]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/v850/v850.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / v850 / v850.h
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996-2022 Free Software Foundation, Inc.
3 Contributed by Jeff Law (law@cygnus.com).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_V850_H
27 #define GCC_V850_H
28
29 #undef LIB_SPEC
30 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -lgcc --end-group}}"
31
32 #undef ENDFILE_SPEC
33 #undef LINK_SPEC
34 #undef STARTFILE_SPEC
35 #undef ASM_SPEC
36
37 #define TARGET_CPU_generic 1
38 #define TARGET_CPU_v850e 2
39 #define TARGET_CPU_v850e1 3
40 #define TARGET_CPU_v850e2 4
41 #define TARGET_CPU_v850e2v3 5
42 #define TARGET_CPU_v850e3v5 6
43
44 #ifndef TARGET_CPU_DEFAULT
45 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
46 #endif
47
48 #define MASK_DEFAULT MASK_V850
49 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
50 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
51
52 /* Choose which processor will be the default.
53 We must pass a -mv850xx option to the assembler if no explicit -mv* option
54 is given, because the assembler's processor default may not be correct. */
55 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
56 #undef MASK_DEFAULT
57 #define MASK_DEFAULT MASK_V850E
58 #undef SUBTARGET_ASM_SPEC
59 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
60 #undef SUBTARGET_CPP_SPEC
61 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
62 #endif
63
64 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
65 #undef MASK_DEFAULT
66 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
67 #undef SUBTARGET_ASM_SPEC
68 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
69 #undef SUBTARGET_CPP_SPEC
70 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
71 #endif
72
73 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2
74 #undef MASK_DEFAULT
75 #define MASK_DEFAULT MASK_V850E2
76 #undef SUBTARGET_ASM_SPEC
77 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e2}"
78 #undef SUBTARGET_CPP_SPEC
79 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e2__} %{mv850e2:-D__v850e2__}"
80 #endif
81
82 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2v3
83 #undef MASK_DEFAULT
84 #define MASK_DEFAULT MASK_V850E2V3
85 #undef SUBTARGET_ASM_SPEC
86 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e2v3}"
87 #undef SUBTARGET_CPP_SPEC
88 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e2v3__} %{mv850e2v3:-D__v850e2v3__}"
89 #endif
90
91 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e3v5
92 #undef MASK_DEFAULT
93 #define MASK_DEFAULT MASK_V850E3V5
94 #undef SUBTARGET_ASM_SPEC
95 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e3v5}"
96 #undef SUBTARGET_CPP_SPEC
97 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e3v5__} %{mv850e3v5:-D__v850e3v5__}"
98 #undef TARGET_VERSION
99 #define TARGET_VERSION fprintf (stderr, " (Renesas V850E3V5)");
100 #endif
101
102 #define TARGET_V850E3V5_UP ((TARGET_V850E3V5))
103 #define TARGET_V850E2V3_UP ((TARGET_V850E2V3) || TARGET_V850E3V5_UP)
104 #define TARGET_V850E2_UP ((TARGET_V850E2) || TARGET_V850E2V3_UP)
105 #define TARGET_V850E_UP ((TARGET_V850E) || TARGET_V850E2_UP)
106 #define TARGET_ALL ((TARGET_V850) || TARGET_V850E_UP)
107
108 #define ASM_SPEC "%{m850es:-mv850e1}%{!mv850es:%{mv*:-mv%*}} \
109 %{mrelax:-mrelax} \
110 %{m8byte-align:-m8byte-align} \
111 %{msoft-float:-msoft-float} \
112 %{mhard-float:-mhard-float} \
113 %{mgcc-abi:-mgcc-abi}"
114
115 #define LINK_SPEC "%{mgcc-abi:-m v850}"
116
117 #define CPP_SPEC "\
118 %{mv850e3v5:-D__v850e3v5__} \
119 %{mv850e2v3:-D__v850e2v3__} \
120 %{mv850e2:-D__v850e2__} \
121 %{mv850es:-D__v850e1__} \
122 %{mv850e1:-D__v850e1__} \
123 %{mv850e:-D__v850e__} \
124 %{mv850:-D__v850__} \
125 %(subtarget_cpp_spec) \
