]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/df-core.c
[Ada] Improved support for aspect alignment in CCG
[thirdparty/gcc.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /*
25 OVERVIEW:
26
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
30
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
35
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
40
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
46
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
49
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
57
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
62
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
67
68
69 USAGE:
70
71 Here is an example of using the dataflow routines.
72
73 df_[chain,live,note,rd]_add_problem (flags);
74
75 df_set_blocks (blocks);
76
77 df_analyze ();
78
79 df_dump (stderr);
80
81 df_finish_pass (false);
82
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
87
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
95
96
97
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
104
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
110
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
116
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
122
123
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
132
133 INCREMENTAL SCANNING
134
135 There are four ways of doing the incremental scanning:
136
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
191
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
198
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
203
204 DATA STRUCTURES
205
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
213
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
219
220
221 PHILOSOPHY:
222
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
227
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
235
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
241
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
245
246
247 DATA STRUCTURES:
248
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
251
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
257
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
260
261 ACCESSING INSNS:
262
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
286
287 ACCESSING REFS:
288
289 There are 4 ways to obtain access to refs:
290
291 1) References are divided into two categories, REAL and ARTIFICIAL.
292
293 REAL refs are associated with instructions.
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
298
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that are at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in EH_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial defs that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
316
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
340
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
355 NOTES:
356
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
365
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
371
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
374 */
375
376
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "backend.h"
381 #include "rtl.h"
382 #include "df.h"
383 #include "memmodel.h"
384 #include "emit-rtl.h"
385 #include "cfganal.h"
386 #include "tree-pass.h"
387 #include "cfgloop.h"
388
389 static void *df_get_bb_info (struct dataflow *, unsigned int);
390 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
391 static void df_clear_bb_info (struct dataflow *, unsigned int);
392 #ifdef DF_DEBUG_CFG
393 static void df_set_clean_cfg (void);
394 #endif
395
396 /* The obstack on which regsets are allocated. */
397 struct bitmap_obstack reg_obstack;
398
399 /* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
402
403 bitmap_obstack df_bitmap_obstack;
404
405
406 /*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408 ----------------------------------------------------------------------------*/
409
410 class df_d *df;
411
412 /* Add PROBLEM (and any dependent problems) to the DF instance. */
413
414 void
415 df_add_problem (const struct df_problem *problem)
416 {
417 struct dataflow *dflow;
418 int i;
419
420 /* First try to add the dependent problem. */
421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
423
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
429 return;
430
431 /* Make a new one and add it to the end. */
432 dflow = XCNEW (struct dataflow);
433 dflow->problem = problem;
434 dflow->computed = false;
435 dflow->solutions_dirty = true;
436 df->problems_by_index[dflow->problem->id] = dflow;
437
438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
444 defined. */
445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 {
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
451 {
452 df->problems_in_order[i+1] = dflow;
453 return;
454 }
455 }
456 df->problems_in_order[0] = dflow;
457 }
458
459
460 /* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
463 int
464 df_set_flags (int changeable_flags)
465 {
466 int old_flags = df->changeable_flags;
467 df->changeable_flags |= changeable_flags;
468 return old_flags;
469 }
470
471
472 /* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
475 int
476 df_clear_flags (int changeable_flags)
477 {
478 int old_flags = df->changeable_flags;
479 df->changeable_flags &= ~changeable_flags;
480 return old_flags;
481 }
482
483
484 /* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
487
488 void
489 df_set_blocks (bitmap blocks)
490 {
491 if (blocks)
492 {
493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
495 if (df->blocks_to_analyze)
496 {
497 /* This block is called to change the focus from one subset
498 to another. */
499 int p;
500 auto_bitmap diff (&df_bitmap_obstack);
501 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
502 for (p = 0; p < df->num_problems_defined; p++)
503 {
504 struct dataflow *dflow = df->problems_in_order[p];
505 if (dflow->optional_p && dflow->problem->reset_fun)
506 dflow->problem->reset_fun (df->blocks_to_analyze);
507 else if (dflow->problem->free_blocks_on_set_blocks)
508 {
509 bitmap_iterator bi;
510 unsigned int bb_index;
511
512 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
513 {
514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515 if (bb)
516 {
517 void *bb_info = df_get_bb_info (dflow, bb_index);
518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
520 }
521 }
522 }
523 }
524 }
525 else
526 {
527 /* This block of code is executed to change the focus from
528 the entire function to a subset. */
529 bitmap_head blocks_to_reset;
530 bool initialized = false;
531 int p;
532 for (p = 0; p < df->num_problems_defined; p++)
533 {
534 struct dataflow *dflow = df->problems_in_order[p];
535 if (dflow->optional_p && dflow->problem->reset_fun)
536 {
537 if (!initialized)
538 {
539 basic_block bb;
540 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
541 FOR_ALL_BB_FN (bb, cfun)
542 {
543 bitmap_set_bit (&blocks_to_reset, bb->index);
544 }
545 }
546 dflow->problem->reset_fun (&blocks_to_reset);
547 }
548 }
549 if (initialized)
550 bitmap_clear (&blocks_to_reset);
551
552 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
553 }
554 bitmap_copy (df->blocks_to_analyze, blocks);
555 df->analyze_subset = true;
556 }
557 else
558 {
559 /* This block is executed to reset the focus to the entire
560 function. */
561 if (dump_file)
562 fprintf (dump_file, "clearing blocks_to_analyze\n");
563 if (df->blocks_to_analyze)
564 {
565 BITMAP_FREE (df->blocks_to_analyze);
566 df->blocks_to_analyze = NULL;
567 }
568 df->analyze_subset = false;
569 }
570
571 /* Setting the blocks causes the refs to be unorganized since only
572 the refs in the blocks are seen. */
573 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 df_mark_solutions_dirty ();
576 }
577
578
579 /* Delete a DFLOW problem (and any problems that depend on this
580 problem). */
581
582 void
583 df_remove_problem (struct dataflow *dflow)
584 {
585 const struct df_problem *problem;
586 int i;
587
588 if (!dflow)
589 return;
590
591 problem = dflow->problem;
592 gcc_assert (problem->remove_problem_fun);
593
594 /* Delete any problems that depended on this problem first. */
595 for (i = 0; i < df->num_problems_defined; i++)
596 if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 df_remove_problem (df->problems_in_order[i]);
598
599 /* Now remove this problem. */
600 for (i = 0; i < df->num_problems_defined; i++)
