]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/df-core.c
gcc/
[thirdparty/gcc.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
4 Originally contributed by Michael P. Hayes
5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /*
26 OVERVIEW:
27
28 The files in this collection (df*.c,df.h) provide a general framework
29 for solving dataflow problems. The global dataflow is performed using
30 a good implementation of iterative dataflow analysis.
31
32 The file df-problems.c provides problem instance for the most common
33 dataflow problems: reaching defs, upward exposed uses, live variables,
34 uninitialized variables, def-use chains, and use-def chains. However,
35 the interface allows other dataflow problems to be defined as well.
36
37 Dataflow analysis is available in most of the rtl backend (the parts
38 between pass_df_initialize and pass_df_finish). It is quite likely
39 that these boundaries will be expanded in the future. The only
40 requirement is that there be a correct control flow graph.
41
42 There are three variations of the live variable problem that are
43 available whenever dataflow is available. The LR problem finds the
44 areas that can reach a use of a variable, the UR problems finds the
45 areas that can be reached from a definition of a variable. The LIVE
46 problem finds the intersection of these two areas.
47
48 There are several optional problems. These can be enabled when they
49 are needed and disabled when they are not needed.
50
51 Dataflow problems are generally solved in three layers. The bottom
52 layer is called scanning where a data structure is built for each rtl
53 insn that describes the set of defs and uses of that insn. Scanning
54 is generally kept up to date, i.e. as the insns changes, the scanned
55 version of that insn changes also. There are various mechanisms for
56 making this happen and are described in the INCREMENTAL SCANNING
57 section.
58
59 In the middle layer, basic blocks are scanned to produce transfer
60 functions which describe the effects of that block on the global
61 dataflow solution. The transfer functions are only rebuilt if the
62 some instruction within the block has changed.
63
64 The top layer is the dataflow solution itself. The dataflow solution
65 is computed by using an efficient iterative solver and the transfer
66 functions. The dataflow solution must be recomputed whenever the
67 control changes or if one of the transfer function changes.
68
69
70 USAGE:
71
72 Here is an example of using the dataflow routines.
73
74 df_[chain,live,note,rd]_add_problem (flags);
75
76 df_set_blocks (blocks);
77
78 df_analyze ();
79
80 df_dump (stderr);
81
82 df_finish_pass (false);
83
84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85 instance to struct df_problem, to the set of problems solved in this
86 instance of df. All calls to add a problem for a given instance of df
87 must occur before the first call to DF_ANALYZE.
88
89 Problems can be dependent on other problems. For instance, solving
90 def-use or use-def chains is dependent on solving reaching
91 definitions. As long as these dependencies are listed in the problem
92 definition, the order of adding the problems is not material.
93 Otherwise, the problems will be solved in the order of calls to
94 df_add_problem. Note that it is not necessary to have a problem. In
95 that case, df will just be used to do the scanning.
96
97
98
99 DF_SET_BLOCKS is an optional call used to define a region of the
100 function on which the analysis will be performed. The normal case is
101 to analyze the entire function and no call to df_set_blocks is made.
102 DF_SET_BLOCKS only effects the blocks that are effected when computing
103 the transfer functions and final solution. The insn level information
104 is always kept up to date.
105
106 When a subset is given, the analysis behaves as if the function only
107 contains those blocks and any edges that occur directly between the
108 blocks in the set. Care should be taken to call df_set_blocks right
109 before the call to analyze in order to eliminate the possibility that
110 optimizations that reorder blocks invalidate the bitvector.
111
112 DF_ANALYZE causes all of the defined problems to be (re)solved. When
113 DF_ANALYZE is completes, the IN and OUT sets for each basic block
114 contain the computer information. The DF_*_BB_INFO macros can be used
115 to access these bitvectors. All deferred rescannings are down before
116 the transfer functions are recomputed.
117
118 DF_DUMP can then be called to dump the information produce to some
119 file. This calls DF_DUMP_START, to print the information that is not
120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121 for each block to print the basic specific information. These parts
122 can all be called separately as part of a larger dump function.
123
124
125 DF_FINISH_PASS causes df_remove_problem to be called on all of the
126 optional problems. It also causes any insns whose scanning has been
127 deferred to be rescanned as well as clears all of the changeable flags.
128 Setting the pass manager TODO_df_finish flag causes this function to
129 be run. However, the pass manager will call df_finish_pass AFTER the
130 pass dumping has been done, so if you want to see the results of the
131 optional problems in the pass dumps, use the TODO flag rather than
132 calling the function yourself.
133
134 INCREMENTAL SCANNING
135
136 There are four ways of doing the incremental scanning:
137
138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
147 upon even after changes have been made to the instructions. This
148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
173 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
174 df_insn_delete do not immediately change the insn but instead make
175 a note that the insn needs to be rescanned. The next call to
176 df_analyze, df_finish_pass, or df_process_deferred_rescans will
177 cause all of the pending rescans to be processed.
178
179 This is the technique of choice if either 1a, 1b, or 1c are issues
180 in the pass. In the case of 1a or 1b, a call to df_finish_pass
181 (either manually or via TODO_df_finish) should be made before the
182 next call to df_analyze or df_process_deferred_rescans.
183
184 This mode is also used by a few passes that still rely on note_uses,
185 note_stores and for_each_rtx instead of using the DF data. This
186 can be said to fall under case 1c.
187
188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189 (This mode can be cleared by calling df_clear_flags
190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
191 be rescanned.
192
193 3) Total rescanning - In this mode the rescanning is disabled.
194 Only when insns are deleted is the df information associated with
195 it also deleted. At the end of the pass, a call must be made to
196 df_insn_rescan_all. This method is used by the register allocator
197 since it generally changes each insn multiple times (once for each ref)
198 and does not need to make use of the updated scanning information.
199
200 4) Do it yourself - In this mechanism, the pass updates the insns
201 itself using the low level df primitives. Currently no pass does
202 this, but it has the advantage that it is quite efficient given
203 that the pass generally has exact knowledge of what it is changing.
204
205 DATA STRUCTURES
206
207 Scanning produces a `struct df_ref' data structure (ref) is allocated
208 for every register reference (def or use) and this records the insn
209 and bb the ref is found within. The refs are linked together in
210 chains of uses and defs for each insn and for each register. Each ref
211 also has a chain field that links all the use refs for a def or all
212 the def refs for a use. This is used to create use-def or def-use
213 chains.
214
215 Different optimizations have different needs. Ultimately, only
216 register allocation and schedulers should be using the bitmaps
217 produced for the live register and uninitialized register problems.
218 The rest of the backend should be upgraded to using and maintaining
219 the linked information such as def use or use def chains.
220
221
222 PHILOSOPHY:
223
224 While incremental bitmaps are not worthwhile to maintain, incremental
225 chains may be perfectly reasonable. The fastest way to build chains
226 from scratch or after significant modifications is to build reaching
227 definitions (RD) and build the chains from this.
228
229 However, general algorithms for maintaining use-def or def-use chains
230 are not practical. The amount of work to recompute the chain any
231 chain after an arbitrary change is large. However, with a modest
232 amount of work it is generally possible to have the application that
233 uses the chains keep them up to date. The high level knowledge of
234 what is really happening is essential to crafting efficient
235 incremental algorithms.
236
237 As for the bit vector problems, there is no interface to give a set of
238 blocks over with to resolve the iteration. In general, restarting a
239 dataflow iteration is difficult and expensive. Again, the best way to
240 keep the dataflow information up to data (if this is really what is
241 needed) it to formulate a problem specific solution.
242
243 There are fine grained calls for creating and deleting references from
244 instructions in df-scan.c. However, these are not currently connected
245 to the engine that resolves the dataflow equations.
246
247
248 DATA STRUCTURES:
249
250 The basic object is a DF_REF (reference) and this may either be a
251 DEF (definition) or a USE of a register.
252
253 These are linked into a variety of lists; namely reg-def, reg-use,
254 insn-def, insn-use, def-use, and use-def lists. For example, the
255 reg-def lists contain all the locations that define a given register
256 while the insn-use lists contain all the locations that use a
257 register.
258
259 Note that the reg-def and reg-use chains are generally short for
260 pseudos and long for the hard registers.
261
262 ACCESSING INSNS:
263
264 1) The df insn information is kept in an array of DF_INSN_INFO objects.