126 %{mep:-D__EP__}"
127
128 #define EXTRA_SPECS \
129 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
130 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
131
132
133 /* Macro to decide when FPU instructions can be used. */
134 #define TARGET_USE_FPU (TARGET_V850E2V3_UP && ! TARGET_SOFT_FLOAT)
135
136 #define TARGET_CPU_CPP_BUILTINS() \
137 do \
138 { \
139 builtin_define( "__v851__" ); \
140 builtin_define( "__v850" ); \
141 builtin_define( "__v850__" ); \
142 builtin_assert( "machine=v850" ); \
143 builtin_assert( "cpu=v850" ); \
144 if (TARGET_EP) \
145 builtin_define ("__EP__"); \
146 if (TARGET_GCC_ABI) \
147 builtin_define ("__V850_GCC_ABI__"); \
148 else \
149 builtin_define ("__V850_RH850_ABI__"); \
150 if (! TARGET_DISABLE_CALLT) \
151 builtin_define ("__V850_CALLT__"); \
152 if (TARGET_8BYTE_ALIGN) \
153 builtin_define ("__V850_8BYTE_ALIGN__");\
154 builtin_define (TARGET_USE_FPU ? \
155 "__FPU_OK__" : "__NO_FPU__");\
156 } \
157 while(0)
158
159 #define MASK_CPU (MASK_V850 | MASK_V850E | MASK_V850E1 | MASK_V850E2 | MASK_V850E2V3 | MASK_V850E3V5)
160 \f
161 /* Target machine storage layout */
162
163 /* Define this if most significant bit is lowest numbered
164 in instructions that operate on numbered bit-fields.
165 This is not true on the NEC V850. */
166 #define BITS_BIG_ENDIAN 0
167
168 /* Define this if most significant byte of a word is the lowest numbered. */
169 /* This is not true on the NEC V850. */
170 #define BYTES_BIG_ENDIAN 0
171
172 /* Define this if most significant word of a multiword number is lowest
173 numbered.
174 This is not true on the NEC V850. */
175 #define WORDS_BIG_ENDIAN 0
176
177 /* Width of a word, in units (bytes). */
178 #define UNITS_PER_WORD 4
179
180 /* Define this macro if it is advisable to hold scalars in registers
181 in a wider mode than that declared by the program. In such cases,
182 the value is constrained to be within the bounds of the declared
183 type, but kept valid in the wider mode. The signedness of the
184 extension may differ from that of the type.
185
186 Some simple experiments have shown that leaving UNSIGNEDP alone
187 generates the best overall code. */
188
189 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
190 if (GET_MODE_CLASS (MODE) == MODE_INT \
191 && GET_MODE_SIZE (MODE) < 4) \
192 { (MODE) = SImode; }
193
194 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
195 #define PARM_BOUNDARY 32
196
197 /* The stack goes in 32-bit lumps. */
198 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
199
200 /* Allocation boundary (in *bits*) for the code of a function.
201 16 is the minimum boundary; 32 would give better performance. */
202 #define FUNCTION_BOUNDARY (((! TARGET_GCC_ABI) || optimize_size) ? 16 : 32)
203
204 /* No data type wants to be aligned rounder than this. */
205 #define BIGGEST_ALIGNMENT (TARGET_8BYTE_ALIGN ? 64 : 32)
206
207 /* Alignment of field after `int : 0' in a structure. */
208 #define EMPTY_FIELD_BOUNDARY 32
209
210 /* No structure field wants to be aligned rounder than this. */
211 #define BIGGEST_FIELD_ALIGNMENT BIGGEST_ALIGNMENT
212
213 /* Define this if move instructions will actually fail to work
214 when given unaligned data. */
215 #define STRICT_ALIGNMENT (!TARGET_NO_STRICT_ALIGN)
216
217 /* Define this as 1 if `char' should by default be signed; else as 0.
218
219 On the NEC V850, loads do sign extension, so make this default. */
220 #define DEFAULT_SIGNED_CHAR 1
221
222 #undef SIZE_TYPE
223 #define SIZE_TYPE "unsigned int"
224
225 #undef PTRDIFF_TYPE
226 #define PTRDIFF_TYPE "int"
227
228 #undef WCHAR_TYPE
229 #define WCHAR_TYPE "long int"
230
231 #undef WCHAR_TYPE_SIZE
232 #define WCHAR_TYPE_SIZE BITS_PER_WORD
233 \f
234 /* Standard register usage. */
235
236 /* Number of actual hardware registers.
