]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mips/mips.h
Add SB-1A support.
[thirdparty/gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING. If not, write to
23 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26
27 /* MIPS external variables defined in mips.c. */
28
29 /* Which processor to schedule for. Since there is no difference between
30 a R2000 and R3000 in terms of the scheduler, we collapse them into
31 just an R3000. The elements of the enumeration must match exactly
32 the cpu attribute in the mips.md machine description. */
33
34 enum processor_type {
35 PROCESSOR_R3000,
36 PROCESSOR_4KC,
37 PROCESSOR_4KP,
38 PROCESSOR_5KC,
39 PROCESSOR_5KF,
40 PROCESSOR_20KC,
41 PROCESSOR_24K,
42 PROCESSOR_24KX,
43 PROCESSOR_M4K,
44 PROCESSOR_R3900,
45 PROCESSOR_R6000,
46 PROCESSOR_R4000,
47 PROCESSOR_R4100,
48 PROCESSOR_R4111,
49 PROCESSOR_R4120,
50 PROCESSOR_R4130,
51 PROCESSOR_R4300,
52 PROCESSOR_R4600,
53 PROCESSOR_R4650,
54 PROCESSOR_R5000,
55 PROCESSOR_R5400,
56 PROCESSOR_R5500,
57 PROCESSOR_R7000,
58 PROCESSOR_R8000,
59 PROCESSOR_R9000,
60 PROCESSOR_SB1,
61 PROCESSOR_SB1A,
62 PROCESSOR_SR71000,
63 PROCESSOR_MAX
64 };
65
66 /* Costs of various operations on the different architectures. */
67
68 struct mips_rtx_cost_data
69 {
70 unsigned short fp_add;
71 unsigned short fp_mult_sf;
72 unsigned short fp_mult_df;
73 unsigned short fp_div_sf;
74 unsigned short fp_div_df;
75 unsigned short int_mult_si;
76 unsigned short int_mult_di;
77 unsigned short int_div_si;
78 unsigned short int_div_di;
79 unsigned short branch_cost;
80 unsigned short memory_latency;
81 };
82
83 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
84 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
85 to work on a 64 bit machine. */
86
87 #define ABI_32 0
88 #define ABI_N32 1
89 #define ABI_64 2
90 #define ABI_EABI 3
91 #define ABI_O64 4
92
93 /* Information about one recognized processor. Defined here for the
94 benefit of TARGET_CPU_CPP_BUILTINS. */
95 struct mips_cpu_info {
96 /* The 'canonical' name of the processor as far as GCC is concerned.
97 It's typically a manufacturer's prefix followed by a numerical
98 designation. It should be lower case. */
99 const char *name;
100
101 /* The internal processor number that most closely matches this
102 entry. Several processors can have the same value, if there's no
103 difference between them from GCC's point of view. */
104 enum processor_type cpu;
105
106 /* The ISA level that the processor implements. */
107 int isa;
108 };
109
110 #ifndef USED_FOR_TARGET
111 extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
112 extern const char *current_function_file; /* filename current function is in */
113 extern int num_source_filenames; /* current .file # */
114 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
115 extern int sym_lineno; /* sgi next label # for each stmt */
116 extern int set_noreorder; /* # of nested .set noreorder's */
117 extern int set_nomacro; /* # of nested .set nomacro's */
118 extern int set_noat; /* # of nested .set noat's */
119 extern int set_volatile; /* # of nested .set volatile's */
120 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
121 extern int mips_dbx_regno[]; /* Map register # to debug register # */
122 extern bool mips_split_p[];
123 extern GTY(()) rtx cmp_operands[2];
124 extern enum processor_type mips_arch; /* which cpu to codegen for */
125 extern enum processor_type mips_tune; /* which cpu to schedule for */
126 extern int mips_isa; /* architectural level */
127 extern int mips_abi; /* which ABI to use */
128 extern int mips16_hard_float; /* mips16 without -msoft-float */
129 extern const struct mips_cpu_info mips_cpu_info_table[];
130 extern const struct mips_cpu_info *mips_arch_info;
131 extern const struct mips_cpu_info *mips_tune_info;
132 extern const struct mips_rtx_cost_data *mips_cost;
133 #endif
134
135 /* Macros to silence warnings about numbers being signed in traditional
136 C and unsigned in ISO C when compiled on 32-bit hosts. */
137
138 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
139 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
140 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
141
142 \f
143 /* Run-time compilation parameters selecting different hardware subsets. */
144
145 /* True if the call patterns should be split into a jalr followed by
146 an instruction to restore $gp. This is only ever true for SVR4 PIC,
147 in which $gp is call-clobbered. It is only safe to split the load
148 from the call when every use of $gp is explicit. */
149
150 #define TARGET_SPLIT_CALLS \
151 (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
152
153 /* True if we're generating a form of -mabicalls in which we can use
154 operators like %hi and %lo to refer to locally-binding symbols.
155 We can only do this for -mno-shared, and only then if we can use
156 relocation operations instead of assembly macros. It isn't really
157 worth using absolute sequences for 64-bit symbols because GOT
158 accesses are so much shorter. */
159
160 #define TARGET_ABSOLUTE_ABICALLS \
161 (TARGET_ABICALLS \
162 && !TARGET_SHARED \
163 && TARGET_EXPLICIT_RELOCS \
164 && !ABI_HAS_64BIT_SYMBOLS)
165
166 /* True if we can optimize sibling calls. For simplicity, we only
167 handle cases in which call_insn_operand will reject invalid
168 sibcall addresses. There are two cases in which this isn't true:
169
170 - TARGET_MIPS16. call_insn_operand accepts constant addresses
171 but there is no direct jump instruction. It isn't worth
172 using sibling calls in this case anyway; they would usually
173 be longer than normal calls.
174
175 - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS. call_insn_operand
176 accepts global constants, but "jr $25" is the only allowed
177 sibcall. */
178
179 #define TARGET_SIBCALLS \
180 (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
181
182 /* True if .gpword or .gpdword should be used for switch tables.
183
184 Although GAS does understand .gpdword, the SGI linker mishandles
185 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
186 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
187 #define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
188
189 /* Generate mips16 code */
190 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
191 /* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
192 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
193
194 /* Generic ISA defines. */
195 #define ISA_MIPS1 (mips_isa == 1)
196 #define ISA_MIPS2 (mips_isa == 2)
197 #define ISA_MIPS3 (mips_isa == 3)
198 #define ISA_MIPS4 (mips_isa == 4)
199 #define ISA_MIPS32 (mips_isa == 32)
200 #define ISA_MIPS32R2 (mips_isa == 33)
201 #define ISA_MIPS64 (mips_isa == 64)
202
203 /* Architecture target defines. */
204 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
205 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
206 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
207 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
208 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
209 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
210 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
211 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
212 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
213 || mips_arch == PROCESSOR_SB1A)
214 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
215
216 /* Scheduling target defines. */
217 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
218 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
219 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
220 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
221 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
222 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
223 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
224 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
225 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
226 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
227 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
228 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
229 || mips_tune == PROCESSOR_SB1A)
230
231 /* True if the pre-reload scheduler should try to create chains of
232 multiply-add or multiply-subtract instructions. For example,
233 suppose we have:
234
235 t1 = a * b
236 t2 = t1 + c * d
237 t3 = e * f
238 t4 = t3 - g * h
239
240 t1 will have a higher priority than t2 and t3 will have a higher
241 priority than t4. However, before reload, there is no dependence
242 between t1 and t3, and they can often have similar priorities.
243 The scheduler will then tend to prefer:
244
245 t1 = a * b
246 t3 = e * f
247 t2 = t1 + c * d
248 t4 = t3 - g * h
249
250 which stops us from making full use of macc/madd-style instructions.
251 This sort of situation occurs frequently in Fourier transforms and
252 in unrolled loops.
253
254 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
255 queue so that chained multiply-add and multiply-subtract instructions
256 appear ahead of any other instruction that is likely to clobber lo.
257 In the example above, if t2 and t3 become ready at the same time,
258 the code ensures that t2 is scheduled first.
259
260 Multiply-accumulate instructions are a bigger win for some targets
261 than others, so this macro is defined on an opt-in basis. */
262 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
263 || TUNE_MIPS4120 \
264 || TUNE_MIPS4130)
265
266 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
267 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
268
269 /* IRIX specific stuff. */
270 #define TARGET_IRIX 0
271 #define TARGET_IRIX6 0
272
273 /* Define preprocessor macros for the -march and -mtune options.