601 if (df->problems_in_order[i] == dflow)
602 {
603 int j;
604 for (j = i + 1; j < df->num_problems_defined; j++)
605 df->problems_in_order[j-1] = df->problems_in_order[j];
606 df->problems_in_order[j-1] = NULL;
607 df->num_problems_defined--;
608 break;
609 }
610
611 (problem->remove_problem_fun) ();
612 df->problems_by_index[problem->id] = NULL;
613 }
614
615
616 /* Remove all of the problems that are not permanent. Scanning, LR
617 and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 Also clear all of the changeable_flags. */
619
620 void
621 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
622 {
623 int i;
624
625 #ifdef ENABLE_DF_CHECKING
626 int saved_flags;
627 #endif
628
629 if (!df)
630 return;
631
632 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634
635 #ifdef ENABLE_DF_CHECKING
636 saved_flags = df->changeable_flags;
637 #endif
638
639 /* We iterate over problems by index as each problem removed will
640 lead to problems_in_order to be reordered. */
641 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
642 {
643 struct dataflow *dflow = df->problems_by_index[i];
644
645 if (dflow && dflow->optional_p)
646 df_remove_problem (dflow);
647 }
648
649 /* Clear all of the flags. */
650 df->changeable_flags = 0;
651 df_process_deferred_rescans ();
652
653 /* Set the focus back to the whole function. */
654 if (df->blocks_to_analyze)
655 {
656 BITMAP_FREE (df->blocks_to_analyze);
657 df->blocks_to_analyze = NULL;
658 df_mark_solutions_dirty ();
659 df->analyze_subset = false;
660 }
661
662 #ifdef ENABLE_DF_CHECKING
663 /* Verification will fail in DF_NO_INSN_RESCAN. */
664 if (!(saved_flags & DF_NO_INSN_RESCAN))
665 {
666 df_lr_verify_transfer_functions ();
667 if (df_live)
668 df_live_verify_transfer_functions ();
669 }
670
671 #ifdef DF_DEBUG_CFG
672 df_set_clean_cfg ();
673 #endif
674 #endif
675
676 if (flag_checking && verify)
677 df->changeable_flags |= DF_VERIFY_SCHEDULED;
678 }
679
680
681 /* Set up the dataflow instance for the entire back end. */
682
683 static unsigned int
684 rest_of_handle_df_initialize (void)
685 {
686 gcc_assert (!df);
687 df = XCNEW (class df_d);
688 df->changeable_flags = 0;
689
690 bitmap_obstack_initialize (&df_bitmap_obstack);
691
692 /* Set this to a conservative value. Stack_ptr_mod will compute it
693 correctly later. */
694 crtl->sp_is_unchanging = 0;
695
696 df_scan_add_problem ();
697 df_scan_alloc (NULL);
698
699 /* These three problems are permanent. */
700 df_lr_add_problem ();
701 if (optimize > 1)
702 df_live_add_problem ();
703
704 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
705 df->n_blocks = post_order_compute (df->postorder, true, true);
706 inverted_post_order_compute (&df->postorder_inverted);
707 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
708
709 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
710
711 df_hard_reg_init ();
712 /* After reload, some ports add certain bits to regs_ever_live so
713 this cannot be reset. */
714 df_compute_regs_ever_live (true);
715 df_scan_blocks ();
716 df_compute_regs_ever_live (false);
717 return 0;
718 }
719
720
721 namespace {
722
723 const pass_data pass_data_df_initialize_opt =
724 {
725 RTL_PASS, /* type */
726 "dfinit", /* name */
727 OPTGROUP_NONE, /* optinfo_flags */
728 TV_DF_SCAN, /* tv_id */
729 0, /* properties_required */
730 0, /* properties_provided */
731 0, /* properties_destroyed */
732 0, /* todo_flags_start */
733 0, /* todo_flags_finish */
734 };
735
736 class pass_df_initialize_opt : public rtl_opt_pass
737 {
738 public:
739 pass_df_initialize_opt (gcc::context *ctxt)
740 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
741 {}
742
743 /* opt_pass methods: */
744 virtual bool gate (function *) { return optimize > 0; }
745 virtual unsigned int execute (function *)
746 {
747 return rest_of_handle_df_initialize ();
748 }
749
750 }; // class pass_df_initialize_opt
751
752 } // anon namespace
753
754 rtl_opt_pass *
755 make_pass_df_initialize_opt (gcc::context *ctxt)
756 {
757 return new pass_df_initialize_opt (ctxt);
758 }
759
760
761 namespace {
762
763 const pass_data pass_data_df_initialize_no_opt =
764 {
765 RTL_PASS, /* type */
766 "no-opt dfinit", /* name */
767 OPTGROUP_NONE, /* optinfo_flags */
768 TV_DF_SCAN, /* tv_id */
769 0, /* properties_required */
770 0, /* properties_provided */
771 0, /* properties_destroyed */
772 0, /* todo_flags_start */
773 0, /* todo_flags_finish */
774 };
775
776 class pass_df_initialize_no_opt : public rtl_opt_pass
777 {
778 public:
779 pass_df_initialize_no_opt (gcc::context *ctxt)
780 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
781 {}
782
783 /* opt_pass methods: */
784 virtual bool gate (function *) { return optimize == 0; }
785 virtual unsigned int execute (function *)
786 {
787 return rest_of_handle_df_initialize ();
788 }
789
790 }; // class pass_df_initialize_no_opt
791
792 } // anon namespace
793
794 rtl_opt_pass *
795 make_pass_df_initialize_no_opt (gcc::context *ctxt)
796 {
797 return new pass_df_initialize_no_opt (ctxt);
798 }
799
800
801 /* Free all the dataflow info and the DF structure. This should be
802 called from the df_finish macro which also NULLs the parm. */
803
804 static unsigned int
805 rest_of_handle_df_finish (void)
806 {
807 int i;
808
809 gcc_assert (df);
810
811 for (i = 0; i < df->num_problems_defined; i++)
812 {
813 struct dataflow *dflow = df->problems_in_order[i];
814 dflow->problem->free_fun ();
815 }
816
817 free (df->postorder);
818 df->postorder_inverted.release ();
819 free (df->hard_regs_live_count);
820 free (df);
821 df = NULL;
822
823 bitmap_obstack_release (&df_bitmap_obstack);
824 return 0;
825 }
826
827
828 namespace {
829
830 const pass_data pass_data_df_finish =
831 {
832 RTL_PASS, /* type */
833 "dfinish", /* name */
834 OPTGROUP_NONE, /* optinfo_flags */
835 TV_NONE, /* tv_id */
836 0, /* properties_required */
837 0, /* properties_provided */
838 0, /* properties_destroyed */
839 0, /* todo_flags_start */
840 0, /* todo_flags_finish */
841 };
842
843 class pass_df_finish : public rtl_opt_pass
844 {
845 public:
846 pass_df_finish (gcc::context *ctxt)
847 : rtl_opt_pass (pass_data_df_finish, ctxt)
848 {}
849
850 /* opt_pass methods: */
851 virtual unsigned int execute (function *)
852 {
853 return rest_of_handle_df_finish ();
854 }
855
856 }; // class pass_df_finish
857
858 } // anon namespace
859
860 rtl_opt_pass *
861 make_pass_df_finish (gcc::context *ctxt)
862 {
863 return new pass_df_finish (ctxt);
864 }
865
866
867
868
869 \f
870 /*----------------------------------------------------------------------------
871 The general data flow analysis engine.
872 ----------------------------------------------------------------------------*/
873
874 /* Helper function for df_worklist_dataflow.
875 Propagate the dataflow forward.
876 Given a BB_INDEX, do the dataflow propagation
877 and set bits on for successors in PENDING
878 if the out set of the dataflow has changed.
879
880 AGE specify time when BB was visited last time.
881 AGE of 0 means we are visiting for first time and need to
882 compute transfer function to initialize datastructures.
883 Otherwise we re-do transfer function only if something change
884 while computing confluence functions.
885 We need to compute confluence only of basic block that are younger
886 then last visit of the BB.
887
888 Return true if BB info has changed. This is always the case
889 in the first visit. */
890
891 static bool
892 df_worklist_propagate_forward (struct dataflow *dataflow,
893 unsigned bb_index,
894 unsigned *bbindex_to_postorder,
895 bitmap pending,
896 sbitmap considered,
897 vec<int> &last_change_age,
898 int age)
899 {
900 edge e;
901 edge_iterator ei;
902 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
903 bool changed = !age;
904
905 /* Calculate <conf_op> of incoming edges. */
906 if (EDGE_COUNT (bb->preds) > 0)
907 FOR_EACH_EDGE (e, ei, bb->preds)
908 {
909 if (bbindex_to_postorder[e->src->index] < last_change_age.length ()
910 && age <= last_change_age[bbindex_to_postorder[e->src->index]]
911 && bitmap_bit_p (considered, e->src->index))
912 changed |= dataflow->problem->con_fun_n (e);
913 }
914 else if (dataflow->problem->con_fun_0)
915 dataflow->problem->con_fun_0 (bb);
916
917 if (changed
918 && dataflow->problem->trans_fun (bb_index))
919 {
920 /* The out set of this block has changed.