237 The hardware registers are assigned numbers for the compiler
238 from 0 to just below FIRST_PSEUDO_REGISTER.
239
240 All registers that the compiler knows about must be given numbers,
241 even those that are not normally considered general registers. */
242
243 #define FIRST_PSEUDO_REGISTER 36
244
245 /* 1 for registers that have pervasive standard uses
246 and are not available for the register allocator. */
247
248 #define FIXED_REGISTERS \
249 { 1, 1, 1, 1, 1, 1, 0, 0, \
250 0, 0, 0, 0, 0, 0, 0, 0, \
251 0, 0, 0, 0, 0, 0, 0, 0, \
252 0, 0, 0, 0, 0, 0, 1, 0, \
253 1, 1, \
254 1, 1}
255
256 /* 1 for registers not available across function calls.
257 These must include the FIXED_REGISTERS and also any
258 registers that can be used without being saved.
259 The latter must include the registers where values are returned
260 and the register where structure-value addresses are passed.
261 Aside from that, you can include as many other registers as you
262 like. */
263
264 #define CALL_USED_REGISTERS \
265 { 1, 1, 1, 1, 1, 1, 1, 1, \
266 1, 1, 1, 1, 1, 1, 1, 1, \
267 1, 1, 1, 1, 0, 0, 0, 0, \
268 0, 0, 0, 0, 0, 0, 1, 1, \
269 1, 1, \
270 1, 1}
271
272 /* List the order in which to allocate registers. Each register must be
273 listed once, even those in FIXED_REGISTERS.
274
275 On the 850, we make the return registers first, then all of the volatile
276 registers, then the saved registers in reverse order to better save the
277 registers with an out of line function, and finally the fixed
278 registers. */
279
280 #define REG_ALLOC_ORDER \
281 { \
282 10, 11, /* return registers */ \
283 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
284 6, 7, 8, 9, 31, /* argument registers */ \
285 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
286 21, 20, 2, \
287 0, 1, 3, 4, 5, 30, 32, 33, /* fixed registers */ \
288 34, 35 \
289 }
290
291 \f
292 /* Define the classes of registers for register constraints in the
293 machine description. Also define ranges of constants.
294
295 One of the classes must always be named ALL_REGS and include all hard regs.
296 If there is more than one class, another class must be named NO_REGS
297 and contain no registers.
298
299 The name GENERAL_REGS must be the name of a class (or an alias for
300 another name such as ALL_REGS). This is the class of registers
301 that is allowed by "g" or "r" in a register constraint.
302 Also, registers outside this class are allocated only when
303 instructions express preferences for them.
304
305 The classes must be numbered in nondecreasing order; that is,
306 a larger-numbered class must never be contained completely
307 in a smaller-numbered class.
308
309 For any two classes, it is very desirable that there be another
310 class that represents their union. */
311
312 enum reg_class
313 {
314 NO_REGS, EVEN_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
315 };
316
317 #define N_REG_CLASSES (int) LIM_REG_CLASSES
318
319 /* Give names of register classes as strings for dump file. */
320
321 #define REG_CLASS_NAMES \
322 { "NO_REGS", "EVEN_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
323
324 /* Define which registers fit in which classes.
325 This is an initializer for a vector of HARD_REG_SET
326 of length N_REG_CLASSES. */
327
328 #define REG_CLASS_CONTENTS \
329 { \
330 { 0x00000000,0x0 }, /* NO_REGS */ \
331 { 0x55555554,0x0 }, /* EVEN_REGS */ \
332 { 0xfffffffe,0x0 }, /* GENERAL_REGS */ \
333 { 0xffffffff,0x0 }, /* ALL_REGS */ \
334 }
335
336 /* The same information, inverted:
337 Return the class number of the smallest class containing
338 reg number REGNO. This could be a conditional expression
339 or could index an array. */
340
341 #define REGNO_REG_CLASS(REGNO) ((REGNO == CC_REGNUM || REGNO == FCC_REGNUM) ? NO_REGS : GENERAL_REGS)
342
343 /* The class value for index registers, and the one for base regs. */
344
345 #define INDEX_REG_CLASS NO_REGS
346 #define BASE_REG_CLASS GENERAL_REGS
347
348 /* Macros to check register numbers against specific register classes. */
349
350 /* These assume that REGNO is a hard or pseudo reg number.
