
6948 else if (inner_compare
6949 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6950 && new_code == old_code
6951 && op0 == XEXP (inner_compare, 0)
6952 && op1 == XEXP (inner_compare, 1))
6953 compare_mode = GET_MODE (inner_compare);
6954 else
6955 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6956
6957 /* If the mode changed, we have to change SET_DEST, the mode in the
6958 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6959 a hard register, just build new versions with the proper mode. If it
6960 is a pseudo, we lose unless it is only time we set the pseudo, in
6961 which case we can safely change its mode. */
6962 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6963 {
6964 if (can_change_dest_mode (dest, 0, compare_mode))
6965 {
6966 unsigned int regno = REGNO (dest);
6967 rtx new_dest;
6968
6969 if (regno < FIRST_PSEUDO_REGISTER)
6970 new_dest = gen_rtx_REG (compare_mode, regno);
6971 else
6972 {
6973 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6974 new_dest = regno_reg_rtx[regno];
6975 }
6976
6977 SUBST (SET_DEST (x), new_dest);
6978 SUBST (XEXP (*cc_use, 0), new_dest);
6979 other_changed = 1;
6980
6981 dest = new_dest;
6982 }
6983 }
6984 #endif /* SELECT_CC_MODE */
6985
6986 /* If the code changed, we have to build a new comparison in
6987 undobuf.other_insn. */
6988 if (new_code != old_code)
6989 {
6990 int other_changed_previously = other_changed;
6991 unsigned HOST_WIDE_INT mask;
6992 rtx old_cc_use = *cc_use;
6993
6994 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6995 dest, const0_rtx));
6996 other_changed = 1;
6997
6998 /* If the only change we made was to change an EQ into an NE or
6999 vice versa, OP0 has only one bit that might be nonzero, and OP1
7000 is zero, check if changing the user of the condition code will
7001 produce a valid insn. If it won't, we can keep the original code
7002 in that insn by surrounding our operation with an XOR. */
7003
7004 if (((old_code == NE && new_code == EQ)
7005 || (old_code == EQ && new_code == NE))
7006 && ! other_changed_previously && op1 == const0_rtx
7007 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
7008 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
7009 {
7010 rtx pat = PATTERN (other_insn), note = 0;
7011
7012 if ((recog_for_combine (&pat, other_insn, &note) < 0
7013 && ! check_asm_operands (pat)))
7014 {
7015 *cc_use = old_cc_use;
7016 other_changed = 0;
7017
7018 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7019 gen_int_mode (mask,
7020 GET_MODE (op0)));
7021 }
7022 }
7023 }
7024
7025 if (other_changed)
7026 undobuf.other_insn = other_insn;
7027
7028 /* Don't generate a compare of a CC with 0, just use that CC. */
7029 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7030 {
7031 SUBST (SET_SRC (x), op0);
7032 src = SET_SRC (x);
7033 }
7034 /* Otherwise, if we didn't previously have the same COMPARE we
7035 want, create it from scratch. */
7036 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7037 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7038 {
7039 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7040 src = SET_SRC (x);
7041 }
7042 }
7043 else
7044 {
7045 /* Get SET_SRC in a form where we have placed back any
7046 compound expressions. Then do the checks below. */
7047 src = make_compound_operation (src, SET);
7048 SUBST (SET_SRC (x), src);
7049 }
7050
7051 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7052 and X being a REG or (subreg (reg)), we may be able to convert this to
7053 (set (subreg:m2 x) (op)).
7054
7055 We can always do this if M1 is narrower than M2 because that means that
7056 we only care about the low bits of the result.
7057
7058 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7059 perform a narrower operation than requested since the high-order bits will
7060 be undefined. On machine where it is defined, this transformation is safe
7061 as long as M1 and M2 have the same number of words. */
7062
7063 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7064 && !OBJECT_P (SUBREG_REG (src))
7065 && (known_equal_after_align_up
7066 (GET_MODE_SIZE (GET_MODE (src)),
7067 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7068 UNITS_PER_WORD))
7069 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7070 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7071 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7072 GET_MODE (SUBREG_REG (src)),
7073 GET_MODE (src)))
7074 && (REG_P (dest)
7075 || (GET_CODE (dest) == SUBREG
7076 && REG_P (SUBREG_REG (dest)))))
7077 {
7078 SUBST (SET_DEST (x),
7079 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7080 dest));
7081 SUBST (SET_SRC (x), SUBREG_REG (src));
7082
7083 src = SET_SRC (x), dest = SET_DEST (x);
7084 }
7085
7086 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7087 in SRC. */
7088 if (dest == cc0_rtx
7089 && partial_subreg_p (src)
7090 && subreg_lowpart_p (src))
7091 {
7092 rtx inner = SUBREG_REG (src);
7093 machine_mode inner_mode = GET_MODE (inner);
7094
7095 /* Here we make sure that we don't have a sign bit on. */
7096 if (val_signbit_known_clear_p (GET_MODE (src),
7097 nonzero_bits (inner, inner_mode)))
7098 {
7099 SUBST (SET_SRC (x), inner);
7100 src = SET_SRC (x);
7101 }
7102 }
7103
7104 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7105 would require a paradoxical subreg. Replace the subreg with a
7106 zero_extend to avoid the reload that would otherwise be required.
7107 Don't do this unless we have a scalar integer mode, otherwise the
7108 transformation is incorrect. */
7109
7110 enum rtx_code extend_op;
7111 if (paradoxical_subreg_p (src)
7112 && MEM_P (SUBREG_REG (src))
7113 && SCALAR_INT_MODE_P (GET_MODE (src))
7114 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7115 {
7116 SUBST (SET_SRC (x),
7117 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7118
7119 src = SET_SRC (x);
7120 }
7121
7122 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7123 are comparing an item known to be 0 or -1 against 0, use a logical
7124 operation instead. Check for one of the arms being an IOR of the other
7125 arm with some value. We compute three terms to be IOR'ed together. In
7126 practice, at most two will be nonzero. Then we do the IOR's. */
7127
7128 if (GET_CODE (dest) != PC
7129 && GET_CODE (src) == IF_THEN_ELSE
7130 && is_int_mode (GET_MODE (src), &int_mode)
7131 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7132 && XEXP (XEXP (src, 0), 1) == const0_rtx
7133 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7134 && (!HAVE_conditional_move
7135 || ! can_conditionally_move_p (int_mode))
7136 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7137 == GET_MODE_PRECISION (int_mode))
7138 && ! side_effects_p (src))
7139 {
7140 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7141 ? XEXP (src, 1) : XEXP (src, 2));
7142 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7143 ? XEXP (src, 2) : XEXP (src, 1));
7144 rtx term1 = const0_rtx, term2, term3;
7145
7146 if (GET_CODE (true_rtx) == IOR
7147 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7148 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7149 else if (GET_CODE (true_rtx) == IOR
7150 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7151 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7152 else if (GET_CODE (false_rtx) == IOR
7153 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7154 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7155 else if (GET_CODE (false_rtx) == IOR
7156 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7157 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7158
7159 term2 = simplify_gen_binary (AND, int_mode,
7160 XEXP (XEXP (src, 0), 0), true_rtx);
7161 term3 = simplify_gen_binary (AND, int_mode,
7162 simplify_gen_unary (NOT, int_mode,
7163 XEXP (XEXP (src, 0), 0),
7164 int_mode),
7165 false_rtx);
7166
7167 SUBST (SET_SRC (x),
7168 simplify_gen_binary (IOR, int_mode,
7169 simplify_gen_binary (IOR, int_mode,
7170 term1, term2),
7171 term3));
7172
7173 src = SET_SRC (x);
7174 }
7175
7176 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7177 whole thing fail. */
7178 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7179 return src;
7180 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7181 return dest;
7182 else
7183 /* Convert this into a field assignment operation, if possible. */
7184 return make_field_assignment (x);
7185 }
7186 \f
7187 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7188 result. */
7189
7190 static rtx
7191 simplify_logical (rtx x)
7192 {
7193 rtx op0 = XEXP (x, 0);
7194 rtx op1 = XEXP (x, 1);
7195 scalar_int_mode mode;
7196
7197 switch (GET_CODE (x))
7198 {
7199 case AND:
7200 /* We can call simplify_and_const_int only if we don't lose
7201 any (sign) bits when converting INTVAL (op1) to
7202 "unsigned HOST_WIDE_INT". */
7203 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7204 && CONST_INT_P (op1)
7205 && (HWI_COMPUTABLE_MODE_P (mode)
7206 || INTVAL (op1) > 0))
7207 {
7208 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7209 if (GET_CODE (x) != AND)
7210 return x;
7211
7212 op0 = XEXP (x, 0);
7213 op1 = XEXP (x, 1);
7214 }
7215
7216 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7217 apply the distributive law and then the inverse distributive
7218 law to see if things simplify. */
7219 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7220 {
7221 rtx result = distribute_and_simplify_rtx (x, 0);
7222 if (result)
7223 return result;
7224 }
7225 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7226 {
7227 rtx result = distribute_and_simplify_rtx (x, 1);
7228 if (result)
7229 return result;
7230 }
7231 break;
7232
7233 case IOR:
7234 /* If we have (ior (and A B) C), apply the distributive law and then
7235 the inverse distributive law to see if things simplify. */
7236
7237 if (GET_CODE (op0) == AND)
7238 {
7239 rtx result = distribute_and_simplify_rtx (x, 0);
7240 if (result)
7241 return result;
7242 }
7243
7244 if (GET_CODE (op1) == AND)
7245 {
7246 rtx result = distribute_and_simplify_rtx (x, 1);
7247 if (result)
7248 return result;
7249 }
7250 break;
7251
7252 default:
7253 gcc_unreachable ();
7254 }
7255
7256 return x;
7257 }
7258 \f
7259 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7260 operations" because they can be replaced with two more basic operations.
7261 ZERO_EXTEND is also considered "compound" because it can be replaced with
7262 an AND operation, which is simpler, though only one operation.
7263
7264 The function expand_compound_operation is called with an rtx expression
7265 and will convert it to the appropriate shifts and AND operations,
7266 simplifying at each stage.
7267
7268 The function make_compound_operation is called to convert an expression
7269 consisting of shifts and ANDs into the equivalent compound expression.
7270 It is the inverse of this function, loosely speaking. */
7271
7272 static rtx
7273 expand_compound_operation (rtx x)
7274 {
7275 unsigned HOST_WIDE_INT pos = 0, len;
7276 int unsignedp = 0;
7277 unsigned int modewidth;
7278 rtx tem;
7279 scalar_int_mode inner_mode;
7280
7281 switch (GET_CODE (x))
7282 {
7283 case ZERO_EXTEND:
7284 unsignedp = 1;
7285 /* FALLTHRU */
7286 case SIGN_EXTEND:
7287 /* We can't necessarily use a const_int for a multiword mode;
7288 it depends on implicitly extending the value.
7289 Since we don't know the right way to extend it,
7290 we can't tell whether the implicit way is right.
7291
7292 Even for a mode that is no wider than a const_int,
7293 we can't win, because we need to sign extend one of its bits through
7294 the rest of it, and we don't know which bit. */
7295 if (CONST_INT_P (XEXP (x, 0)))
7296 return x;
7297
7298 /* Reject modes that aren't scalar integers because turning vector
7299 or complex modes into shifts causes problems. */
7300 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7301 return x;
7302
7303 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7304 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7305 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7306 reloaded. If not for that, MEM's would very rarely be safe.
7307
7308 Reject modes bigger than a word, because we might not be able
7309 to reference a two-register group starting with an arbitrary register
7310 (and currently gen_lowpart might crash for a SUBREG). */
7311
7312 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7313 return x;
7314
7315 len = GET_MODE_PRECISION (inner_mode);
7316 /* If the inner object has VOIDmode (the only way this can happen
7317 is if it is an ASM_OPERANDS), we can't do anything since we don't
7318 know how much masking to do. */
7319 if (len == 0)
7320 return x;
7321
7322 break;
7323
7324 case ZERO_EXTRACT:
7325 unsignedp = 1;
7326
7327 /* fall through */
7328
7329 case SIGN_EXTRACT:
7330 /* If the operand is a CLOBBER, just return it. */
7331 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7332 return XEXP (x, 0);
7333
7334 if (!CONST_INT_P (XEXP (x, 1))
7335 || !CONST_INT_P (XEXP (x, 2)))
7336 return x;
7337
7338 /* Reject modes that aren't scalar integers because turning vector
7339 or complex modes into shifts causes problems. */
7340 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7341 return x;
7342
7343 len = INTVAL (XEXP (x, 1));
7344 pos = INTVAL (XEXP (x, 2));
7345
7346 /* This should stay within the object being extracted, fail otherwise. */
7347 if (len + pos > GET_MODE_PRECISION (inner_mode))
7348 return x;
7349
7350 if (BITS_BIG_ENDIAN)
7351 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7352
7353 break;
7354
7355 default:
7356 return x;
7357 }
7358
7359 /* We've rejected non-scalar operations by now. */
7360 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7361
7362 /* Convert sign extension to zero extension, if we know that the high
7363 bit is not set, as this is easier to optimize. It will be converted
7364 back to cheaper alternative in make_extraction. */
7365 if (GET_CODE (x) == SIGN_EXTEND
7366 && HWI_COMPUTABLE_MODE_P (mode)
7367 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7368 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7369 == 0))
7370 {
7371 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7372 rtx temp2 = expand_compound_operation (temp);
7373
7374 /* Make sure this is a profitable operation. */
7375 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7376 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7377 return temp2;
7378 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7379 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7380 return temp;
7381 else
7382 return x;
7383 }
7384
7385 /* We can optimize some special cases of ZERO_EXTEND. */
7386 if (GET_CODE (x) == ZERO_EXTEND)
7387 {
7388 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7389 know that the last value didn't have any inappropriate bits
7390 set. */
7391 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7392 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7393 && HWI_COMPUTABLE_MODE_P (mode)
7394 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7395 & ~GET_MODE_MASK (inner_mode)) == 0)
7396 return XEXP (XEXP (x, 0), 0);
7397
7398 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7399 if (GET_CODE (XEXP (x, 0)) == SUBREG
7400 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7401 && subreg_lowpart_p (XEXP (x, 0))
7402 && HWI_COMPUTABLE_MODE_P (mode)
7403 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7404 & ~GET_MODE_MASK (inner_mode)) == 0)
7405 return SUBREG_REG (XEXP (x, 0));
7406
7407 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7408 is a comparison and STORE_FLAG_VALUE permits. This is like
7409 the first case, but it works even when MODE is larger
7410 than HOST_WIDE_INT. */
7411 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7412 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7413 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7414 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7415 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7416 return XEXP (XEXP (x, 0), 0);
7417
7418 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7419 if (GET_CODE (XEXP (x, 0)) == SUBREG
7420 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7421 && subreg_lowpart_p (XEXP (x, 0))
7422 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7423 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7424 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7425 return SUBREG_REG (XEXP (x, 0));
7426
7427 }
7428
7429 /* If we reach here, we want to return a pair of shifts. The inner
7430 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7431 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7432 logical depending on the value of UNSIGNEDP.
7433
7434 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7435 converted into an AND of a shift.
7436
7437 We must check for the case where the left shift would have a negative
7438 count. This can happen in a case like (x >> 31) & 255 on machines
7439 that can't shift by a constant. On those machines, we would first
7440 combine the shift with the AND to produce a variable-position
7441 extraction. Then the constant of 31 would be substituted in
7442 to produce such a position. */
7443
7444 modewidth = GET_MODE_PRECISION (mode);
7445 if (modewidth >= pos + len)
7446 {
7447 tem = gen_lowpart (mode, XEXP (x, 0));
7448 if (!tem || GET_CODE (tem) == CLOBBER)
7449 return x;
7450 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7451 tem, modewidth - pos - len);
7452 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7453 mode, tem, modewidth - len);
7454 }
7455 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7456 tem = simplify_and_const_int (NULL_RTX, mode,
7457 simplify_shift_const (NULL_RTX, LSHIFTRT,
7458 mode, XEXP (x, 0),
7459 pos),
7460 (HOST_WIDE_INT_1U << len) - 1);
7461 else
7462 /* Any other cases we can't handle. */
7463 return x;
7464
7465 /* If we couldn't do this for some reason, return the original
7466 expression. */
7467 if (GET_CODE (tem) == CLOBBER)
7468 return x;
7469
7470 return tem;
7471 }
7472 \f
7473 /* X is a SET which contains an assignment of one object into
7474 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7475 or certain SUBREGS). If possible, convert it into a series of
7476 logical operations.
7477
7478 We half-heartedly support variable positions, but do not at all
7479 support variable lengths. */
7480
7481 static const_rtx
7482 expand_field_assignment (const_rtx x)
7483 {
7484 rtx inner;
7485 rtx pos; /* Always counts from low bit. */
7486 int len, inner_len;
7487 rtx mask, cleared, masked;
7488 scalar_int_mode compute_mode;
7489
7490 /* Loop until we find something we can't simplify. */
7491 while (1)
7492 {
7493 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7494 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7495 {
7496 rtx x0 = XEXP (SET_DEST (x), 0);
7497 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7498 break;
7499 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7500 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7501 MAX_MODE_INT);
7502 }
7503 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7504 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7505 {
7506 inner = XEXP (SET_DEST (x), 0);
7507 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7508 break;
7509
7510 len = INTVAL (XEXP (SET_DEST (x), 1));
7511 pos = XEXP (SET_DEST (x), 2);
7512
7513 /* A constant position should stay within the width of INNER. */
7514 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7515 break;
7516
7517 if (BITS_BIG_ENDIAN)
7518 {
7519 if (CONST_INT_P (pos))
7520 pos = GEN_INT (inner_len - len - INTVAL (pos));
7521 else if (GET_CODE (pos) == MINUS
7522 && CONST_INT_P (XEXP (pos, 1))
7523 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7524 /* If position is ADJUST - X, new position is X. */
7525 pos = XEXP (pos, 0);
7526 else
7527 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7528 gen_int_mode (inner_len - len,
7529 GET_MODE (pos)),
7530 pos);
7531 }
7532 }
7533
7534 /* If the destination is a subreg that overwrites the whole of the inner
7535 register, we can move the subreg to the source. */
7536 else if (GET_CODE (SET_DEST (x)) == SUBREG
7537 /* We need SUBREGs to compute nonzero_bits properly. */
7538 && nonzero_sign_valid
7539 && !read_modify_subreg_p (SET_DEST (x)))
7540 {
7541 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7542 gen_lowpart
7543 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7544 SET_SRC (x)));
7545 continue;
7546 }
7547 else
7548 break;
7549
7550 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7551 inner = SUBREG_REG (inner);
7552
7553 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7554 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7555 {
7556 /* Don't do anything for vector or complex integral types. */
7557 if (! FLOAT_MODE_P (GET_MODE (inner)))
7558 break;
7559
7560 /* Try to find an integral mode to pun with. */
7561 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7562 .exists (&compute_mode))
7563 break;
7564
7565 inner = gen_lowpart (compute_mode, inner);
7566 }
7567
7568 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7569 if (len >= HOST_BITS_PER_WIDE_INT)
7570 break;
7571
7572 /* Don't try to compute in too wide unsupported modes. */
7573 if (!targetm.scalar_mode_supported_p (compute_mode))
7574 break;
7575
7576 /* Now compute the equivalent expression. Make a copy of INNER
7577 for the SET_DEST in case it is a MEM into which we will substitute;
7578 we don't want shared RTL in that case. */
7579 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7580 compute_mode);
7581 cleared = simplify_gen_binary (AND, compute_mode,
7582 simplify_gen_unary (NOT, compute_mode,
7583 simplify_gen_binary (ASHIFT,
7584 compute_mode,
7585 mask, pos),
7586 compute_mode),
7587 inner);
7588 masked = simplify_gen_binary (ASHIFT, compute_mode,
7589 simplify_gen_binary (
7590 AND, compute_mode,
7591 gen_lowpart (compute_mode, SET_SRC (x)),
7592 mask),
7593 pos);
7594
7595 x = gen_rtx_SET (copy_rtx (inner),
7596 simplify_gen_binary (IOR, compute_mode,
7597 cleared, masked));
7598 }
7599
7600 return x;
7601 }
7602 \f
7603 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7604 it is an RTX that represents the (variable) starting position; otherwise,
7605 POS is the (constant) starting bit position. Both are counted from the LSB.
7606
7607 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7608
7609 IN_DEST is nonzero if this is a reference in the destination of a SET.
7610 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7611 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7612 be used.
7613
7614 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7615 ZERO_EXTRACT should be built even for bits starting at bit 0.
7616
7617 MODE is the desired mode of the result (if IN_DEST == 0).
7618
7619 The result is an RTX for the extraction or NULL_RTX if the target
7620 can't handle it. */
7621
7622 static rtx
7623 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7624 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7625 int in_dest, int in_compare)
7626 {
7627 /* This mode describes the size of the storage area
7628 to fetch the overall value from. Within that, we
7629 ignore the POS lowest bits, etc. */
7630 machine_mode is_mode = GET_MODE (inner);
7631 machine_mode inner_mode;
7632 scalar_int_mode wanted_inner_mode;
7633 scalar_int_mode wanted_inner_reg_mode = word_mode;
7634 scalar_int_mode pos_mode = word_mode;
7635 machine_mode extraction_mode = word_mode;
7636 rtx new_rtx = 0;
7637 rtx orig_pos_rtx = pos_rtx;
7638 HOST_WIDE_INT orig_pos;
7639
7640 if (pos_rtx && CONST_INT_P (pos_rtx))
7641 pos = INTVAL (pos_rtx), pos_rtx = 0;
7642
7643 if (GET_CODE (inner) == SUBREG
7644 && subreg_lowpart_p (inner)
7645 && (paradoxical_subreg_p (inner)
7646 /* If trying or potentionally trying to extract
7647 bits outside of is_mode, don't look through
7648 non-paradoxical SUBREGs. See PR82192. */
7649 || (pos_rtx == NULL_RTX
7650 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7651 {
7652 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7653 consider just the QI as the memory to extract from.
7654 The subreg adds or removes high bits; its mode is
7655 irrelevant to the meaning of this extraction,
7656 since POS and LEN count from the lsb. */
7657 if (MEM_P (SUBREG_REG (inner)))
7658 is_mode = GET_MODE (SUBREG_REG (inner));
7659 inner = SUBREG_REG (inner);
7660 }
7661 else if (GET_CODE (inner) == ASHIFT
7662 && CONST_INT_P (XEXP (inner, 1))
7663 && pos_rtx == 0 && pos == 0
7664 && len > UINTVAL (XEXP (inner, 1)))
7665 {
7666 /* We're extracting the least significant bits of an rtx
7667 (ashift X (const_int C)), where LEN > C. Extract the
7668 least significant (LEN - C) bits of X, giving an rtx
7669 whose mode is MODE, then shift it left C times. */
7670 new_rtx = make_extraction (mode, XEXP (inner, 0),
7671 0, 0, len - INTVAL (XEXP (inner, 1)),
7672 unsignedp, in_dest, in_compare);
7673 if (new_rtx != 0)
7674 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7675 }
7676 else if (GET_CODE (inner) == TRUNCATE
7677 /* If trying or potentionally trying to extract
7678 bits outside of is_mode, don't look through
7679 TRUNCATE. See PR82192. */
7680 && pos_rtx == NULL_RTX
7681 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7682 inner = XEXP (inner, 0);
7683
7684 inner_mode = GET_MODE (inner);
7685
7686 /* See if this can be done without an extraction. We never can if the
7687 width of the field is not the same as that of some integer mode. For
7688 registers, we can only avoid the extraction if the position is at the
7689 low-order bit and this is either not in the destination or we have the
7690 appropriate STRICT_LOW_PART operation available.
7691
7692 For MEM, we can avoid an extract if the field starts on an appropriate
7693 boundary and we can change the mode of the memory reference. */
7694
7695 scalar_int_mode tmode;
7696 if (int_mode_for_size (len, 1).exists (&tmode)
7697 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7698 && !MEM_P (inner)
7699 && (pos == 0 || REG_P (inner))
7700 && (inner_mode == tmode
7701 || !REG_P (inner)
7702 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7703 || reg_truncated_to_mode (tmode, inner))
7704 && (! in_dest
7705 || (REG_P (inner)
7706 && have_insn_for (STRICT_LOW_PART, tmode))))
7707 || (MEM_P (inner) && pos_rtx == 0
7708 && (pos
7709 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7710 : BITS_PER_UNIT)) == 0
7711 /* We can't do this if we are widening INNER_MODE (it
7712 may not be aligned, for one thing). */
7713 && !paradoxical_subreg_p (tmode, inner_mode)
7714 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7715 && (inner_mode == tmode
7716 || (! mode_dependent_address_p (XEXP (inner, 0),
7717 MEM_ADDR_SPACE (inner))
7718 && ! MEM_VOLATILE_P (inner))))))
7719 {
7720 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7721 field. If the original and current mode are the same, we need not
7722 adjust the offset. Otherwise, we do if bytes big endian.
7723
7724 If INNER is not a MEM, get a piece consisting of just the field
7725 of interest (in this case POS % BITS_PER_WORD must be 0). */
7726
7727 if (MEM_P (inner))
7728 {
7729 poly_int64 offset;
7730
7731 /* POS counts from lsb, but make OFFSET count in memory order. */
7732 if (BYTES_BIG_ENDIAN)
7733 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7734 - len - pos);
7735 else
7736 offset = pos / BITS_PER_UNIT;
7737
7738 new_rtx = adjust_address_nv (inner, tmode, offset);
7739 }
7740 else if (REG_P (inner))
7741 {
7742 if (tmode != inner_mode)
7743 {
7744 /* We can't call gen_lowpart in a DEST since we
7745 always want a SUBREG (see below) and it would sometimes
7746 return a new hard register. */
7747 if (pos || in_dest)
7748 {
7749 poly_uint64 offset
7750 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7751
7752 /* Avoid creating invalid subregs, for example when
7753 simplifying (x>>32)&255. */
7754 if (!validate_subreg (tmode, inner_mode, inner, offset))
7755 return NULL_RTX;
7756
7757 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7758 }
7759 else
7760 new_rtx = gen_lowpart (tmode, inner);
7761 }
7762 else
7763 new_rtx = inner;
7764 }
7765 else
7766 new_rtx = force_to_mode (inner, tmode,
7767 len >= HOST_BITS_PER_WIDE_INT
7768 ? HOST_WIDE_INT_M1U
7769 : (HOST_WIDE_INT_1U << len) - 1, 0);
7770
7771 /* If this extraction is going into the destination of a SET,
7772 make a STRICT_LOW_PART unless we made a MEM. */
7773
7774 if (in_dest)
7775 return (MEM_P (new_rtx) ? new_rtx
7776 : (GET_CODE (new_rtx) != SUBREG
7777 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7778 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7779
7780 if (mode == tmode)
7781 return new_rtx;
7782
7783 if (CONST_SCALAR_INT_P (new_rtx))
7784 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7785 mode, new_rtx, tmode);
7786
7787 /* If we know that no extraneous bits are set, and that the high
7788 bit is not set, convert the extraction to the cheaper of
7789 sign and zero extension, that are equivalent in these cases. */
7790 if (flag_expensive_optimizations
7791 && (HWI_COMPUTABLE_MODE_P (tmode)
7792 && ((nonzero_bits (new_rtx, tmode)
7793 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7794 == 0)))
7795 {
7796 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7797 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7798
7799 /* Prefer ZERO_EXTENSION, since it gives more information to
7800 backends. */
7801 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7802 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7803 return temp;
7804 return temp1;
7805 }
7806
7807 /* Otherwise, sign- or zero-extend unless we already are in the
7808 proper mode. */
7809
7810 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7811 mode, new_rtx));
7812 }
7813
7814 /* Unless this is a COMPARE or we have a funny memory reference,
7815 don't do anything with zero-extending field extracts starting at
7816 the low-order bit since they are simple AND operations. */
7817 if (pos_rtx == 0 && pos == 0 && ! in_dest
7818 && ! in_compare && unsignedp)
7819 return 0;
7820
7821 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7822 if the position is not a constant and the length is not 1. In all
7823 other cases, we would only be going outside our object in cases when
7824 an original shift would have been undefined. */
7825 if (MEM_P (inner)
7826 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7827 || (pos_rtx != 0 && len != 1)))
7828 return 0;
7829
7830 enum extraction_pattern pattern = (in_dest ? EP_insv
7831 : unsignedp ? EP_extzv : EP_extv);
7832
7833 /* If INNER is not from memory, we want it to have the mode of a register
7834 extraction pattern's structure operand, or word_mode if there is no
7835 such pattern. The same applies to extraction_mode and pos_mode
7836 and their respective operands.
7837
7838 For memory, assume that the desired extraction_mode and pos_mode
7839 are the same as for a register operation, since at present we don't
7840 have named patterns for aligned memory structures. */
7841 struct extraction_insn insn;
7842 unsigned int inner_size;
7843 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7844 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7845 {
7846 wanted_inner_reg_mode = insn.struct_mode.require ();
7847 pos_mode = insn.pos_mode;
7848 extraction_mode = insn.field_mode;
7849 }
7850
7851 /* Never narrow an object, since that might not be safe. */
7852
7853 if (mode != VOIDmode
7854 && partial_subreg_p (extraction_mode, mode))
7855 extraction_mode = mode;
7856
7857 /* Punt if len is too large for extraction_mode. */
7858 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7859 return NULL_RTX;
7860
7861 if (!MEM_P (inner))
7862 wanted_inner_mode = wanted_inner_reg_mode;
7863 else
7864 {
7865 /* Be careful not to go beyond the extracted object and maintain the
7866 natural alignment of the memory. */
7867 wanted_inner_mode = smallest_int_mode_for_size (len);
7868 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7869 > GET_MODE_BITSIZE (wanted_inner_mode))
7870 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7871 }
7872
7873 orig_pos = pos;
7874
7875 if (BITS_BIG_ENDIAN)
7876 {
7877 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7878 BITS_BIG_ENDIAN style. If position is constant, compute new
7879 position. Otherwise, build subtraction.
7880 Note that POS is relative to the mode of the original argument.
7881 If it's a MEM we need to recompute POS relative to that.
7882 However, if we're extracting from (or inserting into) a register,
7883 we want to recompute POS relative to wanted_inner_mode. */
7884 int width;
7885 if (!MEM_P (inner))
7886 width = GET_MODE_BITSIZE (wanted_inner_mode);
7887 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7888 return NULL_RTX;
7889
7890 if (pos_rtx == 0)
7891 pos = width - len - pos;
7892 else
7893 pos_rtx
7894 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7895 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7896 pos_rtx);
7897 /* POS may be less than 0 now, but we check for that below.
7898 Note that it can only be less than 0 if !MEM_P (inner). */
7899 }
7900
7901 /* If INNER has a wider mode, and this is a constant extraction, try to
7902 make it smaller and adjust the byte to point to the byte containing
7903 the value. */
7904 if (wanted_inner_mode != VOIDmode
7905 && inner_mode != wanted_inner_mode
7906 && ! pos_rtx
7907 && partial_subreg_p (wanted_inner_mode, is_mode)
7908 && MEM_P (inner)
7909 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7910 && ! MEM_VOLATILE_P (inner))
7911 {
7912 poly_int64 offset = 0;
7913
7914 /* The computations below will be correct if the machine is big
7915 endian in both bits and bytes or little endian in bits and bytes.