921 Propagate to the outgoing blocks. */
922 FOR_EACH_EDGE (e, ei, bb->succs)
923 {
924 unsigned ob_index = e->dest->index;
925
926 if (bitmap_bit_p (considered, ob_index))
927 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
928 }
929 return true;
930 }
931 return false;
932 }
933
934
935 /* Helper function for df_worklist_dataflow.
936 Propagate the dataflow backward. */
937
938 static bool
939 df_worklist_propagate_backward (struct dataflow *dataflow,
940 unsigned bb_index,
941 unsigned *bbindex_to_postorder,
942 bitmap pending,
943 sbitmap considered,
944 vec<int> &last_change_age,
945 int age)
946 {
947 edge e;
948 edge_iterator ei;
949 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
950 bool changed = !age;
951
952 /* Calculate <conf_op> of incoming edges. */
953 if (EDGE_COUNT (bb->succs) > 0)
954 FOR_EACH_EDGE (e, ei, bb->succs)
955 {
956 if (bbindex_to_postorder[e->dest->index] < last_change_age.length ()
957 && age <= last_change_age[bbindex_to_postorder[e->dest->index]]
958 && bitmap_bit_p (considered, e->dest->index))
959 changed |= dataflow->problem->con_fun_n (e);
960 }
961 else if (dataflow->problem->con_fun_0)
962 dataflow->problem->con_fun_0 (bb);
963
964 if (changed
965 && dataflow->problem->trans_fun (bb_index))
966 {
967 /* The out set of this block has changed.
968 Propagate to the outgoing blocks. */
969 FOR_EACH_EDGE (e, ei, bb->preds)
970 {
971 unsigned ob_index = e->src->index;
972
973 if (bitmap_bit_p (considered, ob_index))
974 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
975 }
976 return true;
977 }
978 return false;
979 }
980
981 /* Main dataflow solver loop.
982
983 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
984 need to visit.
985 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
986 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
987 PENDING will be freed.
988
989 The worklists are bitmaps indexed by postorder positions.
990
991 The function implements standard algorithm for dataflow solving with two
992 worklists (we are processing WORKLIST and storing new BBs to visit in
993 PENDING).
994
995 As an optimization we maintain ages when BB was changed (stored in
996 last_change_age) and when it was last visited (stored in last_visit_age).
997 This avoids need to re-do confluence function for edges to basic blocks
998 whose source did not change since destination was visited last time. */
999
1000 static void
1001 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1002 bitmap pending,
1003 sbitmap considered,
1004 int *blocks_in_postorder,
1005 unsigned *bbindex_to_postorder,
1006 int n_blocks)
1007 {
1008 enum df_flow_dir dir = dataflow->problem->dir;
1009 int dcount = 0;
1010 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1011 int age = 0;
1012 bool changed;
1013 vec<int> last_visit_age = vNULL;
1014 vec<int> last_change_age = vNULL;
1015 int prev_age;
1016
1017 last_visit_age.safe_grow_cleared (n_blocks);
1018 last_change_age.safe_grow_cleared (n_blocks);
1019
1020 /* Double-queueing. Worklist is for the current iteration,
1021 and pending is for the next. */
1022 while (!bitmap_empty_p (pending))
1023 {
1024 bitmap_iterator bi;
1025 unsigned int index;
1026
1027 std::swap (pending, worklist);
1028
1029 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1030 {
1031 unsigned bb_index;
1032 dcount++;
1033
1034 bitmap_clear_bit (pending, index);
1035 bb_index = blocks_in_postorder[index];
1036 prev_age = last_visit_age[index];
1037 if (dir == DF_FORWARD)
1038 changed = df_worklist_propagate_forward (dataflow, bb_index,
1039 bbindex_to_postorder,
1040 pending, considered,
1041 last_change_age,
1042 prev_age);
1043 else
1044 changed = df_worklist_propagate_backward (dataflow, bb_index,
1045 bbindex_to_postorder,
1046 pending, considered,
1047 last_change_age,
1048 prev_age);
1049 last_visit_age[index] = ++age;
1050 if (changed)
1051 last_change_age[index] = age;
1052 }
1053 bitmap_clear (worklist);
1054 }
1055
1056 BITMAP_FREE (worklist);
1057 BITMAP_FREE (pending);
1058 last_visit_age.release ();
1059 last_change_age.release ();
1060
1061 /* Dump statistics. */
1062 if (dump_file)
1063 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1064 " n_basic_blocks %d n_edges %d"
1065 " count %d (%5.2g)\n",
1066 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1067 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1068 }
1069
1070 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1071 with "n"-th bit representing the n-th block in the reverse-postorder order.
1072 The solver is a double-queue algorithm similar to the "double stack" solver
1073 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1074 The only significant difference is that the worklist in this implementation
1075 is always sorted in RPO of the CFG visiting direction. */
1076
1077 void
1078 df_worklist_dataflow (struct dataflow *dataflow,
1079 bitmap blocks_to_consider,
1080 int *blocks_in_postorder,
1081 int n_blocks)
1082 {
1083 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1084 bitmap_iterator bi;
1085 unsigned int *bbindex_to_postorder;
1086 int i;
1087 unsigned int index;
1088 enum df_flow_dir dir = dataflow->problem->dir;
1089
1090 gcc_assert (dir != DF_NONE);
1091
1092 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1093 bbindex_to_postorder = XNEWVEC (unsigned int,
1094 last_basic_block_for_fn (cfun));
1095
1096 /* Initialize the array to an out-of-bound value. */
1097 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1098 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1099
1100 /* Initialize the considered map. */
1101 auto_sbitmap considered (last_basic_block_for_fn (cfun));
1102 bitmap_clear (considered);
1103 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1104 {
1105 bitmap_set_bit (considered, index);
1106 }
1107
1108 /* Initialize the mapping of block index to postorder. */
1109 for (i = 0; i < n_blocks; i++)
1110 {
1111 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1112 /* Add all blocks to the worklist. */
1113 bitmap_set_bit (pending, i);
1114 }
1115
1116 /* Initialize the problem. */
1117 if (dataflow->problem->init_fun)
1118 dataflow->problem->init_fun (blocks_to_consider);
1119
1120 /* Solve it. */
1121 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1122 blocks_in_postorder,
1123 bbindex_to_postorder,
1124 n_blocks);
1125 free (bbindex_to_postorder);
1126 }
1127
1128
1129 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1130 the order of the remaining entries. Returns the length of the resulting
1131 list. */
1132
1133 static unsigned
1134 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1135 {
1136 unsigned act, last;
1137
1138 for (act = 0, last = 0; act < len; act++)
1139 if (bitmap_bit_p (blocks, list[act]))
1140 list[last++] = list[act];
1141
1142 return last;
1143 }
1144
1145
1146 /* Execute dataflow analysis on a single dataflow problem.
1147
1148 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1149 examined or will be computed. For calls from DF_ANALYZE, this is
1150 the set of blocks that has been passed to DF_SET_BLOCKS.
