]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/class.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "lex.h"
37 #include "target.h"
38 #include "convert.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62 }* class_stack_node_t;
63
64 typedef struct vtbl_init_data_s
65 {
66 /* The base for which we're building initializers. */
67 tree binfo;
68 /* The type of the most-derived type. */
69 tree derived;
70 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
71 unless ctor_vtbl_p is true. */
72 tree rtti_binfo;
73 /* The negative-index vtable initializers built up so far. These
74 are in order from least negative index to most negative index. */
75 tree inits;
76 /* The last (i.e., most negative) entry in INITS. */
77 tree* last_init;
78 /* The binfo for the virtual base for which we're building
79 vcall offset initializers. */
80 tree vbase;
81 /* The functions in vbase for which we have already provided vcall
82 offsets. */
83 varray_type fns;
84 /* The vtable index of the next vcall or vbase offset. */
85 tree index;
86 /* Nonzero if we are building the initializer for the primary
87 vtable. */
88 int primary_vtbl_p;
89 /* Nonzero if we are building the initializer for a construction
90 vtable. */
91 int ctor_vtbl_p;
92 /* True when adding vcall offset entries to the vtable. False when
93 merely computing the indices. */
94 bool generate_vcall_entries;
95 } vtbl_init_data;
96
97 /* The type of a function passed to walk_subobject_offsets. */
98 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
99
100 /* The stack itself. This is a dynamically resized array. The
101 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
102 static int current_class_stack_size;
103 static class_stack_node_t current_class_stack;
104
105 /* An array of all local classes present in this translation unit, in
106 declaration order. */
107 varray_type local_classes;
108
109 static tree get_vfield_name (tree);
110 static void finish_struct_anon (tree);
111 static tree get_vtable_name (tree);
112 static tree get_basefndecls (tree, tree);
113 static int build_primary_vtable (tree, tree);
114 static int build_secondary_vtable (tree);
115 static void finish_vtbls (tree);
116 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
117 static void finish_struct_bits (tree);
118 static int alter_access (tree, tree, tree);
119 static void handle_using_decl (tree, tree);
120 static void check_for_override (tree, tree);
121 static tree dfs_modify_vtables (tree, void *);
122 static tree modify_all_vtables (tree, tree);
123 static void determine_primary_base (tree);
124 static void finish_struct_methods (tree);
125 static void maybe_warn_about_overly_private_class (tree);
126 static int method_name_cmp (const void *, const void *);
127 static int resort_method_name_cmp (const void *, const void *);
128 static void add_implicitly_declared_members (tree, int, int, int);
129 static tree fixed_type_or_null (tree, int *, int *);
130 static tree resolve_address_of_overloaded_function (tree, tree, tsubst_flags_t,
131 bool, tree);
132 static tree build_simple_base_path (tree expr, tree binfo);
133 static tree build_vtbl_ref_1 (tree, tree);
134 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
135 static int count_fields (tree);
136 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
137 static void check_bitfield_decl (tree);
138 static void check_field_decl (tree, tree, int *, int *, int *, int *);
139 static void check_field_decls (tree, tree *, int *, int *, int *);
140 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
141 static void build_base_fields (record_layout_info, splay_tree, tree *);
142 static void check_methods (tree);
143 static void remove_zero_width_bit_fields (tree);
144 static void check_bases (tree, int *, int *, int *);
145 static void check_bases_and_members (tree);
146 static tree create_vtable_ptr (tree, tree *);
147 static void include_empty_classes (record_layout_info);
148 static void layout_class_type (tree, tree *);
149 static void fixup_pending_inline (tree);
150 static void fixup_inline_methods (tree);
151 static void set_primary_base (tree, tree);
152 static void propagate_binfo_offsets (tree, tree);
153 static void layout_virtual_bases (record_layout_info, splay_tree);
154 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
155 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
157 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
158 static void add_vcall_offset (tree, tree, vtbl_init_data *);
159 static void layout_vtable_decl (tree, int);
160 static tree dfs_find_final_overrider (tree, void *);
161 static tree dfs_find_final_overrider_post (tree, void *);
162 static tree dfs_find_final_overrider_q (tree, int, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static int maybe_indent_hierarchy (FILE *, int, int);
166 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
167 static void dump_class_hierarchy (tree);
168 static void dump_class_hierarchy_1 (FILE *, int, tree);
169 static void dump_array (FILE *, tree);
170 static void dump_vtable (tree, tree, tree);
171 static void dump_vtt (tree, tree);
172 static void dump_thunk (FILE *, int, tree);
173 static tree build_vtable (tree, tree, tree);
174 static void initialize_vtable (tree, tree);
175 static void initialize_array (tree, tree);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
181 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
182 tree);
183 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
184 static void build_vcall_and_vbase_vtbl_entries (tree,
185 vtbl_init_data *);
186 static void mark_primary_bases (tree);
187 static void clone_constructors_and_destructors (tree);
188 static tree build_clone (tree, tree);
189 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
190 static tree copy_virtuals (tree);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_ctor_vtable_bases_queue_p (tree, int, void *data);
197 static tree dfs_fixup_binfo_vtbls (tree, void *);
198 static int record_subobject_offset (tree, tree, splay_tree);
199 static int check_subobject_offset (tree, tree, splay_tree);
200 static int walk_subobject_offsets (tree, subobject_offset_fn,
201 tree, splay_tree, tree, int);
202 static void record_subobject_offsets (tree, tree, splay_tree, int);
203 static int layout_conflict_p (tree, tree, splay_tree, int);
204 static int splay_tree_compare_integer_csts (splay_tree_key k1,
205 splay_tree_key k2);
206 static void warn_about_ambiguous_bases (tree);
207 static bool type_requires_array_cookie (tree);
208 static bool contains_empty_class_p (tree);
209 static bool base_derived_from (tree, tree);
210 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
211 static tree end_of_base (tree);
212 static tree get_vcall_index (tree, tree);
213
214 /* Macros for dfs walking during vtt construction. See
215 dfs_ctor_vtable_bases_queue_p, dfs_build_secondary_vptr_vtt_inits
216 and dfs_fixup_binfo_vtbls. */
217 #define VTT_TOP_LEVEL_P(NODE) (TREE_LIST_CHECK (NODE)->common.unsigned_flag)
218 #define VTT_MARKED_BINFO_P(NODE) TREE_USED (NODE)
219
220 /* Variables shared between class.c and call.c. */
221
222 #ifdef GATHER_STATISTICS
223 int n_vtables = 0;
224 int n_vtable_entries = 0;
225 int n_vtable_searches = 0;
226 int n_vtable_elems = 0;
227 int n_convert_harshness = 0;
228 int n_compute_conversion_costs = 0;
229 int n_inner_fields_searched = 0;
230 #endif
231
232 /* Convert to or from a base subobject. EXPR is an expression of type
233 `A' or `A*', an expression of type `B' or `B*' is returned. To
234 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
235 the B base instance within A. To convert base A to derived B, CODE
236 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
237 In this latter case, A must not be a morally virtual base of B.
238 NONNULL is true if EXPR is known to be non-NULL (this is only
239 needed when EXPR is of pointer type). CV qualifiers are preserved
240 from EXPR. */
241
242 tree
243 build_base_path (enum tree_code code,
244 tree expr,
245 tree binfo,
246 int nonnull)
247 {
248 tree v_binfo = NULL_TREE;
249 tree d_binfo = NULL_TREE;
250 tree probe;
251 tree offset;
252 tree target_type;
253 tree null_test = NULL;
254 tree ptr_target_type;
255 int fixed_type_p;
256 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
257 bool has_empty = false;
258
259 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
260 return error_mark_node;
261
262 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
263 {
264 d_binfo = probe;
265 if (is_empty_class (BINFO_TYPE (probe)))
266 has_empty = true;
267 if (!v_binfo && TREE_VIA_VIRTUAL (probe))
268 v_binfo = probe;
269 }
270
271 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
272 if (want_pointer)
273 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
274
275 my_friendly_assert (code == MINUS_EXPR
276 ? same_type_p (BINFO_TYPE (binfo), probe)
277 : code == PLUS_EXPR
278 ? same_type_p (BINFO_TYPE (d_binfo), probe)
279 : false, 20010723);
280
281 if (binfo == d_binfo)
282 /* Nothing to do. */
283 return expr;
284
285 if (code == MINUS_EXPR && v_binfo)
286 {
287 error ("cannot convert from base `%T' to derived type `%T' via virtual base `%T'",
288 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
289 return error_mark_node;
290 }
291
292 if (!want_pointer)
293 /* This must happen before the call to save_expr. */
294 expr = build_unary_op (ADDR_EXPR, expr, 0);
295
296 offset = BINFO_OFFSET (binfo);
297 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
298
299 if (want_pointer && !nonnull
300 && (!integer_zerop (offset) || (v_binfo && fixed_type_p <= 0)))
301 null_test = error_mark_node;
302
303 if (TREE_SIDE_EFFECTS (expr)
304 && (null_test || (v_binfo && fixed_type_p <= 0)))
305 expr = save_expr (expr);
306
307 if (null_test)
308 null_test = fold (build2 (NE_EXPR, boolean_type_node,
309 expr, integer_zero_node));
310
311 /* If this is a simple base reference, express it as a COMPONENT_REF. */
312 if (code == PLUS_EXPR
313 && (v_binfo == NULL_TREE || fixed_type_p > 0)
314 /* We don't build base fields for empty bases, and they aren't very
315 interesting to the optimizers anyway. */
316 && !has_empty)
317 {
318 expr = build_indirect_ref (expr, NULL);
319 expr = build_simple_base_path (expr, binfo);
320 if (want_pointer)
321 expr = build_unary_op (ADDR_EXPR, expr, 0);
322 target_type = TREE_TYPE (expr);
323 goto out;
324 }
325
326 if (v_binfo && fixed_type_p <= 0)
327 {
328 /* Going via virtual base V_BINFO. We need the static offset
329 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
330 V_BINFO. That offset is an entry in D_BINFO's vtable. */
331 tree v_offset;
332
333 if (fixed_type_p < 0 && in_base_initializer)
334 {
335 /* In a base member initializer, we cannot rely on
336 the vtable being set up. We have to use the vtt_parm. */
337 tree derived = BINFO_INHERITANCE_CHAIN (v_binfo);
338 tree t;
339
340 t = TREE_TYPE (TYPE_VFIELD (BINFO_TYPE (derived)));
341 t = build_pointer_type (t);
342 v_offset = convert (t, current_vtt_parm);
343 v_offset = build (PLUS_EXPR, t, v_offset,
344 BINFO_VPTR_INDEX (derived));
345 v_offset = build_indirect_ref (v_offset, NULL);
346 }
347 else
348 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
349 TREE_TYPE (TREE_TYPE (expr)));
350
351 v_offset = build (PLUS_EXPR, TREE_TYPE (v_offset),
352 v_offset, BINFO_VPTR_FIELD (v_binfo));
353 v_offset = build1 (NOP_EXPR,
354 build_pointer_type (ptrdiff_type_node),
355 v_offset);
356 v_offset = build_indirect_ref (v_offset, NULL);
357 TREE_CONSTANT (v_offset) = 1;
358 TREE_INVARIANT (v_offset) = 1;
359
360 offset = convert_to_integer (ptrdiff_type_node,
361 size_diffop (offset,
362 BINFO_OFFSET (v_binfo)));
363
364 if (!integer_zerop (offset))
365 v_offset = build (code, ptrdiff_type_node, v_offset, offset);
366
367 if (fixed_type_p < 0)
368 /* Negative fixed_type_p means this is a constructor or destructor;
369 virtual base layout is fixed in in-charge [cd]tors, but not in
370 base [cd]tors. */
371 offset = build (COND_EXPR, ptrdiff_type_node,
372 build (EQ_EXPR, boolean_type_node,
373 current_in_charge_parm, integer_zero_node),
374 v_offset,
375 BINFO_OFFSET (binfo));
376 else
377 offset = v_offset;
378 }
379
380 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
381
382 target_type = cp_build_qualified_type
383 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
384 ptr_target_type = build_pointer_type (target_type);
385 if (want_pointer)
386 target_type = ptr_target_type;
387
388 expr = build1 (NOP_EXPR, ptr_target_type, expr);
389
390 if (!integer_zerop (offset))
391 expr = build (code, ptr_target_type, expr, offset);
392 else
393 null_test = NULL;
394
395 if (!want_pointer)
396 expr = build_indirect_ref (expr, NULL);
397
398 out:
399 if (null_test)
400 expr = fold (build3 (COND_EXPR, target_type, null_test, expr,
401 fold (build1 (NOP_EXPR, target_type,
402 integer_zero_node))));
403
404 return expr;
405 }
406
407 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
408 Perform a derived-to-base conversion by recursively building up a
409 sequence of COMPONENT_REFs to the appropriate base fields. */
410
411 static tree
412 build_simple_base_path (tree expr, tree binfo)
413 {
414 tree type = BINFO_TYPE (binfo);
415 tree d_binfo;
416 tree field;
417
418 /* For primary virtual bases, we can't just follow
419 BINFO_INHERITANCE_CHAIN. */
420 d_binfo = BINFO_PRIMARY_BASE_OF (binfo);
421 if (d_binfo == NULL_TREE)
422 d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
423
424 if (d_binfo == NULL_TREE)
425 {
426 if (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) != type)
427 abort ();
428 return expr;
429 }
430
431 /* Recurse. */
432 expr = build_simple_base_path (expr, d_binfo);
433
434 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
435 field; field = TREE_CHAIN (field))
436 /* Is this the base field created by build_base_field? */
437 if (TREE_CODE (field) == FIELD_DECL
438 && TREE_TYPE (field) == type
439 && DECL_ARTIFICIAL (field)
440 && DECL_IGNORED_P (field))
441 return build_class_member_access_expr (expr, field,
442 NULL_TREE, false);
443
444 /* Didn't find the base field?!? */
445 abort ();
446 }
447
448 /* Convert OBJECT to the base TYPE. If CHECK_ACCESS is true, an error
449 message is emitted if TYPE is inaccessible. OBJECT is assumed to
450 be non-NULL. */
451
452 tree
453 convert_to_base (tree object, tree type, bool check_access)
454 {
455 tree binfo;
456
457 binfo = lookup_base (TREE_TYPE (object), type,
458 check_access ? ba_check : ba_ignore,
459 NULL);
460 if (!binfo || binfo == error_mark_node)
461 return error_mark_node;
462
463 return build_base_path (PLUS_EXPR, object, binfo, /*nonnull=*/1);
464 }
465
466 /* EXPR is an expression with class type. BASE is a base class (a
467 BINFO) of that class type. Returns EXPR, converted to the BASE
468 type. This function assumes that EXPR is the most derived class;
469 therefore virtual bases can be found at their static offsets. */
470
471 tree
472 convert_to_base_statically (tree expr, tree base)
473 {
474 tree expr_type;
475
476 expr_type = TREE_TYPE (expr);
477 if (!same_type_p (expr_type, BINFO_TYPE (base)))
478 {
479 tree pointer_type;
480
481 pointer_type = build_pointer_type (expr_type);
482 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
483 if (!integer_zerop (BINFO_OFFSET (base)))
484 expr = build (PLUS_EXPR, pointer_type, expr,
485 build_nop (pointer_type, BINFO_OFFSET (base)));
486 expr = build_nop (build_pointer_type (BINFO_TYPE (base)), expr);
487 expr = build1 (INDIRECT_REF, BINFO_TYPE (base), expr);
488 }
489
490 return expr;
491 }
492
493 \f
494 /* Given an object INSTANCE, return an expression which yields the
495 vtable element corresponding to INDEX. There are many special
496 cases for INSTANCE which we take care of here, mainly to avoid
497 creating extra tree nodes when we don't have to. */
498
499 static tree
500 build_vtbl_ref_1 (tree instance, tree idx)
501 {
502 tree aref;
503 tree vtbl = NULL_TREE;
504
505 /* Try to figure out what a reference refers to, and
506 access its virtual function table directly. */
507
508 int cdtorp = 0;
509 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
510
511 tree basetype = non_reference (TREE_TYPE (instance));
512
513 if (fixed_type && !cdtorp)
514 {
515 tree binfo = lookup_base (fixed_type, basetype,
516 ba_ignore|ba_quiet, NULL);
517 if (binfo)
518 vtbl = unshare_expr (BINFO_VTABLE (binfo));
519 }
520
521 if (!vtbl)
522 vtbl = build_vfield_ref (instance, basetype);
523
524 assemble_external (vtbl);
525
526 aref = build_array_ref (vtbl, idx);
527 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
528 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
529
530 return aref;
531 }
532
533 tree
534 build_vtbl_ref (tree instance, tree idx)
535 {
536 tree aref = build_vtbl_ref_1 (instance, idx);
537
538 return aref;
539 }
540
541 /* Given an object INSTANCE, return an expression which yields a
542 function pointer corresponding to vtable element INDEX. */
543
544 tree
545 build_vfn_ref (tree instance, tree idx)
546 {
547 tree aref = build_vtbl_ref_1 (instance, idx);
548
549 /* When using function descriptors, the address of the
550 vtable entry is treated as a function pointer. */
551 if (TARGET_VTABLE_USES_DESCRIPTORS)
552 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
553 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
554
555 return aref;
556 }
557
558 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
559 for the given TYPE. */
560
561 static tree
562 get_vtable_name (tree type)
563 {
564 return mangle_vtbl_for_type (type);
565 }
566
567 /* Return an IDENTIFIER_NODE for the name of the virtual table table
568 for TYPE. */
569
570 tree
571 get_vtt_name (tree type)
572 {
573 return mangle_vtt_for_type (type);
574 }
575
576 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
577 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
578 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
579
580 static tree
581 build_vtable (tree class_type, tree name, tree vtable_type)
582 {
583 tree decl;
584
585 decl = build_lang_decl (VAR_DECL, name, vtable_type);
586 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
587 now to avoid confusion in mangle_decl. */
588 SET_DECL_ASSEMBLER_NAME (decl, name);
589 DECL_CONTEXT (decl) = class_type;
590 DECL_ARTIFICIAL (decl) = 1;
591 TREE_STATIC (decl) = 1;
592 TREE_READONLY (decl) = 1;
593 DECL_VIRTUAL_P (decl) = 1;
594 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
595 DECL_VTABLE_OR_VTT_P (decl) = 1;
596
597 /* At one time the vtable info was grabbed 2 words at a time. This
598 fails on sparc unless you have 8-byte alignment. (tiemann) */
599 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
600 DECL_ALIGN (decl));
601
602 import_export_vtable (decl, class_type, 0);
603
604 return decl;
605 }
606
607 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
608 or even complete. If this does not exist, create it. If COMPLETE is
609 nonzero, then complete the definition of it -- that will render it
610 impossible to actually build the vtable, but is useful to get at those
611 which are known to exist in the runtime. */
612
613 tree
614 get_vtable_decl (tree type, int complete)
615 {
616 tree decl;
617
618 if (CLASSTYPE_VTABLES (type))
619 return CLASSTYPE_VTABLES (type);
620
621 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
622 CLASSTYPE_VTABLES (type) = decl;
623
624 if (complete)
625 {
626 DECL_EXTERNAL (decl) = 1;
627 cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
628 }
629
630 return decl;
631 }
632
633 /* Returns a copy of the BINFO_VIRTUALS list in BINFO. The
634 BV_VCALL_INDEX for each entry is cleared. */
635
636 static tree
637 copy_virtuals (tree binfo)
638 {
639 tree copies;
640 tree t;
641
642 copies = copy_list (BINFO_VIRTUALS (binfo));
643 for (t = copies; t; t = TREE_CHAIN (t))
644 BV_VCALL_INDEX (t) = NULL_TREE;
645
646 return copies;
647 }
648
649 /* Build the primary virtual function table for TYPE. If BINFO is
650 non-NULL, build the vtable starting with the initial approximation
651 that it is the same as the one which is the head of the association
652 list. Returns a nonzero value if a new vtable is actually
653 created. */
654
655 static int
656 build_primary_vtable (tree binfo, tree type)
657 {
658 tree decl;
659 tree virtuals;
660
661 decl = get_vtable_decl (type, /*complete=*/0);
662
663 if (binfo)
664 {
665 if (BINFO_NEW_VTABLE_MARKED (binfo))
666 /* We have already created a vtable for this base, so there's
667 no need to do it again. */
668 return 0;
669
670 virtuals = copy_virtuals (binfo);
671 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
672 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
673 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
674 }
675 else
676 {
677 my_friendly_assert (TREE_TYPE (decl) == vtbl_type_node, 20000118);
678 virtuals = NULL_TREE;
679 }
680
681 #ifdef GATHER_STATISTICS
682 n_vtables += 1;
683 n_vtable_elems += list_length (virtuals);
684 #endif
685
686 /* Initialize the association list for this type, based
687 on our first approximation. */
688 TYPE_BINFO_VTABLE (type) = decl;
689 TYPE_BINFO_VIRTUALS (type) = virtuals;
690 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
691 return 1;
692 }
693
694 /* Give BINFO a new virtual function table which is initialized
695 with a skeleton-copy of its original initialization. The only
696 entry that changes is the `delta' entry, so we can really
697 share a lot of structure.
698
699 FOR_TYPE is the most derived type which caused this table to
700 be needed.
701
702 Returns nonzero if we haven't met BINFO before.
703
704 The order in which vtables are built (by calling this function) for
705 an object must remain the same, otherwise a binary incompatibility
706 can result. */
707
708 static int
709 build_secondary_vtable (tree binfo)
710 {
711 if (BINFO_NEW_VTABLE_MARKED (binfo))
712 /* We already created a vtable for this base. There's no need to
713 do it again. */
714 return 0;
715
716 /* Remember that we've created a vtable for this BINFO, so that we
717 don't try to do so again. */
718 SET_BINFO_NEW_VTABLE_MARKED (binfo);
719
720 /* Make fresh virtual list, so we can smash it later. */
721 BINFO_VIRTUALS (binfo) = copy_virtuals (binfo);
722
723 /* Secondary vtables are laid out as part of the same structure as
724 the primary vtable. */
725 BINFO_VTABLE (binfo) = NULL_TREE;
726 return 1;
727 }
728
729 /* Create a new vtable for BINFO which is the hierarchy dominated by
730 T. Return nonzero if we actually created a new vtable. */
731
732 static int
733 make_new_vtable (tree t, tree binfo)
734 {
735 if (binfo == TYPE_BINFO (t))
736 /* In this case, it is *type*'s vtable we are modifying. We start
737 with the approximation that its vtable is that of the
738 immediate base class. */
739 /* ??? This actually passes TYPE_BINFO (t), not the primary base binfo,
740 since we've updated DECL_CONTEXT (TYPE_VFIELD (t)) by now. */
741 return build_primary_vtable (TYPE_BINFO (DECL_CONTEXT (TYPE_VFIELD (t))),
742 t);
743 else
744 /* This is our very own copy of `basetype' to play with. Later,
745 we will fill in all the virtual functions that override the
746 virtual functions in these base classes which are not defined
747 by the current type. */
748 return build_secondary_vtable (binfo);
749 }
750
751 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
752 (which is in the hierarchy dominated by T) list FNDECL as its
753 BV_FN. DELTA is the required constant adjustment from the `this'
754 pointer where the vtable entry appears to the `this' required when
755 the function is actually called. */
756
757 static void
758 modify_vtable_entry (tree t,
759 tree binfo,
760 tree fndecl,
761 tree delta,
762 tree *virtuals)
763 {
764 tree v;
765
766 v = *virtuals;
767
768 if (fndecl != BV_FN (v)
769 || !tree_int_cst_equal (delta, BV_DELTA (v)))
770 {
771 /* We need a new vtable for BINFO. */
772 if (make_new_vtable (t, binfo))
773 {
774 /* If we really did make a new vtable, we also made a copy
775 of the BINFO_VIRTUALS list. Now, we have to find the
776 corresponding entry in that list. */
777 *virtuals = BINFO_VIRTUALS (binfo);
778 while (BV_FN (*virtuals) != BV_FN (v))
779 *virtuals = TREE_CHAIN (*virtuals);
780 v = *virtuals;
781 }
782
783 BV_DELTA (v) = delta;
784 BV_VCALL_INDEX (v) = NULL_TREE;
785 BV_FN (v) = fndecl;
786 }
787 }
788
789 \f
790 /* Add method METHOD to class TYPE. If ERROR_P is true, we are adding
791 the method after the class has already been defined because a
792 declaration for it was seen. (Even though that is erroneous, we
793 add the method for improved error recovery.) */
794
795 void
796 add_method (tree type, tree method, int error_p)
797 {
798 int using;
799 int len;
800 int slot;
801 tree method_vec;
802 int template_conv_p;
803
804 if (method == error_mark_node)
805 return;
806
807 using = (DECL_CONTEXT (method) != type);
808 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
809 && DECL_TEMPLATE_CONV_FN_P (method));
810
811 if (!CLASSTYPE_METHOD_VEC (type))
812 /* Make a new method vector. We start with 8 entries. We must
813 allocate at least two (for constructors and destructors), and
814 we're going to end up with an assignment operator at some point
815 as well.
816
817 We could use a TREE_LIST for now, and convert it to a TREE_VEC
818 in finish_struct, but we would probably waste more memory
819 making the links in the list than we would by over-allocating
820 the size of the vector here. Furthermore, we would complicate
821 all the code that expects this to be a vector. */
822 CLASSTYPE_METHOD_VEC (type) = make_tree_vec (8);
823
824 method_vec = CLASSTYPE_METHOD_VEC (type);
825 len = TREE_VEC_LENGTH (method_vec);
826
827 /* Constructors and destructors go in special slots. */
828 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
829 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
830 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
831 {
832 slot = CLASSTYPE_DESTRUCTOR_SLOT;
833 TYPE_HAS_DESTRUCTOR (type) = 1;
834
835 if (TYPE_FOR_JAVA (type))
836 error (DECL_ARTIFICIAL (method)
837 ? "Java class '%T' cannot have an implicit non-trivial destructor"
838 : "Java class '%T' cannot have a destructor",
839 DECL_CONTEXT (method));
840 }
841 else
842 {
843 int have_template_convs_p = 0;
844
845 /* See if we already have an entry with this name. */
846 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; slot < len; ++slot)
847 {
848 tree m = TREE_VEC_ELT (method_vec, slot);
849
850 if (!m)
851 break;
852 m = OVL_CURRENT (m);
853
854 if (template_conv_p)
855 {
856 have_template_convs_p = (TREE_CODE (m) == TEMPLATE_DECL
857 && DECL_TEMPLATE_CONV_FN_P (m));
858
859 /* If we need to move things up, see if there's
860 space. */
861 if (!have_template_convs_p)
862 {
863 slot = len - 1;
864 if (TREE_VEC_ELT (method_vec, slot))
865 slot++;
866 }
867 break;
868 }
869 if (DECL_NAME (m) == DECL_NAME (method))
870 break;
871 }
872
873 if (slot == len)
874 {
875 /* We need a bigger method vector. */
876 int new_len;
877 tree new_vec;
878
879 /* In the non-error case, we are processing a class
880 definition. Double the size of the vector to give room
881 for new methods. */
882 if (!error_p)
883 new_len = 2 * len;
884 /* In the error case, the vector is already complete. We
885 don't expect many errors, and the rest of the front-end
886 will get confused if there are empty slots in the vector. */
887 else
888 new_len = len + 1;
889
890 new_vec = make_tree_vec (new_len);
891 memcpy (&TREE_VEC_ELT (new_vec, 0), &TREE_VEC_ELT (method_vec, 0),
892 len * sizeof (tree));
893 len = new_len;
894 method_vec = CLASSTYPE_METHOD_VEC (type) = new_vec;
895 }
896
897 if (DECL_CONV_FN_P (method) && !TREE_VEC_ELT (method_vec, slot))
898 {
899 /* Type conversion operators have to come before ordinary
900 methods; add_conversions depends on this to speed up
901 looking for conversion operators. So, if necessary, we
902 slide some of the vector elements up. In theory, this
903 makes this algorithm O(N^2) but we don't expect many
904 conversion operators. */
905 if (template_conv_p)
906 slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
907 else
908 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; slot < len; ++slot)
909 {
910 tree fn = TREE_VEC_ELT (method_vec, slot);
911
912 if (!fn)
913 /* There are no more entries in the vector, so we
914 can insert the new conversion operator here. */
915 break;
916
917 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
918 /* We can insert the new function right at the
919 SLOTth position. */
920 break;
921 }
922
923 if (template_conv_p && have_template_convs_p)
924 /*OK*/;
925 else if (!TREE_VEC_ELT (method_vec, slot))
926 /* There is nothing in the Ith slot, so we can avoid
927 moving anything. */
928 ;
929 else
930 {
931 /* We know the last slot in the vector is empty
932 because we know that at this point there's room
933 for a new function. */
934 memmove (&TREE_VEC_ELT (method_vec, slot + 1),
935 &TREE_VEC_ELT (method_vec, slot),
936 (len - slot - 1) * sizeof (tree));
937 TREE_VEC_ELT (method_vec, slot) = NULL_TREE;
938 }
939 }
940 }
941
942 if (processing_template_decl)
943 /* TYPE is a template class. Don't issue any errors now; wait
944 until instantiation time to complain. */
945 ;
946 else
947 {
948 tree fns;
949
950 /* Check to see if we've already got this method. */
951 for (fns = TREE_VEC_ELT (method_vec, slot);
952 fns;
953 fns = OVL_NEXT (fns))
954 {
955 tree fn = OVL_CURRENT (fns);
956 tree parms1;
957 tree parms2;
958 bool same = 1;
959
960 if (TREE_CODE (fn) != TREE_CODE (method))
961 continue;
962
963 /* [over.load] Member function declarations with the
964 same name and the same parameter types cannot be
965 overloaded if any of them is a static member
966 function declaration.