7916 If it is mixed, we must adjust. */
7917
7918 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7919 adjust OFFSET to compensate. */
7920 if (BYTES_BIG_ENDIAN
7921 && paradoxical_subreg_p (is_mode, inner_mode))
7922 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7923
7924 /* We can now move to the desired byte. */
7925 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7926 * GET_MODE_SIZE (wanted_inner_mode);
7927 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7928
7929 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7930 && is_mode != wanted_inner_mode)
7931 offset = (GET_MODE_SIZE (is_mode)
7932 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7933
7934 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7935 }
7936
7937 /* If INNER is not memory, get it into the proper mode. If we are changing
7938 its mode, POS must be a constant and smaller than the size of the new
7939 mode. */
7940 else if (!MEM_P (inner))
7941 {
7942 /* On the LHS, don't create paradoxical subregs implicitely truncating
7943 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7944 if (in_dest
7945 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7946 wanted_inner_mode))
7947 return NULL_RTX;
7948
7949 if (GET_MODE (inner) != wanted_inner_mode
7950 && (pos_rtx != 0
7951 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7952 return NULL_RTX;
7953
7954 if (orig_pos < 0)
7955 return NULL_RTX;
7956
7957 inner = force_to_mode (inner, wanted_inner_mode,
7958 pos_rtx
7959 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7960 ? HOST_WIDE_INT_M1U
7961 : (((HOST_WIDE_INT_1U << len) - 1)
7962 << orig_pos),
7963 0);
7964 }
7965
7966 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7967 have to zero extend. Otherwise, we can just use a SUBREG.
7968
7969 We dealt with constant rtxes earlier, so pos_rtx cannot
7970 have VOIDmode at this point. */
7971 if (pos_rtx != 0
7972 && (GET_MODE_SIZE (pos_mode)
7973 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7974 {
7975 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7976 GET_MODE (pos_rtx));
7977
7978 /* If we know that no extraneous bits are set, and that the high
7979 bit is not set, convert extraction to cheaper one - either
7980 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7981 cases. */
7982 if (flag_expensive_optimizations
7983 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7984 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7985 & ~(((unsigned HOST_WIDE_INT)
7986 GET_MODE_MASK (GET_MODE (pos_rtx)))
7987 >> 1))
7988 == 0)))
7989 {
7990 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7991 GET_MODE (pos_rtx));
7992
7993 /* Prefer ZERO_EXTENSION, since it gives more information to
7994 backends. */
7995 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7996 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7997 temp = temp1;
7998 }
7999 pos_rtx = temp;
8000 }
8001
8002 /* Make POS_RTX unless we already have it and it is correct. If we don't
8003 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
8004 be a CONST_INT. */
8005 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
8006 pos_rtx = orig_pos_rtx;
8007
8008 else if (pos_rtx == 0)
8009 pos_rtx = GEN_INT (pos);
8010
8011 /* Make the required operation. See if we can use existing rtx. */
8012 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
8013 extraction_mode, inner, GEN_INT (len), pos_rtx);
8014 if (! in_dest)
8015 new_rtx = gen_lowpart (mode, new_rtx);
8016
8017 return new_rtx;
8018 }
8019 \f
8020 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8021 can be commuted with any other operations in X. Return X without
8022 that shift if so. */
8023
8024 static rtx
8025 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8026 {
8027 enum rtx_code code = GET_CODE (x);
8028 rtx tem;
8029
8030 switch (code)
8031 {
8032 case ASHIFT:
8033 /* This is the shift itself. If it is wide enough, we will return
8034 either the value being shifted if the shift count is equal to
8035 COUNT or a shift for the difference. */
8036 if (CONST_INT_P (XEXP (x, 1))
8037 && INTVAL (XEXP (x, 1)) >= count)
8038 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8039 INTVAL (XEXP (x, 1)) - count);
8040 break;
8041
8042 case NEG: case NOT:
8043 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8044 return simplify_gen_unary (code, mode, tem, mode);
8045
8046 break;
8047
8048 case PLUS: case IOR: case XOR: case AND:
8049 /* If we can safely shift this constant and we find the inner shift,
8050 make a new operation. */
8051 if (CONST_INT_P (XEXP (x, 1))
8052 && (UINTVAL (XEXP (x, 1))
8053 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8054 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8055 {
8056 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8057 return simplify_gen_binary (code, mode, tem,
8058 gen_int_mode (val, mode));
8059 }
8060 break;
8061
8062 default:
8063 break;
8064 }
8065
8066 return 0;
8067 }
8068 \f
8069 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8070 level of the expression and MODE is its mode. IN_CODE is as for
8071 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8072 that should be used when recursing on operands of *X_PTR.
8073
8074 There are two possible actions:
8075
8076 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8077 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8078
8079 - Return a new rtx, which the caller returns directly. */
8080
8081 static rtx
8082 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8083 enum rtx_code in_code,
8084 enum rtx_code *next_code_ptr)
8085 {
8086 rtx x = *x_ptr;
8087 enum rtx_code next_code = *next_code_ptr;
8088 enum rtx_code code = GET_CODE (x);
8089 int mode_width = GET_MODE_PRECISION (mode);
8090 rtx rhs, lhs;
8091 rtx new_rtx = 0;
8092 int i;
8093 rtx tem;
8094 scalar_int_mode inner_mode;
8095 bool equality_comparison = false;
8096
8097 if (in_code == EQ)
8098 {
8099 equality_comparison = true;
8100 in_code = COMPARE;
8101 }
8102
8103 /* Process depending on the code of this operation. If NEW is set
8104 nonzero, it will be returned. */
8105
8106 switch (code)
8107 {
8108 case ASHIFT:
8109 /* Convert shifts by constants into multiplications if inside
8110 an address. */
8111 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8112 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8113 && INTVAL (XEXP (x, 1)) >= 0)
8114 {
8115 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8116 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8117
8118 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8119 if (GET_CODE (new_rtx) == NEG)
8120 {
8121 new_rtx = XEXP (new_rtx, 0);
8122 multval = -multval;
8123 }
8124 multval = trunc_int_for_mode (multval, mode);
8125 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8126 }
8127 break;
8128
8129 case PLUS:
8130 lhs = XEXP (x, 0);
8131 rhs = XEXP (x, 1);
8132 lhs = make_compound_operation (lhs, next_code);
8133 rhs = make_compound_operation (rhs, next_code);
8134 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8135 {
8136 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8137 XEXP (lhs, 1));
8138 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8139 }
8140 else if (GET_CODE (lhs) == MULT
8141 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8142 {
8143 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8144 simplify_gen_unary (NEG, mode,
8145 XEXP (lhs, 1),
8146 mode));
8147 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8148 }
8149 else
8150 {
8151 SUBST (XEXP (x, 0), lhs);
8152 SUBST (XEXP (x, 1), rhs);
8153 }
8154 maybe_swap_commutative_operands (x);
8155 return x;
8156
8157 case MINUS:
8158 lhs = XEXP (x, 0);
8159 rhs = XEXP (x, 1);
8160 lhs = make_compound_operation (lhs, next_code);
8161 rhs = make_compound_operation (rhs, next_code);
8162 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8163 {
8164 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8165 XEXP (rhs, 1));
8166 return simplify_gen_binary (PLUS, mode, tem, lhs);
8167 }
8168 else if (GET_CODE (rhs) == MULT
8169 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8170 {
8171 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8172 simplify_gen_unary (NEG, mode,
8173 XEXP (rhs, 1),
8174 mode));
8175 return simplify_gen_binary (PLUS, mode, tem, lhs);
8176 }
8177 else
8178 {
8179 SUBST (XEXP (x, 0), lhs);
8180 SUBST (XEXP (x, 1), rhs);
8181 return x;
8182 }
8183
8184 case AND:
8185 /* If the second operand is not a constant, we can't do anything
8186 with it. */
8187 if (!CONST_INT_P (XEXP (x, 1)))
8188 break;
8189
8190 /* If the constant is a power of two minus one and the first operand
8191 is a logical right shift, make an extraction. */
8192 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8193 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8194 {
8195 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8196 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8197 i, 1, 0, in_code == COMPARE);
8198 }
8199
8200 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8201 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8202 && subreg_lowpart_p (XEXP (x, 0))
8203 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8204 &inner_mode)
8205 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8206 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8207 {
8208 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8209 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8210 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8211 XEXP (inner_x0, 1),
8212 i, 1, 0, in_code == COMPARE);
8213
8214 /* If we narrowed the mode when dropping the subreg, then we lose. */
8215 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8216 new_rtx = NULL;
8217
8218 /* If that didn't give anything, see if the AND simplifies on
8219 its own. */
8220 if (!new_rtx && i >= 0)
8221 {
8222 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8223 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8224 0, in_code == COMPARE);
8225 }
8226 }
8227 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8228 else if ((GET_CODE (XEXP (x, 0)) == XOR
8229 || GET_CODE (XEXP (x, 0)) == IOR)
8230 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8231 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8232 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8233 {
8234 /* Apply the distributive law, and then try to make extractions. */
8235 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8236 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8237 XEXP (x, 1)),
8238 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8239 XEXP (x, 1)));
8240 new_rtx = make_compound_operation (new_rtx, in_code);
8241 }
8242
8243 /* If we are have (and (rotate X C) M) and C is larger than the number
8244 of bits in M, this is an extraction. */
8245
8246 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8247 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8248 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8249 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8250 {
8251 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8252 new_rtx = make_extraction (mode, new_rtx,
8253 (GET_MODE_PRECISION (mode)
8254 - INTVAL (XEXP (XEXP (x, 0), 1))),
8255 NULL_RTX, i, 1, 0, in_code == COMPARE);
8256 }
8257
8258 /* On machines without logical shifts, if the operand of the AND is
8259 a logical shift and our mask turns off all the propagated sign
8260 bits, we can replace the logical shift with an arithmetic shift. */
8261 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8262 && !have_insn_for (LSHIFTRT, mode)
8263 && have_insn_for (ASHIFTRT, mode)
8264 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8265 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8266 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8267 && mode_width <= HOST_BITS_PER_WIDE_INT)
8268 {
8269 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8270
8271 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8272 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8273 SUBST (XEXP (x, 0),
8274 gen_rtx_ASHIFTRT (mode,
8275 make_compound_operation (XEXP (XEXP (x,
8276 0),
8277 0),
8278 next_code),
8279 XEXP (XEXP (x, 0), 1)));
8280 }
8281
8282 /* If the constant is one less than a power of two, this might be
8283 representable by an extraction even if no shift is present.
8284 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8285 we are in a COMPARE. */
8286 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8287 new_rtx = make_extraction (mode,
8288 make_compound_operation (XEXP (x, 0),
8289 next_code),
8290 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8291
8292 /* If we are in a comparison and this is an AND with a power of two,
8293 convert this into the appropriate bit extract. */
8294 else if (in_code == COMPARE
8295 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8296 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8297 new_rtx = make_extraction (mode,
8298 make_compound_operation (XEXP (x, 0),
8299 next_code),
8300 i, NULL_RTX, 1, 1, 0, 1);
8301
8302 /* If the one operand is a paradoxical subreg of a register or memory and
8303 the constant (limited to the smaller mode) has only zero bits where
8304 the sub expression has known zero bits, this can be expressed as
8305 a zero_extend. */
8306 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8307 {
8308 rtx sub;
8309
8310 sub = XEXP (XEXP (x, 0), 0);
8311 machine_mode sub_mode = GET_MODE (sub);
8312 int sub_width;
8313 if ((REG_P (sub) || MEM_P (sub))
8314 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8315 && sub_width < mode_width)
8316 {
8317 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8318 unsigned HOST_WIDE_INT mask;
8319
8320 /* original AND constant with all the known zero bits set */
8321 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8322 if ((mask & mode_mask) == mode_mask)
8323 {
8324 new_rtx = make_compound_operation (sub, next_code);
8325 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8326 1, 0, in_code == COMPARE);
8327 }
8328 }
8329 }
8330
8331 break;
8332
8333 case LSHIFTRT:
8334 /* If the sign bit is known to be zero, replace this with an
8335 arithmetic shift. */
8336 if (have_insn_for (ASHIFTRT, mode)
8337 && ! have_insn_for (LSHIFTRT, mode)
8338 && mode_width <= HOST_BITS_PER_WIDE_INT
8339 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8340 {
8341 new_rtx = gen_rtx_ASHIFTRT (mode,
8342 make_compound_operation (XEXP (x, 0),
8343 next_code),
8344 XEXP (x, 1));
8345 break;
8346 }
8347
8348 /* fall through */
8349
8350 case ASHIFTRT:
8351 lhs = XEXP (x, 0);
8352 rhs = XEXP (x, 1);
8353
8354 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8355 this is a SIGN_EXTRACT. */
8356 if (CONST_INT_P (rhs)
8357 && GET_CODE (lhs) == ASHIFT
8358 && CONST_INT_P (XEXP (lhs, 1))
8359 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8360 && INTVAL (XEXP (lhs, 1)) >= 0
8361 && INTVAL (rhs) < mode_width)
8362 {
8363 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8364 new_rtx = make_extraction (mode, new_rtx,
8365 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8366 NULL_RTX, mode_width - INTVAL (rhs),
8367 code == LSHIFTRT, 0, in_code == COMPARE);
8368 break;
8369 }
8370
8371 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8372 If so, try to merge the shifts into a SIGN_EXTEND. We could
8373 also do this for some cases of SIGN_EXTRACT, but it doesn't
8374 seem worth the effort; the case checked for occurs on Alpha. */
8375
8376 if (!OBJECT_P (lhs)
8377 && ! (GET_CODE (lhs) == SUBREG
8378 && (OBJECT_P (SUBREG_REG (lhs))))
8379 && CONST_INT_P (rhs)
8380 && INTVAL (rhs) >= 0
8381 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8382 && INTVAL (rhs) < mode_width
8383 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8384 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8385 next_code),
8386 0, NULL_RTX, mode_width - INTVAL (rhs),
8387 code == LSHIFTRT, 0, in_code == COMPARE);
8388
8389 break;
8390
8391 case SUBREG:
8392 /* Call ourselves recursively on the inner expression. If we are
8393 narrowing the object and it has a different RTL code from
8394 what it originally did, do this SUBREG as a force_to_mode. */
8395 {
8396 rtx inner = SUBREG_REG (x), simplified;
8397 enum rtx_code subreg_code = in_code;
8398
8399 /* If the SUBREG is masking of a logical right shift,
8400 make an extraction. */
8401 if (GET_CODE (inner) == LSHIFTRT
8402 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8403 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8404 && CONST_INT_P (XEXP (inner, 1))
8405 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8406 && subreg_lowpart_p (x))
8407 {
8408 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8409 int width = GET_MODE_PRECISION (inner_mode)
8410 - INTVAL (XEXP (inner, 1));
8411 if (width > mode_width)
8412 width = mode_width;
8413 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8414 width, 1, 0, in_code == COMPARE);
8415 break;
8416 }
8417
8418 /* If in_code is COMPARE, it isn't always safe to pass it through
8419 to the recursive make_compound_operation call. */
8420 if (subreg_code == COMPARE
8421 && (!subreg_lowpart_p (x)
8422 || GET_CODE (inner) == SUBREG
8423 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8424 is (const_int 0), rather than
8425 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8426 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8427 for non-equality comparisons against 0 is not equivalent
8428 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8429 || (GET_CODE (inner) == AND
8430 && CONST_INT_P (XEXP (inner, 1))
8431 && partial_subreg_p (x)
8432 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8433 >= GET_MODE_BITSIZE (mode) - 1)))
8434 subreg_code = SET;
8435
8436 tem = make_compound_operation (inner, subreg_code);
8437
8438 simplified
8439 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8440 if (simplified)
8441 tem = simplified;
8442
8443 if (GET_CODE (tem) != GET_CODE (inner)
8444 && partial_subreg_p (x)
8445 && subreg_lowpart_p (x))
8446 {
8447 rtx newer
8448 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8449
8450 /* If we have something other than a SUBREG, we might have
8451 done an expansion, so rerun ourselves. */
8452 if (GET_CODE (newer) != SUBREG)
8453 newer = make_compound_operation (newer, in_code);
8454
8455 /* force_to_mode can expand compounds. If it just re-expanded
8456 the compound, use gen_lowpart to convert to the desired
8457 mode. */
8458 if (rtx_equal_p (newer, x)
8459 /* Likewise if it re-expanded the compound only partially.
8460 This happens for SUBREG of ZERO_EXTRACT if they extract
8461 the same number of bits. */
8462 || (GET_CODE (newer) == SUBREG
8463 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8464 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8465 && GET_CODE (inner) == AND
8466 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8467 return gen_lowpart (GET_MODE (x), tem);
8468
8469 return newer;
8470 }
8471
8472 if (simplified)
8473 return tem;
8474 }
8475 break;
8476
8477 default:
8478 break;
8479 }
8480
8481 if (new_rtx)
8482 *x_ptr = gen_lowpart (mode, new_rtx);
8483 *next_code_ptr = next_code;
8484 return NULL_RTX;
8485 }
8486
8487 /* Look at the expression rooted at X. Look for expressions
8488 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8489 Form these expressions.
8490
8491 Return the new rtx, usually just X.
8492
8493 Also, for machines like the VAX that don't have logical shift insns,
8494 try to convert logical to arithmetic shift operations in cases where
8495 they are equivalent. This undoes the canonicalizations to logical
8496 shifts done elsewhere.
8497
8498 We try, as much as possible, to re-use rtl expressions to save memory.
8499
8500 IN_CODE says what kind of expression we are processing. Normally, it is
8501 SET. In a memory address it is MEM. When processing the arguments of
8502 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8503 precisely it is an equality comparison against zero. */
8504
8505 rtx
8506 make_compound_operation (rtx x, enum rtx_code in_code)
8507 {
8508 enum rtx_code code = GET_CODE (x);
8509 const char *fmt;
8510 int i, j;
8511 enum rtx_code next_code;
8512 rtx new_rtx, tem;
8513
8514 /* Select the code to be used in recursive calls. Once we are inside an
8515 address, we stay there. If we have a comparison, set to COMPARE,
8516 but once inside, go back to our default of SET. */
8517
8518 next_code = (code == MEM ? MEM
8519 : ((code == COMPARE || COMPARISON_P (x))
8520 && XEXP (x, 1) == const0_rtx) ? COMPARE
8521 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8522
8523 scalar_int_mode mode;
8524 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8525 {
8526 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8527 &next_code);
8528 if (new_rtx)
8529 return new_rtx;
8530 code = GET_CODE (x);
8531 }
8532
8533 /* Now recursively process each operand of this operation. We need to
8534 handle ZERO_EXTEND specially so that we don't lose track of the
8535 inner mode. */
8536 if (code == ZERO_EXTEND)
8537 {
8538 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8539 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8540 new_rtx, GET_MODE (XEXP (x, 0)));
8541 if (tem)
8542 return tem;
8543 SUBST (XEXP (x, 0), new_rtx);
8544 return x;
8545 }
8546
8547 fmt = GET_RTX_FORMAT (code);
8548 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8549 if (fmt[i] == 'e')
8550 {
8551 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8552 SUBST (XEXP (x, i), new_rtx);
8553 }
8554 else if (fmt[i] == 'E')
8555 for (j = 0; j < XVECLEN (x, i); j++)
8556 {
8557 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8558 SUBST (XVECEXP (x, i, j), new_rtx);
8559 }
8560
8561 maybe_swap_commutative_operands (x);
8562 return x;
8563 }
8564 \f
8565 /* Given M see if it is a value that would select a field of bits
8566 within an item, but not the entire word. Return -1 if not.
8567 Otherwise, return the starting position of the field, where 0 is the
8568 low-order bit.
8569
8570 *PLEN is set to the length of the field. */
8571
8572 static int
8573 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8574 {
8575 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8576 int pos = m ? ctz_hwi (m) : -1;
8577 int len = 0;
8578
8579 if (pos >= 0)
8580 /* Now shift off the low-order zero bits and see if we have a
8581 power of two minus 1. */
8582 len = exact_log2 ((m >> pos) + 1);
8583
8584 if (len <= 0)
8585 pos = -1;
8586
8587 *plen = len;
8588 return pos;
8589 }
8590 \f
8591 /* If X refers to a register that equals REG in value, replace these
8592 references with REG. */
8593 static rtx
8594 canon_reg_for_combine (rtx x, rtx reg)
8595 {
8596 rtx op0, op1, op2;
8597 const char *fmt;
8598 int i;
8599 bool copied;
8600
8601 enum rtx_code code = GET_CODE (x);
8602 switch (GET_RTX_CLASS (code))
8603 {
8604 case RTX_UNARY:
8605 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8606 if (op0 != XEXP (x, 0))
8607 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8608 GET_MODE (reg));
8609 break;
8610
8611 case RTX_BIN_ARITH:
8612 case RTX_COMM_ARITH:
8613 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8614 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8615 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8616 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8617 break;
8618
8619 case RTX_COMPARE:
8620 case RTX_COMM_COMPARE:
8621 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8622 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8623 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8624 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8625 GET_MODE (op0), op0, op1);
8626 break;
8627
8628 case RTX_TERNARY:
8629 case RTX_BITFIELD_OPS:
8630 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8631 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8632 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8633 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8634 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8635 GET_MODE (op0), op0, op1, op2);
8636 /* FALLTHRU */
8637
8638 case RTX_OBJ:
8639 if (REG_P (x))
8640 {
8641 if (rtx_equal_p (get_last_value (reg), x)
8642 || rtx_equal_p (reg, get_last_value (x)))
8643 return reg;
8644 else
8645 break;
8646 }
8647
8648 /* fall through */
8649
8650 default:
8651 fmt = GET_RTX_FORMAT (code);
8652 copied = false;
8653 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8654 if (fmt[i] == 'e')
8655 {
8656 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8657 if (op != XEXP (x, i))
8658 {
8659 if (!copied)
8660 {
8661 copied = true;
8662 x = copy_rtx (x);
8663 }
8664 XEXP (x, i) = op;
8665 }
8666 }
8667 else if (fmt[i] == 'E')
8668 {
8669 int j;
8670 for (j = 0; j < XVECLEN (x, i); j++)
8671 {
8672 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8673 if (op != XVECEXP (x, i, j))
8674 {
8675 if (!copied)
8676 {
8677 copied = true;
8678 x = copy_rtx (x);
8679 }
8680 XVECEXP (x, i, j) = op;
8681 }
8682 }
8683 }
8684
8685 break;
8686 }
8687
8688 return x;
8689 }
8690
8691 /* Return X converted to MODE. If the value is already truncated to
8692 MODE we can just return a subreg even though in the general case we
8693 would need an explicit truncation. */
8694
8695 static rtx
8696 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8697 {
8698 if (!CONST_INT_P (x)
8699 && partial_subreg_p (mode, GET_MODE (x))
8700 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8701 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8702 {
8703 /* Bit-cast X into an integer mode. */
8704 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8705 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8706 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8707 x, GET_MODE (x));
8708 }
8709
8710 return gen_lowpart (mode, x);
8711 }
8712
8713 /* See if X can be simplified knowing that we will only refer to it in
8714 MODE and will only refer to those bits that are nonzero in MASK.
8715 If other bits are being computed or if masking operations are done
8716 that select a superset of the bits in MASK, they can sometimes be
8717 ignored.
8718
8719 Return a possibly simplified expression, but always convert X to
8720 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8721
8722 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8723 are all off in X. This is used when X will be complemented, by either
8724 NOT, NEG, or XOR. */
8725
8726 static rtx
8727 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8728 int just_select)
8729 {
8730 enum rtx_code code = GET_CODE (x);
8731 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8732 machine_mode op_mode;
8733 unsigned HOST_WIDE_INT nonzero;
8734
8735 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8736 code below will do the wrong thing since the mode of such an
8737 expression is VOIDmode.
8738
8739 Also do nothing if X is a CLOBBER; this can happen if X was
8740 the return value from a call to gen_lowpart. */
8741 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8742 return x;
8743
8744 /* We want to perform the operation in its present mode unless we know
8745 that the operation is valid in MODE, in which case we do the operation
8746 in MODE. */
8747 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8748 && have_insn_for (code, mode))
8749 ? mode : GET_MODE (x));
8750
8751 /* It is not valid to do a right-shift in a narrower mode
8752 than the one it came in with. */
8753 if ((code == LSHIFTRT || code == ASHIFTRT)
8754 && partial_subreg_p (mode, GET_MODE (x)))
8755 op_mode = GET_MODE (x);
8756
8757 /* Truncate MASK to fit OP_MODE. */
8758 if (op_mode)
8759 mask &= GET_MODE_MASK (op_mode);
8760
8761 /* Determine what bits of X are guaranteed to be (non)zero. */
8762 nonzero = nonzero_bits (x, mode);
8763
8764 /* If none of the bits in X are needed, return a zero. */
8765 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8766 x = const0_rtx;
8767
8768 /* If X is a CONST_INT, return a new one. Do this here since the
8769 test below will fail. */
8770 if (CONST_INT_P (x))
8771 {
8772 if (SCALAR_INT_MODE_P (mode))
8773 return gen_int_mode (INTVAL (x) & mask, mode);
8774 else
8775 {
8776 x = GEN_INT (INTVAL (x) & mask);
8777 return gen_lowpart_common (mode, x);
8778 }
8779 }
8780
8781 /* If X is narrower than MODE and we want all the bits in X's mode, just
8782 get X in the proper mode. */
8783 if (paradoxical_subreg_p (mode, GET_MODE (x))
8784 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8785 return gen_lowpart (mode, x);
8786
8787 /* We can ignore the effect of a SUBREG if it narrows the mode or
8788 if the constant masks to zero all the bits the mode doesn't have. */
8789 if (GET_CODE (x) == SUBREG
8790 && subreg_lowpart_p (x)
8791 && (partial_subreg_p (x)
8792 || (mask
8793 & GET_MODE_MASK (GET_MODE (x))
8794 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8795 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8796
8797 scalar_int_mode int_mode, xmode;
8798 if (is_a <scalar_int_mode> (mode, &int_mode)
8799 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8800 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8801 integer too. */
8802 return force_int_to_mode (x, int_mode, xmode,
8803 as_a <scalar_int_mode> (op_mode),
8804 mask, just_select);
8805
8806 return gen_lowpart_or_truncate (mode, x);
8807 }
8808
8809 /* Subroutine of force_to_mode that handles cases in which both X and
8810 the result are scalar integers. MODE is the mode of the result,
8811 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8812 is preferred for simplified versions of X. The other arguments
8813 are as for force_to_mode. */
8814
8815 static rtx
8816 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8817 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8818 int just_select)
8819 {
8820 enum rtx_code code = GET_CODE (x);
8821 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8822 unsigned HOST_WIDE_INT fuller_mask;
8823 rtx op0, op1, temp;
8824 poly_int64 const_op0;
8825
8826 /* When we have an arithmetic operation, or a shift whose count we
8827 do not know, we need to assume that all bits up to the highest-order
8828 bit in MASK will be needed. This is how we form such a mask. */
8829 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8830 fuller_mask = HOST_WIDE_INT_M1U;
8831 else
8832 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8833 - 1);
8834
8835 switch (code)
8836 {
8837 case CLOBBER:
8838 /* If X is a (clobber (const_int)), return it since we know we are
8839 generating something that won't match. */
8840 return x;
8841
8842 case SIGN_EXTEND:
8843 case ZERO_EXTEND:
8844 case ZERO_EXTRACT:
8845 case SIGN_EXTRACT:
8846 x = expand_compound_operation (x);
8847 if (GET_CODE (x) != code)
8848 return force_to_mode (x, mode, mask, next_select);
8849 break;
8850
8851 case TRUNCATE:
8852 /* Similarly for a truncate. */
8853 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8854
8855 case AND:
8856 /* If this is an AND with a constant, convert it into an AND
8857 whose constant is the AND of that constant with MASK. If it
8858 remains an AND of MASK, delete it since it is redundant. */
8859
8860 if (CONST_INT_P (XEXP (x, 1)))
8861 {
8862 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8863 mask & INTVAL (XEXP (x, 1)));
8864 xmode = op_mode;
8865
8866 /* If X is still an AND, see if it is an AND with a mask that
8867 is just some low-order bits. If so, and it is MASK, we don't
8868 need it. */
8869
8870 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8871 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8872 x = XEXP (x, 0);
8873
8874 /* If it remains an AND, try making another AND with the bits
8875 in the mode mask that aren't in MASK turned on. If the
8876 constant in the AND is wide enough, this might make a
8877 cheaper constant. */
8878
8879 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8880 && GET_MODE_MASK (xmode) != mask
8881 && HWI_COMPUTABLE_MODE_P (xmode))
8882 {
8883 unsigned HOST_WIDE_INT cval
8884 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8885 rtx y;
8886
8887 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8888 gen_int_mode (cval, xmode));
8889 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8890 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8891 x = y;
8892 }
8893
8894 break;
8895 }
8896
8897 goto binop;
8898
8899 case PLUS:
8900 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8901 low-order bits (as in an alignment operation) and FOO is already
8902 aligned to that boundary, mask C1 to that boundary as well.
8903 This may eliminate that PLUS and, later, the AND. */
8904
8905 {
8906 unsigned int width = GET_MODE_PRECISION (mode);
8907 unsigned HOST_WIDE_INT smask = mask;
8908
8909 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8910 number, sign extend it. */
8911
8912 if (width < HOST_BITS_PER_WIDE_INT
8913 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8914 smask |= HOST_WIDE_INT_M1U << width;
8915
8916 if (CONST_INT_P (XEXP (x, 1))
8917 && pow2p_hwi (- smask)
8918 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8919 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8920 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8921 (INTVAL (XEXP (x, 1)) & smask)),
8922 mode, smask, next_select);
8923 }
8924
8925 /* fall through */
8926
8927 case MULT:
8928 /* Substituting into the operands of a widening MULT is not likely to
8929 create RTL matching a machine insn. */
8930 if (code == MULT
8931 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8932 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8933 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8934 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8935 && REG_P (XEXP (XEXP (x, 0), 0))
8936 && REG_P (XEXP (XEXP (x, 1), 0)))
8937 return gen_lowpart_or_truncate (mode, x);
8938
8939 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8940 most significant bit in MASK since carries from those bits will
8941 affect the bits we are interested in. */
8942 mask = fuller_mask;
8943 goto binop;
8944
8945 case MINUS:
8946 /* If X is (minus C Y) where C's least set bit is larger than any bit
8947 in the mask, then we may replace with (neg Y). */
8948 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8949 && (unsigned HOST_WIDE_INT) known_alignment (const_op0) > mask)
8950 {
8951 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8952 return force_to_mode (x, mode, mask, next_select);
8953 }
8954
8955 /* Similarly, if C contains every bit in the fuller_mask, then we may
8956 replace with (not Y). */
8957 if (CONST_INT_P (XEXP (x, 0))
8958 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8959 {
8960 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8961 return force_to_mode (x, mode, mask, next_select);
8962 }
8963
8964 mask = fuller_mask;
8965 goto binop;
8966
8967 case IOR:
8968 case XOR:
8969 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8970 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8971 operation which may be a bitfield extraction. Ensure that the
8972 constant we form is not wider than the mode of X. */
8973
8974 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8975 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8976 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8977 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8978 && CONST_INT_P (XEXP (x, 1))
8979 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8980 + floor_log2 (INTVAL (XEXP (x, 1))))
8981 < GET_MODE_PRECISION (xmode))
8982 && (UINTVAL (XEXP (x, 1))
8983 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8984 {
8985 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8986 << INTVAL (XEXP (XEXP (x, 0), 1)),
8987 xmode);
8988 temp = simplify_gen_binary (GET_CODE (x), xmode,
8989 XEXP (XEXP (x, 0), 0), temp);
8990 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8991 XEXP (XEXP (x, 0), 1));
8992 return force_to_mode (x, mode, mask, next_select);
8993 }
8994
8995 binop:
8996 /* For most binary operations, just propagate into the operation and
8997 change the mode if we have an operation of that mode. */
8998
8999 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
9000 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
9001
9002 /* If we ended up truncating both operands, truncate the result of the
9003 operation instead. */
9004 if (GET_CODE (op0) == TRUNCATE
9005 && GET_CODE (op1) == TRUNCATE)
9006 {
9007 op0 = XEXP (op0, 0);
9008 op1 = XEXP (op1, 0);
9009 }
9010
9011 op0 = gen_lowpart_or_truncate (op_mode, op0);
9012 op1 = gen_lowpart_or_truncate (op_mode, op1);
9013
9014 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
9015 {
9016 x = simplify_gen_binary (code, op_mode, op0, op1);
9017 xmode = op_mode;
9018 }
9019 break;
9020
9021 case ASHIFT:
9022 /* For left shifts, do the same, but just for the first operand.