274 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
275 processor. If INFO's canonical name is "foo", define PREFIX to
276 be "foo", and define an additional macro PREFIX_FOO. */
277 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
278 do \
279 { \
280 char *macro, *p; \
281 \
282 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
283 for (p = macro; *p != 0; p++) \
284 *p = TOUPPER (*p); \
285 \
286 builtin_define (macro); \
287 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
288 free (macro); \
289 } \
290 while (0)
291
292 /* Target CPU builtins. */
293 #define TARGET_CPU_CPP_BUILTINS() \
294 do \
295 { \
296 /* Everyone but IRIX defines this to mips. */ \
297 if (!TARGET_IRIX) \
298 builtin_assert ("machine=mips"); \
299 \
300 builtin_assert ("cpu=mips"); \
301 builtin_define ("__mips__"); \
302 builtin_define ("_mips"); \
303 \
304 /* We do this here because __mips is defined below \
305 and so we can't use builtin_define_std. */ \
306 if (!flag_iso) \
307 builtin_define ("mips"); \
308 \
309 if (TARGET_64BIT) \
310 builtin_define ("__mips64"); \
311 \
312 if (!TARGET_IRIX) \
313 { \
314 /* Treat _R3000 and _R4000 like register-size \
315 defines, which is how they've historically \
316 been used. */ \
317 if (TARGET_64BIT) \
318 { \
319 builtin_define_std ("R4000"); \
320 builtin_define ("_R4000"); \
321 } \
322 else \
323 { \
324 builtin_define_std ("R3000"); \
325 builtin_define ("_R3000"); \
326 } \
327 } \
328 if (TARGET_FLOAT64) \
329 builtin_define ("__mips_fpr=64"); \
330 else \
331 builtin_define ("__mips_fpr=32"); \
332 \
333 if (TARGET_MIPS16) \
334 builtin_define ("__mips16"); \
335 \
336 if (TARGET_MIPS3D) \
337 builtin_define ("__mips3d"); \
338 \
339 if (TARGET_DSP) \
340 builtin_define ("__mips_dsp"); \
341 \
342 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
343 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
344 \
345 if (ISA_MIPS1) \
346 { \
347 builtin_define ("__mips=1"); \
348 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
349 } \
350 else if (ISA_MIPS2) \
351 { \
352 builtin_define ("__mips=2"); \
353 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
354 } \
355 else if (ISA_MIPS3) \
356 { \
357 builtin_define ("__mips=3"); \
358 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
359 } \
360 else if (ISA_MIPS4) \
361 { \
362 builtin_define ("__mips=4"); \
363 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
364 } \
365 else if (ISA_MIPS32) \
366 { \
367 builtin_define ("__mips=32"); \
368 builtin_define ("__mips_isa_rev=1"); \
369 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
370 } \
371 else if (ISA_MIPS32R2) \
372 { \
373 builtin_define ("__mips=32"); \
374 builtin_define ("__mips_isa_rev=2"); \
375 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
376 } \
377 else if (ISA_MIPS64) \
378 { \
379 builtin_define ("__mips=64"); \
380 builtin_define ("__mips_isa_rev=1"); \
381 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
382 } \
383 \
384 if (TARGET_HARD_FLOAT) \
385 builtin_define ("__mips_hard_float"); \
386 else if (TARGET_SOFT_FLOAT) \
387 builtin_define ("__mips_soft_float"); \
388 \
389 if (TARGET_SINGLE_FLOAT) \
390 builtin_define ("__mips_single_float"); \
391 \
392 if (TARGET_PAIRED_SINGLE_FLOAT) \
393 builtin_define ("__mips_paired_single_float"); \
394 \
395 if (TARGET_BIG_ENDIAN) \
396 { \
397 builtin_define_std ("MIPSEB"); \
398 builtin_define ("_MIPSEB"); \
399 } \
400 else \
401 { \
402 builtin_define_std ("MIPSEL"); \
403 builtin_define ("_MIPSEL"); \
404 } \
405 \
406 /* Macros dependent on the C dialect. */ \
407 if (preprocessing_asm_p ()) \
408 { \
409 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
410 builtin_define ("_LANGUAGE_ASSEMBLY"); \
411 } \
412 else if (c_dialect_cxx ()) \
413 { \
414 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
415 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
416 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
417 } \
418 else \
419 { \
420 builtin_define_std ("LANGUAGE_C"); \
421 builtin_define ("_LANGUAGE_C"); \
422 } \
423 if (c_dialect_objc ()) \
424 { \
425 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
426 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
427 /* Bizarre, but needed at least for Irix. */ \
428 builtin_define_std ("LANGUAGE_C"); \
429 builtin_define ("_LANGUAGE_C"); \
430 } \
431 \
432 if (mips_abi == ABI_EABI) \
433 builtin_define ("__mips_eabi"); \
434 \
435 } while (0)
436
437 /* Default target_flags if no switches are specified */
438
439 #ifndef TARGET_DEFAULT
440 #define TARGET_DEFAULT 0
441 #endif
442
443 #ifndef TARGET_CPU_DEFAULT
444 #define TARGET_CPU_DEFAULT 0
445 #endif
446
447 #ifndef TARGET_ENDIAN_DEFAULT
448 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
449 #endif
450
451 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
452 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
453 #endif
454
455 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
456 #ifndef MIPS_ISA_DEFAULT
457 #ifndef MIPS_CPU_STRING_DEFAULT
458 #define MIPS_CPU_STRING_DEFAULT "from-abi"
459 #endif
460 #endif
461
462 #ifdef IN_LIBGCC2
463 #undef TARGET_64BIT
464 /* Make this compile time constant for libgcc2 */
465 #ifdef __mips64
466 #define TARGET_64BIT 1
467 #else
468 #define TARGET_64BIT 0
469 #endif
470 #endif /* IN_LIBGCC2 */
471
472 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
473
474 #ifndef MULTILIB_ENDIAN_DEFAULT
475 #if TARGET_ENDIAN_DEFAULT == 0
476 #define MULTILIB_ENDIAN_DEFAULT "EL"
477 #else
478 #define MULTILIB_ENDIAN_DEFAULT "EB"
479 #endif
480 #endif
481
482 #ifndef MULTILIB_ISA_DEFAULT
483 # if MIPS_ISA_DEFAULT == 1
484 # define MULTILIB_ISA_DEFAULT "mips1"
485 # else
486 # if MIPS_ISA_DEFAULT == 2
487 # define MULTILIB_ISA_DEFAULT "mips2"
488 # else
489 # if MIPS_ISA_DEFAULT == 3
490 # define MULTILIB_ISA_DEFAULT "mips3"
491 # else
492 # if MIPS_ISA_DEFAULT == 4
493 # define MULTILIB_ISA_DEFAULT "mips4"
494 # else
495 # if MIPS_ISA_DEFAULT == 32
496 # define MULTILIB_ISA_DEFAULT "mips32"
497 # else
498 # if MIPS_ISA_DEFAULT == 33
499 # define MULTILIB_ISA_DEFAULT "mips32r2"
500 # else
501 # if MIPS_ISA_DEFAULT == 64
502 # define MULTILIB_ISA_DEFAULT "mips64"
503 # else
504 # define MULTILIB_ISA_DEFAULT "mips1"
505 # endif
506 # endif
507 # endif
508 # endif
509 # endif
510 # endif
511 # endif
512 #endif
513
514 #ifndef MULTILIB_DEFAULTS
515 #define MULTILIB_DEFAULTS \
516 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
517 #endif
518
519 /* We must pass -EL to the linker by default for little endian embedded
520 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
521 linker will default to using big-endian output files. The OUTPUT_FORMAT
522 line must be in the linker script, otherwise -EB/-EL will not work. */
523
524 #ifndef ENDIAN_SPEC
525 #if TARGET_ENDIAN_DEFAULT == 0
526 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
527 #else
528 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
529 #endif
530 #endif
531
532 /* Support for a compile-time default CPU, et cetera. The rules are:
533 --with-arch is ignored if -march is specified or a -mips is specified
534 (other than -mips16).
535 --with-tune is ignored if -mtune is specified.
536 --with-abi is ignored if -mabi is specified.
537 --with-float is ignored if -mhard-float or -msoft-float are
538 specified.
539 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
540 specified. */
541 #define OPTION_DEFAULT_SPECS \
542 {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
543 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
544 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
545 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
546 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
547
548
549 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
550 && ISA_HAS_COND_TRAP)
551
552 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
553 && !TARGET_SR71K \
554 && !TARGET_MIPS16)
555
556 /* Generate three-operand multiply instructions for SImode. */
557 #define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
558 || TARGET_MIPS5400 \
559 || TARGET_MIPS5500 \
560 || TARGET_MIPS7000 \
561 || TARGET_MIPS9000 \
562 || TARGET_MAD \
563 || ISA_MIPS32 \
564 || ISA_MIPS32R2 \
565 || ISA_MIPS64) \
566 && !TARGET_MIPS16)
567
568 /* Generate three-operand multiply instructions for DImode. */
569 #define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
570 && !TARGET_MIPS16)
571
572 /* True if the ABI can only work with 64-bit integer registers. We
573 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
574 otherwise floating-point registers must also be 64-bit. */
575 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
576
577 /* Likewise for 32-bit regs. */
578 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
579
580 /* True if symbols are 64 bits wide. At present, n64 is the only
581 ABI for which this is true. */
582 #define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64 && !TARGET_SYM32)
583
584 /* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3). */
585 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
586 || ISA_MIPS4 \
587 || ISA_MIPS64)
588
589 /* ISA has branch likely instructions (e.g. mips2). */
590 /* Disable branchlikely for tx39 until compare rewrite. They haven't
591 been generated up to this point. */
592 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
593
594 /* ISA has the conditional move instructions introduced in mips4. */
595 #define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
596 || ISA_MIPS32 \
597 || ISA_MIPS32R2 \
598 || ISA_MIPS64) \
599 && !TARGET_MIPS5500 \
600 && !TARGET_MIPS16)
601
602 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
603 branch on CC, and move (both FP and non-FP) on CC. */
604 #define ISA_HAS_8CC (ISA_MIPS4 \
605 || ISA_MIPS32 \
606 || ISA_MIPS32R2 \
607 || ISA_MIPS64)
608
609 /* This is a catch all for other mips4 instructions: indexed load, the
610 FP madd and msub instructions, and the FP recip and recip sqrt
611 instructions. */
612 #define ISA_HAS_FP4 ((ISA_MIPS4 \
613 || ISA_MIPS64) \
614 && !TARGET_MIPS16)
615
616 /* ISA has conditional trap instructions. */
617 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
618 && !TARGET_MIPS16)
619
620 /* ISA has integer multiply-accumulate instructions, madd and msub. */
621 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
622 || ISA_MIPS32R2 \
623 || ISA_MIPS64 \
624 ) && !TARGET_MIPS16)
625
626 /* ISA has floating-point nmadd and nmsub instructions. */
627 #define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
628 || ISA_MIPS64) \
629 && (!TARGET_MIPS5400 || TARGET_MAD) \
630 && ! TARGET_MIPS16)
631
632 /* ISA has count leading zeroes/ones instruction (not implemented). */
633 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
634 || ISA_MIPS32R2 \
635 || ISA_MIPS64 \
636 ) && !TARGET_MIPS16)
637
638 /* ISA has double-word count leading zeroes/ones instruction (not
639 implemented). */
640 #define ISA_HAS_DCLZ_DCLO (ISA_MIPS64 \
641 && !TARGET_MIPS16)
642
643 /* ISA has three operand multiply instructions that put
644 the high part in an accumulator: mulhi or mulhiu. */
645 #define ISA_HAS_MULHI (TARGET_MIPS5400 \
646 || TARGET_MIPS5500 \
647 || TARGET_SR71K \
648 )
649
650 /* ISA has three operand multiply instructions that
651 negates the result and puts the result in an accumulator. */
652 #define ISA_HAS_MULS (TARGET_MIPS5400 \
653 || TARGET_MIPS5500 \
654 || TARGET_SR71K \
655 )
656
657 /* ISA has three operand multiply instructions that subtracts the
658 result from a 4th operand and puts the result in an accumulator. */
659 #define ISA_HAS_MSAC (TARGET_MIPS5400 \
660 || TARGET_MIPS5500 \
661 || TARGET_SR71K \
662 )
663 /* ISA has three operand multiply instructions that the result
664 from a 4th operand and puts the result in an accumulator. */
665 #define ISA_HAS_MACC ((TARGET_MIPS4120 && !TARGET_MIPS16) \
666 || (TARGET_MIPS4130 && !TARGET_MIPS16) \
667 || TARGET_MIPS5400 \
668 || TARGET_MIPS5500 \
669 || TARGET_SR71K \
670 )
671
672 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
673 #define ISA_HAS_MACCHI (!TARGET_MIPS16 \
674 && (TARGET_MIPS4120 \
675 || TARGET_MIPS4130))
676
677 /* ISA has 32-bit rotate right instruction. */
678 #define ISA_HAS_ROTR_SI (!TARGET_MIPS16 \
679 && (ISA_MIPS32R2 \
680 || TARGET_MIPS5400 \
681 || TARGET_MIPS5500 \
682 || TARGET_SR71K \
683 ))
684
685 /* ISA has 64-bit rotate right instruction. */
686 #define ISA_HAS_ROTR_DI (TARGET_64BIT \
687 && !TARGET_MIPS16 \
688 && (TARGET_MIPS5400 \
689 || TARGET_MIPS5500 \
690 || TARGET_SR71K \
691 ))
692
693 /* ISA has data prefetch instructions. This controls use of 'pref'. */
694 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
695 || ISA_MIPS32 \
696 || ISA_MIPS32R2 \
697 || ISA_MIPS64) \
698 && !TARGET_MIPS16)
699
700 /* ISA has data indexed prefetch instructions. This controls use of
701 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
702 (prefx is a cop1x instruction, so can only be used if FP is
703 enabled.) */
704 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
705 || ISA_MIPS64) \
706 && !TARGET_MIPS16)
707
708 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
709 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
710 also requires TARGET_DOUBLE_FLOAT. */
711 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
712
713 /* ISA includes the MIPS32r2 seb and seh instructions. */
714 #define ISA_HAS_SEB_SEH (!TARGET_MIPS16 \
715 && (ISA_MIPS32R2 \
716 ))
717
718 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
719 #define ISA_HAS_EXT_INS (!TARGET_MIPS16 \
720 && (ISA_MIPS32R2 \
721 ))
722
723 /* True if the result of a load is not available to the next instruction.