265 The array is indexed by insn uid, and every DF_REF points to the
266 DF_INSN_INFO object of the insn that contains the reference.
267
268 2) Each insn has three sets of refs, which are linked into one of three
269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274 The latter list are the list of references in REG_EQUAL or REG_EQUIV
275 notes. These macros produce a ref (or NULL), the rest of the list
276 can be obtained by traversal of the NEXT_REF field (accessed by the
277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
278 the uses or refs in an instruction.
279
280 3) Each insn has a logical uid field (LUID) which is stored in the
281 DF_INSN_INFO object for the insn. The LUID field is accessed by
282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283 When properly set, the LUID is an integer that numbers each insn in
284 the basic block, in order from the start of the block.
285 The numbers are only correct after a call to df_analyze. They will
286 rot after insns are added deleted or moved round.
287
288 ACCESSING REFS:
289
290 There are 4 ways to obtain access to refs:
291
292 1) References are divided into two categories, REAL and ARTIFICIAL.
293
294 REAL refs are associated with instructions.
295
296 ARTIFICIAL refs are associated with basic blocks. The heads of
297 these lists can be accessed by calling df_get_artificial_defs or
298 df_get_artificial_uses for the particular basic block.
299
300 Artificial defs and uses occur both at the beginning and ends of blocks.
301
302 For blocks that area at the destination of eh edges, the
303 artificial uses and defs occur at the beginning. The defs relate
304 to the registers specified in EH_RETURN_DATA_REGNO and the uses
305 relate to the registers specified in ED_USES. Logically these
306 defs and uses should really occur along the eh edge, but there is
307 no convenient way to do this. Artificial edges that occur at the
308 beginning of the block have the DF_REF_AT_TOP flag set.
309
310 Artificial uses occur at the end of all blocks. These arise from
311 the hard registers that are always live, such as the stack
312 register and are put there to keep the code from forgetting about
313 them.
314
315 Artificial defs occur at the end of the entry block. These arise
316 from registers that are live at entry to the function.
317
318 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
319 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320
321 All of the eq_uses, uses and defs associated with each pseudo or
322 hard register may be linked in a bidirectional chain. These are
323 called reg-use or reg_def chains. If the changeable flag
324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
325 treated like uses. If it is not set they are ignored.
326
327 The first use, eq_use or def for a register can be obtained using
328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329 macros. Subsequent uses for the same regno can be obtained by
330 following the next_reg field of the ref. The number of elements in
331 each of the chains can be found by using the DF_REG_USE_COUNT,
332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333
334 In previous versions of this code, these chains were ordered. It
335 has not been practical to continue this practice.
336
337 3) If def-use or use-def chains are built, these can be traversed to
338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
339 include the eq_uses. Otherwise these are ignored when building the
340 chains.
341
342 4) An array of all of the uses (and an array of all of the defs) can
343 be built. These arrays are indexed by the value in the id
344 structure. These arrays are only lazily kept up to date, and that
345 process can be expensive. To have these arrays built, call
346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
347 has been set the array will contain the eq_uses. Otherwise these
348 are ignored when building the array and assigning the ids. Note
349 that the values in the id field of a ref may change across calls to
350 df_analyze or df_reorganize_defs or df_reorganize_uses.
351
352 If the only use of this array is to find all of the refs, it is
353 better to traverse all of the registers and then traverse all of
354 reg-use or reg-def chains.
355
356 NOTES:
357
358 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359 both a use and a def. These are both marked read/write to show that they
360 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361 will generate a use of reg 42 followed by a def of reg 42 (both marked
362 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363 generates a use of reg 41 then a def of reg 41 (both marked read/write),
364 even though reg 41 is decremented before it is used for the memory
365 address in this second example.
366
367 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368 for which the number of word_mode units covered by the outer mode is
369 smaller than that covered by the inner mode, invokes a read-modify-write
370 operation. We generate both a use and a def and again mark them
371 read/write.
372
373 Paradoxical subreg writes do not leave a trace of the old content, so they
374 are write-only operations.
375 */
376
377
378 #include "config.h"
379 #include "system.h"
380 #include "coretypes.h"
381 #include "tm.h"
382 #include "rtl.h"
383 #include "tm_p.h"
384 #include "insn-config.h"
385 #include "recog.h"
386 #include "function.h"
387 #include "regs.h"
388 #include "output.h"
389 #include "alloc-pool.h"
390 #include "flags.h"
391 #include "hard-reg-set.h"
392 #include "basic-block.h"
393 #include "sbitmap.h"
394 #include "bitmap.h"
395 #include "timevar.h"
396 #include "df.h"
397 #include "tree-pass.h"
398 #include "params.h"
399
400 static void *df_get_bb_info (struct dataflow *, unsigned int);
401 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
402 static void df_clear_bb_info (struct dataflow *, unsigned int);
403 #ifdef DF_DEBUG_CFG
404 static void df_set_clean_cfg (void);
405 #endif
406
407 /* An obstack for bitmap not related to specific dataflow problems.
408 This obstack should e.g. be used for bitmaps with a short life time
409 such as temporary bitmaps. */
410
411 bitmap_obstack df_bitmap_obstack;
412
413
414 /*----------------------------------------------------------------------------
415 Functions to create, destroy and manipulate an instance of df.
416 ----------------------------------------------------------------------------*/
417
418 struct df_d *df;
419
420 /* Add PROBLEM (and any dependent problems) to the DF instance. */
421
422 void
423 df_add_problem (struct df_problem *problem)
424 {
425 struct dataflow *dflow;
426 int i;
427
428 /* First try to add the dependent problem. */
429 if (problem->dependent_problem)
430 df_add_problem (problem->dependent_problem);
431
432 /* Check to see if this problem has already been defined. If it
433 has, just return that instance, if not, add it to the end of the
434 vector. */
435 dflow = df->problems_by_index[problem->id];
436 if (dflow)
437 return;
438
439 /* Make a new one and add it to the end. */
440 dflow = XCNEW (struct dataflow);
441 dflow->problem = problem;
442 dflow->computed = false;
443 dflow->solutions_dirty = true;
444 df->problems_by_index[dflow->problem->id] = dflow;
445
446 /* Keep the defined problems ordered by index. This solves the
447 problem that RI will use the information from UREC if UREC has
448 been defined, or from LIVE if LIVE is defined and otherwise LR.