9023 However, we cannot do anything with shifts where we cannot
9024 guarantee that the counts are smaller than the size of the mode
9025 because such a count will have a different meaning in a
9026 wider mode. */
9027
9028 if (! (CONST_INT_P (XEXP (x, 1))
9029 && INTVAL (XEXP (x, 1)) >= 0
9030 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9031 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9032 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9033 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9034 break;
9035
9036 /* If the shift count is a constant and we can do arithmetic in
9037 the mode of the shift, refine which bits we need. Otherwise, use the
9038 conservative form of the mask. */
9039 if (CONST_INT_P (XEXP (x, 1))
9040 && INTVAL (XEXP (x, 1)) >= 0
9041 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9042 && HWI_COMPUTABLE_MODE_P (op_mode))
9043 mask >>= INTVAL (XEXP (x, 1));
9044 else
9045 mask = fuller_mask;
9046
9047 op0 = gen_lowpart_or_truncate (op_mode,
9048 force_to_mode (XEXP (x, 0), mode,
9049 mask, next_select));
9050
9051 if (op_mode != xmode || op0 != XEXP (x, 0))
9052 {
9053 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9054 xmode = op_mode;
9055 }
9056 break;
9057
9058 case LSHIFTRT:
9059 /* Here we can only do something if the shift count is a constant,
9060 this shift constant is valid for the host, and we can do arithmetic
9061 in OP_MODE. */
9062
9063 if (CONST_INT_P (XEXP (x, 1))
9064 && INTVAL (XEXP (x, 1)) >= 0
9065 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9066 && HWI_COMPUTABLE_MODE_P (op_mode))
9067 {
9068 rtx inner = XEXP (x, 0);
9069 unsigned HOST_WIDE_INT inner_mask;
9070
9071 /* Select the mask of the bits we need for the shift operand. */
9072 inner_mask = mask << INTVAL (XEXP (x, 1));
9073
9074 /* We can only change the mode of the shift if we can do arithmetic
9075 in the mode of the shift and INNER_MASK is no wider than the
9076 width of X's mode. */
9077 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9078 op_mode = xmode;
9079
9080 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9081
9082 if (xmode != op_mode || inner != XEXP (x, 0))
9083 {
9084 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9085 xmode = op_mode;
9086 }
9087 }
9088
9089 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9090 shift and AND produces only copies of the sign bit (C2 is one less
9091 than a power of two), we can do this with just a shift. */
9092
9093 if (GET_CODE (x) == LSHIFTRT
9094 && CONST_INT_P (XEXP (x, 1))
9095 /* The shift puts one of the sign bit copies in the least significant
9096 bit. */
9097 && ((INTVAL (XEXP (x, 1))
9098 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9099 >= GET_MODE_PRECISION (xmode))
9100 && pow2p_hwi (mask + 1)
9101 /* Number of bits left after the shift must be more than the mask
9102 needs. */
9103 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9104 <= GET_MODE_PRECISION (xmode))
9105 /* Must be more sign bit copies than the mask needs. */
9106 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9107 >= exact_log2 (mask + 1)))
9108 {
9109 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9110 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9111 gen_int_shift_amount (xmode, nbits));
9112 }
9113 goto shiftrt;
9114
9115 case ASHIFTRT:
9116 /* If we are just looking for the sign bit, we don't need this shift at
9117 all, even if it has a variable count. */
9118 if (val_signbit_p (xmode, mask))
9119 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9120
9121 /* If this is a shift by a constant, get a mask that contains those bits
9122 that are not copies of the sign bit. We then have two cases: If
9123 MASK only includes those bits, this can be a logical shift, which may
9124 allow simplifications. If MASK is a single-bit field not within
9125 those bits, we are requesting a copy of the sign bit and hence can
9126 shift the sign bit to the appropriate location. */
9127
9128 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9129 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9130 {
9131 unsigned HOST_WIDE_INT nonzero;
9132 int i;
9133
9134 /* If the considered data is wider than HOST_WIDE_INT, we can't
9135 represent a mask for all its bits in a single scalar.
9136 But we only care about the lower bits, so calculate these. */
9137
9138 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9139 {
9140 nonzero = HOST_WIDE_INT_M1U;
9141
9142 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9143 is the number of bits a full-width mask would have set.
9144 We need only shift if these are fewer than nonzero can
9145 hold. If not, we must keep all bits set in nonzero. */
9146
9147 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9148 < HOST_BITS_PER_WIDE_INT)
9149 nonzero >>= INTVAL (XEXP (x, 1))
9150 + HOST_BITS_PER_WIDE_INT
9151 - GET_MODE_PRECISION (xmode);
9152 }
9153 else
9154 {
9155 nonzero = GET_MODE_MASK (xmode);
9156 nonzero >>= INTVAL (XEXP (x, 1));
9157 }
9158
9159 if ((mask & ~nonzero) == 0)
9160 {
9161 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9162 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9163 if (GET_CODE (x) != ASHIFTRT)
9164 return force_to_mode (x, mode, mask, next_select);
9165 }
9166
9167 else if ((i = exact_log2 (mask)) >= 0)
9168 {
9169 x = simplify_shift_const
9170 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9171 GET_MODE_PRECISION (xmode) - 1 - i);
9172
9173 if (GET_CODE (x) != ASHIFTRT)
9174 return force_to_mode (x, mode, mask, next_select);
9175 }
9176 }
9177
9178 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9179 even if the shift count isn't a constant. */
9180 if (mask == 1)
9181 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9182
9183 shiftrt:
9184
9185 /* If this is a zero- or sign-extension operation that just affects bits
9186 we don't care about, remove it. Be sure the call above returned
9187 something that is still a shift. */
9188
9189 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9190 && CONST_INT_P (XEXP (x, 1))
9191 && INTVAL (XEXP (x, 1)) >= 0
9192 && (INTVAL (XEXP (x, 1))
9193 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9194 && GET_CODE (XEXP (x, 0)) == ASHIFT
9195 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9196 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9197 next_select);
9198
9199 break;
9200
9201 case ROTATE:
9202 case ROTATERT:
9203 /* If the shift count is constant and we can do computations
9204 in the mode of X, compute where the bits we care about are.
9205 Otherwise, we can't do anything. Don't change the mode of
9206 the shift or propagate MODE into the shift, though. */
9207 if (CONST_INT_P (XEXP (x, 1))
9208 && INTVAL (XEXP (x, 1)) >= 0)
9209 {
9210 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9211 xmode, gen_int_mode (mask, xmode),
9212 XEXP (x, 1));
9213 if (temp && CONST_INT_P (temp))
9214 x = simplify_gen_binary (code, xmode,
9215 force_to_mode (XEXP (x, 0), xmode,
9216 INTVAL (temp), next_select),
9217 XEXP (x, 1));
9218 }
9219 break;
9220
9221 case NEG:
9222 /* If we just want the low-order bit, the NEG isn't needed since it
9223 won't change the low-order bit. */
9224 if (mask == 1)
9225 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9226
9227 /* We need any bits less significant than the most significant bit in
9228 MASK since carries from those bits will affect the bits we are
9229 interested in. */
9230 mask = fuller_mask;
9231 goto unop;
9232
9233 case NOT:
9234 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9235 same as the XOR case above. Ensure that the constant we form is not
9236 wider than the mode of X. */
9237
9238 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9239 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9240 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9241 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9242 < GET_MODE_PRECISION (xmode))
9243 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9244 {
9245 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9246 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9247 x = simplify_gen_binary (LSHIFTRT, xmode,
9248 temp, XEXP (XEXP (x, 0), 1));
9249
9250 return force_to_mode (x, mode, mask, next_select);
9251 }
9252
9253 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9254 use the full mask inside the NOT. */
9255 mask = fuller_mask;
9256
9257 unop:
9258 op0 = gen_lowpart_or_truncate (op_mode,
9259 force_to_mode (XEXP (x, 0), mode, mask,
9260 next_select));
9261 if (op_mode != xmode || op0 != XEXP (x, 0))
9262 {
9263 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9264 xmode = op_mode;
9265 }
9266 break;
9267
9268 case NE:
9269 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9270 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9271 which is equal to STORE_FLAG_VALUE. */
9272 if ((mask & ~STORE_FLAG_VALUE) == 0
9273 && XEXP (x, 1) == const0_rtx
9274 && GET_MODE (XEXP (x, 0)) == mode
9275 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9276 && (nonzero_bits (XEXP (x, 0), mode)
9277 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9278 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9279
9280 break;
9281
9282 case IF_THEN_ELSE:
9283 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9284 written in a narrower mode. We play it safe and do not do so. */
9285
9286 op0 = gen_lowpart_or_truncate (xmode,
9287 force_to_mode (XEXP (x, 1), mode,
9288 mask, next_select));
9289 op1 = gen_lowpart_or_truncate (xmode,
9290 force_to_mode (XEXP (x, 2), mode,
9291 mask, next_select));
9292 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9293 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9294 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9295 op0, op1);
9296 break;
9297
9298 default:
9299 break;
9300 }
9301
9302 /* Ensure we return a value of the proper mode. */
9303 return gen_lowpart_or_truncate (mode, x);
9304 }
9305 \f
9306 /* Return nonzero if X is an expression that has one of two values depending on
9307 whether some other value is zero or nonzero. In that case, we return the
9308 value that is being tested, *PTRUE is set to the value if the rtx being
9309 returned has a nonzero value, and *PFALSE is set to the other alternative.
9310
9311 If we return zero, we set *PTRUE and *PFALSE to X. */
9312
9313 static rtx
9314 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9315 {
9316 machine_mode mode = GET_MODE (x);
9317 enum rtx_code code = GET_CODE (x);
9318 rtx cond0, cond1, true0, true1, false0, false1;
9319 unsigned HOST_WIDE_INT nz;
9320 scalar_int_mode int_mode;
9321
9322 /* If we are comparing a value against zero, we are done. */
9323 if ((code == NE || code == EQ)
9324 && XEXP (x, 1) == const0_rtx)
9325 {
9326 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9327 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9328 return XEXP (x, 0);
9329 }
9330
9331 /* If this is a unary operation whose operand has one of two values, apply
9332 our opcode to compute those values. */
9333 else if (UNARY_P (x)
9334 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9335 {
9336 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9337 *pfalse = simplify_gen_unary (code, mode, false0,
9338 GET_MODE (XEXP (x, 0)));
9339 return cond0;
9340 }
9341
9342 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9343 make can't possibly match and would suppress other optimizations. */
9344 else if (code == COMPARE)
9345 ;
9346
9347 /* If this is a binary operation, see if either side has only one of two
9348 values. If either one does or if both do and they are conditional on
9349 the same value, compute the new true and false values. */
9350 else if (BINARY_P (x))
9351 {
9352 rtx op0 = XEXP (x, 0);
9353 rtx op1 = XEXP (x, 1);
9354 cond0 = if_then_else_cond (op0, &true0, &false0);
9355 cond1 = if_then_else_cond (op1, &true1, &false1);
9356
9357 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9358 && (REG_P (op0) || REG_P (op1)))
9359 {
9360 /* Try to enable a simplification by undoing work done by
9361 if_then_else_cond if it converted a REG into something more
9362 complex. */
9363 if (REG_P (op0))
9364 {
9365 cond0 = 0;
9366 true0 = false0 = op0;
9367 }
9368 else
9369 {
9370 cond1 = 0;
9371 true1 = false1 = op1;
9372 }
9373 }
9374
9375 if ((cond0 != 0 || cond1 != 0)
9376 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9377 {
9378 /* If if_then_else_cond returned zero, then true/false are the
9379 same rtl. We must copy one of them to prevent invalid rtl
9380 sharing. */
9381 if (cond0 == 0)
9382 true0 = copy_rtx (true0);
9383 else if (cond1 == 0)
9384 true1 = copy_rtx (true1);
9385
9386 if (COMPARISON_P (x))
9387 {
9388 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9389 true0, true1);
9390 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9391 false0, false1);
9392 }
9393 else
9394 {
9395 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9396 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9397 }
9398
9399 return cond0 ? cond0 : cond1;
9400 }
9401
9402 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9403 operands is zero when the other is nonzero, and vice-versa,
9404 and STORE_FLAG_VALUE is 1 or -1. */
9405
9406 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9407 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9408 || code == UMAX)
9409 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9410 {
9411 rtx op0 = XEXP (XEXP (x, 0), 1);
9412 rtx op1 = XEXP (XEXP (x, 1), 1);
9413
9414 cond0 = XEXP (XEXP (x, 0), 0);
9415 cond1 = XEXP (XEXP (x, 1), 0);
9416
9417 if (COMPARISON_P (cond0)
9418 && COMPARISON_P (cond1)
9419 && SCALAR_INT_MODE_P (mode)
9420 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9421 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9422 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9423 || ((swap_condition (GET_CODE (cond0))
9424 == reversed_comparison_code (cond1, NULL))
9425 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9426 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9427 && ! side_effects_p (x))
9428 {
9429 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9430 *pfalse = simplify_gen_binary (MULT, mode,
9431 (code == MINUS
9432 ? simplify_gen_unary (NEG, mode,
9433 op1, mode)
9434 : op1),
9435 const_true_rtx);
9436 return cond0;
9437 }
9438 }
9439
9440 /* Similarly for MULT, AND and UMIN, except that for these the result
9441 is always zero. */
9442 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9443 && (code == MULT || code == AND || code == UMIN)
9444 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9445 {
9446 cond0 = XEXP (XEXP (x, 0), 0);
9447 cond1 = XEXP (XEXP (x, 1), 0);
9448
9449 if (COMPARISON_P (cond0)
9450 && COMPARISON_P (cond1)
9451 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9452 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9453 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9454 || ((swap_condition (GET_CODE (cond0))
9455 == reversed_comparison_code (cond1, NULL))
9456 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9457 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9458 && ! side_effects_p (x))
9459 {
9460 *ptrue = *pfalse = const0_rtx;
9461 return cond0;
9462 }
9463 }
9464 }
9465
9466 else if (code == IF_THEN_ELSE)
9467 {
9468 /* If we have IF_THEN_ELSE already, extract the condition and
9469 canonicalize it if it is NE or EQ. */
9470 cond0 = XEXP (x, 0);
9471 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9472 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9473 return XEXP (cond0, 0);
9474 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9475 {
9476 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9477 return XEXP (cond0, 0);
9478 }
9479 else
9480 return cond0;
9481 }
9482
9483 /* If X is a SUBREG, we can narrow both the true and false values
9484 if the inner expression, if there is a condition. */
9485 else if (code == SUBREG
9486 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9487 &false0)) != 0)
9488 {
9489 true0 = simplify_gen_subreg (mode, true0,
9490 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9491 false0 = simplify_gen_subreg (mode, false0,
9492 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9493 if (true0 && false0)
9494 {
9495 *ptrue = true0;
9496 *pfalse = false0;
9497 return cond0;
9498 }
9499 }
9500
9501 /* If X is a constant, this isn't special and will cause confusions
9502 if we treat it as such. Likewise if it is equivalent to a constant. */
9503 else if (CONSTANT_P (x)
9504 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9505 ;
9506
9507 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9508 will be least confusing to the rest of the compiler. */
9509 else if (mode == BImode)
9510 {
9511 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9512 return x;
9513 }
9514
9515 /* If X is known to be either 0 or -1, those are the true and
9516 false values when testing X. */
9517 else if (x == constm1_rtx || x == const0_rtx
9518 || (is_a <scalar_int_mode> (mode, &int_mode)
9519 && (num_sign_bit_copies (x, int_mode)
9520 == GET_MODE_PRECISION (int_mode))))
9521 {
9522 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9523 return x;
9524 }
9525
9526 /* Likewise for 0 or a single bit. */
9527 else if (HWI_COMPUTABLE_MODE_P (mode)
9528 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9529 {
9530 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9531 return x;
9532 }
9533
9534 /* Otherwise fail; show no condition with true and false values the same. */
9535 *ptrue = *pfalse = x;
9536 return 0;
9537 }
9538 \f
9539 /* Return the value of expression X given the fact that condition COND
9540 is known to be true when applied to REG as its first operand and VAL
9541 as its second. X is known to not be shared and so can be modified in
9542 place.
9543
9544 We only handle the simplest cases, and specifically those cases that
9545 arise with IF_THEN_ELSE expressions. */
9546
9547 static rtx
9548 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9549 {
9550 enum rtx_code code = GET_CODE (x);
9551 const char *fmt;
9552 int i, j;
9553
9554 if (side_effects_p (x))
9555 return x;
9556
9557 /* If either operand of the condition is a floating point value,
9558 then we have to avoid collapsing an EQ comparison. */
9559 if (cond == EQ
9560 && rtx_equal_p (x, reg)
9561 && ! FLOAT_MODE_P (GET_MODE (x))
9562 && ! FLOAT_MODE_P (GET_MODE (val)))
9563 return val;
9564
9565 if (cond == UNEQ && rtx_equal_p (x, reg))
9566 return val;
9567
9568 /* If X is (abs REG) and we know something about REG's relationship
9569 with zero, we may be able to simplify this. */
9570
9571 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9572 switch (cond)
9573 {
9574 case GE: case GT: case EQ:
9575 return XEXP (x, 0);
9576 case LT: case LE:
9577 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9578 XEXP (x, 0),
9579 GET_MODE (XEXP (x, 0)));
9580 default:
9581 break;
9582 }
9583
9584 /* The only other cases we handle are MIN, MAX, and comparisons if the
9585 operands are the same as REG and VAL. */
9586
9587 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9588 {
9589 if (rtx_equal_p (XEXP (x, 0), val))
9590 {
9591 std::swap (val, reg);
9592 cond = swap_condition (cond);
9593 }
9594
9595 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9596 {
9597 if (COMPARISON_P (x))
9598 {
9599 if (comparison_dominates_p (cond, code))
9600 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9601
9602 code = reversed_comparison_code (x, NULL);
9603 if (code != UNKNOWN
9604 && comparison_dominates_p (cond, code))
9605 return CONST0_RTX (GET_MODE (x));
9606 else
9607 return x;
9608 }
9609 else if (code == SMAX || code == SMIN
9610 || code == UMIN || code == UMAX)
9611 {
9612 int unsignedp = (code == UMIN || code == UMAX);
9613
9614 /* Do not reverse the condition when it is NE or EQ.
9615 This is because we cannot conclude anything about
9616 the value of 'SMAX (x, y)' when x is not equal to y,
9617 but we can when x equals y. */
9618 if ((code == SMAX || code == UMAX)
9619 && ! (cond == EQ || cond == NE))
9620 cond = reverse_condition (cond);
9621
9622 switch (cond)
9623 {
9624 case GE: case GT:
9625 return unsignedp ? x : XEXP (x, 1);
9626 case LE: case LT:
9627 return unsignedp ? x : XEXP (x, 0);
9628 case GEU: case GTU:
9629 return unsignedp ? XEXP (x, 1) : x;
9630 case LEU: case LTU:
9631 return unsignedp ? XEXP (x, 0) : x;
9632 default:
9633 break;
9634 }
9635 }
9636 }
9637 }
9638 else if (code == SUBREG)
9639 {
9640 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9641 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9642
9643 if (SUBREG_REG (x) != r)
9644 {
9645 /* We must simplify subreg here, before we lose track of the
9646 original inner_mode. */
9647 new_rtx = simplify_subreg (GET_MODE (x), r,
9648 inner_mode, SUBREG_BYTE (x));
9649 if (new_rtx)
9650 return new_rtx;
9651 else
9652 SUBST (SUBREG_REG (x), r);
9653 }
9654
9655 return x;
9656 }
9657 /* We don't have to handle SIGN_EXTEND here, because even in the
9658 case of replacing something with a modeless CONST_INT, a
9659 CONST_INT is already (supposed to be) a valid sign extension for
9660 its narrower mode, which implies it's already properly
9661 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9662 story is different. */
9663 else if (code == ZERO_EXTEND)
9664 {
9665 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9666 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9667
9668 if (XEXP (x, 0) != r)
9669 {
9670 /* We must simplify the zero_extend here, before we lose
9671 track of the original inner_mode. */
9672 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9673 r, inner_mode);
9674 if (new_rtx)
9675 return new_rtx;
9676 else
9677 SUBST (XEXP (x, 0), r);
9678 }
9679
9680 return x;
9681 }
9682
9683 fmt = GET_RTX_FORMAT (code);
9684 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9685 {
9686 if (fmt[i] == 'e')
9687 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9688 else if (fmt[i] == 'E')
9689 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9690 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9691 cond, reg, val));
9692 }
9693
9694 return x;
9695 }
9696 \f
9697 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9698 assignment as a field assignment. */
9699
9700 static int
9701 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9702 {
9703 if (widen_x && GET_MODE (x) != GET_MODE (y))
9704 {
9705 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9706 return 0;
9707 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9708 return 0;
9709 x = adjust_address_nv (x, GET_MODE (y),
9710 byte_lowpart_offset (GET_MODE (y),
9711 GET_MODE (x)));
9712 }
9713
9714 if (x == y || rtx_equal_p (x, y))
9715 return 1;
9716
9717 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9718 return 0;
9719
9720 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9721 Note that all SUBREGs of MEM are paradoxical; otherwise they
9722 would have been rewritten. */
9723 if (MEM_P (x) && GET_CODE (y) == SUBREG
9724 && MEM_P (SUBREG_REG (y))
9725 && rtx_equal_p (SUBREG_REG (y),
9726 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9727 return 1;
9728
9729 if (MEM_P (y) && GET_CODE (x) == SUBREG
9730 && MEM_P (SUBREG_REG (x))
9731 && rtx_equal_p (SUBREG_REG (x),
9732 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9733 return 1;
9734
9735 /* We used to see if get_last_value of X and Y were the same but that's
9736 not correct. In one direction, we'll cause the assignment to have
9737 the wrong destination and in the case, we'll import a register into this
9738 insn that might have already have been dead. So fail if none of the
9739 above cases are true. */
9740 return 0;
9741 }
9742 \f
9743 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9744 Return that assignment if so.
9745
9746 We only handle the most common cases. */
9747
9748 static rtx
9749 make_field_assignment (rtx x)
9750 {
9751 rtx dest = SET_DEST (x);
9752 rtx src = SET_SRC (x);
9753 rtx assign;
9754 rtx rhs, lhs;
9755 HOST_WIDE_INT c1;
9756 HOST_WIDE_INT pos;
9757 unsigned HOST_WIDE_INT len;
9758 rtx other;
9759
9760 /* All the rules in this function are specific to scalar integers. */
9761 scalar_int_mode mode;
9762 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9763 return x;
9764
9765 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9766 a clear of a one-bit field. We will have changed it to
9767 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9768 for a SUBREG. */
9769
9770 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9771 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9772 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9773 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9774 {
9775 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9776 1, 1, 1, 0);
9777 if (assign != 0)
9778 return gen_rtx_SET (assign, const0_rtx);
9779 return x;
9780 }
9781
9782 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9783 && subreg_lowpart_p (XEXP (src, 0))
9784 && partial_subreg_p (XEXP (src, 0))
9785 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9786 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9787 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9788 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9789 {
9790 assign = make_extraction (VOIDmode, dest, 0,
9791 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9792 1, 1, 1, 0);
9793 if (assign != 0)
9794 return gen_rtx_SET (assign, const0_rtx);
9795 return x;
9796 }
9797
9798 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9799 one-bit field. */
9800 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9801 && XEXP (XEXP (src, 0), 0) == const1_rtx
9802 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9803 {
9804 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9805 1, 1, 1, 0);
9806 if (assign != 0)
9807 return gen_rtx_SET (assign, const1_rtx);
9808 return x;
9809 }
9810
9811 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9812 SRC is an AND with all bits of that field set, then we can discard
9813 the AND. */
9814 if (GET_CODE (dest) == ZERO_EXTRACT
9815 && CONST_INT_P (XEXP (dest, 1))
9816 && GET_CODE (src) == AND
9817 && CONST_INT_P (XEXP (src, 1)))
9818 {
9819 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9820 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9821 unsigned HOST_WIDE_INT ze_mask;
9822
9823 if (width >= HOST_BITS_PER_WIDE_INT)
9824 ze_mask = -1;
9825 else
9826 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9827
9828 /* Complete overlap. We can remove the source AND. */
9829 if ((and_mask & ze_mask) == ze_mask)
9830 return gen_rtx_SET (dest, XEXP (src, 0));
9831
9832 /* Partial overlap. We can reduce the source AND. */
9833 if ((and_mask & ze_mask) != and_mask)
9834 {
9835 src = gen_rtx_AND (mode, XEXP (src, 0),
9836 gen_int_mode (and_mask & ze_mask, mode));
9837 return gen_rtx_SET (dest, src);
9838 }
9839 }
9840
9841 /* The other case we handle is assignments into a constant-position
9842 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9843 a mask that has all one bits except for a group of zero bits and
9844 OTHER is known to have zeros where C1 has ones, this is such an
9845 assignment. Compute the position and length from C1. Shift OTHER
9846 to the appropriate position, force it to the required mode, and
9847 make the extraction. Check for the AND in both operands. */
9848
9849 /* One or more SUBREGs might obscure the constant-position field
9850 assignment. The first one we are likely to encounter is an outer
9851 narrowing SUBREG, which we can just strip for the purposes of
9852 identifying the constant-field assignment. */
9853 scalar_int_mode src_mode = mode;
9854 if (GET_CODE (src) == SUBREG
9855 && subreg_lowpart_p (src)
9856 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9857 src = SUBREG_REG (src);
9858
9859 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9860 return x;
9861
9862 rhs = expand_compound_operation (XEXP (src, 0));
9863 lhs = expand_compound_operation (XEXP (src, 1));
9864
9865 if (GET_CODE (rhs) == AND
9866 && CONST_INT_P (XEXP (rhs, 1))
9867 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9868 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9869 /* The second SUBREG that might get in the way is a paradoxical
9870 SUBREG around the first operand of the AND. We want to
9871 pretend the operand is as wide as the destination here. We
9872 do this by adjusting the MEM to wider mode for the sole
9873 purpose of the call to rtx_equal_for_field_assignment_p. Also
9874 note this trick only works for MEMs. */
9875 else if (GET_CODE (rhs) == AND
9876 && paradoxical_subreg_p (XEXP (rhs, 0))
9877 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9878 && CONST_INT_P (XEXP (rhs, 1))
9879 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9880 dest, true))
9881 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9882 else if (GET_CODE (lhs) == AND
9883 && CONST_INT_P (XEXP (lhs, 1))
9884 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9885 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9886 /* The second SUBREG that might get in the way is a paradoxical
9887 SUBREG around the first operand of the AND. We want to
9888 pretend the operand is as wide as the destination here. We
9889 do this by adjusting the MEM to wider mode for the sole
9890 purpose of the call to rtx_equal_for_field_assignment_p. Also
9891 note this trick only works for MEMs. */
9892 else if (GET_CODE (lhs) == AND
9893 && paradoxical_subreg_p (XEXP (lhs, 0))
9894 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9895 && CONST_INT_P (XEXP (lhs, 1))
9896 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9897 dest, true))
9898 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9899 else
9900 return x;
9901
9902 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9903 if (pos < 0
9904 || pos + len > GET_MODE_PRECISION (mode)
9905 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9906 || (c1 & nonzero_bits (other, mode)) != 0)
9907 return x;
9908
9909 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9910 if (assign == 0)
9911 return x;
9912
9913 /* The mode to use for the source is the mode of the assignment, or of
9914 what is inside a possible STRICT_LOW_PART. */
9915 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9916 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9917
9918 /* Shift OTHER right POS places and make it the source, restricting it
9919 to the proper length and mode. */
9920
9921 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9922 src_mode, other, pos),
9923 dest);
9924 src = force_to_mode (src, new_mode,
9925 len >= HOST_BITS_PER_WIDE_INT
9926 ? HOST_WIDE_INT_M1U
9927 : (HOST_WIDE_INT_1U << len) - 1,
9928 0);
9929
9930 /* If SRC is masked by an AND that does not make a difference in
9931 the value being stored, strip it. */
9932 if (GET_CODE (assign) == ZERO_EXTRACT
9933 && CONST_INT_P (XEXP (assign, 1))
9934 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9935 && GET_CODE (src) == AND
9936 && CONST_INT_P (XEXP (src, 1))
9937 && UINTVAL (XEXP (src, 1))
9938 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9939 src = XEXP (src, 0);
9940
9941 return gen_rtx_SET (assign, src);
9942 }
9943 \f
9944 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9945 if so. */
9946
9947 static rtx
9948 apply_distributive_law (rtx x)
9949 {
9950 enum rtx_code code = GET_CODE (x);
9951 enum rtx_code inner_code;
9952 rtx lhs, rhs, other;
9953 rtx tem;
9954
9955 /* Distributivity is not true for floating point as it can change the
9956 value. So we don't do it unless -funsafe-math-optimizations. */
9957 if (FLOAT_MODE_P (GET_MODE (x))
9958 && ! flag_unsafe_math_optimizations)
9959 return x;
9960
9961 /* The outer operation can only be one of the following: */
9962 if (code != IOR && code != AND && code != XOR
9963 && code != PLUS && code != MINUS)
9964 return x;
9965
9966 lhs = XEXP (x, 0);
9967 rhs = XEXP (x, 1);
9968
9969 /* If either operand is a primitive we can't do anything, so get out
9970 fast. */
9971 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9972 return x;
9973
9974 lhs = expand_compound_operation (lhs);
9975 rhs = expand_compound_operation (rhs);
9976 inner_code = GET_CODE (lhs);
9977 if (inner_code != GET_CODE (rhs))
9978 return x;
9979
9980 /* See if the inner and outer operations distribute. */
9981 switch (inner_code)
9982 {
9983 case LSHIFTRT:
9984 case ASHIFTRT:
9985 case AND:
9986 case IOR:
9987 /* These all distribute except over PLUS. */
9988 if (code == PLUS || code == MINUS)
9989 return x;
9990 break;
9991
9992 case MULT:
9993 if (code != PLUS && code != MINUS)
9994 return x;
9995 break;
9996
9997 case ASHIFT:
9998 /* This is also a multiply, so it distributes over everything. */
9999 break;
10000
10001 /* This used to handle SUBREG, but this turned out to be counter-
10002 productive, since (subreg (op ...)) usually is not handled by
10003 insn patterns, and this "optimization" therefore transformed
10004 recognizable patterns into unrecognizable ones. Therefore the
10005 SUBREG case was removed from here.
10006
10007 It is possible that distributing SUBREG over arithmetic operations
10008 leads to an intermediate result than can then be optimized further,
10009 e.g. by moving the outer SUBREG to the other side of a SET as done
10010 in simplify_set. This seems to have been the original intent of
10011 handling SUBREGs here.