351 They give nonzero only if REGNO is a hard reg of the suitable class
352 or a pseudo reg currently allocated to a suitable hard reg.
353 Since they use reg_renumber, they are safe only once reg_renumber
354 has been allocated, which happens in reginfo.c during register
355 allocation. */
356
357 #define REGNO_OK_FOR_BASE_P(regno) \
358 (((regno) < FIRST_PSEUDO_REGISTER \
359 && (regno) != CC_REGNUM \
360 && (regno) != FCC_REGNUM) \
361 || reg_renumber[regno] >= 0)
362
363 #define REGNO_OK_FOR_INDEX_P(regno) 0
364
365 /* Convenience wrappers around insn_const_int_ok_for_constraint. */
366
367 #define CONST_OK_FOR_I(VALUE) \
368 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_I)
369 #define CONST_OK_FOR_J(VALUE) \
370 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_J)
371 #define CONST_OK_FOR_K(VALUE) \
372 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_K)
373 #define CONST_OK_FOR_L(VALUE) \
374 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_L)
375 #define CONST_OK_FOR_M(VALUE) \
376 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_M)
377 #define CONST_OK_FOR_N(VALUE) \
378 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_N)
379 #define CONST_OK_FOR_O(VALUE) \
380 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_O)
381 #define CONST_OK_FOR_W(VALUE) \
382 insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_W)
383 \f
384 /* Stack layout; function entry, exit and calling. */
385
386 /* Define this if pushing a word on the stack
387 makes the stack pointer a smaller address. */
388
389 #define STACK_GROWS_DOWNWARD 1
390
391 /* Define this to nonzero if the nominal address of the stack frame
392 is at the high-address end of the local variables;
393 that is, each additional local variable allocated
394 goes at a more negative offset in the frame. */
395
396 #define FRAME_GROWS_DOWNWARD 1
397
398 /* Offset of first parameter from the argument pointer register value. */
399 /* Is equal to the size of the saved fp + pc, even if an fp isn't
400 saved since the value is used before we know. */
401
402 #define FIRST_PARM_OFFSET(FNDECL) 0
403
404 /* Specify the registers used for certain standard purposes.
405 The values of these macros are register numbers. */
406
407 /* Register to use for pushing function arguments. */
408 #define STACK_POINTER_REGNUM SP_REGNUM
409
410 /* Base register for access to local variables of the function. */
411 #define FRAME_POINTER_REGNUM 34
412
413 /* Register containing return address from latest function call. */
414 #define LINK_POINTER_REGNUM LP_REGNUM
415
416 /* On some machines the offset between the frame pointer and starting
417 offset of the automatic variables is not known until after register
418 allocation has been done (for example, because the saved registers
419 are between these two locations). On those machines, define
420 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
421 be used internally until the offset is known, and define
422 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
423 used for the frame pointer.
424
425 You should define this macro only in the very rare circumstances
426 when it is not possible to calculate the offset between the frame
427 pointer and the automatic variables until after register
428 allocation has been completed. When this macro is defined, you
429 must also indicate in your definition of `ELIMINABLE_REGS' how to
430 eliminate `FRAME_POINTER_REGNUM' into either
431 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
432
433 Do not define this macro if it would be the same as
434 `FRAME_POINTER_REGNUM'. */
435 #undef HARD_FRAME_POINTER_REGNUM
436 #define HARD_FRAME_POINTER_REGNUM 29
437
438 /* Base register for access to arguments of the function. */
439 #define ARG_POINTER_REGNUM 35
440
441 /* Register in which static-chain is passed to a function.
442 This must be a call used register. */
443 #define STATIC_CHAIN_REGNUM 19
444
445 /* If defined, this macro specifies a table of register pairs used to
446 eliminate unneeded registers that point into the stack frame. If
447 it is not defined, the only elimination attempted by the compiler
448 is to replace references to the frame pointer with references to
449 the stack pointer.