449 However for this to work, the computation of RI must be pushed
450 after which ever of those problems is defined, but we do not
451 require any of those except for LR to have actually been
452 defined. */
453 df->num_problems_defined++;
454 for (i = df->num_problems_defined - 2; i >= 0; i--)
455 {
456 if (problem->id < df->problems_in_order[i]->problem->id)
457 df->problems_in_order[i+1] = df->problems_in_order[i];
458 else
459 {
460 df->problems_in_order[i+1] = dflow;
461 return;
462 }
463 }
464 df->problems_in_order[0] = dflow;
465 }
466
467
468 /* Set the MASK flags in the DFLOW problem. The old flags are
469 returned. If a flag is not allowed to be changed this will fail if
470 checking is enabled. */
471 int
472 df_set_flags (int changeable_flags)
473 {
474 int old_flags = df->changeable_flags;
475 df->changeable_flags |= changeable_flags;
476 return old_flags;
477 }
478
479
480 /* Clear the MASK flags in the DFLOW problem. The old flags are
481 returned. If a flag is not allowed to be changed this will fail if
482 checking is enabled. */
483 int
484 df_clear_flags (int changeable_flags)
485 {
486 int old_flags = df->changeable_flags;
487 df->changeable_flags &= ~changeable_flags;
488 return old_flags;
489 }
490
491
492 /* Set the blocks that are to be considered for analysis. If this is
493 not called or is called with null, the entire function in
494 analyzed. */
495
496 void
497 df_set_blocks (bitmap blocks)
498 {
499 if (blocks)
500 {
501 if (dump_file)
502 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
503 if (df->blocks_to_analyze)
504 {
505 /* This block is called to change the focus from one subset
506 to another. */
507 int p;
508 bitmap_head diff;
509 bitmap_initialize (&diff, &df_bitmap_obstack);
510 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
511 for (p = 0; p < df->num_problems_defined; p++)
512 {
513 struct dataflow *dflow = df->problems_in_order[p];
514 if (dflow->optional_p && dflow->problem->reset_fun)
515 dflow->problem->reset_fun (df->blocks_to_analyze);
516 else if (dflow->problem->free_blocks_on_set_blocks)
517 {
518 bitmap_iterator bi;
519 unsigned int bb_index;
520
521 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
522 {
523 basic_block bb = BASIC_BLOCK (bb_index);
524 if (bb)
525 {
526 void *bb_info = df_get_bb_info (dflow, bb_index);
527 dflow->problem->free_bb_fun (bb, bb_info);
528 df_clear_bb_info (dflow, bb_index);
529 }
530 }
531 }
532 }
533
534 bitmap_clear (&diff);
535 }
536 else
537 {
538 /* This block of code is executed to change the focus from
539 the entire function to a subset. */
540 bitmap_head blocks_to_reset;
541 bool initialized = false;
542 int p;
543 for (p = 0; p < df->num_problems_defined; p++)
544 {
545 struct dataflow *dflow = df->problems_in_order[p];
546 if (dflow->optional_p && dflow->problem->reset_fun)
547 {
548 if (!initialized)
549 {
550 basic_block bb;
551 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
552 FOR_ALL_BB(bb)
553 {
554 bitmap_set_bit (&blocks_to_reset, bb->index);
555 }
556 }
557 dflow->problem->reset_fun (&blocks_to_reset);
558 }
559 }
560 if (initialized)
561 bitmap_clear (&blocks_to_reset);
562
563 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
564 }
565 bitmap_copy (df->blocks_to_analyze, blocks);
566 df->analyze_subset = true;
567 }
568 else
569 {
570 /* This block is executed to reset the focus to the entire
571 function. */
572 if (dump_file)
573 fprintf (dump_file, "clearing blocks_to_analyze\n");
574 if (df->blocks_to_analyze)
575 {
576 BITMAP_FREE (df->blocks_to_analyze);
577 df->blocks_to_analyze = NULL;
578 }
579 df->analyze_subset = false;
580 }
581
582 /* Setting the blocks causes the refs to be unorganized since only
583 the refs in the blocks are seen. */
584 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586 df_mark_solutions_dirty ();
587 }
588
589
590 /* Delete a DFLOW problem (and any problems that depend on this
591 problem). */
592
593 void
594 df_remove_problem (struct dataflow *dflow)
595 {
596 struct df_problem *problem;
597 int i;
598
599 if (!dflow)
600 return;
601
602 problem = dflow->problem;
603 gcc_assert (problem->remove_problem_fun);
604
605 /* Delete any problems that depended on this problem first. */
606 for (i = 0; i < df->num_problems_defined; i++)
607 if (df->problems_in_order[i]->problem->dependent_problem == problem)
608 df_remove_problem (df->problems_in_order[i]);
609
610 /* Now remove this problem. */
611 for (i = 0; i < df->num_problems_defined; i++)
612 if (df->problems_in_order[i] == dflow)
613 {
614 int j;
615 for (j = i + 1; j < df->num_problems_defined; j++)
616 df->problems_in_order[j-1] = df->problems_in_order[j];
617 df->problems_in_order[j-1] = NULL;
618 df->num_problems_defined--;
619 break;
620 }
621
622 (problem->remove_problem_fun) ();
623 df->problems_by_index[problem->id] = NULL;
624 }
625
626
627 /* Remove all of the problems that are not permanent. Scanning, LR
628 and (at -O2 or higher) LIVE are permanent, the rest are removable.
629 Also clear all of the changeable_flags. */
630
631 void
632 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
633 {
634 int i;
635 int removed = 0;
636
637 #ifdef ENABLE_DF_CHECKING
638 int saved_flags;
639 #endif
640
641 if (!df)
642 return;
643
644 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
646
647 #ifdef ENABLE_DF_CHECKING
648 saved_flags = df->changeable_flags;
649 #endif
650
651 for (i = 0; i < df->num_problems_defined; i++)
652 {
653 struct dataflow *dflow = df->problems_in_order[i];
654 struct df_problem *problem = dflow->problem;
655
656 if (dflow->optional_p)
657 {
658 gcc_assert (problem->remove_problem_fun);
659 (problem->remove_problem_fun) ();
660 df->problems_in_order[i] = NULL;
661 df->problems_by_index[problem->id] = NULL;
662 removed++;
663 }
664 }
665 df->num_problems_defined -= removed;
666
667 /* Clear all of the flags. */
668 df->changeable_flags = 0;
669 df_process_deferred_rescans ();
670
671 /* Set the focus back to the whole function. */
672 if (df->blocks_to_analyze)
673 {
674 BITMAP_FREE (df->blocks_to_analyze);
675 df->blocks_to_analyze = NULL;
676 df_mark_solutions_dirty ();
677 df->analyze_subset = false;
678 }
679
680 #ifdef ENABLE_DF_CHECKING
681 /* Verification will fail in DF_NO_INSN_RESCAN. */
682 if (!(saved_flags & DF_NO_INSN_RESCAN))
683 {
684 df_lr_verify_transfer_functions ();
685 if (df_live)
686 df_live_verify_transfer_functions ();
687 }
688
689 #ifdef DF_DEBUG_CFG
690 df_set_clean_cfg ();
691 #endif
692 #endif
693
694 #ifdef ENABLE_CHECKING
695 if (verify)
696 df->changeable_flags |= DF_VERIFY_SCHEDULED;
697 #endif
698 }
699
700
701 /* Set up the dataflow instance for the entire back end. */
702
703 static unsigned int
704 rest_of_handle_df_initialize (void)
705 {
706 gcc_assert (!df);
707 df = XCNEW (struct df_d);
708 df->changeable_flags = 0;
709
710 bitmap_obstack_initialize (&df_bitmap_obstack);
711
712 /* Set this to a conservative value. Stack_ptr_mod will compute it
713 correctly later. */
714 current_function_sp_is_unchanging = 0;
715
716 df_scan_add_problem ();
717 df_scan_alloc (NULL);
718
719 /* These three problems are permanent. */
720 df_lr_add_problem ();
721 if (optimize > 1)
722 df_live_add_problem ();
723
724 df->postorder = XNEWVEC (int, last_basic_block);
725 df->postorder_inverted = XNEWVEC (int, last_basic_block);
726 df->n_blocks = post_order_compute (df->postorder, true, true);
727 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728 gcc_assert (df->n_blocks == df->n_blocks_inverted);
729
730 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
731 memset (df->hard_regs_live_count, 0,
732 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
733
734 df_hard_reg_init ();
735 /* After reload, some ports add certain bits to regs_ever_live so
736 this cannot be reset. */
737 df_compute_regs_ever_live (true);
738 df_scan_blocks ();
739 df_compute_regs_ever_live (false);
740 return 0;
741 }
742
743
744 static bool
745 gate_opt (void)
746 {
747 return optimize > 0;
748 }
749
750
751 struct rtl_opt_pass pass_df_initialize_opt =
752 {
753 {
754 RTL_PASS,
755 "dfinit", /* name */
756 gate_opt, /* gate */
757 rest_of_handle_df_initialize, /* execute */
758 NULL, /* sub */
759 NULL, /* next */
760 0, /* static_pass_number */
761 TV_DF_SCAN, /* tv_id */
762 0, /* properties_required */
763 0, /* properties_provided */
764 0, /* properties_destroyed */
765 0, /* todo_flags_start */
766 0 /* todo_flags_finish */
767 }
768 };
769
770
771 static bool
772 gate_no_opt (void)
773 {
774 return optimize == 0;
775 }
776
777
778 struct rtl_opt_pass pass_df_initialize_no_opt =
779 {
780 {
781 RTL_PASS,
782 "no-opt dfinit", /* name */
783 gate_no_opt, /* gate */
784 rest_of_handle_df_initialize, /* execute */
785 NULL, /* sub */
786 NULL, /* next */
787 0, /* static_pass_number */
788 TV_DF_SCAN, /* tv_id */
789 0, /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
793 0 /* todo_flags_finish */
794 }
795 };
796
797
798 /* Free all the dataflow info and the DF structure. This should be
799 called from the df_finish macro which also NULLs the parm. */
800
801 static unsigned int
802 rest_of_handle_df_finish (void)
803 {
804 int i;
805
806 gcc_assert (df);
807
808 for (i = 0; i < df->num_problems_defined; i++)
809 {
810 struct dataflow *dflow = df->problems_in_order[i];
811 dflow->problem->free_fun ();
812 }
813
814 if (df->postorder)
815 free (df->postorder);
816 if (df->postorder_inverted)
817 free (df->postorder_inverted);
818 free (df->hard_regs_live_count);
819 free (df);
820 df = NULL;
821
822 bitmap_obstack_release (&df_bitmap_obstack);
823 return 0;
824 }
825
826
827 struct rtl_opt_pass pass_df_finish =
828 {
829 {
830 RTL_PASS,
831 "dfinish", /* name */
832 NULL, /* gate */
833 rest_of_handle_df_finish, /* execute */
834 NULL, /* sub */
835 NULL, /* next */
836 0, /* static_pass_number */
837 TV_NONE, /* tv_id */
838 0, /* properties_required */
839 0, /* properties_provided */
840 0, /* properties_destroyed */
841 0, /* todo_flags_start */
842 0 /* todo_flags_finish */
843 }
844 };
845
846
847
848
849 \f
850 /*----------------------------------------------------------------------------
851 The general data flow analysis engine.
852 ----------------------------------------------------------------------------*/
853
854 /* Return time BB when it was visited for last time. */
855 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
856
857 /* Helper function for df_worklist_dataflow.