10012
10013 However, with current GCC this does not appear to actually happen,
10014 at least on major platforms. If some case is found where removing
10015 the SUBREG case here prevents follow-on optimizations, distributing
10016 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10017
10018 default:
10019 return x;
10020 }
10021
10022 /* Set LHS and RHS to the inner operands (A and B in the example
10023 above) and set OTHER to the common operand (C in the example).
10024 There is only one way to do this unless the inner operation is
10025 commutative. */
10026 if (COMMUTATIVE_ARITH_P (lhs)
10027 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10028 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10029 else if (COMMUTATIVE_ARITH_P (lhs)
10030 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10031 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10032 else if (COMMUTATIVE_ARITH_P (lhs)
10033 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10034 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10035 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10036 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10037 else
10038 return x;
10039
10040 /* Form the new inner operation, seeing if it simplifies first. */
10041 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10042
10043 /* There is one exception to the general way of distributing:
10044 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10045 if (code == XOR && inner_code == IOR)
10046 {
10047 inner_code = AND;
10048 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10049 }
10050
10051 /* We may be able to continuing distributing the result, so call
10052 ourselves recursively on the inner operation before forming the
10053 outer operation, which we return. */
10054 return simplify_gen_binary (inner_code, GET_MODE (x),
10055 apply_distributive_law (tem), other);
10056 }
10057
10058 /* See if X is of the form (* (+ A B) C), and if so convert to
10059 (+ (* A C) (* B C)) and try to simplify.
10060
10061 Most of the time, this results in no change. However, if some of
10062 the operands are the same or inverses of each other, simplifications
10063 will result.
10064
10065 For example, (and (ior A B) (not B)) can occur as the result of
10066 expanding a bit field assignment. When we apply the distributive
10067 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10068 which then simplifies to (and (A (not B))).
10069
10070 Note that no checks happen on the validity of applying the inverse
10071 distributive law. This is pointless since we can do it in the
10072 few places where this routine is called.
10073
10074 N is the index of the term that is decomposed (the arithmetic operation,
10075 i.e. (+ A B) in the first example above). !N is the index of the term that
10076 is distributed, i.e. of C in the first example above. */
10077 static rtx
10078 distribute_and_simplify_rtx (rtx x, int n)
10079 {
10080 machine_mode mode;
10081 enum rtx_code outer_code, inner_code;
10082 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10083
10084 /* Distributivity is not true for floating point as it can change the
10085 value. So we don't do it unless -funsafe-math-optimizations. */
10086 if (FLOAT_MODE_P (GET_MODE (x))
10087 && ! flag_unsafe_math_optimizations)
10088 return NULL_RTX;
10089
10090 decomposed = XEXP (x, n);
10091 if (!ARITHMETIC_P (decomposed))
10092 return NULL_RTX;
10093
10094 mode = GET_MODE (x);
10095 outer_code = GET_CODE (x);
10096 distributed = XEXP (x, !n);
10097
10098 inner_code = GET_CODE (decomposed);
10099 inner_op0 = XEXP (decomposed, 0);
10100 inner_op1 = XEXP (decomposed, 1);
10101
10102 /* Special case (and (xor B C) (not A)), which is equivalent to
10103 (xor (ior A B) (ior A C)) */
10104 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10105 {
10106 distributed = XEXP (distributed, 0);
10107 outer_code = IOR;
10108 }
10109
10110 if (n == 0)
10111 {
10112 /* Distribute the second term. */
10113 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10114 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10115 }
10116 else
10117 {
10118 /* Distribute the first term. */
10119 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10120 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10121 }
10122
10123 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10124 new_op0, new_op1));
10125 if (GET_CODE (tmp) != outer_code
10126 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10127 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10128 return tmp;
10129
10130 return NULL_RTX;
10131 }
10132 \f
10133 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10134 in MODE. Return an equivalent form, if different from (and VAROP
10135 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10136
10137 static rtx
10138 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10139 unsigned HOST_WIDE_INT constop)
10140 {
10141 unsigned HOST_WIDE_INT nonzero;
10142 unsigned HOST_WIDE_INT orig_constop;
10143 rtx orig_varop;
10144 int i;
10145
10146 orig_varop = varop;
10147 orig_constop = constop;
10148 if (GET_CODE (varop) == CLOBBER)
10149 return NULL_RTX;
10150
10151 /* Simplify VAROP knowing that we will be only looking at some of the
10152 bits in it.
10153
10154 Note by passing in CONSTOP, we guarantee that the bits not set in
10155 CONSTOP are not significant and will never be examined. We must
10156 ensure that is the case by explicitly masking out those bits
10157 before returning. */
10158 varop = force_to_mode (varop, mode, constop, 0);
10159
10160 /* If VAROP is a CLOBBER, we will fail so return it. */
10161 if (GET_CODE (varop) == CLOBBER)
10162 return varop;
10163
10164 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10165 to VAROP and return the new constant. */
10166 if (CONST_INT_P (varop))
10167 return gen_int_mode (INTVAL (varop) & constop, mode);
10168
10169 /* See what bits may be nonzero in VAROP. Unlike the general case of
10170 a call to nonzero_bits, here we don't care about bits outside
10171 MODE. */
10172
10173 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10174
10175 /* Turn off all bits in the constant that are known to already be zero.
10176 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10177 which is tested below. */
10178
10179 constop &= nonzero;
10180
10181 /* If we don't have any bits left, return zero. */
10182 if (constop == 0)
10183 return const0_rtx;
10184
10185 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10186 a power of two, we can replace this with an ASHIFT. */
10187 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10188 && (i = exact_log2 (constop)) >= 0)
10189 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10190
10191 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10192 or XOR, then try to apply the distributive law. This may eliminate
10193 operations if either branch can be simplified because of the AND.
10194 It may also make some cases more complex, but those cases probably
10195 won't match a pattern either with or without this. */
10196
10197 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10198 {
10199 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10200 return
10201 gen_lowpart
10202 (mode,
10203 apply_distributive_law
10204 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10205 simplify_and_const_int (NULL_RTX, varop_mode,
10206 XEXP (varop, 0),
10207 constop),
10208 simplify_and_const_int (NULL_RTX, varop_mode,
10209 XEXP (varop, 1),
10210 constop))));
10211 }
10212
10213 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10214 the AND and see if one of the operands simplifies to zero. If so, we
10215 may eliminate it. */
10216
10217 if (GET_CODE (varop) == PLUS
10218 && pow2p_hwi (constop + 1))
10219 {
10220 rtx o0, o1;
10221
10222 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10223 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10224 if (o0 == const0_rtx)
10225 return o1;
10226 if (o1 == const0_rtx)
10227 return o0;
10228 }
10229
10230 /* Make a SUBREG if necessary. If we can't make it, fail. */
10231 varop = gen_lowpart (mode, varop);
10232 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10233 return NULL_RTX;
10234
10235 /* If we are only masking insignificant bits, return VAROP. */
10236 if (constop == nonzero)
10237 return varop;
10238
10239 if (varop == orig_varop && constop == orig_constop)
10240 return NULL_RTX;
10241
10242 /* Otherwise, return an AND. */
10243 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10244 }
10245
10246
10247 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10248 in MODE.
10249
10250 Return an equivalent form, if different from X. Otherwise, return X. If
10251 X is zero, we are to always construct the equivalent form. */
10252
10253 static rtx
10254 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10255 unsigned HOST_WIDE_INT constop)
10256 {
10257 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10258 if (tem)
10259 return tem;
10260
10261 if (!x)
10262 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10263 gen_int_mode (constop, mode));
10264 if (GET_MODE (x) != mode)
10265 x = gen_lowpart (mode, x);
10266 return x;
10267 }
10268 \f
10269 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10270 We don't care about bits outside of those defined in MODE.
10271 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10272
10273 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10274 a shift, AND, or zero_extract, we can do better. */
10275
10276 static rtx
10277 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10278 scalar_int_mode mode,
10279 unsigned HOST_WIDE_INT *nonzero)
10280 {
10281 rtx tem;
10282 reg_stat_type *rsp;
10283
10284 /* If X is a register whose nonzero bits value is current, use it.
10285 Otherwise, if X is a register whose value we can find, use that
10286 value. Otherwise, use the previously-computed global nonzero bits
10287 for this register. */
10288
10289 rsp = &reg_stat[REGNO (x)];
10290 if (rsp->last_set_value != 0
10291 && (rsp->last_set_mode == mode
10292 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10293 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10294 && GET_MODE_CLASS (mode) == MODE_INT))
10295 && ((rsp->last_set_label >= label_tick_ebb_start
10296 && rsp->last_set_label < label_tick)
10297 || (rsp->last_set_label == label_tick
10298 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10299 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10300 && REGNO (x) < reg_n_sets_max
10301 && REG_N_SETS (REGNO (x)) == 1
10302 && !REGNO_REG_SET_P
10303 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10304 REGNO (x)))))
10305 {
10306 /* Note that, even if the precision of last_set_mode is lower than that
10307 of mode, record_value_for_reg invoked nonzero_bits on the register
10308 with nonzero_bits_mode (because last_set_mode is necessarily integral
10309 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10310 are all valid, hence in mode too since nonzero_bits_mode is defined
10311 to the largest HWI_COMPUTABLE_MODE_P mode. */
10312 *nonzero &= rsp->last_set_nonzero_bits;
10313 return NULL;
10314 }
10315
10316 tem = get_last_value (x);
10317 if (tem)
10318 {
10319 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10320 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10321
10322 return tem;
10323 }
10324
10325 if (nonzero_sign_valid && rsp->nonzero_bits)
10326 {
10327 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10328
10329 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10330 /* We don't know anything about the upper bits. */
10331 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10332
10333 *nonzero &= mask;
10334 }
10335
10336 return NULL;
10337 }
10338
10339 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10340 end of X that are known to be equal to the sign bit. X will be used
10341 in mode MODE; the returned value will always be between 1 and the
10342 number of bits in MODE. */
10343
10344 static rtx
10345 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10346 scalar_int_mode mode,
10347 unsigned int *result)
10348 {
10349 rtx tem;
10350 reg_stat_type *rsp;
10351
10352 rsp = &reg_stat[REGNO (x)];
10353 if (rsp->last_set_value != 0
10354 && rsp->last_set_mode == mode
10355 && ((rsp->last_set_label >= label_tick_ebb_start
10356 && rsp->last_set_label < label_tick)
10357 || (rsp->last_set_label == label_tick
10358 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10359 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10360 && REGNO (x) < reg_n_sets_max
10361 && REG_N_SETS (REGNO (x)) == 1
10362 && !REGNO_REG_SET_P
10363 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10364 REGNO (x)))))
10365 {
10366 *result = rsp->last_set_sign_bit_copies;
10367 return NULL;
10368 }
10369
10370 tem = get_last_value (x);
10371 if (tem != 0)
10372 return tem;
10373
10374 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10375 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10376 *result = rsp->sign_bit_copies;
10377
10378 return NULL;
10379 }
10380 \f
10381 /* Return the number of "extended" bits there are in X, when interpreted
10382 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10383 unsigned quantities, this is the number of high-order zero bits.
10384 For signed quantities, this is the number of copies of the sign bit
10385 minus 1. In both case, this function returns the number of "spare"
10386 bits. For example, if two quantities for which this function returns
10387 at least 1 are added, the addition is known not to overflow.
10388
10389 This function will always return 0 unless called during combine, which
10390 implies that it must be called from a define_split. */
10391
10392 unsigned int
10393 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10394 {
10395 if (nonzero_sign_valid == 0)
10396 return 0;
10397
10398 scalar_int_mode int_mode;
10399 return (unsignedp
10400 ? (is_a <scalar_int_mode> (mode, &int_mode)
10401 && HWI_COMPUTABLE_MODE_P (int_mode)
10402 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10403 - floor_log2 (nonzero_bits (x, int_mode)))
10404 : 0)
10405 : num_sign_bit_copies (x, mode) - 1);
10406 }
10407
10408 /* This function is called from `simplify_shift_const' to merge two
10409 outer operations. Specifically, we have already found that we need
10410 to perform operation *POP0 with constant *PCONST0 at the outermost
10411 position. We would now like to also perform OP1 with constant CONST1
10412 (with *POP0 being done last).
10413
10414 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10415 the resulting operation. *PCOMP_P is set to 1 if we would need to
10416 complement the innermost operand, otherwise it is unchanged.
10417
10418 MODE is the mode in which the operation will be done. No bits outside
10419 the width of this mode matter. It is assumed that the width of this mode
10420 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10421
10422 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10423 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10424 result is simply *PCONST0.
10425
10426 If the resulting operation cannot be expressed as one operation, we
10427 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10428
10429 static int
10430 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10431 {
10432 enum rtx_code op0 = *pop0;
10433 HOST_WIDE_INT const0 = *pconst0;
10434
10435 const0 &= GET_MODE_MASK (mode);
10436 const1 &= GET_MODE_MASK (mode);
10437
10438 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10439 if (op0 == AND)
10440 const1 &= const0;
10441
10442 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10443 if OP0 is SET. */
10444
10445 if (op1 == UNKNOWN || op0 == SET)
10446 return 1;
10447
10448 else if (op0 == UNKNOWN)
10449 op0 = op1, const0 = const1;
10450
10451 else if (op0 == op1)
10452 {
10453 switch (op0)
10454 {
10455 case AND:
10456 const0 &= const1;
10457 break;
10458 case IOR:
10459 const0 |= const1;
10460 break;
10461 case XOR:
10462 const0 ^= const1;
10463 break;
10464 case PLUS:
10465 const0 += const1;
10466 break;
10467 case NEG:
10468 op0 = UNKNOWN;
10469 break;
10470 default:
10471 break;
10472 }
10473 }
10474
10475 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10476 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10477 return 0;
10478
10479 /* If the two constants aren't the same, we can't do anything. The
10480 remaining six cases can all be done. */
10481 else if (const0 != const1)
10482 return 0;
10483
10484 else
10485 switch (op0)
10486 {
10487 case IOR:
10488 if (op1 == AND)
10489 /* (a & b) | b == b */
10490 op0 = SET;
10491 else /* op1 == XOR */
10492 /* (a ^ b) | b == a | b */
10493 {;}
10494 break;
10495
10496 case XOR:
10497 if (op1 == AND)
10498 /* (a & b) ^ b == (~a) & b */
10499 op0 = AND, *pcomp_p = 1;
10500 else /* op1 == IOR */
10501 /* (a | b) ^ b == a & ~b */
10502 op0 = AND, const0 = ~const0;
10503 break;
10504
10505 case AND:
10506 if (op1 == IOR)
10507 /* (a | b) & b == b */
10508 op0 = SET;
10509 else /* op1 == XOR */
10510 /* (a ^ b) & b) == (~a) & b */
10511 *pcomp_p = 1;
10512 break;
10513 default:
10514 break;
10515 }
10516
10517 /* Check for NO-OP cases. */
10518 const0 &= GET_MODE_MASK (mode);
10519 if (const0 == 0
10520 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10521 op0 = UNKNOWN;
10522 else if (const0 == 0 && op0 == AND)
10523 op0 = SET;
10524 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10525 && op0 == AND)
10526 op0 = UNKNOWN;
10527
10528 *pop0 = op0;
10529
10530 /* ??? Slightly redundant with the above mask, but not entirely.
10531 Moving this above means we'd have to sign-extend the mode mask
10532 for the final test. */
10533 if (op0 != UNKNOWN && op0 != NEG)
10534 *pconst0 = trunc_int_for_mode (const0, mode);
10535
10536 return 1;
10537 }
10538 \f
10539 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10540 the shift in. The original shift operation CODE is performed on OP in
10541 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10542 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10543 result of the shift is subject to operation OUTER_CODE with operand
10544 OUTER_CONST. */
10545
10546 static scalar_int_mode
10547 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10548 scalar_int_mode orig_mode, scalar_int_mode mode,
10549 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10550 {
10551 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10552
10553 /* In general we can't perform in wider mode for right shift and rotate. */
10554 switch (code)
10555 {
10556 case ASHIFTRT:
10557 /* We can still widen if the bits brought in from the left are identical
10558 to the sign bit of ORIG_MODE. */
10559 if (num_sign_bit_copies (op, mode)
10560 > (unsigned) (GET_MODE_PRECISION (mode)
10561 - GET_MODE_PRECISION (orig_mode)))
10562 return mode;
10563 return orig_mode;
10564
10565 case LSHIFTRT:
10566 /* Similarly here but with zero bits. */
10567 if (HWI_COMPUTABLE_MODE_P (mode)
10568 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10569 return mode;
10570
10571 /* We can also widen if the bits brought in will be masked off. This
10572 operation is performed in ORIG_MODE. */
10573 if (outer_code == AND)
10574 {
10575 int care_bits = low_bitmask_len (orig_mode, outer_const);
10576
10577 if (care_bits >= 0
10578 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10579 return mode;
10580 }
10581 /* fall through */
10582
10583 case ROTATE:
10584 return orig_mode;
10585
10586 case ROTATERT:
10587 gcc_unreachable ();
10588
10589 default:
10590 return mode;
10591 }
10592 }
10593
10594 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10595 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10596 if we cannot simplify it. Otherwise, return a simplified value.
10597
10598 The shift is normally computed in the widest mode we find in VAROP, as
10599 long as it isn't a different number of words than RESULT_MODE. Exceptions
10600 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10601
10602 static rtx
10603 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10604 rtx varop, int orig_count)
10605 {
10606 enum rtx_code orig_code = code;
10607 rtx orig_varop = varop;
10608 int count, log2;
10609 machine_mode mode = result_mode;
10610 machine_mode shift_mode;
10611 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10612 /* We form (outer_op (code varop count) (outer_const)). */
10613 enum rtx_code outer_op = UNKNOWN;
10614 HOST_WIDE_INT outer_const = 0;
10615 int complement_p = 0;
10616 rtx new_rtx, x;
10617
10618 /* Make sure and truncate the "natural" shift on the way in. We don't
10619 want to do this inside the loop as it makes it more difficult to
10620 combine shifts. */
10621 if (SHIFT_COUNT_TRUNCATED)
10622 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10623
10624 /* If we were given an invalid count, don't do anything except exactly
10625 what was requested. */
10626
10627 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10628 return NULL_RTX;
10629
10630 count = orig_count;
10631
10632 /* Unless one of the branches of the `if' in this loop does a `continue',
10633 we will `break' the loop after the `if'. */
10634
10635 while (count != 0)
10636 {
10637 /* If we have an operand of (clobber (const_int 0)), fail. */
10638 if (GET_CODE (varop) == CLOBBER)
10639 return NULL_RTX;
10640
10641 /* Convert ROTATERT to ROTATE. */
10642 if (code == ROTATERT)
10643 {
10644 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10645 code = ROTATE;
10646 count = bitsize - count;
10647 }
10648
10649 shift_mode = result_mode;
10650 if (shift_mode != mode)
10651 {
10652 /* We only change the modes of scalar shifts. */
10653 int_mode = as_a <scalar_int_mode> (mode);
10654 int_result_mode = as_a <scalar_int_mode> (result_mode);
10655 shift_mode = try_widen_shift_mode (code, varop, count,
10656 int_result_mode, int_mode,
10657 outer_op, outer_const);
10658 }
10659
10660 scalar_int_mode shift_unit_mode
10661 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10662
10663 /* Handle cases where the count is greater than the size of the mode
10664 minus 1. For ASHIFT, use the size minus one as the count (this can
10665 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10666 take the count modulo the size. For other shifts, the result is
10667 zero.
10668
10669 Since these shifts are being produced by the compiler by combining
10670 multiple operations, each of which are defined, we know what the
10671 result is supposed to be. */
10672
10673 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10674 {
10675 if (code == ASHIFTRT)
10676 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10677 else if (code == ROTATE || code == ROTATERT)
10678 count %= GET_MODE_PRECISION (shift_unit_mode);
10679 else
10680 {
10681 /* We can't simply return zero because there may be an
10682 outer op. */
10683 varop = const0_rtx;
10684 count = 0;
10685 break;
10686 }
10687 }
10688
10689 /* If we discovered we had to complement VAROP, leave. Making a NOT
10690 here would cause an infinite loop. */
10691 if (complement_p)
10692 break;
10693
10694 if (shift_mode == shift_unit_mode)
10695 {
10696 /* An arithmetic right shift of a quantity known to be -1 or 0
10697 is a no-op. */
10698 if (code == ASHIFTRT
10699 && (num_sign_bit_copies (varop, shift_unit_mode)
10700 == GET_MODE_PRECISION (shift_unit_mode)))
10701 {
10702 count = 0;
10703 break;
10704 }
10705
10706 /* If we are doing an arithmetic right shift and discarding all but
10707 the sign bit copies, this is equivalent to doing a shift by the
10708 bitsize minus one. Convert it into that shift because it will
10709 often allow other simplifications. */
10710
10711 if (code == ASHIFTRT
10712 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10713 >= GET_MODE_PRECISION (shift_unit_mode)))
10714 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10715
10716 /* We simplify the tests below and elsewhere by converting
10717 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10718 `make_compound_operation' will convert it to an ASHIFTRT for
10719 those machines (such as VAX) that don't have an LSHIFTRT. */
10720 if (code == ASHIFTRT
10721 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10722 && val_signbit_known_clear_p (shift_unit_mode,
10723 nonzero_bits (varop,
10724 shift_unit_mode)))
10725 code = LSHIFTRT;
10726
10727 if (((code == LSHIFTRT
10728 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10729 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10730 || (code == ASHIFT
10731 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10732 && !((nonzero_bits (varop, shift_unit_mode) << count)
10733 & GET_MODE_MASK (shift_unit_mode))))
10734 && !side_effects_p (varop))
10735 varop = const0_rtx;
10736 }
10737
10738 switch (GET_CODE (varop))
10739 {
10740 case SIGN_EXTEND:
10741 case ZERO_EXTEND:
10742 case SIGN_EXTRACT:
10743 case ZERO_EXTRACT:
10744 new_rtx = expand_compound_operation (varop);
10745 if (new_rtx != varop)
10746 {
10747 varop = new_rtx;
10748 continue;
10749 }
10750 break;
10751
10752 case MEM:
10753 /* The following rules apply only to scalars. */
10754 if (shift_mode != shift_unit_mode)
10755 break;
10756 int_mode = as_a <scalar_int_mode> (mode);
10757
10758 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10759 minus the width of a smaller mode, we can do this with a
10760 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10761 if ((code == ASHIFTRT || code == LSHIFTRT)
10762 && ! mode_dependent_address_p (XEXP (varop, 0),
10763 MEM_ADDR_SPACE (varop))
10764 && ! MEM_VOLATILE_P (varop)
10765 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10766 .exists (&tmode)))
10767 {
10768 new_rtx = adjust_address_nv (varop, tmode,
10769 BYTES_BIG_ENDIAN ? 0
10770 : count / BITS_PER_UNIT);
10771
10772 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10773 : ZERO_EXTEND, int_mode, new_rtx);
10774 count = 0;
10775 continue;
10776 }
10777 break;
10778
10779 case SUBREG:
10780 /* The following rules apply only to scalars. */
10781 if (shift_mode != shift_unit_mode)
10782 break;
10783 int_mode = as_a <scalar_int_mode> (mode);
10784 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10785
10786 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10787 the same number of words as what we've seen so far. Then store
10788 the widest mode in MODE. */
10789 if (subreg_lowpart_p (varop)
10790 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10791 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10792 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10793 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10794 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10795 {
10796 varop = SUBREG_REG (varop);
10797 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10798 mode = inner_mode;
10799 continue;
10800 }
10801 break;
10802
10803 case MULT:
10804 /* Some machines use MULT instead of ASHIFT because MULT
10805 is cheaper. But it is still better on those machines to
10806 merge two shifts into one. */
10807 if (CONST_INT_P (XEXP (varop, 1))
10808 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10809 {
10810 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10811 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10812 XEXP (varop, 0), log2_rtx);
10813 continue;
10814 }
10815 break;
10816
10817 case UDIV:
10818 /* Similar, for when divides are cheaper. */
10819 if (CONST_INT_P (XEXP (varop, 1))
10820 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10821 {
10822 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10823 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10824 XEXP (varop, 0), log2_rtx);
10825 continue;
10826 }
10827 break;
10828
10829 case ASHIFTRT:
10830 /* If we are extracting just the sign bit of an arithmetic
10831 right shift, that shift is not needed. However, the sign
10832 bit of a wider mode may be different from what would be
10833 interpreted as the sign bit in a narrower mode, so, if
10834 the result is narrower, don't discard the shift. */
10835 if (code == LSHIFTRT
10836 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10837 && (GET_MODE_UNIT_BITSIZE (result_mode)
10838 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10839 {
10840 varop = XEXP (varop, 0);
10841 continue;
10842 }
10843
10844 /* fall through */
10845
10846 case LSHIFTRT:
10847 case ASHIFT:
10848 case ROTATE:
10849 /* The following rules apply only to scalars. */
10850 if (shift_mode != shift_unit_mode)
10851 break;
10852 int_mode = as_a <scalar_int_mode> (mode);
10853 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10854 int_result_mode = as_a <scalar_int_mode> (result_mode);
10855
10856 /* Here we have two nested shifts. The result is usually the
10857 AND of a new shift with a mask. We compute the result below. */
10858 if (CONST_INT_P (XEXP (varop, 1))
10859 && INTVAL (XEXP (varop, 1)) >= 0
10860 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10861 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10862 && HWI_COMPUTABLE_MODE_P (int_mode))
10863 {
10864 enum rtx_code first_code = GET_CODE (varop);
10865 unsigned int first_count = INTVAL (XEXP (varop, 1));
10866 unsigned HOST_WIDE_INT mask;
10867 rtx mask_rtx;
10868
10869 /* We have one common special case. We can't do any merging if
10870 the inner code is an ASHIFTRT of a smaller mode. However, if
10871 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10872 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10873 we can convert it to
10874 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10875 This simplifies certain SIGN_EXTEND operations. */
10876 if (code == ASHIFT && first_code == ASHIFTRT
10877 && count == (GET_MODE_PRECISION (int_result_mode)
10878 - GET_MODE_PRECISION (int_varop_mode)))
10879 {
10880 /* C3 has the low-order C1 bits zero. */
10881
10882 mask = GET_MODE_MASK (int_mode)
10883 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10884
10885 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10886 XEXP (varop, 0), mask);
10887 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10888 int_result_mode, varop, count);
10889 count = first_count;
10890 code = ASHIFTRT;
10891 continue;
10892 }
10893
10894 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10895 than C1 high-order bits equal to the sign bit, we can convert
10896 this to either an ASHIFT or an ASHIFTRT depending on the
10897 two counts.
10898
10899 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10900
10901 if (code == ASHIFTRT && first_code == ASHIFT
10902 && int_varop_mode == shift_unit_mode
10903 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10904 > first_count))
10905 {
10906 varop = XEXP (varop, 0);
10907 count -= first_count;
10908 if (count < 0)
10909 {
10910 count = -count;
10911 code = ASHIFT;
10912 }
10913
10914 continue;
10915 }
10916
10917 /* There are some cases we can't do. If CODE is ASHIFTRT,
10918 we can only do this if FIRST_CODE is also ASHIFTRT.
10919
10920 We can't do the case when CODE is ROTATE and FIRST_CODE is
10921 ASHIFTRT.
10922
10923 If the mode of this shift is not the mode of the outer shift,
10924 we can't do this if either shift is a right shift or ROTATE.
10925
10926 Finally, we can't do any of these if the mode is too wide
10927 unless the codes are the same.