967
968 [namespace.udecl] When a using-declaration brings names
969 from a base class into a derived class scope, member
970 functions in the derived class override and/or hide member
971 functions with the same name and parameter types in a base
972 class (rather than conflicting). */
973 parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn));
974 parms2 = TYPE_ARG_TYPES (TREE_TYPE (method));
975
976 /* Compare the quals on the 'this' parm. Don't compare
977 the whole types, as used functions are treated as
978 coming from the using class in overload resolution. */
979 if (! DECL_STATIC_FUNCTION_P (fn)
980 && ! DECL_STATIC_FUNCTION_P (method)
981 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
982 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
983 same = 0;
984
985 /* For templates, the template parms must be identical. */
986 if (TREE_CODE (fn) == TEMPLATE_DECL
987 && !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
988 DECL_TEMPLATE_PARMS (method)))
989 same = 0;
990
991 if (! DECL_STATIC_FUNCTION_P (fn))
992 parms1 = TREE_CHAIN (parms1);
993 if (! DECL_STATIC_FUNCTION_P (method))
994 parms2 = TREE_CHAIN (parms2);
995
996 if (same && compparms (parms1, parms2)
997 && (!DECL_CONV_FN_P (fn)
998 || same_type_p (TREE_TYPE (TREE_TYPE (fn)),
999 TREE_TYPE (TREE_TYPE (method)))))
1000 {
1001 if (using && DECL_CONTEXT (fn) == type)
1002 /* Defer to the local function. */
1003 return;
1004 else
1005 {
1006 cp_error_at ("`%#D' and `%#D' cannot be overloaded",
1007 method, fn);
1008
1009 /* We don't call duplicate_decls here to merge
1010 the declarations because that will confuse
1011 things if the methods have inline
1012 definitions. In particular, we will crash
1013 while processing the definitions. */
1014 return;
1015 }
1016 }
1017 }
1018 }
1019
1020 /* Actually insert the new method. */
1021 TREE_VEC_ELT (method_vec, slot)
1022 = build_overload (method, TREE_VEC_ELT (method_vec, slot));
1023
1024 /* Add the new binding. */
1025 if (!DECL_CONSTRUCTOR_P (method)
1026 && !DECL_DESTRUCTOR_P (method))
1027 push_class_level_binding (DECL_NAME (method),
1028 TREE_VEC_ELT (method_vec, slot));
1029 }
1030
1031 /* Subroutines of finish_struct. */
1032
1033 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1034 legit, otherwise return 0. */
1035
1036 static int
1037 alter_access (tree t, tree fdecl, tree access)
1038 {
1039 tree elem;
1040
1041 if (!DECL_LANG_SPECIFIC (fdecl))
1042 retrofit_lang_decl (fdecl);
1043
1044 my_friendly_assert (!DECL_DISCRIMINATOR_P (fdecl), 20030624);
1045
1046 elem = purpose_member (t, DECL_ACCESS (fdecl));
1047 if (elem)
1048 {
1049 if (TREE_VALUE (elem) != access)
1050 {
1051 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1052 cp_error_at ("conflicting access specifications for method `%D', ignored", TREE_TYPE (fdecl));
1053 else
1054 error ("conflicting access specifications for field `%s', ignored",
1055 IDENTIFIER_POINTER (DECL_NAME (fdecl)));
1056 }
1057 else
1058 {
1059 /* They're changing the access to the same thing they changed
1060 it to before. That's OK. */
1061 ;
1062 }
1063 }
1064 else
1065 {
1066 perform_or_defer_access_check (TYPE_BINFO (t), fdecl);
1067 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1068 return 1;
1069 }
1070 return 0;
1071 }
1072
1073 /* Process the USING_DECL, which is a member of T. */
1074
1075 static void
1076 handle_using_decl (tree using_decl, tree t)
1077 {
1078 tree ctype = DECL_INITIAL (using_decl);
1079 tree name = DECL_NAME (using_decl);
1080 tree access
1081 = TREE_PRIVATE (using_decl) ? access_private_node
1082 : TREE_PROTECTED (using_decl) ? access_protected_node
1083 : access_public_node;
1084 tree fdecl, binfo;
1085 tree flist = NULL_TREE;
1086 tree old_value;
1087
1088 if (ctype == error_mark_node)
1089 return;
1090
1091 binfo = lookup_base (t, ctype, ba_any, NULL);
1092 if (! binfo)
1093 {
1094 location_t saved_loc = input_location;
1095
1096 input_location = DECL_SOURCE_LOCATION (using_decl);
1097 error_not_base_type (ctype, t);
1098 input_location = saved_loc;
1099 return;
1100 }
1101
1102 if (constructor_name_p (name, ctype))
1103 {
1104 cp_error_at ("`%D' names constructor", using_decl);
1105 return;
1106 }
1107 if (constructor_name_p (name, t))
1108 {
1109 cp_error_at ("`%D' invalid in `%T'", using_decl, t);
1110 return;
1111 }
1112
1113 fdecl = lookup_member (binfo, name, 0, false);
1114
1115 if (!fdecl)
1116 {
1117 cp_error_at ("no members matching `%D' in `%#T'", using_decl, ctype);
1118 return;
1119 }
1120
1121 if (BASELINK_P (fdecl))
1122 /* Ignore base type this came from. */
1123 fdecl = BASELINK_FUNCTIONS (fdecl);
1124
1125 old_value = IDENTIFIER_CLASS_VALUE (name);
1126 if (old_value)
1127 {
1128 if (is_overloaded_fn (old_value))
1129 old_value = OVL_CURRENT (old_value);
1130
1131 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1132 /* OK */;
1133 else
1134 old_value = NULL_TREE;
1135 }
1136
1137 if (is_overloaded_fn (fdecl))
1138 flist = fdecl;
1139
1140 if (! old_value)
1141 ;
1142 else if (is_overloaded_fn (old_value))
1143 {
1144 if (flist)
1145 /* It's OK to use functions from a base when there are functions with
1146 the same name already present in the current class. */;
1147 else
1148 {
1149 cp_error_at ("`%D' invalid in `%#T'", using_decl, t);
1150 cp_error_at (" because of local method `%#D' with same name",
1151 OVL_CURRENT (old_value));
1152 return;
1153 }
1154 }
1155 else if (!DECL_ARTIFICIAL (old_value))
1156 {
1157 cp_error_at ("`%D' invalid in `%#T'", using_decl, t);
1158 cp_error_at (" because of local member `%#D' with same name", old_value);
1159 return;
1160 }
1161
1162 /* Make type T see field decl FDECL with access ACCESS. */
1163 if (flist)
1164 for (; flist; flist = OVL_NEXT (flist))
1165 {
1166 add_method (t, OVL_CURRENT (flist), /*error_p=*/0);
1167 alter_access (t, OVL_CURRENT (flist), access);
1168 }
1169 else
1170 alter_access (t, fdecl, access);
1171 }
1172 \f
1173 /* Run through the base classes of T, updating
1174 CANT_HAVE_DEFAULT_CTOR_P, CANT_HAVE_CONST_CTOR_P, and
1175 NO_CONST_ASN_REF_P. Also set flag bits in T based on properties of
1176 the bases. */
1177
1178 static void
1179 check_bases (tree t,
1180 int* cant_have_default_ctor_p,
1181 int* cant_have_const_ctor_p,
1182 int* no_const_asn_ref_p)
1183 {
1184 int n_baseclasses;
1185 int i;
1186 int seen_non_virtual_nearly_empty_base_p;
1187 tree binfos;
1188
1189 binfos = TYPE_BINFO_BASETYPES (t);
1190 n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
1191 seen_non_virtual_nearly_empty_base_p = 0;
1192
1193 /* An aggregate cannot have baseclasses. */
1194 CLASSTYPE_NON_AGGREGATE (t) |= (n_baseclasses != 0);
1195
1196 for (i = 0; i < n_baseclasses; ++i)
1197 {
1198 tree base_binfo;
1199 tree basetype;
1200
1201 /* Figure out what base we're looking at. */
1202 base_binfo = TREE_VEC_ELT (binfos, i);
1203 basetype = TREE_TYPE (base_binfo);
1204
1205 /* If the type of basetype is incomplete, then we already
1206 complained about that fact (and we should have fixed it up as
1207 well). */
1208 if (!COMPLETE_TYPE_P (basetype))
1209 {
1210 int j;
1211 /* The base type is of incomplete type. It is
1212 probably best to pretend that it does not
1213 exist. */
1214 if (i == n_baseclasses-1)
1215 TREE_VEC_ELT (binfos, i) = NULL_TREE;
1216 TREE_VEC_LENGTH (binfos) -= 1;
1217 n_baseclasses -= 1;
1218 for (j = i; j+1 < n_baseclasses; j++)
1219 TREE_VEC_ELT (binfos, j) = TREE_VEC_ELT (binfos, j+1);
1220 continue;
1221 }
1222
1223 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1224 here because the case of virtual functions but non-virtual
1225 dtor is handled in finish_struct_1. */
1226 if (warn_ecpp && ! TYPE_POLYMORPHIC_P (basetype)
1227 && TYPE_HAS_DESTRUCTOR (basetype))
1228 warning ("base class `%#T' has a non-virtual destructor",
1229 basetype);
1230
1231 /* If the base class doesn't have copy constructors or
1232 assignment operators that take const references, then the
1233 derived class cannot have such a member automatically
1234 generated. */
1235 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1236 *cant_have_const_ctor_p = 1;
1237 if (TYPE_HAS_ASSIGN_REF (basetype)
1238 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1239 *no_const_asn_ref_p = 1;
1240 /* Similarly, if the base class doesn't have a default
1241 constructor, then the derived class won't have an
1242 automatically generated default constructor. */
1243 if (TYPE_HAS_CONSTRUCTOR (basetype)
1244 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype))
1245 {
1246 *cant_have_default_ctor_p = 1;
1247 if (! TYPE_HAS_CONSTRUCTOR (t))
1248 pedwarn ("base `%T' with only non-default constructor in class without a constructor",
1249 basetype);
1250 }
1251
1252 if (TREE_VIA_VIRTUAL (base_binfo))
1253 /* A virtual base does not effect nearly emptiness. */
1254 ;
1255 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1256 {
1257 if (seen_non_virtual_nearly_empty_base_p)
1258 /* And if there is more than one nearly empty base, then the
1259 derived class is not nearly empty either. */
1260 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1261 else
1262 /* Remember we've seen one. */
1263 seen_non_virtual_nearly_empty_base_p = 1;
1264 }
1265 else if (!is_empty_class (basetype))
1266 /* If the base class is not empty or nearly empty, then this
1267 class cannot be nearly empty. */
1268 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1269
1270 /* A lot of properties from the bases also apply to the derived
1271 class. */
1272 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1273 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1274 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1275 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1276 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1277 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1278 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1279 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1280 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1281 }
1282 }
1283
1284 /* Set BINFO_PRIMARY_BASE_OF for all binfos in the hierarchy
1285 dominated by TYPE that are primary bases. */
1286
1287 static void
1288 mark_primary_bases (tree type)
1289 {
1290 tree binfo;
1291
1292 /* Walk the bases in inheritance graph order. */
1293 for (binfo = TYPE_BINFO (type); binfo; binfo = TREE_CHAIN (binfo))
1294 {
1295 tree base_binfo = get_primary_binfo (binfo);
1296
1297 if (!base_binfo)
1298 /* Not a dynamic base. */;
1299 else if (BINFO_PRIMARY_P (base_binfo))
1300 BINFO_LOST_PRIMARY_P (binfo) = 1;
1301 else
1302 {
1303 BINFO_PRIMARY_BASE_OF (base_binfo) = binfo;
1304 /* A virtual binfo might have been copied from within
1305 another hierarchy. As we're about to use it as a primary
1306 base, make sure the offsets match. */
1307 if (TREE_VIA_VIRTUAL (base_binfo))
1308 {
1309 tree delta = size_diffop (convert (ssizetype,
1310 BINFO_OFFSET (binfo)),
1311 convert (ssizetype,
1312 BINFO_OFFSET (base_binfo)));
1313
1314 propagate_binfo_offsets (base_binfo, delta);
1315 }
1316 }
1317 }
1318 }
1319
1320 /* Make the BINFO the primary base of T. */
1321
1322 static void
1323 set_primary_base (tree t, tree binfo)
1324 {
1325 tree basetype;
1326
1327 CLASSTYPE_PRIMARY_BINFO (t) = binfo;
1328 basetype = BINFO_TYPE (binfo);
1329 TYPE_BINFO_VTABLE (t) = TYPE_BINFO_VTABLE (basetype);
1330 TYPE_BINFO_VIRTUALS (t) = TYPE_BINFO_VIRTUALS (basetype);
1331 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1332 }
1333
1334 /* Determine the primary class for T. */
1335
1336 static void
1337 determine_primary_base (tree t)
1338 {
1339 int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
1340 tree vbases;
1341 tree type_binfo;
1342
1343 /* If there are no baseclasses, there is certainly no primary base. */
1344 if (n_baseclasses == 0)
1345 return;
1346
1347 type_binfo = TYPE_BINFO (t);
1348
1349 for (i = 0; i < n_baseclasses; i++)
1350 {
1351 tree base_binfo = BINFO_BASETYPE (type_binfo, i);
1352 tree basetype = BINFO_TYPE (base_binfo);
1353
1354 if (TYPE_CONTAINS_VPTR_P (basetype))
1355 {
1356 /* We prefer a non-virtual base, although a virtual one will
1357 do. */
1358 if (TREE_VIA_VIRTUAL (base_binfo))
1359 continue;
1360
1361 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
1362 {
1363 set_primary_base (t, base_binfo);
1364 CLASSTYPE_VFIELDS (t) = copy_list (CLASSTYPE_VFIELDS (basetype));
1365 }
1366 else
1367 {
1368 tree vfields;
1369
1370 /* Only add unique vfields, and flatten them out as we go. */
1371 for (vfields = CLASSTYPE_VFIELDS (basetype);
1372 vfields;
1373 vfields = TREE_CHAIN (vfields))
1374 if (VF_BINFO_VALUE (vfields) == NULL_TREE
1375 || ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields)))
1376 CLASSTYPE_VFIELDS (t)
1377 = tree_cons (base_binfo,
1378 VF_BASETYPE_VALUE (vfields),
1379 CLASSTYPE_VFIELDS (t));
1380 }
1381 }
1382 }
1383
1384 if (!TYPE_VFIELD (t))
1385 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
1386
1387 /* Find the indirect primary bases - those virtual bases which are primary
1388 bases of something else in this hierarchy. */
1389 for (vbases = CLASSTYPE_VBASECLASSES (t);
1390 vbases;
1391 vbases = TREE_CHAIN (vbases))
1392 {
1393 tree vbase_binfo = TREE_VALUE (vbases);
1394
1395 /* See if this virtual base is an indirect primary base. To be so,
1396 it must be a primary base within the hierarchy of one of our
1397 direct bases. */
1398 for (i = 0; i < n_baseclasses; ++i)
1399 {
1400 tree basetype = TYPE_BINFO_BASETYPE (t, i);
1401 tree v;
1402
1403 for (v = CLASSTYPE_VBASECLASSES (basetype);
1404 v;
1405 v = TREE_CHAIN (v))
1406 {
1407 tree base_vbase = TREE_VALUE (v);
1408
1409 if (BINFO_PRIMARY_P (base_vbase)
1410 && same_type_p (BINFO_TYPE (base_vbase),
1411 BINFO_TYPE (vbase_binfo)))
1412 {
1413 BINFO_INDIRECT_PRIMARY_P (vbase_binfo) = 1;
1414 break;
1415 }
1416 }
1417
1418 /* If we've discovered that this virtual base is an indirect
1419 primary base, then we can move on to the next virtual
1420 base. */
1421 if (BINFO_INDIRECT_PRIMARY_P (vbase_binfo))
1422 break;
1423 }
1424 }
1425
1426 /* A "nearly-empty" virtual base class can be the primary base
1427 class, if no non-virtual polymorphic base can be found. */
1428 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
1429 {
1430 /* If not NULL, this is the best primary base candidate we have
1431 found so far. */
1432 tree candidate = NULL_TREE;
1433 tree base_binfo;
1434
1435 /* Loop over the baseclasses. */
1436 for (base_binfo = TYPE_BINFO (t);
1437 base_binfo;
1438 base_binfo = TREE_CHAIN (base_binfo))
1439 {
1440 tree basetype = BINFO_TYPE (base_binfo);
1441
1442 if (TREE_VIA_VIRTUAL (base_binfo)
1443 && CLASSTYPE_NEARLY_EMPTY_P (basetype))
1444 {
1445 /* If this is not an indirect primary base, then it's
1446 definitely our primary base. */
1447 if (!BINFO_INDIRECT_PRIMARY_P (base_binfo))
1448 {
1449 candidate = base_binfo;
1450 break;
1451 }
1452
1453 /* If this is an indirect primary base, it still could be
1454 our primary base -- unless we later find there's another
1455 nearly-empty virtual base that isn't an indirect
1456 primary base. */
1457 if (!candidate)
1458 candidate = base_binfo;
1459 }
1460 }
1461
1462 /* If we've got a primary base, use it. */
1463 if (candidate)
1464 {
1465 set_primary_base (t, candidate);
1466 CLASSTYPE_VFIELDS (t)
1467 = copy_list (CLASSTYPE_VFIELDS (BINFO_TYPE (candidate)));
1468 }
1469 }
1470
1471 /* Mark the primary base classes at this point. */
1472 mark_primary_bases (t);
1473 }
1474 \f
1475 /* Set memoizing fields and bits of T (and its variants) for later
1476 use. */
1477
1478 static void
1479 finish_struct_bits (tree t)
1480 {
1481 int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
1482
1483 /* Fix up variants (if any). */
1484 tree variants = TYPE_NEXT_VARIANT (t);
1485 while (variants)
1486 {
1487 /* These fields are in the _TYPE part of the node, not in
1488 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1489 TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
1490 TYPE_HAS_DESTRUCTOR (variants) = TYPE_HAS_DESTRUCTOR (t);
1491 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1492 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1493 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1494
1495 TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (variants)
1496 = TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (t);
1497 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1498 TYPE_USES_VIRTUAL_BASECLASSES (variants) = TYPE_USES_VIRTUAL_BASECLASSES (t);
1499 /* Copy whatever these are holding today. */
1500 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1501 TYPE_METHODS (variants) = TYPE_METHODS (t);
1502 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1503 TYPE_SIZE (variants) = TYPE_SIZE (t);
1504 TYPE_SIZE_UNIT (variants) = TYPE_SIZE_UNIT (t);
1505 variants = TYPE_NEXT_VARIANT (variants);
1506 }
1507
1508 if (n_baseclasses && TYPE_POLYMORPHIC_P (t))
1509 /* For a class w/o baseclasses, `finish_struct' has set
1510 CLASS_TYPE_ABSTRACT_VIRTUALS correctly (by
1511 definition). Similarly for a class whose base classes do not
1512 have vtables. When neither of these is true, we might have
1513 removed abstract virtuals (by providing a definition), added
1514 some (by declaring new ones), or redeclared ones from a base
1515 class. We need to recalculate what's really an abstract virtual
1516 at this point (by looking in the vtables). */
1517 get_pure_virtuals (t);
1518
1519 if (n_baseclasses)
1520 {
1521 /* Notice whether this class has type conversion functions defined. */
1522 tree binfo = TYPE_BINFO (t);
1523 tree binfos = BINFO_BASETYPES (binfo);
1524 tree basetype;
1525
1526 for (i = n_baseclasses-1; i >= 0; i--)
1527 {
1528 basetype = BINFO_TYPE (TREE_VEC_ELT (binfos, i));
1529
1530 TYPE_HAS_CONVERSION (t) |= TYPE_HAS_CONVERSION (basetype);
1531 }
1532 }
1533
1534 /* If this type has a copy constructor or a destructor, force its mode to
1535 be BLKmode, and force its TREE_ADDRESSABLE bit to be nonzero. This
1536 will cause it to be passed by invisible reference and prevent it from
1537 being returned in a register. */
1538 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1539 {
1540 tree variants;
1541 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1542 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1543 {
1544 TYPE_MODE (variants) = BLKmode;
1545 TREE_ADDRESSABLE (variants) = 1;
1546 }
1547 }
1548 }
1549
1550 /* Issue warnings about T having private constructors, but no friends,
1551 and so forth.
1552
1553 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1554 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1555 non-private static member functions. */
1556
1557 static void
1558 maybe_warn_about_overly_private_class (tree t)
1559 {
1560 int has_member_fn = 0;
1561 int has_nonprivate_method = 0;
1562 tree fn;
1563
1564 if (!warn_ctor_dtor_privacy
1565 /* If the class has friends, those entities might create and
1566 access instances, so we should not warn. */
1567 || (CLASSTYPE_FRIEND_CLASSES (t)
1568 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1569 /* We will have warned when the template was declared; there's
1570 no need to warn on every instantiation. */
1571 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1572 /* There's no reason to even consider warning about this
1573 class. */
1574 return;
1575
1576 /* We only issue one warning, if more than one applies, because
1577 otherwise, on code like:
1578
1579 class A {
1580 // Oops - forgot `public:'
1581 A();
1582 A(const A&);
1583 ~A();
1584 };
1585
1586 we warn several times about essentially the same problem. */
1587
1588 /* Check to see if all (non-constructor, non-destructor) member
1589 functions are private. (Since there are no friends or
1590 non-private statics, we can't ever call any of the private member
1591 functions.) */
1592 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1593 /* We're not interested in compiler-generated methods; they don't
1594 provide any way to call private members. */
1595 if (!DECL_ARTIFICIAL (fn))
1596 {
1597 if (!TREE_PRIVATE (fn))
1598 {
1599 if (DECL_STATIC_FUNCTION_P (fn))
1600 /* A non-private static member function is just like a
1601 friend; it can create and invoke private member
1602 functions, and be accessed without a class
1603 instance. */
1604 return;
1605
1606 has_nonprivate_method = 1;
1607 /* Keep searching for a static member function. */
1608 }
1609 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1610 has_member_fn = 1;
1611 }
1612
1613 if (!has_nonprivate_method && has_member_fn)
1614 {
1615 /* There are no non-private methods, and there's at least one
1616 private member function that isn't a constructor or
1617 destructor. (If all the private members are
1618 constructors/destructors we want to use the code below that
1619 issues error messages specifically referring to
1620 constructors/destructors.) */
1621 int i;
1622 tree binfo = TYPE_BINFO (t);
1623
1624 for (i = 0; i < BINFO_N_BASETYPES (binfo); i++)
1625 if (BINFO_BASEACCESS (binfo, i) != access_private_node)
1626 {
1627 has_nonprivate_method = 1;
1628 break;
1629 }
1630 if (!has_nonprivate_method)
1631 {
1632 warning ("all member functions in class `%T' are private", t);
1633 return;
1634 }
1635 }
1636
1637 /* Even if some of the member functions are non-private, the class
1638 won't be useful for much if all the constructors or destructors
1639 are private: such an object can never be created or destroyed. */
1640 if (TYPE_HAS_DESTRUCTOR (t)
1641 && TREE_PRIVATE (CLASSTYPE_DESTRUCTORS (t)))
1642 {
1643 warning ("`%#T' only defines a private destructor and has no friends",
1644 t);
1645 return;
1646 }
1647
1648 if (TYPE_HAS_CONSTRUCTOR (t))
1649 {
1650 int nonprivate_ctor = 0;
1651
1652 /* If a non-template class does not define a copy
1653 constructor, one is defined for it, enabling it to avoid
1654 this warning. For a template class, this does not
1655 happen, and so we would normally get a warning on:
1656
1657 template <class T> class C { private: C(); };
1658
1659 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1660 complete non-template or fully instantiated classes have this
1661 flag set. */
1662 if (!TYPE_HAS_INIT_REF (t))
1663 nonprivate_ctor = 1;
1664 else
1665 for (fn = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (t), 0);
1666 fn;
1667 fn = OVL_NEXT (fn))
1668 {
1669 tree ctor = OVL_CURRENT (fn);
1670 /* Ideally, we wouldn't count copy constructors (or, in
1671 fact, any constructor that takes an argument of the
1672 class type as a parameter) because such things cannot
1673 be used to construct an instance of the class unless
1674 you already have one. But, for now at least, we're
1675 more generous. */
1676 if (! TREE_PRIVATE (ctor))
1677 {
1678 nonprivate_ctor = 1;
1679 break;
1680 }
1681 }
1682
1683 if (nonprivate_ctor == 0)
1684 {
1685 warning ("`%#T' only defines private constructors and has no friends",
1686 t);
1687 return;
1688 }
1689 }
1690 }
1691
1692 static struct {
1693 gt_pointer_operator new_value;
1694 void *cookie;
1695 } resort_data;
1696
1697 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1698
1699 static int
1700 method_name_cmp (const void* m1_p, const void* m2_p)
1701 {
1702 const tree *const m1 = m1_p;
1703 const tree *const m2 = m2_p;
1704
1705 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1706 return 0;
1707 if (*m1 == NULL_TREE)
1708 return -1;
1709 if (*m2 == NULL_TREE)
1710 return 1;
1711 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1712 return -1;
1713 return 1;
1714 }
1715
1716 /* This routine compares two fields like method_name_cmp but using the
1717 pointer operator in resort_field_decl_data. */
1718
1719 static int
1720 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1721 {
1722 const tree *const m1 = m1_p;
1723 const tree *const m2 = m2_p;
1724 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1725 return 0;
1726 if (*m1 == NULL_TREE)
1727 return -1;
1728 if (*m2 == NULL_TREE)
1729 return 1;
1730 {
1731 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1732 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1733 resort_data.new_value (&d1, resort_data.cookie);
1734 resort_data.new_value (&d2, resort_data.cookie);
1735 if (d1 < d2)
1736 return -1;
1737 }
1738 return 1;
1739 }
1740
1741 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1742
1743 void
1744 resort_type_method_vec (void* obj,
1745 void* orig_obj ATTRIBUTE_UNUSED ,
1746 gt_pointer_operator new_value,
1747 void* cookie)
1748 {
1749 tree method_vec = obj;
1750 int len = TREE_VEC_LENGTH (method_vec);
1751 int slot;
1752
1753 /* The type conversion ops have to live at the front of the vec, so we
1754 can't sort them. */
1755 for (slot = 2; slot < len; ++slot)
1756 {
1757 tree fn = TREE_VEC_ELT (method_vec, slot);
1758
1759 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1760 break;
1761 }
1762 if (len - slot > 1)
1763 {
1764 resort_data.new_value = new_value;
1765 resort_data.cookie = cookie;
1766 qsort (&TREE_VEC_ELT (method_vec, slot), len - slot, sizeof (tree),
1767 resort_method_name_cmp);
1768 }
1769 }
1770
1771 /* Warn about duplicate methods in fn_fields. Also compact method
1772 lists so that lookup can be made faster.
1773
1774 Data Structure: List of method lists. The outer list is a
1775 TREE_LIST, whose TREE_PURPOSE field is the field name and the
1776 TREE_VALUE is the DECL_CHAIN of the FUNCTION_DECLs. TREE_CHAIN
1777 links the entire list of methods for TYPE_METHODS. Friends are
1778 chained in the same way as member functions (? TREE_CHAIN or
1779 DECL_CHAIN), but they live in the TREE_TYPE field of the outer
1780 list. That allows them to be quickly deleted, and requires no
1781 extra storage.
1782
1783 Sort methods that are not special (i.e., constructors, destructors,
1784 and type conversion operators) so that we can find them faster in
1785 search. */
1786
1787 static void
1788 finish_struct_methods (tree t)
1789 {
1790 tree fn_fields;
1791 tree method_vec;
1792 int slot, len;
1793
1794 if (!TYPE_METHODS (t))
1795 {
1796 /* Clear these for safety; perhaps some parsing error could set
1797 these incorrectly. */
1798 TYPE_HAS_CONSTRUCTOR (t) = 0;
1799 TYPE_HAS_DESTRUCTOR (t) = 0;
1800 CLASSTYPE_METHOD_VEC (t) = NULL_TREE;
1801 return;
1802 }
1803
1804 method_vec = CLASSTYPE_METHOD_VEC (t);
1805 my_friendly_assert (method_vec != NULL_TREE, 19991215);
1806 len = TREE_VEC_LENGTH (method_vec);
1807
1808 /* First fill in entry 0 with the constructors, entry 1 with destructors,
1809 and the next few with type conversion operators (if any). */
1810 for (fn_fields = TYPE_METHODS (t); fn_fields;
1811 fn_fields = TREE_CHAIN (fn_fields))
1812 /* Clear out this flag. */
1813 DECL_IN_AGGR_P (fn_fields) = 0;
1814
1815 if (TYPE_HAS_DESTRUCTOR (t) && !CLASSTYPE_DESTRUCTORS (t))
1816 /* We thought there was a destructor, but there wasn't. Some
1817 parse errors cause this anomalous situation. */
1818 TYPE_HAS_DESTRUCTOR (t) = 0;
1819
1820 /* Issue warnings about private constructors and such. If there are
1821 no methods, then some public defaults are generated. */
1822 maybe_warn_about_overly_private_class (t);
1823
1824 /* Now sort the methods. */
1825 while (len > 2 && TREE_VEC_ELT (method_vec, len-1) == NULL_TREE)
1826 len--;
1827 TREE_VEC_LENGTH (method_vec) = len;
1828
1829 /* The type conversion ops have to live at the front of the vec, so we
1830 can't sort them. */
1831 for (slot = 2; slot < len; ++slot)
1832 {
1833 tree fn = TREE_VEC_ELT (method_vec, slot);
1834
1835 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1836 break;
1837 }
1838 if (len - slot > 1)
1839 qsort (&TREE_VEC_ELT (method_vec, slot), len-slot, sizeof (tree),
1840 method_name_cmp);
1841 }
1842
1843 /* Make BINFO's vtable have N entries, including RTTI entries,
1844 vbase and vcall offsets, etc. Set its type and call the backend
1845 to lay it out. */
1846
1847 static void
1848 layout_vtable_decl (tree binfo, int n)
1849 {
1850 tree atype;
1851 tree vtable;
1852
1853 atype = build_cplus_array_type (vtable_entry_type,
1854 build_index_type (size_int (n - 1)));
1855 layout_type (atype);
1856
1857 /* We may have to grow the vtable. */
1858 vtable = get_vtbl_decl_for_binfo (binfo);
1859 if (!same_type_p (TREE_TYPE (vtable), atype))
1860 {
1861 TREE_TYPE (vtable) = atype;
1862 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1863 layout_decl (vtable, 0);
1864 }
1865 }
1866
1867 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1868 have the same signature. */
1869
1870 int
1871 same_signature_p (tree fndecl, tree base_fndecl)
1872 {
1873 /* One destructor overrides another if they are the same kind of
1874 destructor. */
1875 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1876 && special_function_p (base_fndecl) == special_function_p (fndecl))
1877 return 1;
1878 /* But a non-destructor never overrides a destructor, nor vice
1879 versa, nor do different kinds of destructors override
1880 one-another. For example, a complete object destructor does not
1881 override a deleting destructor. */
1882 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1883 return 0;
1884
1885 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1886 || (DECL_CONV_FN_P (fndecl)
1887 && DECL_CONV_FN_P (base_fndecl)
1888 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1889 DECL_CONV_FN_TYPE (base_fndecl))))
1890 {
1891 tree types, base_types;
1892 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1893 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1894 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1895 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1896 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1897 return 1;
1898 }
1899 return 0;
1900 }
1901
1902 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1903 subobject. */
1904
1905 static bool
1906 base_derived_from (tree derived, tree base)
1907 {
1908 tree probe;
1909
1910 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1911 {
1912 if (probe == derived)
1913 return true;
1914 else if (TREE_VIA_VIRTUAL (probe))
1915 /* If we meet a virtual base, we can't follow the inheritance
1916 any more. See if the complete type of DERIVED contains
1917 such a virtual base. */
1918 return purpose_member (BINFO_TYPE (probe),
1919 CLASSTYPE_VBASECLASSES (BINFO_TYPE (derived)))
1920 != NULL_TREE;
1921 }
1922 return false;
1923 }
1924
1925 typedef struct find_final_overrider_data_s {
1926 /* The function for which we are trying to find a final overrider. */
1927 tree fn;
1928 /* The base class in which the function was declared. */
1929 tree declaring_base;
1930 /* The most derived class in the hierarchy. */
1931 tree most_derived_type;
1932 /* The candidate overriders. */
1933 tree candidates;
1934 /* Binfos which inherited virtually on the current path. */
1935 tree vpath;
1936 } find_final_overrider_data;
1937
1938 /* Called from find_final_overrider via dfs_walk. */
1939
1940 static tree
1941 dfs_find_final_overrider (tree binfo, void* data)
1942 {
1943 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1944
1945 if (binfo == ffod->declaring_base)
1946 {
1947 /* We've found a path to the declaring base. Walk the path from
1948 derived to base, looking for an overrider for FN. */
1949 tree path, probe, vpath;
1950
1951 /* Build the path, using the inheritance chain and record of
1952 virtual inheritance. */
1953 for (path = NULL_TREE, probe = binfo, vpath = ffod->vpath;;)
1954 {
1955 path = tree_cons (NULL_TREE, probe, path);
1956 if (same_type_p (BINFO_TYPE (probe), ffod->most_derived_type))
1957 break;
1958 if (TREE_VIA_VIRTUAL (probe))
1959 {
1960 probe = TREE_VALUE (vpath);
1961 vpath = TREE_CHAIN (vpath);
1962 }
1963 else
1964 probe = BINFO_INHERITANCE_CHAIN (probe);
1965 }
1966 /* Now walk path, looking for overrides. */
1967 for (; path; path = TREE_CHAIN (path))
1968 {
1969 tree method = look_for_overrides_here
1970 (BINFO_TYPE (TREE_VALUE (path)), ffod->fn);
1971
1972 if (method)
1973 {
1974 tree *candidate = &ffod->candidates;
1975 path = TREE_VALUE (path);
1976
1977 /* Remove any candidates overridden by this new function. */
1978 while (*candidate)
1979 {
1980 /* If *CANDIDATE overrides METHOD, then METHOD
1981 cannot override anything else on the list. */
1982 if (base_derived_from (TREE_VALUE (*candidate), path))
1983 return NULL_TREE;
1984 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1985 if (base_derived_from (path, TREE_VALUE (*candidate)))
1986 *candidate = TREE_CHAIN (*candidate);
1987 else
1988 candidate = &TREE_CHAIN (*candidate);
1989 }
1990
1991 /* Add the new function. */
1992 ffod->candidates = tree_cons (method, path, ffod->candidates);
1993 break;
1994 }
1995 }
1996 }
1997
1998 return NULL_TREE;
1999 }
2000
2001 static tree
2002 dfs_find_final_overrider_q (tree derived, int ix, void *data)
2003 {
2004 tree binfo = BINFO_BASETYPE (derived, ix);
2005 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2006
2007 if (TREE_VIA_VIRTUAL (binfo))
2008 ffod->vpath = tree_cons (NULL_TREE, derived, ffod->vpath);
2009
2010 return binfo;
2011 }
2012
2013 static tree
2014 dfs_find_final_overrider_post (tree binfo, void *data)
2015 {
2016 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2017
2018 if (TREE_VIA_VIRTUAL (binfo) && TREE_CHAIN (ffod->vpath))
2019 ffod->vpath = TREE_CHAIN (ffod->vpath);
2020
2021 return NULL_TREE;
2022 }
2023
2024 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2025 FN and whose TREE_VALUE is the binfo for the base where the
2026 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2027 DERIVED) is the base object in which FN is declared. */
2028
2029 static tree
2030 find_final_overrider (tree derived, tree binfo, tree fn)
2031 {
2032 find_final_overrider_data ffod;
2033
2034 /* Getting this right is a little tricky. This is valid:
2035
2036 struct S { virtual void f (); };
2037 struct T { virtual void f (); };
2038 struct U : public S, public T { };
2039
2040 even though calling `f' in `U' is ambiguous. But,
2041
2042 struct R { virtual void f(); };
2043 struct S : virtual public R { virtual void f (); };
2044 struct T : virtual public R { virtual void f (); };
2045 struct U : public S, public T { };
2046
2047 is not -- there's no way to decide whether to put `S::f' or
2048 `T::f' in the vtable for `R'.