858 Propagate the dataflow forward.
859 Given a BB_INDEX, do the dataflow propagation
860 and set bits on for successors in PENDING
861 if the out set of the dataflow has changed.
862
863 AGE specify time when BB was visited last time.
864 AGE of 0 means we are visiting for first time and need to
865 compute transfer function to initialize datastructures.
866 Otherwise we re-do transfer function only if something change
867 while computing confluence functions.
868 We need to compute confluence only of basic block that are younger
869 then last visit of the BB.
870
871 Return true if BB info has changed. This is always the case
872 in the first visit. */
873
874 static bool
875 df_worklist_propagate_forward (struct dataflow *dataflow,
876 unsigned bb_index,
877 unsigned *bbindex_to_postorder,
878 bitmap pending,
879 sbitmap considered,
880 ptrdiff_t age)
881 {
882 edge e;
883 edge_iterator ei;
884 basic_block bb = BASIC_BLOCK (bb_index);
885 bool changed = !age;
886
887 /* Calculate <conf_op> of incoming edges. */
888 if (EDGE_COUNT (bb->preds) > 0)
889 FOR_EACH_EDGE (e, ei, bb->preds)
890 {
891 if (age <= BB_LAST_CHANGE_AGE (e->src)
892 && TEST_BIT (considered, e->src->index))
893 changed |= dataflow->problem->con_fun_n (e);
894 }
895 else if (dataflow->problem->con_fun_0)
896 dataflow->problem->con_fun_0 (bb);
897
898 if (changed
899 && dataflow->problem->trans_fun (bb_index))
900 {
901 /* The out set of this block has changed.
902 Propagate to the outgoing blocks. */
903 FOR_EACH_EDGE (e, ei, bb->succs)
904 {
905 unsigned ob_index = e->dest->index;
906
907 if (TEST_BIT (considered, ob_index))
908 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
909 }
910 return true;
911 }
912 return false;
913 }
914
915
916 /* Helper function for df_worklist_dataflow.
917 Propagate the dataflow backward. */
918
919 static bool
920 df_worklist_propagate_backward (struct dataflow *dataflow,
921 unsigned bb_index,
922 unsigned *bbindex_to_postorder,
923 bitmap pending,
924 sbitmap considered,
925 ptrdiff_t age)
926 {
927 edge e;
928 edge_iterator ei;
929 basic_block bb = BASIC_BLOCK (bb_index);
930 bool changed = !age;
931
932 /* Calculate <conf_op> of incoming edges. */
933 if (EDGE_COUNT (bb->succs) > 0)
934 FOR_EACH_EDGE (e, ei, bb->succs)
935 {
936 if (age <= BB_LAST_CHANGE_AGE (e->dest)
937 && TEST_BIT (considered, e->dest->index))
938 changed |= dataflow->problem->con_fun_n (e);
939 }
940 else if (dataflow->problem->con_fun_0)
941 dataflow->problem->con_fun_0 (bb);
942
943 if (changed
944 && dataflow->problem->trans_fun (bb_index))
945 {
946 /* The out set of this block has changed.
947 Propagate to the outgoing blocks. */
948 FOR_EACH_EDGE (e, ei, bb->preds)
949 {
950 unsigned ob_index = e->src->index;
951
952 if (TEST_BIT (considered, ob_index))
953 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
954 }
955 return true;
956 }
957 return false;
958 }
959
960 /* Main dataflow solver loop.
961
962 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
963 need to visit.
964 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
965 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
966 PENDING will be freed.
967
968 The worklists are bitmaps indexed by postorder positions.
969
970 The function implements standard algorithm for dataflow solving with two
971 worklists (we are processing WORKLIST and storing new BBs to visit in
972 PENDING).
973
974 As an optimization we maintain ages when BB was changed (stored in bb->aux)
975 and when it was last visited (stored in last_visit_age). This avoids need
976 to re-do confluence function for edges to basic blocks whose source
977 did not change since destination was visited last time. */
978
979 static void
980 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
981 bitmap pending,
982 sbitmap considered,
983 int *blocks_in_postorder,
984 unsigned *bbindex_to_postorder,
985 int n_blocks)
986 {
987 enum df_flow_dir dir = dataflow->problem->dir;
988 int dcount = 0;
989 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
990 int age = 0;
991 bool changed;
992 VEC(int, heap) *last_visit_age = NULL;
993 int prev_age;
994 basic_block bb;
995 int i;
996
997 VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks);
998
999 /* Double-queueing. Worklist is for the current iteration,
1000 and pending is for the next. */
1001 while (!bitmap_empty_p (pending))
1002 {
1003 bitmap_iterator bi;
1004 unsigned int index;
1005
1006 /* Swap pending and worklist. */
1007 bitmap temp = worklist;
1008 worklist = pending;
1009 pending = temp;
1010
1011 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1012 {
1013 unsigned bb_index;
1014 dcount++;
1015
1016 bitmap_clear_bit (pending, index);
1017 bb_index = blocks_in_postorder[index];
1018 bb = BASIC_BLOCK (bb_index);
1019 prev_age = VEC_index (int, last_visit_age, index);
1020 if (dir == DF_FORWARD)
1021 changed = df_worklist_propagate_forward (dataflow, bb_index,
1022 bbindex_to_postorder,
1023 pending, considered,
1024 prev_age);
1025 else
1026 changed = df_worklist_propagate_backward (dataflow, bb_index,
1027 bbindex_to_postorder,
1028 pending, considered,
1029 prev_age);
1030 VEC_replace (int, last_visit_age, index, ++age);
1031 if (changed)
1032 bb->aux = (void *)(ptrdiff_t)age;
1033 }
1034 bitmap_clear (worklist);
1035 }
1036 for (i = 0; i < n_blocks; i++)
1037 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
1038
1039 BITMAP_FREE (worklist);
1040 BITMAP_FREE (pending);
1041 VEC_free (int, heap, last_visit_age);
1042
1043 /* Dump statistics. */
1044 if (dump_file)
1045 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1046 "n_basic_blocks %d n_edges %d"
1047 " count %d (%5.2g)\n",
1048 n_basic_blocks, n_edges,
1049 dcount, dcount / (float)n_basic_blocks);
1050 }
1051
1052 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1053 with "n"-th bit representing the n-th block in the reverse-postorder order.