724 A nop will then be needed between instructions like "lw $4,..."
725 and "addiu $4,$4,1". */
726 #define ISA_HAS_LOAD_DELAY (mips_isa == 1 \
727 && !TARGET_MIPS3900 \
728 && !TARGET_MIPS16)
729
730 /* Likewise mtc1 and mfc1. */
731 #define ISA_HAS_XFER_DELAY (mips_isa <= 3)
732
733 /* Likewise floating-point comparisons. */
734 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
735
736 /* True if mflo and mfhi can be immediately followed by instructions
737 which write to the HI and LO registers.
738
739 According to MIPS specifications, MIPS ISAs I, II, and III need
740 (at least) two instructions between the reads of HI/LO and
741 instructions which write them, and later ISAs do not. Contradicting
742 the MIPS specifications, some MIPS IV processor user manuals (e.g.
743 the UM for the NEC Vr5000) document needing the instructions between
744 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
745 MIPS64 and later ISAs to have the interlocks, plus any specific
746 earlier-ISA CPUs for which CPU documentation declares that the
747 instructions are really interlocked. */
748 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
749 || ISA_MIPS32R2 \
750 || ISA_MIPS64 \
751 || TARGET_MIPS5500)
752 \f
753 /* Add -G xx support. */
754
755 #undef SWITCH_TAKES_ARG
756 #define SWITCH_TAKES_ARG(CHAR) \
757 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
758
759 #define OVERRIDE_OPTIONS override_options ()
760
761 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
762
763 /* Show we can debug even without a frame pointer. */
764 #define CAN_DEBUG_WITHOUT_FP
765 \f
766 /* Tell collect what flags to pass to nm. */
767 #ifndef NM_FLAGS
768 #define NM_FLAGS "-Bn"
769 #endif
770
771 \f
772 #ifndef MIPS_ABI_DEFAULT
773 #define MIPS_ABI_DEFAULT ABI_32
774 #endif
775
776 /* Use the most portable ABI flag for the ASM specs. */
777
778 #if MIPS_ABI_DEFAULT == ABI_32
779 #define MULTILIB_ABI_DEFAULT "mabi=32"
780 #endif
781
782 #if MIPS_ABI_DEFAULT == ABI_O64
783 #define MULTILIB_ABI_DEFAULT "mabi=o64"
784 #endif
785
786 #if MIPS_ABI_DEFAULT == ABI_N32
787 #define MULTILIB_ABI_DEFAULT "mabi=n32"
788 #endif
789
790 #if MIPS_ABI_DEFAULT == ABI_64
791 #define MULTILIB_ABI_DEFAULT "mabi=64"
792 #endif
793
794 #if MIPS_ABI_DEFAULT == ABI_EABI
795 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
796 #endif
797
798 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
799 to the assembler. It may be overridden by subtargets. */
800 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
801 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
802 %{noasmopt:-O0} \
803 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
804 #endif
805
806 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
807 the assembler. It may be overridden by subtargets.
808
809 Beginning with gas 2.13, -mdebug must be passed to correctly handle
810 COFF debugging info. */
811
812 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
813 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
814 %{g} %{g0} %{g1} %{g2} %{g3} \
815 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
816 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
817 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
818 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
819 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
820 #endif
821
822 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
823 overridden by subtargets. */
824
825 #ifndef SUBTARGET_ASM_SPEC
826 #define SUBTARGET_ASM_SPEC ""
827 #endif
828
829 #undef ASM_SPEC
830 #define ASM_SPEC "\
831 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
832 %{mips32} %{mips32r2} %{mips64} \
833 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
834 %{mips3d:-mips3d} \
835 %{mdsp} \
836 %{mfix-vr4120} %{mfix-vr4130} \
837 %(subtarget_asm_optimizing_spec) \
838 %(subtarget_asm_debugging_spec) \
839 %{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
840 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
841 %{mshared} %{mno-shared} \
842 %{msym32} %{mno-sym32} \
843 %{mtune=*} %{v} \
844 %(subtarget_asm_spec)"
845
846 /* Extra switches sometimes passed to the linker. */
847 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
848 will interpret it as a -b option. */
849
850 #ifndef LINK_SPEC
851 #define LINK_SPEC "\
852 %(endian_spec) \
853 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
854 %{bestGnum} %{shared} %{non_shared}"
855 #endif /* LINK_SPEC defined */
856
857
858 /* Specs for the compiler proper */
859
860 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
861 overridden by subtargets. */
862 #ifndef SUBTARGET_CC1_SPEC
863 #define SUBTARGET_CC1_SPEC ""
864 #endif
865
866 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
867
868 #ifndef CC1_SPEC
869 #define CC1_SPEC "\
870 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
871 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
872 %{save-temps: } \
873 %(subtarget_cc1_spec)"
874 #endif
875
876 /* Preprocessor specs. */
877
878 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
879 overridden by subtargets. */
880 #ifndef SUBTARGET_CPP_SPEC
881 #define SUBTARGET_CPP_SPEC ""
882 #endif
883
884 #define CPP_SPEC "%(subtarget_cpp_spec)"
885
886 /* This macro defines names of additional specifications to put in the specs
887 that can be used in various specifications like CC1_SPEC. Its definition
888 is an initializer with a subgrouping for each command option.
889
890 Each subgrouping contains a string constant, that defines the
891 specification name, and a string constant that used by the GCC driver
892 program.
893
894 Do not define this macro if it does not need to do anything. */
895
896 #define EXTRA_SPECS \
897 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
898 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
899 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
900 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
901 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
902 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
903 { "endian_spec", ENDIAN_SPEC }, \
904 SUBTARGET_EXTRA_SPECS
905
906 #ifndef SUBTARGET_EXTRA_SPECS
907 #define SUBTARGET_EXTRA_SPECS
908 #endif
909 \f
910 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
911 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
912 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
913
914 #ifndef PREFERRED_DEBUGGING_TYPE
915 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
916 #endif
917
918 #define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
919
920 /* By default, turn on GDB extensions. */
921 #define DEFAULT_GDB_EXTENSIONS 1
922
923 /* Local compiler-generated symbols must have a prefix that the assembler
924 understands. By default, this is $, although some targets (e.g.,
925 NetBSD-ELF) need to override this. */
926
927 #ifndef LOCAL_LABEL_PREFIX
928 #define LOCAL_LABEL_PREFIX "$"
929 #endif
930
931 /* By default on the mips, external symbols do not have an underscore
932 prepended, but some targets (e.g., NetBSD) require this. */
933
934 #ifndef USER_LABEL_PREFIX
935 #define USER_LABEL_PREFIX ""
936 #endif
937
938 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
939 since the length can run past this up to a continuation point. */
940 #undef DBX_CONTIN_LENGTH
941 #define DBX_CONTIN_LENGTH 1500
942
943 /* How to renumber registers for dbx and gdb. */
944 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
945
946 /* The mapping from gcc register number to DWARF 2 CFA column number. */
947 #define DWARF_FRAME_REGNUM(REG) (REG)
948
949 /* The DWARF 2 CFA column which tracks the return address. */
950 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
951
952 /* The DWARF 2 CFA column which tracks the return address from a
953 signal handler context. */
954 #define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
955
956 /* Before the prologue, RA lives in r31. */
957 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
958
959 /* Describe how we implement __builtin_eh_return. */
960 #define EH_RETURN_DATA_REGNO(N) \
961 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
962
963 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
964
965 /* Offsets recorded in opcodes are a multiple of this alignment factor.
966 The default for this in 64-bit mode is 8, which causes problems with
967 SFmode register saves. */
968 #define DWARF_CIE_DATA_ALIGNMENT -4
969
970 /* Correct the offset of automatic variables and arguments. Note that
971 the MIPS debug format wants all automatic variables and arguments
972 to be in terms of the virtual frame pointer (stack pointer before
973 any adjustment in the function), while the MIPS 3.0 linker wants
974 the frame pointer to be the stack pointer after the initial
975 adjustment. */
976
977 #define DEBUGGER_AUTO_OFFSET(X) \
978 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
979 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
980 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
981 \f
982 /* Target machine storage layout */
983
984 #define BITS_BIG_ENDIAN 0
985 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
986 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
987
988 /* Define this to set the endianness to use in libgcc2.c, which can
989 not depend on target_flags. */
990 #if !defined(MIPSEL) && !defined(__MIPSEL__)
991 #define LIBGCC2_WORDS_BIG_ENDIAN 1
992 #else
993 #define LIBGCC2_WORDS_BIG_ENDIAN 0
994 #endif
995
996 #define MAX_BITS_PER_WORD 64
997
998 /* Width of a word, in units (bytes). */
999 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1000 #ifndef IN_LIBGCC2
1001 #define MIN_UNITS_PER_WORD 4
1002 #endif
1003
1004 /* For MIPS, width of a floating point register. */
1005 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1006
1007 /* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1008 the next available register. */
1009 #define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1010
1011 /* The largest size of value that can be held in floating-point
1012 registers and moved with a single instruction. */
1013 #define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1014
1015 /* The largest size of value that can be held in floating-point
1016 registers. */
1017 #define UNITS_PER_FPVALUE \
1018 (TARGET_SOFT_FLOAT ? 0 \
1019 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1020 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1021
1022 /* The number of bytes in a double. */
1023 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1024
1025 #define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1026
1027 /* Set the sizes of the core types. */
1028 #define SHORT_TYPE_SIZE 16
1029 #define INT_TYPE_SIZE 32
1030 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1031 #define LONG_LONG_TYPE_SIZE 64
1032
1033 #define FLOAT_TYPE_SIZE 32
1034 #define DOUBLE_TYPE_SIZE 64
1035 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1036
1037 /* long double is not a fixed mode, but the idea is that, if we
1038 support long double, we also want a 128-bit integer type. */
1039 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1040
1041 #ifdef IN_LIBGCC2
1042 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1043 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1044 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1045 # else
1046 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1047 # endif
1048 #endif
1049
1050 /* Width in bits of a pointer. */
1051 #ifndef POINTER_SIZE
1052 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1053 #endif
1054
1055 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1056 #define PARM_BOUNDARY BITS_PER_WORD
1057
1058 /* Allocation boundary (in *bits*) for the code of a function. */
1059 #define FUNCTION_BOUNDARY 32
1060
1061 /* Alignment of field after `int : 0' in a structure. */
1062 #define EMPTY_FIELD_BOUNDARY 32
1063
1064 /* Every structure's size must be a multiple of this. */
1065 /* 8 is observed right on a DECstation and on riscos 4.02. */
1066 #define STRUCTURE_SIZE_BOUNDARY 8
1067
1068 /* There is no point aligning anything to a rounder boundary than this. */
1069 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1070
1071 /* All accesses must be aligned. */
1072 #define STRICT_ALIGNMENT 1
1073
1074 /* Define this if you wish to imitate the way many other C compilers
1075 handle alignment of bitfields and the structures that contain
1076 them.