10928
10929 Handle the case where the shift codes are the same
10930 first. */
10931
10932 if (code == first_code)
10933 {
10934 if (int_varop_mode != int_result_mode
10935 && (code == ASHIFTRT || code == LSHIFTRT
10936 || code == ROTATE))
10937 break;
10938
10939 count += first_count;
10940 varop = XEXP (varop, 0);
10941 continue;
10942 }
10943
10944 if (code == ASHIFTRT
10945 || (code == ROTATE && first_code == ASHIFTRT)
10946 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10947 || (int_varop_mode != int_result_mode
10948 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10949 || first_code == ROTATE
10950 || code == ROTATE)))
10951 break;
10952
10953 /* To compute the mask to apply after the shift, shift the
10954 nonzero bits of the inner shift the same way the
10955 outer shift will. */
10956
10957 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10958 int_result_mode);
10959 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10960 mask_rtx
10961 = simplify_const_binary_operation (code, int_result_mode,
10962 mask_rtx, count_rtx);
10963
10964 /* Give up if we can't compute an outer operation to use. */
10965 if (mask_rtx == 0
10966 || !CONST_INT_P (mask_rtx)
10967 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10968 INTVAL (mask_rtx),
10969 int_result_mode, &complement_p))
10970 break;
10971
10972 /* If the shifts are in the same direction, we add the
10973 counts. Otherwise, we subtract them. */
10974 if ((code == ASHIFTRT || code == LSHIFTRT)
10975 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10976 count += first_count;
10977 else
10978 count -= first_count;
10979
10980 /* If COUNT is positive, the new shift is usually CODE,
10981 except for the two exceptions below, in which case it is
10982 FIRST_CODE. If the count is negative, FIRST_CODE should
10983 always be used */
10984 if (count > 0
10985 && ((first_code == ROTATE && code == ASHIFT)
10986 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10987 code = first_code;
10988 else if (count < 0)
10989 code = first_code, count = -count;
10990
10991 varop = XEXP (varop, 0);
10992 continue;
10993 }
10994
10995 /* If we have (A << B << C) for any shift, we can convert this to
10996 (A << C << B). This wins if A is a constant. Only try this if
10997 B is not a constant. */
10998
10999 else if (GET_CODE (varop) == code
11000 && CONST_INT_P (XEXP (varop, 0))
11001 && !CONST_INT_P (XEXP (varop, 1)))
11002 {
11003 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
11004 sure the result will be masked. See PR70222. */
11005 if (code == LSHIFTRT
11006 && int_mode != int_result_mode
11007 && !merge_outer_ops (&outer_op, &outer_const, AND,
11008 GET_MODE_MASK (int_result_mode)
11009 >> orig_count, int_result_mode,
11010 &complement_p))
11011 break;
11012 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
11013 up outer sign extension (often left and right shift) is
11014 hardly more efficient than the original. See PR70429. */
11015 if (code == ASHIFTRT && int_mode != int_result_mode)
11016 break;
11017
11018 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11019 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11020 XEXP (varop, 0),
11021 count_rtx);
11022 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11023 count = 0;
11024 continue;
11025 }
11026 break;
11027
11028 case NOT:
11029 /* The following rules apply only to scalars. */
11030 if (shift_mode != shift_unit_mode)
11031 break;
11032
11033 /* Make this fit the case below. */
11034 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11035 continue;
11036
11037 case IOR:
11038 case AND:
11039 case XOR:
11040 /* The following rules apply only to scalars. */
11041 if (shift_mode != shift_unit_mode)
11042 break;
11043 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11044 int_result_mode = as_a <scalar_int_mode> (result_mode);
11045
11046 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11047 with C the size of VAROP - 1 and the shift is logical if
11048 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11049 we have an (le X 0) operation. If we have an arithmetic shift
11050 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11051 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11052
11053 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11054 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11055 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11056 && (code == LSHIFTRT || code == ASHIFTRT)
11057 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11058 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11059 {
11060 count = 0;
11061 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11062 const0_rtx);
11063
11064 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11065 varop = gen_rtx_NEG (int_varop_mode, varop);
11066
11067 continue;
11068 }
11069
11070 /* If we have (shift (logical)), move the logical to the outside
11071 to allow it to possibly combine with another logical and the
11072 shift to combine with another shift. This also canonicalizes to
11073 what a ZERO_EXTRACT looks like. Also, some machines have
11074 (and (shift)) insns. */
11075
11076 if (CONST_INT_P (XEXP (varop, 1))
11077 /* We can't do this if we have (ashiftrt (xor)) and the
11078 constant has its sign bit set in shift_unit_mode with
11079 shift_unit_mode wider than result_mode. */
11080 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11081 && int_result_mode != shift_unit_mode
11082 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11083 shift_unit_mode) < 0)
11084 && (new_rtx = simplify_const_binary_operation
11085 (code, int_result_mode,
11086 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11087 gen_int_shift_amount (int_result_mode, count))) != 0
11088 && CONST_INT_P (new_rtx)
11089 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11090 INTVAL (new_rtx), int_result_mode,
11091 &complement_p))
11092 {
11093 varop = XEXP (varop, 0);
11094 continue;
11095 }
11096
11097 /* If we can't do that, try to simplify the shift in each arm of the
11098 logical expression, make a new logical expression, and apply
11099 the inverse distributive law. This also can't be done for
11100 (ashiftrt (xor)) where we've widened the shift and the constant
11101 changes the sign bit. */
11102 if (CONST_INT_P (XEXP (varop, 1))
11103 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11104 && int_result_mode != shift_unit_mode
11105 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11106 shift_unit_mode) < 0))
11107 {
11108 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11109 XEXP (varop, 0), count);
11110 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11111 XEXP (varop, 1), count);
11112
11113 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11114 lhs, rhs);
11115 varop = apply_distributive_law (varop);
11116
11117 count = 0;
11118 continue;
11119 }
11120 break;
11121
11122 case EQ:
11123 /* The following rules apply only to scalars. */
11124 if (shift_mode != shift_unit_mode)
11125 break;
11126 int_result_mode = as_a <scalar_int_mode> (result_mode);
11127
11128 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11129 says that the sign bit can be tested, FOO has mode MODE, C is
11130 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11131 that may be nonzero. */
11132 if (code == LSHIFTRT
11133 && XEXP (varop, 1) == const0_rtx
11134 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11135 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11136 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11137 && STORE_FLAG_VALUE == -1
11138 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11139 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11140 int_result_mode, &complement_p))
11141 {
11142 varop = XEXP (varop, 0);
11143 count = 0;
11144 continue;
11145 }
11146 break;
11147
11148 case NEG:
11149 /* The following rules apply only to scalars. */
11150 if (shift_mode != shift_unit_mode)
11151 break;
11152 int_result_mode = as_a <scalar_int_mode> (result_mode);
11153
11154 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11155 than the number of bits in the mode is equivalent to A. */
11156 if (code == LSHIFTRT
11157 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11158 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11159 {
11160 varop = XEXP (varop, 0);
11161 count = 0;
11162 continue;
11163 }
11164
11165 /* NEG commutes with ASHIFT since it is multiplication. Move the
11166 NEG outside to allow shifts to combine. */
11167 if (code == ASHIFT
11168 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11169 int_result_mode, &complement_p))
11170 {
11171 varop = XEXP (varop, 0);
11172 continue;
11173 }
11174 break;
11175
11176 case PLUS:
11177 /* The following rules apply only to scalars. */
11178 if (shift_mode != shift_unit_mode)
11179 break;
11180 int_result_mode = as_a <scalar_int_mode> (result_mode);
11181
11182 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11183 is one less than the number of bits in the mode is
11184 equivalent to (xor A 1). */
11185 if (code == LSHIFTRT
11186 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11187 && XEXP (varop, 1) == constm1_rtx
11188 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11189 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11190 int_result_mode, &complement_p))
11191 {
11192 count = 0;
11193 varop = XEXP (varop, 0);
11194 continue;
11195 }
11196
11197 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11198 that might be nonzero in BAR are those being shifted out and those
11199 bits are known zero in FOO, we can replace the PLUS with FOO.
11200 Similarly in the other operand order. This code occurs when
11201 we are computing the size of a variable-size array. */
11202
11203 if ((code == ASHIFTRT || code == LSHIFTRT)
11204 && count < HOST_BITS_PER_WIDE_INT
11205 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11206 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11207 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11208 {
11209 varop = XEXP (varop, 0);
11210 continue;
11211 }
11212 else if ((code == ASHIFTRT || code == LSHIFTRT)
11213 && count < HOST_BITS_PER_WIDE_INT
11214 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11215 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11216 >> count) == 0
11217 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11218 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11219 {
11220 varop = XEXP (varop, 1);
11221 continue;
11222 }
11223
11224 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11225 if (code == ASHIFT
11226 && CONST_INT_P (XEXP (varop, 1))
11227 && (new_rtx = simplify_const_binary_operation
11228 (ASHIFT, int_result_mode,
11229 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11230 gen_int_shift_amount (int_result_mode, count))) != 0
11231 && CONST_INT_P (new_rtx)
11232 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11233 INTVAL (new_rtx), int_result_mode,
11234 &complement_p))
11235 {
11236 varop = XEXP (varop, 0);
11237 continue;
11238 }
11239
11240 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11241 signbit', and attempt to change the PLUS to an XOR and move it to
11242 the outer operation as is done above in the AND/IOR/XOR case
11243 leg for shift(logical). See details in logical handling above
11244 for reasoning in doing so. */
11245 if (code == LSHIFTRT
11246 && CONST_INT_P (XEXP (varop, 1))
11247 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11248 && (new_rtx = simplify_const_binary_operation
11249 (code, int_result_mode,
11250 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11251 gen_int_shift_amount (int_result_mode, count))) != 0
11252 && CONST_INT_P (new_rtx)
11253 && merge_outer_ops (&outer_op, &outer_const, XOR,
11254 INTVAL (new_rtx), int_result_mode,
11255 &complement_p))
11256 {
11257 varop = XEXP (varop, 0);
11258 continue;
11259 }
11260
11261 break;
11262
11263 case MINUS:
11264 /* The following rules apply only to scalars. */
11265 if (shift_mode != shift_unit_mode)
11266 break;
11267 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11268
11269 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11270 with C the size of VAROP - 1 and the shift is logical if
11271 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11272 we have a (gt X 0) operation. If the shift is arithmetic with
11273 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11274 we have a (neg (gt X 0)) operation. */
11275
11276 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11277 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11278 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11279 && (code == LSHIFTRT || code == ASHIFTRT)
11280 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11281 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11282 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11283 {
11284 count = 0;
11285 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11286 const0_rtx);
11287
11288 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11289 varop = gen_rtx_NEG (int_varop_mode, varop);
11290
11291 continue;
11292 }
11293 break;
11294
11295 case TRUNCATE:
11296 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11297 if the truncate does not affect the value. */
11298 if (code == LSHIFTRT
11299 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11300 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11301 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11302 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11303 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11304 {
11305 rtx varop_inner = XEXP (varop, 0);
11306 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11307 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11308 new_count);
11309 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11310 XEXP (varop_inner, 0),
11311 new_count_rtx);
11312 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11313 count = 0;
11314 continue;
11315 }
11316 break;
11317
11318 default:
11319 break;
11320 }
11321
11322 break;
11323 }
11324
11325 shift_mode = result_mode;
11326 if (shift_mode != mode)
11327 {
11328 /* We only change the modes of scalar shifts. */
11329 int_mode = as_a <scalar_int_mode> (mode);
11330 int_result_mode = as_a <scalar_int_mode> (result_mode);
11331 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11332 int_mode, outer_op, outer_const);
11333 }
11334
11335 /* We have now finished analyzing the shift. The result should be
11336 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11337 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11338 to the result of the shift. OUTER_CONST is the relevant constant,
11339 but we must turn off all bits turned off in the shift. */
11340
11341 if (outer_op == UNKNOWN
11342 && orig_code == code && orig_count == count
11343 && varop == orig_varop
11344 && shift_mode == GET_MODE (varop))
11345 return NULL_RTX;
11346
11347 /* Make a SUBREG if necessary. If we can't make it, fail. */
11348 varop = gen_lowpart (shift_mode, varop);
11349 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11350 return NULL_RTX;
11351
11352 /* If we have an outer operation and we just made a shift, it is
11353 possible that we could have simplified the shift were it not
11354 for the outer operation. So try to do the simplification
11355 recursively. */
11356
11357 if (outer_op != UNKNOWN)
11358 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11359 else
11360 x = NULL_RTX;
11361
11362 if (x == NULL_RTX)
11363 x = simplify_gen_binary (code, shift_mode, varop,
11364 gen_int_shift_amount (shift_mode, count));
11365
11366 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11367 turn off all the bits that the shift would have turned off. */
11368 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11369 /* We only change the modes of scalar shifts. */
11370 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11371 x, GET_MODE_MASK (result_mode) >> orig_count);
11372
11373 /* Do the remainder of the processing in RESULT_MODE. */
11374 x = gen_lowpart_or_truncate (result_mode, x);
11375
11376 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11377 operation. */
11378 if (complement_p)
11379 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11380
11381 if (outer_op != UNKNOWN)
11382 {
11383 int_result_mode = as_a <scalar_int_mode> (result_mode);
11384
11385 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11386 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11387 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11388
11389 if (outer_op == AND)
11390 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11391 else if (outer_op == SET)
11392 {
11393 /* This means that we have determined that the result is
11394 equivalent to a constant. This should be rare. */
11395 if (!side_effects_p (x))
11396 x = GEN_INT (outer_const);
11397 }
11398 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11399 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11400 else
11401 x = simplify_gen_binary (outer_op, int_result_mode, x,
11402 GEN_INT (outer_const));
11403 }
11404
11405 return x;
11406 }
11407
11408 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11409 The result of the shift is RESULT_MODE. If we cannot simplify it,
11410 return X or, if it is NULL, synthesize the expression with
11411 simplify_gen_binary. Otherwise, return a simplified value.
11412
11413 The shift is normally computed in the widest mode we find in VAROP, as
11414 long as it isn't a different number of words than RESULT_MODE. Exceptions
11415 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11416
11417 static rtx
11418 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11419 rtx varop, int count)
11420 {
11421 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11422 if (tem)
11423 return tem;
11424
11425 if (!x)
11426 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11427 gen_int_shift_amount (GET_MODE (varop), count));
11428 if (GET_MODE (x) != result_mode)
11429 x = gen_lowpart (result_mode, x);
11430 return x;
11431 }
11432
11433 \f
11434 /* A subroutine of recog_for_combine. See there for arguments and
11435 return value. */
11436
11437 static int
11438 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11439 {
11440 rtx pat = *pnewpat;
11441 rtx pat_without_clobbers;
11442 int insn_code_number;
11443 int num_clobbers_to_add = 0;
11444 int i;
11445 rtx notes = NULL_RTX;
11446 rtx old_notes, old_pat;
11447 int old_icode;
11448
11449 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11450 we use to indicate that something didn't match. If we find such a
11451 thing, force rejection. */
11452 if (GET_CODE (pat) == PARALLEL)
11453 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11454 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11455 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11456 return -1;
11457
11458 old_pat = PATTERN (insn);
11459 old_notes = REG_NOTES (insn);
11460 PATTERN (insn) = pat;
11461 REG_NOTES (insn) = NULL_RTX;
11462
11463 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11464 if (dump_file && (dump_flags & TDF_DETAILS))
11465 {
11466 if (insn_code_number < 0)
11467 fputs ("Failed to match this instruction:\n", dump_file);
11468 else
11469 fputs ("Successfully matched this instruction:\n", dump_file);
11470 print_rtl_single (dump_file, pat);
11471 }
11472
11473 /* If it isn't, there is the possibility that we previously had an insn
11474 that clobbered some register as a side effect, but the combined
11475 insn doesn't need to do that. So try once more without the clobbers
11476 unless this represents an ASM insn. */
11477
11478 if (insn_code_number < 0 && ! check_asm_operands (pat)
11479 && GET_CODE (pat) == PARALLEL)
11480 {
11481 int pos;
11482
11483 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11484 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11485 {
11486 if (i != pos)
11487 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11488 pos++;
11489 }
11490
11491 SUBST_INT (XVECLEN (pat, 0), pos);
11492
11493 if (pos == 1)
11494 pat = XVECEXP (pat, 0, 0);
11495
11496 PATTERN (insn) = pat;
11497 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11498 if (dump_file && (dump_flags & TDF_DETAILS))
11499 {
11500 if (insn_code_number < 0)
11501 fputs ("Failed to match this instruction:\n", dump_file);
11502 else
11503 fputs ("Successfully matched this instruction:\n", dump_file);
11504 print_rtl_single (dump_file, pat);
11505 }
11506 }
11507
11508 pat_without_clobbers = pat;
11509
11510 PATTERN (insn) = old_pat;
11511 REG_NOTES (insn) = old_notes;
11512
11513 /* Recognize all noop sets, these will be killed by followup pass. */
11514 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11515 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11516
11517 /* If we had any clobbers to add, make a new pattern than contains
11518 them. Then check to make sure that all of them are dead. */
11519 if (num_clobbers_to_add)
11520 {
11521 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11522 rtvec_alloc (GET_CODE (pat) == PARALLEL
11523 ? (XVECLEN (pat, 0)
11524 + num_clobbers_to_add)
11525 : num_clobbers_to_add + 1));
11526
11527 if (GET_CODE (pat) == PARALLEL)
11528 for (i = 0; i < XVECLEN (pat, 0); i++)
11529 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11530 else
11531 XVECEXP (newpat, 0, 0) = pat;
11532
11533 add_clobbers (newpat, insn_code_number);
11534
11535 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11536 i < XVECLEN (newpat, 0); i++)
11537 {
11538 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11539 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11540 return -1;
11541 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11542 {
11543 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11544 notes = alloc_reg_note (REG_UNUSED,
11545 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11546 }
11547 }
11548 pat = newpat;
11549 }
11550
11551 if (insn_code_number >= 0
11552 && insn_code_number != NOOP_MOVE_INSN_CODE)
11553 {
11554 old_pat = PATTERN (insn);
11555 old_notes = REG_NOTES (insn);
11556 old_icode = INSN_CODE (insn);
11557 PATTERN (insn) = pat;
11558 REG_NOTES (insn) = notes;
11559 INSN_CODE (insn) = insn_code_number;
11560
11561 /* Allow targets to reject combined insn. */
11562 if (!targetm.legitimate_combined_insn (insn))
11563 {
11564 if (dump_file && (dump_flags & TDF_DETAILS))
11565 fputs ("Instruction not appropriate for target.",
11566 dump_file);
11567
11568 /* Callers expect recog_for_combine to strip
11569 clobbers from the pattern on failure. */
11570 pat = pat_without_clobbers;
11571 notes = NULL_RTX;
11572
11573 insn_code_number = -1;
11574 }
11575
11576 PATTERN (insn) = old_pat;
11577 REG_NOTES (insn) = old_notes;
11578 INSN_CODE (insn) = old_icode;
11579 }
11580
11581 *pnewpat = pat;
11582 *pnotes = notes;
11583
11584 return insn_code_number;
11585 }
11586
11587 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11588 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11589 Return whether anything was so changed. */
11590
11591 static bool
11592 change_zero_ext (rtx pat)
11593 {
11594 bool changed = false;
11595 rtx *src = &SET_SRC (pat);
11596
11597 subrtx_ptr_iterator::array_type array;
11598 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11599 {
11600 rtx x = **iter;
11601 scalar_int_mode mode, inner_mode;
11602 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11603 continue;
11604 int size;
11605
11606 if (GET_CODE (x) == ZERO_EXTRACT
11607 && CONST_INT_P (XEXP (x, 1))
11608 && CONST_INT_P (XEXP (x, 2))
11609 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11610 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11611 {
11612 size = INTVAL (XEXP (x, 1));
11613
11614 int start = INTVAL (XEXP (x, 2));
11615 if (BITS_BIG_ENDIAN)
11616 start = GET_MODE_PRECISION (inner_mode) - size - start;
11617
11618 if (start != 0)
11619 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11620 gen_int_shift_amount (inner_mode, start));
11621 else
11622 x = XEXP (x, 0);
11623
11624 if (mode != inner_mode)
11625 {
11626 if (REG_P (x) && HARD_REGISTER_P (x)
11627 && !can_change_dest_mode (x, 0, mode))
11628 continue;
11629
11630 x = gen_lowpart_SUBREG (mode, x);
11631 }
11632 }
11633 else if (GET_CODE (x) == ZERO_EXTEND
11634 && GET_CODE (XEXP (x, 0)) == SUBREG
11635 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11636 && !paradoxical_subreg_p (XEXP (x, 0))
11637 && subreg_lowpart_p (XEXP (x, 0)))
11638 {
11639 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11640 size = GET_MODE_PRECISION (inner_mode);
11641 x = SUBREG_REG (XEXP (x, 0));
11642 if (GET_MODE (x) != mode)
11643 {
11644 if (REG_P (x) && HARD_REGISTER_P (x)
11645 && !can_change_dest_mode (x, 0, mode))
11646 continue;
11647
11648 x = gen_lowpart_SUBREG (mode, x);
11649 }
11650 }
11651 else if (GET_CODE (x) == ZERO_EXTEND
11652 && REG_P (XEXP (x, 0))
11653 && HARD_REGISTER_P (XEXP (x, 0))
11654 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11655 {
11656 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11657 size = GET_MODE_PRECISION (inner_mode);
11658 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11659 }
11660 else
11661 continue;
11662
11663 if (!(GET_CODE (x) == LSHIFTRT
11664 && CONST_INT_P (XEXP (x, 1))
11665 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11666 {
11667 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11668 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11669 }
11670
11671 SUBST (**iter, x);
11672 changed = true;
11673 }
11674
11675 if (changed)
11676 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11677 maybe_swap_commutative_operands (**iter);
11678
11679 rtx *dst = &SET_DEST (pat);
11680 scalar_int_mode mode;
11681 if (GET_CODE (*dst) == ZERO_EXTRACT
11682 && REG_P (XEXP (*dst, 0))
11683 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11684 && CONST_INT_P (XEXP (*dst, 1))
11685 && CONST_INT_P (XEXP (*dst, 2)))
11686 {
11687 rtx reg = XEXP (*dst, 0);
11688 int width = INTVAL (XEXP (*dst, 1));
11689 int offset = INTVAL (XEXP (*dst, 2));
11690 int reg_width = GET_MODE_PRECISION (mode);
11691 if (BITS_BIG_ENDIAN)
11692 offset = reg_width - width - offset;
11693
11694 rtx x, y, z, w;
11695 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11696 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11697 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11698 if (offset)
11699 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11700 else
11701 y = SET_SRC (pat);
11702 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11703 w = gen_rtx_IOR (mode, x, z);
11704 SUBST (SET_DEST (pat), reg);
11705 SUBST (SET_SRC (pat), w);
11706
11707 changed = true;
11708 }
11709
11710 return changed;
11711 }
11712
11713 /* Like recog, but we receive the address of a pointer to a new pattern.
11714 We try to match the rtx that the pointer points to.
11715 If that fails, we may try to modify or replace the pattern,
11716 storing the replacement into the same pointer object.
11717
11718 Modifications include deletion or addition of CLOBBERs. If the
11719 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11720 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11721 (and undo if that fails).
11722
11723 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11724 the CLOBBERs are placed.
11725
11726 The value is the final insn code from the pattern ultimately matched,
11727 or -1. */
11728
11729 static int
11730 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11731 {
11732 rtx pat = *pnewpat;
11733 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11734 if (insn_code_number >= 0 || check_asm_operands (pat))
11735 return insn_code_number;
11736
11737 void *marker = get_undo_marker ();
11738 bool changed = false;
11739
11740 if (GET_CODE (pat) == SET)
11741 changed = change_zero_ext (pat);
11742 else if (GET_CODE (pat) == PARALLEL)
11743 {
11744 int i;
11745 for (i = 0; i < XVECLEN (pat, 0); i++)
11746 {
11747 rtx set = XVECEXP (pat, 0, i);
11748 if (GET_CODE (set) == SET)
11749 changed |= change_zero_ext (set);
11750 }
11751 }
11752
11753 if (changed)
11754 {
11755 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11756
11757 if (insn_code_number < 0)
11758 undo_to_marker (marker);
11759 }
11760
11761 return insn_code_number;
11762 }
11763 \f
11764 /* Like gen_lowpart_general but for use by combine. In combine it
11765 is not possible to create any new pseudoregs. However, it is
11766 safe to create invalid memory addresses, because combine will
11767 try to recognize them and all they will do is make the combine
11768 attempt fail.
11769
11770 If for some reason this cannot do its job, an rtx
11771 (clobber (const_int 0)) is returned.
11772 An insn containing that will not be recognized. */
11773
11774 static rtx
11775 gen_lowpart_for_combine (machine_mode omode, rtx x)
11776 {
11777 machine_mode imode = GET_MODE (x);
11778 rtx result;
11779
11780 if (omode == imode)
11781 return x;
11782
11783 /* We can only support MODE being wider than a word if X is a
11784 constant integer or has a mode the same size. */
11785 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11786 && ! (CONST_SCALAR_INT_P (x)
11787 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11788 goto fail;
11789
11790 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11791 won't know what to do. So we will strip off the SUBREG here and
11792 process normally. */
11793 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11794 {
11795 x = SUBREG_REG (x);
11796
11797 /* For use in case we fall down into the address adjustments
11798 further below, we need to adjust the known mode and size of
11799 x; imode and isize, since we just adjusted x. */
11800 imode = GET_MODE (x);
11801
11802 if (imode == omode)
11803 return x;
11804 }
11805
11806 result = gen_lowpart_common (omode, x);
11807
11808 if (result)
11809 return result;
11810
11811 if (MEM_P (x))
11812 {
11813 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11814 address. */
11815 if (MEM_VOLATILE_P (x)
11816 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11817 goto fail;
11818
11819 /* If we want to refer to something bigger than the original memref,
11820 generate a paradoxical subreg instead. That will force a reload
11821 of the original memref X. */
11822 if (paradoxical_subreg_p (omode, imode))
11823 return gen_rtx_SUBREG (omode, x, 0);
11824
11825 poly_int64 offset = byte_lowpart_offset (omode, imode);
11826 return adjust_address_nv (x, omode, offset);
11827 }
11828
11829 /* If X is a comparison operator, rewrite it in a new mode. This
11830 probably won't match, but may allow further simplifications. */
11831 else if (COMPARISON_P (x))
11832 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11833
11834 /* If we couldn't simplify X any other way, just enclose it in a
11835 SUBREG. Normally, this SUBREG won't match, but some patterns may
11836 include an explicit SUBREG or we may simplify it further in combine. */
11837 else
11838 {
11839 rtx res;
11840
11841 if (imode == VOIDmode)
11842 {
11843 imode = int_mode_for_mode (omode).require ();
11844 x = gen_lowpart_common (imode, x);
11845 if (x == NULL)
11846 goto fail;
11847 }
11848 res = lowpart_subreg (omode, x, imode);
11849 if (res)
11850 return res;
11851 }
11852
11853 fail:
11854 return gen_rtx_CLOBBER (omode, const0_rtx);
11855 }
11856 \f
11857 /* Try to simplify a comparison between OP0 and a constant OP1,
11858 where CODE is the comparison code that will be tested, into a
11859 (CODE OP0 const0_rtx) form.
11860
11861 The result is a possibly different comparison code to use.
11862 *POP1 may be updated. */
11863
11864 static enum rtx_code
11865 simplify_compare_const (enum rtx_code code, machine_mode mode,
11866 rtx op0, rtx *pop1)
11867 {
11868 scalar_int_mode int_mode;
11869 HOST_WIDE_INT const_op = INTVAL (*pop1);
11870
11871 /* Get the constant we are comparing against and turn off all bits
11872 not on in our mode. */
11873 if (mode != VOIDmode)
11874 const_op = trunc_int_for_mode (const_op, mode);
11875
11876 /* If we are comparing against a constant power of two and the value
11877 being compared can only have that single bit nonzero (e.g., it was
11878 `and'ed with that bit), we can replace this with a comparison
11879 with zero. */
11880 if (const_op
11881 && (code == EQ || code == NE || code == GE || code == GEU
11882 || code == LT || code == LTU)
11883 && is_a <scalar_int_mode> (mode, &int_mode)
11884 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11885 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11886 && (nonzero_bits (op0, int_mode)
11887 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11888 {
11889 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11890 const_op = 0;
11891 }
11892
11893 /* Similarly, if we are comparing a value known to be either -1 or
11894 0 with -1, change it to the opposite comparison against zero. */
11895 if (const_op == -1
11896 && (code == EQ || code == NE || code == GT || code == LE
11897 || code == GEU || code == LTU)
11898 && is_a <scalar_int_mode> (mode, &int_mode)
11899 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11900 {
11901 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11902 const_op = 0;
11903 }
11904
11905 /* Do some canonicalizations based on the comparison code. We prefer
11906 comparisons against zero and then prefer equality comparisons.
11907 If we can reduce the size of a constant, we will do that too. */
11908 switch (code)
11909 {
11910 case LT:
11911 /* < C is equivalent to <= (C - 1) */
11912 if (const_op > 0)
11913 {
11914 const_op -= 1;
11915 code = LE;
11916 /* ... fall through to LE case below. */
11917 gcc_fallthrough ();
11918 }
11919 else
11920 break;
11921
11922 case LE:
11923 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11924 if (const_op < 0)
11925 {
11926 const_op += 1;
11927 code = LT;
11928 }
11929
11930 /* If we are doing a <= 0 comparison on a value known to have
11931 a zero sign bit, we can replace this with == 0. */
11932 else if (const_op == 0
11933 && is_a <scalar_int_mode> (mode, &int_mode)
11934 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11935 && (nonzero_bits (op0, int_mode)
11936 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11937 == 0)
11938 code = EQ;
11939 break;
11940
11941 case GE:
11942 /* >= C is equivalent to > (C - 1). */
11943 if (const_op > 0)
11944 {
11945 const_op -= 1;
11946 code = GT;
11947 /* ... fall through to GT below. */
11948 gcc_fallthrough ();
11949 }
11950 else
11951 break;
11952
11953 case GT:
11954 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11955 if (const_op < 0)
11956 {
11957 const_op += 1;
11958 code = GE;
11959 }
11960
11961 /* If we are doing a > 0 comparison on a value known to have
11962 a zero sign bit, we can replace this with != 0. */
11963 else if (const_op == 0
11964 && is_a <scalar_int_mode> (mode, &int_mode)
11965 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11966 && (nonzero_bits (op0, int_mode)
11967 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11968 == 0)
11969 code = NE;
11970 break;
11971
11972 case LTU:
11973 /* < C is equivalent to <= (C - 1). */
11974 if (const_op > 0)
11975 {
11976 const_op -= 1;
11977 code = LEU;
11978 /* ... fall through ... */
11979 gcc_fallthrough ();
11980 }
11981 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11982 else if (is_a <scalar_int_mode> (mode, &int_mode)
11983 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11984 && ((unsigned HOST_WIDE_INT) const_op
11985 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11986 {
11987 const_op = 0;
11988 code = GE;
11989 break;
11990 }
11991 else
11992 break;
11993
11994 case LEU:
11995 /* unsigned <= 0 is equivalent to == 0 */
11996 if (const_op == 0)
11997 code = EQ;
11998 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11999 else if (is_a <scalar_int_mode> (mode, &int_mode)
12000 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12001 && ((unsigned HOST_WIDE_INT) const_op
12002 == ((HOST_WIDE_INT_1U
12003 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
12004 {
12005 const_op = 0;
12006 code = GE;
12007 }
12008 break;
12009
12010 case GEU:
12011 /* >= C is equivalent to > (C - 1). */
12012 if (const_op > 1)
12013 {
12014 const_op -= 1;
12015 code = GTU;
12016 /* ... fall through ... */
12017 gcc_fallthrough ();
12018 }
12019
12020 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12021 else if (is_a <scalar_int_mode> (mode, &int_mode)
12022 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12023 && ((unsigned HOST_WIDE_INT) const_op
12024 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12025 {
12026 const_op = 0;
12027 code = LT;
12028 break;
12029 }
12030 else
12031 break;
12032
12033 case GTU:
12034 /* unsigned > 0 is equivalent to != 0 */
12035 if (const_op == 0)
12036 code = NE;
12037 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12038 else if (is_a <scalar_int_mode> (mode, &int_mode)
12039 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12040 && ((unsigned HOST_WIDE_INT) const_op
12041 == (HOST_WIDE_INT_1U
12042 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12043 {
12044 const_op = 0;
12045 code = LT;
12046 }
12047 break;
12048
12049 default:
12050 break;
12051 }
12052
12053 *pop1 = GEN_INT (const_op);
12054 return code;
12055 }
12056 \f
12057 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12058 comparison code that will be tested.
12059
12060 The result is a possibly different comparison code to use. *POP0 and
12061 *POP1 may be updated.