1151 */
1152
1153 void
1154 df_analyze_problem (struct dataflow *dflow,
1155 bitmap blocks_to_consider,
1156 int *postorder, int n_blocks)
1157 {
1158 timevar_push (dflow->problem->tv_id);
1159
1160 /* (Re)Allocate the datastructures necessary to solve the problem. */
1161 if (dflow->problem->alloc_fun)
1162 dflow->problem->alloc_fun (blocks_to_consider);
1163
1164 #ifdef ENABLE_DF_CHECKING
1165 if (dflow->problem->verify_start_fun)
1166 dflow->problem->verify_start_fun ();
1167 #endif
1168
1169 /* Set up the problem and compute the local information. */
1170 if (dflow->problem->local_compute_fun)
1171 dflow->problem->local_compute_fun (blocks_to_consider);
1172
1173 /* Solve the equations. */
1174 if (dflow->problem->dataflow_fun)
1175 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1176 postorder, n_blocks);
1177
1178 /* Massage the solution. */
1179 if (dflow->problem->finalize_fun)
1180 dflow->problem->finalize_fun (blocks_to_consider);
1181
1182 #ifdef ENABLE_DF_CHECKING
1183 if (dflow->problem->verify_end_fun)
1184 dflow->problem->verify_end_fun ();
1185 #endif
1186
1187 timevar_pop (dflow->problem->tv_id);
1188
1189 dflow->computed = true;
1190 }
1191
1192
1193 /* Analyze dataflow info. */
1194
1195 static void
1196 df_analyze_1 (void)
1197 {
1198 int i;
1199
1200 /* These should be the same. */
1201 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
1202
1203 /* We need to do this before the df_verify_all because this is
1204 not kept incrementally up to date. */
1205 df_compute_regs_ever_live (false);
1206 df_process_deferred_rescans ();
1207
1208 if (dump_file)
1209 fprintf (dump_file, "df_analyze called\n");
1210
1211 #ifndef ENABLE_DF_CHECKING
1212 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1213 #endif
1214 df_verify ();
1215
1216 /* Skip over the DF_SCAN problem. */
1217 for (i = 1; i < df->num_problems_defined; i++)
1218 {
1219 struct dataflow *dflow = df->problems_in_order[i];
1220 if (dflow->solutions_dirty)
1221 {
1222 if (dflow->problem->dir == DF_FORWARD)
1223 df_analyze_problem (dflow,
1224 df->blocks_to_analyze,
1225 df->postorder_inverted.address (),
1226 df->postorder_inverted.length ());
1227 else
1228 df_analyze_problem (dflow,
1229 df->blocks_to_analyze,
1230 df->postorder,
1231 df->n_blocks);
1232 }
1233 }
1234
1235 if (!df->analyze_subset)
1236 {
1237 BITMAP_FREE (df->blocks_to_analyze);
1238 df->blocks_to_analyze = NULL;
1239 }
1240
1241 #ifdef DF_DEBUG_CFG
1242 df_set_clean_cfg ();
1243 #endif
1244 }
1245
1246 /* Analyze dataflow info. */
1247
1248 void
1249 df_analyze (void)
1250 {
1251 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1252
1253 free (df->postorder);
1254 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1255 df->n_blocks = post_order_compute (df->postorder, true, true);
1256 df->postorder_inverted.truncate (0);
1257 inverted_post_order_compute (&df->postorder_inverted);
1258
1259 for (int i = 0; i < df->n_blocks; i++)
1260 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1261
1262 if (flag_checking)
1263 {
1264 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1265 the ENTRY block. */
1266 for (unsigned int i = 0; i < df->postorder_inverted.length (); i++)
1267 gcc_assert (bitmap_bit_p (current_all_blocks,
1268 df->postorder_inverted[i]));
1269 }
1270
1271 /* Make sure that we have pruned any unreachable blocks from these
1272 sets. */
1273 if (df->analyze_subset)
1274 {
1275 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1276 df->n_blocks = df_prune_to_subcfg (df->postorder,
1277 df->n_blocks, df->blocks_to_analyze);
1278 unsigned int newlen = df_prune_to_subcfg (df->postorder_inverted.address (),
1279 df->postorder_inverted.length (),
1280 df->blocks_to_analyze);
1281 df->postorder_inverted.truncate (newlen);
1282 BITMAP_FREE (current_all_blocks);
1283 }
1284 else
1285 {
1286 df->blocks_to_analyze = current_all_blocks;
1287 current_all_blocks = NULL;
1288 }
1289
1290 df_analyze_1 ();
1291 }
1292
1293 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1294 Returns the number of blocks which is always loop->num_nodes. */
1295
1296 static int
1297 loop_post_order_compute (int *post_order, class loop *loop)
1298 {
1299 edge_iterator *stack;
1300 int sp;
1301 int post_order_num = 0;
1302
1303 /* Allocate stack for back-tracking up CFG. */
1304 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1305 sp = 0;
1306
1307 /* Allocate bitmap to track nodes that have been visited. */
1308 auto_bitmap visited;
1309
1310 /* Push the first edge on to the stack. */
1311 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1312
1313 while (sp)
1314 {
1315 edge_iterator ei;
1316 basic_block src;
1317 basic_block dest;
1318
1319 /* Look at the edge on the top of the stack. */
1320 ei = stack[sp - 1];
1321 src = ei_edge (ei)->src;
1322 dest = ei_edge (ei)->dest;
1323
1324 /* Check if the edge destination has been visited yet and mark it
1325 if not so. */
1326 if (flow_bb_inside_loop_p (loop, dest)
1327 && bitmap_set_bit (visited, dest->index))
1328 {
1329 if (EDGE_COUNT (dest->succs) > 0)
1330 /* Since the DEST node has been visited for the first
1331 time, check its successors. */
1332 stack[sp++] = ei_start (dest->succs);
1333 else
1334 post_order[post_order_num++] = dest->index;
1335 }
1336 else
1337 {
1338 if (ei_one_before_end_p (ei)
1339 && src != loop_preheader_edge (loop)->src)
1340 post_order[post_order_num++] = src->index;
1341
1342 if (!ei_one_before_end_p (ei))
1343 ei_next (&stack[sp - 1]);
1344 else
1345 sp--;
1346 }
1347 }
1348
1349 free (stack);
1350
1351 return post_order_num;
1352 }
1353
1354 /* Compute the reverse top sort order of the inverted sub-CFG specified
1355 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1356
1357 static void
1358 loop_inverted_post_order_compute (vec<int> *post_order, class loop *loop)
1359 {
1360 basic_block bb;
1361 edge_iterator *stack;
1362 int sp;
1363
1364 post_order->reserve_exact (loop->num_nodes);
1365
1366 /* Allocate stack for back-tracking up CFG. */
1367 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1368 sp = 0;
1369
1370 /* Allocate bitmap to track nodes that have been visited. */
1371 auto_bitmap visited;
1372
1373 /* Put all latches into the initial work list. In theory we'd want
1374 to start from loop exits but then we'd have the special case of
1375 endless loops. It doesn't really matter for DF iteration order and
1376 handling latches last is probably even better. */
1377 stack[sp++] = ei_start (loop->header->preds);
1378 bitmap_set_bit (visited, loop->header->index);
1379
1380 /* The inverted traversal loop. */
1381 while (sp)
1382 {
1383 edge_iterator ei;
1384 basic_block pred;
1385
1386 /* Look at the edge on the top of the stack. */
1387 ei = stack[sp - 1];
1388 bb = ei_edge (ei)->dest;
1389 pred = ei_edge (ei)->src;
1390
1391 /* Check if the predecessor has been visited yet and mark it
1392 if not so. */
1393 if (flow_bb_inside_loop_p (loop, pred)
1394 && bitmap_set_bit (visited, pred->index))
1395 {
1396 if (EDGE_COUNT (pred->preds) > 0)
1397 /* Since the predecessor node has been visited for the first
1398 time, check its predecessors. */
1399 stack[sp++] = ei_start (pred->preds);
1400 else
1401 post_order->quick_push (pred->index);
1402 }
1403 else
1404 {
1405 if (flow_bb_inside_loop_p (loop, bb)
1406 && ei_one_before_end_p (ei))
1407 post_order->quick_push (bb->index);
1408
1409 if (!ei_one_before_end_p (ei))
1410 ei_next (&stack[sp - 1]);
1411 else
1412 sp--;
1413 }
1414 }
1415
1416 free (stack);
1417 }
1418
1419
1420 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1421
1422 void
1423 df_analyze_loop (class loop *loop)
1424 {
1425 free (df->postorder);
1426
1427 df->postorder = XNEWVEC (int, loop->num_nodes);
1428 df->postorder_inverted.truncate (0);
1429 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1430 loop_inverted_post_order_compute (&df->postorder_inverted, loop);
1431 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1432 gcc_assert (df->postorder_inverted.length () == loop->num_nodes);
1433
1434 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1435 for (int i = 0; i < df->n_blocks; ++i)
1436 bitmap_set_bit (blocks, df->postorder[i]);
1437 df_set_blocks (blocks);
1438 BITMAP_FREE (blocks);
1439
1440 df_analyze_1 ();
1441 }
1442
1443
1444 /* Return the number of basic blocks from the last call to df_analyze. */
1445
1446 int
1447 df_get_n_blocks (enum df_flow_dir dir)
1448 {
1449 gcc_assert (dir != DF_NONE);
1450
1451 if (dir == DF_FORWARD)
1452 {
1453 gcc_assert (df->postorder_inverted.length ());
1454 return df->postorder_inverted.length ();
1455 }
1456
1457 gcc_assert (df->postorder);
1458 return df->n_blocks;
1459 }
1460
1461
1462 /* Return a pointer to the array of basic blocks in the reverse postorder.