1077
1078 The behavior is that the type written for a bit-field (`int',
1079 `short', or other integer type) imposes an alignment for the
1080 entire structure, as if the structure really did contain an
1081 ordinary field of that type. In addition, the bit-field is placed
1082 within the structure so that it would fit within such a field,
1083 not crossing a boundary for it.
1084
1085 Thus, on most machines, a bit-field whose type is written as `int'
1086 would not cross a four-byte boundary, and would force four-byte
1087 alignment for the whole structure. (The alignment used may not
1088 be four bytes; it is controlled by the other alignment
1089 parameters.)
1090
1091 If the macro is defined, its definition should be a C expression;
1092 a nonzero value for the expression enables this behavior. */
1093
1094 #define PCC_BITFIELD_TYPE_MATTERS 1
1095
1096 /* If defined, a C expression to compute the alignment given to a
1097 constant that is being placed in memory. CONSTANT is the constant
1098 and ALIGN is the alignment that the object would ordinarily have.
1099 The value of this macro is used instead of that alignment to align
1100 the object.
1101
1102 If this macro is not defined, then ALIGN is used.
1103
1104 The typical use of this macro is to increase alignment for string
1105 constants to be word aligned so that `strcpy' calls that copy
1106 constants can be done inline. */
1107
1108 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1109 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1110 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1111
1112 /* If defined, a C expression to compute the alignment for a static
1113 variable. TYPE is the data type, and ALIGN is the alignment that
1114 the object would ordinarily have. The value of this macro is used
1115 instead of that alignment to align the object.
1116
1117 If this macro is not defined, then ALIGN is used.
1118
1119 One use of this macro is to increase alignment of medium-size
1120 data to make it all fit in fewer cache lines. Another is to
1121 cause character arrays to be word-aligned so that `strcpy' calls
1122 that copy constants to character arrays can be done inline. */
1123
1124 #undef DATA_ALIGNMENT
1125 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1126 ((((ALIGN) < BITS_PER_WORD) \
1127 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1128 || TREE_CODE (TYPE) == UNION_TYPE \
1129 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1130
1131
1132 #define PAD_VARARGS_DOWN \
1133 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1134
1135 /* Define if operations between registers always perform the operation
1136 on the full register even if a narrower mode is specified. */
1137 #define WORD_REGISTER_OPERATIONS
1138
1139 /* When in 64 bit mode, move insns will sign extend SImode and CCmode
1140 moves. All other references are zero extended. */
1141 #define LOAD_EXTEND_OP(MODE) \
1142 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1143 ? SIGN_EXTEND : ZERO_EXTEND)
1144
1145 /* Define this macro if it is advisable to hold scalars in registers
1146 in a wider mode than that declared by the program. In such cases,
1147 the value is constrained to be within the bounds of the declared
1148 type, but kept valid in the wider mode. The signedness of the
1149 extension may differ from that of the type. */
1150
1151 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1152 if (GET_MODE_CLASS (MODE) == MODE_INT \
1153 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1154 { \
1155 if ((MODE) == SImode) \
1156 (UNSIGNEDP) = 0; \
1157 (MODE) = Pmode; \
1158 }
1159
1160 /* Define if loading short immediate values into registers sign extends. */
1161 #define SHORT_IMMEDIATES_SIGN_EXTEND
1162
1163 /* The [d]clz instructions have the natural values at 0. */
1164
1165 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1166 ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1167 \f
1168 /* Standard register usage. */
1169
1170 /* Number of hardware registers. We have:
1171
1172 - 32 integer registers
1173 - 32 floating point registers
1174 - 8 condition code registers
1175 - 2 accumulator registers (hi and lo)
1176 - 32 registers each for coprocessors 0, 2 and 3
1177 - 3 fake registers:
1178 - ARG_POINTER_REGNUM
1179 - FRAME_POINTER_REGNUM
1180 - FAKE_CALL_REGNO (see the comment above load_callsi for details)
1181 - 3 dummy entries that were used at various times in the past.
1182 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1183 - 6 DSP control registers */
1184
1185 #define FIRST_PSEUDO_REGISTER 188
1186
1187 /* By default, fix the kernel registers ($26 and $27), the global
1188 pointer ($28) and the stack pointer ($29). This can change
1189 depending on the command-line options.
1190
1191 Regarding coprocessor registers: without evidence to the contrary,
1192 it's best to assume that each coprocessor register has a unique
1193 use. This can be overridden, in, e.g., override_options() or
1194 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1195 for a particular target. */
1196
1197 #define FIXED_REGISTERS \
1198 { \
1199 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1200 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1201 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1202 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1203 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1204 /* COP0 registers */ \
1205 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1206 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1207 /* COP2 registers */ \
1208 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1209 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1210 /* COP3 registers */ \
1211 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1213 /* 6 DSP accumulator registers & 6 control registers */ \
1214 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1215 }
1216
1217
1218 /* Set up this array for o32 by default.
1219
1220 Note that we don't mark $31 as a call-clobbered register. The idea is
1221 that it's really the call instructions themselves which clobber $31.
1222 We don't care what the called function does with it afterwards.
1223
1224 This approach makes it easier to implement sibcalls. Unlike normal
1225 calls, sibcalls don't clobber $31, so the register reaches the
1226 called function in tact. EPILOGUE_USES says that $31 is useful
1227 to the called function. */
1228
1229 #define CALL_USED_REGISTERS \
1230 { \
1231 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1232 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1233 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1234 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1235 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1236 /* COP0 registers */ \
1237 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1238 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1239 /* COP2 registers */ \
1240 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1241 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1242 /* COP3 registers */ \
1243 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1244 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1245 /* 6 DSP accumulator registers & 6 control registers */ \
1246 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1247 }
1248
1249
1250 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1251
1252 #define CALL_REALLY_USED_REGISTERS \
1253 { /* General registers. */ \
1254 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1255 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1256 /* Floating-point registers. */ \
1257 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1258 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1259 /* Others. */ \
1260 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1261 /* COP0 registers */ \
1262 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1264 /* COP2 registers */ \
1265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1267 /* COP3 registers */ \
1268 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1269 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1270 /* 6 DSP accumulator registers & 6 control registers */ \
1271 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1272 }
1273
1274 /* Internal macros to classify a register number as to whether it's a
1275 general purpose register, a floating point register, a
1276 multiply/divide register, or a status register. */
1277
1278 #define GP_REG_FIRST 0
1279 #define GP_REG_LAST 31
1280 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1281 #define GP_DBX_FIRST 0
1282
1283 #define FP_REG_FIRST 32
1284 #define FP_REG_LAST 63
1285 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1286 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1287
1288 #define MD_REG_FIRST 64
1289 #define MD_REG_LAST 65
1290 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1291 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1292
1293 #define ST_REG_FIRST 67
1294 #define ST_REG_LAST 74
1295 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1296
1297
1298 /* FIXME: renumber. */
1299 #define COP0_REG_FIRST 80
1300 #define COP0_REG_LAST 111
1301 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1302
1303 #define COP2_REG_FIRST 112
1304 #define COP2_REG_LAST 143
1305 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1306
1307 #define COP3_REG_FIRST 144
1308 #define COP3_REG_LAST 175
1309 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1310 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1311 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1312
1313 #define DSP_ACC_REG_FIRST 176
1314 #define DSP_ACC_REG_LAST 181
1315 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1316
1317 #define AT_REGNUM (GP_REG_FIRST + 1)
1318 #define HI_REGNUM (MD_REG_FIRST + 0)
1319 #define LO_REGNUM (MD_REG_FIRST + 1)
1320 #define AC1HI_REGNUM (DSP_ACC_REG_FIRST + 0)
1321 #define AC1LO_REGNUM (DSP_ACC_REG_FIRST + 1)
1322 #define AC2HI_REGNUM (DSP_ACC_REG_FIRST + 2)
1323 #define AC2LO_REGNUM (DSP_ACC_REG_FIRST + 3)
1324 #define AC3HI_REGNUM (DSP_ACC_REG_FIRST + 4)
1325 #define AC3LO_REGNUM (DSP_ACC_REG_FIRST + 5)
1326
1327 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1328 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1329 should be used instead. */
1330 #define FPSW_REGNUM ST_REG_FIRST
1331
1332 #define GP_REG_P(REGNO) \
1333 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1334 #define M16_REG_P(REGNO) \
1335 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1336 #define FP_REG_P(REGNO) \
1337 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1338 #define MD_REG_P(REGNO) \
1339 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1340 #define ST_REG_P(REGNO) \
1341 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1342 #define COP0_REG_P(REGNO) \
1343 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1344 #define COP2_REG_P(REGNO) \
1345 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1346 #define COP3_REG_P(REGNO) \
1347 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1348 #define ALL_COP_REG_P(REGNO) \
1349 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1350 /* Test if REGNO is one of the 6 new DSP accumulators. */
1351 #define DSP_ACC_REG_P(REGNO) \
1352 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1353 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1354 #define ACC_REG_P(REGNO) \
1355 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1356 /* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs. */
1357 #define ACC_HI_REG_P(REGNO) \
1358 ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1359 || (REGNO) == AC3HI_REGNUM)
1360
1361 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1362
1363 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1364 to initialize the mips16 gp pseudo register. */
1365 #define CONST_GP_P(X) \
1366 (GET_CODE (X) == CONST \
1367 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1368 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1369
1370 /* Return coprocessor number from register number. */
1371
1372 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1373 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1374 : COP3_REG_P (REGNO) ? '3' : '?')
1375
1376
1377 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1378
1379 /* To make the code simpler, HARD_REGNO_MODE_OK just references an
1380 array built in override_options. Because machmodes.h is not yet
1381 included before this file is processed, the MODE bound can't be
1382 expressed here. */
1383
1384 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1385
1386 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1387 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1388
1389 /* Value is 1 if it is a good idea to tie two pseudo registers
1390 when one has mode MODE1 and one has mode MODE2.