1054 The solver is a double-queue algorithm similar to the "double stack" solver
1055 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1056 The only significant difference is that the worklist in this implementation
1057 is always sorted in RPO of the CFG visiting direction. */
1058
1059 void
1060 df_worklist_dataflow (struct dataflow *dataflow,
1061 bitmap blocks_to_consider,
1062 int *blocks_in_postorder,
1063 int n_blocks)
1064 {
1065 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1066 sbitmap considered = sbitmap_alloc (last_basic_block);
1067 bitmap_iterator bi;
1068 unsigned int *bbindex_to_postorder;
1069 int i;
1070 unsigned int index;
1071 enum df_flow_dir dir = dataflow->problem->dir;
1072
1073 gcc_assert (dir != DF_NONE);
1074
1075 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1076 bbindex_to_postorder =
1077 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1078
1079 /* Initialize the array to an out-of-bound value. */
1080 for (i = 0; i < last_basic_block; i++)
1081 bbindex_to_postorder[i] = last_basic_block;
1082
1083 /* Initialize the considered map. */
1084 sbitmap_zero (considered);
1085 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1086 {
1087 SET_BIT (considered, index);
1088 }
1089
1090 /* Initialize the mapping of block index to postorder. */
1091 for (i = 0; i < n_blocks; i++)
1092 {
1093 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1094 /* Add all blocks to the worklist. */
1095 bitmap_set_bit (pending, i);
1096 }
1097
1098 /* Initialize the problem. */
1099 if (dataflow->problem->init_fun)
1100 dataflow->problem->init_fun (blocks_to_consider);
1101
1102 /* Solve it. */
1103 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1104 blocks_in_postorder,
1105 bbindex_to_postorder,
1106 n_blocks);
1107 sbitmap_free (considered);
1108 free (bbindex_to_postorder);
1109 }
1110
1111
1112 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1113 the order of the remaining entries. Returns the length of the resulting
1114 list. */
1115
1116 static unsigned
1117 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1118 {
1119 unsigned act, last;
1120
1121 for (act = 0, last = 0; act < len; act++)
1122 if (bitmap_bit_p (blocks, list[act]))
1123 list[last++] = list[act];
1124
1125 return last;
1126 }
1127
1128
1129 /* Execute dataflow analysis on a single dataflow problem.
1130
1131 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1132 examined or will be computed. For calls from DF_ANALYZE, this is
1133 the set of blocks that has been passed to DF_SET_BLOCKS.
1134 */
1135
1136 void
1137 df_analyze_problem (struct dataflow *dflow,
1138 bitmap blocks_to_consider,
1139 int *postorder, int n_blocks)
1140 {
1141 timevar_push (dflow->problem->tv_id);
1142
1143 /* (Re)Allocate the datastructures necessary to solve the problem. */
1144 if (dflow->problem->alloc_fun)
1145 dflow->problem->alloc_fun (blocks_to_consider);
1146
1147 #ifdef ENABLE_DF_CHECKING
1148 if (dflow->problem->verify_start_fun)
1149 dflow->problem->verify_start_fun ();
1150 #endif
1151
1152 /* Set up the problem and compute the local information. */
1153 if (dflow->problem->local_compute_fun)
1154 dflow->problem->local_compute_fun (blocks_to_consider);
1155
1156 /* Solve the equations. */
1157 if (dflow->problem->dataflow_fun)
1158 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1159 postorder, n_blocks);
1160
1161 /* Massage the solution. */
1162 if (dflow->problem->finalize_fun)
1163 dflow->problem->finalize_fun (blocks_to_consider);
1164
1165 #ifdef ENABLE_DF_CHECKING
1166 if (dflow->problem->verify_end_fun)
1167 dflow->problem->verify_end_fun ();
1168 #endif
1169
1170 timevar_pop (dflow->problem->tv_id);
1171
1172 dflow->computed = true;
1173 }
1174
1175
1176 /* Analyze dataflow info for the basic blocks specified by the bitmap
1177 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1178
1179 void
1180 df_analyze (void)
1181 {
1182 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1183 bool everything;
1184 int i;
1185
1186 if (df->postorder)
1187 free (df->postorder);
1188 if (df->postorder_inverted)
1189 free (df->postorder_inverted);
1190 df->postorder = XNEWVEC (int, last_basic_block);
1191 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1192 df->n_blocks = post_order_compute (df->postorder, true, true);
1193 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1194
1195 /* These should be the same. */
1196 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1197
1198 /* We need to do this before the df_verify_all because this is
1199 not kept incrementally up to date. */
1200 df_compute_regs_ever_live (false);
1201 df_process_deferred_rescans ();
1202
1203 if (dump_file)
1204 fprintf (dump_file, "df_analyze called\n");
1205
1206 #ifndef ENABLE_DF_CHECKING
1207 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1208 #endif
1209 df_verify ();
1210
1211 for (i = 0; i < df->n_blocks; i++)
1212 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1213
1214 #ifdef ENABLE_CHECKING
1215 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1216 the ENTRY block. */
1217 for (i = 0; i < df->n_blocks_inverted; i++)
1218 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1219 #endif
1220
1221 /* Make sure that we have pruned any unreachable blocks from these
1222 sets. */
1223 if (df->analyze_subset)
1224 {
1225 everything = false;
1226 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1227 df->n_blocks = df_prune_to_subcfg (df->postorder,
1228 df->n_blocks, df->blocks_to_analyze);
1229 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1230 df->n_blocks_inverted,
1231 df->blocks_to_analyze);
1232 BITMAP_FREE (current_all_blocks);
1233 }
1234 else
1235 {
1236 everything = true;
1237 df->blocks_to_analyze = current_all_blocks;
1238 current_all_blocks = NULL;
1239 }
1240
1241 /* Skip over the DF_SCAN problem. */
1242 for (i = 1; i < df->num_problems_defined; i++)
1243 {
1244 struct dataflow *dflow = df->problems_in_order[i];
1245 if (dflow->solutions_dirty)
1246 {
1247 if (dflow->problem->dir == DF_FORWARD)
1248 df_analyze_problem (dflow,
1249 df->blocks_to_analyze,
1250 df->postorder_inverted,
1251 df->n_blocks_inverted);
1252 else
1253 df_analyze_problem (dflow,
1254 df->blocks_to_analyze,
1255 df->postorder,
1256 df->n_blocks);
1257 }
1258 }
1259
1260 if (everything)
1261 {
1262 BITMAP_FREE (df->blocks_to_analyze);
1263 df->blocks_to_analyze = NULL;
1264 }
1265
1266 #ifdef DF_DEBUG_CFG
1267 df_set_clean_cfg ();
1268 #endif
1269 }
1270
1271
1272 /* Return the number of basic blocks from the last call to df_analyze. */
1273
1274 int
1275 df_get_n_blocks (enum df_flow_dir dir)
1276 {
1277 gcc_assert (dir != DF_NONE);
1278
1279 if (dir == DF_FORWARD)
1280 {
1281 gcc_assert (df->postorder_inverted);
1282 return df->n_blocks_inverted;
1283 }
1284
1285 gcc_assert (df->postorder);
1286 return df->n_blocks;
1287 }
1288
1289
1290 /* Return a pointer to the array of basic blocks in the reverse postorder.
1291 Depending on the direction of the dataflow problem,
1292 it returns either the usual reverse postorder array
1293 or the reverse postorder of inverted traversal. */
1294 int *
1295 df_get_postorder (enum df_flow_dir dir)
1296 {
1297 gcc_assert (dir != DF_NONE);
1298
1299 if (dir == DF_FORWARD)
1300 {
1301 gcc_assert (df->postorder_inverted);
1302 return df->postorder_inverted;
1303 }
1304 gcc_assert (df->postorder);
1305 return df->postorder;
1306 }
1307
1308 static struct df_problem user_problem;
1309 static struct dataflow user_dflow;
1310
1311 /* Interface for calling iterative dataflow with user defined
1312 confluence and transfer functions. All that is necessary is to
1313 supply DIR, a direction, CONF_FUN_0, a confluence function for
1314 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1315 confluence function, TRANS_FUN, the basic block transfer function,
1316 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1317 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1318
1319 void
1320 df_simple_dataflow (enum df_flow_dir dir,
1321 df_init_function init_fun,
1322 df_confluence_function_0 con_fun_0,
1323 df_confluence_function_n con_fun_n,
1324 df_transfer_function trans_fun,
1325 bitmap blocks, int * postorder, int n_blocks)
1326 {
1327 memset (&user_problem, 0, sizeof (struct df_problem));
1328 user_problem.dir = dir;
1329 user_problem.init_fun = init_fun;
1330 user_problem.con_fun_0 = con_fun_0;
1331 user_problem.con_fun_n = con_fun_n;
1332 user_problem.trans_fun = trans_fun;
1333 user_dflow.problem = &user_problem;
1334 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1335 }
1336
1337
1338 \f
1339 /*----------------------------------------------------------------------------