1463 Depending on the direction of the dataflow problem,
1464 it returns either the usual reverse postorder array
1465 or the reverse postorder of inverted traversal. */
1466 int *
1467 df_get_postorder (enum df_flow_dir dir)
1468 {
1469 gcc_assert (dir != DF_NONE);
1470
1471 if (dir == DF_FORWARD)
1472 {
1473 gcc_assert (df->postorder_inverted.length ());
1474 return df->postorder_inverted.address ();
1475 }
1476 gcc_assert (df->postorder);
1477 return df->postorder;
1478 }
1479
1480 static struct df_problem user_problem;
1481 static struct dataflow user_dflow;
1482
1483 /* Interface for calling iterative dataflow with user defined
1484 confluence and transfer functions. All that is necessary is to
1485 supply DIR, a direction, CONF_FUN_0, a confluence function for
1486 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1487 confluence function, TRANS_FUN, the basic block transfer function,
1488 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1489 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1490
1491 void
1492 df_simple_dataflow (enum df_flow_dir dir,
1493 df_init_function init_fun,
1494 df_confluence_function_0 con_fun_0,
1495 df_confluence_function_n con_fun_n,
1496 df_transfer_function trans_fun,
1497 bitmap blocks, int * postorder, int n_blocks)
1498 {
1499 memset (&user_problem, 0, sizeof (struct df_problem));
1500 user_problem.dir = dir;
1501 user_problem.init_fun = init_fun;
1502 user_problem.con_fun_0 = con_fun_0;
1503 user_problem.con_fun_n = con_fun_n;
1504 user_problem.trans_fun = trans_fun;
1505 user_dflow.problem = &user_problem;
1506 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1507 }
1508
1509
1510 \f
1511 /*----------------------------------------------------------------------------
1512 Functions to support limited incremental change.
1513 ----------------------------------------------------------------------------*/
1514
1515
1516 /* Get basic block info. */
1517
1518 static void *
1519 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1520 {
1521 if (dflow->block_info == NULL)
1522 return NULL;
1523 if (index >= dflow->block_info_size)
1524 return NULL;
1525 return (void *)((char *)dflow->block_info
1526 + index * dflow->problem->block_info_elt_size);
1527 }
1528
1529
1530 /* Set basic block info. */
1531
1532 static void
1533 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1534 void *bb_info)
1535 {
1536 gcc_assert (dflow->block_info);
1537 memcpy ((char *)dflow->block_info
1538 + index * dflow->problem->block_info_elt_size,
1539 bb_info, dflow->problem->block_info_elt_size);
1540 }
1541
1542
1543 /* Clear basic block info. */
1544
1545 static void
1546 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1547 {
1548 gcc_assert (dflow->block_info);
1549 gcc_assert (dflow->block_info_size > index);
1550 memset ((char *)dflow->block_info
1551 + index * dflow->problem->block_info_elt_size,
1552 0, dflow->problem->block_info_elt_size);
1553 }
1554
1555
1556 /* Mark the solutions as being out of date. */
1557
1558 void
1559 df_mark_solutions_dirty (void)
1560 {
1561 if (df)
1562 {
1563 int p;
1564 for (p = 1; p < df->num_problems_defined; p++)
1565 df->problems_in_order[p]->solutions_dirty = true;
1566 }
1567 }
1568
1569
1570 /* Return true if BB needs it's transfer functions recomputed. */
1571
1572 bool
1573 df_get_bb_dirty (basic_block bb)
1574 {
1575 return bitmap_bit_p ((df_live
1576 ? df_live : df_lr)->out_of_date_transfer_functions,
1577 bb->index);
1578 }
1579
1580
1581 /* Mark BB as needing it's transfer functions as being out of
1582 date. */
1583
1584 void
1585 df_set_bb_dirty (basic_block bb)
1586 {
1587 bb->flags |= BB_MODIFIED;
1588 if (df)
1589 {
1590 int p;
1591 for (p = 1; p < df->num_problems_defined; p++)
1592 {
1593 struct dataflow *dflow = df->problems_in_order[p];
1594 if (dflow->out_of_date_transfer_functions)
1595 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1596 }
1597 df_mark_solutions_dirty ();
1598 }
1599 }
1600
1601
1602 /* Grow the bb_info array. */
1603
1604 void
1605 df_grow_bb_info (struct dataflow *dflow)
1606 {
1607 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1608 if (dflow->block_info_size < new_size)
1609 {
1610 new_size += new_size / 4;
1611 dflow->block_info
1612 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1613 new_size
1614 * dflow->problem->block_info_elt_size);
1615 memset ((char *)dflow->block_info
1616 + dflow->block_info_size
1617 * dflow->problem->block_info_elt_size,
1618 0,
1619 (new_size - dflow->block_info_size)
1620 * dflow->problem->block_info_elt_size);
1621 dflow->block_info_size = new_size;
1622 }
1623 }
1624
1625
1626 /* Clear the dirty bits. This is called from places that delete
1627 blocks. */
1628 static void
1629 df_clear_bb_dirty (basic_block bb)
1630 {
1631 int p;
1632 for (p = 1; p < df->num_problems_defined; p++)
1633 {
1634 struct dataflow *dflow = df->problems_in_order[p];
1635 if (dflow->out_of_date_transfer_functions)
1636 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1637 }
1638 }
1639
1640 /* Called from the rtl_compact_blocks to reorganize the problems basic
1641 block info. */
1642
1643 void
1644 df_compact_blocks (void)
1645 {
1646 int i, p;
1647 basic_block bb;
1648 void *problem_temps;
1649
1650 auto_bitmap tmp (&df_bitmap_obstack);
1651 for (p = 0; p < df->num_problems_defined; p++)
1652 {
1653 struct dataflow *dflow = df->problems_in_order[p];
1654
1655 /* Need to reorganize the out_of_date_transfer_functions for the
1656 dflow problem. */
1657 if (dflow->out_of_date_transfer_functions)
1658 {
1659 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1660 bitmap_clear (dflow->out_of_date_transfer_functions);
1661 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1662 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1663 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1664 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1665
1666 i = NUM_FIXED_BLOCKS;
1667 FOR_EACH_BB_FN (bb, cfun)
1668 {
1669 if (bitmap_bit_p (tmp, bb->index))
1670 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1671 i++;
1672 }
1673 }
1674
1675 /* Now shuffle the block info for the problem. */
1676 if (dflow->problem->free_bb_fun)
1677 {
1678 int size = (last_basic_block_for_fn (cfun)
1679 * dflow->problem->block_info_elt_size);
1680 problem_temps = XNEWVAR (char, size);
1681 df_grow_bb_info (dflow);
1682 memcpy (problem_temps, dflow->block_info, size);
1683
1684 /* Copy the bb info from the problem tmps to the proper
1685 place in the block_info vector. Null out the copied
1686 item. The entry and exit blocks never move. */
1687 i = NUM_FIXED_BLOCKS;
1688 FOR_EACH_BB_FN (bb, cfun)
1689 {
1690 df_set_bb_info (dflow, i,
1691 (char *)problem_temps