1391 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1392 for any hard reg, then this must be 0 for correct output. */
1393 #define MODES_TIEABLE_P(MODE1, MODE2) \
1394 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1395 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1396 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1397 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1398
1399 /* Register to use for pushing function arguments. */
1400 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1401
1402 /* These two registers don't really exist: they get eliminated to either
1403 the stack or hard frame pointer. */
1404 #define ARG_POINTER_REGNUM 77
1405 #define FRAME_POINTER_REGNUM 78
1406
1407 /* $30 is not available on the mips16, so we use $17 as the frame
1408 pointer. */
1409 #define HARD_FRAME_POINTER_REGNUM \
1410 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1411
1412 /* Value should be nonzero if functions must have frame pointers.
1413 Zero means the frame pointer need not be set up (and parms
1414 may be accessed via the stack pointer) in functions that seem suitable.
1415 This is computed in `reload', in reload1.c. */
1416 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1417
1418 /* Register in which static-chain is passed to a function. */
1419 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1420
1421 /* Registers used as temporaries in prologue/epilogue code. If we're
1422 generating mips16 code, these registers must come from the core set
1423 of 8. The prologue register mustn't conflict with any incoming
1424 arguments, the static chain pointer, or the frame pointer. The
1425 epilogue temporary mustn't conflict with the return registers, the
1426 frame pointer, the EH stack adjustment, or the EH data registers. */
1427
1428 #define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1429 #define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1430
1431 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1432 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1433
1434 /* Define this macro if it is as good or better to call a constant
1435 function address than to call an address kept in a register. */
1436 #define NO_FUNCTION_CSE 1
1437
1438 /* The ABI-defined global pointer. Sometimes we use a different
1439 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1440 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1441
1442 /* We normally use $28 as the global pointer. However, when generating
1443 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1444 register instead. They can then avoid saving and restoring $28
1445 and perhaps avoid using a frame at all.
1446
1447 When a leaf function uses something other than $28, mips_expand_prologue
1448 will modify pic_offset_table_rtx in place. Take the register number
1449 from there after reload. */
1450 #define PIC_OFFSET_TABLE_REGNUM \
1451 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1452
1453 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1454 \f
1455 /* Define the classes of registers for register constraints in the
1456 machine description. Also define ranges of constants.
1457
1458 One of the classes must always be named ALL_REGS and include all hard regs.
1459 If there is more than one class, another class must be named NO_REGS
1460 and contain no registers.
1461
1462 The name GENERAL_REGS must be the name of a class (or an alias for
1463 another name such as ALL_REGS). This is the class of registers
1464 that is allowed by "g" or "r" in a register constraint.
1465 Also, registers outside this class are allocated only when
1466 instructions express preferences for them.
1467
1468 The classes must be numbered in nondecreasing order; that is,
1469 a larger-numbered class must never be contained completely
1470 in a smaller-numbered class.
1471
1472 For any two classes, it is very desirable that there be another
1473 class that represents their union. */
1474
1475 enum reg_class
1476 {
1477 NO_REGS, /* no registers in set */
1478 M16_NA_REGS, /* mips16 regs not used to pass args */
1479 M16_REGS, /* mips16 directly accessible registers */
1480 T_REG, /* mips16 T register ($24) */
1481 M16_T_REGS, /* mips16 registers plus T register */
1482 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1483 V1_REG, /* Register $v1 ($3) used for TLS access. */
1484 LEA_REGS, /* Every GPR except $25 */
1485 GR_REGS, /* integer registers */
1486 FP_REGS, /* floating point registers */
1487 HI_REG, /* hi register */
1488 LO_REG, /* lo register */
1489 MD_REGS, /* multiply/divide registers (hi/lo) */
1490 COP0_REGS, /* generic coprocessor classes */
1491 COP2_REGS,
1492 COP3_REGS,
1493 HI_AND_GR_REGS, /* union classes */
1494 LO_AND_GR_REGS,
1495 HI_AND_FP_REGS,
1496 COP0_AND_GR_REGS,
1497 COP2_AND_GR_REGS,
1498 COP3_AND_GR_REGS,
1499 ALL_COP_REGS,
1500 ALL_COP_AND_GR_REGS,
1501 ST_REGS, /* status registers (fp status) */
1502 DSP_ACC_REGS, /* DSP accumulator registers */
1503 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1504 ALL_REGS, /* all registers */
1505 LIM_REG_CLASSES /* max value + 1 */
1506 };
1507
1508 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1509
1510 #define GENERAL_REGS GR_REGS
1511
1512 /* An initializer containing the names of the register classes as C
1513 string constants. These names are used in writing some of the
1514 debugging dumps. */
1515
1516 #define REG_CLASS_NAMES \
1517 { \
1518 "NO_REGS", \
1519 "M16_NA_REGS", \
1520 "M16_REGS", \
1521 "T_REG", \
1522 "M16_T_REGS", \
1523 "PIC_FN_ADDR_REG", \
1524 "V1_REG", \
1525 "LEA_REGS", \
1526 "GR_REGS", \
1527 "FP_REGS", \
1528 "HI_REG", \
1529 "LO_REG", \
1530 "MD_REGS", \
1531 /* coprocessor registers */ \
1532 "COP0_REGS", \
1533 "COP2_REGS", \
1534 "COP3_REGS", \
1535 "HI_AND_GR_REGS", \
1536 "LO_AND_GR_REGS", \
1537 "HI_AND_FP_REGS", \
1538 "COP0_AND_GR_REGS", \
1539 "COP2_AND_GR_REGS", \
1540 "COP3_AND_GR_REGS", \
1541 "ALL_COP_REGS", \
1542 "ALL_COP_AND_GR_REGS", \
1543 "ST_REGS", \
1544 "DSP_ACC_REGS", \
1545 "ACC_REGS", \
1546 "ALL_REGS" \
1547 }
1548
1549 /* An initializer containing the contents of the register classes,
1550 as integers which are bit masks. The Nth integer specifies the
1551 contents of class N. The way the integer MASK is interpreted is
1552 that register R is in the class if `MASK & (1 << R)' is 1.
1553
1554 When the machine has more than 32 registers, an integer does not
1555 suffice. Then the integers are replaced by sub-initializers,
1556 braced groupings containing several integers. Each
1557 sub-initializer must be suitable as an initializer for the type
1558 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1559
1560 #define REG_CLASS_CONTENTS \
1561 { \
1562 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1563 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1564 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1565 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1566 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1567 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
1568 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* only $v1 */ \
1569 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR except $25 */ \
1570 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
1571 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
1572 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
1573 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
1574 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
1575 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
1576 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
1577 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
1578 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
1579 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
1580 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
1581 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
1582 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
1583 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
1584 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1585 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1586 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
1587 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* dsp accumulator registers */ \
1588 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* hi/lo and dsp accumulator registers */ \
1589 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* all registers */ \
1590 }
1591
1592
1593 /* A C expression whose value is a register class containing hard
1594 register REGNO. In general there is more that one such class;
1595 choose a class which is "minimal", meaning that no smaller class
1596 also contains the register. */
1597
1598 extern const enum reg_class mips_regno_to_class[];
1599
1600 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1601
1602 /* A macro whose definition is the name of the class to which a
1603 valid base register must belong. A base register is one used in
1604 an address which is the register value plus a displacement. */
1605
1606 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1607
1608 /* A macro whose definition is the name of the class to which a
1609 valid index register must belong. An index register is one used
1610 in an address where its value is either multiplied by a scale
1611 factor or added to another register (as well as added to a
1612 displacement). */
1613
1614 #define INDEX_REG_CLASS NO_REGS
1615
1616 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1617 registers explicitly used in the rtl to be used as spill registers
1618 but prevents the compiler from extending the lifetime of these
1619 registers. */
1620
1621 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1622
1623 /* This macro is used later on in the file. */
1624 #define GR_REG_CLASS_P(CLASS) \
1625 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
1626 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS \
1627 || (CLASS) == V1_REG \
1628 || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1629
1630 /* This macro is also used later on in the file. */
1631 #define COP_REG_CLASS_P(CLASS) \
1632 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1633
1634 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
1635 is the default value (allocate the registers in numeric order). We
1636 define it just so that we can override it for the mips16 target in
1637 ORDER_REGS_FOR_LOCAL_ALLOC. */
1638
1639 #define REG_ALLOC_ORDER \
1640 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1641 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1642 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1643 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1644 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1645 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1646 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1647 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1648 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1649 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1650 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1651 176,177,178,179,180,181,182,183,184,185,186,187 \
1652 }
1653
1654 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1655 to be rearranged based on a particular function. On the mips16, we
1656 want to allocate $24 (T_REG) before other registers for
1657 instructions for which it is possible. */
1658
1659 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1660
1661 /* True if VALUE is an unsigned 6-bit number. */
1662
1663 #define UIMM6_OPERAND(VALUE) \
1664 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1665
1666 /* True if VALUE is a signed 10-bit number. */
1667
1668 #define IMM10_OPERAND(VALUE) \
1669 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1670
1671 /* True if VALUE is a signed 16-bit number. */
1672
1673 #define SMALL_OPERAND(VALUE) \
1674 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1675
1676 /* True if VALUE is an unsigned 16-bit number. */
1677
1678 #define SMALL_OPERAND_UNSIGNED(VALUE) \
1679 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1680
1681 /* True if VALUE can be loaded into a register using LUI. */
1682
1683 #define LUI_OPERAND(VALUE) \
1684 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
1685 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1686
1687 /* Return a value X with the low 16 bits clear, and such that
1688 VALUE - X is a signed 16-bit value. */
1689
1690 #define CONST_HIGH_PART(VALUE) \
1691 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1692
1693 #define CONST_LOW_PART(VALUE) \
1694 ((VALUE) - CONST_HIGH_PART (VALUE))
1695
1696 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1697 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1698 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1699
1700 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1701 mips_preferred_reload_class (X, CLASS)
1702
1703 /* Certain machines have the property that some registers cannot be
1704 copied to some other registers without using memory. Define this
1705 macro on those machines to be a C expression that is nonzero if
1706 objects of mode MODE in registers of CLASS1 can only be copied to
1707 registers of class CLASS2 by storing a register of CLASS1 into
1708 memory and loading that memory location into a register of CLASS2.
1709
1710 Do not define this macro if its value would always be zero. */
1711 #if 0
1712 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1713 ((!TARGET_DEBUG_H_MODE \
1714 && GET_MODE_CLASS (MODE) == MODE_INT \
1715 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
1716 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
1717 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1718 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
1719 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1720 #endif
1721 /* The HI and LO registers can only be reloaded via the general
1722 registers. Condition code registers can only be loaded to the
1723 general registers, and from the floating point registers. */
1724
1725 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1726 mips_secondary_reload_class (CLASS, MODE, X, 1)
1727 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1728 mips_secondary_reload_class (CLASS, MODE, X, 0)
1729
1730 /* Return the maximum number of consecutive registers
1731 needed to represent mode MODE in a register of class CLASS. */
1732
1733 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1734
1735 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1736 mips_cannot_change_mode_class (FROM, TO, CLASS)
1737 \f
1738 /* Stack layout; function entry, exit and calling. */
1739
1740 #define STACK_GROWS_DOWNWARD
1741
1742 /* The offset of the first local variable from the beginning of the frame.