2049
2050 The solution is to look at all paths to BINFO. If we find
2051 different overriders along any two, then there is a problem. */
2052 if (DECL_THUNK_P (fn))
2053 fn = THUNK_TARGET (fn);
2054
2055 ffod.fn = fn;
2056 ffod.declaring_base = binfo;
2057 ffod.most_derived_type = BINFO_TYPE (derived);
2058 ffod.candidates = NULL_TREE;
2059 ffod.vpath = NULL_TREE;
2060
2061 dfs_walk_real (derived,
2062 dfs_find_final_overrider,
2063 dfs_find_final_overrider_post,
2064 dfs_find_final_overrider_q,
2065 &ffod);
2066
2067 /* If there was no winner, issue an error message. */
2068 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2069 {
2070 error ("no unique final overrider for `%D' in `%T'", fn,
2071 BINFO_TYPE (derived));
2072 return error_mark_node;
2073 }
2074
2075 return ffod.candidates;
2076 }
2077
2078 /* Return the index of the vcall offset for FN when TYPE is used as a
2079 virtual base. */
2080
2081 static tree
2082 get_vcall_index (tree fn, tree type)
2083 {
2084 tree v;
2085
2086 for (v = CLASSTYPE_VCALL_INDICES (type); v; v = TREE_CHAIN (v))
2087 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (TREE_PURPOSE (v)))
2088 || same_signature_p (fn, TREE_PURPOSE (v)))
2089 break;
2090
2091 /* There should always be an appropriate index. */
2092 my_friendly_assert (v, 20021103);
2093
2094 return TREE_VALUE (v);
2095 }
2096
2097 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2098 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2099 corresponding position in the BINFO_VIRTUALS list. */
2100
2101 static void
2102 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2103 unsigned ix)
2104 {
2105 tree b;
2106 tree overrider;
2107 tree delta;
2108 tree virtual_base;
2109 tree first_defn;
2110 tree overrider_fn, overrider_target;
2111 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2112 tree over_return, base_return;
2113 bool lost = false;
2114
2115 /* Find the nearest primary base (possibly binfo itself) which defines
2116 this function; this is the class the caller will convert to when
2117 calling FN through BINFO. */
2118 for (b = binfo; ; b = get_primary_binfo (b))
2119 {
2120 my_friendly_assert (b, 20021227);
2121 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2122 break;
2123
2124 /* The nearest definition is from a lost primary. */
2125 if (BINFO_LOST_PRIMARY_P (b))
2126 lost = true;
2127 }
2128 first_defn = b;
2129
2130 /* Find the final overrider. */
2131 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2132 if (overrider == error_mark_node)
2133 return;
2134 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2135
2136 /* Check for adjusting covariant return types. */
2137 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2138 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2139
2140 if (POINTER_TYPE_P (over_return)
2141 && TREE_CODE (over_return) == TREE_CODE (base_return)
2142 && CLASS_TYPE_P (TREE_TYPE (over_return))
2143 && CLASS_TYPE_P (TREE_TYPE (base_return)))
2144 {
2145 /* If FN is a covariant thunk, we must figure out the adjustment
2146 to the final base FN was converting to. As OVERRIDER_TARGET might
2147 also be converting to the return type of FN, we have to
2148 combine the two conversions here. */
2149 tree fixed_offset, virtual_offset;
2150
2151 if (DECL_THUNK_P (fn))
2152 {
2153 my_friendly_assert (DECL_RESULT_THUNK_P (fn), 20031211);
2154 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2155 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2156 }
2157 else
2158 fixed_offset = virtual_offset = NULL_TREE;
2159
2160 if (virtual_offset)
2161 /* Find the equivalent binfo within the return type of the
2162 overriding function. We will want the vbase offset from
2163 there. */
2164 virtual_offset =
2165 TREE_VALUE (purpose_member
2166 (BINFO_TYPE (virtual_offset),
2167 CLASSTYPE_VBASECLASSES (TREE_TYPE (over_return))));
2168 else if (!same_type_p (TREE_TYPE (over_return),
2169 TREE_TYPE (base_return)))
2170 {
2171 /* There was no existing virtual thunk (which takes
2172 precedence). */
2173 tree thunk_binfo;
2174 base_kind kind;
2175
2176 thunk_binfo = lookup_base (TREE_TYPE (over_return),
2177 TREE_TYPE (base_return),
2178 ba_check | ba_quiet, &kind);
2179
2180 if (thunk_binfo && (kind == bk_via_virtual
2181 || !BINFO_OFFSET_ZEROP (thunk_binfo)))
2182 {
2183 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2184
2185 if (kind == bk_via_virtual)
2186 {
2187 /* We convert via virtual base. Find the virtual
2188 base and adjust the fixed offset to be from there. */
2189 while (!TREE_VIA_VIRTUAL (thunk_binfo))
2190 thunk_binfo = BINFO_INHERITANCE_CHAIN (thunk_binfo);
2191
2192 virtual_offset = thunk_binfo;
2193 offset = size_diffop
2194 (offset, convert
2195 (ssizetype, BINFO_OFFSET (virtual_offset)));
2196 }
2197 if (fixed_offset)
2198 /* There was an existing fixed offset, this must be
2199 from the base just converted to, and the base the
2200 FN was thunking to. */
2201 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2202 else
2203 fixed_offset = offset;
2204 }
2205 }
2206
2207 if (fixed_offset || virtual_offset)
2208 /* Replace the overriding function with a covariant thunk. We
2209 will emit the overriding function in its own slot as
2210 well. */
2211 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2212 fixed_offset, virtual_offset);
2213 }
2214 else
2215 my_friendly_assert (!DECL_THUNK_P (fn), 20021231);
2216
2217 /* Assume that we will produce a thunk that convert all the way to
2218 the final overrider, and not to an intermediate virtual base. */
2219 virtual_base = NULL_TREE;
2220
2221 /* See if we can convert to an intermediate virtual base first, and then
2222 use the vcall offset located there to finish the conversion. */
2223 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2224 {
2225 /* If we find the final overrider, then we can stop
2226 walking. */
2227 if (same_type_p (BINFO_TYPE (b),
2228 BINFO_TYPE (TREE_VALUE (overrider))))
2229 break;
2230
2231 /* If we find a virtual base, and we haven't yet found the
2232 overrider, then there is a virtual base between the
2233 declaring base (first_defn) and the final overrider. */
2234 if (TREE_VIA_VIRTUAL (b))
2235 {
2236 virtual_base = b;
2237 break;
2238 }
2239 }
2240
2241 if (overrider_fn != overrider_target && !virtual_base)
2242 {
2243 /* The ABI specifies that a covariant thunk includes a mangling
2244 for a this pointer adjustment. This-adjusting thunks that
2245 override a function from a virtual base have a vcall
2246 adjustment. When the virtual base in question is a primary
2247 virtual base, we know the adjustments are zero, (and in the
2248 non-covariant case, we would not use the thunk).
2249 Unfortunately we didn't notice this could happen, when
2250 designing the ABI and so never mandated that such a covariant
2251 thunk should be emitted. Because we must use the ABI mandated
2252 name, we must continue searching from the binfo where we
2253 found the most recent definition of the function, towards the
2254 primary binfo which first introduced the function into the
2255 vtable. If that enters a virtual base, we must use a vcall
2256 this-adjusting thunk. Bleah! */
2257 tree probe = first_defn;
2258
2259 while ((probe = get_primary_binfo (probe))
2260 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2261 if (TREE_VIA_VIRTUAL (probe))
2262 virtual_base = probe;
2263
2264 if (virtual_base)
2265 /* Even if we find a virtual base, the correct delta is
2266 between the overrider and the binfo we're building a vtable
2267 for. */
2268 goto virtual_covariant;
2269 }
2270
2271 /* Compute the constant adjustment to the `this' pointer. The
2272 `this' pointer, when this function is called, will point at BINFO
2273 (or one of its primary bases, which are at the same offset). */
2274 if (virtual_base)
2275 /* The `this' pointer needs to be adjusted from the declaration to
2276 the nearest virtual base. */
2277 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2278 convert (ssizetype, BINFO_OFFSET (first_defn)));
2279 else if (lost)
2280 /* If the nearest definition is in a lost primary, we don't need an
2281 entry in our vtable. Except possibly in a constructor vtable,
2282 if we happen to get our primary back. In that case, the offset
2283 will be zero, as it will be a primary base. */
2284 delta = size_zero_node;
2285 else
2286 /* The `this' pointer needs to be adjusted from pointing to
2287 BINFO to pointing at the base where the final overrider
2288 appears. */
2289 virtual_covariant:
2290 delta = size_diffop (convert (ssizetype,
2291 BINFO_OFFSET (TREE_VALUE (overrider))),
2292 convert (ssizetype, BINFO_OFFSET (binfo)));
2293
2294 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2295
2296 if (virtual_base)
2297 BV_VCALL_INDEX (*virtuals)
2298 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2299 }
2300
2301 /* Called from modify_all_vtables via dfs_walk. */
2302
2303 static tree
2304 dfs_modify_vtables (tree binfo, void* data)
2305 {
2306 if (/* There's no need to modify the vtable for a non-virtual
2307 primary base; we're not going to use that vtable anyhow.
2308 We do still need to do this for virtual primary bases, as they
2309 could become non-primary in a construction vtable. */
2310 (!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
2311 /* Similarly, a base without a vtable needs no modification. */
2312 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
2313 {
2314 tree t = (tree) data;
2315 tree virtuals;
2316 tree old_virtuals;
2317 unsigned ix;
2318
2319 make_new_vtable (t, binfo);
2320
2321 /* Now, go through each of the virtual functions in the virtual
2322 function table for BINFO. Find the final overrider, and
2323 update the BINFO_VIRTUALS list appropriately. */
2324 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2325 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2326 virtuals;
2327 ix++, virtuals = TREE_CHAIN (virtuals),
2328 old_virtuals = TREE_CHAIN (old_virtuals))
2329 update_vtable_entry_for_fn (t,
2330 binfo,
2331 BV_FN (old_virtuals),
2332 &virtuals, ix);
2333 }
2334
2335 BINFO_MARKED (binfo) = 1;
2336
2337 return NULL_TREE;
2338 }
2339
2340 /* Update all of the primary and secondary vtables for T. Create new
2341 vtables as required, and initialize their RTTI information. Each
2342 of the functions in VIRTUALS is declared in T and may override a
2343 virtual function from a base class; find and modify the appropriate
2344 entries to point to the overriding functions. Returns a list, in
2345 declaration order, of the virtual functions that are declared in T,
2346 but do not appear in the primary base class vtable, and which
2347 should therefore be appended to the end of the vtable for T. */
2348
2349 static tree
2350 modify_all_vtables (tree t, tree virtuals)
2351 {
2352 tree binfo = TYPE_BINFO (t);
2353 tree *fnsp;
2354
2355 /* Update all of the vtables. */
2356 dfs_walk (binfo, dfs_modify_vtables, unmarkedp, t);
2357 dfs_walk (binfo, dfs_unmark, markedp, t);
2358
2359 /* Add virtual functions not already in our primary vtable. These
2360 will be both those introduced by this class, and those overridden
2361 from secondary bases. It does not include virtuals merely
2362 inherited from secondary bases. */
2363 for (fnsp = &virtuals; *fnsp; )
2364 {
2365 tree fn = TREE_VALUE (*fnsp);
2366
2367 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2368 || DECL_VINDEX (fn) == error_mark_node)
2369 {
2370 /* We don't need to adjust the `this' pointer when
2371 calling this function. */
2372 BV_DELTA (*fnsp) = integer_zero_node;
2373 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2374
2375 /* This is a function not already in our vtable. Keep it. */
2376 fnsp = &TREE_CHAIN (*fnsp);
2377 }
2378 else
2379 /* We've already got an entry for this function. Skip it. */
2380 *fnsp = TREE_CHAIN (*fnsp);
2381 }
2382
2383 return virtuals;
2384 }
2385
2386 /* Get the base virtual function declarations in T that have the
2387 indicated NAME. */
2388
2389 static tree
2390 get_basefndecls (tree name, tree t)
2391 {
2392 tree methods;
2393 tree base_fndecls = NULL_TREE;
2394 int n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
2395 int i;
2396
2397 /* Find virtual functions in T with the indicated NAME. */
2398 i = lookup_fnfields_1 (t, name);
2399 if (i != -1)
2400 for (methods = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (t), i);
2401 methods;
2402 methods = OVL_NEXT (methods))
2403 {
2404 tree method = OVL_CURRENT (methods);
2405
2406 if (TREE_CODE (method) == FUNCTION_DECL
2407 && DECL_VINDEX (method))
2408 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2409 }
2410
2411 if (base_fndecls)
2412 return base_fndecls;
2413
2414 for (i = 0; i < n_baseclasses; i++)
2415 {
2416 tree basetype = TYPE_BINFO_BASETYPE (t, i);
2417 base_fndecls = chainon (get_basefndecls (name, basetype),
2418 base_fndecls);
2419 }
2420
2421 return base_fndecls;
2422 }
2423
2424 /* If this declaration supersedes the declaration of
2425 a method declared virtual in the base class, then
2426 mark this field as being virtual as well. */
2427
2428 static void
2429 check_for_override (tree decl, tree ctype)
2430 {
2431 if (TREE_CODE (decl) == TEMPLATE_DECL)
2432 /* In [temp.mem] we have:
2433
2434 A specialization of a member function template does not
2435 override a virtual function from a base class. */
2436 return;
2437 if ((DECL_DESTRUCTOR_P (decl)
2438 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2439 || DECL_CONV_FN_P (decl))
2440 && look_for_overrides (ctype, decl)
2441 && !DECL_STATIC_FUNCTION_P (decl))
2442 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2443 the error_mark_node so that we know it is an overriding
2444 function. */
2445 DECL_VINDEX (decl) = decl;
2446
2447 if (DECL_VIRTUAL_P (decl))
2448 {
2449 if (!DECL_VINDEX (decl))
2450 DECL_VINDEX (decl) = error_mark_node;
2451 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2452 }
2453 }
2454
2455 /* Warn about hidden virtual functions that are not overridden in t.
2456 We know that constructors and destructors don't apply. */
2457
2458 void
2459 warn_hidden (tree t)
2460 {
2461 tree method_vec = CLASSTYPE_METHOD_VEC (t);
2462 int n_methods = method_vec ? TREE_VEC_LENGTH (method_vec) : 0;
2463 int i;
2464
2465 /* We go through each separately named virtual function. */
2466 for (i = 2; i < n_methods && TREE_VEC_ELT (method_vec, i); ++i)
2467 {
2468 tree fns;
2469 tree name;
2470 tree fndecl;
2471 tree base_fndecls;
2472 int j;
2473
2474 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2475 have the same name. Figure out what name that is. */
2476 name = DECL_NAME (OVL_CURRENT (TREE_VEC_ELT (method_vec, i)));
2477 /* There are no possibly hidden functions yet. */
2478 base_fndecls = NULL_TREE;
2479 /* Iterate through all of the base classes looking for possibly
2480 hidden functions. */
2481 for (j = 0; j < CLASSTYPE_N_BASECLASSES (t); j++)
2482 {
2483 tree basetype = TYPE_BINFO_BASETYPE (t, j);
2484 base_fndecls = chainon (get_basefndecls (name, basetype),
2485 base_fndecls);
2486 }
2487
2488 /* If there are no functions to hide, continue. */
2489 if (!base_fndecls)
2490 continue;
2491
2492 /* Remove any overridden functions. */
2493 for (fns = TREE_VEC_ELT (method_vec, i); fns; fns = OVL_NEXT (fns))
2494 {
2495 fndecl = OVL_CURRENT (fns);
2496 if (DECL_VINDEX (fndecl))
2497 {
2498 tree *prev = &base_fndecls;
2499
2500 while (*prev)
2501 /* If the method from the base class has the same
2502 signature as the method from the derived class, it
2503 has been overridden. */
2504 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2505 *prev = TREE_CHAIN (*prev);
2506 else
2507 prev = &TREE_CHAIN (*prev);
2508 }
2509 }
2510
2511 /* Now give a warning for all base functions without overriders,
2512 as they are hidden. */
2513 while (base_fndecls)
2514 {
2515 /* Here we know it is a hider, and no overrider exists. */
2516 cp_warning_at ("`%D' was hidden", TREE_VALUE (base_fndecls));
2517 cp_warning_at (" by `%D'",
2518 OVL_CURRENT (TREE_VEC_ELT (method_vec, i)));
2519 base_fndecls = TREE_CHAIN (base_fndecls);
2520 }
2521 }
2522 }
2523
2524 /* Check for things that are invalid. There are probably plenty of other
2525 things we should check for also. */
2526
2527 static void
2528 finish_struct_anon (tree t)
2529 {
2530 tree field;
2531
2532 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2533 {
2534 if (TREE_STATIC (field))
2535 continue;
2536 if (TREE_CODE (field) != FIELD_DECL)
2537 continue;
2538
2539 if (DECL_NAME (field) == NULL_TREE
2540 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2541 {
2542 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2543 for (; elt; elt = TREE_CHAIN (elt))
2544 {
2545 /* We're generally only interested in entities the user
2546 declared, but we also find nested classes by noticing
2547 the TYPE_DECL that we create implicitly. You're
2548 allowed to put one anonymous union inside another,
2549 though, so we explicitly tolerate that. We use
2550 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2551 we also allow unnamed types used for defining fields. */
2552 if (DECL_ARTIFICIAL (elt)
2553 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2554 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2555 continue;
2556
2557 if (TREE_CODE (elt) != FIELD_DECL)
2558 {
2559 cp_pedwarn_at ("`%#D' invalid; an anonymous union can only have non-static data members",
2560 elt);
2561 continue;
2562 }
2563
2564 if (TREE_PRIVATE (elt))
2565 cp_pedwarn_at ("private member `%#D' in anonymous union",
2566 elt);
2567 else if (TREE_PROTECTED (elt))
2568 cp_pedwarn_at ("protected member `%#D' in anonymous union",
2569 elt);
2570
2571 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2572 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2573 }
2574 }
2575 }
2576 }
2577
2578 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2579 will be used later during class template instantiation.
2580 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2581 a non-static member data (FIELD_DECL), a member function
2582 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2583 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2584 When FRIEND_P is nonzero, T is either a friend class
2585 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2586 (FUNCTION_DECL, TEMPLATE_DECL). */
2587
2588 void
2589 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2590 {
2591 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2592 if (CLASSTYPE_TEMPLATE_INFO (type))
2593 CLASSTYPE_DECL_LIST (type)
2594 = tree_cons (friend_p ? NULL_TREE : type,
2595 t, CLASSTYPE_DECL_LIST (type));
2596 }
2597
2598 /* Create default constructors, assignment operators, and so forth for
2599 the type indicated by T, if they are needed.
2600 CANT_HAVE_DEFAULT_CTOR, CANT_HAVE_CONST_CTOR, and
2601 CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason, the
2602 class cannot have a default constructor, copy constructor taking a
2603 const reference argument, or an assignment operator taking a const
2604 reference, respectively. If a virtual destructor is created, its
2605 DECL is returned; otherwise the return value is NULL_TREE. */
2606
2607 static void
2608 add_implicitly_declared_members (tree t,
2609 int cant_have_default_ctor,
2610 int cant_have_const_cctor,
2611 int cant_have_const_assignment)
2612 {
2613 tree default_fn;
2614 tree implicit_fns = NULL_TREE;
2615 tree virtual_dtor = NULL_TREE;
2616 tree *f;
2617
2618 ++adding_implicit_members;
2619
2620 /* Destructor. */
2621 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) && !TYPE_HAS_DESTRUCTOR (t))
2622 {
2623 default_fn = implicitly_declare_fn (sfk_destructor, t, /*const_p=*/0);
2624 check_for_override (default_fn, t);
2625
2626 /* If we couldn't make it work, then pretend we didn't need it. */
2627 if (default_fn == void_type_node)
2628 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 0;
2629 else
2630 {
2631 TREE_CHAIN (default_fn) = implicit_fns;
2632 implicit_fns = default_fn;
2633
2634 if (DECL_VINDEX (default_fn))
2635 virtual_dtor = default_fn;
2636 }
2637 }
2638 else
2639 /* Any non-implicit destructor is non-trivial. */
2640 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) |= TYPE_HAS_DESTRUCTOR (t);
2641
2642 /* Default constructor. */
2643 if (! TYPE_HAS_CONSTRUCTOR (t) && ! cant_have_default_ctor)
2644 {
2645 default_fn = implicitly_declare_fn (sfk_constructor, t, /*const_p=*/0);
2646 TREE_CHAIN (default_fn) = implicit_fns;
2647 implicit_fns = default_fn;
2648 }
2649
2650 /* Copy constructor. */
2651 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2652 {
2653 /* ARM 12.18: You get either X(X&) or X(const X&), but
2654 not both. --Chip */
2655 default_fn
2656 = implicitly_declare_fn (sfk_copy_constructor, t,
2657 /*const_p=*/!cant_have_const_cctor);
2658 TREE_CHAIN (default_fn) = implicit_fns;
2659 implicit_fns = default_fn;
2660 }
2661
2662 /* Assignment operator. */
2663 if (! TYPE_HAS_ASSIGN_REF (t) && ! TYPE_FOR_JAVA (t))
2664 {
2665 default_fn
2666 = implicitly_declare_fn (sfk_assignment_operator, t,
2667 /*const_p=*/!cant_have_const_assignment);
2668 TREE_CHAIN (default_fn) = implicit_fns;
2669 implicit_fns = default_fn;
2670 }
2671
2672 /* Now, hook all of the new functions on to TYPE_METHODS,
2673 and add them to the CLASSTYPE_METHOD_VEC. */
2674 for (f = &implicit_fns; *f; f = &TREE_CHAIN (*f))
2675 {
2676 add_method (t, *f, /*error_p=*/0);
2677 maybe_add_class_template_decl_list (current_class_type, *f, /*friend_p=*/0);
2678 }
2679 if (abi_version_at_least (2))
2680 /* G++ 3.2 put the implicit destructor at the *beginning* of the
2681 list, which cause the destructor to be emitted in an incorrect
2682 location in the vtable. */
2683 TYPE_METHODS (t) = chainon (TYPE_METHODS (t), implicit_fns);
2684 else
2685 {
2686 if (warn_abi && virtual_dtor)
2687 warning ("vtable layout for class `%T' may not be ABI-compliant "
2688 "and may change in a future version of GCC due to implicit "
2689 "virtual destructor",
2690 t);
2691 *f = TYPE_METHODS (t);
2692 TYPE_METHODS (t) = implicit_fns;
2693 }
2694
2695 --adding_implicit_members;
2696 }
2697
2698 /* Subroutine of finish_struct_1. Recursively count the number of fields
2699 in TYPE, including anonymous union members. */
2700
2701 static int
2702 count_fields (tree fields)
2703 {
2704 tree x;
2705 int n_fields = 0;
2706 for (x = fields; x; x = TREE_CHAIN (x))
2707 {
2708 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2709 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2710 else
2711 n_fields += 1;
2712 }
2713 return n_fields;
2714 }
2715
2716 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2717 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2718
2719 static int
2720 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2721 {
2722 tree x;
2723 for (x = fields; x; x = TREE_CHAIN (x))
2724 {
2725 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2726 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2727 else
2728 field_vec->elts[idx++] = x;
2729 }
2730 return idx;
2731 }
2732
2733 /* FIELD is a bit-field. We are finishing the processing for its
2734 enclosing type. Issue any appropriate messages and set appropriate
2735 flags. */
2736
2737 static void
2738 check_bitfield_decl (tree field)
2739 {
2740 tree type = TREE_TYPE (field);
2741 tree w = NULL_TREE;
2742
2743 /* Detect invalid bit-field type. */
2744 if (DECL_INITIAL (field)
2745 && ! INTEGRAL_TYPE_P (TREE_TYPE (field)))
2746 {
2747 cp_error_at ("bit-field `%#D' with non-integral type", field);
2748 w = error_mark_node;
2749 }
2750
2751 /* Detect and ignore out of range field width. */
2752 if (DECL_INITIAL (field))
2753 {
2754 w = DECL_INITIAL (field);
2755
2756 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2757 STRIP_NOPS (w);
2758
2759 /* detect invalid field size. */
2760 if (TREE_CODE (w) == CONST_DECL)
2761 w = DECL_INITIAL (w);
2762 else
2763 w = decl_constant_value (w);
2764
2765 if (TREE_CODE (w) != INTEGER_CST)
2766 {
2767 cp_error_at ("bit-field `%D' width not an integer constant",
2768 field);
2769 w = error_mark_node;
2770 }
2771 else if (tree_int_cst_sgn (w) < 0)
2772 {
2773 cp_error_at ("negative width in bit-field `%D'", field);
2774 w = error_mark_node;
2775 }
2776 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2777 {
2778 cp_error_at ("zero width for bit-field `%D'", field);
2779 w = error_mark_node;
2780 }
2781 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2782 && TREE_CODE (type) != ENUMERAL_TYPE
2783 && TREE_CODE (type) != BOOLEAN_TYPE)
2784 cp_warning_at ("width of `%D' exceeds its type", field);
2785 else if (TREE_CODE (type) == ENUMERAL_TYPE
2786 && (0 > compare_tree_int (w,
2787 min_precision (TYPE_MIN_VALUE (type),
2788 TYPE_UNSIGNED (type)))
2789 || 0 > compare_tree_int (w,
2790 min_precision
2791 (TYPE_MAX_VALUE (type),
2792 TYPE_UNSIGNED (type)))))
2793 cp_warning_at ("`%D' is too small to hold all values of `%#T'",
2794 field, type);
2795 }
2796
2797 /* Remove the bit-field width indicator so that the rest of the
2798 compiler does not treat that value as an initializer. */
2799 DECL_INITIAL (field) = NULL_TREE;
2800
2801 if (w != error_mark_node)
2802 {
2803 DECL_SIZE (field) = convert (bitsizetype, w);
2804 DECL_BIT_FIELD (field) = 1;
2805 }
2806 else
2807 {
2808 /* Non-bit-fields are aligned for their type. */
2809 DECL_BIT_FIELD (field) = 0;
2810 CLEAR_DECL_C_BIT_FIELD (field);
2811 }
2812 }
2813
2814 /* FIELD is a non bit-field. We are finishing the processing for its
2815 enclosing type T. Issue any appropriate messages and set appropriate
2816 flags. */
2817
2818 static void
2819 check_field_decl (tree field,
2820 tree t,
2821 int* cant_have_const_ctor,
2822 int* cant_have_default_ctor,
2823 int* no_const_asn_ref,
2824 int* any_default_members)
2825 {
2826 tree type = strip_array_types (TREE_TYPE (field));
2827
2828 /* An anonymous union cannot contain any fields which would change
2829 the settings of CANT_HAVE_CONST_CTOR and friends. */
2830 if (ANON_UNION_TYPE_P (type))
2831 ;
2832 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2833 structs. So, we recurse through their fields here. */
2834 else if (ANON_AGGR_TYPE_P (type))
2835 {
2836 tree fields;
2837
2838 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2839 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2840 check_field_decl (fields, t, cant_have_const_ctor,
2841 cant_have_default_ctor, no_const_asn_ref,
2842 any_default_members);
2843 }
2844 /* Check members with class type for constructors, destructors,
2845 etc. */
2846 else if (CLASS_TYPE_P (type))
2847 {
2848 /* Never let anything with uninheritable virtuals
2849 make it through without complaint. */
2850 abstract_virtuals_error (field, type);
2851
2852 if (TREE_CODE (t) == UNION_TYPE)
2853 {
2854 if (TYPE_NEEDS_CONSTRUCTING (type))
2855 cp_error_at ("member `%#D' with constructor not allowed in union",
2856 field);
2857 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2858 cp_error_at ("member `%#D' with destructor not allowed in union",
2859 field);
2860 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2861 cp_error_at ("member `%#D' with copy assignment operator not allowed in union",
2862 field);
2863 }
2864 else
2865 {
2866 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2867 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2868 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2869 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2870 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2871 }
2872
2873 if (!TYPE_HAS_CONST_INIT_REF (type))
2874 *cant_have_const_ctor = 1;
2875
2876 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2877 *no_const_asn_ref = 1;
2878
2879 if (TYPE_HAS_CONSTRUCTOR (type)
2880 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2881 *cant_have_default_ctor = 1;
2882 }
2883 if (DECL_INITIAL (field) != NULL_TREE)
2884 {
2885 /* `build_class_init_list' does not recognize
2886 non-FIELD_DECLs. */
2887 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2888 error ("multiple fields in union `%T' initialized", t);
2889 *any_default_members = 1;
2890 }
2891 }
2892
2893 /* Check the data members (both static and non-static), class-scoped
2894 typedefs, etc., appearing in the declaration of T. Issue
2895 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2896 declaration order) of access declarations; each TREE_VALUE in this
2897 list is a USING_DECL.
2898
2899 In addition, set the following flags:
2900
2901 EMPTY_P
2902 The class is empty, i.e., contains no non-static data members.
2903
2904 CANT_HAVE_DEFAULT_CTOR_P
2905 This class cannot have an implicitly generated default
2906 constructor.
2907
2908 CANT_HAVE_CONST_CTOR_P
2909 This class cannot have an implicitly generated copy constructor
2910 taking a const reference.
2911
2912 CANT_HAVE_CONST_ASN_REF
2913 This class cannot have an implicitly generated assignment
2914 operator taking a const reference.
2915
2916 All of these flags should be initialized before calling this
2917 function.