12062
12063 It is possible that we might detect that a comparison is either always
12064 true or always false. However, we do not perform general constant
12065 folding in combine, so this knowledge isn't useful. Such tautologies
12066 should have been detected earlier. Hence we ignore all such cases. */
12067
12068 static enum rtx_code
12069 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12070 {
12071 rtx op0 = *pop0;
12072 rtx op1 = *pop1;
12073 rtx tem, tem1;
12074 int i;
12075 scalar_int_mode mode, inner_mode, tmode;
12076 opt_scalar_int_mode tmode_iter;
12077
12078 /* Try a few ways of applying the same transformation to both operands. */
12079 while (1)
12080 {
12081 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12082 so check specially. */
12083 if (!WORD_REGISTER_OPERATIONS
12084 && code != GTU && code != GEU && code != LTU && code != LEU
12085 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12086 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12087 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12088 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12089 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12090 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12091 && (is_a <scalar_int_mode>
12092 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12093 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12094 && CONST_INT_P (XEXP (op0, 1))
12095 && XEXP (op0, 1) == XEXP (op1, 1)
12096 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12097 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12098 && (INTVAL (XEXP (op0, 1))
12099 == (GET_MODE_PRECISION (mode)
12100 - GET_MODE_PRECISION (inner_mode))))
12101 {
12102 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12103 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12104 }
12105
12106 /* If both operands are the same constant shift, see if we can ignore the
12107 shift. We can if the shift is a rotate or if the bits shifted out of
12108 this shift are known to be zero for both inputs and if the type of
12109 comparison is compatible with the shift. */
12110 if (GET_CODE (op0) == GET_CODE (op1)
12111 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12112 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12113 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12114 && (code != GT && code != LT && code != GE && code != LE))
12115 || (GET_CODE (op0) == ASHIFTRT
12116 && (code != GTU && code != LTU
12117 && code != GEU && code != LEU)))
12118 && CONST_INT_P (XEXP (op0, 1))
12119 && INTVAL (XEXP (op0, 1)) >= 0
12120 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12121 && XEXP (op0, 1) == XEXP (op1, 1))
12122 {
12123 machine_mode mode = GET_MODE (op0);
12124 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12125 int shift_count = INTVAL (XEXP (op0, 1));
12126
12127 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12128 mask &= (mask >> shift_count) << shift_count;
12129 else if (GET_CODE (op0) == ASHIFT)
12130 mask = (mask & (mask << shift_count)) >> shift_count;
12131
12132 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12133 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12134 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12135 else
12136 break;
12137 }
12138
12139 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12140 SUBREGs are of the same mode, and, in both cases, the AND would
12141 be redundant if the comparison was done in the narrower mode,
12142 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12143 and the operand's possibly nonzero bits are 0xffffff01; in that case
12144 if we only care about QImode, we don't need the AND). This case
12145 occurs if the output mode of an scc insn is not SImode and
12146 STORE_FLAG_VALUE == 1 (e.g., the 386).
12147
12148 Similarly, check for a case where the AND's are ZERO_EXTEND
12149 operations from some narrower mode even though a SUBREG is not
12150 present. */
12151
12152 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12153 && CONST_INT_P (XEXP (op0, 1))
12154 && CONST_INT_P (XEXP (op1, 1)))
12155 {
12156 rtx inner_op0 = XEXP (op0, 0);
12157 rtx inner_op1 = XEXP (op1, 0);
12158 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12159 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12160 int changed = 0;
12161
12162 if (paradoxical_subreg_p (inner_op0)
12163 && GET_CODE (inner_op1) == SUBREG
12164 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12165 && (GET_MODE (SUBREG_REG (inner_op0))
12166 == GET_MODE (SUBREG_REG (inner_op1)))
12167 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12168 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12169 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12170 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12171 {
12172 op0 = SUBREG_REG (inner_op0);
12173 op1 = SUBREG_REG (inner_op1);
12174
12175 /* The resulting comparison is always unsigned since we masked
12176 off the original sign bit. */
12177 code = unsigned_condition (code);
12178
12179 changed = 1;
12180 }
12181
12182 else if (c0 == c1)
12183 FOR_EACH_MODE_UNTIL (tmode,
12184 as_a <scalar_int_mode> (GET_MODE (op0)))
12185 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12186 {
12187 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12188 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12189 code = unsigned_condition (code);
12190 changed = 1;
12191 break;
12192 }
12193
12194 if (! changed)
12195 break;
12196 }
12197
12198 /* If both operands are NOT, we can strip off the outer operation
12199 and adjust the comparison code for swapped operands; similarly for
12200 NEG, except that this must be an equality comparison. */
12201 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12202 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12203 && (code == EQ || code == NE)))
12204 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12205
12206 else
12207 break;
12208 }
12209
12210 /* If the first operand is a constant, swap the operands and adjust the
12211 comparison code appropriately, but don't do this if the second operand
12212 is already a constant integer. */
12213 if (swap_commutative_operands_p (op0, op1))
12214 {
12215 std::swap (op0, op1);
12216 code = swap_condition (code);
12217 }
12218
12219 /* We now enter a loop during which we will try to simplify the comparison.
12220 For the most part, we only are concerned with comparisons with zero,
12221 but some things may really be comparisons with zero but not start
12222 out looking that way. */
12223
12224 while (CONST_INT_P (op1))
12225 {
12226 machine_mode raw_mode = GET_MODE (op0);
12227 scalar_int_mode int_mode;
12228 int equality_comparison_p;
12229 int sign_bit_comparison_p;
12230 int unsigned_comparison_p;
12231 HOST_WIDE_INT const_op;
12232
12233 /* We only want to handle integral modes. This catches VOIDmode,
12234 CCmode, and the floating-point modes. An exception is that we
12235 can handle VOIDmode if OP0 is a COMPARE or a comparison
12236 operation. */
12237
12238 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12239 && ! (raw_mode == VOIDmode
12240 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12241 break;
12242
12243 /* Try to simplify the compare to constant, possibly changing the
12244 comparison op, and/or changing op1 to zero. */
12245 code = simplify_compare_const (code, raw_mode, op0, &op1);
12246 const_op = INTVAL (op1);
12247
12248 /* Compute some predicates to simplify code below. */
12249
12250 equality_comparison_p = (code == EQ || code == NE);
12251 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12252 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12253 || code == GEU);
12254
12255 /* If this is a sign bit comparison and we can do arithmetic in
12256 MODE, say that we will only be needing the sign bit of OP0. */
12257 if (sign_bit_comparison_p
12258 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12259 && HWI_COMPUTABLE_MODE_P (int_mode))
12260 op0 = force_to_mode (op0, int_mode,
12261 HOST_WIDE_INT_1U
12262 << (GET_MODE_PRECISION (int_mode) - 1),
12263 0);
12264
12265 if (COMPARISON_P (op0))
12266 {
12267 /* We can't do anything if OP0 is a condition code value, rather
12268 than an actual data value. */
12269 if (const_op != 0
12270 || CC0_P (XEXP (op0, 0))
12271 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12272 break;
12273
12274 /* Get the two operands being compared. */
12275 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12276 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12277 else
12278 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12279
12280 /* Check for the cases where we simply want the result of the
12281 earlier test or the opposite of that result. */
12282 if (code == NE || code == EQ
12283 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12284 && (code == LT || code == GE)))
12285 {
12286 enum rtx_code new_code;
12287 if (code == LT || code == NE)
12288 new_code = GET_CODE (op0);
12289 else
12290 new_code = reversed_comparison_code (op0, NULL);
12291
12292 if (new_code != UNKNOWN)
12293 {
12294 code = new_code;
12295 op0 = tem;
12296 op1 = tem1;
12297 continue;
12298 }
12299 }
12300 break;
12301 }
12302
12303 if (raw_mode == VOIDmode)
12304 break;
12305 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12306
12307 /* Now try cases based on the opcode of OP0. If none of the cases
12308 does a "continue", we exit this loop immediately after the
12309 switch. */
12310
12311 unsigned int mode_width = GET_MODE_PRECISION (mode);
12312 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12313 switch (GET_CODE (op0))
12314 {
12315 case ZERO_EXTRACT:
12316 /* If we are extracting a single bit from a variable position in
12317 a constant that has only a single bit set and are comparing it
12318 with zero, we can convert this into an equality comparison
12319 between the position and the location of the single bit. */
12320 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12321 have already reduced the shift count modulo the word size. */
12322 if (!SHIFT_COUNT_TRUNCATED
12323 && CONST_INT_P (XEXP (op0, 0))
12324 && XEXP (op0, 1) == const1_rtx
12325 && equality_comparison_p && const_op == 0
12326 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12327 {
12328 if (BITS_BIG_ENDIAN)
12329 i = BITS_PER_WORD - 1 - i;
12330
12331 op0 = XEXP (op0, 2);
12332 op1 = GEN_INT (i);
12333 const_op = i;
12334
12335 /* Result is nonzero iff shift count is equal to I. */
12336 code = reverse_condition (code);
12337 continue;
12338 }
12339
12340 /* fall through */
12341
12342 case SIGN_EXTRACT:
12343 tem = expand_compound_operation (op0);
12344 if (tem != op0)
12345 {
12346 op0 = tem;
12347 continue;
12348 }
12349 break;
12350
12351 case NOT:
12352 /* If testing for equality, we can take the NOT of the constant. */
12353 if (equality_comparison_p
12354 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12355 {
12356 op0 = XEXP (op0, 0);
12357 op1 = tem;
12358 continue;
12359 }
12360
12361 /* If just looking at the sign bit, reverse the sense of the
12362 comparison. */
12363 if (sign_bit_comparison_p)
12364 {
12365 op0 = XEXP (op0, 0);
12366 code = (code == GE ? LT : GE);
12367 continue;
12368 }
12369 break;
12370
12371 case NEG:
12372 /* If testing for equality, we can take the NEG of the constant. */
12373 if (equality_comparison_p
12374 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12375 {
12376 op0 = XEXP (op0, 0);
12377 op1 = tem;
12378 continue;
12379 }
12380
12381 /* The remaining cases only apply to comparisons with zero. */
12382 if (const_op != 0)
12383 break;
12384
12385 /* When X is ABS or is known positive,
12386 (neg X) is < 0 if and only if X != 0. */
12387
12388 if (sign_bit_comparison_p
12389 && (GET_CODE (XEXP (op0, 0)) == ABS
12390 || (mode_width <= HOST_BITS_PER_WIDE_INT
12391 && (nonzero_bits (XEXP (op0, 0), mode)
12392 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12393 == 0)))
12394 {
12395 op0 = XEXP (op0, 0);
12396 code = (code == LT ? NE : EQ);
12397 continue;
12398 }
12399
12400 /* If we have NEG of something whose two high-order bits are the
12401 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12402 if (num_sign_bit_copies (op0, mode) >= 2)
12403 {
12404 op0 = XEXP (op0, 0);
12405 code = swap_condition (code);
12406 continue;
12407 }
12408 break;
12409
12410 case ROTATE:
12411 /* If we are testing equality and our count is a constant, we
12412 can perform the inverse operation on our RHS. */
12413 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12414 && (tem = simplify_binary_operation (ROTATERT, mode,
12415 op1, XEXP (op0, 1))) != 0)
12416 {
12417 op0 = XEXP (op0, 0);
12418 op1 = tem;
12419 continue;
12420 }
12421
12422 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12423 a particular bit. Convert it to an AND of a constant of that
12424 bit. This will be converted into a ZERO_EXTRACT. */
12425 if (const_op == 0 && sign_bit_comparison_p
12426 && CONST_INT_P (XEXP (op0, 1))
12427 && mode_width <= HOST_BITS_PER_WIDE_INT)
12428 {
12429 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12430 (HOST_WIDE_INT_1U
12431 << (mode_width - 1
12432 - INTVAL (XEXP (op0, 1)))));
12433 code = (code == LT ? NE : EQ);
12434 continue;
12435 }
12436
12437 /* Fall through. */
12438
12439 case ABS:
12440 /* ABS is ignorable inside an equality comparison with zero. */
12441 if (const_op == 0 && equality_comparison_p)
12442 {
12443 op0 = XEXP (op0, 0);
12444 continue;
12445 }
12446 break;
12447
12448 case SIGN_EXTEND:
12449 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12450 (compare FOO CONST) if CONST fits in FOO's mode and we
12451 are either testing inequality or have an unsigned
12452 comparison with ZERO_EXTEND or a signed comparison with
12453 SIGN_EXTEND. But don't do it if we don't have a compare
12454 insn of the given mode, since we'd have to revert it
12455 later on, and then we wouldn't know whether to sign- or
12456 zero-extend. */
12457 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12458 && ! unsigned_comparison_p
12459 && HWI_COMPUTABLE_MODE_P (mode)
12460 && trunc_int_for_mode (const_op, mode) == const_op
12461 && have_insn_for (COMPARE, mode))
12462 {
12463 op0 = XEXP (op0, 0);
12464 continue;
12465 }
12466 break;
12467
12468 case SUBREG:
12469 /* Check for the case where we are comparing A - C1 with C2, that is
12470
12471 (subreg:MODE (plus (A) (-C1))) op (C2)
12472
12473 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12474 comparison in the wider mode. One of the following two conditions
12475 must be true in order for this to be valid:
12476
12477 1. The mode extension results in the same bit pattern being added
12478 on both sides and the comparison is equality or unsigned. As
12479 C2 has been truncated to fit in MODE, the pattern can only be
12480 all 0s or all 1s.
12481
12482 2. The mode extension results in the sign bit being copied on
12483 each side.
12484
12485 The difficulty here is that we have predicates for A but not for
12486 (A - C1) so we need to check that C1 is within proper bounds so
12487 as to perturbate A as little as possible. */
12488
12489 if (mode_width <= HOST_BITS_PER_WIDE_INT
12490 && subreg_lowpart_p (op0)
12491 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12492 &inner_mode)
12493 && GET_MODE_PRECISION (inner_mode) > mode_width
12494 && GET_CODE (SUBREG_REG (op0)) == PLUS
12495 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12496 {
12497 rtx a = XEXP (SUBREG_REG (op0), 0);
12498 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12499
12500 if ((c1 > 0
12501 && (unsigned HOST_WIDE_INT) c1
12502 < HOST_WIDE_INT_1U << (mode_width - 1)
12503 && (equality_comparison_p || unsigned_comparison_p)
12504 /* (A - C1) zero-extends if it is positive and sign-extends
12505 if it is negative, C2 both zero- and sign-extends. */
12506 && (((nonzero_bits (a, inner_mode)
12507 & ~GET_MODE_MASK (mode)) == 0
12508 && const_op >= 0)
12509 /* (A - C1) sign-extends if it is positive and 1-extends
12510 if it is negative, C2 both sign- and 1-extends. */
12511 || (num_sign_bit_copies (a, inner_mode)
12512 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12513 - mode_width)
12514 && const_op < 0)))
12515 || ((unsigned HOST_WIDE_INT) c1
12516 < HOST_WIDE_INT_1U << (mode_width - 2)
12517 /* (A - C1) always sign-extends, like C2. */
12518 && num_sign_bit_copies (a, inner_mode)
12519 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12520 - (mode_width - 1))))
12521 {
12522 op0 = SUBREG_REG (op0);
12523 continue;
12524 }
12525 }
12526
12527 /* If the inner mode is narrower and we are extracting the low part,
12528 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12529 if (paradoxical_subreg_p (op0))
12530 ;
12531 else if (subreg_lowpart_p (op0)
12532 && GET_MODE_CLASS (mode) == MODE_INT
12533 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12534 && (code == NE || code == EQ)
12535 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12536 && !paradoxical_subreg_p (op0)
12537 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12538 & ~GET_MODE_MASK (mode)) == 0)
12539 {
12540 /* Remove outer subregs that don't do anything. */
12541 tem = gen_lowpart (inner_mode, op1);
12542
12543 if ((nonzero_bits (tem, inner_mode)
12544 & ~GET_MODE_MASK (mode)) == 0)
12545 {
12546 op0 = SUBREG_REG (op0);
12547 op1 = tem;
12548 continue;
12549 }
12550 break;
12551 }
12552 else
12553 break;
12554
12555 /* FALLTHROUGH */
12556
12557 case ZERO_EXTEND:
12558 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12559 && (unsigned_comparison_p || equality_comparison_p)
12560 && HWI_COMPUTABLE_MODE_P (mode)
12561 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12562 && const_op >= 0
12563 && have_insn_for (COMPARE, mode))
12564 {
12565 op0 = XEXP (op0, 0);
12566 continue;
12567 }
12568 break;
12569
12570 case PLUS:
12571 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12572 this for equality comparisons due to pathological cases involving
12573 overflows. */
12574 if (equality_comparison_p
12575 && (tem = simplify_binary_operation (MINUS, mode,
12576 op1, XEXP (op0, 1))) != 0)
12577 {
12578 op0 = XEXP (op0, 0);
12579 op1 = tem;
12580 continue;
12581 }
12582
12583 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12584 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12585 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12586 {
12587 op0 = XEXP (XEXP (op0, 0), 0);
12588 code = (code == LT ? EQ : NE);
12589 continue;
12590 }
12591 break;
12592
12593 case MINUS:
12594 /* We used to optimize signed comparisons against zero, but that
12595 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12596 arrive here as equality comparisons, or (GEU, LTU) are
12597 optimized away. No need to special-case them. */
12598
12599 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12600 (eq B (minus A C)), whichever simplifies. We can only do
12601 this for equality comparisons due to pathological cases involving
12602 overflows. */
12603 if (equality_comparison_p
12604 && (tem = simplify_binary_operation (PLUS, mode,
12605 XEXP (op0, 1), op1)) != 0)
12606 {
12607 op0 = XEXP (op0, 0);
12608 op1 = tem;
12609 continue;
12610 }
12611
12612 if (equality_comparison_p
12613 && (tem = simplify_binary_operation (MINUS, mode,
12614 XEXP (op0, 0), op1)) != 0)
12615 {
12616 op0 = XEXP (op0, 1);
12617 op1 = tem;
12618 continue;
12619 }
12620
12621 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12622 of bits in X minus 1, is one iff X > 0. */
12623 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12624 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12625 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12626 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12627 {
12628 op0 = XEXP (op0, 1);
12629 code = (code == GE ? LE : GT);
12630 continue;
12631 }
12632 break;
12633
12634 case XOR:
12635 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12636 if C is zero or B is a constant. */
12637 if (equality_comparison_p
12638 && (tem = simplify_binary_operation (XOR, mode,
12639 XEXP (op0, 1), op1)) != 0)
12640 {
12641 op0 = XEXP (op0, 0);
12642 op1 = tem;
12643 continue;
12644 }
12645 break;
12646
12647
12648 case IOR:
12649 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12650 iff X <= 0. */
12651 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12652 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12653 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12654 {
12655 op0 = XEXP (op0, 1);
12656 code = (code == GE ? GT : LE);
12657 continue;
12658 }
12659 break;
12660
12661 case AND:
12662 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12663 will be converted to a ZERO_EXTRACT later. */
12664 if (const_op == 0 && equality_comparison_p
12665 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12666 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12667 {
12668 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12669 XEXP (XEXP (op0, 0), 1));
12670 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12671 continue;
12672 }
12673
12674 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12675 zero and X is a comparison and C1 and C2 describe only bits set
12676 in STORE_FLAG_VALUE, we can compare with X. */
12677 if (const_op == 0 && equality_comparison_p
12678 && mode_width <= HOST_BITS_PER_WIDE_INT
12679 && CONST_INT_P (XEXP (op0, 1))
12680 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12681 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12682 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12683 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12684 {
12685 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12686 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12687 if ((~STORE_FLAG_VALUE & mask) == 0
12688 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12689 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12690 && COMPARISON_P (tem))))
12691 {
12692 op0 = XEXP (XEXP (op0, 0), 0);
12693 continue;
12694 }
12695 }
12696
12697 /* If we are doing an equality comparison of an AND of a bit equal
12698 to the sign bit, replace this with a LT or GE comparison of
12699 the underlying value. */
12700 if (equality_comparison_p
12701 && const_op == 0
12702 && CONST_INT_P (XEXP (op0, 1))
12703 && mode_width <= HOST_BITS_PER_WIDE_INT
12704 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12705 == HOST_WIDE_INT_1U << (mode_width - 1)))
12706 {
12707 op0 = XEXP (op0, 0);
12708 code = (code == EQ ? GE : LT);
12709 continue;
12710 }
12711
12712 /* If this AND operation is really a ZERO_EXTEND from a narrower
12713 mode, the constant fits within that mode, and this is either an
12714 equality or unsigned comparison, try to do this comparison in
12715 the narrower mode.
12716
12717 Note that in:
12718
12719 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12720 -> (ne:DI (reg:SI 4) (const_int 0))
12721
12722 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12723 known to hold a value of the required mode the
12724 transformation is invalid. */
12725 if ((equality_comparison_p || unsigned_comparison_p)
12726 && CONST_INT_P (XEXP (op0, 1))
12727 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12728 & GET_MODE_MASK (mode))
12729 + 1)) >= 0
12730 && const_op >> i == 0
12731 && int_mode_for_size (i, 1).exists (&tmode))
12732 {
12733 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12734 continue;
12735 }
12736
12737 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12738 fits in both M1 and M2 and the SUBREG is either paradoxical
12739 or represents the low part, permute the SUBREG and the AND
12740 and try again. */
12741 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12742 && CONST_INT_P (XEXP (op0, 1)))
12743 {
12744 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12745 /* Require an integral mode, to avoid creating something like
12746 (AND:SF ...). */
12747 if ((is_a <scalar_int_mode>
12748 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12749 /* It is unsafe to commute the AND into the SUBREG if the
12750 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12751 not defined. As originally written the upper bits
12752 have a defined value due to the AND operation.
12753 However, if we commute the AND inside the SUBREG then
12754 they no longer have defined values and the meaning of
12755 the code has been changed.
12756 Also C1 should not change value in the smaller mode,
12757 see PR67028 (a positive C1 can become negative in the
12758 smaller mode, so that the AND does no longer mask the
12759 upper bits). */
12760 && ((WORD_REGISTER_OPERATIONS
12761 && mode_width > GET_MODE_PRECISION (tmode)
12762 && mode_width <= BITS_PER_WORD
12763 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12764 || (mode_width <= GET_MODE_PRECISION (tmode)
12765 && subreg_lowpart_p (XEXP (op0, 0))))
12766 && mode_width <= HOST_BITS_PER_WIDE_INT
12767 && HWI_COMPUTABLE_MODE_P (tmode)
12768 && (c1 & ~mask) == 0
12769 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12770 && c1 != mask
12771 && c1 != GET_MODE_MASK (tmode))
12772 {
12773 op0 = simplify_gen_binary (AND, tmode,
12774 SUBREG_REG (XEXP (op0, 0)),
12775 gen_int_mode (c1, tmode));
12776 op0 = gen_lowpart (mode, op0);
12777 continue;
12778 }
12779 }
12780
12781 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12782 if (const_op == 0 && equality_comparison_p
12783 && XEXP (op0, 1) == const1_rtx
12784 && GET_CODE (XEXP (op0, 0)) == NOT)
12785 {
12786 op0 = simplify_and_const_int (NULL_RTX, mode,
12787 XEXP (XEXP (op0, 0), 0), 1);
12788 code = (code == NE ? EQ : NE);
12789 continue;
12790 }
12791
12792 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12793 (eq (and (lshiftrt X) 1) 0).
12794 Also handle the case where (not X) is expressed using xor. */
12795 if (const_op == 0 && equality_comparison_p
12796 && XEXP (op0, 1) == const1_rtx
12797 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12798 {
12799 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12800 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12801
12802 if (GET_CODE (shift_op) == NOT
12803 || (GET_CODE (shift_op) == XOR
12804 && CONST_INT_P (XEXP (shift_op, 1))
12805 && CONST_INT_P (shift_count)
12806 && HWI_COMPUTABLE_MODE_P (mode)
12807 && (UINTVAL (XEXP (shift_op, 1))
12808 == HOST_WIDE_INT_1U
12809 << INTVAL (shift_count))))
12810 {
12811 op0
12812 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12813 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12814 code = (code == NE ? EQ : NE);
12815 continue;
12816 }
12817 }
12818 break;
12819
12820 case ASHIFT:
12821 /* If we have (compare (ashift FOO N) (const_int C)) and
12822 the high order N bits of FOO (N+1 if an inequality comparison)
12823 are known to be zero, we can do this by comparing FOO with C
12824 shifted right N bits so long as the low-order N bits of C are
12825 zero. */
12826 if (CONST_INT_P (XEXP (op0, 1))
12827 && INTVAL (XEXP (op0, 1)) >= 0
12828 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12829 < HOST_BITS_PER_WIDE_INT)
12830 && (((unsigned HOST_WIDE_INT) const_op
12831 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12832 - 1)) == 0)
12833 && mode_width <= HOST_BITS_PER_WIDE_INT
12834 && (nonzero_bits (XEXP (op0, 0), mode)
12835 & ~(mask >> (INTVAL (XEXP (op0, 1))
12836 + ! equality_comparison_p))) == 0)
12837 {
12838 /* We must perform a logical shift, not an arithmetic one,
12839 as we want the top N bits of C to be zero. */
12840 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12841
12842 temp >>= INTVAL (XEXP (op0, 1));
12843 op1 = gen_int_mode (temp, mode);
12844 op0 = XEXP (op0, 0);
12845 continue;
12846 }
12847
12848 /* If we are doing a sign bit comparison, it means we are testing
12849 a particular bit. Convert it to the appropriate AND. */
12850 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12851 && mode_width <= HOST_BITS_PER_WIDE_INT)
12852 {
12853 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12854 (HOST_WIDE_INT_1U
12855 << (mode_width - 1
12856 - INTVAL (XEXP (op0, 1)))));
12857 code = (code == LT ? NE : EQ);
12858 continue;
12859 }
12860
12861 /* If this an equality comparison with zero and we are shifting
12862 the low bit to the sign bit, we can convert this to an AND of the
12863 low-order bit. */
12864 if (const_op == 0 && equality_comparison_p
12865 && CONST_INT_P (XEXP (op0, 1))
12866 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12867 {
12868 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12869 continue;
12870 }
12871 break;
12872
12873 case ASHIFTRT:
12874 /* If this is an equality comparison with zero, we can do this
12875 as a logical shift, which might be much simpler. */
12876 if (equality_comparison_p && const_op == 0
12877 && CONST_INT_P (XEXP (op0, 1)))
12878 {
12879 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12880 XEXP (op0, 0),
12881 INTVAL (XEXP (op0, 1)));
12882 continue;
12883 }
12884
12885 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12886 do the comparison in a narrower mode. */
12887 if (! unsigned_comparison_p
12888 && CONST_INT_P (XEXP (op0, 1))
12889 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12890 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12891 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12892 .exists (&tmode))
12893 && (((unsigned HOST_WIDE_INT) const_op
12894 + (GET_MODE_MASK (tmode) >> 1) + 1)
12895 <= GET_MODE_MASK (tmode)))
12896 {
12897 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12898 continue;
12899 }
12900
12901 /* Likewise if OP0 is a PLUS of a sign extension with a
12902 constant, which is usually represented with the PLUS
12903 between the shifts. */
12904 if (! unsigned_comparison_p
12905 && CONST_INT_P (XEXP (op0, 1))
12906 && GET_CODE (XEXP (op0, 0)) == PLUS
12907 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12908 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12909 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12910 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12911 .exists (&tmode))
12912 && (((unsigned HOST_WIDE_INT) const_op
12913 + (GET_MODE_MASK (tmode) >> 1) + 1)
12914 <= GET_MODE_MASK (tmode)))
12915 {
12916 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12917 rtx add_const = XEXP (XEXP (op0, 0), 1);
12918 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12919 add_const, XEXP (op0, 1));
12920
12921 op0 = simplify_gen_binary (PLUS, tmode,
12922 gen_lowpart (tmode, inner),
12923 new_const);
12924 continue;
12925 }
12926
12927 /* FALLTHROUGH */
12928 case LSHIFTRT:
12929 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12930 the low order N bits of FOO are known to be zero, we can do this
12931 by comparing FOO with C shifted left N bits so long as no
12932 overflow occurs. Even if the low order N bits of FOO aren't known
12933 to be zero, if the comparison is >= or < we can use the same
12934 optimization and for > or <= by setting all the low
12935 order N bits in the comparison constant. */
12936 if (CONST_INT_P (XEXP (op0, 1))
12937 && INTVAL (XEXP (op0, 1)) > 0
12938 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12939 && mode_width <= HOST_BITS_PER_WIDE_INT
12940 && (((unsigned HOST_WIDE_INT) const_op
12941 + (GET_CODE (op0) != LSHIFTRT
12942 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12943 + 1)
12944 : 0))
12945 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12946 {
12947 unsigned HOST_WIDE_INT low_bits
12948 = (nonzero_bits (XEXP (op0, 0), mode)
12949 & ((HOST_WIDE_INT_1U
12950 << INTVAL (XEXP (op0, 1))) - 1));
12951 if (low_bits == 0 || !equality_comparison_p)
12952 {
12953 /* If the shift was logical, then we must make the condition
12954 unsigned. */
12955 if (GET_CODE (op0) == LSHIFTRT)
12956 code = unsigned_condition (code);
12957
12958 const_op = (unsigned HOST_WIDE_INT) const_op
12959 << INTVAL (XEXP (op0, 1));
12960 if (low_bits != 0
12961 && (code == GT || code == GTU
12962 || code == LE || code == LEU))
12963 const_op
12964 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12965 op1 = GEN_INT (const_op);
12966 op0 = XEXP (op0, 0);
12967 continue;
12968 }
12969 }
12970
12971 /* If we are using this shift to extract just the sign bit, we
12972 can replace this with an LT or GE comparison. */
12973 if (const_op == 0
12974 && (equality_comparison_p || sign_bit_comparison_p)
12975 && CONST_INT_P (XEXP (op0, 1))
12976 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12977 {
12978 op0 = XEXP (op0, 0);
12979 code = (code == NE || code == GT ? LT : GE);
12980 continue;
12981 }
12982 break;
12983
12984 default:
12985 break;
12986 }
12987
12988 break;
12989 }
12990
12991 /* Now make any compound operations involved in this comparison. Then,
12992 check for an outmost SUBREG on OP0 that is not doing anything or is
12993 paradoxical. The latter transformation must only be performed when
12994 it is known that the "extra" bits will be the same in op0 and op1 or
12995 that they don't matter. There are three cases to consider:
12996
12997 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12998 care bits and we can assume they have any convenient value. So
12999 making the transformation is safe.
13000
13001 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13002 In this case the upper bits of op0 are undefined. We should not make
13003 the simplification in that case as we do not know the contents of
13004 those bits.
13005
13006 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13007 In that case we know those bits are zeros or ones. We must also be
13008 sure that they are the same as the upper bits of op1.