1743 See compute_frame_size for details about the frame layout.
1744
1745 ??? If flag_profile_values is true, and we are generating 32-bit code, then
1746 we assume that we will need 16 bytes of argument space. This is because
1747 the value profiling code may emit calls to cmpdi2 in leaf functions.
1748 Without this hack, the local variables will start at sp+8 and the gp save
1749 area will be at sp+16, and thus they will overlap. compute_frame_size is
1750 OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1751 will end up as 24 instead of 8. This won't be needed if profiling code is
1752 inserted before virtual register instantiation. */
1753
1754 #define STARTING_FRAME_OFFSET \
1755 ((flag_profile_values && ! TARGET_64BIT \
1756 ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1757 : current_function_outgoing_args_size) \
1758 + (TARGET_ABICALLS && !TARGET_NEWABI \
1759 ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1760
1761 #define RETURN_ADDR_RTX mips_return_addr
1762
1763 /* Since the mips16 ISA mode is encoded in the least-significant bit
1764 of the address, mask it off return addresses for purposes of
1765 finding exception handling regions. */
1766
1767 #define MASK_RETURN_ADDR GEN_INT (-2)
1768
1769
1770 /* Similarly, don't use the least-significant bit to tell pointers to
1771 code from vtable index. */
1772
1773 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1774
1775 /* The eliminations to $17 are only used for mips16 code. See the
1776 definition of HARD_FRAME_POINTER_REGNUM. */
1777
1778 #define ELIMINABLE_REGS \
1779 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1780 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1781 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
1782 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1783 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1784 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1785
1786 /* We can always eliminate to the hard frame pointer. We can eliminate
1787 to the stack pointer unless a frame pointer is needed.
1788
1789 In mips16 mode, we need a frame pointer for a large frame; otherwise,
1790 reload may be unable to compute the address of a local variable,
1791 since there is no way to add a large constant to the stack pointer
1792 without using a temporary register. */
1793 #define CAN_ELIMINATE(FROM, TO) \
1794 ((TO) == HARD_FRAME_POINTER_REGNUM \
1795 || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed \
1796 && (!TARGET_MIPS16 \
1797 || compute_frame_size (get_frame_size ()) < 32768)))
1798
1799 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1800 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1801
1802 /* Allocate stack space for arguments at the beginning of each function. */
1803 #define ACCUMULATE_OUTGOING_ARGS 1
1804
1805 /* The argument pointer always points to the first argument. */
1806 #define FIRST_PARM_OFFSET(FNDECL) 0
1807
1808 /* o32 and o64 reserve stack space for all argument registers. */
1809 #define REG_PARM_STACK_SPACE(FNDECL) \
1810 (TARGET_OLDABI \
1811 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
1812 : 0)
1813
1814 /* Define this if it is the responsibility of the caller to
1815 allocate the area reserved for arguments passed in registers.
1816 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1817 of this macro is to determine whether the space is included in
1818 `current_function_outgoing_args_size'. */
1819 #define OUTGOING_REG_PARM_STACK_SPACE
1820
1821 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1822 \f
1823 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1824
1825 /* Symbolic macros for the registers used to return integer and floating
1826 point values. */
1827
1828 #define GP_RETURN (GP_REG_FIRST + 2)
1829 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1830
1831 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1832
1833 /* Symbolic macros for the first/last argument registers. */
1834
1835 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1836 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1837 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
1838 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1839
1840 #define LIBCALL_VALUE(MODE) \
1841 mips_function_value (NULL_TREE, NULL, (MODE))
1842
1843 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1844 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1845
1846 /* 1 if N is a possible register number for a function value.
1847 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1848 Currently, R2 and F0 are only implemented here (C has no complex type) */
1849
1850 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1851 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1852 && (N) == FP_RETURN + 2))
1853
1854 /* 1 if N is a possible register number for function argument passing.
1855 We have no FP argument registers when soft-float. When FP registers
1856 are 32 bits, we can't directly reference the odd numbered ones. */
1857
1858 #define FUNCTION_ARG_REGNO_P(N) \
1859 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
1860 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
1861 && !fixed_regs[N])
1862 \f
1863 /* This structure has to cope with two different argument allocation
1864 schemes. Most MIPS ABIs view the arguments as a structure, of which
1865 the first N words go in registers and the rest go on the stack. If I
1866 < N, the Ith word might go in Ith integer argument register or in a
1867 floating-point register. For these ABIs, we only need to remember
1868 the offset of the current argument into the structure.
1869
1870 The EABI instead allocates the integer and floating-point arguments
1871 separately. The first N words of FP arguments go in FP registers,
1872 the rest go on the stack. Likewise, the first N words of the other
1873 arguments go in integer registers, and the rest go on the stack. We
1874 need to maintain three counts: the number of integer registers used,
1875 the number of floating-point registers used, and the number of words
1876 passed on the stack.
1877
1878 We could keep separate information for the two ABIs (a word count for
1879 the standard ABIs, and three separate counts for the EABI). But it
1880 seems simpler to view the standard ABIs as forms of EABI that do not
1881 allocate floating-point registers.
1882
1883 So for the standard ABIs, the first N words are allocated to integer
1884 registers, and function_arg decides on an argument-by-argument basis
1885 whether that argument should really go in an integer register, or in
1886 a floating-point one. */
1887
1888 typedef struct mips_args {
1889 /* Always true for varargs functions. Otherwise true if at least
1890 one argument has been passed in an integer register. */
1891 int gp_reg_found;
1892
1893 /* The number of arguments seen so far. */
1894 unsigned int arg_number;
1895
1896 /* The number of integer registers used so far. For all ABIs except
1897 EABI, this is the number of words that have been added to the
1898 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
1899 unsigned int num_gprs;
1900
1901 /* For EABI, the number of floating-point registers used so far. */
1902 unsigned int num_fprs;
1903
1904 /* The number of words passed on the stack. */
1905 unsigned int stack_words;
1906
1907 /* On the mips16, we need to keep track of which floating point
1908 arguments were passed in general registers, but would have been
1909 passed in the FP regs if this were a 32 bit function, so that we
1910 can move them to the FP regs if we wind up calling a 32 bit
1911 function. We record this information in fp_code, encoded in base
1912 four. A zero digit means no floating point argument, a one digit
1913 means an SFmode argument, and a two digit means a DFmode argument,
1914 and a three digit is not used. The low order digit is the first
1915 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
1916 an SFmode argument. ??? A more sophisticated approach will be
1917 needed if MIPS_ABI != ABI_32. */
1918 int fp_code;
1919
1920 /* True if the function has a prototype. */
1921 int prototype;
1922 } CUMULATIVE_ARGS;
1923
1924 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1925 for a call to a function whose data type is FNTYPE.
1926 For a library call, FNTYPE is 0. */
1927
1928 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1929 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
1930
1931 /* Update the data in CUM to advance over an argument
1932 of mode MODE and data type TYPE.
1933 (TYPE is null for libcalls where that information may not be available.) */
1934
1935 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1936 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1937
1938 /* Determine where to put an argument to a function.
1939 Value is zero to push the argument on the stack,
1940 or a hard register in which to store the argument.
1941
1942 MODE is the argument's machine mode.
1943 TYPE is the data type of the argument (as a tree).
1944 This is null for libcalls where that information may
1945 not be available.
1946 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1947 the preceding args and about the function being called.
1948 NAMED is nonzero if this argument is a named parameter
1949 (otherwise it is an extra parameter matching an ellipsis). */
1950
1951 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1952 function_arg( &CUM, MODE, TYPE, NAMED)
1953
1954 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
1955
1956 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1957 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
1958
1959 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1960 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
1961
1962 /* True if using EABI and varargs can be passed in floating-point
1963 registers. Under these conditions, we need a more complex form
1964 of va_list, which tracks GPR, FPR and stack arguments separately. */
1965 #define EABI_FLOAT_VARARGS_P \
1966 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
1967
1968 \f
1969 /* Say that the epilogue uses the return address register. Note that
1970 in the case of sibcalls, the values "used by the epilogue" are
1971 considered live at the start of the called function. */
1972 #define EPILOGUE_USES(REGNO) ((REGNO) == 31)
1973
1974 /* Treat LOC as a byte offset from the stack pointer and round it up
1975 to the next fully-aligned offset. */
1976 #define MIPS_STACK_ALIGN(LOC) \
1977 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
1978
1979 \f
1980 /* Implement `va_start' for varargs and stdarg. */
1981 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1982 mips_va_start (valist, nextarg)
1983 \f
1984 /* Output assembler code to FILE to increment profiler label # LABELNO
1985 for profiling a function entry. */
1986
1987 #define FUNCTION_PROFILER(FILE, LABELNO) \
1988 { \
1989 if (TARGET_MIPS16) \
1990 sorry ("mips16 function profiling"); \
1991 fprintf (FILE, "\t.set\tnoat\n"); \
1992 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
1993 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
1994 if (!TARGET_NEWABI) \
1995 { \
1996 fprintf (FILE, \
1997 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
1998 TARGET_64BIT ? "dsubu" : "subu", \
1999 reg_names[STACK_POINTER_REGNUM], \
2000 reg_names[STACK_POINTER_REGNUM], \
2001 Pmode == DImode ? 16 : 8); \
2002 } \
2003 fprintf (FILE, "\tjal\t_mcount\n"); \
2004 fprintf (FILE, "\t.set\tat\n"); \
2005 }
2006
2007 /* No mips port has ever used the profiler counter word, so don't emit it
2008 or the label for it. */
2009
2010 #define NO_PROFILE_COUNTERS 1
2011
2012 /* Define this macro if the code for function profiling should come
2013 before the function prologue. Normally, the profiling code comes
2014 after. */
2015
2016 /* #define PROFILE_BEFORE_PROLOGUE */
2017
2018 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2019 the stack pointer does not matter. The value is tested only in
2020 functions that have frame pointers.
2021 No definition is equivalent to always zero. */
2022
2023 #define EXIT_IGNORE_STACK 1
2024
2025 \f
2026 /* A C statement to output, on the stream FILE, assembler code for a
2027 block of data that contains the constant parts of a trampoline.
2028 This code should not include a label--the label is taken care of
2029 automatically. */
2030
2031 #define TRAMPOLINE_TEMPLATE(STREAM) \
2032 { \
2033 if (ptr_mode == DImode) \
2034 fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove $1,$31\n"); \
2035 else \
2036 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2037 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2038 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2039 if (ptr_mode == DImode) \
2040 { \
2041 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2042 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2043 fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove $25,$3\n"); \
2044 } \
2045 else \
2046 { \
2047 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2048 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2049 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3\n"); \
2050 } \
2051 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2052 if (ptr_mode == DImode) \
2053 { \
2054 fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove $31,$1\n"); \
2055 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2056 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2057 } \
2058 else \
2059 { \
2060 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2061 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2062 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2063 } \
2064 }
2065
2066 /* A C expression for the size in bytes of the trampoline, as an
2067 integer. */
2068
2069 #define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2070
2071 /* Alignment required for trampolines, in bits. */
2072
2073 #define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2074
2075 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2076 program and data caches. */
2077
2078 #ifndef CACHE_FLUSH_FUNC
2079 #define CACHE_FLUSH_FUNC "_flush_cache"
2080 #endif
2081
2082 /* A C statement to initialize the variable parts of a trampoline.