2918
2919 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2920 fields can be added by adding to this chain. */
2921
2922 static void
2923 check_field_decls (tree t, tree *access_decls,
2924 int *cant_have_default_ctor_p,
2925 int *cant_have_const_ctor_p,
2926 int *no_const_asn_ref_p)
2927 {
2928 tree *field;
2929 tree *next;
2930 int has_pointers;
2931 int any_default_members;
2932
2933 /* Assume there are no access declarations. */
2934 *access_decls = NULL_TREE;
2935 /* Assume this class has no pointer members. */
2936 has_pointers = 0;
2937 /* Assume none of the members of this class have default
2938 initializations. */
2939 any_default_members = 0;
2940
2941 for (field = &TYPE_FIELDS (t); *field; field = next)
2942 {
2943 tree x = *field;
2944 tree type = TREE_TYPE (x);
2945
2946 next = &TREE_CHAIN (x);
2947
2948 if (TREE_CODE (x) == FIELD_DECL)
2949 {
2950 if (TYPE_PACKED (t))
2951 {
2952 if (!pod_type_p (TREE_TYPE (x)) && !TYPE_PACKED (TREE_TYPE (x)))
2953 cp_warning_at
2954 ("ignoring packed attribute on unpacked non-POD field `%#D'",
2955 x);
2956 else
2957 DECL_PACKED (x) = 1;
2958 }
2959
2960 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2961 /* We don't treat zero-width bitfields as making a class
2962 non-empty. */
2963 ;
2964 else
2965 {
2966 tree element_type;
2967
2968 /* The class is non-empty. */
2969 CLASSTYPE_EMPTY_P (t) = 0;
2970 /* The class is not even nearly empty. */
2971 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2972 /* If one of the data members contains an empty class,
2973 so does T. */
2974 element_type = strip_array_types (type);
2975 if (CLASS_TYPE_P (element_type)
2976 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
2977 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2978 }
2979 }
2980
2981 if (TREE_CODE (x) == USING_DECL)
2982 {
2983 /* Prune the access declaration from the list of fields. */
2984 *field = TREE_CHAIN (x);
2985
2986 /* Save the access declarations for our caller. */
2987 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2988
2989 /* Since we've reset *FIELD there's no reason to skip to the
2990 next field. */
2991 next = field;
2992 continue;
2993 }
2994
2995 if (TREE_CODE (x) == TYPE_DECL
2996 || TREE_CODE (x) == TEMPLATE_DECL)
2997 continue;
2998
2999 /* If we've gotten this far, it's a data member, possibly static,
3000 or an enumerator. */
3001 DECL_CONTEXT (x) = t;
3002
3003 /* When this goes into scope, it will be a non-local reference. */
3004 DECL_NONLOCAL (x) = 1;
3005
3006 if (TREE_CODE (t) == UNION_TYPE)
3007 {
3008 /* [class.union]
3009
3010 If a union contains a static data member, or a member of
3011 reference type, the program is ill-formed. */
3012 if (TREE_CODE (x) == VAR_DECL)
3013 {
3014 cp_error_at ("`%D' may not be static because it is a member of a union", x);
3015 continue;
3016 }
3017 if (TREE_CODE (type) == REFERENCE_TYPE)
3018 {
3019 cp_error_at ("`%D' may not have reference type `%T' because it is a member of a union",
3020 x, type);
3021 continue;
3022 }
3023 }
3024
3025 /* ``A local class cannot have static data members.'' ARM 9.4 */
3026 if (current_function_decl && TREE_STATIC (x))
3027 cp_error_at ("field `%D' in local class cannot be static", x);
3028
3029 /* Perform error checking that did not get done in
3030 grokdeclarator. */
3031 if (TREE_CODE (type) == FUNCTION_TYPE)
3032 {
3033 cp_error_at ("field `%D' invalidly declared function type",
3034 x);
3035 type = build_pointer_type (type);
3036 TREE_TYPE (x) = type;
3037 }
3038 else if (TREE_CODE (type) == METHOD_TYPE)
3039 {
3040 cp_error_at ("field `%D' invalidly declared method type", x);
3041 type = build_pointer_type (type);
3042 TREE_TYPE (x) = type;
3043 }
3044
3045 if (type == error_mark_node)
3046 continue;
3047
3048 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
3049 continue;
3050
3051 /* Now it can only be a FIELD_DECL. */
3052
3053 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3054 CLASSTYPE_NON_AGGREGATE (t) = 1;
3055
3056 /* If this is of reference type, check if it needs an init.
3057 Also do a little ANSI jig if necessary. */
3058 if (TREE_CODE (type) == REFERENCE_TYPE)
3059 {
3060 CLASSTYPE_NON_POD_P (t) = 1;
3061 if (DECL_INITIAL (x) == NULL_TREE)
3062 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3063
3064 /* ARM $12.6.2: [A member initializer list] (or, for an
3065 aggregate, initialization by a brace-enclosed list) is the
3066 only way to initialize nonstatic const and reference
3067 members. */
3068 *cant_have_default_ctor_p = 1;
3069 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3070
3071 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
3072 && extra_warnings)
3073 cp_warning_at ("non-static reference `%#D' in class without a constructor", x);
3074 }
3075
3076 type = strip_array_types (type);
3077
3078 if (TYPE_PTR_P (type))
3079 has_pointers = 1;
3080
3081 if (CLASS_TYPE_P (type))
3082 {
3083 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3084 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3085 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3086 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3087 }
3088
3089 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3090 CLASSTYPE_HAS_MUTABLE (t) = 1;
3091
3092 if (! pod_type_p (type))
3093 /* DR 148 now allows pointers to members (which are POD themselves),
3094 to be allowed in POD structs. */
3095 CLASSTYPE_NON_POD_P (t) = 1;
3096
3097 if (! zero_init_p (type))
3098 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3099
3100 /* If any field is const, the structure type is pseudo-const. */
3101 if (CP_TYPE_CONST_P (type))
3102 {
3103 C_TYPE_FIELDS_READONLY (t) = 1;
3104 if (DECL_INITIAL (x) == NULL_TREE)
3105 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3106
3107 /* ARM $12.6.2: [A member initializer list] (or, for an
3108 aggregate, initialization by a brace-enclosed list) is the
3109 only way to initialize nonstatic const and reference
3110 members. */
3111 *cant_have_default_ctor_p = 1;
3112 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3113
3114 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
3115 && extra_warnings)
3116 cp_warning_at ("non-static const member `%#D' in class without a constructor", x);
3117 }
3118 /* A field that is pseudo-const makes the structure likewise. */
3119 else if (CLASS_TYPE_P (type))
3120 {
3121 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3122 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3123 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3124 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3125 }
3126
3127 /* Core issue 80: A nonstatic data member is required to have a
3128 different name from the class iff the class has a
3129 user-defined constructor. */
3130 if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
3131 cp_pedwarn_at ("field `%#D' with same name as class", x);
3132
3133 /* We set DECL_C_BIT_FIELD in grokbitfield.
3134 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3135 if (DECL_C_BIT_FIELD (x))
3136 check_bitfield_decl (x);
3137 else
3138 check_field_decl (x, t,
3139 cant_have_const_ctor_p,
3140 cant_have_default_ctor_p,
3141 no_const_asn_ref_p,
3142 &any_default_members);
3143 }
3144
3145 /* Effective C++ rule 11. */
3146 if (has_pointers && warn_ecpp && TYPE_HAS_CONSTRUCTOR (t)
3147 && ! (TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3148 {
3149 warning ("`%#T' has pointer data members", t);
3150
3151 if (! TYPE_HAS_INIT_REF (t))
3152 {
3153 warning (" but does not override `%T(const %T&)'", t, t);
3154 if (! TYPE_HAS_ASSIGN_REF (t))
3155 warning (" or `operator=(const %T&)'", t);
3156 }
3157 else if (! TYPE_HAS_ASSIGN_REF (t))
3158 warning (" but does not override `operator=(const %T&)'", t);
3159 }
3160
3161
3162 /* Check anonymous struct/anonymous union fields. */
3163 finish_struct_anon (t);
3164
3165 /* We've built up the list of access declarations in reverse order.
3166 Fix that now. */
3167 *access_decls = nreverse (*access_decls);
3168 }
3169
3170 /* If TYPE is an empty class type, records its OFFSET in the table of
3171 OFFSETS. */
3172
3173 static int
3174 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3175 {
3176 splay_tree_node n;
3177
3178 if (!is_empty_class (type))
3179 return 0;
3180
3181 /* Record the location of this empty object in OFFSETS. */
3182 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3183 if (!n)
3184 n = splay_tree_insert (offsets,
3185 (splay_tree_key) offset,
3186 (splay_tree_value) NULL_TREE);
3187 n->value = ((splay_tree_value)
3188 tree_cons (NULL_TREE,
3189 type,
3190 (tree) n->value));
3191
3192 return 0;
3193 }
3194
3195 /* Returns nonzero if TYPE is an empty class type and there is
3196 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3197
3198 static int
3199 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3200 {
3201 splay_tree_node n;
3202 tree t;
3203
3204 if (!is_empty_class (type))
3205 return 0;
3206
3207 /* Record the location of this empty object in OFFSETS. */
3208 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3209 if (!n)
3210 return 0;
3211
3212 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3213 if (same_type_p (TREE_VALUE (t), type))
3214 return 1;
3215
3216 return 0;
3217 }
3218
3219 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3220 F for every subobject, passing it the type, offset, and table of
3221 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3222 be traversed.
3223
3224 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3225 than MAX_OFFSET will not be walked.
3226
3227 If F returns a nonzero value, the traversal ceases, and that value
3228 is returned. Otherwise, returns zero. */
3229
3230 static int
3231 walk_subobject_offsets (tree type,
3232 subobject_offset_fn f,
3233 tree offset,
3234 splay_tree offsets,
3235 tree max_offset,
3236 int vbases_p)
3237 {
3238 int r = 0;
3239 tree type_binfo = NULL_TREE;
3240
3241 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3242 stop. */
3243 if (max_offset && INT_CST_LT (max_offset, offset))
3244 return 0;
3245
3246 if (!TYPE_P (type))
3247 {
3248 if (abi_version_at_least (2))
3249 type_binfo = type;
3250 type = BINFO_TYPE (type);
3251 }
3252
3253 if (CLASS_TYPE_P (type))
3254 {
3255 tree field;
3256 tree binfo;
3257 int i;
3258
3259 /* Avoid recursing into objects that are not interesting. */
3260 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3261 return 0;
3262
3263 /* Record the location of TYPE. */
3264 r = (*f) (type, offset, offsets);
3265 if (r)
3266 return r;
3267
3268 /* Iterate through the direct base classes of TYPE. */
3269 if (!type_binfo)
3270 type_binfo = TYPE_BINFO (type);
3271 for (i = 0; i < BINFO_N_BASETYPES (type_binfo); ++i)
3272 {
3273 tree binfo_offset;
3274
3275 binfo = BINFO_BASETYPE (type_binfo, i);
3276
3277 if (abi_version_at_least (2)
3278 && TREE_VIA_VIRTUAL (binfo))
3279 continue;
3280
3281 if (!vbases_p
3282 && TREE_VIA_VIRTUAL (binfo)
3283 && !BINFO_PRIMARY_P (binfo))
3284 continue;
3285
3286 if (!abi_version_at_least (2))
3287 binfo_offset = size_binop (PLUS_EXPR,
3288 offset,
3289 BINFO_OFFSET (binfo));
3290 else
3291 {
3292 tree orig_binfo;
3293 /* We cannot rely on BINFO_OFFSET being set for the base
3294 class yet, but the offsets for direct non-virtual
3295 bases can be calculated by going back to the TYPE. */
3296 orig_binfo = BINFO_BASETYPE (TYPE_BINFO (type), i);
3297 binfo_offset = size_binop (PLUS_EXPR,
3298 offset,
3299 BINFO_OFFSET (orig_binfo));
3300 }
3301
3302 r = walk_subobject_offsets (binfo,
3303 f,
3304 binfo_offset,
3305 offsets,
3306 max_offset,
3307 (abi_version_at_least (2)
3308 ? /*vbases_p=*/0 : vbases_p));
3309 if (r)
3310 return r;
3311 }
3312
3313 if (abi_version_at_least (2))
3314 {
3315 tree vbase;
3316
3317 /* Iterate through the virtual base classes of TYPE. In G++
3318 3.2, we included virtual bases in the direct base class
3319 loop above, which results in incorrect results; the
3320 correct offsets for virtual bases are only known when
3321 working with the most derived type. */
3322 if (vbases_p)
3323 for (vbase = CLASSTYPE_VBASECLASSES (type);
3324 vbase;
3325 vbase = TREE_CHAIN (vbase))
3326 {
3327 binfo = TREE_VALUE (vbase);
3328 r = walk_subobject_offsets (binfo,
3329 f,
3330 size_binop (PLUS_EXPR,
3331 offset,
3332 BINFO_OFFSET (binfo)),
3333 offsets,
3334 max_offset,
3335 /*vbases_p=*/0);
3336 if (r)
3337 return r;
3338 }
3339 else
3340 {
3341 /* We still have to walk the primary base, if it is
3342 virtual. (If it is non-virtual, then it was walked
3343 above.) */
3344 vbase = get_primary_binfo (type_binfo);
3345 if (vbase && TREE_VIA_VIRTUAL (vbase)
3346 && BINFO_PRIMARY_BASE_OF (vbase) == type_binfo)
3347 {
3348 r = (walk_subobject_offsets
3349 (vbase, f, offset,
3350 offsets, max_offset, /*vbases_p=*/0));
3351 if (r)
3352 return r;
3353 }
3354 }
3355 }
3356
3357 /* Iterate through the fields of TYPE. */
3358 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3359 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3360 {
3361 tree field_offset;
3362
3363 if (abi_version_at_least (2))
3364 field_offset = byte_position (field);
3365 else
3366 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3367 field_offset = DECL_FIELD_OFFSET (field);
3368
3369 r = walk_subobject_offsets (TREE_TYPE (field),
3370 f,
3371 size_binop (PLUS_EXPR,
3372 offset,
3373 field_offset),
3374 offsets,
3375 max_offset,
3376 /*vbases_p=*/1);
3377 if (r)
3378 return r;
3379 }
3380 }
3381 else if (TREE_CODE (type) == ARRAY_TYPE)
3382 {
3383 tree element_type = strip_array_types (type);
3384 tree domain = TYPE_DOMAIN (type);
3385 tree index;
3386
3387 /* Avoid recursing into objects that are not interesting. */
3388 if (!CLASS_TYPE_P (element_type)
3389 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3390 return 0;
3391
3392 /* Step through each of the elements in the array. */
3393 for (index = size_zero_node;
3394 /* G++ 3.2 had an off-by-one error here. */
3395 (abi_version_at_least (2)
3396 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3397 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3398 index = size_binop (PLUS_EXPR, index, size_one_node))
3399 {
3400 r = walk_subobject_offsets (TREE_TYPE (type),
3401 f,
3402 offset,
3403 offsets,
3404 max_offset,
3405 /*vbases_p=*/1);
3406 if (r)
3407 return r;
3408 offset = size_binop (PLUS_EXPR, offset,
3409 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3410 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3411 there's no point in iterating through the remaining
3412 elements of the array. */
3413 if (max_offset && INT_CST_LT (max_offset, offset))
3414 break;
3415 }
3416 }
3417
3418 return 0;
3419 }
3420
3421 /* Record all of the empty subobjects of TYPE (located at OFFSET) in
3422 OFFSETS. If VBASES_P is nonzero, virtual bases of TYPE are
3423 examined. */
3424
3425 static void
3426 record_subobject_offsets (tree type,
3427 tree offset,
3428 splay_tree offsets,
3429 int vbases_p)
3430 {
3431 walk_subobject_offsets (type, record_subobject_offset, offset,
3432 offsets, /*max_offset=*/NULL_TREE, vbases_p);
3433 }
3434
3435 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3436 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3437 virtual bases of TYPE are examined. */
3438
3439 static int
3440 layout_conflict_p (tree type,
3441 tree offset,
3442 splay_tree offsets,
3443 int vbases_p)
3444 {
3445 splay_tree_node max_node;
3446
3447 /* Get the node in OFFSETS that indicates the maximum offset where
3448 an empty subobject is located. */
3449 max_node = splay_tree_max (offsets);
3450 /* If there aren't any empty subobjects, then there's no point in
3451 performing this check. */
3452 if (!max_node)
3453 return 0;
3454
3455 return walk_subobject_offsets (type, check_subobject_offset, offset,
3456 offsets, (tree) (max_node->key),
3457 vbases_p);
3458 }
3459
3460 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3461 non-static data member of the type indicated by RLI. BINFO is the
3462 binfo corresponding to the base subobject, OFFSETS maps offsets to
3463 types already located at those offsets. This function determines
3464 the position of the DECL. */
3465
3466 static void
3467 layout_nonempty_base_or_field (record_layout_info rli,
3468 tree decl,
3469 tree binfo,
3470 splay_tree offsets)
3471 {
3472 tree offset = NULL_TREE;
3473 bool field_p;
3474 tree type;
3475
3476 if (binfo)
3477 {
3478 /* For the purposes of determining layout conflicts, we want to
3479 use the class type of BINFO; TREE_TYPE (DECL) will be the
3480 CLASSTYPE_AS_BASE version, which does not contain entries for
3481 zero-sized bases. */
3482 type = TREE_TYPE (binfo);
3483 field_p = false;
3484 }
3485 else
3486 {
3487 type = TREE_TYPE (decl);
3488 field_p = true;
3489 }
3490
3491 /* Try to place the field. It may take more than one try if we have
3492 a hard time placing the field without putting two objects of the
3493 same type at the same address. */
3494 while (1)
3495 {
3496 struct record_layout_info_s old_rli = *rli;
3497
3498 /* Place this field. */
3499 place_field (rli, decl);
3500 offset = byte_position (decl);
3501
3502 /* We have to check to see whether or not there is already
3503 something of the same type at the offset we're about to use.
3504 For example:
3505
3506 struct S {};
3507 struct T : public S { int i; };
3508 struct U : public S, public T {};
3509
3510 Here, we put S at offset zero in U. Then, we can't put T at
3511 offset zero -- its S component would be at the same address
3512 as the S we already allocated. So, we have to skip ahead.
3513 Since all data members, including those whose type is an
3514 empty class, have nonzero size, any overlap can happen only
3515 with a direct or indirect base-class -- it can't happen with
3516 a data member. */
3517 /* G++ 3.2 did not check for overlaps when placing a non-empty
3518 virtual base. */
3519 if (!abi_version_at_least (2) && binfo && TREE_VIA_VIRTUAL (binfo))
3520 break;
3521 if (layout_conflict_p (field_p ? type : binfo, offset,
3522 offsets, field_p))
3523 {
3524 /* Strip off the size allocated to this field. That puts us
3525 at the first place we could have put the field with
3526 proper alignment. */
3527 *rli = old_rli;
3528
3529 /* Bump up by the alignment required for the type. */
3530 rli->bitpos
3531 = size_binop (PLUS_EXPR, rli->bitpos,
3532 bitsize_int (binfo
3533 ? CLASSTYPE_ALIGN (type)
3534 : TYPE_ALIGN (type)));
3535 normalize_rli (rli);
3536 }
3537 else
3538 /* There was no conflict. We're done laying out this field. */
3539 break;
3540 }
3541
3542 /* Now that we know where it will be placed, update its
3543 BINFO_OFFSET. */
3544 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3545 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3546 this point because their BINFO_OFFSET is copied from another
3547 hierarchy. Therefore, we may not need to add the entire
3548 OFFSET. */
3549 propagate_binfo_offsets (binfo,
3550 size_diffop (convert (ssizetype, offset),
3551 convert (ssizetype,
3552 BINFO_OFFSET (binfo))));
3553 }
3554
3555 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3556
3557 static int
3558 empty_base_at_nonzero_offset_p (tree type,
3559 tree offset,
3560 splay_tree offsets ATTRIBUTE_UNUSED)
3561 {
3562 return is_empty_class (type) && !integer_zerop (offset);
3563 }
3564
3565 /* Layout the empty base BINFO. EOC indicates the byte currently just
3566 past the end of the class, and should be correctly aligned for a
3567 class of the type indicated by BINFO; OFFSETS gives the offsets of
3568 the empty bases allocated so far. T is the most derived
3569 type. Return nonzero iff we added it at the end. */
3570
3571 static bool
3572 layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
3573 {
3574 tree alignment;
3575 tree basetype = BINFO_TYPE (binfo);
3576 bool atend = false;
3577
3578 /* This routine should only be used for empty classes. */
3579 my_friendly_assert (is_empty_class (basetype), 20000321);
3580 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3581
3582 if (!integer_zerop (BINFO_OFFSET (binfo)))
3583 {
3584 if (abi_version_at_least (2))
3585 propagate_binfo_offsets
3586 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3587 else if (warn_abi)
3588 warning ("offset of empty base `%T' may not be ABI-compliant and may"
3589 "change in a future version of GCC",
3590 BINFO_TYPE (binfo));
3591 }
3592
3593 /* This is an empty base class. We first try to put it at offset
3594 zero. */
3595 if (layout_conflict_p (binfo,
3596 BINFO_OFFSET (binfo),
3597 offsets,
3598 /*vbases_p=*/0))
3599 {
3600 /* That didn't work. Now, we move forward from the next
3601 available spot in the class. */
3602 atend = true;
3603 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3604 while (1)
3605 {
3606 if (!layout_conflict_p (binfo,
3607 BINFO_OFFSET (binfo),
3608 offsets,
3609 /*vbases_p=*/0))
3610 /* We finally found a spot where there's no overlap. */
3611 break;
3612
3613 /* There's overlap here, too. Bump along to the next spot. */
3614 propagate_binfo_offsets (binfo, alignment);
3615 }
3616 }
3617 return atend;
3618 }
3619
3620 /* Layout the the base given by BINFO in the class indicated by RLI.
3621 *BASE_ALIGN is a running maximum of the alignments of
3622 any base class. OFFSETS gives the location of empty base
3623 subobjects. T is the most derived type. Return nonzero if the new
3624 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3625 *NEXT_FIELD, unless BINFO is for an empty base class.
3626
3627 Returns the location at which the next field should be inserted. */
3628
3629 static tree *
3630 build_base_field (record_layout_info rli, tree binfo,
3631 splay_tree offsets, tree *next_field)
3632 {
3633 tree t = rli->t;
3634 tree basetype = BINFO_TYPE (binfo);
3635
3636 if (!COMPLETE_TYPE_P (basetype))
3637 /* This error is now reported in xref_tag, thus giving better
3638 location information. */
3639 return next_field;
3640
3641 /* Place the base class. */
3642 if (!is_empty_class (basetype))
3643 {
3644 tree decl;
3645
3646 /* The containing class is non-empty because it has a non-empty
3647 base class. */
3648 CLASSTYPE_EMPTY_P (t) = 0;
3649
3650 /* Create the FIELD_DECL. */
3651 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3652 DECL_ARTIFICIAL (decl) = 1;
3653 DECL_FIELD_CONTEXT (decl) = t;
3654 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3655 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3656 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3657 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3658 DECL_IGNORED_P (decl) = 1;
3659
3660 /* Try to place the field. It may take more than one try if we
3661 have a hard time placing the field without putting two
3662 objects of the same type at the same address. */
3663 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3664 /* Add the new FIELD_DECL to the list of fields for T. */
3665 TREE_CHAIN (decl) = *next_field;
3666 *next_field = decl;
3667 next_field = &TREE_CHAIN (decl);
3668 }
3669 else
3670 {
3671 tree eoc;
3672 bool atend;
3673
3674 /* On some platforms (ARM), even empty classes will not be
3675 byte-aligned. */
3676 eoc = round_up (rli_size_unit_so_far (rli),
3677 CLASSTYPE_ALIGN_UNIT (basetype));
3678 atend = layout_empty_base (binfo, eoc, offsets);
3679 /* A nearly-empty class "has no proper base class that is empty,
3680 not morally virtual, and at an offset other than zero." */
3681 if (!TREE_VIA_VIRTUAL (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3682 {
3683 if (atend)
3684 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3685 /* The check above (used in G++ 3.2) is insufficient because
3686 an empty class placed at offset zero might itself have an
3687 empty base at a nonzero offset. */
3688 else if (walk_subobject_offsets (basetype,
3689 empty_base_at_nonzero_offset_p,
3690 size_zero_node,
3691 /*offsets=*/NULL,
3692 /*max_offset=*/NULL_TREE,
3693 /*vbases_p=*/true))
3694 {
3695 if (abi_version_at_least (2))
3696 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3697 else if (warn_abi)
3698 warning ("class `%T' will be considered nearly empty in a "
3699 "future version of GCC", t);
3700 }
3701 }
3702
3703 /* We do not create a FIELD_DECL for empty base classes because
3704 it might overlap some other field. We want to be able to
3705 create CONSTRUCTORs for the class by iterating over the
3706 FIELD_DECLs, and the back end does not handle overlapping
3707 FIELD_DECLs. */
3708
3709 /* An empty virtual base causes a class to be non-empty
3710 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3711 here because that was already done when the virtual table
3712 pointer was created. */
3713 }
3714
3715 /* Record the offsets of BINFO and its base subobjects. */
3716 record_subobject_offsets (binfo,
3717 BINFO_OFFSET (binfo),
3718 offsets,
3719 /*vbases_p=*/0);
3720
3721 return next_field;
3722 }
3723
3724 /* Layout all of the non-virtual base classes. Record empty
3725 subobjects in OFFSETS. T is the most derived type. Return nonzero
3726 if the type cannot be nearly empty. The fields created
3727 corresponding to the base classes will be inserted at
3728 *NEXT_FIELD. */
3729
3730 static void
3731 build_base_fields (record_layout_info rli,
3732 splay_tree offsets, tree *next_field)
3733 {
3734 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3735 subobjects. */
3736 tree t = rli->t;
3737 int n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
3738 int i;
3739
3740 /* The primary base class is always allocated first. */
3741 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3742 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3743 offsets, next_field);
3744
3745 /* Now allocate the rest of the bases. */
3746 for (i = 0; i < n_baseclasses; ++i)
3747 {
3748 tree base_binfo;
3749
3750 base_binfo = BINFO_BASETYPE (TYPE_BINFO (t), i);
3751
3752 /* The primary base was already allocated above, so we don't
3753 need to allocate it again here. */
3754 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3755 continue;
3756
3757 /* Virtual bases are added at the end (a primary virtual base
3758 will have already been added). */
3759 if (TREE_VIA_VIRTUAL (base_binfo))
3760 continue;
3761
3762 next_field = build_base_field (rli, base_binfo,
3763 offsets, next_field);
3764 }
3765 }
3766
3767 /* Go through the TYPE_METHODS of T issuing any appropriate
3768 diagnostics, figuring out which methods override which other
3769 methods, and so forth. */
3770
3771 static void
3772 check_methods (tree t)
3773 {
3774 tree x;
3775
3776 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3777 {
3778 check_for_override (x, t);
3779 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3780 cp_error_at ("initializer specified for non-virtual method `%D'", x);
3781
3782 /* The name of the field is the original field name
3783 Save this in auxiliary field for later overloading. */
3784 if (DECL_VINDEX (x))
3785 {
3786 TYPE_POLYMORPHIC_P (t) = 1;
3787 if (DECL_PURE_VIRTUAL_P (x))
3788 CLASSTYPE_PURE_VIRTUALS (t)
3789 = tree_cons (NULL_TREE, x, CLASSTYPE_PURE_VIRTUALS (t));
3790 }
3791 }
3792 }
3793
3794 /* FN is a constructor or destructor. Clone the declaration to create
3795 a specialized in-charge or not-in-charge version, as indicated by
3796 NAME. */
3797
3798 static tree
3799 build_clone (tree fn, tree name)
3800 {
3801 tree parms;
3802 tree clone;
3803
3804 /* Copy the function. */
3805 clone = copy_decl (fn);
3806 /* Remember where this function came from. */
3807 DECL_CLONED_FUNCTION (clone) = fn;
3808 DECL_ABSTRACT_ORIGIN (clone) = fn;
3809 /* Reset the function name. */
3810 DECL_NAME (clone) = name;
3811 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3812 /* There's no pending inline data for this function. */
3813 DECL_PENDING_INLINE_INFO (clone) = NULL;
3814 DECL_PENDING_INLINE_P (clone) = 0;
3815 /* And it hasn't yet been deferred. */
3816 DECL_DEFERRED_FN (clone) = 0;
3817
3818 /* The base-class destructor is not virtual. */
3819 if (name == base_dtor_identifier)
3820 {
3821 DECL_VIRTUAL_P (clone) = 0;
3822 if (TREE_CODE (clone) != TEMPLATE_DECL)
3823 DECL_VINDEX (clone) = NULL_TREE;
3824 }
3825
3826 /* If there was an in-charge parameter, drop it from the function
3827 type. */
3828 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3829 {
3830 tree basetype;
3831 tree parmtypes;
3832 tree exceptions;
3833
3834 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3835 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3836 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3837 /* Skip the `this' parameter. */
3838 parmtypes = TREE_CHAIN (parmtypes);
3839 /* Skip the in-charge parameter. */
3840 parmtypes = TREE_CHAIN (parmtypes);
3841 /* And the VTT parm, in a complete [cd]tor. */
3842 if (DECL_HAS_VTT_PARM_P (fn)
3843 && ! DECL_NEEDS_VTT_PARM_P (clone))
3844 parmtypes = TREE_CHAIN (parmtypes);
3845 /* If this is subobject constructor or destructor, add the vtt
3846 parameter. */
3847 TREE_TYPE (clone)
3848 = build_method_type_directly (basetype,
3849 TREE_TYPE (TREE_TYPE (clone)),
3850 parmtypes);
3851 if (exceptions)
3852 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3853 exceptions);
3854 TREE_TYPE (clone)
3855 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3856 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3857 }
3858
3859 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3860 aren't function parameters; those are the template parameters. */
3861 if (TREE_CODE (clone) != TEMPLATE_DECL)
3862 {
3863 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3864 /* Remove the in-charge parameter. */
3865 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3866 {
3867 TREE_CHAIN (DECL_ARGUMENTS (clone))
3868 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3869 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3870 }
3871 /* And the VTT parm, in a complete [cd]tor. */
3872 if (DECL_HAS_VTT_PARM_P (fn))
3873 {
3874 if (DECL_NEEDS_VTT_PARM_P (clone))
3875 DECL_HAS_VTT_PARM_P (clone) = 1;
3876 else
3877 {
3878 TREE_CHAIN (DECL_ARGUMENTS (clone))
3879 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3880 DECL_HAS_VTT_PARM_P (clone) = 0;
3881 }
3882 }
3883
3884 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3885 {
3886 DECL_CONTEXT (parms) = clone;
3887 cxx_dup_lang_specific_decl (parms);
3888 }
3889 }
3890
3891 /* Create the RTL for this function. */
3892 SET_DECL_RTL (clone, NULL_RTX);
3893 rest_of_decl_compilation (clone, NULL, /*top_level=*/1, at_eof);
3894
3895 /* Make it easy to find the CLONE given the FN. */
3896 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3897 TREE_CHAIN (fn) = clone;
3898
3899 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3900 if (TREE_CODE (clone) == TEMPLATE_DECL)
3901 {
3902 tree result;
3903
3904 DECL_TEMPLATE_RESULT (clone)
3905 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3906 result = DECL_TEMPLATE_RESULT (clone);
3907 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3908 DECL_TI_TEMPLATE (result) = clone;
3909 }
3910 else if (DECL_DEFERRED_FN (fn))
3911 defer_fn (clone);
3912
3913 return clone;
3914 }
3915
3916 /* Produce declarations for all appropriate clones of FN. If
3917 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3918 CLASTYPE_METHOD_VEC as well. */
3919
3920 void
3921 clone_function_decl (tree fn, int update_method_vec_p)
3922 {
3923 tree clone;
3924
3925 /* Avoid inappropriate cloning. */
3926 if (TREE_CHAIN (fn)
3927 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3928 return;
3929
3930 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3931 {
3932 /* For each constructor, we need two variants: an in-charge version
3933 and a not-in-charge version. */
3934 clone = build_clone (fn, complete_ctor_identifier);
3935 if (update_method_vec_p)
3936 add_method (DECL_CONTEXT (clone), clone, /*error_p=*/0);
3937 clone = build_clone (fn, base_ctor_identifier);
3938 if (update_method_vec_p)
3939 add_method (DECL_CONTEXT (clone), clone, /*error_p=*/0);
3940 }
3941 else
3942 {
3943 my_friendly_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn), 20000411);
3944
3945 /* For each destructor, we need three variants: an in-charge
3946 version, a not-in-charge version, and an in-charge deleting
3947 version. We clone the deleting version first because that
3948 means it will go second on the TYPE_METHODS list -- and that
3949 corresponds to the correct layout order in the virtual
3950 function table.