450
451 The definition of this macro is a list of structure
452 initializations, each of which specifies an original and
453 replacement register.
454
455 On some machines, the position of the argument pointer is not
456 known until the compilation is completed. In such a case, a
457 separate hard register must be used for the argument pointer.
458 This register can be eliminated by replacing it with either the
459 frame pointer or the argument pointer, depending on whether or not
460 the frame pointer has been eliminated.
461
462 In this case, you might specify:
463 #define ELIMINABLE_REGS \
464 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
465 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
466 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
467
468 Note that the elimination of the argument pointer with the stack
469 pointer is specified first since that is the preferred elimination. */
470
471 #define ELIMINABLE_REGS \
472 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
473 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
474 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
475 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
476
477 /* This macro returns the initial difference between the specified pair
478 of registers. */
479
480 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
481 { \
482 if ((FROM) == FRAME_POINTER_REGNUM) \
483 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \
484 else if ((FROM) == ARG_POINTER_REGNUM) \
485 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
486 else \
487 gcc_unreachable (); \
488 }
489
490 /* Keep the stack pointer constant throughout the function. */
491 #define ACCUMULATE_OUTGOING_ARGS 1
492
493 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
494 \f
495 /* Define a data type for recording info about an argument list
496 during the scan of that argument list. This data type should
497 hold all necessary information about the function itself
498 and about the args processed so far, enough to enable macros
499 such as FUNCTION_ARG to determine where the next arg should go. */
500
501 #define CUMULATIVE_ARGS struct cum_arg
502 struct cum_arg { int nbytes; };
503
504 /* Initialize a variable CUM of type CUMULATIVE_ARGS
505 for a call to a function whose data type is FNTYPE.
506 For a library call, FNTYPE is 0. */
507
508 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
509 do { (CUM).nbytes = 0; } while (0)
510
511 /* When a parameter is passed in a register, stack space is still
512 allocated for it. */
513 #define REG_PARM_STACK_SPACE(DECL) 0
514
515 /* 1 if N is a possible register number for function argument passing. */
516
517 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
518
519 #define DEFAULT_PCC_STRUCT_RETURN 0
520
521 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
522 the stack pointer does not matter. The value is tested only in
523 functions that have frame pointers.
524 No definition is equivalent to always zero. */
525
526 #define EXIT_IGNORE_STACK 1
527
528 /* Define this macro as a C expression that is nonzero for registers
529 used by the epilogue or the `return' pattern. */
530
531 #define EPILOGUE_USES(REGNO) \
532 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
533
534 /* Output assembler code to FILE to increment profiler label # LABELNO
535 for profiling a function entry. */
536
537 #define FUNCTION_PROFILER(FILE, LABELNO) ;
538
539 /* Length in units of the trampoline for entering a nested function. */
540
541 #define TRAMPOLINE_SIZE 24
542
543 /* Addressing modes, and classification of registers for them. */
544
545 \f
546 /* 1 if X is an rtx for a constant that is a valid address. */
547
548 /* ??? This seems too exclusive. May get better code by accepting more
549 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
550
551 #define CONSTANT_ADDRESS_P(X) constraint_satisfied_p (X, CONSTRAINT_K)
552
553 /* Maximum number of registers that can appear in a valid memory address. */
554
555 #define MAX_REGS_PER_ADDRESS 1
556 \f
557 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
558 return the mode to be used for the comparison.