2083 ADDR is an RTX for the address of the trampoline; FNADDR is an
2084 RTX for the address of the nested function; STATIC_CHAIN is an
2085 RTX for the static chain value that should be passed to the
2086 function when it is called. */
2087
2088 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2089 { \
2090 rtx func_addr, chain_addr; \
2091 \
2092 func_addr = plus_constant (ADDR, 32); \
2093 chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
2094 emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
2095 emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
2096 \
2097 /* Flush both caches. We need to flush the data cache in case \
2098 the system has a write-back cache. */ \
2099 /* ??? Should check the return value for errors. */ \
2100 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2101 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2102 0, VOIDmode, 3, ADDR, Pmode, \
2103 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2104 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2105 }
2106 \f
2107 /* Addressing modes, and classification of registers for them. */
2108
2109 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2110 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2111 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2112
2113 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2114 and check its validity for a certain class.
2115 We have two alternate definitions for each of them.
2116 The usual definition accepts all pseudo regs; the other rejects them all.
2117 The symbol REG_OK_STRICT causes the latter definition to be used.
2118
2119 Most source files want to accept pseudo regs in the hope that
2120 they will get allocated to the class that the insn wants them to be in.
2121 Some source files that are used after register allocation
2122 need to be strict. */
2123
2124 #ifndef REG_OK_STRICT
2125 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2126 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2127 #else
2128 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2129 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2130 #endif
2131
2132 #define REG_OK_FOR_INDEX_P(X) 0
2133
2134 \f
2135 /* Maximum number of registers that can appear in a valid memory address. */
2136
2137 #define MAX_REGS_PER_ADDRESS 1
2138
2139 #ifdef REG_OK_STRICT
2140 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2141 { \
2142 if (mips_legitimate_address_p (MODE, X, 1)) \
2143 goto ADDR; \
2144 }
2145 #else
2146 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2147 { \
2148 if (mips_legitimate_address_p (MODE, X, 0)) \
2149 goto ADDR; \
2150 }
2151 #endif
2152
2153 /* Check for constness inline but use mips_legitimate_address_p
2154 to check whether a constant really is an address. */
2155
2156 #define CONSTANT_ADDRESS_P(X) \
2157 (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2158
2159 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2160
2161 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2162 do { \
2163 if (mips_legitimize_address (&(X), MODE)) \
2164 goto WIN; \
2165 } while (0)
2166
2167
2168 /* A C statement or compound statement with a conditional `goto
2169 LABEL;' executed if memory address X (an RTX) can have different
2170 meanings depending on the machine mode of the memory reference it
2171 is used for.
2172
2173 Autoincrement and autodecrement addresses typically have
2174 mode-dependent effects because the amount of the increment or
2175 decrement is the size of the operand being addressed. Some
2176 machines have other mode-dependent addresses. Many RISC machines
2177 have no mode-dependent addresses.
2178
2179 You may assume that ADDR is a valid address for the machine. */
2180
2181 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2182
2183 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2184 'the start of the function that this code is output in'. */
2185
2186 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2187 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2188 asm_fprintf ((FILE), "%U%s", \
2189 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2190 else \
2191 asm_fprintf ((FILE), "%U%s", (NAME))
2192 \f
2193 /* Flag to mark a function decl symbol that requires a long call. */
2194 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2195 #define SYMBOL_REF_LONG_CALL_P(X) \
2196 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2197
2198 /* Specify the machine mode that this machine uses
2199 for the index in the tablejump instruction.
2200 ??? Using HImode in mips16 mode can cause overflow. */
2201 #define CASE_VECTOR_MODE \
2202 (TARGET_MIPS16 ? HImode : ptr_mode)
2203
2204 /* Define as C expression which evaluates to nonzero if the tablejump
2205 instruction expects the table to contain offsets from the address of the
2206 table.
2207 Do not define this if the table should contain absolute addresses. */
2208 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2209
2210 /* Define this as 1 if `char' should by default be signed; else as 0. */
2211 #ifndef DEFAULT_SIGNED_CHAR
2212 #define DEFAULT_SIGNED_CHAR 1
2213 #endif
2214
2215 /* Max number of bytes we can move from memory to memory
2216 in one reasonably fast instruction. */
2217 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2218 #define MAX_MOVE_MAX 8
2219
2220 /* Define this macro as a C expression which is nonzero if
2221 accessing less than a word of memory (i.e. a `char' or a
2222 `short') is no faster than accessing a word of memory, i.e., if
2223 such access require more than one instruction or if there is no
2224 difference in cost between byte and (aligned) word loads.
2225
2226 On RISC machines, it tends to generate better code to define
2227 this as 1, since it avoids making a QI or HI mode register. */
2228 #define SLOW_BYTE_ACCESS 1
2229
2230 /* Define this to be nonzero if shift instructions ignore all but the low-order
2231 few bits. */
2232 #define SHIFT_COUNT_TRUNCATED 1
2233
2234 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2235 is done just by pretending it is already truncated. */
2236 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2237 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2238
2239
2240 /* Specify the machine mode that pointers have.
2241 After generation of rtl, the compiler makes no further distinction
2242 between pointers and any other objects of this machine mode. */
2243
2244 #ifndef Pmode
2245 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2246 #endif
2247
2248 /* Give call MEMs SImode since it is the "most permissive" mode
2249 for both 32-bit and 64-bit targets. */
2250
2251 #define FUNCTION_MODE SImode
2252
2253 \f
2254 /* The cost of loading values from the constant pool. It should be
2255 larger than the cost of any constant we want to synthesize in-line. */
2256
2257 #define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2258
2259 /* A C expression for the cost of moving data from a register in
2260 class FROM to one in class TO. The classes are expressed using
2261 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2262 the default; other values are interpreted relative to that.
2263
2264 It is not required that the cost always equal 2 when FROM is the
2265 same as TO; on some machines it is expensive to move between
2266 registers if they are not general registers.
2267
2268 If reload sees an insn consisting of a single `set' between two
2269 hard registers, and if `REGISTER_MOVE_COST' applied to their
2270 classes returns a value of 2, reload does not check to ensure
2271 that the constraints of the insn are met. Setting a cost of
2272 other than 2 will allow reload to verify that the constraints are
2273 met. You should do this if the `movM' pattern's constraints do
2274 not allow such copying. */
2275
2276 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
2277 mips_register_move_cost (MODE, FROM, TO)
2278
2279 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2280 (mips_cost->memory_latency \
2281 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2282
2283 /* Define if copies to/from condition code registers should be avoided.
2284
2285 This is needed for the MIPS because reload_outcc is not complete;
2286 it needs to handle cases where the source is a general or another
2287 condition code register. */
2288 #define AVOID_CCMODE_COPIES
2289
2290 /* A C expression for the cost of a branch instruction. A value of
2291 1 is the default; other values are interpreted relative to that. */
2292
2293 #define BRANCH_COST mips_cost->branch_cost
2294 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2295
2296 /* If defined, modifies the length assigned to instruction INSN as a
2297 function of the context in which it is used. LENGTH is an lvalue
2298 that contains the initially computed length of the insn and should
2299 be updated with the correct length of the insn. */
2300 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2301 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2302
2303 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2304 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2305 its operands. */
2306 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2307 "%*" OPCODE "%?\t" OPERANDS "%/"
2308
2309 /* Return the asm template for a call. INSN is the instruction's mnemonic
2310 ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2311 of the target.
2312
2313 When generating -mabicalls without explicit relocation operators,
2314 all calls should use assembly macros. Otherwise, all indirect
2315 calls should use "jr" or "jalr"; we will arrange to restore $gp
2316 afterwards if necessary. Finally, we can only generate direct
2317 calls for -mabicalls by temporarily switching to non-PIC mode. */
2318 #define MIPS_CALL(INSN, OPERANDS, OPNO) \
2319 (TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS \
2320 ? "%*" INSN "\t%" #OPNO "%/" \
2321 : REG_P (OPERANDS[OPNO]) \
2322 ? "%*" INSN "r\t%" #OPNO "%/" \
2323 : TARGET_ABICALLS \
2324 ? (".option\tpic0\n\t" \
2325 "%*" INSN "\t%" #OPNO "%/\n\t" \
2326 ".option\tpic2") \
2327 : "%*" INSN "\t%" #OPNO "%/")
2328 \f
2329 /* Control the assembler format that we output. */
2330
2331 /* Output to assembler file text saying following lines
2332 may contain character constants, extra white space, comments, etc. */
2333
2334 #ifndef ASM_APP_ON
2335 #define ASM_APP_ON " #APP\n"
2336 #endif
2337
2338 /* Output to assembler file text saying following lines
2339 no longer contain unusual constructs. */
2340
2341 #ifndef ASM_APP_OFF
2342 #define ASM_APP_OFF " #NO_APP\n"
2343 #endif
2344
2345 #define REGISTER_NAMES \
2346 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2347 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2348 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2349 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2350 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2351 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2352 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2353 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2354 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2355 "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
2356 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2357 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2358 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2359 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2360 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2361 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2362 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2363 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2364 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2365 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2366 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2367 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2368 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2369 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2370
2371 /* List the "software" names for each register. Also list the numerical
2372 names for $fp and $sp. */
2373
2374 #define ADDITIONAL_REGISTER_NAMES \
2375 { \
2376 { "$29", 29 + GP_REG_FIRST }, \
2377 { "$30", 30 + GP_REG_FIRST }, \
2378 { "at", 1 + GP_REG_FIRST }, \
2379 { "v0", 2 + GP_REG_FIRST }, \
2380 { "v1", 3 + GP_REG_FIRST }, \
2381 { "a0", 4 + GP_REG_FIRST }, \
2382 { "a1", 5 + GP_REG_FIRST }, \
2383 { "a2", 6 + GP_REG_FIRST }, \
2384 { "a3", 7 + GP_REG_FIRST }, \
2385 { "t0", 8 + GP_REG_FIRST }, \
2386 { "t1", 9 + GP_REG_FIRST }, \
2387 { "t2", 10 + GP_REG_FIRST }, \
2388 { "t3", 11 + GP_REG_FIRST }, \
2389 { "t4", 12 + GP_REG_FIRST }, \
2390 { "t5", 13 + GP_REG_FIRST }, \
2391 { "t6", 14 + GP_REG_FIRST }, \
2392 { "t7", 15 + GP_REG_FIRST }, \
2393 { "s0", 16 + GP_REG_FIRST }, \
2394 { "s1", 17 + GP_REG_FIRST }, \
2395 { "s2", 18 + GP_REG_FIRST }, \
2396 { "s3", 19 + GP_REG_FIRST }, \
2397 { "s4", 20 + GP_REG_FIRST }, \
2398 { "s5", 21 + GP_REG_FIRST }, \
2399 { "s6", 22 + GP_REG_FIRST }, \
2400 { "s7", 23 + GP_REG_FIRST }, \
2401 { "t8", 24 + GP_REG_FIRST }, \
2402 { "t9", 25 + GP_REG_FIRST }, \
2403 { "k0", 26 + GP_REG_FIRST }, \
2404 { "k1", 27 + GP_REG_FIRST }, \
2405 { "gp", 28 + GP_REG_FIRST }, \
2406 { "sp", 29 + GP_REG_FIRST }, \
2407 { "fp", 30 + GP_REG_FIRST }, \
2408 { "ra", 31 + GP_REG_FIRST }, \
2409 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2410 }
2411
2412 /* This is meant to be redefined in the host dependent files. It is a
2413 set of alternative names and regnums for mips coprocessors. */
2414
2415 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2416
2417 /* A C compound statement to output to stdio stream STREAM the
2418 assembler syntax for an instruction operand X. X is an RTL
2419 expression.