3951
3952 For a non-virtual destructor, we do not build a deleting
3953 destructor. */
3954 if (DECL_VIRTUAL_P (fn))
3955 {
3956 clone = build_clone (fn, deleting_dtor_identifier);
3957 if (update_method_vec_p)
3958 add_method (DECL_CONTEXT (clone), clone, /*error_p=*/0);
3959 }
3960 clone = build_clone (fn, complete_dtor_identifier);
3961 if (update_method_vec_p)
3962 add_method (DECL_CONTEXT (clone), clone, /*error_p=*/0);
3963 clone = build_clone (fn, base_dtor_identifier);
3964 if (update_method_vec_p)
3965 add_method (DECL_CONTEXT (clone), clone, /*error_p=*/0);
3966 }
3967
3968 /* Note that this is an abstract function that is never emitted. */
3969 DECL_ABSTRACT (fn) = 1;
3970 }
3971
3972 /* DECL is an in charge constructor, which is being defined. This will
3973 have had an in class declaration, from whence clones were
3974 declared. An out-of-class definition can specify additional default
3975 arguments. As it is the clones that are involved in overload
3976 resolution, we must propagate the information from the DECL to its
3977 clones. */
3978
3979 void
3980 adjust_clone_args (tree decl)
3981 {
3982 tree clone;
3983
3984 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3985 clone = TREE_CHAIN (clone))
3986 {
3987 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3988 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3989 tree decl_parms, clone_parms;
3990
3991 clone_parms = orig_clone_parms;
3992
3993 /* Skip the 'this' parameter. */
3994 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3995 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3996
3997 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3998 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3999 if (DECL_HAS_VTT_PARM_P (decl))
4000 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4001
4002 clone_parms = orig_clone_parms;
4003 if (DECL_HAS_VTT_PARM_P (clone))
4004 clone_parms = TREE_CHAIN (clone_parms);
4005
4006 for (decl_parms = orig_decl_parms; decl_parms;
4007 decl_parms = TREE_CHAIN (decl_parms),
4008 clone_parms = TREE_CHAIN (clone_parms))
4009 {
4010 my_friendly_assert (same_type_p (TREE_TYPE (decl_parms),
4011 TREE_TYPE (clone_parms)), 20010424);
4012
4013 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4014 {
4015 /* A default parameter has been added. Adjust the
4016 clone's parameters. */
4017 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4018 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4019 tree type;
4020
4021 clone_parms = orig_decl_parms;
4022
4023 if (DECL_HAS_VTT_PARM_P (clone))
4024 {
4025 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4026 TREE_VALUE (orig_clone_parms),
4027 clone_parms);
4028 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4029 }
4030 type = build_method_type_directly (basetype,
4031 TREE_TYPE (TREE_TYPE (clone)),
4032 clone_parms);
4033 if (exceptions)
4034 type = build_exception_variant (type, exceptions);
4035 TREE_TYPE (clone) = type;
4036
4037 clone_parms = NULL_TREE;
4038 break;
4039 }
4040 }
4041 my_friendly_assert (!clone_parms, 20010424);
4042 }
4043 }
4044
4045 /* For each of the constructors and destructors in T, create an
4046 in-charge and not-in-charge variant. */
4047
4048 static void
4049 clone_constructors_and_destructors (tree t)
4050 {
4051 tree fns;
4052
4053 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4054 out now. */
4055 if (!CLASSTYPE_METHOD_VEC (t))
4056 return;
4057
4058 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4059 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4060 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4061 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4062 }
4063
4064 /* Remove all zero-width bit-fields from T. */
4065
4066 static void
4067 remove_zero_width_bit_fields (tree t)
4068 {
4069 tree *fieldsp;
4070
4071 fieldsp = &TYPE_FIELDS (t);
4072 while (*fieldsp)
4073 {
4074 if (TREE_CODE (*fieldsp) == FIELD_DECL
4075 && DECL_C_BIT_FIELD (*fieldsp)
4076 && DECL_INITIAL (*fieldsp))
4077 *fieldsp = TREE_CHAIN (*fieldsp);
4078 else
4079 fieldsp = &TREE_CHAIN (*fieldsp);
4080 }
4081 }
4082
4083 /* Returns TRUE iff we need a cookie when dynamically allocating an
4084 array whose elements have the indicated class TYPE. */
4085
4086 static bool
4087 type_requires_array_cookie (tree type)
4088 {
4089 tree fns;
4090 bool has_two_argument_delete_p = false;
4091
4092 my_friendly_assert (CLASS_TYPE_P (type), 20010712);
4093
4094 /* If there's a non-trivial destructor, we need a cookie. In order
4095 to iterate through the array calling the destructor for each
4096 element, we'll have to know how many elements there are. */
4097 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4098 return true;
4099
4100 /* If the usual deallocation function is a two-argument whose second
4101 argument is of type `size_t', then we have to pass the size of
4102 the array to the deallocation function, so we will need to store
4103 a cookie. */
4104 fns = lookup_fnfields (TYPE_BINFO (type),
4105 ansi_opname (VEC_DELETE_EXPR),
4106 /*protect=*/0);
4107 /* If there are no `operator []' members, or the lookup is
4108 ambiguous, then we don't need a cookie. */
4109 if (!fns || fns == error_mark_node)
4110 return false;
4111 /* Loop through all of the functions. */
4112 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4113 {
4114 tree fn;
4115 tree second_parm;
4116
4117 /* Select the current function. */
4118 fn = OVL_CURRENT (fns);
4119 /* See if this function is a one-argument delete function. If
4120 it is, then it will be the usual deallocation function. */
4121 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4122 if (second_parm == void_list_node)
4123 return false;
4124 /* Otherwise, if we have a two-argument function and the second
4125 argument is `size_t', it will be the usual deallocation
4126 function -- unless there is one-argument function, too. */
4127 if (TREE_CHAIN (second_parm) == void_list_node
4128 && same_type_p (TREE_VALUE (second_parm), sizetype))
4129 has_two_argument_delete_p = true;
4130 }
4131
4132 return has_two_argument_delete_p;
4133 }
4134
4135 /* Check the validity of the bases and members declared in T. Add any
4136 implicitly-generated functions (like copy-constructors and
4137 assignment operators). Compute various flag bits (like
4138 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4139 level: i.e., independently of the ABI in use. */
4140
4141 static void
4142 check_bases_and_members (tree t)
4143 {
4144 /* Nonzero if we are not allowed to generate a default constructor
4145 for this case. */
4146 int cant_have_default_ctor;
4147 /* Nonzero if the implicitly generated copy constructor should take
4148 a non-const reference argument. */
4149 int cant_have_const_ctor;
4150 /* Nonzero if the the implicitly generated assignment operator
4151 should take a non-const reference argument. */
4152 int no_const_asn_ref;
4153 tree access_decls;
4154
4155 /* By default, we use const reference arguments and generate default
4156 constructors. */
4157 cant_have_default_ctor = 0;
4158 cant_have_const_ctor = 0;
4159 no_const_asn_ref = 0;
4160
4161 /* Check all the base-classes. */
4162 check_bases (t, &cant_have_default_ctor, &cant_have_const_ctor,
4163 &no_const_asn_ref);
4164
4165 /* Check all the data member declarations. */
4166 check_field_decls (t, &access_decls,
4167 &cant_have_default_ctor,
4168 &cant_have_const_ctor,
4169 &no_const_asn_ref);
4170
4171 /* Check all the method declarations. */
4172 check_methods (t);
4173
4174 /* A nearly-empty class has to be vptr-containing; a nearly empty
4175 class contains just a vptr. */
4176 if (!TYPE_CONTAINS_VPTR_P (t))
4177 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4178
4179 /* Do some bookkeeping that will guide the generation of implicitly
4180 declared member functions. */
4181 TYPE_HAS_COMPLEX_INIT_REF (t)
4182 |= (TYPE_HAS_INIT_REF (t)
4183 || TYPE_USES_VIRTUAL_BASECLASSES (t)
4184 || TYPE_POLYMORPHIC_P (t));
4185 TYPE_NEEDS_CONSTRUCTING (t)
4186 |= (TYPE_HAS_CONSTRUCTOR (t)
4187 || TYPE_USES_VIRTUAL_BASECLASSES (t)
4188 || TYPE_POLYMORPHIC_P (t));
4189 CLASSTYPE_NON_AGGREGATE (t) |= (TYPE_HAS_CONSTRUCTOR (t)
4190 || TYPE_POLYMORPHIC_P (t));
4191 CLASSTYPE_NON_POD_P (t)
4192 |= (CLASSTYPE_NON_AGGREGATE (t) || TYPE_HAS_DESTRUCTOR (t)
4193 || TYPE_HAS_ASSIGN_REF (t));
4194 TYPE_HAS_REAL_ASSIGN_REF (t) |= TYPE_HAS_ASSIGN_REF (t);
4195 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4196 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4197
4198 /* Synthesize any needed methods. Note that methods will be synthesized
4199 for anonymous unions; grok_x_components undoes that. */
4200 add_implicitly_declared_members (t, cant_have_default_ctor,
4201 cant_have_const_ctor,
4202 no_const_asn_ref);
4203
4204 /* Create the in-charge and not-in-charge variants of constructors
4205 and destructors. */
4206 clone_constructors_and_destructors (t);
4207
4208 /* Process the using-declarations. */
4209 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4210 handle_using_decl (TREE_VALUE (access_decls), t);
4211
4212 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4213 finish_struct_methods (t);
4214
4215 /* Figure out whether or not we will need a cookie when dynamically
4216 allocating an array of this type. */
4217 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4218 = type_requires_array_cookie (t);
4219 }
4220
4221 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4222 accordingly. If a new vfield was created (because T doesn't have a
4223 primary base class), then the newly created field is returned. It
4224 is not added to the TYPE_FIELDS list; it is the caller's
4225 responsibility to do that. Accumulate declared virtual functions
4226 on VIRTUALS_P. */
4227
4228 static tree
4229 create_vtable_ptr (tree t, tree* virtuals_p)
4230 {
4231 tree fn;
4232
4233 /* Collect the virtual functions declared in T. */
4234 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4235 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4236 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4237 {
4238 tree new_virtual = make_node (TREE_LIST);
4239
4240 BV_FN (new_virtual) = fn;
4241 BV_DELTA (new_virtual) = integer_zero_node;
4242
4243 TREE_CHAIN (new_virtual) = *virtuals_p;
4244 *virtuals_p = new_virtual;
4245 }
4246
4247 /* If we couldn't find an appropriate base class, create a new field
4248 here. Even if there weren't any new virtual functions, we might need a
4249 new virtual function table if we're supposed to include vptrs in
4250 all classes that need them. */
4251 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4252 {
4253 /* We build this decl with vtbl_ptr_type_node, which is a
4254 `vtable_entry_type*'. It might seem more precise to use
4255 `vtable_entry_type (*)[N]' where N is the number of virtual
4256 functions. However, that would require the vtable pointer in
4257 base classes to have a different type than the vtable pointer
4258 in derived classes. We could make that happen, but that
4259 still wouldn't solve all the problems. In particular, the
4260 type-based alias analysis code would decide that assignments
4261 to the base class vtable pointer can't alias assignments to
4262 the derived class vtable pointer, since they have different
4263 types. Thus, in a derived class destructor, where the base
4264 class constructor was inlined, we could generate bad code for
4265 setting up the vtable pointer.
4266
4267 Therefore, we use one type for all vtable pointers. We still
4268 use a type-correct type; it's just doesn't indicate the array
4269 bounds. That's better than using `void*' or some such; it's
4270 cleaner, and it let's the alias analysis code know that these
4271 stores cannot alias stores to void*! */
4272 tree field;
4273
4274 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4275 SET_DECL_ASSEMBLER_NAME (field, get_identifier (VFIELD_BASE));
4276 DECL_VIRTUAL_P (field) = 1;
4277 DECL_ARTIFICIAL (field) = 1;
4278 DECL_FIELD_CONTEXT (field) = t;
4279 DECL_FCONTEXT (field) = t;
4280
4281 TYPE_VFIELD (t) = field;
4282
4283 /* This class is non-empty. */
4284 CLASSTYPE_EMPTY_P (t) = 0;
4285
4286 if (CLASSTYPE_N_BASECLASSES (t))
4287 /* If there were any baseclasses, they can't possibly be at
4288 offset zero any more, because that's where the vtable
4289 pointer is. So, converting to a base class is going to
4290 take work. */
4291 TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (t) = 1;
4292
4293 return field;
4294 }
4295
4296 return NULL_TREE;
4297 }
4298
4299 /* Fixup the inline function given by INFO now that the class is
4300 complete. */
4301
4302 static void
4303 fixup_pending_inline (tree fn)
4304 {
4305 if (DECL_PENDING_INLINE_INFO (fn))
4306 {
4307 tree args = DECL_ARGUMENTS (fn);
4308 while (args)
4309 {
4310 DECL_CONTEXT (args) = fn;
4311 args = TREE_CHAIN (args);
4312 }
4313 }
4314 }
4315
4316 /* Fixup the inline methods and friends in TYPE now that TYPE is
4317 complete. */
4318
4319 static void
4320 fixup_inline_methods (tree type)
4321 {
4322 tree method = TYPE_METHODS (type);
4323
4324 if (method && TREE_CODE (method) == TREE_VEC)
4325 {
4326 if (TREE_VEC_ELT (method, 1))
4327 method = TREE_VEC_ELT (method, 1);
4328 else if (TREE_VEC_ELT (method, 0))
4329 method = TREE_VEC_ELT (method, 0);
4330 else
4331 method = TREE_VEC_ELT (method, 2);
4332 }
4333
4334 /* Do inline member functions. */
4335 for (; method; method = TREE_CHAIN (method))
4336 fixup_pending_inline (method);
4337
4338 /* Do friends. */
4339 for (method = CLASSTYPE_INLINE_FRIENDS (type);
4340 method;
4341 method = TREE_CHAIN (method))
4342 fixup_pending_inline (TREE_VALUE (method));
4343 CLASSTYPE_INLINE_FRIENDS (type) = NULL_TREE;
4344 }
4345
4346 /* Add OFFSET to all base types of BINFO which is a base in the
4347 hierarchy dominated by T.
4348
4349 OFFSET, which is a type offset, is number of bytes. */
4350
4351 static void
4352 propagate_binfo_offsets (tree binfo, tree offset)
4353 {
4354 int i;
4355 tree primary_binfo;
4356
4357 /* Update BINFO's offset. */
4358 BINFO_OFFSET (binfo)
4359 = convert (sizetype,
4360 size_binop (PLUS_EXPR,
4361 convert (ssizetype, BINFO_OFFSET (binfo)),
4362 offset));
4363
4364 /* Find the primary base class. */
4365 primary_binfo = get_primary_binfo (binfo);
4366
4367 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4368 downwards. */
4369 for (i = -1; i < BINFO_N_BASETYPES (binfo); ++i)
4370 {
4371 tree base_binfo;
4372
4373 /* On the first time through the loop, do the primary base.
4374 Because the primary base need not be an immediate base, we
4375 must handle the primary base specially. */
4376 if (i == -1)
4377 {
4378 if (!primary_binfo)
4379 continue;
4380
4381 base_binfo = primary_binfo;
4382 }
4383 else
4384 {
4385 base_binfo = BINFO_BASETYPE (binfo, i);
4386 /* Don't do the primary base twice. */
4387 if (base_binfo == primary_binfo)
4388 continue;
4389 }
4390
4391 /* Skip virtual bases that aren't our canonical primary base. */
4392 if (TREE_VIA_VIRTUAL (base_binfo)
4393 && BINFO_PRIMARY_BASE_OF (base_binfo) != binfo)
4394 continue;
4395
4396 propagate_binfo_offsets (base_binfo, offset);
4397 }
4398 }
4399
4400 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4401 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4402 empty subobjects of T. */
4403
4404 static void
4405 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4406 {
4407 tree vbase;
4408 tree t = rli->t;
4409 bool first_vbase = true;
4410 tree *next_field;
4411
4412 if (CLASSTYPE_N_BASECLASSES (t) == 0)
4413 return;
4414
4415 if (!abi_version_at_least(2))
4416 {
4417 /* In G++ 3.2, we incorrectly rounded the size before laying out
4418 the virtual bases. */
4419 finish_record_layout (rli, /*free_p=*/false);
4420 #ifdef STRUCTURE_SIZE_BOUNDARY
4421 /* Packed structures don't need to have minimum size. */
4422 if (! TYPE_PACKED (t))
4423 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4424 #endif
4425 rli->offset = TYPE_SIZE_UNIT (t);
4426 rli->bitpos = bitsize_zero_node;
4427 rli->record_align = TYPE_ALIGN (t);
4428 }
4429
4430 /* Find the last field. The artificial fields created for virtual
4431 bases will go after the last extant field to date. */
4432 next_field = &TYPE_FIELDS (t);
4433 while (*next_field)
4434 next_field = &TREE_CHAIN (*next_field);
4435
4436 /* Go through the virtual bases, allocating space for each virtual
4437 base that is not already a primary base class. These are
4438 allocated in inheritance graph order. */
4439 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4440 {
4441 if (!TREE_VIA_VIRTUAL (vbase))
4442 continue;
4443
4444 if (!BINFO_PRIMARY_P (vbase))
4445 {
4446 tree basetype = TREE_TYPE (vbase);
4447
4448 /* This virtual base is not a primary base of any class in the
4449 hierarchy, so we have to add space for it. */
4450 next_field = build_base_field (rli, vbase,
4451 offsets, next_field);
4452
4453 /* If the first virtual base might have been placed at a
4454 lower address, had we started from CLASSTYPE_SIZE, rather
4455 than TYPE_SIZE, issue a warning. There can be both false
4456 positives and false negatives from this warning in rare
4457 cases; to deal with all the possibilities would probably
4458 require performing both layout algorithms and comparing
4459 the results which is not particularly tractable. */
4460 if (warn_abi
4461 && first_vbase
4462 && (tree_int_cst_lt
4463 (size_binop (CEIL_DIV_EXPR,
4464 round_up (CLASSTYPE_SIZE (t),
4465 CLASSTYPE_ALIGN (basetype)),
4466 bitsize_unit_node),
4467 BINFO_OFFSET (vbase))))
4468 warning ("offset of virtual base `%T' is not ABI-compliant and may change in a future version of GCC",
4469 basetype);
4470
4471 first_vbase = false;
4472 }
4473 }
4474 }
4475
4476 /* Returns the offset of the byte just past the end of the base class
4477 BINFO. */
4478
4479 static tree
4480 end_of_base (tree binfo)
4481 {
4482 tree size;
4483
4484 if (is_empty_class (BINFO_TYPE (binfo)))
4485 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4486 allocate some space for it. It cannot have virtual bases, so
4487 TYPE_SIZE_UNIT is fine. */
4488 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4489 else
4490 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4491
4492 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4493 }
4494
4495 /* Returns the offset of the byte just past the end of the base class
4496 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4497 only non-virtual bases are included. */
4498
4499 static tree
4500 end_of_class (tree t, int include_virtuals_p)
4501 {
4502 tree result = size_zero_node;
4503 tree binfo;
4504 tree offset;
4505 int i;
4506
4507 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
4508 {
4509 binfo = BINFO_BASETYPE (TYPE_BINFO (t), i);
4510
4511 if (!include_virtuals_p
4512 && TREE_VIA_VIRTUAL (binfo)
4513 && BINFO_PRIMARY_BASE_OF (binfo) != TYPE_BINFO (t))
4514 continue;
4515
4516 offset = end_of_base (binfo);
4517 if (INT_CST_LT_UNSIGNED (result, offset))
4518 result = offset;
4519 }
4520
4521 /* G++ 3.2 did not check indirect virtual bases. */
4522 if (abi_version_at_least (2) && include_virtuals_p)
4523 for (binfo = CLASSTYPE_VBASECLASSES (t);
4524 binfo;
4525 binfo = TREE_CHAIN (binfo))
4526 {
4527 offset = end_of_base (TREE_VALUE (binfo));
4528 if (INT_CST_LT_UNSIGNED (result, offset))
4529 result = offset;
4530 }
4531
4532 return result;
4533 }
4534
4535 /* Warn about bases of T that are inaccessible because they are
4536 ambiguous. For example:
4537
4538 struct S {};
4539 struct T : public S {};
4540 struct U : public S, public T {};
4541
4542 Here, `(S*) new U' is not allowed because there are two `S'
4543 subobjects of U. */
4544
4545 static void
4546 warn_about_ambiguous_bases (tree t)
4547 {
4548 int i;
4549 tree vbases;
4550 tree basetype;
4551
4552 /* Check direct bases. */
4553 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
4554 {
4555 basetype = TYPE_BINFO_BASETYPE (t, i);
4556
4557 if (!lookup_base (t, basetype, ba_ignore | ba_quiet, NULL))
4558 warning ("direct base `%T' inaccessible in `%T' due to ambiguity",
4559 basetype, t);
4560 }
4561
4562 /* Check for ambiguous virtual bases. */
4563 if (extra_warnings)
4564 for (vbases = CLASSTYPE_VBASECLASSES (t);
4565 vbases;
4566 vbases = TREE_CHAIN (vbases))
4567 {
4568 basetype = BINFO_TYPE (TREE_VALUE (vbases));
4569
4570 if (!lookup_base (t, basetype, ba_ignore | ba_quiet, NULL))
4571 warning ("virtual base `%T' inaccessible in `%T' due to ambiguity",
4572 basetype, t);
4573 }
4574 }
4575
4576 /* Compare two INTEGER_CSTs K1 and K2. */
4577
4578 static int
4579 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4580 {
4581 return tree_int_cst_compare ((tree) k1, (tree) k2);
4582 }
4583
4584 /* Increase the size indicated in RLI to account for empty classes
4585 that are "off the end" of the class. */
4586
4587 static void
4588 include_empty_classes (record_layout_info rli)
4589 {
4590 tree eoc;
4591 tree rli_size;
4592
4593 /* It might be the case that we grew the class to allocate a
4594 zero-sized base class. That won't be reflected in RLI, yet,
4595 because we are willing to overlay multiple bases at the same
4596 offset. However, now we need to make sure that RLI is big enough
4597 to reflect the entire class. */
4598 eoc = end_of_class (rli->t,
4599 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4600 rli_size = rli_size_unit_so_far (rli);
4601 if (TREE_CODE (rli_size) == INTEGER_CST
4602 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4603 {
4604 if (!abi_version_at_least (2))
4605 /* In version 1 of the ABI, the size of a class that ends with
4606 a bitfield was not rounded up to a whole multiple of a
4607 byte. Because rli_size_unit_so_far returns only the number
4608 of fully allocated bytes, any extra bits were not included
4609 in the size. */
4610 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4611 else
4612 /* The size should have been rounded to a whole byte. */
4613 my_friendly_assert (tree_int_cst_equal (rli->bitpos,
4614 round_down (rli->bitpos,
4615 BITS_PER_UNIT)),
4616 20030903);
4617 rli->bitpos
4618 = size_binop (PLUS_EXPR,
4619 rli->bitpos,
4620 size_binop (MULT_EXPR,
4621 convert (bitsizetype,
4622 size_binop (MINUS_EXPR,
4623 eoc, rli_size)),
4624 bitsize_int (BITS_PER_UNIT)));
4625 normalize_rli (rli);
4626 }
4627 }
4628
4629 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4630 BINFO_OFFSETs for all of the base-classes. Position the vtable
4631 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4632
4633 static void
4634 layout_class_type (tree t, tree *virtuals_p)
4635 {
4636 tree non_static_data_members;
4637 tree field;
4638 tree vptr;
4639 record_layout_info rli;
4640 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4641 types that appear at that offset. */
4642 splay_tree empty_base_offsets;
4643 /* True if the last field layed out was a bit-field. */
4644 bool last_field_was_bitfield = false;
4645 /* The location at which the next field should be inserted. */
4646 tree *next_field;
4647 /* T, as a base class. */
4648 tree base_t;
4649
4650 /* Keep track of the first non-static data member. */
4651 non_static_data_members = TYPE_FIELDS (t);
4652
4653 /* Start laying out the record. */
4654 rli = start_record_layout (t);
4655
4656 /* If possible, we reuse the virtual function table pointer from one
4657 of our base classes. */
4658 determine_primary_base (t);
4659
4660 /* Create a pointer to our virtual function table. */
4661 vptr = create_vtable_ptr (t, virtuals_p);
4662
4663 /* The vptr is always the first thing in the class. */
4664 if (vptr)
4665 {
4666 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4667 TYPE_FIELDS (t) = vptr;
4668 next_field = &TREE_CHAIN (vptr);
4669 place_field (rli, vptr);
4670 }
4671 else
4672 next_field = &TYPE_FIELDS (t);
4673
4674 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4675 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4676 NULL, NULL);
4677 build_base_fields (rli, empty_base_offsets, next_field);
4678
4679 /* Layout the non-static data members. */
4680 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4681 {
4682 tree type;
4683 tree padding;
4684
4685 /* We still pass things that aren't non-static data members to
4686 the back-end, in case it wants to do something with them. */
4687 if (TREE_CODE (field) != FIELD_DECL)
4688 {
4689 place_field (rli, field);
4690 /* If the static data member has incomplete type, keep track
4691 of it so that it can be completed later. (The handling
4692 of pending statics in finish_record_layout is
4693 insufficient; consider:
4694
4695 struct S1;
4696 struct S2 { static S1 s1; };
4697
4698 At this point, finish_record_layout will be called, but
4699 S1 is still incomplete.) */
4700 if (TREE_CODE (field) == VAR_DECL)
4701 maybe_register_incomplete_var (field);
4702 continue;
4703 }
4704
4705 type = TREE_TYPE (field);
4706
4707 padding = NULL_TREE;
4708
4709 /* If this field is a bit-field whose width is greater than its
4710 type, then there are some special rules for allocating
4711 it. */
4712 if (DECL_C_BIT_FIELD (field)
4713 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4714 {
4715 integer_type_kind itk;
4716 tree integer_type;
4717 bool was_unnamed_p = false;
4718 /* We must allocate the bits as if suitably aligned for the
4719 longest integer type that fits in this many bits. type
4720 of the field. Then, we are supposed to use the left over
4721 bits as additional padding. */
4722 for (itk = itk_char; itk != itk_none; ++itk)
4723 if (INT_CST_LT (DECL_SIZE (field),
4724 TYPE_SIZE (integer_types[itk])))
4725 break;
4726
4727 /* ITK now indicates a type that is too large for the
4728 field. We have to back up by one to find the largest
4729 type that fits. */
4730 integer_type = integer_types[itk - 1];
4731
4732 /* Figure out how much additional padding is required. GCC
4733 3.2 always created a padding field, even if it had zero
4734 width. */
4735 if (!abi_version_at_least (2)
4736 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4737 {
4738 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4739 /* In a union, the padding field must have the full width
4740 of the bit-field; all fields start at offset zero. */
4741 padding = DECL_SIZE (field);
4742 else
4743 {
4744 if (warn_abi && TREE_CODE (t) == UNION_TYPE)
4745 warning ("size assigned to `%T' may not be "
4746 "ABI-compliant and may change in a future "
4747 "version of GCC",
4748 t);
4749 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4750 TYPE_SIZE (integer_type));
4751 }
4752 }
4753 #ifdef PCC_BITFIELD_TYPE_MATTERS
4754 /* An unnamed bitfield does not normally affect the
4755 alignment of the containing class on a target where
4756 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4757 make any exceptions for unnamed bitfields when the
4758 bitfields are longer than their types. Therefore, we
4759 temporarily give the field a name. */
4760 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4761 {
4762 was_unnamed_p = true;
4763 DECL_NAME (field) = make_anon_name ();
4764 }
4765 #endif
4766 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4767 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4768 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4769 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4770 empty_base_offsets);
4771 if (was_unnamed_p)
4772 DECL_NAME (field) = NULL_TREE;
4773 /* Now that layout has been performed, set the size of the
4774 field to the size of its declared type; the rest of the
4775 field is effectively invisible. */
4776 DECL_SIZE (field) = TYPE_SIZE (type);
4777 /* We must also reset the DECL_MODE of the field. */
4778 if (abi_version_at_least (2))
4779 DECL_MODE (field) = TYPE_MODE (type);
4780 else if (warn_abi
4781 && DECL_MODE (field) != TYPE_MODE (type))
4782 /* Versions of G++ before G++ 3.4 did not reset the
4783 DECL_MODE. */
4784 warning ("the offset of `%D' may not be ABI-compliant and may "
4785 "change in a future version of GCC", field);
4786 }
4787 else
4788 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4789 empty_base_offsets);
4790
4791 /* Remember the location of any empty classes in FIELD. */
4792 if (abi_version_at_least (2))
4793 record_subobject_offsets (TREE_TYPE (field),
4794 byte_position(field),
4795 empty_base_offsets,
4796 /*vbases_p=*/1);
4797
4798 /* If a bit-field does not immediately follow another bit-field,
4799 and yet it starts in the middle of a byte, we have failed to
4800 comply with the ABI. */
4801 if (warn_abi
4802 && DECL_C_BIT_FIELD (field)
4803 && !last_field_was_bitfield
4804 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4805 DECL_FIELD_BIT_OFFSET (field),
4806 bitsize_unit_node)))
4807 cp_warning_at ("offset of `%D' is not ABI-compliant and may change in a future version of GCC",
4808 field);
4809
4810 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4811 offset of the field. */
4812 if (warn_abi
4813 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4814 byte_position (field))
4815 && contains_empty_class_p (TREE_TYPE (field)))
4816 cp_warning_at ("`%D' contains empty classes which may cause base "
4817 "classes to be placed at different locations in a "
4818 "future version of GCC",
4819 field);
4820
4821 /* If we needed additional padding after this field, add it
4822 now. */
4823 if (padding)
4824 {
4825 tree padding_field;
4826
4827 padding_field = build_decl (FIELD_DECL,
4828 NULL_TREE,
4829 char_type_node);
4830 DECL_BIT_FIELD (padding_field) = 1;
4831 DECL_SIZE (padding_field) = padding;
4832 DECL_CONTEXT (padding_field) = t;
4833 DECL_ARTIFICIAL (padding_field) = 1;
4834 layout_nonempty_base_or_field (rli, padding_field,
4835 NULL_TREE,
4836 empty_base_offsets);
4837 }
4838
4839 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4840 }
4841
4842 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4843 {
4844 /* Make sure that we are on a byte boundary so that the size of
4845 the class without virtual bases will always be a round number
4846 of bytes. */
4847 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4848 normalize_rli (rli);
4849 }
4850
4851 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4852 padding. */
4853 if (!abi_version_at_least (2))
4854 include_empty_classes(rli);
4855
4856 /* Delete all zero-width bit-fields from the list of fields. Now
4857 that the type is laid out they are no longer important. */
4858 remove_zero_width_bit_fields (t);
4859
4860 /* Create the version of T used for virtual bases. We do not use
4861 make_aggr_type for this version; this is an artificial type. For
4862 a POD type, we just reuse T. */
4863 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4864 {
4865 base_t = make_node (TREE_CODE (t));
4866
4867 /* Set the size and alignment for the new type. In G++ 3.2, all
4868 empty classes were considered to have size zero when used as
4869 base classes. */
4870 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4871 {
4872 TYPE_SIZE (base_t) = bitsize_zero_node;
4873 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4874 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4875 warning ("layout of classes derived from empty class `%T' "
4876 "may change in a future version of GCC",
4877 t);
4878 }
4879 else
4880 {
4881 tree eoc;
4882
4883 /* If the ABI version is not at least two, and the last
4884 field was a bit-field, RLI may not be on a byte
4885 boundary. In particular, rli_size_unit_so_far might
4886 indicate the last complete byte, while rli_size_so_far
4887 indicates the total number of bits used. Therefore,
4888 rli_size_so_far, rather than rli_size_unit_so_far, is
4889 used to compute TYPE_SIZE_UNIT. */
4890 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4891 TYPE_SIZE_UNIT (base_t)
4892 = size_binop (MAX_EXPR,
4893 convert (sizetype,
4894 size_binop (CEIL_DIV_EXPR,
4895 rli_size_so_far (rli),
4896 bitsize_int (BITS_PER_UNIT))),
4897 eoc);
4898 TYPE_SIZE (base_t)
4899 = size_binop (MAX_EXPR,
4900 rli_size_so_far (rli),
4901 size_binop (MULT_EXPR,
4902 convert (bitsizetype, eoc),
4903 bitsize_int (BITS_PER_UNIT)));
4904 }
4905 TYPE_ALIGN (base_t) = rli->record_align;
4906 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4907
4908 /* Copy the fields from T. */
4909 next_field = &TYPE_FIELDS (base_t);
4910 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4911 if (TREE_CODE (field) == FIELD_DECL)
4912 {
4913 *next_field = build_decl (FIELD_DECL,
4914 DECL_NAME (field),
4915 TREE_TYPE (field));
4916 DECL_CONTEXT (*next_field) = base_t;
4917 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4918 DECL_FIELD_BIT_OFFSET (*next_field)
4919 = DECL_FIELD_BIT_OFFSET (field);
4920 DECL_SIZE (*next_field) = DECL_SIZE (field);
4921 DECL_MODE (*next_field) = DECL_MODE (field);
4922 next_field = &TREE_CHAIN (*next_field);
4923 }
4924
4925 /* Record the base version of the type. */
4926 CLASSTYPE_AS_BASE (t) = base_t;
4927 TYPE_CONTEXT (base_t) = t;
4928 }
4929 else
4930 CLASSTYPE_AS_BASE (t) = t;
4931
4932 /* Every empty class contains an empty class. */
4933 if (CLASSTYPE_EMPTY_P (t))
4934 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4935
4936 /* Set the TYPE_DECL for this type to contain the right
4937 value for DECL_OFFSET, so that we can use it as part
4938 of a COMPONENT_REF for multiple inheritance. */
4939 layout_decl (TYPE_MAIN_DECL (t), 0);
4940
4941 /* Now fix up any virtual base class types that we left lying
4942 around. We must get these done before we try to lay out the
4943 virtual function table. As a side-effect, this will remove the
4944 base subobject fields. */
4945 layout_virtual_bases (rli, empty_base_offsets);
4946
4947 /* Make sure that empty classes are reflected in RLI at this
4948 point. */
4949 include_empty_classes(rli);
4950
4951 /* Make sure not to create any structures with zero size. */
4952 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
4953 place_field (rli,
4954 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
4955
4956 /* Let the back-end lay out the type. */
4957 finish_record_layout (rli, /*free_p=*/true);
4958
4959 /* Warn about bases that can't be talked about due to ambiguity. */
4960 warn_about_ambiguous_bases (t);
4961
4962 /* Now that we're done with layout, give the base fields the real types. */
4963 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4964 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
4965 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
4966
4967 /* Clean up. */
4968 splay_tree_delete (empty_base_offsets);
4969 }
4970
4971 /* Returns the virtual function with which the vtable for TYPE is
4972 emitted, or NULL_TREE if that heuristic is not applicable to TYPE. */
4973
4974 static tree
4975 key_method (tree type)
4976 {
4977 tree method;
4978
4979 if (TYPE_FOR_JAVA (type)
4980 || processing_template_decl
4981 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
4982 || CLASSTYPE_INTERFACE_KNOWN (type))
4983 return NULL_TREE;
4984
4985 for (method = TYPE_METHODS (type); method != NULL_TREE;
4986 method = TREE_CHAIN (method))
4987 if (DECL_VINDEX (method) != NULL_TREE
4988 && ! DECL_DECLARED_INLINE_P (method)
4989 && ! DECL_PURE_VIRTUAL_P (method))
4990 return method;
4991
4992 return NULL_TREE;
4993 }
4994
4995 /* Perform processing required when the definition of T (a class type)
4996 is complete. */
4997
4998 void
4999 finish_struct_1 (tree t)
5000 {
5001 tree x;
5002 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5003 tree virtuals = NULL_TREE;
5004 int n_fields = 0;
5005 tree vfield;
5006
5007 if (COMPLETE_TYPE_P (t))
5008 {
5009 if (IS_AGGR_TYPE (t))
5010 error ("redefinition of `%#T'", t);
5011 else
5012 abort ();
5013 popclass ();
5014 return;
5015 }
5016
5017 /* If this type was previously laid out as a forward reference,
5018 make sure we lay it out again. */
5019 TYPE_SIZE (t) = NULL_TREE;
5020 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5021
5022 fixup_inline_methods (t);
5023
5024 /* Make assumptions about the class; we'll reset the flags if
5025 necessary. */
5026 CLASSTYPE_EMPTY_P (t) = 1;
5027 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5028 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5029
5030 /* Do end-of-class semantic processing: checking the validity of the
5031 bases and members and add implicitly generated methods. */
5032 check_bases_and_members (t);
5033
5034 /* Find the key method. */
5035 if (TYPE_CONTAINS_VPTR_P (t))
5036 {
5037 CLASSTYPE_KEY_METHOD (t) = key_method (t);
5038
5039 /* If a polymorphic class has no key method, we may emit the vtable
5040 in every translation unit where the class definition appears. */
5041 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5042 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5043 }
5044
5045 /* Layout the class itself. */
5046 layout_class_type (t, &virtuals);
5047 if (CLASSTYPE_AS_BASE (t) != t)
5048 /* We use the base type for trivial assignments, and hence it
5049 needs a mode. */
5050 compute_record_mode (CLASSTYPE_AS_BASE (t));
5051
5052 /* Make sure that we get our own copy of the vfield FIELD_DECL. */
5053 vfield = TYPE_VFIELD (t);
5054 if (vfield && CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5055 {
5056 tree primary = CLASSTYPE_PRIMARY_BINFO (t);
5057
5058 my_friendly_assert (same_type_p (DECL_FIELD_CONTEXT (vfield),
5059 BINFO_TYPE (primary)),
5060 20010726);
5061 /* The vtable better be at the start. */
5062 my_friendly_assert (integer_zerop (DECL_FIELD_OFFSET (vfield)),
5063 20010726);
5064 my_friendly_assert (integer_zerop (BINFO_OFFSET (primary)),
5065 20010726);
5066
5067 vfield = copy_decl (vfield);
5068 DECL_FIELD_CONTEXT (vfield) = t;
5069 TYPE_VFIELD (t) = vfield;
5070 }
5071 else
5072 my_friendly_assert (!vfield || DECL_FIELD_CONTEXT (vfield) == t, 20010726);
5073
5074 virtuals = modify_all_vtables (t, nreverse (virtuals));
5075
5076 /* If we created a new vtbl pointer for this class, add it to the
5077 list. */
5078 if (TYPE_VFIELD (t) && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5079 CLASSTYPE_VFIELDS (t)
5080 = chainon (CLASSTYPE_VFIELDS (t), build_tree_list (NULL_TREE, t));
5081
5082 /* If necessary, create the primary vtable for this class. */
5083 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5084 {
5085 /* We must enter these virtuals into the table. */
5086 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5087 build_primary_vtable (NULL_TREE, t);
5088 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5089 /* Here we know enough to change the type of our virtual
5090 function table, but we will wait until later this function. */
5091 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5092 }
5093
5094 if (TYPE_CONTAINS_VPTR_P (t))
5095 {
5096 int vindex;
5097 tree fn;
5098
5099 if (TYPE_BINFO_VTABLE (t))
5100 my_friendly_assert (DECL_VIRTUAL_P (TYPE_BINFO_VTABLE (t)),
5101 20000116);
5102 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5103 my_friendly_assert (TYPE_BINFO_VIRTUALS (t) == NULL_TREE,
5104 20000116);
5105
5106 /* Add entries for virtual functions introduced by this class. */
5107 TYPE_BINFO_VIRTUALS (t) = chainon (TYPE_BINFO_VIRTUALS (t), virtuals);
5108
5109 /* Set DECL_VINDEX for all functions declared in this class. */
5110 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5111 fn;
5112 fn = TREE_CHAIN (fn),
5113 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5114 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5115 {
5116 tree fndecl = BV_FN (fn);
5117
5118 if (DECL_THUNK_P (fndecl))
5119 /* A thunk. We should never be calling this entry directly
5120 from this vtable -- we'd use the entry for the non
5121 thunk base function. */
5122 DECL_VINDEX (fndecl) = NULL_TREE;
5123 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5124 DECL_VINDEX (fndecl) = build_shared_int_cst (vindex);
5125 }
5126 }
5127
5128 finish_struct_bits (t);
5129
5130 /* Complete the rtl for any static member objects of the type we're
5131 working on. */
5132 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5133 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5134 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5135 DECL_MODE (x) = TYPE_MODE (t);
5136
5137 /* Done with FIELDS...now decide whether to sort these for
5138 faster lookups later.