1692 + bb->index * dflow->problem->block_info_elt_size);
1693 i++;
1694 }
1695 memset ((char *)dflow->block_info
1696 + i * dflow->problem->block_info_elt_size, 0,
1697 (last_basic_block_for_fn (cfun) - i)
1698 * dflow->problem->block_info_elt_size);
1699 free (problem_temps);
1700 }
1701 }
1702
1703 /* Shuffle the bits in the basic_block indexed arrays. */
1704
1705 if (df->blocks_to_analyze)
1706 {
1707 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1708 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1709 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1710 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1711 bitmap_copy (tmp, df->blocks_to_analyze);
1712 bitmap_clear (df->blocks_to_analyze);
1713 i = NUM_FIXED_BLOCKS;
1714 FOR_EACH_BB_FN (bb, cfun)
1715 {
1716 if (bitmap_bit_p (tmp, bb->index))
1717 bitmap_set_bit (df->blocks_to_analyze, i);
1718 i++;
1719 }
1720 }
1721
1722 i = NUM_FIXED_BLOCKS;
1723 FOR_EACH_BB_FN (bb, cfun)
1724 {
1725 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1726 bb->index = i;
1727 i++;
1728 }
1729
1730 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1731
1732 for (; i < last_basic_block_for_fn (cfun); i++)
1733 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1734
1735 #ifdef DF_DEBUG_CFG
1736 if (!df_lr->solutions_dirty)
1737 df_set_clean_cfg ();
1738 #endif
1739 }
1740
1741
1742 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1743 block. There is no excuse for people to do this kind of thing. */
1744
1745 void
1746 df_bb_replace (int old_index, basic_block new_block)
1747 {
1748 int new_block_index = new_block->index;
1749 int p;
1750
1751 if (dump_file)
1752 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1753
1754 gcc_assert (df);
1755 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1756
1757 for (p = 0; p < df->num_problems_defined; p++)
1758 {
1759 struct dataflow *dflow = df->problems_in_order[p];
1760 if (dflow->block_info)
1761 {
1762 df_grow_bb_info (dflow);
1763 df_set_bb_info (dflow, old_index,
1764 df_get_bb_info (dflow, new_block_index));
1765 }
1766 }
1767
1768 df_clear_bb_dirty (new_block);
1769 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1770 new_block->index = old_index;
1771 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1772 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1773 }
1774
1775
1776 /* Free all of the per basic block dataflow from all of the problems.
1777 This is typically called before a basic block is deleted and the
1778 problem will be reanalyzed. */
1779
1780 void
1781 df_bb_delete (int bb_index)
1782 {
1783 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1784 int i;
1785
1786 if (!df)
1787 return;
1788
1789 for (i = 0; i < df->num_problems_defined; i++)
1790 {
1791 struct dataflow *dflow = df->problems_in_order[i];
1792 if (dflow->problem->free_bb_fun)
1793 {
1794 void *bb_info = df_get_bb_info (dflow, bb_index);
1795 if (bb_info)
1796 {
1797 dflow->problem->free_bb_fun (bb, bb_info);
1798 df_clear_bb_info (dflow, bb_index);
1799 }
1800 }
1801 }
1802 df_clear_bb_dirty (bb);
1803 df_mark_solutions_dirty ();
1804 }
1805
1806
1807 /* Verify that there is a place for everything and everything is in
1808 its place. This is too expensive to run after every pass in the
1809 mainline. However this is an excellent debugging tool if the
1810 dataflow information is not being updated properly. You can just
1811 sprinkle calls in until you find the place that is changing an
1812 underlying structure without calling the proper updating
1813 routine. */
1814
1815 void
1816 df_verify (void)
1817 {
1818 df_scan_verify ();
1819 #ifdef ENABLE_DF_CHECKING
1820 df_lr_verify_transfer_functions ();
1821 if (df_live)
1822 df_live_verify_transfer_functions ();
1823 #endif
1824 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
1825 }
1826
1827 #ifdef DF_DEBUG_CFG
1828
1829 /* Compute an array of ints that describes the cfg. This can be used
1830 to discover places where the cfg is modified by the appropriate
1831 calls have not been made to the keep df informed. The internals of
1832 this are unexciting, the key is that two instances of this can be
1833 compared to see if any changes have been made to the cfg. */
1834
1835 static int *
1836 df_compute_cfg_image (void)
1837 {
1838 basic_block bb;
1839 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1840 int i;
1841 int * map;
1842
1843 FOR_ALL_BB_FN (bb, cfun)
1844 {
1845 size += EDGE_COUNT (bb->succs);
1846 }
1847
1848 map = XNEWVEC (int, size);
1849 map[0] = size;
1850 i = 1;
1851 FOR_ALL_BB_FN (bb, cfun)
1852 {
1853 edge_iterator ei;
1854 edge e;
1855
1856 map[i++] = bb->index;
1857 FOR_EACH_EDGE (e, ei, bb->succs)
1858 map[i++] = e->dest->index;
1859 map[i++] = -1;
1860 }
1861 map[i] = -1;
1862 return map;
1863 }
1864
1865 static int *saved_cfg = NULL;
1866
1867
1868 /* This function compares the saved version of the cfg with the
1869 current cfg and aborts if the two are identical. The function
1870 silently returns if the cfg has been marked as dirty or the two are
1871 the same. */
1872
1873 void
1874 df_check_cfg_clean (void)
1875 {
1876 int *new_map;
1877
1878 if (!df)
1879 return;
1880
1881 if (df_lr->solutions_dirty)
1882 return;
1883
1884 if (saved_cfg == NULL)
1885 return;
1886
1887 new_map = df_compute_cfg_image ();
1888 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1889 free (new_map);
1890 }
1891
1892
1893 /* This function builds a cfg fingerprint and squirrels it away in
1894 saved_cfg. */
1895
1896 static void
1897 df_set_clean_cfg (void)
1898 {
1899 free (saved_cfg);
1900 saved_cfg = df_compute_cfg_image ();
1901 }
1902
1903 #endif /* DF_DEBUG_CFG */
1904 /*----------------------------------------------------------------------------
1905 PUBLIC INTERFACES TO QUERY INFORMATION.
1906 ----------------------------------------------------------------------------*/
1907
1908
1909 /* Return first def of REGNO within BB. */
1910
1911 df_ref
1912 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1913 {
1914 rtx_insn *insn;
1915 df_ref def;
1916
1917 FOR_BB_INSNS (bb, insn)
1918 {
1919 if (!INSN_P (insn))
1920 continue;
1921
1922 FOR_EACH_INSN_DEF (def, insn)
1923 if (DF_REF_REGNO (def) == regno)
1924 return def;
1925 }
1926 return NULL;
1927 }
1928
1929
1930 /* Return last def of REGNO within BB. */
1931
1932 df_ref
1933 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1934 {
1935 rtx_insn *insn;
1936 df_ref def;
1937
1938 FOR_BB_INSNS_REVERSE (bb, insn)
1939 {
1940 if (!INSN_P (insn))
1941 continue;
1942
1943 FOR_EACH_INSN_DEF (def, insn)
1944 if (DF_REF_REGNO (def) == regno)
1945 return def;
1946 }
1947
1948 return NULL;
1949 }
1950
1951 /* Finds the reference corresponding to the definition of REG in INSN.