559
560 For floating-point equality comparisons, CCFPEQmode should be used.
561 VOIDmode should be used in all other cases.
562
563 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
564 possible, to allow for more combinations. */
565
566 #define SELECT_CC_MODE(OP, X, Y) v850_select_cc_mode (OP, X, Y)
567
568 /* Nonzero if access to memory by bytes or half words is no faster
569 than accessing full words. */
570 #define SLOW_BYTE_ACCESS 1
571
572 /* According expr.c, a value of around 6 should minimize code size, and
573 for the V850 series, that's our primary concern. */
574 #define MOVE_RATIO(speed) 6
575
576 /* Indirect calls are expensive, never turn a direct call
577 into an indirect call. */
578 #define NO_FUNCTION_CSE 1
579
580 /* The four different data regions on the v850. */
581 typedef enum
582 {
583 DATA_AREA_NORMAL,
584 DATA_AREA_SDA,
585 DATA_AREA_TDA,
586 DATA_AREA_ZDA
587 } v850_data_area;
588
589 #define TEXT_SECTION_ASM_OP "\t.section .text"
590 #define DATA_SECTION_ASM_OP "\t.section .data"
591 #define BSS_SECTION_ASM_OP "\t.section .bss"
592 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
593 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
594
595 #define SCOMMON_ASM_OP "\t.scomm\t"
596 #define ZCOMMON_ASM_OP "\t.zcomm\t"
597 #define TCOMMON_ASM_OP "\t.tcomm\t"
598
599 #define ASM_COMMENT_START "#"
600
601 /* Output to assembler file text saying following lines
602 may contain character constants, extra white space, comments, etc. */
603
604 #define ASM_APP_ON "#APP\n"
605
606 /* Output to assembler file text saying following lines
607 no longer contain unusual constructs. */
608
609 #define ASM_APP_OFF "#NO_APP\n"
610
611 #undef USER_LABEL_PREFIX
612 #define USER_LABEL_PREFIX "_"
613
614 /* This says how to output the assembler to define a global
615 uninitialized but not common symbol. */
616
617 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
618 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
619
620 #undef ASM_OUTPUT_ALIGNED_BSS
621 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
622 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
623
624 /* This says how to output the assembler to define a global
625 uninitialized, common symbol. */
626 #undef ASM_OUTPUT_ALIGNED_COMMON
627 #undef ASM_OUTPUT_COMMON
628 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
629 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
630
631 /* This says how to output the assembler to define a local
632 uninitialized symbol. */
633 #undef ASM_OUTPUT_ALIGNED_LOCAL
634 #undef ASM_OUTPUT_LOCAL
635 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
636 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
637
638 /* Globalizing directive for a label. */
639 #define GLOBAL_ASM_OP "\t.global "
640
641 #define ASM_PN_FORMAT "%s___%lu"
642
643 /* This is how we tell the assembler that two symbols have the same value. */
644
645 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
646 do { assemble_name(FILE, NAME1); \
647 fputs(" = ", FILE); \
648 assemble_name(FILE, NAME2); \
649 fputc('\n', FILE); } while (0)
650
651
652 /* How to refer to registers in assembler output.
653 This sequence is indexed by compiler's hard-register-number (see above). */
654
655 #define REGISTER_NAMES \
656 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
657 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
658 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
659 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
660 "psw", "fcc", \
661 ".fp", ".ap"}
662
663 /* Register numbers */
664
665 #define ADDITIONAL_REGISTER_NAMES \
666 { { "zero", ZERO_REGNUM }, \
667 { "hp", 2 }, \
668 { "r3", 3 }, \
669 { "r4", 4 }, \
670 { "tp", 5 }, \
671 { "fp", 29 }, \
672 { "r30", 30 }, \
673 { "lp", LP_REGNUM} }
674
675 /* This is how to output an element of a case-vector that is absolute. */
676
677 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
678 fprintf (FILE, "\t%s .L%d\n", \
679 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
680
681 /* This is how to output an element of a case-vector that is relative. */
682
683 /* Disable the shift, which is for the currently disabled "switch"
684 opcode. Se casesi in v850.md. */
685
686 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
687 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
688 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
689 (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E_UP) ? "(" : ""), \
690 VALUE, REL, \
691 (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E_UP) ? ")>>1" : ""))
692
693 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
694 if ((LOG) != 0) \
695 fprintf (FILE, "\t.align %d\n", (LOG))
696
697 /* Use dwarf2 debugging info by default. */
698 #undef PREFERRED_DEBUGGING_TYPE
699 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
700 #define DWARF2_DEBUGGING_INFO 1
701
702 #define DWARF2_FRAME_INFO 1
703 #define DWARF2_UNWIND_INFO 0
704 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_POINTER_REGNUM)
705 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_POINTER_REGNUM)
706
707 #ifndef ASM_GENERATE_INTERNAL_LABEL
708 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
709 sprintf (STRING, "*.%s%u", PREFIX, (unsigned int)(NUM))
710 #endif
711
712 /* Specify the machine mode that this machine uses
713 for the index in the tablejump instruction. */
714 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
715
716 /* Define as C expression which evaluates to nonzero if the tablejump
717 instruction expects the table to contain offsets from the address of the
718 table.