5139
5140 We use a small number because most searches fail (succeeding
5141 ultimately as the search bores through the inheritance
5142 hierarchy), and we want this failure to occur quickly. */
5143
5144 n_fields = count_fields (TYPE_FIELDS (t));
5145 if (n_fields > 7)
5146 {
5147 struct sorted_fields_type *field_vec = ggc_alloc (sizeof (struct sorted_fields_type)
5148 + n_fields * sizeof (tree));
5149 field_vec->len = n_fields;
5150 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5151 qsort (field_vec->elts, n_fields, sizeof (tree),
5152 field_decl_cmp);
5153 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5154 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5155 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5156 }
5157
5158 if (TYPE_HAS_CONSTRUCTOR (t))
5159 {
5160 tree vfields = CLASSTYPE_VFIELDS (t);
5161
5162 for (vfields = CLASSTYPE_VFIELDS (t);
5163 vfields; vfields = TREE_CHAIN (vfields))
5164 /* Mark the fact that constructor for T could affect anybody
5165 inheriting from T who wants to initialize vtables for
5166 VFIELDS's type. */
5167 if (VF_BINFO_VALUE (vfields))
5168 TREE_ADDRESSABLE (vfields) = 1;
5169 }
5170
5171 /* Make the rtl for any new vtables we have created, and unmark
5172 the base types we marked. */
5173 finish_vtbls (t);
5174
5175 /* Build the VTT for T. */
5176 build_vtt (t);
5177
5178 if (warn_nonvdtor && TYPE_POLYMORPHIC_P (t) && TYPE_HAS_DESTRUCTOR (t)
5179 && DECL_VINDEX (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (t), 1)) == NULL_TREE)
5180 warning ("`%#T' has virtual functions but non-virtual destructor", t);
5181
5182 complete_vars (t);
5183
5184 if (warn_overloaded_virtual)
5185 warn_hidden (t);
5186
5187 maybe_suppress_debug_info (t);
5188
5189 dump_class_hierarchy (t);
5190
5191 /* Finish debugging output for this type. */
5192 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5193 }
5194
5195 /* When T was built up, the member declarations were added in reverse
5196 order. Rearrange them to declaration order. */
5197
5198 void
5199 unreverse_member_declarations (tree t)
5200 {
5201 tree next;
5202 tree prev;
5203 tree x;
5204
5205 /* The following lists are all in reverse order. Put them in
5206 declaration order now. */
5207 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5208 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5209
5210 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5211 reverse order, so we can't just use nreverse. */
5212 prev = NULL_TREE;
5213 for (x = TYPE_FIELDS (t);
5214 x && TREE_CODE (x) != TYPE_DECL;
5215 x = next)
5216 {
5217 next = TREE_CHAIN (x);
5218 TREE_CHAIN (x) = prev;
5219 prev = x;
5220 }
5221 if (prev)
5222 {
5223 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5224 if (prev)
5225 TYPE_FIELDS (t) = prev;
5226 }
5227 }
5228
5229 tree
5230 finish_struct (tree t, tree attributes)
5231 {
5232 location_t saved_loc = input_location;
5233
5234 /* Now that we've got all the field declarations, reverse everything
5235 as necessary. */
5236 unreverse_member_declarations (t);
5237
5238 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5239
5240 /* Nadger the current location so that diagnostics point to the start of
5241 the struct, not the end. */
5242 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5243
5244 if (processing_template_decl)
5245 {
5246 finish_struct_methods (t);
5247 TYPE_SIZE (t) = bitsize_zero_node;
5248 }
5249 else
5250 finish_struct_1 (t);
5251
5252 input_location = saved_loc;
5253
5254 TYPE_BEING_DEFINED (t) = 0;
5255
5256 if (current_class_type)
5257 popclass ();
5258 else
5259 error ("trying to finish struct, but kicked out due to previous parse errors");
5260
5261 if (processing_template_decl && at_function_scope_p ())
5262 add_stmt (build_min (TAG_DEFN, t));
5263
5264 return t;
5265 }
5266 \f
5267 /* Return the dynamic type of INSTANCE, if known.
5268 Used to determine whether the virtual function table is needed
5269 or not.
5270
5271 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5272 of our knowledge of its type. *NONNULL should be initialized
5273 before this function is called. */
5274
5275 static tree
5276 fixed_type_or_null (tree instance, int* nonnull, int* cdtorp)
5277 {
5278 switch (TREE_CODE (instance))
5279 {
5280 case INDIRECT_REF:
5281 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5282 return NULL_TREE;
5283 else
5284 return fixed_type_or_null (TREE_OPERAND (instance, 0),
5285 nonnull, cdtorp);
5286
5287 case CALL_EXPR:
5288 /* This is a call to a constructor, hence it's never zero. */
5289 if (TREE_HAS_CONSTRUCTOR (instance))
5290 {
5291 if (nonnull)
5292 *nonnull = 1;
5293 return TREE_TYPE (instance);
5294 }
5295 return NULL_TREE;
5296
5297 case SAVE_EXPR:
5298 /* This is a call to a constructor, hence it's never zero. */
5299 if (TREE_HAS_CONSTRUCTOR (instance))
5300 {
5301 if (nonnull)
5302 *nonnull = 1;
5303 return TREE_TYPE (instance);
5304 }
5305 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5306
5307 case RTL_EXPR:
5308 return NULL_TREE;
5309
5310 case PLUS_EXPR:
5311 case MINUS_EXPR:
5312 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5313 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5314 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5315 /* Propagate nonnull. */
5316 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5317 return NULL_TREE;
5318
5319 case NOP_EXPR:
5320 case CONVERT_EXPR:
5321 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5322
5323 case ADDR_EXPR:
5324 if (nonnull)
5325 *nonnull = 1;
5326 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5327
5328 case COMPONENT_REF:
5329 return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull, cdtorp);
5330
5331 case VAR_DECL:
5332 case FIELD_DECL:
5333 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5334 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5335 {
5336 if (nonnull)
5337 *nonnull = 1;
5338 return TREE_TYPE (TREE_TYPE (instance));
5339 }
5340 /* fall through... */
5341 case TARGET_EXPR:
5342 case PARM_DECL:
5343 case RESULT_DECL:
5344 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5345 {
5346 if (nonnull)
5347 *nonnull = 1;
5348 return TREE_TYPE (instance);
5349 }
5350 else if (instance == current_class_ptr)
5351 {
5352 if (nonnull)
5353 *nonnull = 1;
5354
5355 /* if we're in a ctor or dtor, we know our type. */
5356 if (DECL_LANG_SPECIFIC (current_function_decl)
5357 && (DECL_CONSTRUCTOR_P (current_function_decl)
5358 || DECL_DESTRUCTOR_P (current_function_decl)))
5359 {
5360 if (cdtorp)
5361 *cdtorp = 1;
5362 return TREE_TYPE (TREE_TYPE (instance));
5363 }
5364 }
5365 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5366 {
5367 /* Reference variables should be references to objects. */
5368 if (nonnull)
5369 *nonnull = 1;
5370
5371 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5372 variable's initializer may refer to the variable
5373 itself. */
5374 if (TREE_CODE (instance) == VAR_DECL
5375 && DECL_INITIAL (instance)
5376 && !DECL_VAR_MARKED_P (instance))
5377 {
5378 tree type;
5379 DECL_VAR_MARKED_P (instance) = 1;
5380 type = fixed_type_or_null (DECL_INITIAL (instance),
5381 nonnull, cdtorp);
5382 DECL_VAR_MARKED_P (instance) = 0;
5383 return type;
5384 }
5385 }
5386 return NULL_TREE;
5387
5388 default:
5389 return NULL_TREE;
5390 }
5391 }
5392
5393 /* Return nonzero if the dynamic type of INSTANCE is known, and
5394 equivalent to the static type. We also handle the case where
5395 INSTANCE is really a pointer. Return negative if this is a
5396 ctor/dtor. There the dynamic type is known, but this might not be
5397 the most derived base of the original object, and hence virtual
5398 bases may not be layed out according to this type.
5399
5400 Used to determine whether the virtual function table is needed
5401 or not.
5402
5403 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5404 of our knowledge of its type. *NONNULL should be initialized
5405 before this function is called. */
5406
5407 int
5408 resolves_to_fixed_type_p (tree instance, int* nonnull)
5409 {
5410 tree t = TREE_TYPE (instance);
5411 int cdtorp = 0;
5412
5413 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5414 if (fixed == NULL_TREE)
5415 return 0;
5416 if (POINTER_TYPE_P (t))
5417 t = TREE_TYPE (t);
5418 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5419 return 0;
5420 return cdtorp ? -1 : 1;
5421 }
5422
5423 \f
5424 void
5425 init_class_processing (void)
5426 {
5427 current_class_depth = 0;
5428 current_class_stack_size = 10;
5429 current_class_stack
5430 = xmalloc (current_class_stack_size * sizeof (struct class_stack_node));
5431 VARRAY_TREE_INIT (local_classes, 8, "local_classes");
5432
5433 ridpointers[(int) RID_PUBLIC] = access_public_node;
5434 ridpointers[(int) RID_PRIVATE] = access_private_node;
5435 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5436 }
5437
5438 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5439 appropriate for TYPE.
5440
5441 So that we may avoid calls to lookup_name, we cache the _TYPE
5442 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5443
5444 For multiple inheritance, we perform a two-pass depth-first search
5445 of the type lattice. The first pass performs a pre-order search,
5446 marking types after the type has had its fields installed in
5447 the appropriate IDENTIFIER_CLASS_VALUE slot. The second pass merely
5448 unmarks the marked types. If a field or member function name
5449 appears in an ambiguous way, the IDENTIFIER_CLASS_VALUE of
5450 that name becomes `error_mark_node'. */
5451
5452 void
5453 pushclass (tree type)
5454 {
5455 type = TYPE_MAIN_VARIANT (type);
5456
5457 /* Make sure there is enough room for the new entry on the stack. */
5458 if (current_class_depth + 1 >= current_class_stack_size)
5459 {
5460 current_class_stack_size *= 2;
5461 current_class_stack
5462 = xrealloc (current_class_stack,
5463 current_class_stack_size
5464 * sizeof (struct class_stack_node));
5465 }
5466
5467 /* Insert a new entry on the class stack. */
5468 current_class_stack[current_class_depth].name = current_class_name;
5469 current_class_stack[current_class_depth].type = current_class_type;
5470 current_class_stack[current_class_depth].access = current_access_specifier;
5471 current_class_stack[current_class_depth].names_used = 0;
5472 current_class_depth++;
5473
5474 /* Now set up the new type. */
5475 current_class_name = TYPE_NAME (type);
5476 if (TREE_CODE (current_class_name) == TYPE_DECL)
5477 current_class_name = DECL_NAME (current_class_name);
5478 current_class_type = type;
5479
5480 /* By default, things in classes are private, while things in
5481 structures or unions are public. */
5482 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5483 ? access_private_node
5484 : access_public_node);
5485
5486 if (previous_class_type != NULL_TREE
5487 && (type != previous_class_type
5488 || !COMPLETE_TYPE_P (previous_class_type))
5489 && current_class_depth == 1)
5490 {
5491 /* Forcibly remove any old class remnants. */
5492 invalidate_class_lookup_cache ();
5493 }
5494
5495 /* If we're about to enter a nested class, clear
5496 IDENTIFIER_CLASS_VALUE for the enclosing classes. */
5497 if (current_class_depth > 1)
5498 clear_identifier_class_values ();
5499
5500 pushlevel_class ();
5501
5502 if (type != previous_class_type || current_class_depth > 1)
5503 {
5504 push_class_decls (type);
5505 if (CLASSTYPE_TEMPLATE_INFO (type) && !CLASSTYPE_USE_TEMPLATE (type))
5506 {
5507 /* If we are entering the scope of a template declaration (not a
5508 specialization), we need to push all the using decls with
5509 dependent scope too. */
5510 tree fields;
5511
5512 for (fields = TYPE_FIELDS (type);
5513 fields; fields = TREE_CHAIN (fields))
5514 if (TREE_CODE (fields) == USING_DECL && !TREE_TYPE (fields))
5515 pushdecl_class_level (fields);
5516 }
5517 }
5518 else
5519 {
5520 tree item;
5521
5522 /* We are re-entering the same class we just left, so we don't
5523 have to search the whole inheritance matrix to find all the
5524 decls to bind again. Instead, we install the cached
5525 class_shadowed list, and walk through it binding names and
5526 setting up IDENTIFIER_TYPE_VALUEs. */
5527 set_class_shadows (previous_class_values);
5528 for (item = previous_class_values; item; item = TREE_CHAIN (item))
5529 {
5530 tree id = TREE_PURPOSE (item);
5531 tree decl = TREE_TYPE (item);
5532
5533 push_class_binding (id, decl);
5534 if (TREE_CODE (decl) == TYPE_DECL)
5535 set_identifier_type_value (id, decl);
5536 }
5537 unuse_fields (type);
5538 }
5539
5540 cxx_remember_type_decls (CLASSTYPE_NESTED_UTDS (type));
5541 }
5542
5543 /* When we exit a toplevel class scope, we save the
5544 IDENTIFIER_CLASS_VALUEs so that we can restore them quickly if we
5545 reenter the class. Here, we've entered some other class, so we
5546 must invalidate our cache. */
5547
5548 void
5549 invalidate_class_lookup_cache (void)
5550 {
5551 tree t;
5552
5553 /* The IDENTIFIER_CLASS_VALUEs are no longer valid. */
5554 for (t = previous_class_values; t; t = TREE_CHAIN (t))
5555 IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (t)) = NULL_TREE;
5556
5557 previous_class_values = NULL_TREE;
5558 previous_class_type = NULL_TREE;
5559 }
5560
5561 /* Get out of the current class scope. If we were in a class scope
5562 previously, that is the one popped to. */
5563
5564 void
5565 popclass (void)
5566 {
5567 poplevel_class ();
5568 pop_class_decls ();
5569
5570 current_class_depth--;
5571 current_class_name = current_class_stack[current_class_depth].name;
5572 current_class_type = current_class_stack[current_class_depth].type;
5573 current_access_specifier = current_class_stack[current_class_depth].access;
5574 if (current_class_stack[current_class_depth].names_used)
5575 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5576 }
5577
5578 /* Returns 1 if current_class_type is either T or a nested type of T.
5579 We start looking from 1 because entry 0 is from global scope, and has
5580 no type. */
5581
5582 int
5583 currently_open_class (tree t)
5584 {
5585 int i;
5586 if (current_class_type && same_type_p (t, current_class_type))
5587 return 1;
5588 for (i = 1; i < current_class_depth; ++i)
5589 if (current_class_stack[i].type
5590 && same_type_p (current_class_stack [i].type, t))
5591 return 1;
5592 return 0;
5593 }
5594
5595 /* If either current_class_type or one of its enclosing classes are derived
5596 from T, return the appropriate type. Used to determine how we found
5597 something via unqualified lookup. */
5598
5599 tree
5600 currently_open_derived_class (tree t)
5601 {
5602 int i;
5603
5604 /* The bases of a dependent type are unknown. */
5605 if (dependent_type_p (t))
5606 return NULL_TREE;
5607
5608 if (!current_class_type)
5609 return NULL_TREE;
5610
5611 if (DERIVED_FROM_P (t, current_class_type))
5612 return current_class_type;
5613
5614 for (i = current_class_depth - 1; i > 0; --i)
5615 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5616 return current_class_stack[i].type;
5617
5618 return NULL_TREE;
5619 }
5620
5621 /* When entering a class scope, all enclosing class scopes' names with
5622 static meaning (static variables, static functions, types and
5623 enumerators) have to be visible. This recursive function calls
5624 pushclass for all enclosing class contexts until global or a local
5625 scope is reached. TYPE is the enclosed class. */
5626
5627 void
5628 push_nested_class (tree type)
5629 {
5630 tree context;
5631
5632 /* A namespace might be passed in error cases, like A::B:C. */
5633 if (type == NULL_TREE
5634 || type == error_mark_node
5635 || TREE_CODE (type) == NAMESPACE_DECL
5636 || ! IS_AGGR_TYPE (type)
5637 || TREE_CODE (type) == TEMPLATE_TYPE_PARM
5638 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
5639 return;
5640
5641 context = DECL_CONTEXT (TYPE_MAIN_DECL (type));
5642
5643 if (context && CLASS_TYPE_P (context))
5644 push_nested_class (context);
5645 pushclass (type);
5646 }
5647
5648 /* Undoes a push_nested_class call. */
5649
5650 void
5651 pop_nested_class (void)
5652 {
5653 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5654
5655 popclass ();
5656 if (context && CLASS_TYPE_P (context))
5657 pop_nested_class ();
5658 }
5659
5660 /* Returns the number of extern "LANG" blocks we are nested within. */
5661
5662 int
5663 current_lang_depth (void)
5664 {
5665 return VARRAY_ACTIVE_SIZE (current_lang_base);
5666 }
5667
5668 /* Set global variables CURRENT_LANG_NAME to appropriate value
5669 so that behavior of name-mangling machinery is correct. */
5670
5671 void
5672 push_lang_context (tree name)
5673 {
5674 VARRAY_PUSH_TREE (current_lang_base, current_lang_name);
5675
5676 if (name == lang_name_cplusplus)
5677 {
5678 current_lang_name = name;
5679 }
5680 else if (name == lang_name_java)
5681 {
5682 current_lang_name = name;
5683 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5684 (See record_builtin_java_type in decl.c.) However, that causes
5685 incorrect debug entries if these types are actually used.
5686 So we re-enable debug output after extern "Java". */
5687 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5688 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5689 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5690 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5691 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5692 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5693 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5694 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5695 }
5696 else if (name == lang_name_c)
5697 {
5698 current_lang_name = name;
5699 }
5700 else
5701 error ("language string `\"%s\"' not recognized", IDENTIFIER_POINTER (name));
5702 }
5703
5704 /* Get out of the current language scope. */
5705
5706 void
5707 pop_lang_context (void)
5708 {
5709 current_lang_name = VARRAY_TOP_TREE (current_lang_base);
5710 VARRAY_POP (current_lang_base);
5711 }
5712 \f
5713 /* Type instantiation routines. */
5714
5715 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5716 matches the TARGET_TYPE. If there is no satisfactory match, return
5717 error_mark_node, and issue a error & warning messages under control
5718 of FLAGS. Permit pointers to member function if FLAGS permits. If
5719 TEMPLATE_ONLY, the name of the overloaded function was a
5720 template-id, and EXPLICIT_TARGS are the explicitly provided
5721 template arguments. */
5722
5723 static tree
5724 resolve_address_of_overloaded_function (tree target_type,
5725 tree overload,
5726 tsubst_flags_t flags,
5727 bool template_only,
5728 tree explicit_targs)
5729 {
5730 /* Here's what the standard says:
5731
5732 [over.over]
5733
5734 If the name is a function template, template argument deduction
5735 is done, and if the argument deduction succeeds, the deduced
5736 arguments are used to generate a single template function, which
5737 is added to the set of overloaded functions considered.
5738
5739 Non-member functions and static member functions match targets of
5740 type "pointer-to-function" or "reference-to-function." Nonstatic
5741 member functions match targets of type "pointer-to-member
5742 function;" the function type of the pointer to member is used to
5743 select the member function from the set of overloaded member
5744 functions. If a nonstatic member function is selected, the
5745 reference to the overloaded function name is required to have the
5746 form of a pointer to member as described in 5.3.1.
5747
5748 If more than one function is selected, any template functions in
5749 the set are eliminated if the set also contains a non-template
5750 function, and any given template function is eliminated if the
5751 set contains a second template function that is more specialized
5752 than the first according to the partial ordering rules 14.5.5.2.
5753 After such eliminations, if any, there shall remain exactly one
5754 selected function. */
5755
5756 int is_ptrmem = 0;
5757 int is_reference = 0;
5758 /* We store the matches in a TREE_LIST rooted here. The functions
5759 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5760 interoperability with most_specialized_instantiation. */
5761 tree matches = NULL_TREE;
5762 tree fn;
5763
5764 /* By the time we get here, we should be seeing only real
5765 pointer-to-member types, not the internal POINTER_TYPE to
5766 METHOD_TYPE representation. */
5767 my_friendly_assert (!(TREE_CODE (target_type) == POINTER_TYPE
5768 && (TREE_CODE (TREE_TYPE (target_type))
5769 == METHOD_TYPE)), 0);
5770
5771 my_friendly_assert (is_overloaded_fn (overload), 20030910);
5772
5773 /* Check that the TARGET_TYPE is reasonable. */
5774 if (TYPE_PTRFN_P (target_type))
5775 /* This is OK. */;
5776 else if (TYPE_PTRMEMFUNC_P (target_type))
5777 /* This is OK, too. */
5778 is_ptrmem = 1;
5779 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5780 {
5781 /* This is OK, too. This comes from a conversion to reference
5782 type. */
5783 target_type = build_reference_type (target_type);
5784 is_reference = 1;
5785 }
5786 else
5787 {
5788 if (flags & tf_error)
5789 error ("\
5790 cannot resolve overloaded function `%D' based on conversion to type `%T'",
5791 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5792 return error_mark_node;
5793 }
5794
5795 /* If we can find a non-template function that matches, we can just
5796 use it. There's no point in generating template instantiations
5797 if we're just going to throw them out anyhow. But, of course, we
5798 can only do this when we don't *need* a template function. */
5799 if (!template_only)
5800 {
5801 tree fns;
5802
5803 for (fns = overload; fns; fns = OVL_NEXT (fns))
5804 {
5805 tree fn = OVL_CURRENT (fns);
5806 tree fntype;
5807
5808 if (TREE_CODE (fn) == TEMPLATE_DECL)
5809 /* We're not looking for templates just yet. */
5810 continue;
5811
5812 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5813 != is_ptrmem)
5814 /* We're looking for a non-static member, and this isn't
5815 one, or vice versa. */
5816 continue;
5817
5818 /* Ignore anticipated decls of undeclared builtins. */
5819 if (DECL_ANTICIPATED (fn))
5820 continue;
5821
5822 /* See if there's a match. */
5823 fntype = TREE_TYPE (fn);
5824 if (is_ptrmem)
5825 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5826 else if (!is_reference)
5827 fntype = build_pointer_type (fntype);
5828
5829 if (can_convert_arg (target_type, fntype, fn))
5830 matches = tree_cons (fn, NULL_TREE, matches);
5831 }
5832 }
5833
5834 /* Now, if we've already got a match (or matches), there's no need
5835 to proceed to the template functions. But, if we don't have a
5836 match we need to look at them, too. */
5837 if (!matches)
5838 {
5839 tree target_fn_type;
5840 tree target_arg_types;
5841 tree target_ret_type;
5842 tree fns;
5843
5844 if (is_ptrmem)
5845 target_fn_type
5846 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5847 else
5848 target_fn_type = TREE_TYPE (target_type);
5849 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5850 target_ret_type = TREE_TYPE (target_fn_type);
5851
5852 /* Never do unification on the 'this' parameter. */
5853 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5854 target_arg_types = TREE_CHAIN (target_arg_types);
5855
5856 for (fns = overload; fns; fns = OVL_NEXT (fns))
5857 {
5858 tree fn = OVL_CURRENT (fns);
5859 tree instantiation;
5860 tree instantiation_type;
5861 tree targs;
5862
5863 if (TREE_CODE (fn) != TEMPLATE_DECL)
5864 /* We're only looking for templates. */
5865 continue;
5866
5867 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5868 != is_ptrmem)
5869 /* We're not looking for a non-static member, and this is
5870 one, or vice versa. */
5871 continue;
5872
5873 /* Try to do argument deduction. */
5874 targs = make_tree_vec (DECL_NTPARMS (fn));
5875 if (fn_type_unification (fn, explicit_targs, targs,
5876 target_arg_types, target_ret_type,
5877 DEDUCE_EXACT, -1) != 0)
5878 /* Argument deduction failed. */
5879 continue;
5880
5881 /* Instantiate the template. */
5882 instantiation = instantiate_template (fn, targs, flags);
5883 if (instantiation == error_mark_node)
5884 /* Instantiation failed. */
5885 continue;
5886
5887 /* See if there's a match. */
5888 instantiation_type = TREE_TYPE (instantiation);
5889 if (is_ptrmem)
5890 instantiation_type =
5891 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5892 else if (!is_reference)
5893 instantiation_type = build_pointer_type (instantiation_type);
5894 if (can_convert_arg (target_type, instantiation_type, instantiation))
5895 matches = tree_cons (instantiation, fn, matches);
5896 }
5897
5898 /* Now, remove all but the most specialized of the matches. */
5899 if (matches)
5900 {
5901 tree match = most_specialized_instantiation (matches);
5902
5903 if (match != error_mark_node)
5904 matches = tree_cons (match, NULL_TREE, NULL_TREE);
5905 }
5906 }
5907
5908 /* Now we should have exactly one function in MATCHES. */
5909 if (matches == NULL_TREE)
5910 {
5911 /* There were *no* matches. */
5912 if (flags & tf_error)
5913 {
5914 error ("no matches converting function `%D' to type `%#T'",
5915 DECL_NAME (OVL_FUNCTION (overload)),
5916 target_type);
5917
5918 /* print_candidates expects a chain with the functions in
5919 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5920 so why be clever?). */
5921 for (; overload; overload = OVL_NEXT (overload))
5922 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
5923 matches);
5924
5925 print_candidates (matches);
5926 }
5927 return error_mark_node;
5928 }
5929 else if (TREE_CHAIN (matches))
5930 {
5931 /* There were too many matches. */
5932
5933 if (flags & tf_error)
5934 {
5935 tree match;
5936
5937 error ("converting overloaded function `%D' to type `%#T' is ambiguous",
5938 DECL_NAME (OVL_FUNCTION (overload)),
5939 target_type);
5940
5941 /* Since print_candidates expects the functions in the
5942 TREE_VALUE slot, we flip them here. */
5943 for (match = matches; match; match = TREE_CHAIN (match))
5944 TREE_VALUE (match) = TREE_PURPOSE (match);
5945
5946 print_candidates (matches);
5947 }
5948
5949 return error_mark_node;
5950 }
5951
5952 /* Good, exactly one match. Now, convert it to the correct type. */
5953 fn = TREE_PURPOSE (matches);
5954
5955 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5956 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
5957 {
5958 static int explained;
5959
5960 if (!(flags & tf_error))
5961 return error_mark_node;
5962
5963 pedwarn ("assuming pointer to member `%D'", fn);
5964 if (!explained)
5965 {
5966 pedwarn ("(a pointer to member can only be formed with `&%E')", fn);
5967 explained = 1;
5968 }
5969 }
5970
5971 /* If we're doing overload resolution purely for the purpose of
5972 determining conversion sequences, we should not consider the
5973 function used. If this conversion sequence is selected, the
5974 function will be marked as used at this point. */
5975 if (!(flags & tf_conv))
5976 mark_used (fn);
5977
5978 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
5979 return build_unary_op (ADDR_EXPR, fn, 0);
5980 else
5981 {
5982 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5983 will mark the function as addressed, but here we must do it
5984 explicitly. */
5985 cxx_mark_addressable (fn);
5986
5987 return fn;
5988 }
5989 }
5990
5991 /* This function will instantiate the type of the expression given in
5992 RHS to match the type of LHSTYPE. If errors exist, then return
5993 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5994 we complain on errors. If we are not complaining, never modify rhs,
5995 as overload resolution wants to try many possible instantiations, in
5996 the hope that at least one will work.