1952 DF is the dataflow object. */
1953
1954 df_ref
1955 df_find_def (rtx_insn *insn, rtx reg)
1956 {
1957 df_ref def;
1958
1959 if (GET_CODE (reg) == SUBREG)
1960 reg = SUBREG_REG (reg);
1961 gcc_assert (REG_P (reg));
1962
1963 FOR_EACH_INSN_DEF (def, insn)
1964 if (DF_REF_REGNO (def) == REGNO (reg))
1965 return def;
1966
1967 return NULL;
1968 }
1969
1970
1971 /* Return true if REG is defined in INSN, zero otherwise. */
1972
1973 bool
1974 df_reg_defined (rtx_insn *insn, rtx reg)
1975 {
1976 return df_find_def (insn, reg) != NULL;
1977 }
1978
1979
1980 /* Finds the reference corresponding to the use of REG in INSN.
1981 DF is the dataflow object. */
1982
1983 df_ref
1984 df_find_use (rtx_insn *insn, rtx reg)
1985 {
1986 df_ref use;
1987
1988 if (GET_CODE (reg) == SUBREG)
1989 reg = SUBREG_REG (reg);
1990 gcc_assert (REG_P (reg));
1991
1992 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1993 FOR_EACH_INSN_INFO_USE (use, insn_info)
1994 if (DF_REF_REGNO (use) == REGNO (reg))
1995 return use;
1996 if (df->changeable_flags & DF_EQ_NOTES)
1997 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1998 if (DF_REF_REGNO (use) == REGNO (reg))
1999 return use;
2000 return NULL;
2001 }
2002
2003
2004 /* Return true if REG is referenced in INSN, zero otherwise. */
2005
2006 bool
2007 df_reg_used (rtx_insn *insn, rtx reg)
2008 {
2009 return df_find_use (insn, reg) != NULL;
2010 }
2011
2012 \f
2013 /*----------------------------------------------------------------------------
2014 Debugging and printing functions.
2015 ----------------------------------------------------------------------------*/
2016
2017 /* Write information about registers and basic blocks into FILE.
2018 This is part of making a debugging dump. */
2019
2020 void
2021 dump_regset (regset r, FILE *outf)
2022 {
2023 unsigned i;
2024 reg_set_iterator rsi;
2025
2026 if (r == NULL)
2027 {
2028 fputs (" (nil)", outf);
2029 return;
2030 }
2031
2032 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2033 {
2034 fprintf (outf, " %d", i);
2035 if (i < FIRST_PSEUDO_REGISTER)
2036 fprintf (outf, " [%s]",
2037 reg_names[i]);
2038 }
2039 }
2040
2041 /* Print a human-readable representation of R on the standard error
2042 stream. This function is designed to be used from within the
2043 debugger. */
2044 extern void debug_regset (regset);
2045 DEBUG_FUNCTION void
2046 debug_regset (regset r)
2047 {
2048 dump_regset (r, stderr);
2049 putc ('\n', stderr);
2050 }
2051
2052 /* Write information about registers and basic blocks into FILE.
2053 This is part of making a debugging dump. */
2054
2055 void
2056 df_print_regset (FILE *file, const_bitmap r)
2057 {
2058 unsigned int i;
2059 bitmap_iterator bi;
2060
2061 if (r == NULL)
2062 fputs (" (nil)", file);
2063 else
2064 {
2065 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2066 {
2067 fprintf (file, " %d", i);
2068 if (i < FIRST_PSEUDO_REGISTER)
2069 fprintf (file, " [%s]", reg_names[i]);
2070 }
2071 }
2072 fprintf (file, "\n");
2073 }
2074
2075
2076 /* Write information about registers and basic blocks into FILE. The
2077 bitmap is in the form used by df_byte_lr. This is part of making a
2078 debugging dump. */
2079
2080 void
2081 df_print_word_regset (FILE *file, const_bitmap r)
2082 {
2083 unsigned int max_reg = max_reg_num ();
2084
2085 if (r == NULL)
2086 fputs (" (nil)", file);
2087 else
2088 {
2089 unsigned int i;
2090 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2091 {
2092 bool found = (bitmap_bit_p (r, 2 * i)
2093 || bitmap_bit_p (r, 2 * i + 1));
2094 if (found)
2095 {
2096 int word;
2097 const char * sep = "";
2098 fprintf (file, " %d", i);
2099 fprintf (file, "(");
2100 for (word = 0; word < 2; word++)
2101 if (bitmap_bit_p (r, 2 * i + word))
2102 {
2103 fprintf (file, "%s%d", sep, word);
2104 sep = ", ";
2105 }
2106 fprintf (file, ")");
2107 }
2108 }
2109 }
2110 fprintf (file, "\n");
2111 }
2112
2113
2114 /* Dump dataflow info. */
2115
2116 void
2117 df_dump (FILE *file)
2118 {
2119 basic_block bb;
2120 df_dump_start (file);
2121
2122 FOR_ALL_BB_FN (bb, cfun)
2123 {
2124 df_print_bb_index (bb, file);
2125 df_dump_top (bb, file);
2126 df_dump_bottom (bb, file);
2127 }
2128
2129 fprintf (file, "\n");
2130 }
2131
2132
2133 /* Dump dataflow info for df->blocks_to_analyze. */
2134
2135 void
2136 df_dump_region (FILE *file)
2137 {
2138 if (df->blocks_to_analyze)
2139 {
2140 bitmap_iterator bi;
2141 unsigned int bb_index;
2142
2143 fprintf (file, "\n\nstarting region dump\n");
2144 df_dump_start (file);
2145
2146 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2147 {
2148 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2149 dump_bb (file, bb, 0, TDF_DETAILS);
2150 }
2151 fprintf (file, "\n");
2152 }
2153 else
2154 df_dump (file);
2155 }
2156
2157
2158 /* Dump the introductory information for each problem defined. */
2159
2160 void
2161 df_dump_start (FILE *file)
2162 {
2163 int i;
2164
2165 if (!df || !file)
2166 return;
2167
2168 fprintf (file, "\n\n%s\n", current_function_name ());
2169 fprintf (file, "\nDataflow summary:\n");
2170 if (df->blocks_to_analyze)
2171 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2172 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2173
2174 for (i = 0; i < df->num_problems_defined; i++)
2175 {
2176 struct dataflow *dflow = df->problems_in_order[i];
2177 if (dflow->computed)
2178 {
2179 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2180 if (fun)
2181 fun (file);
2182 }
2183 }
2184 }
2185
2186
2187 /* Dump the top or bottom of the block information for BB. */
2188 static void
2189 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2190 {
2191 int i;
2192
2193 if (!df || !file)
2194 return;
2195
2196 for (i = 0; i < df->num_problems_defined; i++)
2197 {
2198 struct dataflow *dflow = df->problems_in_order[i];
2199 if (dflow->computed)
2200 {
2201 df_dump_bb_problem_function bbfun;
2202
2203 if (top)
2204 bbfun = dflow->problem->dump_top_fun;
2205 else
2206 bbfun = dflow->problem->dump_bottom_fun;
2207
2208 if (bbfun)
2209 bbfun (bb, file);
2210 }
2211 }
2212 }
2213
2214 /* Dump the top of the block information for BB. */
2215
2216 void
2217 df_dump_top (basic_block bb, FILE *file)