719 Do not define this if the table should contain absolute addresses. */
720 #define CASE_VECTOR_PC_RELATIVE 1
721
722 /* The switch instruction requires that the jump table immediately follow
723 it. */
724 #define JUMP_TABLES_IN_TEXT_SECTION (!TARGET_JUMP_TABLES_IN_DATA_SECTION)
725
726 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
727 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
728 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1))
729
730 #define WORD_REGISTER_OPERATIONS 1
731
732 /* Byte and short loads sign extend the value to a word. */
733 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
734
735 /* Max number of bytes we can move from memory to memory
736 in one reasonably fast instruction. */
737 #define MOVE_MAX 4
738
739 /* Define if shifts truncate the shift count
740 which implies one can omit a sign-extension or zero-extension
741 of a shift count. */
742 #define SHIFT_COUNT_TRUNCATED 1
743
744 /* Specify the machine mode that pointers have.
745 After generation of rtl, the compiler makes no further distinction
746 between pointers and any other objects of this machine mode. */
747 #define Pmode SImode
748
749 /* A function address in a call instruction
750 is a byte address (for indexing purposes)
751 so give the MEM rtx a byte's mode. */
752 #define FUNCTION_MODE QImode
753
754 /* Tell compiler we want to support GHS pragmas */
755 #define REGISTER_TARGET_PRAGMAS() do { \
756 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
757 c_register_pragma ("ghs", "section", ghs_pragma_section); \
758 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
759 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
760 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
761 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
762 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
763 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
764 } while (0)
765
766 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
767 can appear in the "ghs section" pragma. These names are used to index
768 into the GHS_default_section_names[] and GHS_current_section_names[]
769 that are defined in v850.c, and so the ordering of each must remain
770 consistent.
771
772 These arrays give the default and current names for each kind of
773 section defined by the GHS pragmas. The current names can be changed
774 by the "ghs section" pragma. If the current names are null, use
775 the default names. Note that the two arrays have different types.
776
777 For the *normal* section kinds (like .data, .text, etc.) we do not
778 want to explicitly force the name of these sections, but would rather
779 let the linker (or at least the back end) choose the name of the
780 section, UNLESS the user has forced a specific name for these section
781 kinds. To accomplish this set the name in ghs_default_section_names
782 to null. */
783
784 enum GHS_section_kind
785 {
786 GHS_SECTION_KIND_DEFAULT,
787
788 GHS_SECTION_KIND_TEXT,
789 GHS_SECTION_KIND_DATA,
790 GHS_SECTION_KIND_RODATA,
791 GHS_SECTION_KIND_BSS,
792 GHS_SECTION_KIND_SDATA,
793 GHS_SECTION_KIND_ROSDATA,
794 GHS_SECTION_KIND_TDATA,
795 GHS_SECTION_KIND_ZDATA,
796 GHS_SECTION_KIND_ROZDATA,
797
798 COUNT_OF_GHS_SECTION_KINDS /* must be last */
799 };
800
801 /* The following code is for handling pragmas supported by the
802 v850 compiler produced by Green Hills Software. This is at
803 the specific request of a customer. */
804
805 typedef struct data_area_stack_element
806 {
807 struct data_area_stack_element * prev;
808 v850_data_area data_area; /* Current default data area. */
809 } data_area_stack_element;
810
811 /* Track the current data area set by the
812 data area pragma (which can be nested). */
813 extern data_area_stack_element * data_area_stack;
814
815 /* Names of the various data areas used on the v850. */
816 extern const char * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
817 extern const char * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
818
819 /* The assembler op to start the file. */
820
821 #define FILE_ASM_OP "\t.file\n"
822
823 /* Implement ZDA, TDA, and SDA */
824
825 #define EP_REGNUM 30 /* ep register number */
826
827 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
828 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
829 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
830 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
831 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
832 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
833
834 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
835
836 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
837 ((LENGTH) = v850_adjust_insn_length ((INSN), (LENGTH)))
838
839 #endif /* ! GCC_V850_H */