5997
5998 For non-recursive calls, LHSTYPE should be a function, pointer to
5999 function, or a pointer to member function. */
6000
6001 tree
6002 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6003 {
6004 tsubst_flags_t flags_in = flags;
6005
6006 flags &= ~tf_ptrmem_ok;
6007
6008 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6009 {
6010 if (flags & tf_error)
6011 error ("not enough type information");
6012 return error_mark_node;
6013 }
6014
6015 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6016 {
6017 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6018 return rhs;
6019 if (flag_ms_extensions
6020 && TYPE_PTRMEMFUNC_P (lhstype)
6021 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6022 /* Microsoft allows `A::f' to be resolved to a
6023 pointer-to-member. */
6024 ;
6025 else
6026 {
6027 if (flags & tf_error)
6028 error ("argument of type `%T' does not match `%T'",
6029 TREE_TYPE (rhs), lhstype);
6030 return error_mark_node;
6031 }
6032 }
6033
6034 if (TREE_CODE (rhs) == BASELINK)
6035 rhs = BASELINK_FUNCTIONS (rhs);
6036
6037 /* We don't overwrite rhs if it is an overloaded function.
6038 Copying it would destroy the tree link. */
6039 if (TREE_CODE (rhs) != OVERLOAD)
6040 rhs = copy_node (rhs);
6041
6042 /* This should really only be used when attempting to distinguish
6043 what sort of a pointer to function we have. For now, any
6044 arithmetic operation which is not supported on pointers
6045 is rejected as an error. */
6046
6047 switch (TREE_CODE (rhs))
6048 {
6049 case TYPE_EXPR:
6050 case CONVERT_EXPR:
6051 case SAVE_EXPR:
6052 case CONSTRUCTOR:
6053 case BUFFER_REF:
6054 abort ();
6055 return error_mark_node;
6056
6057 case INDIRECT_REF:
6058 case ARRAY_REF:
6059 {
6060 tree new_rhs;
6061
6062 new_rhs = instantiate_type (build_pointer_type (lhstype),
6063 TREE_OPERAND (rhs, 0), flags);
6064 if (new_rhs == error_mark_node)
6065 return error_mark_node;
6066
6067 TREE_TYPE (rhs) = lhstype;
6068 TREE_OPERAND (rhs, 0) = new_rhs;
6069 return rhs;
6070 }
6071
6072 case NOP_EXPR:
6073 rhs = copy_node (TREE_OPERAND (rhs, 0));
6074 TREE_TYPE (rhs) = unknown_type_node;
6075 return instantiate_type (lhstype, rhs, flags);
6076
6077 case COMPONENT_REF:
6078 {
6079 tree addr = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6080
6081 if (addr != error_mark_node
6082 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6083 /* Do not lose object's side effects. */
6084 addr = build (COMPOUND_EXPR, TREE_TYPE (addr),
6085 TREE_OPERAND (rhs, 0), addr);
6086 return addr;
6087 }
6088
6089 case OFFSET_REF:
6090 rhs = TREE_OPERAND (rhs, 1);
6091 if (BASELINK_P (rhs))
6092 return instantiate_type (lhstype, BASELINK_FUNCTIONS (rhs), flags_in);
6093
6094 /* This can happen if we are forming a pointer-to-member for a
6095 member template. */
6096 my_friendly_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR, 0);
6097
6098 /* Fall through. */
6099
6100 case TEMPLATE_ID_EXPR:
6101 {
6102 tree fns = TREE_OPERAND (rhs, 0);
6103 tree args = TREE_OPERAND (rhs, 1);
6104
6105 return
6106 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6107 /*template_only=*/true,
6108 args);
6109 }
6110
6111 case OVERLOAD:
6112 case FUNCTION_DECL:
6113 return
6114 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6115 /*template_only=*/false,
6116 /*explicit_targs=*/NULL_TREE);
6117
6118 case TREE_LIST:
6119 /* Now we should have a baselink. */
6120 my_friendly_assert (BASELINK_P (rhs), 990412);
6121
6122 return instantiate_type (lhstype, BASELINK_FUNCTIONS (rhs), flags);
6123
6124 case CALL_EXPR:
6125 /* This is too hard for now. */
6126 abort ();
6127 return error_mark_node;
6128
6129 case PLUS_EXPR:
6130 case MINUS_EXPR:
6131 case COMPOUND_EXPR:
6132 TREE_OPERAND (rhs, 0)
6133 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6134 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6135 return error_mark_node;
6136 TREE_OPERAND (rhs, 1)
6137 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6138 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6139 return error_mark_node;
6140
6141 TREE_TYPE (rhs) = lhstype;
6142 return rhs;
6143
6144 case MULT_EXPR:
6145 case TRUNC_DIV_EXPR:
6146 case FLOOR_DIV_EXPR:
6147 case CEIL_DIV_EXPR:
6148 case ROUND_DIV_EXPR:
6149 case RDIV_EXPR:
6150 case TRUNC_MOD_EXPR:
6151 case FLOOR_MOD_EXPR:
6152 case CEIL_MOD_EXPR:
6153 case ROUND_MOD_EXPR:
6154 case FIX_ROUND_EXPR:
6155 case FIX_FLOOR_EXPR:
6156 case FIX_CEIL_EXPR:
6157 case FIX_TRUNC_EXPR:
6158 case FLOAT_EXPR:
6159 case NEGATE_EXPR:
6160 case ABS_EXPR:
6161 case MAX_EXPR:
6162 case MIN_EXPR:
6163
6164 case BIT_AND_EXPR:
6165 case BIT_IOR_EXPR:
6166 case BIT_XOR_EXPR:
6167 case LSHIFT_EXPR:
6168 case RSHIFT_EXPR:
6169 case LROTATE_EXPR:
6170 case RROTATE_EXPR:
6171
6172 case PREINCREMENT_EXPR:
6173 case PREDECREMENT_EXPR:
6174 case POSTINCREMENT_EXPR:
6175 case POSTDECREMENT_EXPR:
6176 if (flags & tf_error)
6177 error ("invalid operation on uninstantiated type");
6178 return error_mark_node;
6179
6180 case TRUTH_AND_EXPR:
6181 case TRUTH_OR_EXPR:
6182 case TRUTH_XOR_EXPR:
6183 case LT_EXPR:
6184 case LE_EXPR:
6185 case GT_EXPR:
6186 case GE_EXPR:
6187 case EQ_EXPR:
6188 case NE_EXPR:
6189 case TRUTH_ANDIF_EXPR:
6190 case TRUTH_ORIF_EXPR:
6191 case TRUTH_NOT_EXPR:
6192 if (flags & tf_error)
6193 error ("not enough type information");
6194 return error_mark_node;
6195
6196 case COND_EXPR:
6197 if (type_unknown_p (TREE_OPERAND (rhs, 0)))
6198 {
6199 if (flags & tf_error)
6200 error ("not enough type information");
6201 return error_mark_node;
6202 }
6203 TREE_OPERAND (rhs, 1)
6204 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6205 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6206 return error_mark_node;
6207 TREE_OPERAND (rhs, 2)
6208 = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), flags);
6209 if (TREE_OPERAND (rhs, 2) == error_mark_node)
6210 return error_mark_node;
6211
6212 TREE_TYPE (rhs) = lhstype;
6213 return rhs;
6214
6215 case MODIFY_EXPR:
6216 TREE_OPERAND (rhs, 1)
6217 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6218 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6219 return error_mark_node;
6220
6221 TREE_TYPE (rhs) = lhstype;
6222 return rhs;
6223
6224 case ADDR_EXPR:
6225 {
6226 if (PTRMEM_OK_P (rhs))
6227 flags |= tf_ptrmem_ok;
6228
6229 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6230 }
6231 case ENTRY_VALUE_EXPR:
6232 abort ();
6233 return error_mark_node;
6234
6235 case ERROR_MARK:
6236 return error_mark_node;
6237
6238 default:
6239 abort ();
6240 return error_mark_node;
6241 }
6242 }
6243 \f
6244 /* Return the name of the virtual function pointer field
6245 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6246 this may have to look back through base types to find the
6247 ultimate field name. (For single inheritance, these could
6248 all be the same name. Who knows for multiple inheritance). */
6249
6250 static tree
6251 get_vfield_name (tree type)
6252 {
6253 tree binfo = TYPE_BINFO (type);
6254 char *buf;
6255
6256 while (BINFO_BASETYPES (binfo)
6257 && TYPE_CONTAINS_VPTR_P (BINFO_TYPE (BINFO_BASETYPE (binfo, 0)))
6258 && ! TREE_VIA_VIRTUAL (BINFO_BASETYPE (binfo, 0)))
6259 binfo = BINFO_BASETYPE (binfo, 0);
6260
6261 type = BINFO_TYPE (binfo);
6262 buf = alloca (sizeof (VFIELD_NAME_FORMAT) + TYPE_NAME_LENGTH (type) + 2);
6263 sprintf (buf, VFIELD_NAME_FORMAT,
6264 IDENTIFIER_POINTER (constructor_name (type)));
6265 return get_identifier (buf);
6266 }
6267
6268 void
6269 print_class_statistics (void)
6270 {
6271 #ifdef GATHER_STATISTICS
6272 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6273 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6274 if (n_vtables)
6275 {
6276 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6277 n_vtables, n_vtable_searches);
6278 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6279 n_vtable_entries, n_vtable_elems);
6280 }
6281 #endif
6282 }
6283
6284 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6285 according to [class]:
6286 The class-name is also inserted
6287 into the scope of the class itself. For purposes of access checking,
6288 the inserted class name is treated as if it were a public member name. */
6289
6290 void
6291 build_self_reference (void)
6292 {
6293 tree name = constructor_name (current_class_type);
6294 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6295 tree saved_cas;
6296
6297 DECL_NONLOCAL (value) = 1;
6298 DECL_CONTEXT (value) = current_class_type;
6299 DECL_ARTIFICIAL (value) = 1;
6300 SET_DECL_SELF_REFERENCE_P (value);
6301
6302 if (processing_template_decl)
6303 value = push_template_decl (value);
6304
6305 saved_cas = current_access_specifier;
6306 current_access_specifier = access_public_node;
6307 finish_member_declaration (value);
6308 current_access_specifier = saved_cas;
6309 }
6310
6311 /* Returns 1 if TYPE contains only padding bytes. */
6312
6313 int
6314 is_empty_class (tree type)
6315 {
6316 if (type == error_mark_node)
6317 return 0;
6318
6319 if (! IS_AGGR_TYPE (type))
6320 return 0;
6321
6322 /* In G++ 3.2, whether or not a class was empty was determined by
6323 looking at its size. */
6324 if (abi_version_at_least (2))
6325 return CLASSTYPE_EMPTY_P (type);
6326 else
6327 return integer_zerop (CLASSTYPE_SIZE (type));
6328 }
6329
6330 /* Returns true if TYPE contains an empty class. */
6331
6332 static bool
6333 contains_empty_class_p (tree type)
6334 {
6335 if (is_empty_class (type))
6336 return true;
6337 if (CLASS_TYPE_P (type))
6338 {
6339 tree field;
6340 int i;
6341
6342 for (i = 0; i < CLASSTYPE_N_BASECLASSES (type); ++i)
6343 if (contains_empty_class_p (TYPE_BINFO_BASETYPE (type, i)))
6344 return true;
6345 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6346 if (TREE_CODE (field) == FIELD_DECL
6347 && !DECL_ARTIFICIAL (field)
6348 && is_empty_class (TREE_TYPE (field)))
6349 return true;
6350 }
6351 else if (TREE_CODE (type) == ARRAY_TYPE)
6352 return contains_empty_class_p (TREE_TYPE (type));
6353 return false;
6354 }
6355
6356 /* Find the enclosing class of the given NODE. NODE can be a *_DECL or
6357 a *_TYPE node. NODE can also be a local class. */
6358
6359 tree
6360 get_enclosing_class (tree type)
6361 {
6362 tree node = type;
6363
6364 while (node && TREE_CODE (node) != NAMESPACE_DECL)
6365 {
6366 switch (TREE_CODE_CLASS (TREE_CODE (node)))
6367 {
6368 case 'd':
6369 node = DECL_CONTEXT (node);
6370 break;
6371
6372 case 't':
6373 if (node != type)
6374 return node;
6375 node = TYPE_CONTEXT (node);
6376 break;
6377
6378 default:
6379 abort ();
6380 }
6381 }
6382 return NULL_TREE;
6383 }
6384
6385 /* Note that NAME was looked up while the current class was being
6386 defined and that the result of that lookup was DECL. */
6387
6388 void
6389 maybe_note_name_used_in_class (tree name, tree decl)
6390 {
6391 splay_tree names_used;
6392
6393 /* If we're not defining a class, there's nothing to do. */
6394 if (innermost_scope_kind() != sk_class)
6395 return;
6396
6397 /* If there's already a binding for this NAME, then we don't have
6398 anything to worry about. */
6399 if (IDENTIFIER_CLASS_VALUE (name))
6400 return;
6401
6402 if (!current_class_stack[current_class_depth - 1].names_used)
6403 current_class_stack[current_class_depth - 1].names_used
6404 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6405 names_used = current_class_stack[current_class_depth - 1].names_used;
6406
6407 splay_tree_insert (names_used,
6408 (splay_tree_key) name,
6409 (splay_tree_value) decl);
6410 }
6411
6412 /* Note that NAME was declared (as DECL) in the current class. Check
6413 to see that the declaration is valid. */
6414
6415 void
6416 note_name_declared_in_class (tree name, tree decl)
6417 {
6418 splay_tree names_used;
6419 splay_tree_node n;
6420
6421 /* Look to see if we ever used this name. */
6422 names_used
6423 = current_class_stack[current_class_depth - 1].names_used;
6424 if (!names_used)
6425 return;
6426
6427 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6428 if (n)
6429 {
6430 /* [basic.scope.class]
6431
6432 A name N used in a class S shall refer to the same declaration
6433 in its context and when re-evaluated in the completed scope of
6434 S. */
6435 error ("declaration of `%#D'", decl);
6436 cp_error_at ("changes meaning of `%D' from `%+#D'",
6437 DECL_NAME (OVL_CURRENT (decl)),
6438 (tree) n->value);
6439 }
6440 }
6441
6442 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6443 Secondary vtables are merged with primary vtables; this function
6444 will return the VAR_DECL for the primary vtable. */
6445
6446 tree
6447 get_vtbl_decl_for_binfo (tree binfo)
6448 {
6449 tree decl;
6450
6451 decl = BINFO_VTABLE (binfo);
6452 if (decl && TREE_CODE (decl) == PLUS_EXPR)
6453 {
6454 my_friendly_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR,
6455 2000403);
6456 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6457 }
6458 if (decl)
6459 my_friendly_assert (TREE_CODE (decl) == VAR_DECL, 20000403);
6460 return decl;
6461 }
6462
6463
6464 /* Returns the binfo for the primary base of BINFO. If the resulting
6465 BINFO is a virtual base, and it is inherited elsewhere in the
6466 hierarchy, then the returned binfo might not be the primary base of
6467 BINFO in the complete object. Check BINFO_PRIMARY_P or
6468 BINFO_LOST_PRIMARY_P to be sure. */
6469
6470 tree
6471 get_primary_binfo (tree binfo)
6472 {
6473 tree primary_base;
6474 tree result;
6475
6476 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6477 if (!primary_base)
6478 return NULL_TREE;
6479
6480 result = copied_binfo (primary_base, binfo);
6481 return result;
6482 }
6483
6484 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6485
6486 static int
6487 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6488 {
6489 if (!indented_p)
6490 fprintf (stream, "%*s", indent, "");
6491 return 1;
6492 }
6493
6494 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6495 INDENT should be zero when called from the top level; it is
6496 incremented recursively. IGO indicates the next expected BINFO in
6497 inheritance graph ordering. */
6498
6499 static tree
6500 dump_class_hierarchy_r (FILE *stream,
6501 int flags,
6502 tree binfo,
6503 tree igo,
6504 int indent)
6505 {
6506 int indented = 0;
6507 tree base_binfos;
6508
6509 indented = maybe_indent_hierarchy (stream, indent, 0);
6510 fprintf (stream, "%s (0x%lx) ",
6511 type_as_string (binfo, TFF_PLAIN_IDENTIFIER),
6512 (unsigned long) binfo);
6513 if (binfo != igo)
6514 {
6515 fprintf (stream, "alternative-path\n");
6516 return igo;
6517 }
6518 igo = TREE_CHAIN (binfo);
6519
6520 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6521 tree_low_cst (BINFO_OFFSET (binfo), 0));
6522 if (is_empty_class (BINFO_TYPE (binfo)))
6523 fprintf (stream, " empty");
6524 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6525 fprintf (stream, " nearly-empty");
6526 if (TREE_VIA_VIRTUAL (binfo))
6527 fprintf (stream, " virtual");
6528 fprintf (stream, "\n");
6529
6530 indented = 0;
6531 if (BINFO_PRIMARY_BASE_OF (binfo))
6532 {
6533 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6534 fprintf (stream, " primary-for %s (0x%lx)",
6535 type_as_string (BINFO_PRIMARY_BASE_OF (binfo),
6536 TFF_PLAIN_IDENTIFIER),
6537 (unsigned long)BINFO_PRIMARY_BASE_OF (binfo));
6538 }
6539 if (BINFO_LOST_PRIMARY_P (binfo))
6540 {
6541 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6542 fprintf (stream, " lost-primary");
6543 }
6544 if (indented)
6545 fprintf (stream, "\n");
6546
6547 if (!(flags & TDF_SLIM))
6548 {
6549 int indented = 0;
6550
6551 if (BINFO_SUBVTT_INDEX (binfo))
6552 {
6553 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6554 fprintf (stream, " subvttidx=%s",
6555 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6556 TFF_PLAIN_IDENTIFIER));
6557 }
6558 if (BINFO_VPTR_INDEX (binfo))
6559 {
6560 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6561 fprintf (stream, " vptridx=%s",
6562 expr_as_string (BINFO_VPTR_INDEX (binfo),
6563 TFF_PLAIN_IDENTIFIER));
6564 }
6565 if (BINFO_VPTR_FIELD (binfo))
6566 {
6567 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6568 fprintf (stream, " vbaseoffset=%s",
6569 expr_as_string (BINFO_VPTR_FIELD (binfo),
6570 TFF_PLAIN_IDENTIFIER));
6571 }
6572 if (BINFO_VTABLE (binfo))
6573 {
6574 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6575 fprintf (stream, " vptr=%s",
6576 expr_as_string (BINFO_VTABLE (binfo),
6577 TFF_PLAIN_IDENTIFIER));
6578 }
6579
6580 if (indented)
6581 fprintf (stream, "\n");
6582 }
6583
6584 base_binfos = BINFO_BASETYPES (binfo);
6585 if (base_binfos)
6586 {
6587 int ix, n;
6588
6589 n = TREE_VEC_LENGTH (base_binfos);
6590 for (ix = 0; ix != n; ix++)
6591 {
6592 tree base_binfo = TREE_VEC_ELT (base_binfos, ix);
6593
6594 igo = dump_class_hierarchy_r (stream, flags, base_binfo,
6595 igo, indent + 2);
6596 }
6597 }
6598
6599 return igo;
6600 }
6601
6602 /* Dump the BINFO hierarchy for T. */
6603
6604 static void
6605 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6606 {
6607 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6608 fprintf (stream, " size=%lu align=%lu\n",
6609 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6610 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6611 fprintf (stream, " base size=%lu base align=%lu\n",
6612 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6613 / BITS_PER_UNIT),
6614 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6615 / BITS_PER_UNIT));
6616 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6617 fprintf (stream, "\n");
6618 }
6619
6620 /* Debug interface to hierarchy dumping. */
6621
6622 extern void
6623 debug_class (tree t)
6624 {
6625 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6626 }
6627
6628 static void
6629 dump_class_hierarchy (tree t)
6630 {
6631 int flags;
6632 FILE *stream = dump_begin (TDI_class, &flags);
6633
6634 if (stream)
6635 {
6636 dump_class_hierarchy_1 (stream, flags, t);
6637 dump_end (TDI_class, stream);
6638 }
6639 }
6640
6641 static void
6642 dump_array (FILE * stream, tree decl)
6643 {
6644 tree inits;
6645 int ix;
6646 HOST_WIDE_INT elt;
6647 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6648
6649 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6650 / BITS_PER_UNIT);
6651 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6652 fprintf (stream, " %s entries",
6653 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6654 TFF_PLAIN_IDENTIFIER));
6655 fprintf (stream, "\n");
6656
6657 for (ix = 0, inits = CONSTRUCTOR_ELTS (DECL_INITIAL (decl));
6658 inits; ix++, inits = TREE_CHAIN (inits))
6659 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6660 expr_as_string (TREE_VALUE (inits), TFF_PLAIN_IDENTIFIER));
6661 }
6662
6663 static void
6664 dump_vtable (tree t, tree binfo, tree vtable)
6665 {
6666 int flags;
6667 FILE *stream = dump_begin (TDI_class, &flags);
6668
6669 if (!stream)
6670 return;
6671
6672 if (!(flags & TDF_SLIM))
6673 {
6674 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6675
6676 fprintf (stream, "%s for %s",
6677 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6678 type_as_string (binfo, TFF_PLAIN_IDENTIFIER));
6679 if (ctor_vtbl_p)
6680 {
6681 if (!TREE_VIA_VIRTUAL (binfo))
6682 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6683 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6684 }
6685 fprintf (stream, "\n");
6686 dump_array (stream, vtable);
6687 fprintf (stream, "\n");
6688 }
6689
6690 dump_end (TDI_class, stream);
6691 }
6692
6693 static void
6694 dump_vtt (tree t, tree vtt)
6695 {
6696 int flags;
6697 FILE *stream = dump_begin (TDI_class, &flags);
6698
6699 if (!stream)
6700 return;
6701
6702 if (!(flags & TDF_SLIM))
6703 {
6704 fprintf (stream, "VTT for %s\n",
6705 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6706 dump_array (stream, vtt);
6707 fprintf (stream, "\n");
6708 }
6709
6710 dump_end (TDI_class, stream);
6711 }
6712
6713 /* Dump a function or thunk and its thunkees. */
6714
6715 static void
6716 dump_thunk (FILE *stream, int indent, tree thunk)
6717 {
6718 static const char spaces[] = " ";
6719 tree name = DECL_NAME (thunk);
6720 tree thunks;
6721
6722 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6723 (void *)thunk,
6724 !DECL_THUNK_P (thunk) ? "function"
6725 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6726 name ? IDENTIFIER_POINTER (name) : "<unset>");
6727 if (DECL_THUNK_P (thunk))
6728 {
6729 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6730 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6731
6732 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6733 if (!virtual_adjust)
6734 /*NOP*/;
6735 else if (DECL_THIS_THUNK_P (thunk))
6736 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6737 tree_low_cst (virtual_adjust, 0));
6738 else
6739 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6740 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6741 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6742 if (THUNK_ALIAS (thunk))
6743 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6744 }
6745 fprintf (stream, "\n");
6746 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6747 dump_thunk (stream, indent + 2, thunks);
6748 }
6749
6750 /* Dump the thunks for FN. */
6751
6752 extern void
6753 debug_thunks (tree fn)
6754 {
6755 dump_thunk (stderr, 0, fn);
6756 }
6757
6758 /* Virtual function table initialization. */
6759
6760 /* Create all the necessary vtables for T and its base classes. */
6761
6762 static void
6763 finish_vtbls (tree t)
6764 {
6765 tree list;
6766 tree vbase;
6767
6768 /* We lay out the primary and secondary vtables in one contiguous
6769 vtable. The primary vtable is first, followed by the non-virtual
6770 secondary vtables in inheritance graph order. */
6771 list = build_tree_list (TYPE_BINFO_VTABLE (t), NULL_TREE);
6772 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6773 TYPE_BINFO (t), t, list);
6774
6775 /* Then come the virtual bases, also in inheritance graph order. */
6776 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6777 {
6778 if (!TREE_VIA_VIRTUAL (vbase))
6779 continue;
6780 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6781 }
6782
6783 if (TYPE_BINFO_VTABLE (t))
6784 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6785 }
6786
6787 /* Initialize the vtable for BINFO with the INITS. */
6788
6789 static void
6790 initialize_vtable (tree binfo, tree inits)
6791 {
6792 tree decl;
6793
6794 layout_vtable_decl (binfo, list_length (inits));
6795 decl = get_vtbl_decl_for_binfo (binfo);
6796 initialize_array (decl, inits);
6797 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6798 }
6799
6800 /* Initialize DECL (a declaration for a namespace-scope array) with
6801 the INITS. */
6802
6803 static void
6804 initialize_array (tree decl, tree inits)
6805 {
6806 tree context;
6807
6808 context = DECL_CONTEXT (decl);
6809 DECL_CONTEXT (decl) = NULL_TREE;
6810 DECL_INITIAL (decl) = build_constructor (NULL_TREE, inits);
6811 cp_finish_decl (decl, DECL_INITIAL (decl), NULL_TREE, 0);
6812 DECL_CONTEXT (decl) = context;
6813 }
6814
6815 /* Build the VTT (virtual table table) for T.
6816 A class requires a VTT if it has virtual bases.
6817
6818 This holds
6819 1 - primary virtual pointer for complete object T
6820 2 - secondary VTTs for each direct non-virtual base of T which requires a
6821 VTT
6822 3 - secondary virtual pointers for each direct or indirect base of T which
6823 has virtual bases or is reachable via a virtual path from T.
6824 4 - secondary VTTs for each direct or indirect virtual base of T.