13009
13010 We can never remove a SUBREG for a non-equality comparison because
13011 the sign bit is in a different place in the underlying object. */
13012
13013 rtx_code op0_mco_code = SET;
13014 if (op1 == const0_rtx)
13015 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13016
13017 op0 = make_compound_operation (op0, op0_mco_code);
13018 op1 = make_compound_operation (op1, SET);
13019
13020 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13021 && is_int_mode (GET_MODE (op0), &mode)
13022 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13023 && (code == NE || code == EQ))
13024 {
13025 if (paradoxical_subreg_p (op0))
13026 {
13027 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13028 implemented. */
13029 if (REG_P (SUBREG_REG (op0)))
13030 {
13031 op0 = SUBREG_REG (op0);
13032 op1 = gen_lowpart (inner_mode, op1);
13033 }
13034 }
13035 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13036 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13037 & ~GET_MODE_MASK (mode)) == 0)
13038 {
13039 tem = gen_lowpart (inner_mode, op1);
13040
13041 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13042 op0 = SUBREG_REG (op0), op1 = tem;
13043 }
13044 }
13045
13046 /* We now do the opposite procedure: Some machines don't have compare
13047 insns in all modes. If OP0's mode is an integer mode smaller than a
13048 word and we can't do a compare in that mode, see if there is a larger
13049 mode for which we can do the compare. There are a number of cases in
13050 which we can use the wider mode. */
13051
13052 if (is_int_mode (GET_MODE (op0), &mode)
13053 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13054 && ! have_insn_for (COMPARE, mode))
13055 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13056 {
13057 tmode = tmode_iter.require ();
13058 if (!HWI_COMPUTABLE_MODE_P (tmode))
13059 break;
13060 if (have_insn_for (COMPARE, tmode))
13061 {
13062 int zero_extended;
13063
13064 /* If this is a test for negative, we can make an explicit
13065 test of the sign bit. Test this first so we can use
13066 a paradoxical subreg to extend OP0. */
13067
13068 if (op1 == const0_rtx && (code == LT || code == GE)
13069 && HWI_COMPUTABLE_MODE_P (mode))
13070 {
13071 unsigned HOST_WIDE_INT sign
13072 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13073 op0 = simplify_gen_binary (AND, tmode,
13074 gen_lowpart (tmode, op0),
13075 gen_int_mode (sign, tmode));
13076 code = (code == LT) ? NE : EQ;
13077 break;
13078 }
13079
13080 /* If the only nonzero bits in OP0 and OP1 are those in the
13081 narrower mode and this is an equality or unsigned comparison,
13082 we can use the wider mode. Similarly for sign-extended
13083 values, in which case it is true for all comparisons. */
13084 zero_extended = ((code == EQ || code == NE
13085 || code == GEU || code == GTU
13086 || code == LEU || code == LTU)
13087 && (nonzero_bits (op0, tmode)
13088 & ~GET_MODE_MASK (mode)) == 0
13089 && ((CONST_INT_P (op1)
13090 || (nonzero_bits (op1, tmode)
13091 & ~GET_MODE_MASK (mode)) == 0)));
13092
13093 if (zero_extended
13094 || ((num_sign_bit_copies (op0, tmode)
13095 > (unsigned int) (GET_MODE_PRECISION (tmode)
13096 - GET_MODE_PRECISION (mode)))
13097 && (num_sign_bit_copies (op1, tmode)
13098 > (unsigned int) (GET_MODE_PRECISION (tmode)
13099 - GET_MODE_PRECISION (mode)))))
13100 {
13101 /* If OP0 is an AND and we don't have an AND in MODE either,
13102 make a new AND in the proper mode. */
13103 if (GET_CODE (op0) == AND
13104 && !have_insn_for (AND, mode))
13105 op0 = simplify_gen_binary (AND, tmode,
13106 gen_lowpart (tmode,
13107 XEXP (op0, 0)),
13108 gen_lowpart (tmode,
13109 XEXP (op0, 1)));
13110 else
13111 {
13112 if (zero_extended)
13113 {
13114 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13115 op0, mode);
13116 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13117 op1, mode);
13118 }
13119 else
13120 {
13121 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13122 op0, mode);
13123 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13124 op1, mode);
13125 }
13126 break;
13127 }
13128 }
13129 }
13130 }
13131
13132 /* We may have changed the comparison operands. Re-canonicalize. */
13133 if (swap_commutative_operands_p (op0, op1))
13134 {
13135 std::swap (op0, op1);
13136 code = swap_condition (code);
13137 }
13138
13139 /* If this machine only supports a subset of valid comparisons, see if we
13140 can convert an unsupported one into a supported one. */
13141 target_canonicalize_comparison (&code, &op0, &op1, 0);
13142
13143 *pop0 = op0;
13144 *pop1 = op1;
13145
13146 return code;
13147 }
13148 \f
13149 /* Utility function for record_value_for_reg. Count number of
13150 rtxs in X. */
13151 static int
13152 count_rtxs (rtx x)
13153 {
13154 enum rtx_code code = GET_CODE (x);
13155 const char *fmt;
13156 int i, j, ret = 1;
13157
13158 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13159 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13160 {
13161 rtx x0 = XEXP (x, 0);
13162 rtx x1 = XEXP (x, 1);
13163
13164 if (x0 == x1)
13165 return 1 + 2 * count_rtxs (x0);
13166
13167 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13168 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13169 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13170 return 2 + 2 * count_rtxs (x0)
13171 + count_rtxs (x == XEXP (x1, 0)
13172 ? XEXP (x1, 1) : XEXP (x1, 0));
13173
13174 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13175 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13176 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13177 return 2 + 2 * count_rtxs (x1)
13178 + count_rtxs (x == XEXP (x0, 0)
13179 ? XEXP (x0, 1) : XEXP (x0, 0));
13180 }
13181
13182 fmt = GET_RTX_FORMAT (code);
13183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13184 if (fmt[i] == 'e')
13185 ret += count_rtxs (XEXP (x, i));
13186 else if (fmt[i] == 'E')
13187 for (j = 0; j < XVECLEN (x, i); j++)
13188 ret += count_rtxs (XVECEXP (x, i, j));
13189
13190 return ret;
13191 }
13192 \f
13193 /* Utility function for following routine. Called when X is part of a value
13194 being stored into last_set_value. Sets last_set_table_tick
13195 for each register mentioned. Similar to mention_regs in cse.c */
13196
13197 static void
13198 update_table_tick (rtx x)
13199 {
13200 enum rtx_code code = GET_CODE (x);
13201 const char *fmt = GET_RTX_FORMAT (code);
13202 int i, j;
13203
13204 if (code == REG)
13205 {
13206 unsigned int regno = REGNO (x);
13207 unsigned int endregno = END_REGNO (x);
13208 unsigned int r;
13209
13210 for (r = regno; r < endregno; r++)
13211 {
13212 reg_stat_type *rsp = &reg_stat[r];
13213 rsp->last_set_table_tick = label_tick;
13214 }
13215
13216 return;
13217 }
13218
13219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13220 if (fmt[i] == 'e')
13221 {
13222 /* Check for identical subexpressions. If x contains
13223 identical subexpression we only have to traverse one of
13224 them. */
13225 if (i == 0 && ARITHMETIC_P (x))
13226 {
13227 /* Note that at this point x1 has already been
13228 processed. */
13229 rtx x0 = XEXP (x, 0);
13230 rtx x1 = XEXP (x, 1);
13231
13232 /* If x0 and x1 are identical then there is no need to
13233 process x0. */
13234 if (x0 == x1)
13235 break;
13236
13237 /* If x0 is identical to a subexpression of x1 then while
13238 processing x1, x0 has already been processed. Thus we
13239 are done with x. */
13240 if (ARITHMETIC_P (x1)
13241 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13242 break;
13243
13244 /* If x1 is identical to a subexpression of x0 then we
13245 still have to process the rest of x0. */
13246 if (ARITHMETIC_P (x0)
13247 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13248 {
13249 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13250 break;
13251 }
13252 }
13253
13254 update_table_tick (XEXP (x, i));
13255 }
13256 else if (fmt[i] == 'E')
13257 for (j = 0; j < XVECLEN (x, i); j++)
13258 update_table_tick (XVECEXP (x, i, j));
13259 }
13260
13261 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13262 are saying that the register is clobbered and we no longer know its
13263 value. If INSN is zero, don't update reg_stat[].last_set; this is
13264 only permitted with VALUE also zero and is used to invalidate the
13265 register. */
13266
13267 static void
13268 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13269 {
13270 unsigned int regno = REGNO (reg);
13271 unsigned int endregno = END_REGNO (reg);
13272 unsigned int i;
13273 reg_stat_type *rsp;
13274
13275 /* If VALUE contains REG and we have a previous value for REG, substitute
13276 the previous value. */
13277 if (value && insn && reg_overlap_mentioned_p (reg, value))
13278 {
13279 rtx tem;
13280
13281 /* Set things up so get_last_value is allowed to see anything set up to
13282 our insn. */
13283 subst_low_luid = DF_INSN_LUID (insn);
13284 tem = get_last_value (reg);
13285
13286 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13287 it isn't going to be useful and will take a lot of time to process,
13288 so just use the CLOBBER. */
13289
13290 if (tem)
13291 {
13292 if (ARITHMETIC_P (tem)
13293 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13294 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13295 tem = XEXP (tem, 0);
13296 else if (count_occurrences (value, reg, 1) >= 2)
13297 {
13298 /* If there are two or more occurrences of REG in VALUE,
13299 prevent the value from growing too much. */
13300 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13301 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13302 }
13303
13304 value = replace_rtx (copy_rtx (value), reg, tem);
13305 }
13306 }
13307
13308 /* For each register modified, show we don't know its value, that
13309 we don't know about its bitwise content, that its value has been
13310 updated, and that we don't know the location of the death of the
13311 register. */
13312 for (i = regno; i < endregno; i++)
13313 {
13314 rsp = &reg_stat[i];
13315
13316 if (insn)
13317 rsp->last_set = insn;
13318
13319 rsp->last_set_value = 0;
13320 rsp->last_set_mode = VOIDmode;
13321 rsp->last_set_nonzero_bits = 0;
13322 rsp->last_set_sign_bit_copies = 0;
13323 rsp->last_death = 0;
13324 rsp->truncated_to_mode = VOIDmode;
13325 }
13326
13327 /* Mark registers that are being referenced in this value. */
13328 if (value)
13329 update_table_tick (value);
13330
13331 /* Now update the status of each register being set.
13332 If someone is using this register in this block, set this register
13333 to invalid since we will get confused between the two lives in this
13334 basic block. This makes using this register always invalid. In cse, we
13335 scan the table to invalidate all entries using this register, but this
13336 is too much work for us. */
13337
13338 for (i = regno; i < endregno; i++)
13339 {
13340 rsp = &reg_stat[i];
13341 rsp->last_set_label = label_tick;
13342 if (!insn
13343 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13344 rsp->last_set_invalid = 1;
13345 else
13346 rsp->last_set_invalid = 0;
13347 }
13348
13349 /* The value being assigned might refer to X (like in "x++;"). In that
13350 case, we must replace it with (clobber (const_int 0)) to prevent
13351 infinite loops. */
13352 rsp = &reg_stat[regno];
13353 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13354 {
13355 value = copy_rtx (value);
13356 if (!get_last_value_validate (&value, insn, label_tick, 1))
13357 value = 0;
13358 }
13359
13360 /* For the main register being modified, update the value, the mode, the
13361 nonzero bits, and the number of sign bit copies. */
13362
13363 rsp->last_set_value = value;
13364
13365 if (value)
13366 {
13367 machine_mode mode = GET_MODE (reg);
13368 subst_low_luid = DF_INSN_LUID (insn);
13369 rsp->last_set_mode = mode;
13370 if (GET_MODE_CLASS (mode) == MODE_INT
13371 && HWI_COMPUTABLE_MODE_P (mode))
13372 mode = nonzero_bits_mode;
13373 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13374 rsp->last_set_sign_bit_copies
13375 = num_sign_bit_copies (value, GET_MODE (reg));
13376 }
13377 }
13378
13379 /* Called via note_stores from record_dead_and_set_regs to handle one
13380 SET or CLOBBER in an insn. DATA is the instruction in which the
13381 set is occurring. */
13382
13383 static void
13384 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13385 {
13386 rtx_insn *record_dead_insn = (rtx_insn *) data;
13387
13388 if (GET_CODE (dest) == SUBREG)
13389 dest = SUBREG_REG (dest);
13390
13391 if (!record_dead_insn)
13392 {
13393 if (REG_P (dest))
13394 record_value_for_reg (dest, NULL, NULL_RTX);
13395 return;
13396 }
13397
13398 if (REG_P (dest))
13399 {
13400 /* If we are setting the whole register, we know its value. Otherwise
13401 show that we don't know the value. We can handle a SUBREG if it's
13402 the low part, but we must be careful with paradoxical SUBREGs on
13403 RISC architectures because we cannot strip e.g. an extension around
13404 a load and record the naked load since the RTL middle-end considers
13405 that the upper bits are defined according to LOAD_EXTEND_OP. */
13406 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13407 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13408 else if (GET_CODE (setter) == SET
13409 && GET_CODE (SET_DEST (setter)) == SUBREG
13410 && SUBREG_REG (SET_DEST (setter)) == dest
13411 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13412 BITS_PER_WORD)
13413 && subreg_lowpart_p (SET_DEST (setter)))
13414 record_value_for_reg (dest, record_dead_insn,
13415 WORD_REGISTER_OPERATIONS
13416 && word_register_operation_p (SET_SRC (setter))
13417 && paradoxical_subreg_p (SET_DEST (setter))
13418 ? SET_SRC (setter)
13419 : gen_lowpart (GET_MODE (dest),
13420 SET_SRC (setter)));
13421 else if (GET_CODE (setter) == CLOBBER_HIGH)
13422 {
13423 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13424 if (rsp->last_set_value
13425 && reg_is_clobbered_by_clobber_high
13426 (REGNO (dest), GET_MODE (rsp->last_set_value),
13427 XEXP (setter, 0)))
13428 record_value_for_reg (dest, NULL, NULL_RTX);
13429 }
13430 else
13431 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13432 }
13433 else if (MEM_P (dest)
13434 /* Ignore pushes, they clobber nothing. */
13435 && ! push_operand (dest, GET_MODE (dest)))
13436 mem_last_set = DF_INSN_LUID (record_dead_insn);
13437 }
13438
13439 /* Update the records of when each REG was most recently set or killed
13440 for the things done by INSN. This is the last thing done in processing
13441 INSN in the combiner loop.
13442
13443 We update reg_stat[], in particular fields last_set, last_set_value,
13444 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13445 last_death, and also the similar information mem_last_set (which insn
13446 most recently modified memory) and last_call_luid (which insn was the
13447 most recent subroutine call). */
13448
13449 static void
13450 record_dead_and_set_regs (rtx_insn *insn)
13451 {
13452 rtx link;
13453 unsigned int i;
13454
13455 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13456 {
13457 if (REG_NOTE_KIND (link) == REG_DEAD
13458 && REG_P (XEXP (link, 0)))
13459 {
13460 unsigned int regno = REGNO (XEXP (link, 0));
13461 unsigned int endregno = END_REGNO (XEXP (link, 0));
13462
13463 for (i = regno; i < endregno; i++)
13464 {
13465 reg_stat_type *rsp;
13466
13467 rsp = &reg_stat[i];
13468 rsp->last_death = insn;
13469 }
13470 }
13471 else if (REG_NOTE_KIND (link) == REG_INC)
13472 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13473 }
13474
13475 if (CALL_P (insn))
13476 {
13477 hard_reg_set_iterator hrsi;
13478 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13479 {
13480 reg_stat_type *rsp;
13481
13482 rsp = &reg_stat[i];
13483 rsp->last_set_invalid = 1;
13484 rsp->last_set = insn;
13485 rsp->last_set_value = 0;
13486 rsp->last_set_mode = VOIDmode;
13487 rsp->last_set_nonzero_bits = 0;
13488 rsp->last_set_sign_bit_copies = 0;
13489 rsp->last_death = 0;
13490 rsp->truncated_to_mode = VOIDmode;
13491 }
13492
13493 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13494
13495 /* We can't combine into a call pattern. Remember, though, that
13496 the return value register is set at this LUID. We could
13497 still replace a register with the return value from the
13498 wrong subroutine call! */
13499 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13500 }
13501 else
13502 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13503 }
13504
13505 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13506 register present in the SUBREG, so for each such SUBREG go back and
13507 adjust nonzero and sign bit information of the registers that are
13508 known to have some zero/sign bits set.
13509
13510 This is needed because when combine blows the SUBREGs away, the
13511 information on zero/sign bits is lost and further combines can be
13512 missed because of that. */
13513
13514 static void
13515 record_promoted_value (rtx_insn *insn, rtx subreg)
13516 {
13517 struct insn_link *links;
13518 rtx set;
13519 unsigned int regno = REGNO (SUBREG_REG (subreg));
13520 machine_mode mode = GET_MODE (subreg);
13521
13522 if (!HWI_COMPUTABLE_MODE_P (mode))
13523 return;
13524
13525 for (links = LOG_LINKS (insn); links;)
13526 {
13527 reg_stat_type *rsp;
13528
13529 insn = links->insn;
13530 set = single_set (insn);
13531
13532 if (! set || !REG_P (SET_DEST (set))
13533 || REGNO (SET_DEST (set)) != regno
13534 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13535 {
13536 links = links->next;
13537 continue;
13538 }
13539
13540 rsp = &reg_stat[regno];
13541 if (rsp->last_set == insn)
13542 {
13543 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13544 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13545 }
13546
13547 if (REG_P (SET_SRC (set)))
13548 {
13549 regno = REGNO (SET_SRC (set));
13550 links = LOG_LINKS (insn);
13551 }
13552 else
13553 break;
13554 }
13555 }
13556
13557 /* Check if X, a register, is known to contain a value already
13558 truncated to MODE. In this case we can use a subreg to refer to
13559 the truncated value even though in the generic case we would need
13560 an explicit truncation. */
13561
13562 static bool
13563 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13564 {
13565 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13566 machine_mode truncated = rsp->truncated_to_mode;
13567
13568 if (truncated == 0
13569 || rsp->truncation_label < label_tick_ebb_start)
13570 return false;
13571 if (!partial_subreg_p (mode, truncated))
13572 return true;
13573 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13574 return true;
13575 return false;
13576 }
13577
13578 /* If X is a hard reg or a subreg record the mode that the register is
13579 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13580 able to turn a truncate into a subreg using this information. Return true
13581 if traversing X is complete. */
13582
13583 static bool
13584 record_truncated_value (rtx x)
13585 {
13586 machine_mode truncated_mode;
13587 reg_stat_type *rsp;
13588
13589 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13590 {
13591 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13592 truncated_mode = GET_MODE (x);
13593
13594 if (!partial_subreg_p (truncated_mode, original_mode))
13595 return true;
13596
13597 truncated_mode = GET_MODE (x);
13598 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13599 return true;
13600
13601 x = SUBREG_REG (x);
13602 }
13603 /* ??? For hard-regs we now record everything. We might be able to
13604 optimize this using last_set_mode. */
13605 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13606 truncated_mode = GET_MODE (x);
13607 else
13608 return false;
13609
13610 rsp = &reg_stat[REGNO (x)];
13611 if (rsp->truncated_to_mode == 0
13612 || rsp->truncation_label < label_tick_ebb_start
13613 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13614 {
13615 rsp->truncated_to_mode = truncated_mode;
13616 rsp->truncation_label = label_tick;
13617 }
13618
13619 return true;
13620 }
13621
13622 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13623 the modes they are used in. This can help truning TRUNCATEs into
13624 SUBREGs. */
13625
13626 static void
13627 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13628 {
13629 subrtx_var_iterator::array_type array;
13630 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13631 if (record_truncated_value (*iter))
13632 iter.skip_subrtxes ();
13633 }
13634
13635 /* Scan X for promoted SUBREGs. For each one found,
13636 note what it implies to the registers used in it. */
13637
13638 static void
13639 check_promoted_subreg (rtx_insn *insn, rtx x)
13640 {
13641 if (GET_CODE (x) == SUBREG
13642 && SUBREG_PROMOTED_VAR_P (x)
13643 && REG_P (SUBREG_REG (x)))
13644 record_promoted_value (insn, x);
13645 else
13646 {
13647 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13648 int i, j;
13649
13650 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13651 switch (format[i])
13652 {
13653 case 'e':
13654 check_promoted_subreg (insn, XEXP (x, i));
13655 break;
13656 case 'V':
13657 case 'E':
13658 if (XVEC (x, i) != 0)
13659 for (j = 0; j < XVECLEN (x, i); j++)
13660 check_promoted_subreg (insn, XVECEXP (x, i, j));
13661 break;
13662 }
13663 }
13664 }
13665 \f
13666 /* Verify that all the registers and memory references mentioned in *LOC are
13667 still valid. *LOC was part of a value set in INSN when label_tick was
13668 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13669 the invalid references with (clobber (const_int 0)) and return 1. This
13670 replacement is useful because we often can get useful information about
13671 the form of a value (e.g., if it was produced by a shift that always
13672 produces -1 or 0) even though we don't know exactly what registers it
13673 was produced from. */
13674
13675 static int
13676 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13677 {
13678 rtx x = *loc;
13679 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13680 int len = GET_RTX_LENGTH (GET_CODE (x));
13681 int i, j;
13682
13683 if (REG_P (x))
13684 {
13685 unsigned int regno = REGNO (x);
13686 unsigned int endregno = END_REGNO (x);
13687 unsigned int j;
13688
13689 for (j = regno; j < endregno; j++)
13690 {
13691 reg_stat_type *rsp = &reg_stat[j];
13692 if (rsp->last_set_invalid
13693 /* If this is a pseudo-register that was only set once and not
13694 live at the beginning of the function, it is always valid. */
13695 || (! (regno >= FIRST_PSEUDO_REGISTER
13696 && regno < reg_n_sets_max
13697 && REG_N_SETS (regno) == 1
13698 && (!REGNO_REG_SET_P
13699 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13700 regno)))
13701 && rsp->last_set_label > tick))
13702 {
13703 if (replace)
13704 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13705 return replace;
13706 }
13707 }
13708
13709 return 1;
13710 }
13711 /* If this is a memory reference, make sure that there were no stores after
13712 it that might have clobbered the value. We don't have alias info, so we
13713 assume any store invalidates it. Moreover, we only have local UIDs, so
13714 we also assume that there were stores in the intervening basic blocks. */
13715 else if (MEM_P (x) && !MEM_READONLY_P (x)
13716 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13717 {
13718 if (replace)
13719 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13720 return replace;
13721 }
13722
13723 for (i = 0; i < len; i++)
13724 {
13725 if (fmt[i] == 'e')
13726 {
13727 /* Check for identical subexpressions. If x contains
13728 identical subexpression we only have to traverse one of
13729 them. */
13730 if (i == 1 && ARITHMETIC_P (x))
13731 {
13732 /* Note that at this point x0 has already been checked
13733 and found valid. */
13734 rtx x0 = XEXP (x, 0);
13735 rtx x1 = XEXP (x, 1);
13736
13737 /* If x0 and x1 are identical then x is also valid. */
13738 if (x0 == x1)
13739 return 1;
13740
13741 /* If x1 is identical to a subexpression of x0 then
13742 while checking x0, x1 has already been checked. Thus
13743 it is valid and so as x. */
13744 if (ARITHMETIC_P (x0)
13745 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13746 return 1;
13747
13748 /* If x0 is identical to a subexpression of x1 then x is
13749 valid iff the rest of x1 is valid. */
13750 if (ARITHMETIC_P (x1)
13751 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13752 return
13753 get_last_value_validate (&XEXP (x1,
13754 x0 == XEXP (x1, 0) ? 1 : 0),
13755 insn, tick, replace);
13756 }
13757
13758 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13759 replace) == 0)
13760 return 0;
13761 }
13762 else if (fmt[i] == 'E')
13763 for (j = 0; j < XVECLEN (x, i); j++)
13764 if (get_last_value_validate (&XVECEXP (x, i, j),
13765 insn, tick, replace) == 0)
13766 return 0;
13767 }
13768
13769 /* If we haven't found a reason for it to be invalid, it is valid. */
13770 return 1;
13771 }
13772
13773 /* Get the last value assigned to X, if known. Some registers
13774 in the value may be replaced with (clobber (const_int 0)) if their value
13775 is known longer known reliably. */
13776
13777 static rtx
13778 get_last_value (const_rtx x)
13779 {
13780 unsigned int regno;
13781 rtx value;
13782 reg_stat_type *rsp;
13783
13784 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13785 then convert it to the desired mode. If this is a paradoxical SUBREG,
13786 we cannot predict what values the "extra" bits might have. */
13787 if (GET_CODE (x) == SUBREG
13788 && subreg_lowpart_p (x)
13789 && !paradoxical_subreg_p (x)
13790 && (value = get_last_value (SUBREG_REG (x))) != 0)
13791 return gen_lowpart (GET_MODE (x), value);
13792
13793 if (!REG_P (x))
13794 return 0;
13795
13796 regno = REGNO (x);
13797 rsp = &reg_stat[regno];
13798 value = rsp->last_set_value;
13799
13800 /* If we don't have a value, or if it isn't for this basic block and
13801 it's either a hard register, set more than once, or it's a live
13802 at the beginning of the function, return 0.
13803
13804 Because if it's not live at the beginning of the function then the reg
13805 is always set before being used (is never used without being set).
13806 And, if it's set only once, and it's always set before use, then all
13807 uses must have the same last value, even if it's not from this basic
13808 block. */
13809
13810 if (value == 0
13811 || (rsp->last_set_label < label_tick_ebb_start
13812 && (regno < FIRST_PSEUDO_REGISTER
13813 || regno >= reg_n_sets_max
13814 || REG_N_SETS (regno) != 1
13815 || REGNO_REG_SET_P
13816 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13817 return 0;
13818
13819 /* If the value was set in a later insn than the ones we are processing,
13820 we can't use it even if the register was only set once. */
13821 if (rsp->last_set_label == label_tick
13822 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13823 return 0;
13824
13825 /* If fewer bits were set than what we are asked for now, we cannot use
13826 the value. */
13827 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13828 GET_MODE_PRECISION (GET_MODE (x))))
13829 return 0;
13830
13831 /* If the value has all its registers valid, return it. */
13832 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13833 return value;
13834
13835 /* Otherwise, make a copy and replace any invalid register with
13836 (clobber (const_int 0)). If that fails for some reason, return 0. */
13837
13838 value = copy_rtx (value);
13839 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13840 return value;
13841
13842 return 0;
13843 }
13844 \f
13845 /* Define three variables used for communication between the following
13846 routines. */
13847
13848 static unsigned int reg_dead_regno, reg_dead_endregno;
13849 static int reg_dead_flag;
13850 rtx reg_dead_reg;
13851
13852 /* Function called via note_stores from reg_dead_at_p.
13853
13854 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13855 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13856
13857 static void
13858 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13859 {
13860 unsigned int regno, endregno;
13861
13862 if (!REG_P (dest))
13863 return;
13864
13865 if (GET_CODE (x) == CLOBBER_HIGH
13866 && !reg_is_clobbered_by_clobber_high (reg_dead_reg, XEXP (x, 0)))
13867 return;
13868
13869 regno = REGNO (dest);
13870 endregno = END_REGNO (dest);
13871 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13872 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13873 }
13874
13875 /* Return nonzero if REG is known to be dead at INSN.
13876
13877 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13878 referencing REG, it is dead. If we hit a SET referencing REG, it is
13879 live. Otherwise, see if it is live or dead at the start of the basic
13880 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13881 must be assumed to be always live. */
13882
13883 static int
13884 reg_dead_at_p (rtx reg, rtx_insn *insn)
13885 {
13886 basic_block block;
13887 unsigned int i;
13888
13889 /* Set variables for reg_dead_at_p_1. */
13890 reg_dead_regno = REGNO (reg);
13891 reg_dead_endregno = END_REGNO (reg);
13892 reg_dead_reg = reg;
13893
13894 reg_dead_flag = 0;
13895
13896 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13897 we allow the machine description to decide whether use-and-clobber
13898 patterns are OK. */
13899 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13900 {
13901 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13902 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13903 return 0;
13904 }
13905
13906 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13907 beginning of basic block. */
13908 block = BLOCK_FOR_INSN (insn);
13909 for (;;)
13910 {
13911 if (INSN_P (insn))
13912 {
13913 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13914 return 1;
13915
13916 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13917 if (reg_dead_flag)
13918 return reg_dead_flag == 1 ? 1 : 0;
13919
13920 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13921 return 1;
13922 }
13923
13924 if (insn == BB_HEAD (block))
13925 break;
13926
13927 insn = PREV_INSN (insn);
13928 }
13929
13930 /* Look at live-in sets for the basic block that we were in. */
13931 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13932 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13933 return 0;
13934
13935 return 1;
13936 }
13937 \f
13938 /* Note hard registers in X that are used. */
13939
13940 static void
13941 mark_used_regs_combine (rtx x)
13942 {
13943 RTX_CODE code = GET_CODE (x);
13944 unsigned int regno;
13945 int i;
13946
13947 switch (code)
13948 {
13949 case LABEL_REF:
13950 case SYMBOL_REF:
13951 case CONST:
13952 CASE_CONST_ANY:
13953 case PC:
13954 case ADDR_VEC:
13955 case ADDR_DIFF_VEC:
13956 case ASM_INPUT:
13957 /* CC0 must die in the insn after it is set, so we don't need to take
13958 special note of it here. */
13959 case CC0:
13960 return;
13961
13962 case CLOBBER:
13963 /* If we are clobbering a MEM, mark any hard registers inside the
13964 address as used. */
13965 if (MEM_P (XEXP (x, 0)))
13966 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13967 return;
13968
13969 case REG:
13970 regno = REGNO (x);
13971 /* A hard reg in a wide mode may really be multiple registers.
13972 If so, mark all of them just like the first. */
13973 if (regno < FIRST_PSEUDO_REGISTER)
13974 {
13975 /* None of this applies to the stack, frame or arg pointers. */
13976 if (regno == STACK_POINTER_REGNUM
13977 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13978 && regno == HARD_FRAME_POINTER_REGNUM)
13979 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13980 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13981 || regno == FRAME_POINTER_REGNUM)
13982 return;
13983
13984 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13985 }
13986 return;
13987
13988 case SET:
13989 {
13990 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13991 the address. */
13992 rtx testreg = SET_DEST (x);
13993
13994 while (GET_CODE (testreg) == SUBREG
13995 || GET_CODE (testreg) == ZERO_EXTRACT
13996 || GET_CODE (testreg) == STRICT_LOW_PART)
13997 testreg = XEXP (testreg, 0);
13998
13999 if (MEM_P (testreg))
14000 mark_used_regs_combine (XEXP (testreg, 0));
14001
14002 mark_used_regs_combine (SET_SRC (x));
14003 }
14004 return;
14005
14006 default:
14007 break;
14008 }
14009
14010 /* Recursively scan the operands of this expression. */
14011
14012 {
14013 const char *fmt = GET_RTX_FORMAT (code);
14014
14015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14016 {
14017 if (fmt[i] == 'e')
14018 mark_used_regs_combine (XEXP (x, i));
14019 else if (fmt[i] == 'E')
14020 {
14021 int j;
14022
14023 for (j = 0; j < XVECLEN (x, i); j++)
14024 mark_used_regs_combine (XVECEXP (x, i, j));
14025 }
14026 }
14027 }
14028 }
14029 \f
14030 /* Remove register number REGNO from the dead registers list of INSN.
14031
14032 Return the note used to record the death, if there was one. */
14033
14034 rtx
14035 remove_death (unsigned int regno, rtx_insn *insn)
14036 {
14037 rtx note = find_regno_note (insn, REG_DEAD, regno);
14038
14039 if (note)
14040 remove_note (insn, note);
14041
14042 return note;
14043 }
14044
14045 /* For each register (hardware or pseudo) used within expression X, if its
14046 death is in an instruction with luid between FROM_LUID (inclusive) and
14047 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14048 list headed by PNOTES.
14049
14050 That said, don't move registers killed by maybe_kill_insn.
14051
14052 This is done when X is being merged by combination into TO_INSN. These
14053 notes will then be distributed as needed. */
14054
14055 static void
14056 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14057 rtx *pnotes)
14058 {
14059 const char *fmt;
14060 int len, i;
14061 enum rtx_code code = GET_CODE (x);
14062
14063 if (code == REG)
14064 {
14065 unsigned int regno = REGNO (x);
14066 rtx_insn *where_dead = reg_stat[regno].last_death;
14067
14068 /* If we do not know where the register died, it may still die between
14069 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14070 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14071 {
14072 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14073 while (insn
14074 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14075 && DF_INSN_LUID (insn) >= from_luid)
14076 {
14077 if (dead_or_set_regno_p (insn, regno))
14078 {
14079 if (find_regno_note (insn, REG_DEAD, regno))
14080 where_dead = insn;
14081 break;
14082 }
14083
14084 insn = prev_real_nondebug_insn (insn);
14085 }
14086 }
14087
14088 /* Don't move the register if it gets killed in between from and to. */
14089 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14090 && ! reg_referenced_p (x, maybe_kill_insn))
14091 return;
14092
14093 if (where_dead
14094 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14095 && DF_INSN_LUID (where_dead) >= from_luid
14096 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14097 {
14098 rtx note = remove_death (regno, where_dead);
14099
14100 /* It is possible for the call above to return 0. This can occur
14101 when last_death points to I2 or I1 that we combined with.