1340 Functions to support limited incremental change.
1341 ----------------------------------------------------------------------------*/
1342
1343
1344 /* Get basic block info. */
1345
1346 static void *
1347 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1348 {
1349 if (dflow->block_info == NULL)
1350 return NULL;
1351 if (index >= dflow->block_info_size)
1352 return NULL;
1353 return (void *)((char *)dflow->block_info
1354 + index * dflow->problem->block_info_elt_size);
1355 }
1356
1357
1358 /* Set basic block info. */
1359
1360 static void
1361 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1362 void *bb_info)
1363 {
1364 gcc_assert (dflow->block_info);
1365 memcpy ((char *)dflow->block_info
1366 + index * dflow->problem->block_info_elt_size,
1367 bb_info, dflow->problem->block_info_elt_size);
1368 }
1369
1370
1371 /* Clear basic block info. */
1372
1373 static void
1374 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1375 {
1376 gcc_assert (dflow->block_info);
1377 gcc_assert (dflow->block_info_size > index);
1378 memset ((char *)dflow->block_info
1379 + index * dflow->problem->block_info_elt_size,
1380 0, dflow->problem->block_info_elt_size);
1381 }
1382
1383
1384 /* Mark the solutions as being out of date. */
1385
1386 void
1387 df_mark_solutions_dirty (void)
1388 {
1389 if (df)
1390 {
1391 int p;
1392 for (p = 1; p < df->num_problems_defined; p++)
1393 df->problems_in_order[p]->solutions_dirty = true;
1394 }
1395 }
1396
1397
1398 /* Return true if BB needs it's transfer functions recomputed. */
1399
1400 bool
1401 df_get_bb_dirty (basic_block bb)
1402 {
1403 if (df && df_live)
1404 return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
1405 else
1406 return false;
1407 }
1408
1409
1410 /* Mark BB as needing it's transfer functions as being out of
1411 date. */
1412
1413 void
1414 df_set_bb_dirty (basic_block bb)
1415 {
1416 bb->flags |= BB_MODIFIED;
1417 if (df)
1418 {
1419 int p;
1420 for (p = 1; p < df->num_problems_defined; p++)
1421 {
1422 struct dataflow *dflow = df->problems_in_order[p];
1423 if (dflow->out_of_date_transfer_functions)
1424 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1425 }
1426 df_mark_solutions_dirty ();
1427 }
1428 }
1429
1430
1431 /* Grow the bb_info array. */
1432
1433 void
1434 df_grow_bb_info (struct dataflow *dflow)
1435 {
1436 unsigned int new_size = last_basic_block + 1;
1437 if (dflow->block_info_size < new_size)
1438 {
1439 new_size += new_size / 4;
1440 dflow->block_info
1441 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1442 new_size
1443 * dflow->problem->block_info_elt_size);
1444 memset ((char *)dflow->block_info
1445 + dflow->block_info_size
1446 * dflow->problem->block_info_elt_size,
1447 0,
1448 (new_size - dflow->block_info_size)
1449 * dflow->problem->block_info_elt_size);
1450 dflow->block_info_size = new_size;
1451 }
1452 }
1453
1454
1455 /* Clear the dirty bits. This is called from places that delete
1456 blocks. */
1457 static void
1458 df_clear_bb_dirty (basic_block bb)
1459 {
1460 int p;
1461 for (p = 1; p < df->num_problems_defined; p++)
1462 {
1463 struct dataflow *dflow = df->problems_in_order[p];
1464 if (dflow->out_of_date_transfer_functions)
1465 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1466 }
1467 }
1468
1469 /* Called from the rtl_compact_blocks to reorganize the problems basic
1470 block info. */
1471
1472 void
1473 df_compact_blocks (void)
1474 {
1475 int i, p;
1476 basic_block bb;
1477 void *problem_temps;
1478 bitmap_head tmp;
1479
1480 bitmap_initialize (&tmp, &df_bitmap_obstack);
1481 for (p = 0; p < df->num_problems_defined; p++)
1482 {
1483 struct dataflow *dflow = df->problems_in_order[p];
1484
1485 /* Need to reorganize the out_of_date_transfer_functions for the
1486 dflow problem. */
1487 if (dflow->out_of_date_transfer_functions)
1488 {
1489 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1490 bitmap_clear (dflow->out_of_date_transfer_functions);
1491 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1492 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1493 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1494 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1495
1496 i = NUM_FIXED_BLOCKS;
1497 FOR_EACH_BB (bb)
1498 {
1499 if (bitmap_bit_p (&tmp, bb->index))
1500 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1501 i++;
1502 }
1503 }
1504
1505 /* Now shuffle the block info for the problem. */
1506 if (dflow->problem->free_bb_fun)
1507 {
1508 int size = last_basic_block * dflow->problem->block_info_elt_size;
1509 problem_temps = XNEWVAR (char, size);
1510 df_grow_bb_info (dflow);
1511 memcpy (problem_temps, dflow->block_info, size);
1512
1513 /* Copy the bb info from the problem tmps to the proper
1514 place in the block_info vector. Null out the copied
1515 item. The entry and exit blocks never move. */
1516 i = NUM_FIXED_BLOCKS;
1517 FOR_EACH_BB (bb)
1518 {
1519 df_set_bb_info (dflow, i,
1520 (char *)problem_temps
1521 + bb->index * dflow->problem->block_info_elt_size);
1522 i++;
1523 }
1524 memset ((char *)dflow->block_info
1525 + i * dflow->problem->block_info_elt_size, 0,
1526 (last_basic_block - i)
1527 * dflow->problem->block_info_elt_size);
1528 free (problem_temps);
1529 }
1530 }
1531
1532 /* Shuffle the bits in the basic_block indexed arrays. */
1533
1534 if (df->blocks_to_analyze)
1535 {
1536 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1537 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1538 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1539 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1540 bitmap_copy (&tmp, df->blocks_to_analyze);
1541 bitmap_clear (df->blocks_to_analyze);
1542 i = NUM_FIXED_BLOCKS;
1543 FOR_EACH_BB (bb)
1544 {
1545 if (bitmap_bit_p (&tmp, bb->index))
1546 bitmap_set_bit (df->blocks_to_analyze, i);
1547 i++;
1548 }
1549 }
1550
1551 bitmap_clear (&tmp);
1552
1553 i = NUM_FIXED_BLOCKS;
1554 FOR_EACH_BB (bb)
1555 {
1556 SET_BASIC_BLOCK (i, bb);
1557 bb->index = i;
1558 i++;
1559 }
1560
1561 gcc_assert (i == n_basic_blocks);
1562
1563 for (; i < last_basic_block; i++)
1564 SET_BASIC_BLOCK (i, NULL);
1565
1566 #ifdef DF_DEBUG_CFG
1567 if (!df_lr->solutions_dirty)
1568 df_set_clean_cfg ();
1569 #endif
1570 }
1571
1572
1573 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1574 block. There is no excuse for people to do this kind of thing. */
1575
1576 void
1577 df_bb_replace (int old_index, basic_block new_block)
1578 {
1579 int new_block_index = new_block->index;
1580 int p;
1581
1582 if (dump_file)
1583 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1584
1585 gcc_assert (df);
1586 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1587
1588 for (p = 0; p < df->num_problems_defined; p++)
1589 {
1590 struct dataflow *dflow = df->problems_in_order[p];
1591 if (dflow->block_info)
1592 {
1593 df_grow_bb_info (dflow);
1594 df_set_bb_info (dflow, old_index,
1595 df_get_bb_info (dflow, new_block_index));
1596 }
1597 }
1598
1599 df_clear_bb_dirty (new_block);
1600 SET_BASIC_BLOCK (old_index, new_block);
1601 new_block->index = old_index;
1602 df_set_bb_dirty (BASIC_BLOCK (old_index));
1603 SET_BASIC_BLOCK (new_block_index, NULL);
1604 }
1605
1606
1607 /* Free all of the per basic block dataflow from all of the problems.