6825
6826 Secondary VTTs look like complete object VTTs without part 4. */
6827
6828 static void
6829 build_vtt (tree t)
6830 {
6831 tree inits;
6832 tree type;
6833 tree vtt;
6834 tree index;
6835
6836 /* Build up the initializers for the VTT. */
6837 inits = NULL_TREE;
6838 index = size_zero_node;
6839 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6840
6841 /* If we didn't need a VTT, we're done. */
6842 if (!inits)
6843 return;
6844
6845 /* Figure out the type of the VTT. */
6846 type = build_index_type (size_int (list_length (inits) - 1));
6847 type = build_cplus_array_type (const_ptr_type_node, type);
6848
6849 /* Now, build the VTT object itself. */
6850 vtt = build_vtable (t, get_vtt_name (t), type);
6851 initialize_array (vtt, inits);
6852 /* Add the VTT to the vtables list. */
6853 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6854 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6855
6856 dump_vtt (t, vtt);
6857 }
6858
6859 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6860 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6861 and CHAIN the vtable pointer for this binfo after construction is
6862 complete. VALUE can also be another BINFO, in which case we recurse. */
6863
6864 static tree
6865 binfo_ctor_vtable (tree binfo)
6866 {
6867 tree vt;
6868
6869 while (1)
6870 {
6871 vt = BINFO_VTABLE (binfo);
6872 if (TREE_CODE (vt) == TREE_LIST)
6873 vt = TREE_VALUE (vt);
6874 if (TREE_CODE (vt) == TREE_VEC)
6875 binfo = vt;
6876 else
6877 break;
6878 }
6879
6880 return vt;
6881 }
6882
6883 /* Recursively build the VTT-initializer for BINFO (which is in the
6884 hierarchy dominated by T). INITS points to the end of the initializer
6885 list to date. INDEX is the VTT index where the next element will be
6886 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6887 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6888 for virtual bases of T. When it is not so, we build the constructor
6889 vtables for the BINFO-in-T variant. */
6890
6891 static tree *
6892 build_vtt_inits (tree binfo, tree t, tree* inits, tree* index)
6893 {
6894 int i;
6895 tree b;
6896 tree init;
6897 tree secondary_vptrs;
6898 int top_level_p = same_type_p (TREE_TYPE (binfo), t);
6899
6900 /* We only need VTTs for subobjects with virtual bases. */
6901 if (!TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo)))
6902 return inits;
6903
6904 /* We need to use a construction vtable if this is not the primary
6905 VTT. */
6906 if (!top_level_p)
6907 {
6908 build_ctor_vtbl_group (binfo, t);
6909
6910 /* Record the offset in the VTT where this sub-VTT can be found. */
6911 BINFO_SUBVTT_INDEX (binfo) = *index;
6912 }
6913
6914 /* Add the address of the primary vtable for the complete object. */
6915 init = binfo_ctor_vtable (binfo);
6916 *inits = build_tree_list (NULL_TREE, init);
6917 inits = &TREE_CHAIN (*inits);
6918 if (top_level_p)
6919 {
6920 my_friendly_assert (!BINFO_VPTR_INDEX (binfo), 20010129);
6921 BINFO_VPTR_INDEX (binfo) = *index;
6922 }
6923 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6924
6925 /* Recursively add the secondary VTTs for non-virtual bases. */
6926 for (i = 0; i < BINFO_N_BASETYPES (binfo); ++i)
6927 {
6928 b = BINFO_BASETYPE (binfo, i);
6929 if (!TREE_VIA_VIRTUAL (b))
6930 inits = build_vtt_inits (BINFO_BASETYPE (binfo, i), t,
6931 inits, index);
6932 }
6933
6934 /* Add secondary virtual pointers for all subobjects of BINFO with
6935 either virtual bases or reachable along a virtual path, except
6936 subobjects that are non-virtual primary bases. */
6937 secondary_vptrs = tree_cons (t, NULL_TREE, BINFO_TYPE (binfo));
6938 TREE_TYPE (secondary_vptrs) = *index;
6939 VTT_TOP_LEVEL_P (secondary_vptrs) = top_level_p;
6940 VTT_MARKED_BINFO_P (secondary_vptrs) = 0;
6941
6942 dfs_walk_real (binfo,
6943 dfs_build_secondary_vptr_vtt_inits,
6944 NULL,
6945 dfs_ctor_vtable_bases_queue_p,
6946 secondary_vptrs);
6947 VTT_MARKED_BINFO_P (secondary_vptrs) = 1;
6948 dfs_walk (binfo, dfs_unmark, dfs_ctor_vtable_bases_queue_p,
6949 secondary_vptrs);
6950
6951 *index = TREE_TYPE (secondary_vptrs);
6952
6953 /* The secondary vptrs come back in reverse order. After we reverse
6954 them, and add the INITS, the last init will be the first element
6955 of the chain. */
6956 secondary_vptrs = TREE_VALUE (secondary_vptrs);
6957 if (secondary_vptrs)
6958 {
6959 *inits = nreverse (secondary_vptrs);
6960 inits = &TREE_CHAIN (secondary_vptrs);
6961 my_friendly_assert (*inits == NULL_TREE, 20000517);
6962 }
6963
6964 /* Add the secondary VTTs for virtual bases. */
6965 if (top_level_p)
6966 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6967 {
6968 if (!TREE_VIA_VIRTUAL (b))
6969 continue;
6970
6971 inits = build_vtt_inits (b, t, inits, index);
6972 }
6973
6974 if (!top_level_p)
6975 {
6976 tree data = tree_cons (t, binfo, NULL_TREE);
6977 VTT_TOP_LEVEL_P (data) = 0;
6978 VTT_MARKED_BINFO_P (data) = 0;
6979
6980 dfs_walk (binfo, dfs_fixup_binfo_vtbls,
6981 dfs_ctor_vtable_bases_queue_p,
6982 data);
6983 }
6984
6985 return inits;
6986 }
6987
6988 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6989 in most derived. DATA is a TREE_LIST who's TREE_CHAIN is the type of the
6990 base being constructed whilst this secondary vptr is live. The
6991 TREE_TOP_LEVEL flag indicates that this is the primary VTT. */
6992
6993 static tree
6994 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data)
6995 {
6996 tree l;
6997 tree t;
6998 tree init;
6999 tree index;
7000 int top_level_p;
7001
7002 l = (tree) data;
7003 t = TREE_CHAIN (l);
7004 top_level_p = VTT_TOP_LEVEL_P (l);
7005
7006 BINFO_MARKED (binfo) = 1;
7007
7008 /* We don't care about bases that don't have vtables. */
7009 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7010 return NULL_TREE;
7011
7012 /* We're only interested in proper subobjects of T. */
7013 if (same_type_p (BINFO_TYPE (binfo), t))
7014 return NULL_TREE;
7015
7016 /* We're not interested in non-virtual primary bases. */
7017 if (!TREE_VIA_VIRTUAL (binfo) && BINFO_PRIMARY_P (binfo))
7018 return NULL_TREE;
7019
7020 /* If BINFO has virtual bases or is reachable via a virtual path
7021 from T, it'll have a secondary vptr. */
7022 if (!TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo))
7023 && !binfo_via_virtual (binfo, t))
7024 return NULL_TREE;
7025
7026 /* Record the index where this secondary vptr can be found. */
7027 index = TREE_TYPE (l);
7028 if (top_level_p)
7029 {
7030 my_friendly_assert (!BINFO_VPTR_INDEX (binfo), 20010129);
7031 BINFO_VPTR_INDEX (binfo) = index;
7032 }
7033 TREE_TYPE (l) = size_binop (PLUS_EXPR, index,
7034 TYPE_SIZE_UNIT (ptr_type_node));
7035
7036 /* Add the initializer for the secondary vptr itself. */
7037 if (top_level_p && TREE_VIA_VIRTUAL (binfo))
7038 {
7039 /* It's a primary virtual base, and this is not the construction
7040 vtable. Find the base this is primary of in the inheritance graph,
7041 and use that base's vtable now. */
7042 while (BINFO_PRIMARY_BASE_OF (binfo))
7043 binfo = BINFO_PRIMARY_BASE_OF (binfo);
7044 }
7045 init = binfo_ctor_vtable (binfo);
7046 TREE_VALUE (l) = tree_cons (NULL_TREE, init, TREE_VALUE (l));
7047
7048 return NULL_TREE;
7049 }
7050
7051 /* dfs_walk_real predicate for building vtables. DATA is a TREE_LIST,
7052 VTT_MARKED_BINFO_P indicates whether marked or unmarked bases
7053 should be walked. TREE_PURPOSE is the TREE_TYPE that dominates the
7054 hierarchy. */
7055
7056 static tree
7057 dfs_ctor_vtable_bases_queue_p (tree derived, int ix,
7058 void* data)
7059 {
7060 tree binfo = BINFO_BASETYPE (derived, ix);
7061
7062 if (!BINFO_MARKED (binfo) == VTT_MARKED_BINFO_P ((tree) data))
7063 return NULL_TREE;
7064 return binfo;
7065 }
7066
7067 /* Called from build_vtt_inits via dfs_walk. After building constructor
7068 vtables and generating the sub-vtt from them, we need to restore the
7069 BINFO_VTABLES that were scribbled on. DATA is a TREE_LIST whose
7070 TREE_VALUE is the TREE_TYPE of the base whose sub vtt was generated. */
7071
7072 static tree
7073 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7074 {
7075 BINFO_MARKED (binfo) = 0;
7076
7077 /* We don't care about bases that don't have vtables. */
7078 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7079 return NULL_TREE;
7080
7081 /* If we scribbled the construction vtable vptr into BINFO, clear it
7082 out now. */
7083 if (BINFO_VTABLE (binfo)
7084 && TREE_CODE (BINFO_VTABLE (binfo)) == TREE_LIST
7085 && (TREE_PURPOSE (BINFO_VTABLE (binfo))
7086 == TREE_VALUE ((tree) data)))
7087 BINFO_VTABLE (binfo) = TREE_CHAIN (BINFO_VTABLE (binfo));
7088
7089 return NULL_TREE;
7090 }
7091
7092 /* Build the construction vtable group for BINFO which is in the
7093 hierarchy dominated by T. */
7094
7095 static void
7096 build_ctor_vtbl_group (tree binfo, tree t)
7097 {
7098 tree list;
7099 tree type;
7100 tree vtbl;
7101 tree inits;
7102 tree id;
7103 tree vbase;
7104
7105 /* See if we've already created this construction vtable group. */
7106 id = mangle_ctor_vtbl_for_type (t, binfo);
7107 if (IDENTIFIER_GLOBAL_VALUE (id))
7108 return;
7109
7110 my_friendly_assert (!same_type_p (BINFO_TYPE (binfo), t), 20010124);
7111 /* Build a version of VTBL (with the wrong type) for use in
7112 constructing the addresses of secondary vtables in the
7113 construction vtable group. */
7114 vtbl = build_vtable (t, id, ptr_type_node);
7115 list = build_tree_list (vtbl, NULL_TREE);
7116 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7117 binfo, t, list);
7118
7119 /* Add the vtables for each of our virtual bases using the vbase in T
7120 binfo. */
7121 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7122 vbase;
7123 vbase = TREE_CHAIN (vbase))
7124 {
7125 tree b;
7126
7127 if (!TREE_VIA_VIRTUAL (vbase))
7128 continue;
7129 b = copied_binfo (vbase, binfo);
7130
7131 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7132 }
7133 inits = TREE_VALUE (list);
7134
7135 /* Figure out the type of the construction vtable. */
7136 type = build_index_type (size_int (list_length (inits) - 1));
7137 type = build_cplus_array_type (vtable_entry_type, type);
7138 TREE_TYPE (vtbl) = type;
7139
7140 /* Initialize the construction vtable. */
7141 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7142 initialize_array (vtbl, inits);
7143 dump_vtable (t, binfo, vtbl);
7144 }
7145
7146 /* Add the vtbl initializers for BINFO (and its bases other than
7147 non-virtual primaries) to the list of INITS. BINFO is in the
7148 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7149 the constructor the vtbl inits should be accumulated for. (If this
7150 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7151 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7152 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7153 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7154 but are not necessarily the same in terms of layout. */
7155
7156 static void
7157 accumulate_vtbl_inits (tree binfo,
7158 tree orig_binfo,
7159 tree rtti_binfo,
7160 tree t,
7161 tree inits)
7162 {
7163 int i;
7164 int ctor_vtbl_p = !same_type_p (BINFO_TYPE (rtti_binfo), t);
7165
7166 my_friendly_assert (same_type_p (BINFO_TYPE (binfo),
7167 BINFO_TYPE (orig_binfo)),
7168 20000517);
7169
7170 /* If it doesn't have a vptr, we don't do anything. */
7171 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7172 return;
7173
7174 /* If we're building a construction vtable, we're not interested in
7175 subobjects that don't require construction vtables. */
7176 if (ctor_vtbl_p
7177 && !TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo))
7178 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7179 return;
7180
7181 /* Build the initializers for the BINFO-in-T vtable. */
7182 TREE_VALUE (inits)
7183 = chainon (TREE_VALUE (inits),
7184 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7185 rtti_binfo, t, inits));
7186
7187 /* Walk the BINFO and its bases. We walk in preorder so that as we
7188 initialize each vtable we can figure out at what offset the
7189 secondary vtable lies from the primary vtable. We can't use
7190 dfs_walk here because we need to iterate through bases of BINFO
7191 and RTTI_BINFO simultaneously. */
7192 for (i = 0; i < BINFO_N_BASETYPES (binfo); ++i)
7193 {
7194 tree base_binfo = BINFO_BASETYPE (binfo, i);
7195
7196 /* Skip virtual bases. */
7197 if (TREE_VIA_VIRTUAL (base_binfo))
7198 continue;
7199 accumulate_vtbl_inits (base_binfo,
7200 BINFO_BASETYPE (orig_binfo, i),
7201 rtti_binfo, t,
7202 inits);
7203 }
7204 }
7205
7206 /* Called from accumulate_vtbl_inits. Returns the initializers for
7207 the BINFO vtable. */
7208
7209 static tree
7210 dfs_accumulate_vtbl_inits (tree binfo,
7211 tree orig_binfo,
7212 tree rtti_binfo,
7213 tree t,
7214 tree l)
7215 {
7216 tree inits = NULL_TREE;
7217 tree vtbl = NULL_TREE;
7218 int ctor_vtbl_p = !same_type_p (BINFO_TYPE (rtti_binfo), t);
7219
7220 if (ctor_vtbl_p
7221 && TREE_VIA_VIRTUAL (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7222 {
7223 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7224 primary virtual base. If it is not the same primary in
7225 the hierarchy of T, we'll need to generate a ctor vtable
7226 for it, to place at its location in T. If it is the same
7227 primary, we still need a VTT entry for the vtable, but it
7228 should point to the ctor vtable for the base it is a
7229 primary for within the sub-hierarchy of RTTI_BINFO.
7230
7231 There are three possible cases:
7232
7233 1) We are in the same place.
7234 2) We are a primary base within a lost primary virtual base of
7235 RTTI_BINFO.
7236 3) We are primary to something not a base of RTTI_BINFO. */
7237
7238 tree b = BINFO_PRIMARY_BASE_OF (binfo);
7239 tree last = NULL_TREE;
7240
7241 /* First, look through the bases we are primary to for RTTI_BINFO
7242 or a virtual base. */
7243 for (; b; b = BINFO_PRIMARY_BASE_OF (b))
7244 {
7245 last = b;
7246 if (TREE_VIA_VIRTUAL (b) || b == rtti_binfo)
7247 break;
7248 }
7249 /* If we run out of primary links, keep looking down our
7250 inheritance chain; we might be an indirect primary. */
7251 if (b == NULL_TREE)
7252 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7253 if (TREE_VIA_VIRTUAL (b) || b == rtti_binfo)
7254 break;
7255
7256 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7257 base B and it is a base of RTTI_BINFO, this is case 2. In
7258 either case, we share our vtable with LAST, i.e. the
7259 derived-most base within B of which we are a primary. */
7260 if (b == rtti_binfo
7261 || (b && purpose_member (BINFO_TYPE (b),
7262 CLASSTYPE_VBASECLASSES (BINFO_TYPE (rtti_binfo)))))
7263 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7264 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7265 binfo_ctor_vtable after everything's been set up. */
7266 vtbl = last;
7267
7268 /* Otherwise, this is case 3 and we get our own. */
7269 }
7270 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7271 return inits;
7272
7273 if (!vtbl)
7274 {
7275 tree index;
7276 int non_fn_entries;
7277
7278 /* Compute the initializer for this vtable. */
7279 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7280 &non_fn_entries);
7281
7282 /* Figure out the position to which the VPTR should point. */
7283 vtbl = TREE_PURPOSE (l);
7284 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7285 index = size_binop (PLUS_EXPR,
7286 size_int (non_fn_entries),
7287 size_int (list_length (TREE_VALUE (l))));
7288 index = size_binop (MULT_EXPR,
7289 TYPE_SIZE_UNIT (vtable_entry_type),
7290 index);
7291 vtbl = build (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7292 }
7293
7294 if (ctor_vtbl_p)
7295 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7296 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7297 straighten this out. */
7298 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7299 else if (BINFO_PRIMARY_P (binfo) && TREE_VIA_VIRTUAL (binfo))
7300 inits = NULL_TREE;
7301 else
7302 /* For an ordinary vtable, set BINFO_VTABLE. */
7303 BINFO_VTABLE (binfo) = vtbl;
7304
7305 return inits;
7306 }
7307
7308 /* Construct the initializer for BINFO's virtual function table. BINFO
7309 is part of the hierarchy dominated by T. If we're building a
7310 construction vtable, the ORIG_BINFO is the binfo we should use to
7311 find the actual function pointers to put in the vtable - but they
7312 can be overridden on the path to most-derived in the graph that
7313 ORIG_BINFO belongs. Otherwise,
7314 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7315 BINFO that should be indicated by the RTTI information in the
7316 vtable; it will be a base class of T, rather than T itself, if we
7317 are building a construction vtable.
7318
7319 The value returned is a TREE_LIST suitable for wrapping in a
7320 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7321 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7322 number of non-function entries in the vtable.
7323
7324 It might seem that this function should never be called with a
7325 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7326 base is always subsumed by a derived class vtable. However, when
7327 we are building construction vtables, we do build vtables for
7328 primary bases; we need these while the primary base is being
7329 constructed. */
7330
7331 static tree
7332 build_vtbl_initializer (tree binfo,
7333 tree orig_binfo,
7334 tree t,
7335 tree rtti_binfo,
7336 int* non_fn_entries_p)
7337 {
7338 tree v, b;
7339 tree vfun_inits;
7340 tree vbase;
7341 vtbl_init_data vid;
7342
7343 /* Initialize VID. */
7344 memset (&vid, 0, sizeof (vid));
7345 vid.binfo = binfo;
7346 vid.derived = t;
7347 vid.rtti_binfo = rtti_binfo;
7348 vid.last_init = &vid.inits;
7349 vid.primary_vtbl_p = (binfo == TYPE_BINFO (t));
7350 vid.ctor_vtbl_p = !same_type_p (BINFO_TYPE (rtti_binfo), t);
7351 vid.generate_vcall_entries = true;
7352 /* The first vbase or vcall offset is at index -3 in the vtable. */
7353 vid.index = ssize_int (-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7354
7355 /* Add entries to the vtable for RTTI. */
7356 build_rtti_vtbl_entries (binfo, &vid);
7357
7358 /* Create an array for keeping track of the functions we've
7359 processed. When we see multiple functions with the same
7360 signature, we share the vcall offsets. */
7361 VARRAY_TREE_INIT (vid.fns, 32, "fns");
7362 /* Add the vcall and vbase offset entries. */
7363 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7364 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7365 build_vbase_offset_vtbl_entries. */
7366 for (vbase = CLASSTYPE_VBASECLASSES (t);
7367 vbase;
7368 vbase = TREE_CHAIN (vbase))
7369 BINFO_VTABLE_PATH_MARKED (TREE_VALUE (vbase)) = 0;
7370
7371 /* If the target requires padding between data entries, add that now. */
7372 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7373 {
7374 tree cur, *prev;
7375
7376 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7377 {
7378 tree add = cur;
7379 int i;
7380
7381 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7382 add = tree_cons (NULL_TREE,
7383 build1 (NOP_EXPR, vtable_entry_type,
7384 null_pointer_node),
7385 add);
7386 *prev = add;
7387 }
7388 }
7389
7390 if (non_fn_entries_p)
7391 *non_fn_entries_p = list_length (vid.inits);
7392
7393 /* Go through all the ordinary virtual functions, building up
7394 initializers. */
7395 vfun_inits = NULL_TREE;
7396 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7397 {
7398 tree delta;
7399 tree vcall_index;
7400 tree fn, fn_original;
7401 tree init = NULL_TREE;
7402
7403 fn = BV_FN (v);
7404 fn_original = fn;
7405 if (DECL_THUNK_P (fn))
7406 {
7407 if (!DECL_NAME (fn))
7408 finish_thunk (fn);
7409 if (THUNK_ALIAS (fn))
7410 {
7411 fn = THUNK_ALIAS (fn);
7412 BV_FN (v) = fn;
7413 }
7414 fn_original = THUNK_TARGET (fn);
7415 }
7416
7417 /* If the only definition of this function signature along our
7418 primary base chain is from a lost primary, this vtable slot will
7419 never be used, so just zero it out. This is important to avoid
7420 requiring extra thunks which cannot be generated with the function.
7421
7422 We first check this in update_vtable_entry_for_fn, so we handle
7423 restored primary bases properly; we also need to do it here so we
7424 zero out unused slots in ctor vtables, rather than filling themff
7425 with erroneous values (though harmless, apart from relocation
7426 costs). */
7427 for (b = binfo; ; b = get_primary_binfo (b))
7428 {
7429 /* We found a defn before a lost primary; go ahead as normal. */
7430 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7431 break;
7432
7433 /* The nearest definition is from a lost primary; clear the
7434 slot. */
7435 if (BINFO_LOST_PRIMARY_P (b))
7436 {
7437 init = size_zero_node;
7438 break;
7439 }
7440 }
7441
7442 if (! init)
7443 {
7444 /* Pull the offset for `this', and the function to call, out of
7445 the list. */
7446 delta = BV_DELTA (v);
7447 vcall_index = BV_VCALL_INDEX (v);
7448
7449 my_friendly_assert (TREE_CODE (delta) == INTEGER_CST, 19990727);
7450 my_friendly_assert (TREE_CODE (fn) == FUNCTION_DECL, 19990727);
7451
7452 /* You can't call an abstract virtual function; it's abstract.
7453 So, we replace these functions with __pure_virtual. */
7454 if (DECL_PURE_VIRTUAL_P (fn_original))
7455 fn = abort_fndecl;
7456 else if (!integer_zerop (delta) || vcall_index)
7457 {
7458 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7459 if (!DECL_NAME (fn))
7460 finish_thunk (fn);
7461 }
7462 /* Take the address of the function, considering it to be of an
7463 appropriate generic type. */
7464 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7465 }
7466
7467 /* And add it to the chain of initializers. */
7468 if (TARGET_VTABLE_USES_DESCRIPTORS)
7469 {
7470 int i;
7471 if (init == size_zero_node)
7472 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7473 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7474 else
7475 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7476 {
7477 tree fdesc = build (FDESC_EXPR, vfunc_ptr_type_node,
7478 TREE_OPERAND (init, 0),
7479 build_int_2 (i, 0));
7480 TREE_CONSTANT (fdesc) = 1;
7481 TREE_INVARIANT (fdesc) = 1;
7482
7483 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7484 }
7485 }
7486 else
7487 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7488 }
7489
7490 /* The initializers for virtual functions were built up in reverse
7491 order; straighten them out now. */
7492 vfun_inits = nreverse (vfun_inits);
7493
7494 /* The negative offset initializers are also in reverse order. */
7495 vid.inits = nreverse (vid.inits);
7496
7497 /* Chain the two together. */
7498 return chainon (vid.inits, vfun_inits);
7499 }
7500
7501 /* Adds to vid->inits the initializers for the vbase and vcall
7502 offsets in BINFO, which is in the hierarchy dominated by T. */
7503
7504 static void
7505 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7506 {
7507 tree b;
7508
7509 /* If this is a derived class, we must first create entries
7510 corresponding to the primary base class. */
7511 b = get_primary_binfo (binfo);
7512 if (b)
7513 build_vcall_and_vbase_vtbl_entries (b, vid);
7514
7515 /* Add the vbase entries for this base. */
7516 build_vbase_offset_vtbl_entries (binfo, vid);
7517 /* Add the vcall entries for this base. */
7518 build_vcall_offset_vtbl_entries (binfo, vid);
7519 }
7520
7521 /* Returns the initializers for the vbase offset entries in the vtable
7522 for BINFO (which is part of the class hierarchy dominated by T), in
7523 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7524 where the next vbase offset will go. */
7525
7526 static void
7527 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7528 {
7529 tree vbase;
7530 tree t;
7531 tree non_primary_binfo;
7532
7533 /* If there are no virtual baseclasses, then there is nothing to
7534 do. */
7535 if (!TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo)))
7536 return;
7537
7538 t = vid->derived;
7539
7540 /* We might be a primary base class. Go up the inheritance hierarchy
7541 until we find the most derived class of which we are a primary base:
7542 it is the offset of that which we need to use. */
7543 non_primary_binfo = binfo;
7544 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7545 {
7546 tree b;
7547
7548 /* If we have reached a virtual base, then it must be a primary
7549 base (possibly multi-level) of vid->binfo, or we wouldn't
7550 have called build_vcall_and_vbase_vtbl_entries for it. But it
7551 might be a lost primary, so just skip down to vid->binfo. */
7552 if (TREE_VIA_VIRTUAL (non_primary_binfo))
7553 {
7554 non_primary_binfo = vid->binfo;
7555 break;
7556 }
7557
7558 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7559 if (get_primary_binfo (b) != non_primary_binfo)
7560 break;
7561 non_primary_binfo = b;
7562 }
7563
7564 /* Go through the virtual bases, adding the offsets. */
7565 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7566 vbase;
7567 vbase = TREE_CHAIN (vbase))
7568 {
7569 tree b;
7570 tree delta;
7571
7572 if (!TREE_VIA_VIRTUAL (vbase))
7573 continue;
7574
7575 /* Find the instance of this virtual base in the complete
7576 object. */
7577 b = copied_binfo (vbase, binfo);
7578
7579 /* If we've already got an offset for this virtual base, we
7580 don't need another one. */
7581 if (BINFO_VTABLE_PATH_MARKED (b))
7582 continue;
7583 BINFO_VTABLE_PATH_MARKED (b) = 1;
7584
7585 /* Figure out where we can find this vbase offset. */
7586 delta = size_binop (MULT_EXPR,
7587 vid->index,
7588 convert (ssizetype,
7589 TYPE_SIZE_UNIT (vtable_entry_type)));
7590 if (vid->primary_vtbl_p)
7591 BINFO_VPTR_FIELD (b) = delta;
7592
7593 if (binfo != TYPE_BINFO (t))
7594 {
7595 /* The vbase offset had better be the same. */
7596 my_friendly_assert (tree_int_cst_equal (delta,
7597 BINFO_VPTR_FIELD (vbase)),
7598 20030202);
7599 }
7600
7601 /* The next vbase will come at a more negative offset. */
7602 vid->index = size_binop (MINUS_EXPR, vid->index,
7603 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7604
7605 /* The initializer is the delta from BINFO to this virtual base.
7606 The vbase offsets go in reverse inheritance-graph order, and
7607 we are walking in inheritance graph order so these end up in
7608 the right order. */
7609 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7610
7611 *vid->last_init
7612 = build_tree_list (NULL_TREE,
7613 fold (build1 (NOP_EXPR,
7614 vtable_entry_type,
7615 delta)));
7616 vid->last_init = &TREE_CHAIN (*vid->last_init);
7617 }
7618 }
7619
7620 /* Adds the initializers for the vcall offset entries in the vtable
7621 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7622 to VID->INITS. */
7623
7624 static void
7625 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7626 {
7627 /* We only need these entries if this base is a virtual base. We
7628 compute the indices -- but do not add to the vtable -- when
7629 building the main vtable for a class. */
7630 if (TREE_VIA_VIRTUAL (binfo) || binfo == TYPE_BINFO (vid->derived))
7631 {
7632 /* We need a vcall offset for each of the virtual functions in this
7633 vtable. For example:
7634
7635 class A { virtual void f (); };
7636 class B1 : virtual public A { virtual void f (); };
7637 class B2 : virtual public A { virtual void f (); };
7638 class C: public B1, public B2 { virtual void f (); };
7639
7640 A C object has a primary base of B1, which has a primary base of A. A
7641 C also has a secondary base of B2, which no longer has a primary base
7642 of A. So the B2-in-C construction vtable needs a secondary vtable for
7643 A, which will adjust the A* to a B2* to call f. We have no way of
7644 knowing what (or even whether) this offset will be when we define B2,
7645 so we store this "vcall offset" in the A sub-vtable and look it up in
7646 a "virtual thunk" for B2::f.
7647
7648 We need entries for all the functions in our primary vtable and
7649 in our non-virtual bases' secondary vtables. */
7650 vid->vbase = binfo;
7651 /* If we are just computing the vcall indices -- but do not need
7652 the actual entries -- not that. */
7653 if (!TREE_VIA_VIRTUAL (binfo))
7654 vid->generate_vcall_entries = false;
7655 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7656 add_vcall_offset_vtbl_entries_r (binfo, vid);
7657 }
7658 }
7659
7660 /* Build vcall offsets, starting with those for BINFO. */
7661
7662 static void
7663 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7664 {
7665 int i;
7666 tree primary_binfo;
7667
7668 /* Don't walk into virtual bases -- except, of course, for the
7669 virtual base for which we are building vcall offsets. Any
7670 primary virtual base will have already had its offsets generated
7671 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7672 if (TREE_VIA_VIRTUAL (binfo) && vid->vbase != binfo)
7673 return;
7674
7675 /* If BINFO has a primary base, process it first. */
7676 primary_binfo = get_primary_binfo (binfo);
7677 if (primary_binfo)
7678 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7679
7680 /* Add BINFO itself to the list. */
7681 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7682
7683 /* Scan the non-primary bases of BINFO. */
7684 for (i = 0; i < BINFO_N_BASETYPES (binfo); ++i)
7685 {
7686 tree base_binfo;
7687
7688 base_binfo = BINFO_BASETYPE (binfo, i);
7689 if (base_binfo != primary_binfo)
7690 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7691 }
7692 }
7693
7694 /* Called from build_vcall_offset_vtbl_entries_r. */
7695
7696 static void
7697 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7698 {
7699 /* Make entries for the rest of the virtuals. */
7700 if (abi_version_at_least (2))
7701 {
7702 tree orig_fn;
7703
7704 /* The ABI requires that the methods be processed in declaration
7705 order. G++ 3.2 used the order in the vtable. */
7706 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7707 orig_fn;
7708 orig_fn = TREE_CHAIN (orig_fn))
7709 if (DECL_VINDEX (orig_fn))
7710 add_vcall_offset (orig_fn, binfo, vid);
7711 }
7712 else
7713 {
7714 tree derived_virtuals;
7715 tree base_virtuals;
7716 tree orig_virtuals;
7717 /* If BINFO is a primary base, the most derived class which has
7718 BINFO as a primary base; otherwise, just BINFO. */
7719 tree non_primary_binfo;
7720
7721 /* We might be a primary base class. Go up the inheritance hierarchy
7722 until we find the most derived class of which we are a primary base:
7723 it is the BINFO_VIRTUALS there that we need to consider. */
7724 non_primary_binfo = binfo;
7725 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7726 {
7727 tree b;
7728
7729 /* If we have reached a virtual base, then it must be vid->vbase,
7730 because we ignore other virtual bases in
7731 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7732 base (possibly multi-level) of vid->binfo, or we wouldn't
7733 have called build_vcall_and_vbase_vtbl_entries for it. But it
7734 might be a lost primary, so just skip down to vid->binfo. */
7735 if (TREE_VIA_VIRTUAL (non_primary_binfo))
7736 {
7737 if (non_primary_binfo != vid->vbase)
7738 abort ();
7739 non_primary_binfo = vid->binfo;
7740 break;
7741 }
7742
7743 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7744 if (get_primary_binfo (b) != non_primary_binfo)
7745 break;
7746 non_primary_binfo = b;
7747 }
7748
7749 if (vid->ctor_vtbl_p)
7750 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7751 where rtti_binfo is the most derived type. */
7752 non_primary_binfo
7753 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7754
7755 for (base_virtuals = BINFO_VIRTUALS (binfo),
7756 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7757 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7758 base_virtuals;
7759 base_virtuals = TREE_CHAIN (base_virtuals),
7760 derived_virtuals = TREE_CHAIN (derived_virtuals),
7761 orig_virtuals = TREE_CHAIN (orig_virtuals))
7762 {
7763 tree orig_fn;
7764
7765 /* Find the declaration that originally caused this function to
7766 be present in BINFO_TYPE (binfo). */
7767 orig_fn = BV_FN (orig_virtuals);
7768
7769 /* When processing BINFO, we only want to generate vcall slots for
7770 function slots introduced in BINFO. So don't try to generate
7771 one if the function isn't even defined in BINFO. */
7772 if (!same_type_p (DECL_CONTEXT (orig_fn), BINFO_TYPE (binfo)))
7773 continue;
7774
7775 add_vcall_offset (orig_fn, binfo, vid);
7776 }
7777 }
7778 }
7779
7780 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7781
7782 static void
7783 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7784 {
7785 size_t i;
7786 tree vcall_offset;
7787
7788 /* If there is already an entry for a function with the same
7789 signature as FN, then we do not need a second vcall offset.
7790 Check the list of functions already present in the derived
7791 class vtable. */
7792 for (i = 0; i < VARRAY_ACTIVE_SIZE (vid->fns); ++i)
7793 {
7794 tree derived_entry;
7795
7796 derived_entry = VARRAY_TREE (vid->fns, i);
7797 if (same_signature_p (derived_entry, orig_fn)
7798 /* We only use one vcall offset for virtual destructors,
7799 even though there are two virtual table entries. */
7800 || (DECL_DESTRUCTOR_P (derived_entry)
7801 && DECL_DESTRUCTOR_P (orig_fn)))
7802 return;
7803 }
7804
7805 /* If we are building these vcall offsets as part of building
7806 the vtable for the most derived class, remember the vcall
7807 offset. */
7808 if (vid->binfo == TYPE_BINFO (vid->derived))
7809 CLASSTYPE_VCALL_INDICES (vid->derived)
7810 = tree_cons (orig_fn, vid->index,
7811 CLASSTYPE_VCALL_INDICES (vid->derived));
7812
7813 /* The next vcall offset will be found at a more negative
7814 offset. */
7815 vid->index = size_binop (MINUS_EXPR, vid->index,
7816 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7817
7818 /* Keep track of this function. */
7819 VARRAY_PUSH_TREE (vid->fns, orig_fn);
7820
7821 if (vid->generate_vcall_entries)
7822 {
7823 tree base;
7824 tree fn;
7825
7826 /* Find the overriding function. */
7827 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7828 if (fn == error_mark_node)
7829 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7830 integer_zero_node);
7831 else
7832 {
7833 base = TREE_VALUE (fn);
7834
7835 /* The vbase we're working on is a primary base of
7836 vid->binfo. But it might be a lost primary, so its
7837 BINFO_OFFSET might be wrong, so we just use the
7838 BINFO_OFFSET from vid->binfo. */
7839 vcall_offset = size_diffop (BINFO_OFFSET (base),
7840 BINFO_OFFSET (vid->binfo));
7841 vcall_offset = fold (build1 (NOP_EXPR, vtable_entry_type,
7842 vcall_offset));
7843 }
7844 /* Add the initializer to the vtable. */
7845 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7846 vid->last_init = &TREE_CHAIN (*vid->last_init);
7847 }
7848 }
7849
7850 /* Return vtbl initializers for the RTTI entries corresponding to the
7851 BINFO's vtable. The RTTI entries should indicate the object given
7852 by VID->rtti_binfo. */
7853
7854 static void
7855 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7856 {
7857 tree b;
7858 tree t;
7859 tree basetype;
7860 tree offset;
7861 tree decl;
7862 tree init;
7863
7864 basetype = BINFO_TYPE (binfo);
7865 t = BINFO_TYPE (vid->rtti_binfo);
7866
7867 /* To find the complete object, we will first convert to our most
7868 primary base, and then add the offset in the vtbl to that value. */
7869 b = binfo;
7870 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7871 && !BINFO_LOST_PRIMARY_P (b))
7872 {
7873 tree primary_base;
7874
7875 primary_base = get_primary_binfo (b);
7876 my_friendly_assert (BINFO_PRIMARY_BASE_OF (primary_base) == b, 20010127);
7877 b = primary_base;
7878 }
7879 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7880
7881 /* The second entry is the address of the typeinfo object. */
7882 if (flag_rtti)
7883 decl = build_address (get_tinfo_decl (t));
7884 else
7885 decl = integer_zero_node;
7886
7887 /* Convert the declaration to a type that can be stored in the
7888 vtable. */
7889 init = build_nop (vfunc_ptr_type_node, decl);
7890 *vid->last_init = build_tree_list (NULL_TREE, init);
7891 vid->last_init = &TREE_CHAIN (*vid->last_init);
7892
7893 /* Add the offset-to-top entry. It comes earlier in the vtable that
7894 the the typeinfo entry. Convert the offset to look like a
7895 function pointer, so that we can put it in the vtable. */
7896 init = build_nop (vfunc_ptr_type_node, offset);
7897 *vid->last_init = build_tree_list (NULL_TREE, init);
7898 vid->last_init = &TREE_CHAIN (*vid->last_init);
7899 }