14102 In that case make a new note.
14103
14104 We must also check for the case where X is a hard register
14105 and NOTE is a death note for a range of hard registers
14106 including X. In that case, we must put REG_DEAD notes for
14107 the remaining registers in place of NOTE. */
14108
14109 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14110 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14111 {
14112 unsigned int deadregno = REGNO (XEXP (note, 0));
14113 unsigned int deadend = END_REGNO (XEXP (note, 0));
14114 unsigned int ourend = END_REGNO (x);
14115 unsigned int i;
14116
14117 for (i = deadregno; i < deadend; i++)
14118 if (i < regno || i >= ourend)
14119 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14120 }
14121
14122 /* If we didn't find any note, or if we found a REG_DEAD note that
14123 covers only part of the given reg, and we have a multi-reg hard
14124 register, then to be safe we must check for REG_DEAD notes
14125 for each register other than the first. They could have
14126 their own REG_DEAD notes lying around. */
14127 else if ((note == 0
14128 || (note != 0
14129 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14130 GET_MODE (x))))
14131 && regno < FIRST_PSEUDO_REGISTER
14132 && REG_NREGS (x) > 1)
14133 {
14134 unsigned int ourend = END_REGNO (x);
14135 unsigned int i, offset;
14136 rtx oldnotes = 0;
14137
14138 if (note)
14139 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14140 else
14141 offset = 1;
14142
14143 for (i = regno + offset; i < ourend; i++)
14144 move_deaths (regno_reg_rtx[i],
14145 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14146 }
14147
14148 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14149 {
14150 XEXP (note, 1) = *pnotes;
14151 *pnotes = note;
14152 }
14153 else
14154 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14155 }
14156
14157 return;
14158 }
14159
14160 else if (GET_CODE (x) == SET)
14161 {
14162 rtx dest = SET_DEST (x);
14163
14164 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14165
14166 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14167 that accesses one word of a multi-word item, some
14168 piece of everything register in the expression is used by
14169 this insn, so remove any old death. */
14170 /* ??? So why do we test for equality of the sizes? */
14171
14172 if (GET_CODE (dest) == ZERO_EXTRACT
14173 || GET_CODE (dest) == STRICT_LOW_PART
14174 || (GET_CODE (dest) == SUBREG
14175 && !read_modify_subreg_p (dest)))
14176 {
14177 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14178 return;
14179 }
14180
14181 /* If this is some other SUBREG, we know it replaces the entire
14182 value, so use that as the destination. */
14183 if (GET_CODE (dest) == SUBREG)
14184 dest = SUBREG_REG (dest);
14185
14186 /* If this is a MEM, adjust deaths of anything used in the address.
14187 For a REG (the only other possibility), the entire value is
14188 being replaced so the old value is not used in this insn. */
14189
14190 if (MEM_P (dest))
14191 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14192 to_insn, pnotes);
14193 return;
14194 }
14195
14196 else if (GET_CODE (x) == CLOBBER)
14197 return;
14198
14199 len = GET_RTX_LENGTH (code);
14200 fmt = GET_RTX_FORMAT (code);
14201
14202 for (i = 0; i < len; i++)
14203 {
14204 if (fmt[i] == 'E')
14205 {
14206 int j;
14207 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14208 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14209 to_insn, pnotes);
14210 }
14211 else if (fmt[i] == 'e')
14212 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14213 }
14214 }
14215 \f
14216 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14217 pattern of an insn. X must be a REG. */
14218
14219 static int
14220 reg_bitfield_target_p (rtx x, rtx body)
14221 {
14222 int i;
14223
14224 if (GET_CODE (body) == SET)
14225 {
14226 rtx dest = SET_DEST (body);
14227 rtx target;
14228 unsigned int regno, tregno, endregno, endtregno;
14229
14230 if (GET_CODE (dest) == ZERO_EXTRACT)
14231 target = XEXP (dest, 0);
14232 else if (GET_CODE (dest) == STRICT_LOW_PART)
14233 target = SUBREG_REG (XEXP (dest, 0));
14234 else
14235 return 0;
14236
14237 if (GET_CODE (target) == SUBREG)
14238 target = SUBREG_REG (target);
14239
14240 if (!REG_P (target))
14241 return 0;
14242
14243 tregno = REGNO (target), regno = REGNO (x);
14244 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14245 return target == x;
14246
14247 endtregno = end_hard_regno (GET_MODE (target), tregno);
14248 endregno = end_hard_regno (GET_MODE (x), regno);
14249
14250 return endregno > tregno && regno < endtregno;
14251 }
14252
14253 else if (GET_CODE (body) == PARALLEL)
14254 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14255 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14256 return 1;
14257
14258 return 0;
14259 }
14260 \f
14261 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14262 as appropriate. I3 and I2 are the insns resulting from the combination
14263 insns including FROM (I2 may be zero).
14264
14265 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14266 not need REG_DEAD notes because they are being substituted for. This
14267 saves searching in the most common cases.
14268
14269 Each note in the list is either ignored or placed on some insns, depending
14270 on the type of note. */
14271
14272 static void
14273 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14274 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14275 {
14276 rtx note, next_note;
14277 rtx tem_note;
14278 rtx_insn *tem_insn;
14279
14280 for (note = notes; note; note = next_note)
14281 {
14282 rtx_insn *place = 0, *place2 = 0;
14283
14284 next_note = XEXP (note, 1);
14285 switch (REG_NOTE_KIND (note))
14286 {
14287 case REG_BR_PROB:
14288 case REG_BR_PRED:
14289 /* Doesn't matter much where we put this, as long as it's somewhere.
14290 It is preferable to keep these notes on branches, which is most
14291 likely to be i3. */
14292 place = i3;
14293 break;
14294
14295 case REG_NON_LOCAL_GOTO:
14296 if (JUMP_P (i3))
14297 place = i3;
14298 else
14299 {
14300 gcc_assert (i2 && JUMP_P (i2));
14301 place = i2;
14302 }
14303 break;
14304
14305 case REG_EH_REGION:
14306 /* These notes must remain with the call or trapping instruction. */
14307 if (CALL_P (i3))
14308 place = i3;
14309 else if (i2 && CALL_P (i2))
14310 place = i2;
14311 else
14312 {
14313 gcc_assert (cfun->can_throw_non_call_exceptions);
14314 if (may_trap_p (i3))
14315 place = i3;
14316 else if (i2 && may_trap_p (i2))
14317 place = i2;
14318 /* ??? Otherwise assume we've combined things such that we
14319 can now prove that the instructions can't trap. Drop the
14320 note in this case. */
14321 }
14322 break;
14323
14324 case REG_ARGS_SIZE:
14325 /* ??? How to distribute between i3-i1. Assume i3 contains the
14326 entire adjustment. Assert i3 contains at least some adjust. */
14327 if (!noop_move_p (i3))
14328 {
14329 poly_int64 old_size, args_size = get_args_size (note);
14330 /* fixup_args_size_notes looks at REG_NORETURN note,
14331 so ensure the note is placed there first. */
14332 if (CALL_P (i3))
14333 {
14334 rtx *np;
14335 for (np = &next_note; *np; np = &XEXP (*np, 1))
14336 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14337 {
14338 rtx n = *np;
14339 *np = XEXP (n, 1);
14340 XEXP (n, 1) = REG_NOTES (i3);
14341 REG_NOTES (i3) = n;
14342 break;
14343 }
14344 }
14345 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14346 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14347 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14348 gcc_assert (maybe_ne (old_size, args_size)
14349 || (CALL_P (i3)
14350 && !ACCUMULATE_OUTGOING_ARGS
14351 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14352 }
14353 break;
14354
14355 case REG_NORETURN:
14356 case REG_SETJMP:
14357 case REG_TM:
14358 case REG_CALL_DECL:
14359 case REG_CALL_NOCF_CHECK:
14360 /* These notes must remain with the call. It should not be
14361 possible for both I2 and I3 to be a call. */
14362 if (CALL_P (i3))
14363 place = i3;
14364 else
14365 {
14366 gcc_assert (i2 && CALL_P (i2));
14367 place = i2;
14368 }
14369 break;
14370
14371 case REG_UNUSED:
14372 /* Any clobbers for i3 may still exist, and so we must process
14373 REG_UNUSED notes from that insn.
14374
14375 Any clobbers from i2 or i1 can only exist if they were added by
14376 recog_for_combine. In that case, recog_for_combine created the
14377 necessary REG_UNUSED notes. Trying to keep any original
14378 REG_UNUSED notes from these insns can cause incorrect output
14379 if it is for the same register as the original i3 dest.
14380 In that case, we will notice that the register is set in i3,
14381 and then add a REG_UNUSED note for the destination of i3, which
14382 is wrong. However, it is possible to have REG_UNUSED notes from
14383 i2 or i1 for register which were both used and clobbered, so
14384 we keep notes from i2 or i1 if they will turn into REG_DEAD
14385 notes. */
14386
14387 /* If this register is set or clobbered in I3, put the note there
14388 unless there is one already. */
14389 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14390 {
14391 if (from_insn != i3)
14392 break;
14393
14394 if (! (REG_P (XEXP (note, 0))
14395 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14396 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14397 place = i3;
14398 }
14399 /* Otherwise, if this register is used by I3, then this register
14400 now dies here, so we must put a REG_DEAD note here unless there
14401 is one already. */
14402 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14403 && ! (REG_P (XEXP (note, 0))
14404 ? find_regno_note (i3, REG_DEAD,
14405 REGNO (XEXP (note, 0)))
14406 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14407 {
14408 PUT_REG_NOTE_KIND (note, REG_DEAD);
14409 place = i3;
14410 }
14411
14412 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14413 but we can't tell which at this point. We must reset any
14414 expectations we had about the value that was previously
14415 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14416 and, if appropriate, restore its previous value, but we
14417 don't have enough information for that at this point. */
14418 else
14419 {
14420 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14421
14422 /* Otherwise, if this register is now referenced in i2
14423 then the register used to be modified in one of the
14424 original insns. If it was i3 (say, in an unused
14425 parallel), it's now completely gone, so the note can
14426 be discarded. But if it was modified in i2, i1 or i0
14427 and we still reference it in i2, then we're
14428 referencing the previous value, and since the
14429 register was modified and REG_UNUSED, we know that
14430 the previous value is now dead. So, if we only
14431 reference the register in i2, we change the note to
14432 REG_DEAD, to reflect the previous value. However, if
14433 we're also setting or clobbering the register as
14434 scratch, we know (because the register was not
14435 referenced in i3) that it's unused, just as it was
14436 unused before, and we place the note in i2. */
14437 if (from_insn != i3 && i2 && INSN_P (i2)
14438 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14439 {
14440 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14441 PUT_REG_NOTE_KIND (note, REG_DEAD);
14442 if (! (REG_P (XEXP (note, 0))
14443 ? find_regno_note (i2, REG_NOTE_KIND (note),
14444 REGNO (XEXP (note, 0)))
14445 : find_reg_note (i2, REG_NOTE_KIND (note),
14446 XEXP (note, 0))))
14447 place = i2;
14448 }
14449 }
14450
14451 break;
14452
14453 case REG_EQUAL:
14454 case REG_EQUIV:
14455 case REG_NOALIAS:
14456 /* These notes say something about results of an insn. We can
14457 only support them if they used to be on I3 in which case they
14458 remain on I3. Otherwise they are ignored.
14459
14460 If the note refers to an expression that is not a constant, we
14461 must also ignore the note since we cannot tell whether the
14462 equivalence is still true. It might be possible to do
14463 slightly better than this (we only have a problem if I2DEST
14464 or I1DEST is present in the expression), but it doesn't
14465 seem worth the trouble. */
14466
14467 if (from_insn == i3
14468 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14469 place = i3;
14470 break;
14471
14472 case REG_INC:
14473 /* These notes say something about how a register is used. They must
14474 be present on any use of the register in I2 or I3. */
14475 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14476 place = i3;
14477
14478 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14479 {
14480 if (place)
14481 place2 = i2;
14482 else
14483 place = i2;
14484 }
14485 break;
14486
14487 case REG_LABEL_TARGET:
14488 case REG_LABEL_OPERAND:
14489 /* This can show up in several ways -- either directly in the
14490 pattern, or hidden off in the constant pool with (or without?)
14491 a REG_EQUAL note. */
14492 /* ??? Ignore the without-reg_equal-note problem for now. */
14493 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14494 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14495 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14496 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14497 place = i3;
14498
14499 if (i2
14500 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14501 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14502 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14503 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14504 {
14505 if (place)
14506 place2 = i2;
14507 else
14508 place = i2;
14509 }
14510
14511 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14512 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14513 there. */
14514 if (place && JUMP_P (place)
14515 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14516 && (JUMP_LABEL (place) == NULL
14517 || JUMP_LABEL (place) == XEXP (note, 0)))
14518 {
14519 rtx label = JUMP_LABEL (place);
14520
14521 if (!label)
14522 JUMP_LABEL (place) = XEXP (note, 0);
14523 else if (LABEL_P (label))
14524 LABEL_NUSES (label)--;
14525 }
14526
14527 if (place2 && JUMP_P (place2)
14528 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14529 && (JUMP_LABEL (place2) == NULL
14530 || JUMP_LABEL (place2) == XEXP (note, 0)))
14531 {
14532 rtx label = JUMP_LABEL (place2);
14533
14534 if (!label)
14535 JUMP_LABEL (place2) = XEXP (note, 0);
14536 else if (LABEL_P (label))
14537 LABEL_NUSES (label)--;
14538 place2 = 0;
14539 }
14540 break;
14541
14542 case REG_NONNEG:
14543 /* This note says something about the value of a register prior
14544 to the execution of an insn. It is too much trouble to see
14545 if the note is still correct in all situations. It is better
14546 to simply delete it. */
14547 break;
14548
14549 case REG_DEAD:
14550 /* If we replaced the right hand side of FROM_INSN with a
14551 REG_EQUAL note, the original use of the dying register
14552 will not have been combined into I3 and I2. In such cases,
14553 FROM_INSN is guaranteed to be the first of the combined
14554 instructions, so we simply need to search back before
14555 FROM_INSN for the previous use or set of this register,
14556 then alter the notes there appropriately.
14557
14558 If the register is used as an input in I3, it dies there.
14559 Similarly for I2, if it is nonzero and adjacent to I3.
14560
14561 If the register is not used as an input in either I3 or I2
14562 and it is not one of the registers we were supposed to eliminate,
14563 there are two possibilities. We might have a non-adjacent I2
14564 or we might have somehow eliminated an additional register
14565 from a computation. For example, we might have had A & B where
14566 we discover that B will always be zero. In this case we will
14567 eliminate the reference to A.
14568
14569 In both cases, we must search to see if we can find a previous
14570 use of A and put the death note there. */
14571
14572 if (from_insn
14573 && from_insn == i2mod
14574 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14575 tem_insn = from_insn;
14576 else
14577 {
14578 if (from_insn
14579 && CALL_P (from_insn)
14580 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14581 place = from_insn;
14582 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14583 {
14584 /* If the new I2 sets the same register that is marked
14585 dead in the note, we do not in general know where to
14586 put the note. One important case we _can_ handle is
14587 when the note comes from I3. */
14588 if (from_insn == i3)
14589 place = i3;
14590 else
14591 break;
14592 }
14593 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14594 place = i3;
14595 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14596 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14597 place = i2;
14598 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14599 && !(i2mod
14600 && reg_overlap_mentioned_p (XEXP (note, 0),
14601 i2mod_old_rhs)))
14602 || rtx_equal_p (XEXP (note, 0), elim_i1)
14603 || rtx_equal_p (XEXP (note, 0), elim_i0))
14604 break;
14605 tem_insn = i3;
14606 }
14607
14608 if (place == 0)
14609 {
14610 basic_block bb = this_basic_block;
14611
14612 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14613 {
14614 if (!NONDEBUG_INSN_P (tem_insn))
14615 {
14616 if (tem_insn == BB_HEAD (bb))
14617 break;
14618 continue;
14619 }
14620
14621 /* If the register is being set at TEM_INSN, see if that is all
14622 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14623 into a REG_UNUSED note instead. Don't delete sets to
14624 global register vars. */
14625 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14626 || !global_regs[REGNO (XEXP (note, 0))])
14627 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14628 {
14629 rtx set = single_set (tem_insn);
14630 rtx inner_dest = 0;
14631 rtx_insn *cc0_setter = NULL;
14632
14633 if (set != 0)
14634 for (inner_dest = SET_DEST (set);
14635 (GET_CODE (inner_dest) == STRICT_LOW_PART
14636 || GET_CODE (inner_dest) == SUBREG
14637 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14638 inner_dest = XEXP (inner_dest, 0))
14639 ;
14640
14641 /* Verify that it was the set, and not a clobber that
14642 modified the register.
14643
14644 CC0 targets must be careful to maintain setter/user
14645 pairs. If we cannot delete the setter due to side
14646 effects, mark the user with an UNUSED note instead
14647 of deleting it. */
14648
14649 if (set != 0 && ! side_effects_p (SET_SRC (set))
14650 && rtx_equal_p (XEXP (note, 0), inner_dest)
14651 && (!HAVE_cc0
14652 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14653 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14654 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14655 {
14656 /* Move the notes and links of TEM_INSN elsewhere.
14657 This might delete other dead insns recursively.
14658 First set the pattern to something that won't use
14659 any register. */
14660 rtx old_notes = REG_NOTES (tem_insn);
14661
14662 PATTERN (tem_insn) = pc_rtx;
14663 REG_NOTES (tem_insn) = NULL;
14664
14665 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14666 NULL_RTX, NULL_RTX, NULL_RTX);
14667 distribute_links (LOG_LINKS (tem_insn));
14668
14669 unsigned int regno = REGNO (XEXP (note, 0));
14670 reg_stat_type *rsp = &reg_stat[regno];
14671 if (rsp->last_set == tem_insn)
14672 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14673
14674 SET_INSN_DELETED (tem_insn);
14675 if (tem_insn == i2)
14676 i2 = NULL;
14677
14678 /* Delete the setter too. */
14679 if (cc0_setter)
14680 {
14681 PATTERN (cc0_setter) = pc_rtx;
14682 old_notes = REG_NOTES (cc0_setter);
14683 REG_NOTES (cc0_setter) = NULL;
14684
14685 distribute_notes (old_notes, cc0_setter,
14686 cc0_setter, NULL,
14687 NULL_RTX, NULL_RTX, NULL_RTX);
14688 distribute_links (LOG_LINKS (cc0_setter));
14689
14690 SET_INSN_DELETED (cc0_setter);
14691 if (cc0_setter == i2)
14692 i2 = NULL;
14693 }
14694 }
14695 else
14696 {
14697 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14698
14699 /* If there isn't already a REG_UNUSED note, put one
14700 here. Do not place a REG_DEAD note, even if
14701 the register is also used here; that would not
14702 match the algorithm used in lifetime analysis
14703 and can cause the consistency check in the
14704 scheduler to fail. */
14705 if (! find_regno_note (tem_insn, REG_UNUSED,
14706 REGNO (XEXP (note, 0))))
14707 place = tem_insn;
14708 break;
14709 }
14710 }
14711 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14712 || (CALL_P (tem_insn)
14713 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14714 {
14715 place = tem_insn;
14716
14717 /* If we are doing a 3->2 combination, and we have a
14718 register which formerly died in i3 and was not used
14719 by i2, which now no longer dies in i3 and is used in
14720 i2 but does not die in i2, and place is between i2
14721 and i3, then we may need to move a link from place to
14722 i2. */
14723 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14724 && from_insn
14725 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14726 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14727 {
14728 struct insn_link *links = LOG_LINKS (place);
14729 LOG_LINKS (place) = NULL;
14730 distribute_links (links);
14731 }
14732 break;
14733 }
14734
14735 if (tem_insn == BB_HEAD (bb))
14736 break;
14737 }
14738
14739 }
14740
14741 /* If the register is set or already dead at PLACE, we needn't do
14742 anything with this note if it is still a REG_DEAD note.
14743 We check here if it is set at all, not if is it totally replaced,
14744 which is what `dead_or_set_p' checks, so also check for it being
14745 set partially. */
14746
14747 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14748 {
14749 unsigned int regno = REGNO (XEXP (note, 0));
14750 reg_stat_type *rsp = &reg_stat[regno];
14751
14752 if (dead_or_set_p (place, XEXP (note, 0))
14753 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14754 {
14755 /* Unless the register previously died in PLACE, clear
14756 last_death. [I no longer understand why this is
14757 being done.] */
14758 if (rsp->last_death != place)
14759 rsp->last_death = 0;
14760 place = 0;
14761 }
14762 else
14763 rsp->last_death = place;
14764
14765 /* If this is a death note for a hard reg that is occupying
14766 multiple registers, ensure that we are still using all
14767 parts of the object. If we find a piece of the object
14768 that is unused, we must arrange for an appropriate REG_DEAD
14769 note to be added for it. However, we can't just emit a USE
14770 and tag the note to it, since the register might actually
14771 be dead; so we recourse, and the recursive call then finds
14772 the previous insn that used this register. */
14773
14774 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14775 {
14776 unsigned int endregno = END_REGNO (XEXP (note, 0));
14777 bool all_used = true;
14778 unsigned int i;
14779
14780 for (i = regno; i < endregno; i++)
14781 if ((! refers_to_regno_p (i, PATTERN (place))
14782 && ! find_regno_fusage (place, USE, i))
14783 || dead_or_set_regno_p (place, i))
14784 {
14785 all_used = false;
14786 break;
14787 }
14788
14789 if (! all_used)
14790 {
14791 /* Put only REG_DEAD notes for pieces that are
14792 not already dead or set. */
14793
14794 for (i = regno; i < endregno;
14795 i += hard_regno_nregs (i, reg_raw_mode[i]))
14796 {
14797 rtx piece = regno_reg_rtx[i];
14798 basic_block bb = this_basic_block;
14799
14800 if (! dead_or_set_p (place, piece)
14801 && ! reg_bitfield_target_p (piece,
14802 PATTERN (place)))
14803 {
14804 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14805 NULL_RTX);
14806
14807 distribute_notes (new_note, place, place,
14808 NULL, NULL_RTX, NULL_RTX,
14809 NULL_RTX);
14810 }
14811 else if (! refers_to_regno_p (i, PATTERN (place))
14812 && ! find_regno_fusage (place, USE, i))
14813 for (tem_insn = PREV_INSN (place); ;
14814 tem_insn = PREV_INSN (tem_insn))
14815 {
14816 if (!NONDEBUG_INSN_P (tem_insn))
14817 {
14818 if (tem_insn == BB_HEAD (bb))
14819 break;
14820 continue;
14821 }
14822 if (dead_or_set_p (tem_insn, piece)
14823 || reg_bitfield_target_p (piece,
14824 PATTERN (tem_insn)))
14825 {
14826 add_reg_note (tem_insn, REG_UNUSED, piece);
14827 break;
14828 }
14829 }
14830 }
14831
14832 place = 0;
14833 }
14834 }
14835 }
14836 break;
14837
14838 default:
14839 /* Any other notes should not be present at this point in the
14840 compilation. */
14841 gcc_unreachable ();
14842 }
14843
14844 if (place)
14845 {
14846 XEXP (note, 1) = REG_NOTES (place);
14847 REG_NOTES (place) = note;
14848
14849 /* Set added_notes_insn to the earliest insn we added a note to. */
14850 if (added_notes_insn == 0
14851 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14852 added_notes_insn = place;
14853 }
14854
14855 if (place2)
14856 {
14857 add_shallow_copy_of_reg_note (place2, note);
14858
14859 /* Set added_notes_insn to the earliest insn we added a note to. */
14860 if (added_notes_insn == 0
14861 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14862 added_notes_insn = place2;
14863 }
14864 }
14865 }
14866 \f
14867 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14868 I3, I2, and I1 to new locations. This is also called to add a link
14869 pointing at I3 when I3's destination is changed. */
14870
14871 static void
14872 distribute_links (struct insn_link *links)
14873 {
14874 struct insn_link *link, *next_link;
14875
14876 for (link = links; link; link = next_link)
14877 {
14878 rtx_insn *place = 0;
14879 rtx_insn *insn;
14880 rtx set, reg;
14881
14882 next_link = link->next;
14883
14884 /* If the insn that this link points to is a NOTE, ignore it. */
14885 if (NOTE_P (link->insn))
14886 continue;
14887
14888 set = 0;
14889 rtx pat = PATTERN (link->insn);
14890 if (GET_CODE (pat) == SET)
14891 set = pat;
14892 else if (GET_CODE (pat) == PARALLEL)
14893 {
14894 int i;
14895 for (i = 0; i < XVECLEN (pat, 0); i++)
14896 {
14897 set = XVECEXP (pat, 0, i);
14898 if (GET_CODE (set) != SET)
14899 continue;
14900
14901 reg = SET_DEST (set);
14902 while (GET_CODE (reg) == ZERO_EXTRACT
14903 || GET_CODE (reg) == STRICT_LOW_PART
14904 || GET_CODE (reg) == SUBREG)
14905 reg = XEXP (reg, 0);
14906
14907 if (!REG_P (reg))
14908 continue;
14909
14910 if (REGNO (reg) == link->regno)
14911 break;
14912 }
14913 if (i == XVECLEN (pat, 0))
14914 continue;
14915 }
14916 else
14917 continue;
14918
14919 reg = SET_DEST (set);
14920
14921 while (GET_CODE (reg) == ZERO_EXTRACT
14922 || GET_CODE (reg) == STRICT_LOW_PART
14923 || GET_CODE (reg) == SUBREG)
14924 reg = XEXP (reg, 0);
14925
14926 if (reg == pc_rtx)
14927 continue;
14928
14929 /* A LOG_LINK is defined as being placed on the first insn that uses
14930 a register and points to the insn that sets the register. Start
14931 searching at the next insn after the target of the link and stop
14932 when we reach a set of the register or the end of the basic block.
14933
14934 Note that this correctly handles the link that used to point from
14935 I3 to I2. Also note that not much searching is typically done here
14936 since most links don't point very far away. */
14937
14938 for (insn = NEXT_INSN (link->insn);
14939 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14940 || BB_HEAD (this_basic_block->next_bb) != insn));
14941 insn = NEXT_INSN (insn))
14942 if (DEBUG_INSN_P (insn))
14943 continue;
14944 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14945 {
14946 if (reg_referenced_p (reg, PATTERN (insn)))
14947 place = insn;
14948 break;
14949 }
14950 else if (CALL_P (insn)
14951 && find_reg_fusage (insn, USE, reg))
14952 {
14953 place = insn;
14954 break;
14955 }
14956 else if (INSN_P (insn) && reg_set_p (reg, insn))
14957 break;
14958
14959 /* If we found a place to put the link, place it there unless there
14960 is already a link to the same insn as LINK at that point. */
14961
14962 if (place)
14963 {
14964 struct insn_link *link2;
14965
14966 FOR_EACH_LOG_LINK (link2, place)
14967 if (link2->insn == link->insn && link2->regno == link->regno)
14968 break;
14969
14970 if (link2 == NULL)
14971 {
14972 link->next = LOG_LINKS (place);
14973 LOG_LINKS (place) = link;
14974
14975 /* Set added_links_insn to the earliest insn we added a
14976 link to. */
14977 if (added_links_insn == 0
14978 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14979 added_links_insn = place;
14980 }
14981 }
14982 }
14983 }
14984 \f
14985 /* Check for any register or memory mentioned in EQUIV that is not
14986 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14987 of EXPR where some registers may have been replaced by constants. */
14988
14989 static bool
14990 unmentioned_reg_p (rtx equiv, rtx expr)
14991 {
14992 subrtx_iterator::array_type array;
14993 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14994 {
14995 const_rtx x = *iter;
14996 if ((REG_P (x) || MEM_P (x))
14997 && !reg_mentioned_p (x, expr))
14998 return true;
14999 }
15000 return false;
15001 }
15002 \f
15003 DEBUG_FUNCTION void
15004 dump_combine_stats (FILE *file)
15005 {
15006 fprintf
15007 (file,
15008 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
15009 combine_attempts, combine_merges, combine_extras, combine_successes);
15010 }
15011
15012 void
15013 dump_combine_total_stats (FILE *file)
15014 {
15015 fprintf
15016 (file,
15017 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15018 total_attempts, total_merges, total_extras, total_successes);
15019 }
15020 \f
15021 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15022 the reg-to-reg copy can usefully combine with later instructions, but we
15023 do not want to combine the hard reg into later instructions, for that
15024 restricts register allocation. */
15025 static void
15026 make_more_copies (void)
15027 {
15028 basic_block bb;
15029
15030 FOR_EACH_BB_FN (bb, cfun)
15031 {
15032 rtx_insn *insn;
15033
15034 FOR_BB_INSNS (bb, insn)
15035 {
15036 if (!NONDEBUG_INSN_P (insn))
15037 continue;
15038
15039 rtx set = single_set (insn);
15040 if (!set)
15041 continue;
15042
15043 rtx dest = SET_DEST (set);
15044 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15045 continue;
15046
15047 rtx src = SET_SRC (set);
15048 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15049 continue;
15050 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15051 continue;
15052
15053 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15054 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15055 SET_SRC (set) = new_reg;
15056 emit_insn_before (new_insn, insn);
15057 df_insn_rescan (insn);
15058 }
15059 }
15060 }
15061
15062 /* Try combining insns through substitution. */
15063 static unsigned int
15064 rest_of_handle_combine (void)
15065 {
15066 make_more_copies ();
15067
15068 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15069 df_note_add_problem ();
15070 df_analyze ();
15071
15072 regstat_init_n_sets_and_refs ();
15073 reg_n_sets_max = max_reg_num ();
15074
15075 int rebuild_jump_labels_after_combine
15076 = combine_instructions (get_insns (), max_reg_num ());
15077
15078 /* Combining insns may have turned an indirect jump into a
15079 direct jump. Rebuild the JUMP_LABEL fields of jumping
15080 instructions. */
15081 if (rebuild_jump_labels_after_combine)
15082 {
15083 if (dom_info_available_p (CDI_DOMINATORS))
15084 free_dominance_info (CDI_DOMINATORS);
15085 timevar_push (TV_JUMP);
15086 rebuild_jump_labels (get_insns ());
15087 cleanup_cfg (0);
15088 timevar_pop (TV_JUMP);
15089 }
15090
15091 regstat_free_n_sets_and_refs ();
15092 return 0;
15093 }
15094
15095 namespace {
15096
15097 const pass_data pass_data_combine =
15098 {
15099 RTL_PASS, /* type */
15100 "combine", /* name */
15101 OPTGROUP_NONE, /* optinfo_flags */
15102 TV_COMBINE, /* tv_id */
15103 PROP_cfglayout, /* properties_required */
15104 0, /* properties_provided */
15105 0, /* properties_destroyed */
15106 0, /* todo_flags_start */
15107 TODO_df_finish, /* todo_flags_finish */
15108 };
15109
15110 class pass_combine : public rtl_opt_pass
15111 {
15112 public:
15113 pass_combine (gcc::context *ctxt)
15114 : rtl_opt_pass (pass_data_combine, ctxt)
15115 {}
15116
15117 /* opt_pass methods: */
15118 virtual bool gate (function *) { return (optimize > 0); }
15119 virtual unsigned int execute (function *)
15120 {
15121 return rest_of_handle_combine ();
15122 }
15123
15124 }; // class pass_combine
15125
15126 } // anon namespace
15127
15128 rtl_opt_pass *
15129 make_pass_combine (gcc::context *ctxt)
15130 {
15131 return new pass_combine (ctxt);
15132 }