1608 This is typically called before a basic block is deleted and the
1609 problem will be reanalyzed. */
1610
1611 void
1612 df_bb_delete (int bb_index)
1613 {
1614 basic_block bb = BASIC_BLOCK (bb_index);
1615 int i;
1616
1617 if (!df)
1618 return;
1619
1620 for (i = 0; i < df->num_problems_defined; i++)
1621 {
1622 struct dataflow *dflow = df->problems_in_order[i];
1623 if (dflow->problem->free_bb_fun)
1624 {
1625 void *bb_info = df_get_bb_info (dflow, bb_index);
1626 if (bb_info)
1627 {
1628 dflow->problem->free_bb_fun (bb, bb_info);
1629 df_clear_bb_info (dflow, bb_index);
1630 }
1631 }
1632 }
1633 df_clear_bb_dirty (bb);
1634 df_mark_solutions_dirty ();
1635 }
1636
1637
1638 /* Verify that there is a place for everything and everything is in
1639 its place. This is too expensive to run after every pass in the
1640 mainline. However this is an excellent debugging tool if the
1641 dataflow information is not being updated properly. You can just
1642 sprinkle calls in until you find the place that is changing an
1643 underlying structure without calling the proper updating
1644 routine. */
1645
1646 void
1647 df_verify (void)
1648 {
1649 df_scan_verify ();
1650 #ifdef ENABLE_DF_CHECKING
1651 df_lr_verify_transfer_functions ();
1652 if (df_live)
1653 df_live_verify_transfer_functions ();
1654 #endif
1655 }
1656
1657 #ifdef DF_DEBUG_CFG
1658
1659 /* Compute an array of ints that describes the cfg. This can be used
1660 to discover places where the cfg is modified by the appropriate
1661 calls have not been made to the keep df informed. The internals of
1662 this are unexciting, the key is that two instances of this can be
1663 compared to see if any changes have been made to the cfg. */
1664
1665 static int *
1666 df_compute_cfg_image (void)
1667 {
1668 basic_block bb;
1669 int size = 2 + (2 * n_basic_blocks);
1670 int i;
1671 int * map;
1672
1673 FOR_ALL_BB (bb)
1674 {
1675 size += EDGE_COUNT (bb->succs);
1676 }
1677
1678 map = XNEWVEC (int, size);
1679 map[0] = size;
1680 i = 1;
1681 FOR_ALL_BB (bb)
1682 {
1683 edge_iterator ei;
1684 edge e;
1685
1686 map[i++] = bb->index;
1687 FOR_EACH_EDGE (e, ei, bb->succs)
1688 map[i++] = e->dest->index;
1689 map[i++] = -1;
1690 }
1691 map[i] = -1;
1692 return map;
1693 }
1694
1695 static int *saved_cfg = NULL;
1696
1697
1698 /* This function compares the saved version of the cfg with the
1699 current cfg and aborts if the two are identical. The function
1700 silently returns if the cfg has been marked as dirty or the two are
1701 the same. */
1702
1703 void
1704 df_check_cfg_clean (void)
1705 {
1706 int *new_map;
1707
1708 if (!df)
1709 return;
1710
1711 if (df_lr->solutions_dirty)
1712 return;
1713
1714 if (saved_cfg == NULL)
1715 return;
1716
1717 new_map = df_compute_cfg_image ();
1718 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1719 free (new_map);
1720 }
1721
1722
1723 /* This function builds a cfg fingerprint and squirrels it away in
1724 saved_cfg. */
1725
1726 static void
1727 df_set_clean_cfg (void)
1728 {
1729 if (saved_cfg)
1730 free (saved_cfg);
1731 saved_cfg = df_compute_cfg_image ();
1732 }
1733
1734 #endif /* DF_DEBUG_CFG */
1735 /*----------------------------------------------------------------------------
1736 PUBLIC INTERFACES TO QUERY INFORMATION.
1737 ----------------------------------------------------------------------------*/
1738
1739
1740 /* Return first def of REGNO within BB. */
1741
1742 df_ref
1743 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1744 {
1745 rtx insn;
1746 df_ref *def_rec;
1747 unsigned int uid;
1748
1749 FOR_BB_INSNS (bb, insn)
1750 {
1751 if (!INSN_P (insn))
1752 continue;
1753
1754 uid = INSN_UID (insn);
1755 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1756 {
1757 df_ref def = *def_rec;
1758 if (DF_REF_REGNO (def) == regno)
1759 return def;
1760 }
1761 }
1762 return NULL;
1763 }
1764
1765
1766 /* Return last def of REGNO within BB. */
1767
1768 df_ref
1769 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1770 {
1771 rtx insn;
1772 df_ref *def_rec;
1773 unsigned int uid;
1774
1775 FOR_BB_INSNS_REVERSE (bb, insn)
1776 {
1777 if (!INSN_P (insn))
1778 continue;
1779
1780 uid = INSN_UID (insn);
1781 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1782 {
1783 df_ref def = *def_rec;
1784 if (DF_REF_REGNO (def) == regno)
1785 return def;
1786 }
1787 }
1788
1789 return NULL;
1790 }
1791
1792 /* Finds the reference corresponding to the definition of REG in INSN.
1793 DF is the dataflow object. */
1794
1795 df_ref
1796 df_find_def (rtx insn, rtx reg)
1797 {
1798 unsigned int uid;
1799 df_ref *def_rec;
1800
1801 if (GET_CODE (reg) == SUBREG)
1802 reg = SUBREG_REG (reg);
1803 gcc_assert (REG_P (reg));
1804
1805 uid = INSN_UID (insn);
1806 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1807 {
1808 df_ref def = *def_rec;
1809 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1810 return def;
1811 }
1812
1813 return NULL;
1814 }
1815
1816
1817 /* Return true if REG is defined in INSN, zero otherwise. */
1818
1819 bool
1820 df_reg_defined (rtx insn, rtx reg)
1821 {
1822 return df_find_def (insn, reg) != NULL;
1823 }
1824
1825
1826 /* Finds the reference corresponding to the use of REG in INSN.
1827 DF is the dataflow object. */
1828
1829 df_ref
1830 df_find_use (rtx insn, rtx reg)
1831 {
1832 unsigned int uid;
1833 df_ref *use_rec;
1834
1835 if (GET_CODE (reg) == SUBREG)
1836 reg = SUBREG_REG (reg);
1837 gcc_assert (REG_P (reg));
1838
1839 uid = INSN_UID (insn);
1840 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1841 {
1842 df_ref use = *use_rec;
1843 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1844 return use;
1845 }
1846 if (df->changeable_flags & DF_EQ_NOTES)
1847 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1848 {
1849 df_ref use = *use_rec;
1850 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1851 return use;
1852 }
1853 return NULL;
1854 }
1855
1856
1857 /* Return true if REG is referenced in INSN, zero otherwise. */
1858
1859 bool
1860 df_reg_used (rtx insn, rtx reg)
1861 {
1862 return df_find_use (insn, reg) != NULL;
1863 }
1864
1865 \f
1866 /*----------------------------------------------------------------------------
1867 Debugging and printing functions.
1868 ----------------------------------------------------------------------------*/
1869
1870
1871 /* Write information about registers and basic blocks into FILE.