2218 {
2219 df_dump_bb_problem_data (bb, file, /*top=*/true);
2220 }
2221
2222 /* Dump the bottom of the block information for BB. */
2223
2224 void
2225 df_dump_bottom (basic_block bb, FILE *file)
2226 {
2227 df_dump_bb_problem_data (bb, file, /*top=*/false);
2228 }
2229
2230
2231 /* Dump information about INSN just before or after dumping INSN itself. */
2232 static void
2233 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2234 {
2235 int i;
2236
2237 if (!df || !file)
2238 return;
2239
2240 for (i = 0; i < df->num_problems_defined; i++)
2241 {
2242 struct dataflow *dflow = df->problems_in_order[i];
2243 if (dflow->computed)
2244 {
2245 df_dump_insn_problem_function insnfun;
2246
2247 if (top)
2248 insnfun = dflow->problem->dump_insn_top_fun;
2249 else
2250 insnfun = dflow->problem->dump_insn_bottom_fun;
2251
2252 if (insnfun)
2253 insnfun (insn, file);
2254 }
2255 }
2256 }
2257
2258 /* Dump information about INSN before dumping INSN itself. */
2259
2260 void
2261 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2262 {
2263 df_dump_insn_problem_data (insn, file, /*top=*/true);
2264 }
2265
2266 /* Dump information about INSN after dumping INSN itself. */
2267
2268 void
2269 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2270 {
2271 df_dump_insn_problem_data (insn, file, /*top=*/false);
2272 }
2273
2274
2275 static void
2276 df_ref_dump (df_ref ref, FILE *file)
2277 {
2278 fprintf (file, "%c%d(%d)",
2279 DF_REF_REG_DEF_P (ref)
2280 ? 'd'
2281 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2282 DF_REF_ID (ref),
2283 DF_REF_REGNO (ref));
2284 }
2285
2286 void
2287 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2288 {
2289 fprintf (file, "{ ");
2290 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2291 {
2292 df_ref_dump (ref, file);
2293 if (follow_chain)
2294 df_chain_dump (DF_REF_CHAIN (ref), file);
2295 }
2296 fprintf (file, "}");
2297 }
2298
2299
2300 /* Dump either a ref-def or reg-use chain. */
2301
2302 void
2303 df_regs_chain_dump (df_ref ref, FILE *file)
2304 {
2305 fprintf (file, "{ ");
2306 while (ref)
2307 {
2308 df_ref_dump (ref, file);
2309 ref = DF_REF_NEXT_REG (ref);
2310 }
2311 fprintf (file, "}");
2312 }
2313
2314
2315 static void
2316 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2317 {
2318 for (; mws; mws = DF_MWS_NEXT (mws))
2319 fprintf (file, "mw %c r[%d..%d]\n",
2320 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2321 mws->start_regno, mws->end_regno);
2322 }
2323
2324
2325 static void
2326 df_insn_uid_debug (unsigned int uid,
2327 bool follow_chain, FILE *file)
2328 {
2329 fprintf (file, "insn %d luid %d",
2330 uid, DF_INSN_UID_LUID (uid));
2331
2332 if (DF_INSN_UID_DEFS (uid))
2333 {
2334 fprintf (file, " defs ");
2335 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2336 }
2337
2338 if (DF_INSN_UID_USES (uid))
2339 {
2340 fprintf (file, " uses ");
2341 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2342 }
2343
2344 if (DF_INSN_UID_EQ_USES (uid))
2345 {
2346 fprintf (file, " eq uses ");
2347 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2348 }
2349
2350 if (DF_INSN_UID_MWS (uid))
2351 {
2352 fprintf (file, " mws ");
2353 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2354 }
2355 fprintf (file, "\n");
2356 }
2357
2358
2359 DEBUG_FUNCTION void
2360 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2361 {
2362 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2363 }
2364
2365 DEBUG_FUNCTION void
2366 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2367 {
2368 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2369
2370 fprintf (file, "insn %d bb %d luid %d defs ",
2371 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2372 DF_INSN_INFO_LUID (insn_info));
2373 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2374
2375 fprintf (file, " uses ");
2376 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2377
2378 fprintf (file, " eq_uses ");
2379 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2380 fprintf (file, "\n");
2381 }
2382
2383 DEBUG_FUNCTION void
2384 df_regno_debug (unsigned int regno, FILE *file)
2385 {
2386 fprintf (file, "reg %d defs ", regno);
2387 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2388 fprintf (file, " uses ");
2389 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2390 fprintf (file, " eq_uses ");
2391 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2392 fprintf (file, "\n");
2393 }
2394
2395
2396 DEBUG_FUNCTION void
2397 df_ref_debug (df_ref ref, FILE *file)
2398 {
2399 fprintf (file, "%c%d ",
2400 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2401 DF_REF_ID (ref));
2402 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2403 DF_REF_REGNO (ref),
2404 DF_REF_BBNO (ref),
2405 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2406 DF_REF_FLAGS (ref),
2407 DF_REF_TYPE (ref));
2408 if (DF_REF_LOC (ref))
2409 {
2410 if (flag_dump_noaddr)
2411 fprintf (file, "loc #(#) chain ");
2412 else
2413 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2414 (void *)*DF_REF_LOC (ref));
2415 }
2416 else
2417 fprintf (file, "chain ");
2418 df_chain_dump (DF_REF_CHAIN (ref), file);
2419 fprintf (file, "\n");
2420 }
2421 \f
2422 /* Functions for debugging from GDB. */
2423
2424 DEBUG_FUNCTION void
2425 debug_df_insn (rtx_insn *insn)
2426 {
2427 df_insn_debug (insn, true, stderr);
2428 debug_rtx (insn);
2429 }
2430
2431
2432 DEBUG_FUNCTION void
2433 debug_df_reg (rtx reg)
2434 {
2435 df_regno_debug (REGNO (reg), stderr);
2436 }
2437
2438
2439 DEBUG_FUNCTION void
2440 debug_df_regno (unsigned int regno)
2441 {
2442 df_regno_debug (regno, stderr);
2443 }
2444
2445
2446 DEBUG_FUNCTION void
2447 debug_df_ref (df_ref ref)
2448 {
2449 df_ref_debug (ref, stderr);
2450 }
2451
2452
2453 DEBUG_FUNCTION void
2454 debug_df_defno (unsigned int defno)
2455 {
2456 df_ref_debug (DF_DEFS_GET (defno), stderr);
2457 }
2458
2459
2460 DEBUG_FUNCTION void
2461 debug_df_useno (unsigned int defno)
2462 {
2463 df_ref_debug (DF_USES_GET (defno), stderr);
2464 }
2465
2466
2467 DEBUG_FUNCTION void
2468 debug_df_chain (struct df_link *link)
2469 {
2470 df_chain_dump (link, stderr);
2471 fputc ('\n', stderr);
2472 }