2420
2421 CODE is a value that can be used to specify one of several ways
2422 of printing the operand. It is used when identical operands
2423 must be printed differently depending on the context. CODE
2424 comes from the `%' specification that was used to request
2425 printing of the operand. If the specification was just `%DIGIT'
2426 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2427 is the ASCII code for LTR.
2428
2429 If X is a register, this macro should print the register's name.
2430 The names can be found in an array `reg_names' whose type is
2431 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2432
2433 When the machine description has a specification `%PUNCT' (a `%'
2434 followed by a punctuation character), this macro is called with
2435 a null pointer for X and the punctuation character for CODE.
2436
2437 See mips.c for the MIPS specific codes. */
2438
2439 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2440
2441 /* A C expression which evaluates to true if CODE is a valid
2442 punctuation character for use in the `PRINT_OPERAND' macro. If
2443 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2444 punctuation characters (except for the standard one, `%') are
2445 used in this way. */
2446
2447 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2448
2449 /* A C compound statement to output to stdio stream STREAM the
2450 assembler syntax for an instruction operand that is a memory
2451 reference whose address is ADDR. ADDR is an RTL expression. */
2452
2453 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2454
2455
2456 /* A C statement, to be executed after all slot-filler instructions
2457 have been output. If necessary, call `dbr_sequence_length' to
2458 determine the number of slots filled in a sequence (zero if not
2459 currently outputting a sequence), to decide how many no-ops to
2460 output, or whatever.
2461
2462 Don't define this macro if it has nothing to do, but it is
2463 helpful in reading assembly output if the extent of the delay
2464 sequence is made explicit (e.g. with white space).
2465
2466 Note that output routines for instructions with delay slots must
2467 be prepared to deal with not being output as part of a sequence
2468 (i.e. when the scheduling pass is not run, or when no slot
2469 fillers could be found.) The variable `final_sequence' is null
2470 when not processing a sequence, otherwise it contains the
2471 `sequence' rtx being output. */
2472
2473 #define DBR_OUTPUT_SEQEND(STREAM) \
2474 do \
2475 { \
2476 if (set_nomacro > 0 && --set_nomacro == 0) \
2477 fputs ("\t.set\tmacro\n", STREAM); \
2478 \
2479 if (set_noreorder > 0 && --set_noreorder == 0) \
2480 fputs ("\t.set\treorder\n", STREAM); \
2481 \
2482 fputs ("\n", STREAM); \
2483 } \
2484 while (0)
2485
2486
2487 /* How to tell the debugger about changes of source files. */
2488 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2489 mips_output_filename (STREAM, NAME)
2490
2491 /* mips-tfile does not understand .stabd directives. */
2492 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2493 dbxout_begin_stabn_sline (LINE); \
2494 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2495 } while (0)
2496
2497 /* Use .loc directives for SDB line numbers. */
2498 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2499 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2500
2501 /* The MIPS implementation uses some labels for its own purpose. The
2502 following lists what labels are created, and are all formed by the
2503 pattern $L[a-z].*. The machine independent portion of GCC creates
2504 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2505
2506 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2507 $Lb[0-9]+ Begin blocks for MIPS debug support
2508 $Lc[0-9]+ Label for use in s<xx> operation.
2509 $Le[0-9]+ End blocks for MIPS debug support */
2510
2511 #undef ASM_DECLARE_OBJECT_NAME
2512 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2513 mips_declare_object (STREAM, NAME, "", ":\n", 0)
2514
2515 /* Globalizing directive for a label. */
2516 #define GLOBAL_ASM_OP "\t.globl\t"
2517
2518 /* This says how to define a global common symbol. */
2519
2520 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2521
2522 /* This says how to define a local common symbol (i.e., not visible to
2523 linker). */
2524
2525 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2526 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2527 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2528 #endif
2529
2530 /* This says how to output an external. It would be possible not to
2531 output anything and let undefined symbol become external. However
2532 the assembler uses length information on externals to allocate in
2533 data/sdata bss/sbss, thereby saving exec time. */
2534
2535 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2536 mips_output_external(STREAM,DECL,NAME)
2537
2538 /* This is how to declare a function name. The actual work of
2539 emitting the label is moved to function_prologue, so that we can
2540 get the line number correctly emitted before the .ent directive,
2541 and after any .file directives. Define as empty so that the function
2542 is not declared before the .ent directive elsewhere. */
2543
2544 #undef ASM_DECLARE_FUNCTION_NAME
2545 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2546
2547 #ifndef FUNCTION_NAME_ALREADY_DECLARED
2548 #define FUNCTION_NAME_ALREADY_DECLARED 0
2549 #endif
2550
2551 /* This is how to store into the string LABEL
2552 the symbol_ref name of an internal numbered label where
2553 PREFIX is the class of label and NUM is the number within the class.
2554 This is suitable for output with `assemble_name'. */
2555
2556 #undef ASM_GENERATE_INTERNAL_LABEL
2557 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2558 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2559
2560 /* This is how to output an element of a case-vector that is absolute. */
2561
2562 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2563 fprintf (STREAM, "\t%s\t%sL%d\n", \
2564 ptr_mode == DImode ? ".dword" : ".word", \
2565 LOCAL_LABEL_PREFIX, \
2566 VALUE)
2567
2568 /* This is how to output an element of a case-vector. We can make the
2569 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2570 is supported. */
2571
2572 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2573 do { \
2574 if (TARGET_MIPS16) \
2575 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2576 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2577 else if (TARGET_GPWORD) \
2578 fprintf (STREAM, "\t%s\t%sL%d\n", \
2579 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2580 LOCAL_LABEL_PREFIX, VALUE); \
2581 else \
2582 fprintf (STREAM, "\t%s\t%sL%d\n", \
2583 ptr_mode == DImode ? ".dword" : ".word", \
2584 LOCAL_LABEL_PREFIX, VALUE); \
2585 } while (0)
2586
2587 /* When generating MIPS16 code, we want the jump table to be in the text
2588 section so that we can load its address using a PC-relative addition. */
2589 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2590
2591 /* This is how to output an assembler line
2592 that says to advance the location counter
2593 to a multiple of 2**LOG bytes. */
2594
2595 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2596 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2597
2598 /* This is how to output an assembler line to advance the location
2599 counter by SIZE bytes. */
2600
2601 #undef ASM_OUTPUT_SKIP
2602 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2603 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2604
2605 /* This is how to output a string. */
2606 #undef ASM_OUTPUT_ASCII
2607 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
2608 mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2609
2610 /* Output #ident as a in the read-only data section. */
2611 #undef ASM_OUTPUT_IDENT
2612 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2613 { \
2614 const char *p = STRING; \
2615 int size = strlen (p) + 1; \
2616 switch_to_section (readonly_data_section); \
2617 assemble_string (p, size); \
2618 }
2619 \f
2620 /* Default to -G 8 */
2621 #ifndef MIPS_DEFAULT_GVALUE
2622 #define MIPS_DEFAULT_GVALUE 8
2623 #endif
2624
2625 /* Define the strings to put out for each section in the object file. */
2626 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2627 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2628
2629 #undef READONLY_DATA_SECTION_ASM_OP
2630 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2631 \f
2632 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2633 do \
2634 { \
2635 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
2636 TARGET_64BIT ? "dsubu" : "subu", \
2637 reg_names[STACK_POINTER_REGNUM], \
2638 reg_names[STACK_POINTER_REGNUM], \
2639 TARGET_64BIT ? "sd" : "sw", \
2640 reg_names[REGNO], \
2641 reg_names[STACK_POINTER_REGNUM]); \
2642 } \
2643 while (0)
2644
2645 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2646 do \
2647 { \
2648 if (! set_noreorder) \
2649 fprintf (STREAM, "\t.set\tnoreorder\n"); \
2650 \
2651 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2652 TARGET_64BIT ? "ld" : "lw", \
2653 reg_names[REGNO], \
2654 reg_names[STACK_POINTER_REGNUM], \
2655 TARGET_64BIT ? "daddu" : "addu", \
2656 reg_names[STACK_POINTER_REGNUM], \
2657 reg_names[STACK_POINTER_REGNUM]); \
2658 \
2659 if (! set_noreorder) \
2660 fprintf (STREAM, "\t.set\treorder\n"); \
2661 } \
2662 while (0)
2663
2664 /* How to start an assembler comment.
2665 The leading space is important (the mips native assembler requires it). */
2666 #ifndef ASM_COMMENT_START
2667 #define ASM_COMMENT_START " #"
2668 #endif
2669 \f
2670 /* Default definitions for size_t and ptrdiff_t. We must override the
2671 definitions from ../svr4.h on mips-*-linux-gnu. */
2672
2673 #undef SIZE_TYPE
2674 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2675
2676 #undef PTRDIFF_TYPE
2677 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2678 \f
2679 #ifndef __mips16
2680 /* Since the bits of the _init and _fini function is spread across
2681 many object files, each potentially with its own GP, we must assume
2682 we need to load our GP. We don't preserve $gp or $ra, since each
2683 init/fini chunk is supposed to initialize $gp, and crti/crtn
2684 already take care of preserving $ra and, when appropriate, $gp. */
2685 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2686 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2687 asm (SECTION_OP "\n\
2688 .set noreorder\n\
2689 bal 1f\n\
2690 nop\n\
2691 1: .cpload $31\n\
2692 .set reorder\n\
2693 jal " USER_LABEL_PREFIX #FUNC "\n\
2694 " TEXT_SECTION_ASM_OP);
2695 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2696 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2697 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2698 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2699 asm (SECTION_OP "\n\
2700 .set noreorder\n\
2701 bal 1f\n\
2702 nop\n\
2703 1: .set reorder\n\
2704 .cpsetup $31, $2, 1b\n\
2705 jal " USER_LABEL_PREFIX #FUNC "\n\
2706 " TEXT_SECTION_ASM_OP);
2707 #endif
2708 #endif
2709
2710 #ifndef HAVE_AS_TLS
2711 #define HAVE_AS_TLS 0
2712 #endif