1872 This is part of making a debugging dump. */
1873
1874 void
1875 df_print_regset (FILE *file, bitmap r)
1876 {
1877 unsigned int i;
1878 bitmap_iterator bi;
1879
1880 if (r == NULL)
1881 fputs (" (nil)", file);
1882 else
1883 {
1884 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1885 {
1886 fprintf (file, " %d", i);
1887 if (i < FIRST_PSEUDO_REGISTER)
1888 fprintf (file, " [%s]", reg_names[i]);
1889 }
1890 }
1891 fprintf (file, "\n");
1892 }
1893
1894
1895 /* Write information about registers and basic blocks into FILE. The
1896 bitmap is in the form used by df_byte_lr. This is part of making a
1897 debugging dump. */
1898
1899 void
1900 df_print_word_regset (FILE *file, bitmap r)
1901 {
1902 unsigned int max_reg = max_reg_num ();
1903
1904 if (r == NULL)
1905 fputs (" (nil)", file);
1906 else
1907 {
1908 unsigned int i;
1909 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
1910 {
1911 bool found = (bitmap_bit_p (r, 2 * i)
1912 || bitmap_bit_p (r, 2 * i + 1));
1913 if (found)
1914 {
1915 int word;
1916 const char * sep = "";
1917 fprintf (file, " %d", i);
1918 fprintf (file, "(");
1919 for (word = 0; word < 2; word++)
1920 if (bitmap_bit_p (r, 2 * i + word))
1921 {
1922 fprintf (file, "%s%d", sep, word);
1923 sep = ", ";
1924 }
1925 fprintf (file, ")");
1926 }
1927 }
1928 }
1929 fprintf (file, "\n");
1930 }
1931
1932
1933 /* Dump dataflow info. */
1934
1935 void
1936 df_dump (FILE *file)
1937 {
1938 basic_block bb;
1939 df_dump_start (file);
1940
1941 FOR_ALL_BB (bb)
1942 {
1943 df_print_bb_index (bb, file);
1944 df_dump_top (bb, file);
1945 df_dump_bottom (bb, file);
1946 }
1947
1948 fprintf (file, "\n");
1949 }
1950
1951
1952 /* Dump dataflow info for df->blocks_to_analyze. */
1953
1954 void
1955 df_dump_region (FILE *file)
1956 {
1957 if (df->blocks_to_analyze)
1958 {
1959 bitmap_iterator bi;
1960 unsigned int bb_index;
1961
1962 fprintf (file, "\n\nstarting region dump\n");
1963 df_dump_start (file);
1964
1965 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1966 {
1967 basic_block bb = BASIC_BLOCK (bb_index);
1968
1969 df_print_bb_index (bb, file);
1970 df_dump_top (bb, file);
1971 df_dump_bottom (bb, file);
1972 }
1973 fprintf (file, "\n");
1974 }
1975 else
1976 df_dump (file);
1977 }
1978
1979
1980 /* Dump the introductory information for each problem defined. */
1981
1982 void
1983 df_dump_start (FILE *file)
1984 {
1985 int i;
1986
1987 if (!df || !file)
1988 return;
1989
1990 fprintf (file, "\n\n%s\n", current_function_name ());
1991 fprintf (file, "\nDataflow summary:\n");
1992 if (df->blocks_to_analyze)
1993 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1994 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
1995
1996 for (i = 0; i < df->num_problems_defined; i++)
1997 {
1998 struct dataflow *dflow = df->problems_in_order[i];
1999 if (dflow->computed)
2000 {
2001 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2002 if (fun)
2003 fun(file);
2004 }
2005 }
2006 }
2007
2008
2009 /* Dump the top of the block information for BB. */
2010
2011 void
2012 df_dump_top (basic_block bb, FILE *file)
2013 {
2014 int i;
2015
2016 if (!df || !file)
2017 return;
2018
2019 for (i = 0; i < df->num_problems_defined; i++)
2020 {
2021 struct dataflow *dflow = df->problems_in_order[i];
2022 if (dflow->computed)
2023 {
2024 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
2025 if (bbfun)
2026 bbfun (bb, file);
2027 }
2028 }
2029 }
2030
2031
2032 /* Dump the bottom of the block information for BB. */
2033
2034 void
2035 df_dump_bottom (basic_block bb, FILE *file)
2036 {
2037 int i;
2038
2039 if (!df || !file)
2040 return;
2041
2042 for (i = 0; i < df->num_problems_defined; i++)
2043 {
2044 struct dataflow *dflow = df->problems_in_order[i];
2045 if (dflow->computed)
2046 {
2047 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2048 if (bbfun)
2049 bbfun (bb, file);
2050 }
2051 }
2052 }
2053
2054
2055 static void
2056 df_ref_dump (df_ref ref, FILE *file)
2057 {
2058 fprintf (file, "%c%d(%d)",
2059 DF_REF_REG_DEF_P (ref)
2060 ? 'd'
2061 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2062 DF_REF_ID (ref),
2063 DF_REF_REGNO (ref));
2064 }
2065
2066 void
2067 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2068 {
2069 fprintf (file, "{ ");
2070 while (*ref_rec)
2071 {
2072 df_ref ref = *ref_rec;
2073 df_ref_dump (ref, file);
2074 if (follow_chain)
2075 df_chain_dump (DF_REF_CHAIN (ref), file);
2076 ref_rec++;
2077 }
2078 fprintf (file, "}");
2079 }
2080
2081
2082 /* Dump either a ref-def or reg-use chain. */
2083
2084 void
2085 df_regs_chain_dump (df_ref ref, FILE *file)
2086 {
2087 fprintf (file, "{ ");
2088 while (ref)
2089 {
2090 df_ref_dump (ref, file);
2091 ref = DF_REF_NEXT_REG (ref);
2092 }
2093 fprintf (file, "}");
2094 }
2095
2096
2097 static void
2098 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2099 {
2100 while (*mws)
2101 {
2102 fprintf (file, "mw %c r[%d..%d]\n",
2103 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2104 (*mws)->start_regno, (*mws)->end_regno);
2105 mws++;
2106 }
2107 }
2108
2109
2110 static void
2111 df_insn_uid_debug (unsigned int uid,
2112 bool follow_chain, FILE *file)
2113 {
2114 fprintf (file, "insn %d luid %d",
2115 uid, DF_INSN_UID_LUID (uid));
2116
2117 if (DF_INSN_UID_DEFS (uid))
2118 {
2119 fprintf (file, " defs ");
2120 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2121 }
2122
2123 if (DF_INSN_UID_USES (uid))
2124 {
2125 fprintf (file, " uses ");
2126 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2127 }
2128
2129 if (DF_INSN_UID_EQ_USES (uid))
2130 {
2131 fprintf (file, " eq uses ");
2132 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2133 }
2134
2135 if (DF_INSN_UID_MWS (uid))
2136 {
2137 fprintf (file, " mws ");
2138 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2139 }
2140 fprintf (file, "\n");
2141 }
2142
2143
2144 DEBUG_FUNCTION void
2145 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2146 {
2147 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2148 }
2149
2150 DEBUG_FUNCTION void
2151 df_insn_debug_regno (rtx insn, FILE *file)
2152 {
2153 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2154
2155 fprintf (file, "insn %d bb %d luid %d defs ",
2156 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2157 DF_INSN_INFO_LUID (insn_info));
2158 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2159
2160 fprintf (file, " uses ");
2161 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2162
2163 fprintf (file, " eq_uses ");
2164 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2165 fprintf (file, "\n");
2166 }
2167
2168 DEBUG_FUNCTION void
2169 df_regno_debug (unsigned int regno, FILE *file)
2170 {
2171 fprintf (file, "reg %d defs ", regno);
2172 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2173 fprintf (file, " uses ");
2174 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2175 fprintf (file, " eq_uses ");
2176 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2177 fprintf (file, "\n");
2178 }
2179
2180
2181 DEBUG_FUNCTION void
2182 df_ref_debug (df_ref ref, FILE *file)
2183 {
2184 fprintf (file, "%c%d ",
2185 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2186 DF_REF_ID (ref));
2187 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2188 DF_REF_REGNO (ref),
2189 DF_REF_BBNO (ref),
2190 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2191 DF_REF_FLAGS (ref),
2192 DF_REF_TYPE (ref));
2193 if (DF_REF_LOC (ref))
2194 {
2195 if (flag_dump_noaddr)
2196 fprintf (file, "loc #(#) chain ");
2197 else
2198 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2199 (void *)*DF_REF_LOC (ref));
2200 }
2201 else
2202 fprintf (file, "chain ");
2203 df_chain_dump (DF_REF_CHAIN (ref), file);
2204 fprintf (file, "\n");
2205 }
2206 \f
2207 /* Functions for debugging from GDB. */
2208
2209 DEBUG_FUNCTION void
2210 debug_df_insn (rtx insn)
2211 {
2212 df_insn_debug (insn, true, stderr);
2213 debug_rtx (insn);
2214 }
2215
2216
2217 DEBUG_FUNCTION void
2218 debug_df_reg (rtx reg)
2219 {
2220 df_regno_debug (REGNO (reg), stderr);
2221 }
2222
2223
2224 DEBUG_FUNCTION void
2225 debug_df_regno (unsigned int regno)
2226 {
2227 df_regno_debug (regno, stderr);
2228 }
2229
2230
2231 DEBUG_FUNCTION void
2232 debug_df_ref (df_ref ref)
2233 {
2234 df_ref_debug (ref, stderr);
2235 }
2236
2237
2238 DEBUG_FUNCTION void
2239 debug_df_defno (unsigned int defno)
2240 {
2241 df_ref_debug (DF_DEFS_GET (defno), stderr);
2242 }
2243
2244
2245 DEBUG_FUNCTION void
2246 debug_df_useno (unsigned int defno)
2247 {
2248 df_ref_debug (DF_USES_GET (defno), stderr);
2249 }
2250
2251
2252 DEBUG_FUNCTION void
2253 debug_df_chain (struct df_link *link)
2254 {
2255 df_chain_dump (link, stderr);
2256 fputc ('\n', stderr);
2257 }